CERN IdeaSquare Journal of Experimental Innovation, 2025; 9(3):4-10

DOI: https://doi.org/10.23726/cij.2025.1794

METHODOLOGICAL NOTE

Laboratory experiments in innovation research

Eric Guerci'

"Université Cote d’Azur, CNRS, GREDEG, 250 rue Albert Einstein, CS 10269, 06905 Sophia Antipolis Cedex, France

Corresponding authors: eric.guerci@univ-cotedazur.fr

WHAT ARE LABORATORY EXPERIMENTS?

Laboratory (lab) experiments combine two Latin
roots, laborare (to work) and experiri (to try or to test),
which together capture the very essence of innovation
studies. They may thus be rephrased as “working
practices based on testing”. The first documented use of
the term “laboratory” dates back to the late seventeenth
century referring to alchemist’s workshop (Morris
2021), where early “innovation researchers” tested
systematically physical and chemical phenomena in the
pursuit of innovative discoveries. In the same century,
modern experimental science was emerging through
controlled  experimental  setups  approximating
laboratory conditions, as illustrated by Galileo Galilei’s
inclined-plane studies of gravity or by classical optical
experiments, such as Christiaan Huygens’ double-
refraction experiment and Isaac Newton’s prism
experiment.

The implicit guiding principle of such causal
inquiries was the ceteris paribus principle (Hacking,
1989): the idea that, by isolating and manipulating a
specific causal factor (e.g., slope of the inclined plane)
while holding other relevant conditions fixed through
experimental control (same body, surface, track length,
...), stable quantitative relations (e.g., distance—time
relationship) could be identified and thus laws between
physical variables could be uncovered (e.g., law of
uniformly accelerated motion). This principle is still
largely implementable in hard-science experiments
(physics and chemistry), where closed systems can be
investigated by restricting the predominant sources of
uncertainty to measurement and control errors. For such
natural phenomena, quantitative modeling rests on a
relatively viable deterministic assumption, where
uncertainty is confined to exogenous variables often
treated as negligible measurement errors (Hacking,
1989; Pearl, 2009). Many innovation scholars,
particularly in engineering and design research, conduct
laboratory experiments to test prototypes, evaluate
technical artifacts, or assess system performance by
constructing controlled (implicitly ceteris paribus)! and

!'It is worth noting the growing trend in engineering research
towards the use of fully virtual test-bed solutions, namely
digital twins, to simulate ceteris paribus conditions in
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iterative processes in which specific design parameters
are deliberately varied while others are held constant
(Thomke, 1998). These early ambitions and
experimental approaches, originating in the earliest
laboratory-like practices, remains valid and continues
to support a part of innovation research, as it did in
paradigmatic innovation laboratories such as the Menlo
Park and West Orange laboratories of Thomas Edison
(Pretzer, 1989) and extends to more recent participatory
innovation environments such as fab labs and
makerspaces (Browder et al., 2019; Gershenfeld, 2005).

It is worth highlighting so far two essential
dimensions that will accompany our discussion.

1. Since the early instances described here above,
lab experiments are not purely observational activities
aiming at detecting associations between facts or
variables, but empirical tools designed to identify causal
effects or relationships between them. Indeed,
innovation studies is inherently concerned with causal
processes, as innovation refers to the generation of novel
outcomes through specific mechanisms, interactions,
and institutional conditions (Boudreau & Lakhani,
2016).

2. (To advance a perspective that will be central
to the remainder of this paper) early laboratory-like
practices, such as the above-mentioned alchemical
ambitions, were largely use-oriented toward evaluative
discovery, that is, identifying whether specific causes
could entail reproducible effects (such as particular
material transformations) and thus be exploited. In
contrast, early scientific laboratory experiments were
driven by an epistemic ambition to understand the causal
structure  underlying natural phenomena. This
dichotomy persists in innovation research through the
distinction between policy-oriented vs mechanism-
oriented (Boudreau & Lakhani, 2016). The evaluative
research paradigm focuses on assessing outcomes or
effectiveness (e.g., policy impacts), whereas epistemic
research aims at generating new knowledge by
developing concepts, metrics, or by identifying
underlying mechanisms (processes) that enable new
understanding (e.g., novel indicators or societal
mechanisms).

controlled virtual environments prior to physical prototyping

(Fuller et al (2020)).
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In this paper, we focus on the scientific literature
showing how lab experiments can address the need to
understand causally social and human phenomena, by
combining the systematic observation of human
behavior with the controlled manipulation of the
environment. In line with this perspective, it is worth
recalling the major methodological breakthrough in
experimental science brought about by the work of
Ronald A. Fisher widely regarded as father of modern
statistics and experimental design. Indeed, his work
introduced statistical methods as essential tools to
quantify uncertainty and support causal inference in
contexts characterized by heterogeneity among
experimental units and uncontrollable variability in the
systems under study, such as biology and medicine. He
introduced what is still regarded today as the gold
standard of experimental design in domains
characterized by irreducible variability, such as biology,
medicine, and the social sciences: the randomized
controlled trial (RCT). An RCT is an experimental
design that randomly assigns units to treatment and
control groups, thereby enabling causal inference by
ideally removing the influence of confounders. More
generally, Fisher’s revolutionary contribution lies in his
proposal to use statistical methods to quantify
uncertainty and support inferential conclusions by
explicitly accounting for variability, while achieving
control over sources of uncertainty primarily through
experimental design.

We introduce thus a modern and commonly adopted
definition of a lab experiment in innovation research
applied to the study of social systems: a set of monitored
activities such as tasks and questionaries designed and
conducted according to a strict set of procedures and
materials including recruitment strategies, instructions
and other operational elements (the protocol), with the
aim of establishing that the observed effects (the
outcomes of the main activity) are caused by the
manipulated independent variables (freatments), rather
than by alternative factors (potential confounders).
Treatments are obtained as variations of the protocol;
they can therefore be characterized by simple
modifications, among others, in the instructions, the
recruitment strategy or the materials. Potential
confounders are variables (either observed or
unobserved) that are correlated with both the treatment
and the outcome, ie., they generate a further
uncontrolled variation in the outcome that is not
attributable to the treatment. In lab experiments,
randomization is the gold standard because assigning
participants randomly to treatment conditions ensures
that potential confounders are, on average, equally
distributed across groups, thus breaking any systematic
association between confounders and treatment. The
laboratory ensures a controlled environment in which
the protocol can be implemented and reproduced
consistently.

Figure 1 presents, for illustrative purposes, a
configuration of a minimal laboratory experiment based
on a protocol with a single task, a binary treatment and
a binary outcome, used to test whether consuming hot
beverages or warm foods influences the preference for a
mountain or beach holiday. A plausible confounder
could be an unintentionally recruiting of students
immediately after intense physical activity. This factor
may affect (correlate with) both the holiday preference
(beach-relax vs mountain-effort associations) and the
enjoyment of drinking hot beverages or eating warm
foods. Random assignment breaks the association
between the confounder and the treatment, thereby
preventing confounding bias.
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Fig.1. Illustrative example of a laboratory experiment.

WHAT ARE LAB EXPERIMENTS GOOD FOR?

The ability to make a causal claim within an
experiment has a specific name and is usually referred
to as internal validity. This notion refers exclusively to
the degree to which an experiment allows us to
confidently conclude that the observed effect is caused
by the manipulated independent variable, rather than by
alternative factors. High internal validity is supported by
replicable and tightly controlled experimental settings,
such as laboratory environments, or by adopting well-
crafted experimental designs (Shadish et al., 2002),
including between-subject RCT (Boudreau & Lakhani,
2016), within-subject (repeated-measures) designs
(Keselman et al., 2001), regression discontinuity
designs (Angrist & Pischke, 2009), and factorial
designs, whose suitability and performance may depend
on contextual constraints. The choice between these
designs therefore reflects the epistemic function of the
experiment and the constraints imposed by the
phenomenology under study, rather than a hierarchy of
methods (Falk & Heckman, 2009; Shadish et al., 2002).
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The notion of internal validity is often contrasted
with the notion of external validity, which refers “to
what populations, settings, treatment variables, and
measurement variables can this effect be generalized”
(Campbell and Stanley 1963, p.5). The literature
distinguishes several dimensions of external validity and
corresponding strategies to address them, namely
treatments (through variation and manipulation of
treatment components), contexts (through multi-site or
multi-context designs), target populations (through
sampling strategies and population reweighting), and
outcomes (through the use of alternative or expanded
outcome measures) (Egami & Hartman, 2023).

The notions of internal and external validity are
often considered orthogonal (Weimann, 2015) in that
they capture distinct capabilities across different
empirical (observational, experimental) and theoretical
(analytical, computational) modeling approaches. While
experimental researchers perceive a trade-off between
increasing the rigor of internal control and maintaining
the generalizability of findings, some recent literature is
supporting a more integrated theory-driven framework
(Angrist & Pischke, 2009; Bareinboim & Pearl, 2016;
Heckman, 2020; Pearl, 2009). These approaches
utilize causal theories and structural modeling to better
support both internal and external validity, tailoring the
research design to the specific domain of study and its
unique contextual conditions.

Within this framework, standard laboratory
experiments are typically characterized by strong
internal validity and limited external validity, which
may foster the perception that laboratory experiments
are generally poor at generalizing, particularly to
ecologically valid contexts. This characterization echoes
earlier methodological literature, specifically Levitt and
List (2007, 2008) who « argue that lab experiments are
a useful tool for generating qualitative insights but are
not well-suited for obtaining deep structural parameter
estimates». This limitation is attributed primarily to low
stakes, the use of student samples and participants’
awareness of being observed (Hawthorne effect) all of
which contributing to the pinpointed lack of ecological
validity. Falk and Heckman (2009) argue that
differences between laboratory and field outcomes
reflect changes in underlying causal conditions rather
than a failure of laboratory experiments per se.
Furthermore, some influential comparative studies, such
as Herbst and Mas (2015), highlight that, for specific
mechanisms, behavioral patterns identified in laboratory
settings can generalize to real-world contexts.

Current research thus generally supports the
suitability of lab experiments for causal structural
investigation and their applicability to several research
domains (Weimann, 2015), while acknowledging a
potential general lack of external validity in terms
of sample representativeness and ecological realism,
except for specific mechanisms where generalization is
more plausible (Briiggemann & Bizer, 2016).
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These considerations are particularly relevant to the
distinction previously established between evaluative
(use-oriented) and epistemic (explanation-oriented)
experimental research. This dichotomy reflects a key
characteristic of innovation studies: a large body of
experimental work is policy-oriented, focusing on “what
works?”, that is, the evaluative capacity of laboratory
experiments to measure the effects of specific
interventions on target outcomes, including also those
addressed in the traditionally non-experimental
innovation policy literature (Bravo-Biosca 2020). In the
context of policy-oriented research, lab experiments
may encounter the difficulty ofreplicating the
magnitude and significance of mean treatment
effects when moving from controlled environments to
complex, large-scale implementations (e.g., Al-Ubaydli,
List, & Suskind, 2023). As highlighted by Briiggemann
and Bizer (2016), the experimental approach has been
widely adopted in policy-oriented innovation research
across the three main domains: incentives and
remuneration schemes; Intellectual Property Rights
(IPR) and regulatory frameworks; and a broad category
of institutional designs encompassing environmental
policies, organizational structures, and behavioral
interventions (nudges).

Another relevant part of innovation research is
mechanism-oriented. This literature aims at identifying
“what is the problem”, that is, the structural causal
processes underlying learning, creativity, coordination,
and technological change, rather than evaluating the
effectiveness of specific interventions. While often not
labeled as such, this tradition aligns closely with a
structural interpretation of causality and external
validity, = where  generalization concerns  the
transferability of mechanisms across contexts rather
than the mere replication of treatment effects. Classical
domains within this strand investigates, among others,
underlying incentives and motivation such as crowding
out and crowding in (Boudreau & Lakhani, 2016);
knowledge spillovers and diffusion (Boudreau &
Lakhani, 2016); exploration—exploitation trade-offs;
(Briiggemann et al., 2016) coordination and
collaboration dynamics; and the design of platforms,
contests, and tournaments (Deck & Kimbrough, 2017).

Finally, we conclude by emphasizing the often
neglected but important role of laboratory experiments
as valuable pedagogical tools. Historically, in the hard
sciences (e.g., physics and chemistry) and in
engineering, laboratory experiments have been adopted
as valid learning devices (Lowe, 2023). Educational
programs—from high school to university—commonly
introduce laboratory experiments in these domains as
training opportunities to acquire competencies and
hands-on experience, as well as to reflect on key
methodological issues inherent to experimental practice.
This approach has also become increasingly common in
social science educational programs. Through direct
engagement with experimental design, researchers are
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confronted with fundamental theoretical and
methodological challenges, such as replicability, models
of causal inference, statistical estimation, power
analysis, and effect size interpretation. Addressing these
issues helps develop methodological competence and
sensitivity, enabling researchers to better identify
weaknesses and potential pitfalls in their own empirical
work (Holt, 1999; McCabe & Olimpo, 2020).

HOW TO USE IT

Inspired by the four types of validity proposed by
Shadish et al. (2002), namely statistical conclusion
validity, internal validity, construct validity, and
external validity, and by the FAQs (frequently asked
questions) proposed by Angrist and Pischke (2009), that
is, the four fundamental questions to be asked in any
successful research project, we propose a framework for
the context of experimental research.

We retain the first FAQ “What is the causal
relationship of interest?”. This step is fundamental
because it reorients the researcher away from the early
descriptive—associative stage shaped by individual
intuitions toward the explicit identification of cause—
effect relationships. In the context of policy-oriented
research, this activity can initially be reduced to a simple
two-variable framework (cause—effect) and to the
identification of the actual variables, or suitable
quantitative proxies, that capture the phenomenon of
interest. In the context of mechanism-oriented research,
the need for a more explicit representation of the
underlying causal structure, including mediators and
confounders, can be addressed by a useful practice at
this stage, namely formalizing modeling assumptions
through causal diagrams (Directed Acyclic Graphs; see
Pearl, 2009). This step requires, for an efficient and
successful practice, a deep dive into the existing
literature to precisely identify, extend, replicate, or
validate established causal relationships.

We also retain in our framework the second
question: “What is the ideal experiment to capture the
causal effect of interest?”. Before focusing on the first
experimental solution suggested by personal experience,
feasibility constraints due to logistics or local
arrangements, or cost considerations, researchers should
conceive the ideal experiment as, at a minimum, the
hypothetical benchmark to which actual designs can be
approximated in successive stages. This activity
engages researchers in a careful reflection on the
fundamental components of an experimental design
such as the units of analysis, the target population, the
treatments, the outcome variables, and the causal
contrast of interest. This stage is fundamental for
beginning to assess the presence of FUQs
(fundamentally unidentified questions; Angrist and

Pischke, 2009)). Indeed, some forms of randomization
or manipulation may not be feasible in laboratory
settings due to ethical, technical, or institutional
limitations. In this step, we also lay the foundations for
internal and external validity, because we define the
context and limitations for, respectively, the nature of
the causal claim of interest and its potential for
generalization.

We rephrase the third FAQ as “What is the feasible
laboratory experimental strategy, given practical
constraints?”. Indeed, our exercise is supposing the
adoption of data coming from a lab experiment as
identification strategy. This third phase enables
researchers to conclude the operationalization of
treatments and outcomes within feasible laboratory
settings, including the specific tasks or tests used, in
such a way that they truly represent the abstract
constructs they are intended to measure. In this phase,
the laboratory functions as an identification technology
for causal inference (internal validity) and for achieving
construct validity. Construct validity is achieved
through the quality of manipulation, which ensures that
the intended treatment is systematically and precisely
attributed, and through the quality of measurement,
which ensures that the outcome variables validly and
reliably capture the phenomena of interest. This phase is
crucial because « the rewards associated with being
correct in identifying causal relationships can be high,
and the costs of misidentification can be tremendous »
(Shadish et al., 2002). In this phase, all aspects of the
experimental procedure should be carefully devised.
These include decisions about the materials and the
experimental setting, including the coding of the
experimental protocol and the preparation of
instructions to minimize experimental demand effects
(Shadish et al., 2002), as well as procedures to guarantee
participant engagement and sustained attention.
Additional control mechanisms typically include
blinding or partial deception when appropriate, attention
and comprehension checks and primarily randomization
(most often implemented in between-subject design)
and counterbalancing (most often implemented in
within-subject designs) procedures (Falk & Heckman,
2009; Shadish et al., 2002). As a brief methodological
note, while within-subject designs (both randomized
and quasi-experimental) typically enhance causal
identification by controlling for unobserved
heterogeneity, they rely on a strict assumption of
temporal stability that is often violated. Indeed, the
repeated exposure inherent in these designs can trigger
learning  effects and  experimental  demand.
Consequently, while within-subject designs offer
superior statistical power, they may compromise
ecological validity, making between-subject designs a
more conservative but more successful choice for
innovation studies.



The fourth and final FAQ is ‘What is your mode of
statistical inference?’. This phase, which is rather
technical, largely coincides with what is referred to as
statistical conclusion validity, namely whether the
statistical evidence is sufficient to support conclusions
about the presence, magnitude, and direction of causal
effects. This part includes pre—data-collection statistical
considerations, such as decisions about the sample to
recruit, power analysis for determining sample size
based on significance levels and target effect sizes, as
well as post—data-collection analyses, including the
choice of statistical tests, the number of tests performed,
and related inferential decisions. These statistical
conclusions also inform, and pave the way for, inquiries
into external validity.

Finally, to conclude this exercise, it is worth
highlighting that current experimental research
increasingly requires either time-stamped and publicly
accessible pre-registration documents (Nosek et al.,
2018), made available through dedicated web platforms
(e.g., osf.io, aspredicted.org), or submission to peer-
reviewed journals adopting the format of pre-registered
reports (Chambers & Tzavella, 2022). This practice
consists in making experimental designs public prior to
data collection in order to enhance transparency,
credibility, and causal interpretability, notably by
reducing p-hacking and hindsight bias. The four FAQs
constitute an exercise that, if conducted in a timely
manner and properly documented, provides the natural
foundation for such pre-registration practices and
registered reports.

We also briefly describe the modern laboratories
environments in which social science lab experiments
are conducted. Nowadays, these dedicated spaces may
be physical, online, or fully virtual, and they provide the
controlled conditions necessary for systematically
observing behavior, implementing treatments, and
ensuring replicability.

Standardly, a laboratory for social and human
sciences experiments may consist of a single
workstation for running and investigating individual
decision-making activities, or up to 20 to 30 separate
computerized stations (the standard size for economics
labs) for running many participants in parallel in
individual or group-based activities (see Figure 2).

Computerized stations allow researchers to collect a
variety of behavioral responses, such as choices made
via mouse or keyboard clicks, as well as reaction times.
However, additional equipment can be used to observe
and investigate cognitive and emotional states and
processes by monitoring physiological activity, such as
electrodermal activity and ECG, eye movements using
eye-tracking bars or glasses, neural activity using EEG
headsets, and facial expressions using front-facing
cameras (standard or infrared) (see Figure 3).

E. Guerci

Fig.2. An example of a workstation for experiments measuring
physiological signals and collecting both facial expressions
with frontal camera and eye-tracking bar.

h

Fig.3. An example of a standard university laboratory
configuration for conducting computerized experiments with
multiple participants.

It is worth noting that the technical expertise and
technological infrastructure required to run laboratory
experiments in the social and human sciences have
become increasingly accessible and affordable, largely
due to free-to-use software solutions for implementing
and managing computerized experiments (e.g., z-Tree,
oTree) and for planning and administering randomized
or constrained participant recruitment (e.g., ORSEE)
(Fischbacher, 2007; Chen et al., 2016; Greiner, 2015).
Many university laboratories offer experimental
services such as support in the design and coding of the
experimental protocol, as well as the independent
running of experimental sessions, thereby providing
turnkey solutions.

Furthermore, online platforms and solutions for
experimental research have become increasingly
adopted since the Covid-19 pandemic, now offering, at
different levels, solutions enabling researchers to recruit
hundreds or even thousands of participants (e.g.,
Prolific, Amazon Mechanical Turk), administer survey
studies (e.g., Qualtrics, LimeSurvey, UserTesting and
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Respondent), and run increasingly complex behavioural
tasks (e.g., Gorilla, Pavlovia, Inquisit), all at reduced
cost compared with setting up a new lab (Anwyl-Irvine
etal., 2020; Bridges et al., 2020; Palan & Schitter, 2018;
Peer et al., 2017).
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