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Abstract
In extremely high energy circular lepton colliders, correct consideration of syn-
chrotron radiation is important for beam dynamics simulation. We developed a
fast precise effective method to track particles in a realistic lattice when the ra-
diation effects are distributed along the orbit [1]. In the present paper we study
an effect of decreasing dynamic aperture due to radiation from quadrupole
lenses in the FCC-ee lepton collider.

Keywords
Synchrotron radiation; simulation; CUDA.

1 SR simulation techniques
1.1 Concentrated SR losses
A simple way to simulate SR in a circular lattice is to apply the following transformation to the coordi-
nates of all particles once per turn at arbitrary azimuth s0 [2] (the formulae are simplified for the case of
flat lattice without betatron coupling)

x 7→ ax(x− ηxδ) + ηxδ + bxr̂1

px 7→ ax(px − η′xδ) + η′xδ + bx(r̂2 − αxr̂1)/βx
y 7→ ayy + by r̂3

py 7→ aypy + by(r̂4 − αy r̂3)/βy

δ = ∆E/E0 7→ e
− T0

2τδ δ + σδ

√
1− e−

T0
τδ r̂5

, (1)

where

au = e−
T0
2τu , bu =

√
εuβu

(
1− e−

T0
τu

)
,

E0 — reference energy, T0 — revolution period, σδ — energy spread, τu — damping times (u = x, y),
εu — emittances, βu, αu, ηx and η′x — optical functions at s0, and r̂1 . . . r̂5 — random values with
standard distribution.

1.2 Distributed SR losses
There is a more natural way of SR simulation consisting in distribution of the corresponding coordinate
transformations over the whole lattice. One of such techniques is described in [3]. The method used in
the present paper was developed on the basis of it and described in [1].

Let us consider a dipole magnet of a lengthL, bending angle θ, quadrupole gradient k1 and rotation
angles ϕ1, ϕ2 for the entrance and exit pole faces respectively. When an electron with a relativistic factor
γ enters the dipole with an initial horizontal coordinate x0 and energy deviation δ0, it follows an arc with
a radius ρ = L/θ and radiates N energy quanta. N has a Poisson distribution with a mean value of N̄ :

N̄ =
5
√

3

6
αθγ0 (1 + k1ρx0) (1 + h∗x0) ,

Proceedings of the CERN-BINP Workshop for Young Scientists in e+e− Colliders, Geneva, Switzerland, 22 – 25 August 2016, edited
by V. Brancolini ans L. Linssen, CERN Proceedings, Vol. 1/2017, CERN-Proceedings-2017-001 (CERN, Geneva, 2017)

2518-315X– c© the Author/s, 2017. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence.
https://doi.org/10.23727/CERN-Proceedings-2017-001.217

217

https://doi.org/10.23727/CERN-Proceedings-2017-001.217


where
h∗ =

1

ρ
− tanϕ1 + tanϕ2

L
,

α is the fine structure constant. The energy radiated in each quantum is

∆iδ = −3λe
2ρ

γ0
2 (1 + δ0)2 (1 + k1ρx0) yi , i = 1 . . . N ,

where λe is the reduced electron Compton wavelength; yi ∈ SR, which means that yi has the so-called
SR-distribution whose distribution density function is closely related to the well-known SR spectral
power density function [1]. With a sufficient accuracy this distribution can be generated in the following
way: let ξ have a uniform distribution over [0; 1] segment, then

f(ξ) = C (− ln (1− ξa))3/a ∈ SR ,

where C = 0.5770254, a = 2.535609.

1.3 Distributed SR losses in dipoles
Energy deviation due to SR photon emission affects particle motion in the bending plane. In a flat lattice
all bends are horizontal, and hence x and px are expected to change along with δ. The radiation damping
in the magnet in both transversal planes is proportional to the magnet’s contribution to the I2 integral;
the squared quantum excitation amplitude is proportional to the contribution to I5x. The equilibrium
distribution of the horizontal coordinates is Gaussian, and thus we can apply transformations (1) to x
and px in each bending magnet separately, assuming that the addition due to quantum excitation in each
magnet is also Gaussian. So, all radiation acts in the magnet can be simulated at once at its exit pole face.
Finally, the following transformation should be applied to the coordinates of each particle after tracking
through each bending magnet

x 7→ ec1x∆δ(x− ηxδ) + ηx(δ + ∆δ) + c2xr̂1

√
∆2δ ,

px 7→ ec1x∆δ(px − η′xδ) + η′x(δ + ∆δ) + c2x
r̂2−αxr̂1

βx

√
∆2δ ,

y 7→ ec1y∆δy , py 7→ eay∆δpy , δ 7→ δ + ∆δ ,

(2)

where
∆δ =

∑N
i=1 ∆iδ , ∆2δ =

∑N
i=1 (∆iδ)

2 , ∆iδ ∈ SR
c1x,1y =

3T0

2τx,yreγ0
3I2

,

c2x =

√
24
√

3

55

εxβx 〈Hx〉
αγ0

5λe2I5x

(
1− e−

T0
τx

)
,

I2 and I5x — radiation integrals, 〈Hx〉— horizontal dispersion invariant averaged over the magnet, βx,
αx, ηx and η′x — horizontal optical functions at the exit pole of the magnet, r̂1 and r̂2 — random values
with standard distribution. Quantum excitation in the vertical plane can be simulated once per turn, as in
(1).

Distributed energy losses lead to variation of the equilibrium beam energy 〈δ〉 along the lattice:
it drops in bending magnets and rises in RF cavities. This is the so-called sawtooth effect, which leads
to the closed orbit distortions. It can be cured by a variation of magnetic field in beamline elements in
proportion to changing equilibrium energy (magnet tapering). Besides, in the simulations the following
transformation should be applied to the horizontal coordinates of each particle after each dipole:

x 7→ x+ ρ(1− cos θ) ∆〈δ〉 ,
px 7→ px + sin θ∆〈δ〉 ,

where ∆〈δ〉 is the variation of equilibrium energy deviation in the dipole.
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1.4 Distributed SR losses in quadrupoles
A particle follows a curved trajectory and therefore emits SR photons not only in dipoles but also in
other beamline elements. SR in strong final focus quadrupoles may affect particle dynamics significantly,
especially at high energy. The simplest way to study this effect is to consider each strong quadrupole as
a “variable strength dipole” with parallel pole faces and no quadrupole gradient. This fictitious dipole
acts in both transversal planes and has different bending angles and radii of curvature on each turn for
each particle. These values will be different for horizontal and vertical planes:

θx = |px1 − px0| , θy = |py1 − py0| , ρx,y = L/θx,y ,

where px0 and py0 are the transversal momenta at the entrance pole face, and px1 and py1 are the transver-
sal momenta at the exit pole face of the quadrupole. So, radiation in both transversal planes should be
simulated independently:

N̄x,y =
5
√

3

6
αθx,yγ0 , Nx,y ∈ Poisson

(
N̄x,y

)
,

(∆iδ)x,y = − 3λe
2ρx,y

γ0
2 (1 + δ0)2 yi , i = 1 . . . Nx,y ,

yi ∈ SR ,

∆δ =
∑Nx

i=1 (∆iδ)x +
∑Ny

i=1 (∆iδ)y ,

∆2δ =
∑Nx

i=1 ((∆iδ)x)2 +
∑Ny

i=1

(
(∆iδ)y

)2
.

Then transformation (2) should be applied.

2 Simulation results for FCC-ee
The simulation technique described above was implemented as part of TrackKing simulation program
[4]. FCC-ee is a 100-km e+e- collider with a beam energy of 45–175 GeV. Simulations were per-
formed for a preliminary version of 175 GeV FCC-ee lattice with 4 different algorithms: without SR,
with concentrated SR, with distributed SR and tapering, and with distributed SR, tapering and SR in all
quadrupoles. The dynamic apertures (DAs) in units of beam sizes are shown in Fig. 1.

Fig. 1: DAs with different SR simulation modes

3 Discussion
Several effects can be noted in the results presented above. Firstly, the DA slightly decreases when SR
is switched off. The cause is that in such a case initially unstable particles do not damp towards a stable
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phase space region and are thus lost eventually. This case is not a concern because it is only hypothetical.
Secondly, results for concentrated and distributed simulations of SR in dipoles are in good agreement.
And finally one can see that SR in quadrupoles reduces the DA significantly.

J.M. Jowett was the first to describe the latter effect [5]. The explanation is that synchrotron motion
of particles with large betatron amplitudes becomes unstable due to SR losses in quadrupoles. It is not
a single turn effect because energy radiated by a particle from quadrupoles during one turn (15 MeV)
is only 5% of the equilibrium beam energy spread. Fig. 2 shows phase trajectories of synchrotron and
horizontal betatron motion for an ensemble of on-energy particles with an initial horizontal deviation of
12.5σx; the vertical motion is not excited and SR in quadrupoles is switched on. As one can see, strong
synchrotron oscillations with an amplitude of up to 7σδ are induced. During the first few synchrotron
periods, particles that reached the energy acceptance boundary are lost, and then the others are damped
towards a stable region. Fig. 3 shows phase tractories of synchrotron and horizontal betatron motion for

Fig. 2: Phase trajectories for particles with x0 = 12.5σx; SR in quadrupoles is switched on

particles with the same initial conditions but with SR in quadrupoles switched off. In that case there is
no sign of particle losses because strong synchrotron oscillations are not induced. Therefore, the effect
of the DA shrinking due to SR in quadrupoles is highly non-equilibrium. So, it cannot be fully described
in terms of radiation integrals because they are applied to an equilibrium beam state only.

The maximum induced energy deviation is reached after one quarter of synchrotron period and
can be estimated in the following way:

〈∆δ〉 =
1

4νs

∮
〈Uq(s)〉 ds
E0

,

where Uq is the energy radiated from quadrupoles and 〈. . . 〉 means averaging over beam particles. The
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Fig. 3: Phase trajectories for particles with x0 = 12.5σx; SR in quadrupoles is switched off

energy radiated by a single particle from one quadrupole of a length Lq and strength K1 is

Uq =
Cγ
2π
E4

0

(K1Lqx)2

Lq
.

Numerical estimations for the given lattice can be obtained using the following substitution:

x = n
√
εxβx ,

where n is the initial horizontal coordinate expressed in horizontal beam sizes. Finally, the radiation-
induced energy deviation for the lattice under consideration is the following:

〈∆δ〉 = 0.58%
( n

10

)2
(≈ 0.91% for x0 = 12.5σx) .

It is in accordance with Fig. 2.

4 Conclusion
Conventional SR simulation techniques with SR concentrated at one azimuth is applicable even to lattices
with extremely high radiation energy loss rate and tapering. SR in quadrupoles is also important for such
lattices, but it can be taken into account only using distributed SR simulation techniques. Results of
FCC-ee lattice simulations show that SR in quadrupoles reduces the DA significantly because of induced
synchrotron ocsillations of particles with large initial transversal amplitude. A large energy deviation
can be reached during the first synchrotron period. If the particle is not lost after that, then it forgets its
initial conditions and remains stable.
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