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WHAT ARE LABORATORY EXPERIMENTS?  

Laboratory (lab) experiments combine two Latin 
roots, laborare (to work) and experiri (to try or to test), 
which together capture the very essence of innovation 
studies. They may thus be rephrased as “working 
practices based on testing”. The first documented use of 
the term “laboratory” dates back to the late seventeenth 
century referring to alchemist’s workshop (Morris 
2021), where early “innovation researchers” tested 
systematically physical and chemical phenomena in the 
pursuit of innovative discoveries. In the same century, 
modern experimental science was emerging through 
controlled experimental setups approximating 
laboratory conditions, as illustrated by Galileo Galilei’s 
inclined-plane studies of gravity or by classical optical 
experiments, such as Christiaan Huygens’ double-
refraction experiment and Isaac Newton’s prism 
experiment. 

The implicit guiding principle of such causal 
inquiries was the ceteris paribus principle (Hacking, 
1989): the idea that, by isolating and manipulating a 
specific causal factor (e.g., slope of the inclined plane) 
while holding other relevant conditions fixed through 
experimental control (same body, surface, track length, 
…), stable quantitative relations (e.g., distance–time 
relationship) could be identified and thus laws between 
physical variables could be uncovered (e.g., law of 
uniformly accelerated motion). This principle is still 
largely implementable in hard-science experiments 
(physics and chemistry), where closed systems can be 
investigated by restricting the predominant sources of 
uncertainty to measurement and control errors. For such 
natural phenomena, quantitative modeling rests on a 
relatively viable deterministic assumption, where 
uncertainty is confined to exogenous variables often 
treated as negligible measurement errors (Hacking, 
1989; Pearl, 2009). Many innovation scholars, 
particularly in engineering and design research, conduct 
laboratory experiments to test prototypes, evaluate 
technical artifacts, or assess system performance by 
constructing controlled (implicitly ceteris paribus)1 and 

 
1 It is worth noting the growing trend in engineering research 
towards the use of fully virtual test-bed solutions, namely 
digital twins, to simulate ceteris paribus conditions in 

iterative processes in which specific design parameters 
are deliberately varied while others are held constant 
(Thomke, 1998). These early ambitions and 
experimental approaches, originating in the earliest 
laboratory-like practices, remains valid and continues 
to support a part of innovation research, as it did in 
paradigmatic innovation laboratories such as the Menlo 
Park and West Orange laboratories of Thomas Edison 
(Pretzer, 1989) and extends to more recent participatory 
innovation environments such as fab labs and 
makerspaces (Browder et al., 2019; Gershenfeld, 2005).  

It is worth highlighting so far two essential 
dimensions that will accompany our discussion. 

1. Since the early instances described here above, 
lab experiments are not purely observational activities 
aiming at detecting associations between facts or 
variables, but empirical tools designed to identify causal 
effects or relationships between them. Indeed, 
innovation studies is inherently concerned with causal 
processes, as innovation refers to the generation of novel 
outcomes through specific mechanisms, interactions, 
and institutional conditions (Boudreau & Lakhani, 
2016). 

2. (To advance a perspective that will be central 
to the remainder of this paper) early laboratory-like 
practices, such as the above-mentioned alchemical 
ambitions, were largely use-oriented toward evaluative 
discovery, that is, identifying whether specific causes 
could entail reproducible effects (such as particular 
material transformations) and thus be exploited. In 
contrast, early scientific laboratory experiments were 
driven by an epistemic ambition to understand the causal 
structure underlying natural phenomena. This 
dichotomy persists in innovation research through the 
distinction between policy-oriented vs mechanism-
oriented (Boudreau & Lakhani, 2016). The evaluative 
research paradigm focuses on assessing outcomes or 
effectiveness (e.g., policy impacts), whereas epistemic 
research aims at generating new knowledge by 
developing concepts, metrics, or by identifying 
underlying mechanisms (processes) that enable new 
understanding (e.g., novel indicators or societal 
mechanisms). 

controlled virtual environments prior to physical prototyping 
(Fuller et al (2020)).  
 

https://creativecommons.org/licenses/by/4.0/
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In this paper, we focus on the scientific literature 
showing how lab experiments can address the need to 
understand causally social and human phenomena, by 
combining the systematic observation of human 
behavior with the controlled manipulation of the 
environment. In line with this perspective, it is worth 
recalling the major methodological breakthrough in 
experimental science brought about by the work of 
Ronald A. Fisher widely regarded as father of modern 
statistics and experimental design. Indeed, his work 
introduced statistical methods as essential tools to 
quantify uncertainty and support causal inference in 
contexts characterized by heterogeneity among 
experimental units and uncontrollable variability in the 
systems under study, such as biology and medicine. He 
introduced what is still regarded today as the gold 
standard of experimental design in domains 
characterized by irreducible variability, such as biology, 
medicine, and the social sciences: the randomized 
controlled trial (RCT). An RCT is an experimental 
design that randomly assigns units to treatment and 
control groups, thereby enabling causal inference by 
ideally removing the influence of confounders. More 
generally, Fisher’s revolutionary contribution lies in his 
proposal to use statistical methods to quantify 
uncertainty and support inferential conclusions by 
explicitly accounting for variability, while achieving 
control over sources of uncertainty primarily through 
experimental design. 

We introduce thus a modern and commonly adopted 
definition of a lab experiment in innovation research 
applied to the study of social systems: a set of monitored 
activities such as tasks and questionaries designed and 
conducted according to a strict set of procedures and 
materials including recruitment strategies, instructions 
and other operational elements (the protocol), with the 
aim of establishing that the observed effects (the 
outcomes of the main activity) are caused by the 
manipulated independent variables (treatments), rather 
than by alternative factors (potential confounders). 
Treatments are obtained as variations of the protocol; 
they can therefore be characterized by simple 
modifications, among others, in the instructions, the 
recruitment strategy or the materials. Potential 
confounders are variables (either observed or 
unobserved) that are correlated with both the treatment 
and the outcome, i.e., they generate a further 
uncontrolled variation in the outcome that is not 
attributable to the treatment. In lab experiments, 
randomization is the gold standard because assigning 
participants randomly to treatment conditions ensures 
that potential confounders are, on average, equally 
distributed across groups, thus breaking any systematic 
association between confounders and treatment. The 
laboratory ensures a controlled environment in which 
the protocol can be implemented and reproduced 
consistently. 

Figure 1 presents, for illustrative purposes, a 
configuration of a minimal laboratory experiment based 
on a protocol with a single task, a binary treatment and 
a binary outcome, used to test whether consuming hot 
beverages or warm foods influences the preference for a 
mountain or beach holiday. A plausible confounder 
could be an unintentionally recruiting of students 
immediately after intense physical activity.  This factor 
may affect (correlate with) both the holiday preference 
(beach-relax vs mountain-effort associations) and the 
enjoyment of drinking hot beverages or eating warm 
foods. Random assignment breaks the association 
between the confounder and the treatment, thereby 
preventing confounding bias.  

 

 

Fig.1. Illustrative example of a laboratory experiment.  

WHAT ARE LAB EXPERIMENTS GOOD FOR? 

The ability to make a causal claim within an 
experiment has a specific name and is usually referred 
to as internal validity. This notion refers exclusively to 
the degree to which an experiment allows us to 
confidently conclude that the observed effect is caused 
by the manipulated independent variable, rather than by 
alternative factors. High internal validity is supported by 
replicable and tightly controlled experimental settings, 
such as laboratory environments, or by adopting well-
crafted experimental designs (Shadish et al., 2002), 
including between-subject RCT (Boudreau & Lakhani, 
2016), within-subject (repeated-measures) designs 
(Keselman et al., 2001), regression discontinuity 
designs (Angrist & Pischke, 2009), and factorial 
designs, whose suitability and performance may depend 
on contextual constraints. The choice between these 
designs therefore reflects the epistemic function of the 
experiment and the constraints imposed by the 
phenomenology under study, rather than a hierarchy of 
methods (Falk & Heckman, 2009; Shadish et al., 2002). 

chatgpt://generic-entity/?number=0
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The notion of internal validity is often contrasted 
with the notion of external validity, which refers “to 
what populations, settings, treatment variables, and 
measurement variables can this effect be generalized” 
(Campbell and Stanley 1963, p.5). The literature 
distinguishes several dimensions of external validity and 
corresponding strategies to address them, namely 
treatments (through variation and manipulation of 
treatment components), contexts (through multi-site or 
multi-context designs), target populations (through 
sampling strategies and population reweighting), and 
outcomes (through the use of alternative or expanded 
outcome measures) (Egami & Hartman, 2023).  

The notions of internal and external validity are 
often considered orthogonal (Weimann, 2015) in that 
they capture distinct capabilities across different 
empirical (observational, experimental) and theoretical 
(analytical, computational) modeling approaches. While 
experimental researchers perceive a trade-off between 
increasing the rigor of internal control and maintaining 
the generalizability of findings, some recent literature is 
supporting a more integrated theory-driven framework 
(Angrist & Pischke, 2009; Bareinboim & Pearl, 2016; 
Heckman, 2020; Pearl, 2009). These approaches 
utilize causal theories and structural modeling to better 
support both internal and external validity, tailoring the 
research design to the specific domain of study and its 
unique contextual conditions. 

Within this framework, standard laboratory 
experiments are typically characterized by strong 
internal validity and limited external validity, which 
may foster the perception that laboratory experiments 
are generally poor at generalizing, particularly to 
ecologically valid contexts. This characterization echoes 
earlier methodological literature, specifically Levitt and 
List (2007, 2008) who « argue that lab experiments are 
a useful tool for generating qualitative insights but are 
not well-suited for obtaining deep structural parameter 
estimates». This limitation is attributed primarily to low 
stakes, the use of student samples and participants’ 
awareness of being observed (Hawthorne effect) all of 
which contributing to the pinpointed lack of ecological 
validity. Falk and Heckman (2009) argue that 
differences between laboratory and field outcomes 
reflect changes in underlying causal conditions rather 
than a failure of laboratory experiments per se. 
Furthermore, some influential comparative studies, such 
as Herbst and Mas (2015), highlight that, for specific 
mechanisms, behavioral patterns identified in laboratory 
settings can generalize to real-world contexts. 

Current research thus generally supports the 
suitability of lab experiments for causal structural 
investigation and their applicability to several research 
domains (Weimann, 2015), while acknowledging a 
potential general lack of external validity in terms 
of sample representativeness and ecological realism, 
except for specific mechanisms where generalization is 
more plausible (Brüggemann & Bizer, 2016). 

These considerations are particularly relevant to the 
distinction previously established between evaluative 
(use-oriented) and epistemic (explanation-oriented) 
experimental research. This dichotomy reflects a key 
characteristic of innovation studies: a large body of 
experimental work is policy-oriented, focusing on “what 
works?”, that is, the evaluative capacity of laboratory 
experiments to measure the effects of specific 
interventions on target outcomes, including also those 
addressed in the traditionally non-experimental 
innovation policy literature (Bravo-Biosca 2020). In the 
context of policy-oriented research, lab experiments 
may encounter the difficulty of replicating the 
magnitude and significance of mean treatment 
effects when moving from controlled environments to 
complex, large-scale implementations (e.g., Al-Ubaydli, 
List, & Suskind, 2023). As highlighted by Brüggemann 
and Bizer (2016), the experimental approach has been 
widely adopted in policy-oriented innovation research 
across the three main domains: incentives and 
remuneration schemes; Intellectual Property Rights 
(IPR) and regulatory frameworks; and a broad category 
of institutional designs encompassing environmental 
policies, organizational structures, and behavioral 
interventions (nudges). 

Another relevant part of innovation research is 
mechanism-oriented. This literature aims at identifying 
“what is the problem”, that is, the structural causal 
processes underlying learning, creativity, coordination, 
and technological change, rather than evaluating the 
effectiveness of specific interventions. While often not 
labeled as such, this tradition aligns closely with a 
structural interpretation of causality and external 
validity, where generalization concerns the 
transferability of mechanisms across contexts rather 
than the mere replication of treatment effects. Classical 
domains within this strand investigates, among others, 
underlying incentives and motivation such as crowding 
out and crowding in (Boudreau & Lakhani, 2016); 
knowledge spillovers and diffusion (Boudreau & 
Lakhani, 2016); exploration–exploitation trade-offs; 
(Brüggemann et al., 2016) coordination and 
collaboration dynamics; and the design of platforms, 
contests, and tournaments (Deck & Kimbrough, 2017).  

Finally, we conclude by emphasizing the often 
neglected but important role of laboratory experiments 
as valuable pedagogical tools. Historically, in the hard 
sciences (e.g., physics and chemistry) and in 
engineering, laboratory experiments have been adopted 
as valid learning devices (Lowe, 2023). Educational 
programs—from high school to university—commonly 
introduce laboratory experiments in these domains as 
training opportunities to acquire competencies and 
hands-on experience, as well as to reflect on key 
methodological issues inherent to experimental practice. 
This approach has also become increasingly common in 
social science educational programs. Through direct 
engagement with experimental design, researchers are 
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confronted with fundamental theoretical and 
methodological challenges, such as replicability, models 
of causal inference, statistical estimation, power 
analysis, and effect size interpretation. Addressing these 
issues helps develop methodological competence and 
sensitivity, enabling researchers to better identify 
weaknesses and potential pitfalls in their own empirical 
work (Holt, 1999; McCabe & Olimpo, 2020). 

HOW TO USE IT 

Inspired by the four types of validity proposed by 
Shadish et al. (2002), namely statistical conclusion 
validity, internal validity, construct validity, and 
external validity, and by the FAQs (frequently asked 
questions) proposed by Angrist and Pischke (2009), that 
is, the four fundamental questions to be asked in any 
successful research project, we propose a framework for 
the context of experimental research. 

 
We retain the first FAQ “What is the causal 

relationship of interest?”. This step is fundamental 
because it reorients the researcher away from the early 
descriptive–associative stage shaped by individual 
intuitions toward the explicit identification of cause–
effect relationships. In the context of policy-oriented 
research, this activity can initially be reduced to a simple 
two-variable framework (cause–effect) and to the 
identification of the actual variables, or suitable 
quantitative proxies, that capture the phenomenon of 
interest. In the context of mechanism-oriented research, 
the need for a more explicit representation of the 
underlying causal structure, including mediators and 
confounders, can be addressed by a useful practice at 
this stage, namely formalizing modeling assumptions 
through causal diagrams (Directed Acyclic Graphs; see 
Pearl, 2009). This step requires, for an efficient and 
successful practice, a deep dive into the existing 
literature to precisely identify, extend, replicate, or 
validate established causal relationships. 

 
We also retain in our framework the second 

question: “What is the ideal experiment to capture the 
causal effect of interest?”. Before focusing on the first 
experimental solution suggested by personal experience, 
feasibility constraints due to logistics or local 
arrangements, or cost considerations, researchers should 
conceive the ideal experiment as, at a minimum, the 
hypothetical benchmark to which actual designs can be 
approximated in successive stages. This activity 
engages researchers in a careful reflection on the 
fundamental components of an experimental design 
such as the units of analysis, the target population, the 
treatments, the outcome variables, and the causal 
contrast of interest. This stage is fundamental for 
beginning to assess the presence of FUQs 
(fundamentally unidentified questions; Angrist and 

Pischke, 2009)). Indeed, some forms of randomization 
or manipulation may not be feasible in laboratory 
settings due to ethical, technical, or institutional 
limitations. In this step, we also lay the foundations for 
internal and external validity, because we define the 
context and limitations for, respectively, the nature of 
the causal claim of interest and its potential for 
generalization. 

 
We rephrase the third FAQ as “What is the feasible 

laboratory experimental strategy, given practical 
constraints?”. Indeed, our exercise is supposing the 
adoption of data coming from a lab experiment as 
identification strategy. This third phase enables 
researchers to conclude the operationalization of 
treatments and outcomes within feasible laboratory 
settings, including the specific tasks or tests used, in 
such a way that they truly represent the abstract 
constructs they are intended to measure. In this phase, 
the laboratory functions as an identification technology 
for causal inference (internal validity) and for achieving 
construct validity. Construct validity is achieved 
through the quality of manipulation, which ensures that 
the intended treatment is systematically and precisely 
attributed, and through the quality of measurement, 
which ensures that the outcome variables validly and 
reliably capture the phenomena of interest. This phase is 
crucial because « the rewards associated with being 
correct in identifying causal relationships can be high, 
and the costs of misidentification can be tremendous » 
(Shadish et al., 2002). In this phase, all aspects of the 
experimental procedure should be carefully devised. 
These include decisions about the materials and the 
experimental setting, including the coding of the 
experimental protocol and the preparation of 
instructions to minimize experimental demand effects 
(Shadish et al., 2002), as well as procedures to guarantee 
participant engagement and sustained attention. 
Additional control mechanisms typically include 
blinding or partial deception when appropriate, attention 
and comprehension checks and primarily randomization 
(most often implemented in between-subject design) 
and counterbalancing (most often implemented in 
within-subject designs) procedures (Falk & Heckman, 
2009; Shadish et al., 2002). As a brief methodological 
note, while within-subject designs (both randomized 
and quasi-experimental) typically enhance causal 
identification by controlling for unobserved 
heterogeneity, they rely on a strict assumption of 
temporal stability that is often violated. Indeed, the 
repeated exposure inherent in these designs can trigger 
learning effects and experimental demand. 
Consequently, while within-subject designs offer 
superior statistical power, they may compromise 
ecological validity, making between-subject designs a 
more conservative but more successful choice for 
innovation studies. 
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The fourth and final FAQ is ‘What is your mode of 
statistical inference?’. This phase, which is rather 
technical, largely coincides with what is referred to as 
statistical conclusion validity, namely whether the 
statistical evidence is sufficient to support conclusions 
about the presence, magnitude, and direction of causal 
effects. This part includes pre–data-collection statistical 
considerations, such as decisions about the sample to 
recruit, power analysis for determining sample size 
based on significance levels and target effect sizes, as 
well as post–data-collection analyses, including the 
choice of statistical tests, the number of tests performed, 
and related inferential decisions. These statistical 
conclusions also inform, and pave the way for, inquiries 
into external validity. 

Finally, to conclude this exercise, it is worth 
highlighting that current experimental research 
increasingly requires either time-stamped and publicly 
accessible pre-registration documents (Nosek et al., 
2018), made available through dedicated web platforms 
(e.g., osf.io, aspredicted.org), or submission to peer-
reviewed journals adopting the format of pre-registered 
reports (Chambers & Tzavella, 2022). This practice 
consists in making experimental designs public prior to 
data collection in order to enhance transparency, 
credibility, and causal interpretability, notably by 
reducing p-hacking and hindsight bias. The four FAQs 
constitute an exercise that, if conducted in a timely 
manner and properly documented, provides the natural 
foundation for such pre-registration practices and 
registered reports. 

We also briefly describe the modern laboratories 
environments in which social science lab experiments 
are conducted. Nowadays, these dedicated spaces may 
be physical, online, or fully virtual, and they provide the 
controlled conditions necessary for systematically 
observing behavior, implementing treatments, and 
ensuring replicability. 

Standardly, a laboratory for social and human 
sciences experiments may consist of a single 
workstation for running and investigating individual 
decision-making activities, or up to 20 to 30 separate 
computerized stations (the standard size for economics 
labs) for running many participants in parallel in 
individual or group-based activities (see Figure 2).  

Computerized stations allow researchers to collect a 
variety of behavioral responses, such as choices made 
via mouse or keyboard clicks, as well as reaction times. 
However, additional equipment can be used to observe 
and investigate cognitive and emotional states and 
processes by monitoring physiological activity, such as 
electrodermal activity and ECG, eye movements using 
eye-tracking bars or glasses, neural activity using EEG 
headsets, and facial expressions using front-facing 
cameras (standard or infrared) (see Figure 3). 

 

 

Fig.2. An example of a workstation for experiments measuring 
physiological signals and collecting both facial expressions 
with frontal camera and eye-tracking bar. 

 

Fig.3. An example of a standard university laboratory 
configuration for conducting computerized experiments with 
multiple participants. 

It is worth noting that the technical expertise and 
technological infrastructure required to run laboratory 
experiments in the social and human sciences have 
become increasingly accessible and affordable, largely 
due to free-to-use software solutions for implementing 
and managing computerized experiments (e.g., z-Tree, 
oTree) and for planning and administering randomized 
or constrained participant recruitment (e.g., ORSEE) 
(Fischbacher, 2007; Chen et al., 2016; Greiner, 2015). 
Many university laboratories offer experimental 
services such as support in the design and coding of the 
experimental protocol, as well as the independent 
running of experimental sessions, thereby providing 
turnkey solutions.  

Furthermore, online platforms and solutions for 
experimental research have become increasingly 
adopted since the Covid-19 pandemic, now offering, at 
different levels, solutions enabling researchers to recruit 
hundreds or even thousands of participants (e.g., 
Prolific, Amazon Mechanical Turk), administer survey 
studies (e.g., Qualtrics, LimeSurvey, UserTesting and 
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Respondent), and run increasingly complex behavioural 
tasks (e.g., Gorilla, Pavlovia, Inquisit), all at reduced 
cost compared with setting up a new lab (Anwyl-Irvine 
et al., 2020; Bridges et al., 2020; Palan & Schitter, 2018; 
Peer et al., 2017). 

CONFLICTS OF INTEREST 

None to declare. 

ANNOTATED REFERENCES 

Al-Ubaydli, O., List, J. A., & Suskind, D. L. (2023). The 
scale-up effect in early childhood and public policy: Why 
interventions lose impact at scale and what we can do 
about it. Cambridge University Press. 

Angrist, J. D., & Pischke, J.-S. (2009). Mostly harmless 
econometrics: An empiricist’s companion. Princeton 
University Press. 

Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., 
& Evershed, J. K. (2020). Gorilla in our midst: An online 
behavioral experiment builder. Behavior Research 
Methods, 52(1), 388–407. 
https://doi.org/10.3758/s13428-019-01237-x  

Boudreau, K. J., & Lakhani, K. R. (2016). Innovation 
experiments: Researching technical advance, knowledge 
production, and the design of supporting institutions. 
Innovation Policy and the Economy, 16(1), 135–167. 
https://doi.org/10.1086/684985 

Bravo-Biosca, A. (2020). Experimental innovation policy. In 
B. H. Hall & N. Rosenberg (Eds.), Innovation Policy and 
the Economy (Vol. 20, pp. 191–232). University of 
Chicago Press/NBER. https://doi.org/10.1086/705644  

Browder, R. E., Aldrich, H. E., & Bradley, S. W. (2019). The 
emergence of the maker movement: Implications for 
entrepreneurship research. Journal of Business Venturing, 
34(3), 459–476. 
https://doi.org/10.1016/j.jbusvent.2018.10.005 

Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. 
(2020). The timing mega-study: Comparing a range of 
experiment generators, both lab-based and online. PeerJ, 
8, e9414. https://doi.org/10.7717/peerj.9414  

Brüggemann, J., Crosetto, P., Meub, L., & Bizer, K. (2016). 
Intellectual property rights hinder sequential innovation: 
Experimental evidence. Research Policy, 45(10), 2054–
2068. https://doi.org/10.1016/j.respol.2016.07.008  

Brüggemann, J., & Bizer, K. (2016). Laboratory experiments 
in innovation research: A methodological overview and a 
review of the current literature. Journal of Innovation and 
Entrepreneurship, 5, Article 24. 
https://doi.org/10.1186/s13731-016-0053-9  

Campbell, D. T., & Stanley, J. C. (1963). Experimental and 
quasi-experimental designs for research. Rand McNally. 

Chambers, C. D., & Tzavella, L. (2022). The past, present 
and future of Registered Reports. Nature Human 
Behaviour, 6(1), 29–42. https://doi.org/10.1038/s41562-
021-01193-7  

Chen, D. L., Schonger, M., & Wickens, C. (2016). oTree: An 
open-source platform for laboratory, online, and field 
experiments. Journal of Behavioral and Experimental 

Finance, 9, 88–97. 
https://doi.org/10.1016/j.jbef.2015.12.001 

Deck, C., & Kimbrough, E. O. (2017). Experimenting with 
contests for experimentation. Southern Economic 
Journal, 84(2), 391–406. 
https://doi.org/10.1002/soej.12185   

Falk, A., & Heckman, J. J. (2009). Lab experiments are a 
major source of knowledge in the social sciences. 
Science, 326(5952), 535–538. 
https://doi.org/10.1126/science.1168244 

Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-
made economic experiments. Experimental Economics, 
10(2), 171–178. https://doi.org/10.1007/s10683-006-
9159-4  

Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital 
twin: Enabling technologies, challenges and open 
research. IEEE Access, 8, 108952–108971. 
https://doi.org/10.1109/ACCESS.2020.2998358 

Gershenfeld, N. (2005). FAB: The coming revolution on your 
desktop—from personal computers to personal 
fabrication. Basic Books. 

Greiner, B. (2015). Subject pool recruitment procedures: 
Organizing experiments with ORSEE. Journal of the 
Economic Science Association, 1(1), 114–125. 
https://doi.org/10.1007/s40881-015-0004-4 

Hacking, I. (1983). Representing and Intervening: 
Introductory Topics in the Philosophy of Natural Science. 
Cambridge: Cambridge University Press. 

Heckman, J. J. (2020). Randomization and Social Policy 
Evaluation Revisited. Institute for Fiscal Studies (IFS). 
https://ifs.org.uk/publications/randomization-and-social-
policy-evaluation-revisited.  

Herbst, D., & Mas, A. (2015). Peer effects on worker output 
in the laboratory generalize to the field. Science, 
350(6260), 545–549. 
https://doi.org/10.1126/science.aab0552 

Holt, C. A. (1999). Teaching economics with classroom 
experiments. Southern Economic Journal, 65(3), 603–
610. https://doi.org/10.2307/1061260  

Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The 
analysis of repeated measures designs: A review. British 
Journal of Mathematical and Statistical Psychology, 
54(1), 1–20. https://doi.org/10.1348/000711001159357  

Levitt, S. D., & List, J. A. (2007). What do laboratory 
experiments measuring social preferences reveal about 
the real world? Journal of Economic Perspectives, 21(2), 
153–174. https://doi.org/10.1257/jep.21.2.153  

Levitt, S. D., & List, J. A. (2008). Homo economicus 
evolves. Science, 319(5865), 909–910. 
https://doi.org/10.1126/science.1153640  

Lowe, D. (2023). Rethinking the nature of experimental 
learning: Moving beyond conventional laboratory 
experiences. European Society for Engineering 
Education (SEFI). https://doi.org/10.21427/QW7S-N349  

McCabe, T. M., & Olimpo, J. T. (2020). Advancing 
metacognitive practices in experimental design: A suite 
of worksheet-based activities to promote reflection and 
discourse in laboratory contexts. Journal of Microbiology 
& Biology Education, 21(1), 1–11. 
https://doi.org/10.1128/jmbe.v21i1.2009  

Morris P. J. T. (2021). The history of chemical laboratories: a 
thematic approach. Chemtexts, 7(3), 21 

Nosek, B. A., et al. (2018). The preregistration revolution. 
Proceedings of the National Academy of Sciences, 

https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.1086/684985
https://doi.org/10.1086/705644
https://doi.org/10.1016/j.jbusvent.2018.10.005
https://doi.org/10.7717/peerj.9414
https://doi.org/10.1016/j.respol.2016.07.008
https://doi.org/10.1186/s13731-016-0053-9
https://doi.org/10.1038/s41562-021-01193-7
https://doi.org/10.1038/s41562-021-01193-7
https://doi.org/10.1016/j.jbef.2015.12.001
https://doi.org/10.1002/soej.12185
https://doi.org/10.1126/science.1168244
https://doi.org/10.1007/s10683-006-9159-4
https://doi.org/10.1007/s10683-006-9159-4
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1007/s40881-015-0004-4
https://ifs.org.uk/publications/randomization-and-social-policy-evaluation-revisited
https://ifs.org.uk/publications/randomization-and-social-policy-evaluation-revisited
https://doi.org/10.1126/science.aab0552
https://doi.org/10.2307/1061260
https://doi.org/10.1348/000711001159357
https://doi.org/10.1257/jep.21.2.153
https://doi.org/10.1126/science.1153640
https://doi.org/10.21427/QW7S-N349
https://doi.org/10.1128/jmbe.v21i1.2009


E. Guerci 10 

115(11), 2600–2606. 
https://doi.org/10.1073/pnas.1708274114  

Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool 
for online experiments. Journal of Behavioral and 
Experimental Finance, 17, 22–27. 
https://doi.org/10.1016/j.jbef.2017.12.004  

Pearl, J. (2009). Causality: Models, reasoning, and inference 
(2nd ed.). Cambridge University Press. 

Pearl, J., & Bareinboim, E. (2014). External validity: From 
do-calculus to transportability across populations. 
Statistical Science, 29(4), 579–595. 
https://doi.org/10.1214/14-STS486 

Peer, E., Brandimarte, L., Samat, S., & Acquisti, A. (2017). 
Crowdsourcing participant pools for online experiments: 
A comparison of Amazon Mechanical Turk, 
CrowdFlower, and Prolific. Behavior Research Methods, 
49(2), 433–442. https://doi.org/10.3758/s13428-016-
0727-6  

Pretzer, W. S. (Ed.). (1989). Working at invention: Thomas 
A. Edison and the Menlo Park experience. Johns Hopkins 
University Press. 

Rubin, D. B. (2005). Causal inference using potential 
outcomes: Design, modeling, decisions. Journal of the 
American Statistical Association, 100(469), 322–331. 
https://doi.org/10.1198/016214504000001880  

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). 
Experimental and quasi-experimental designs for 
generalized causal inference. Houghton Mifflin. 

Thomke, S. (1998) Managing Experimentation in the Design 
of New Products. Management Science 44(6): 743–762. 

Weimann, J. (2015). The role of behavioral economics and 
experimental research in economics and policy advice. 
Perspektiven der Wirtschaftspolitik, 16(3), 247–268. 
https://doi.org/10.1515/pwp-2015-0205  

 

https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.1016/j.jbef.2017.12.004
https://doi.org/10.1214/14-STS486
https://doi.org/10.3758/s13428-016-0727-6
https://doi.org/10.3758/s13428-016-0727-6
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1515/pwp-2015-0205

