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INTRODUCTION 

Social scientists try to act as natural scientists, 

relying on empirical evidence from observation and 

experimentation. However, in social sciences, 

experiments (field or lab) are difficult. For this reason, 

in the last decades social scientists have increasingly 

relied on quasi-experimental designs (see Meyer, 1995), 

which differ from observational studies (like e.g., cohort 

studies, case-control studies, and cross-sectional 

studies) in which observations are made without the 

implementation of any intervention.  

The purpose of this methodological note is to explain 

and discuss the quasi-experiment (QE) methodology. 

We will show that the QE approach can be useful to 

evaluate the impact of any policy measure. Specifically, 

we will provide an example of its application to the 

evaluation of the socio-economic impacts of large-scale 

Research Infrastructures (RIs). RIs require costly 

investment, funded by public money, and can generate 

several benefits to society, that occur because their 

construction and operation involve solving new 

problems. This ‘learning by doing’ process (Arrow 

1962) has spillover effects on firms providing 

technologies through procurement contracts, early 

career researchers acquiring skill through hands-on 

activities, developers of open and free software (Florio 

2019). In the rest of this paper, the QE approach for the 

empirical analysis of technological procurement 

spillovers is discussed. 

WHAT IS A QUASI-EXPERIMENT DESIGN? 

A QE is a research design which mimics 

experimental design but lacks the random assignment to 

the treatment or control group. Indeed, while in a real 

experiment units have the same chance to be assigned to 

a given treatment condition, in a quasi-experimental 

design the assignment is based on something other than 

random (Nichols and Edlund, 2023). This may happen 

when the researcher has control over assignment to the 

treatment condition but uses some criteria other than 

randomness (e.g., a cutoff score) to determine which 

unit receives the treatment. Alternatively, QEs are used 

when researchers cannot control or manipulate the 

treatment condition assignment due to ethical concerns, 

costs, feasibility, practical constraints, or other reasons. 

Instead, they take advantage of naturally occurring 

groups or conditions and then compare the outcomes of 

those groups. 

As such, QEs cannot ensure that treatment and 

control groups are ex-ante identical (despite not even 

randomization itself guarantee that groups will be 

equivalent at baseline). For this reason, QEs are subject 

to concerns regarding internal validity, that is their 

effectiveness to estimate the causal impact of an 

intervention on a population outcome. This is 

particularly true if there are confounding variables that 

cannot be controlled for. To address this limitation, 

researchers have developed statistical techniques to 

account for unobserved factors and establish a causal 

relationship between the “quasi-independent” and the 

outcome variable. However, the strength of the causal 

claim in QEs is typically considered weaker than in true 

experiments. 

TYPES OF QE DESIGNS 

Different QE designs can be used by social scientists 

to investigate causal relationships when random 

assignment of participants is not feasible. Among them, 

the most used include: 

Pre-Post Design: researchers observe the dependent 

variable before and after the intervention within a single 

group. Changes in the dependent variable are attributed 

to the intervention (see e.g., Florio et al. 2018 and 

Castelnovo et al. 2023b).  

Time-Series/Panel Design: it is commonly used in 

the context of policy or program evaluation. Data are 

collected over a series of time points both before and 

after the implementation of a policy or program. The 

introduction of a new law, serves as the quasi-

experimental manipulation, allowing researchers to 

analyze changes in the dependent variable over time to 

assess the policy impact. In this setting, time and 

individual fixed effects can be useful to control for 

unobserved heterogeneity (see e.g. Castelnovo et al., 

2018). 
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Non-Equivalent Control Group Design: researchers 

compare a group that receives the treatment 

(intervention) with a similar group that does not. 

Participants in the groups are not randomly assigned, but 

researchers try to match them based on relevant 

characteristics. To this aim, they can use algorithms like 

propensity score matching which matches participants 

in treatment and control groups based on their likelihood 

of receiving the treatment. This procedure helps 

researchers to control for confounding variables and 

make the groups more comparable. Post-treatment 

differences in outcomes between the two groups will be 

attributed to the intervention. This design can be 

enriched with a pre-intervention measurement to control 

for differences between groups at baseline (see e.g. 

Castelnovo et al. 2023a). 

Regression Discontinuity Design: participants are 

assigned to different groups based on a cutoff score or 

threshold. The idea is that participants on either side of 

the cutoff are very similar in terms of their 

characteristics, except for the treatment eligibility, 

allowing for a causal inference (see Hahn et al. 1999). 

In all the previous designs, it is important to address 

potential confounding variables, i.e., variables that 

could affect the outcome and that are not controlled 

through random assignment. Including observable 

control variables and using suitable statistical 

techniques is crucial to allow for a causal interpretation 

of estimation results. 

AN APPLICATION: HOW TO USE QES TO 

ASSESS TECHNOLOGICAL PROCUREMENT 

SPILLOVERS? 

In the evaluation of the socio-economic impacts of 

large-scale RIs on firms, the units of observation are not 

individuals but companies; instead of health conditions, 

we have economic performance (the health of the 

company) which can be measured according to different 

indicators, as the number of filed/granted patents, R&D 

expenditure, revenues, profits, etc. The treatment is 

becoming a RI supplier (or more generally, being the 

recipient of any innovation policy). If we know in which 

year the contract was signed, we can identify cohorts. If 

we consider companies that would have been eligible for 

a contract with a RI but did not get it (for example, 

because of preferential policy in favor of Member 

States), we may build a control group. 

It is worth noticing that firms receiving an order 

from a RI are not a random draw from the universe of 

companies, as they need to pass certain selection criteria 

for procurement, including legal, technological, and 

financial capacity. Also, the control group may be a non-

random sample, for example if it is made up of 

companies that self-selected themselves as potential 

suppliers registering in a record (see, e.g., the ESA List 

of Potential Suppliers).  

In the empirical analysis of technological 

procurement spillovers, QEs point to the following 

research question:  

 

“Does becoming a supplier of technology for a RI 

have a causal impact on the company performance, 

after considering any confounding variables?” 

 

An illustrative conceptual model, which can be 

applied to the evaluation of any policy measure, is 

represented by this generic equation: 

 

Ytn = f (Ptn, Xtn, Et, Zn, etn) 

 

where Y is a performance variable in year t=1 …T, for 

the company n= 1,…, N; Ptn is the treatment event (such 

as receiving a procurement order) in year t for each 

company; X is a vector of control variables describing 

the company characteristics (e.g., industrial sectors, size 

by assets or by employees), E is a vector of time-variant 

exogenous effects (dummies for the year of 

observation), Z is a vector of time-invariant effects (e.g. 

a company identifier); and etn is a stochastic error 

component.  

Ideally, we would like that the sample includes many 

treated and untreated units. If Ptn is a dichotomous 

variable, the value 0 means that the n-company is 

untreated at time t, hence it is assigned to the control 

group, while if Ptn = 1 the company is assigned to the 

treated group. In QEs, heterogeneous treatment timing 

is frequent: the treatment, i.e., the procurement order, is 

administered to different companies in different years. 

This means that some companies shift their status from 

0 to 1 in a year t>1. 

What we aim to detect is a significant statistical 

difference between the outcome of treated and untreated 

companies, after controlling for firm-level 

characteristics and fixed effects.  

If companies are randomly assigned to each sub-

sample, that would be an experiment, like a randomized 

control trial in medicine. As this is impossible in our 

context, because companies are selected as suppliers 

based on observable pre-treatment characteristics (e.g., 

technological skills), a QE design needs creating an 

artificial control group where the companies are as 

similar as possible to the treated group according to the 

X vector. This implies using matching algorithms like, 

e.g., propensity score matching, nearest neighbor 

matching, exact matching, or coarsened matching (see 

e.g., Augurzky and Kluve, 2007). 

If the research design involves heterogeneous 

treatment timing because companies become suppliers 

in different years, each company may act as a control 

unit before shifting from 0 to 1 state. In situations where 

eventually all the companies in the sample are treated by 

the end of the considered period, one can exploit such 

dynamics using “not-yet treated” units as controls, 

instead of recurring to matching algorithms to create a 
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control group of “never treated” (see Callaway and 

Sant’Anna, 2020). An advantage of this approach is that 

comparing treated units receiving the treatment at 

different moments in time does not require the change 

in the firms’ status to be an exogenous random event, 

but only requires its timing to be random.  

In the next paragraph, we will present an empirical 

application of the QE methodology. 

CASE STUDY: THE ITALIAN SPACE AGENCY  

Castelnovo et al. (2023a) used a combined approach. 

After having built the dataset of companies receiving a 

technological order from the Italian Space Agency 

(ASI), they selected firms’ patents’ stock as their Y 

(including a depreciation parameter to account for value 

loss over time). As a second step, an artificial control 

group of not-suppliers was created. Ideally, these should 

be ‘twins’ of the suppliers. To achieve this goal, they 

built a very large database of around two million 

companies, selecting companies belonging to the same 

industry 4-digit NACE code of ASI suppliers. Then a 

subsample of 250,000 companies was randomly 

extracted. As a last step, a propensity score matching 

approach is applied year by year, using pre-treatment 

tangible and intangible assets, operating revenues, 

number of employees, year of incorporation and sector 

as key variables in the matching algorithm. The result is 

a control group of companies with no statistical 

differences from the treated ones in the relevant 

variables.  

Then, they used a staggered diff-in-diff approach 

(Fadlon and Nielsen, 2021), where the exploitation of 

the different treatment timing allows addressing 

potential endogeneity issues stemming from the non-

random assignment of treatment, being the control 

group made by treated units as well, which nevertheless 

receive the treatment in a different year. This approach 

is particularly suited in that setting, since the treatment 

cannot be considered exogenous because, as already 

mentioned, ASI is likely to select its suppliers according 

to some pre-treatment characteristics.  

The authors concluded that becoming an ASI 

supplier increased companies’ patent stock by around 

10% compared to the control group. This effect is more 

significant for hi-tech firms. 

CONCLUSION 

Are QEs always better than observational studies? 

The most important caveat is building a control group 

that accurately mimics the treated group. Indeed, in 

social sciences, as well as in medicine, we never observe 

all the features of a company, or of a patient, thus the 

matching procedure can be rather crude, as it is limited 

to selected observables which may or may not represent 

well possible confounding factors.  

This issue does not prevent the design of a QE, but 

researchers should be aware of its limitations, and 

consider that in some cases a well-executed 

observational study, based on a lot of effort in getting 

and cleaning data, may lead to results that point in the 

right direction. This is particularly true when we are not 

much interested to a precise estimate of the effect on the 

selected outcome, but rather on its approximated 

magnitude. However, when the goal is claiming 

causality, a QE may be more defensible than an 

observational study.  
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