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Abstract
Direct s-channel Higgs production in e+e− collisions is of interest if the
centre-of-mass energy spread can be reduced to be comparable to the width
of the standard model Higgs boson. A monochromatization principle, previ-
ously proposed for several earlier lower-energy colliders, could be employed
to achieve the desired reduction, by introducing a non-zero horizontal disper-
sion of opposite sign for the two colliding beams at the interaction point. In
high-energy, high-luminosity circular colliders, beamstrahlung may increase
the energy spread and bunch length. Horizontal emittance increase due to
beamstrahlung, a new effect that was not present in past monochromatization
proposals, may degrade the performance, especially the luminosity. We study,
for the FCC-ee collider at 62.5 GeV beam energy, how to optimize the inter-
action point optics parameters (β∗x, D∗x), along with the number of particles
per bunch, so as to obtain maximum luminosity at a desired target value of the
collision energy spread.
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1 Introduction
Monochromatization is a technique that was proposed several decades ago to reduce the centre-of-mass
energy spread at e+e− colliders [1], but has never been used in any operational collider. A decrease
in collision energy spread σω can be accomplished without reducing the inherent energy spread σε of
either of the two colliding beams. To achieve this goal, opposite correlations between spatial position
and energy are introduced at the interaction point (IP). In beam-optical terms, this can be accomplished
through a non-zero dispersion function for both beams of opposite sign at the IP. The dispersion is
determined by the respective lattice [2].

The concept of monochromatic collision allows for an interesting option presently under study for
the FCC-ee collider [3,4], namely the possibility of direct Higgs production in the s channel, e+e− → H ,
at a beam energy of 62.5 GeV. This could result in an acceptable Higgs event rate on the Higgs resonance
and also provide the energy precision required to measure the width of the Higgs particle [5].

Implementation of a monochromatization scheme has been explored for several colliders in the
past [1,2,6–11], but, to our knowledge, no such a scheme has ever been applied, or tested, in any operating
collider.

The FCC-ee collider design considers two horizontally separated rings for electrons and positrons.
For such a double ring collider, where the two beams circulate in separate beam pipes with independently
powered magnets, it will be rather simple to modify the dispersion function for the two beams independ-
ently. In particular, a horizontal dispersion at the IP could be generated with opposite sign for the two
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Fig. 1: Monochromatization factor versus D∗
x at fixed β∗

x = 0.25 m, for constant emittance and energy spread,
equal to σδ = 0.06 and εx = 0.17 nm.

beams. The impact of this monochromatization on the luminosity and energy spread must be analysed,
taking into account the effect of beamstrahlung.

2 Monochromatization principle
For a standard collision, the centre-of-mass energy W = E

b
+ +E

b
− = 2Eb, with relative spread Σw =

σw/W , is a factor of
√

2 less than than the r.m.s. relative beam energy spread σw =
√
σ2
δ
+ + σ2

δ
− =√

2σδ, namely:
(Σw)standard =

σδ√
2
. (1)

In a monochromatic collision, we introduce IP dispersion of opposite sign for the two beams, so
that particles with energy E + ∆E collide on average with particles of energy E −∆E and the spread
in the centre-of-mass energy is reduced by the monochromatization factor λ,

stable (Σw)λ =
σδ√

2

1

λ
, (2)

where this factor is defined, for a horizontal IP dispersionD∗x+ = −D∗x− 6= 0 and a vertical IP dispersion
D∗y+ = D∗y− = 0 , by

λ =

√
D∗x

2
σ2δ

εxβ
∗
x

+ 1 . (3)

Figure 1 illustrates the dependence of the monochromatization factor λ on the IP dispersion D∗X , for
fixed relative energy spread σδ and horizontal emittance εx.

In practice, beamstrahlung affects the values of σδ and εx, and its effects will be included in the
subsequent analysis.

2

M.A. VALDIVIA GARCÍA AND F. ZIMMERMANN

2



3 Beamstrahlung
When charged particles pass through the magnets of a storage ring, synchrotron radiation is emitted
as a discrete random process, producing statistically independent discrete changes in the energy of the
charged particle. For the beam particles, the cumulative effect of the energy loss introduces a noise
excitation of the longitudinal and transverse oscillations, causing their amplitudes to increase until they
are balanced, on average, by the radiation damping. This damping depends only on the average rate of
emission of energy and not on any of its other statistical properties, whereas the excitation is due to the
fluctuation of the radiation about its average rate.

A different type of synchrotron radiation, known as beamstrahlung [12–16], is encountered during
the interaction with the opposite beam. For short bunch lengths and small transverse beam sizes, the
effective bending radius due to the field of the opposing bunch is exceptionally small compared with
the typical arc bending radius. At high collision energies, especially for extremely small bunches where
the classical critical photon energy during the collision becomes comparable to the beam energy [16], a
quantum mechanical description of the radiation process is necessary.

3.1 Describing the radiation
Synchrotron radiation from charged particles is emitted over a typical time interval of order ρ/(γc),
where ρ denotes the radius of curvature of a particle trajectory, c the speed of light, and γ the relativistic
Lorentz factor. This time can normally be considered instantaneous compared with the betatron and
synchrotron oscillation periods.

The strength of the beamstrahlung is characterized by the parameter Υ, defined as [15, 16] Υ ≡
B/Bc = (2/3)~ωc/Ee, with Bc = m2

ec
2/(e~) ≈ 4.4 GT, the Schwinger critical field, ωc the critical

energy as defined by Sands [17], and Ee the electron energy before radiation. If the energy of an emitted
photon is a few per cent of its initial energy, the emitting particle may fall outside of the momentum
acceptance and be lost.

For the collision of Gaussian bunches with r.m.s. sizes σx, σy, and σz , the peak and average values
of Υ are given by [16]

Υmax = 2
r2eγNb

ασz(σ
∗
x + σ∗y)

, and Υave ≈
5

6

r2eγNb

ασz(σ
∗
x + σ∗y)

, (4)

where α denotes the fine structure constant, α ≈ 1/137, and re the classical electron radius; re ≈
2.8× 10−15 m.

The general emission rate spectrum (photons emitted per second per energy interval) of this radi-
ation is described by [16]

dWγ

dω~
=

α√
3~πγ2

(∫ ∞

ξ
K5/3(ξ

′)dξ′ +
y2

1− yK2/3(ξ)

)
, (5)

where y ≡ ω/Ee and ξ ≡ (2/3)(ω/Υ(E − ~ω) have been introduced. In the classical regime (Υ→ 0),
this reduces to the well-known expression [17]

(
dWγ

dω~

)

classical

=
α√

3πγ2

∫ ∞

ξ
K5/3(ξ

′)dξ′ . (6)

The number of photons radiated per unit time is obtained by integrating over ω:

dNγ

dt
=

∫ Ee/~

0

dWγ

dω
dω . (7)
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The number of photons emitted during a single collision can be obtained by integrating Eq. (7) over time
and averaging over the bunch distribution, taking into account the variation of Υ. The result for head-on
collision of Gaussian bunches has been derived previously [16].

All proposed high-energy circular colliders operate in a parameter region where Υ � 1 and
σx � σy, implying that in this case we can approximate the average number of photons per collision
as [16]

nγ ≈
12

π3/2
αreNb

σx + σy
≈ 12

π3/2
αreNb

σx
, (8)

and the average relative energy loss as

δB ≈
24

3
√

3π3/2
r3eγN

2
b

σz(σx + σy)
2 ≈

24

3
√

3π3/2
r3eγN

2
b

σzσ
2
x

. (9)

The average photon energy normalized to the beam energy 〈u〉, i.e., the ratio of δB and nγ , is given by

〈u〉 =
δB
nγ
≈ 2
√

3

9

r2eNbγ

ασzσx
. (10)

In the classical regime, the average squared photon and the average photon energies are related via [17]

〈u2〉 ≈ 25× 11

64
〈u〉2 . (11)

Noting that, in the general case,

〈u〉 ∝
∫ Ee

0
ω(dWγ/dω)dω , 〈u2〉 ∝

∫ Ee

0
ω2(dWγ/dω)dω , (12)

we can use the general photon distributions of Eq. (5) to examine the applicability of this relation as a
function of Υ. The validity of Eq. (11) up to Υ ∼ 10−3 is illustrated in Fig. 2.

The excitation term {nγ〈u2〉} for a single collision will be required in the following. According
to Eqs. (8) and (11), for small Υ this can be written as

nγ〈u2〉 ≈ 1.4
r5eN

3
bγ

2

ασ2z(σx + σy)
3 ≈ 192

r5eN
3
bγ

2

σ2zσ
3
x

. (13)

3.2 Energy loss and damping time
The longitudinal damping time in the presence of beamstrahlung is

τE,tot =
TrevEbeam

U0,SR + nIPU0,BS
≈ τE,SR

(
1− nIP

U0,BS

U0,SR

)
, (14)

where Trev denotes the revolution period, Ebeam the beam energy, U0,SR the average energy loss per
turn due to synchrotron radiation in the arc, and U0,BS the average energy loss due to beamstrahlung in a
single collision. Using Eq. (9), the average energy loss per collision due to beamstrahlung is given by

U0,BS = δBEe ≈ 0.84
r3eEeγN

2
b

σz(σx + σy)
2 . (15)

For all proposed future circular colliders, we have U0,BS � U0,SR, τE,tot ≈ τE,SR, and σx � σy.
In the following, we will assume these conditions to be fulfilled.
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Fig. 2: Mean square photon energy normalized by the square of the mean energy according to Eq. (11) versus Υ

3.3 Self-consistent energy spread without IP dispersion
Consider first the case of zero IP dispersion. The energy spread due to the additional excitation from
beamstrahlung at the collision point increases as

σ2tot = σ2δ,SR + σ2δ,BS , (16)

with
σ2δ,BS =

nIPτE,SR
4Trev

nγ〈u2〉 ≈
A

σ2z
, (17)

where the parameter A is defined as

A ≡ nIPτE,SR
4Trev

nγ〈u2〉 =
275

36π
3
2

nIPτE,SR
4Trev

r5eN
3
bγ

2

ασ3x
. (18)

Using the relation σz,tot = σδ,totσz,SR/σδ,SR, self-consistency requires [18]

σ2δ,tot − σ2δ,SR = A

(
σδ,SR
σδ,tot

1

σz,SR

)2

, (19)

where σz,SR refers to the bunch length. The energy spread σδ,SR is computed with arc synchrotron radi-
ation only, and the explicit solution for the total energy spread is [18]

σδ,tot =


1

2
σ2δ,SR +

(
1

4
σ4δ,SR +A

σ2δ,SR

σ2z,SR

)1/2


1/2

, (20)

which is solved for the FCC-ee example parameters listed in Table 1, yielding the indicated values of
σz,tot and σδ,tot, for the cases without monochromatization.
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Table 1: Baseline beam parameters for FCC-ee crab-waist collisions at Z pole and WW threshold [4], compared
with newly proposed parameters for operation on the Higgs resonance (beam energy Ee = 62.5 GeV), in simple
head-on collision scheme, and with ‘baseline’ or ‘optimized’ monochromatization, for nIP = 2 identical inter-
action points.

Ee [GeV] 45.6 62.5 62.5 62.5 80
Scheme Crab-waist Head-on Monochromatization Monochromatization Crab-waist

baseline optimized
Ib [mA] 1450.3 408.3 408.3 408.3 151.5
Nb [1010] 3.3 1.05 3.3 11.1 6.0
nb [1] 91500 80960 25760 7728 5260
nIP [1] 2 2 2 2 2
β∗x [m] 1 1.0 1.0 1.96 1
β∗y [mm] 2 2 2 1 2
D∗x [m] 0 0 0.22 0.308 0
εx,SR [nm] 0.09 0.17 0.17 0.17 0.26
εx,tot [nm] 0.09 0.17 0.21 0.70 0.26
εy,SR [pm] 1 1 1 1 1
σx,SR [µm] 9.5 9.2 132 185.7 16
σx,tot [µm] 9.5 9.2 144 188.5 16
σy [nm] 45 45 45 32 45
σz,SR [mm] 1.6 1.8 1.8 1.8 2.0
σz,tot [mm] 3.8 1.8 1.8 1.8 3.1
σδ,SR [%] 0.04 0.06 0.06 0.06 0.07
σδ,tot [%] 0.09 0.06 0.06 0.06 0.10
θc [mrad] 30 0 0 0 30
circ. C [km] 100 100 100 100 100
αC [10−6] 7 7 7 7 7
frf [MHz] 400 400 400 400 400
Vrf [GV] 0.2 0.4 0.4 0.4 0.8
U0,SR [GeV] 0.03 0.12 0.12 0.12 0.33
U0,BS [MeV] 0.5 0.05 0.01 0.01 0.21
τE/Trev 1320 509 509 509 243
Qs 0.025 0.030 0.030 0.030 0.037
Υmax [10−4] 1.7 0.8 0.3 0.85 4.0
Υave [10−4] 0.7 0.3 0.1 0.35 1.7
θc [mrad] 30 0 0 0 30
ξx [10−2] 5 12 1 2.22 7
ξy [10−2] 13 15 4 6.76 16
λ [1] 1 1 9.2 5.08 1
L [1035cm−2s−1] 9.0 2.2 1.0 3.74 1.9
σw [MeV] 58 53 5.8 10.44 113
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3.4 Self-consistent emittance
In the presence of non-zero dispersion at the IP, not only the energy spread, but also the transverse
emittance increases due to the beamstrahlung. The non-zero dispersion may arise either from optics
errors or by design, e.g., for a monochromatization scheme [19]. Under these conditions, the dynamics
is similar to the well-known effect of horizontal dispersion and conventional synchrotron radiation in the
storage ring arcs. The total emittance becomes

εx,tot = εx,SR +
τxnIP
4Trev

{nγ〈u2〉}H∗x , (21)

where τx denotes the horizontal (amplitude) damping time due to synchrotron radiation. The non-zero
dispersion invariantH∗x [17] is given by

H∗x ≡

(
β∗xD

′
x
∗

+ α∗xD
∗
x

)2
+D∗x

2

β∗x
, (22)

and β∗x, α∗x, D∗x, and D′x
∗

denote the optical beta and alpha functions (Twiss parameters), the dispersion,
and the slope of the dispersion at the collision point, respectively.

The relative momentum spread is described by

σ2δ,tot = σ2δ,SR +
nIPτE,SR

4Trev

{
nγ〈u2〉

}
, (23)

where the bunch length, appearing in Eq. (13), is related to the energy spread via [17]

σz,tot =
αCC

2πQs
σδ,tot , (24)

with αC the momentum compaction factor, C the circumference, and Qs the synchrotron tune.

Equations (21) and (23) are coupled through the excitation term nγ〈u2〉 (Eq. (13)), leading to
the formulation of a set of equations for the longitudinal and transverse plane, which must be solved
self-consistently for the two unknowns σx and σz .

Simplified solutions can be obtained depending on whether D∗xσδ,tot �
√
β∗xεx (as usual for zero

dispersion), or D∗xσδ,tot �
√
β∗xεx (monochromatization).

In the monochromatization approximation, τx = 2τE ; using Eq. (13), Eqs. (21) and (23) can be
rewritten as

εx,tot ≈ εx,SR +
2BH∗x
D∗x

3
σ5δ,tot

, (25)

σ2δ,tot = σ2δ,SR +
B

D∗x
3
σ5δ,tot

, (26)

with

B ≡ 48
nIPτE,SR
Trev

r5eN
3
bγ

2

(αCC/(2πQs))
2 . (27)

After solving Eq. (26) for the relative energy spread σδ,tot, the emittance follows from Eq. (25).
Using Eqs. (26) and (25), we obtain the total bunch length and emittance for the two cases of D∗x 6= 0
(the second and third column) at 62.5 GeV in Table 1. In the standard limit, i.e., the opposite case, we
find

εx,tot ≈ εx,SR +
2BH∗x

σ2δ,totβ
∗
x
3/2
ε
3/2
x,tot

, (28)
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σ2δ,tot = σ2δ,SR +
B

σ2δ,totβ
∗
x
3/2
ε
3/2
x,tot

. (29)

Equations (28) and (29) are coupled, and must be solved together. Equations (28) and (29) then yield the
total bunch length and emittance shown in Table 1 for the three columns with D∗x = 0.

The bunch length always follows from Eq. (24).

4 Baseline monochromatization
In a classical monochromatization scheme, with fixed emittance, energy spread, IP beta function, and
only adding opposite IP dispersion for the two beams, the resulting luminosity L scales as λ−1. However,
for the FCC-ee, owing to the beamstrahlung in the presence of non-zero dispersion, changes in the
horizontal equilibrium emittance are not negligible. A self-consistent calculation of the beam parameters
then determines the actual luminosity, which tends to be less than the corresponding standard value.
Moreover, the monochromatization factor deviates naively from the value expected, without taking into
account the effect of the changing horizontal emittance. The self-consistent parameters must be used to
compute the true values of λ and L .

Table 1 presents the nominal FCC-ee parameters for (non-monochromatic) collisions at 45.6 GeV
and 80 GeV [4], with an interpolated head-on collision scheme at 62.5 GeV, a ‘baseline mono-
chromatization scheme’ at the same energy (obtained by adding IP dispersion to the former), and an
optimized monochromatization, for which the bunch charge and IP beta functions have been re-optimized
(plus the value of the IP dispersion in proportion to

√
β∗x).

Given the resonance width of the standard model Higgs of 4.2 MeV and the much larger nat-
ural r.m.s. energy spread of the electron and positron beams at 62.5 GeV of about 40 MeV, the mono-
chromatization factor should be large, at least λ ∼ 5 [20].

Requesting λ ∼ 10, to have some margin, while considering the emittance and energy spread due
to arc synchrotron radiation alone, from Table 1, the necessary value of the IP dispersion is given by

D∗
2

x β
∗−1
x ≈ 10−2 m. Using this value, the baseline monochromatization scheme in the second 62.5 GeV

column of Table 1 was obtained from the first column. The value includes the effect of beamstrahlung
[21].

5 Optimized monochromatization
The smaller the horizontal beta function can be made, the smaller the horizontal beam size becomes,
and the smaller the luminosity loss compared with a zero-dispersion collision. As long as the resulting
horizontal beam size with monochromatization, dominated by the dispersion, is much larger than the
corresponding beam size for a standard collision scheme, the effects of beamstrahlung are small, at least
in the longitudinal plane [21].

In an attempt to profit from the larger horizontal beam size, we may tentatively modify the bunch
chargeNb (along with the number of bunches nb) and the IP beta functions, until we reach the maximum
luminosity for the selected value of λ.

For operation on the Z pole and at the WW threshold, FCC-ee applies a crab-waist scheme with
θc = 30 mrad full horizontal crossing angle. The crossing angle also reduces the beam–beam tune shift,
especially in the horizontal plane.

For our dispersion-based monochromatization scheme, we may need to avoid the crossing angle
and (effectively) operate with head-on collisions. For head-on collisions, the beam–beam parameters
(almost equal to the beam–beam tune shifts) are:

ξx,y =
β∗x,yreNb

2πγσx,y(σx + σy)
. (30)

8

M.A. VALDIVIA GARCÍA AND F. ZIMMERMANN

8



T [1]

S
 [
1
]

 

 

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8 9 10

Fig. 3: λ including beamstrahlung effects

Assuming monochromatization, this can be rewritten as

ξx ≈
β∗xreNb

2πγσ2δD
∗
x
2 , ξy ≈

β∗yreNb

2πγσδD
∗
xσ
∗
y

. (31)

Through the constant value of the total current (limited by the synchrotron radiation power), the
bunch population also defines the number of bunches per beam, nb, and the overall luminosity

L ≈ frevnbN
2
b

4πσ∗yD
∗
xσδ
≈ Ibγ

2ere

ξy

β∗y
, (32)

where frev denotes the revolution frequency (3 kHz).

Horizontal emittance and energy spread are normally determined by the optical lattice and the
synchrotron radiation in the collider arcs. However, in the FCC-ee, the transverse effect of beamstrahlung
may not always be neglected. This can be seen in Table 1, which shows horizontal emittance and beam
sizes first without and then with the effect of beamstrahlung [21].

Searching for an optimal point in solution space, we reduce β∗y from the nominal value of 2 mm
to 1 mm, which is permitted by the present collider optics [22]. We then apply the following parametric
transformation with parameter S (keeping λ without beamstrahlung fixed): Dx = S ∗ Dox, starting
from Dox = 0.22 m, and βx = S2 ∗ βox, starting from βox = 1.0 m. We introduce a second parametric
transformation with parameter T (ideally makingL ∝ T−1, for the case of no beamstrahlung and no limit
on the beam–beam tune shift): nb = nob ∗T andNb = Nob/T , so that the total beam current is constant.
All initial values for Dox, βox, nob, and Nob correspond to the parameters of the baseline scheme, where
λSR ≈ 10 (we here use λSR to denote the value of λ computed without the effect of beamstrahlung). The
actual monochromatization factor is reduced and no longer constant in (S, T ) parameter space when the
effects of beamstrahlung are included, as illustrated in Fig. 3.

Under the aforementioned conditions and assumptions, including the beamstrahlung effects, the
dependenciesL(εx,tot(T, S)) and λ(εx,tot(T, S)) are analysed simultaneously. This allows determination
of the maximum luminosity that can be achieved for a given λ. The result is displayed in Fig. 4.
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From this, we obtain a luminosity of L = 3.74×1035 cm−2s−1 at λ ≈ 5 (5.08), with the IP optics
parameters β = 4.41 m and Dx = 0.462 m.

6 Conclusions and outlook
We have derived FCC-ee IP beam parameters that would result in monochromatization by a factor of 5 to
10 at high luminosity. Accounting for the horizontal increase due to beamstrahlung and non-zero IP dis-
persion, for a baseline monochromatization scheme a luminosity of about 1035 cm−2s−1 can be achieved
at the Higgs resonance with an effective collision energy spread below 6 MeV. Beamstrahlung effects lead
to large horizontal increase and a concomitant degradation of the monochromatization. Nevertheless, by
increasing the number of bunches, reducing the bunch charge, and increasing the optical function in the
horizontal plane, beamstrahlung can be kept under control. Doing so, and keeping the beam current the
same as for the baseline monochromatization, for the minimum required monochromatization of λ ≈ 5
(about 10 MeV r.m.s. collision energy spread) our analytical expressions suggest that the luminosity can
be increased to about 4× 1035 cm−2s−1.

Optics and layout modification of the FCC-ee final-focus system [22] will represent the next chal-
lenge. We must develop a modified final-focus optics to generate the desired antisymmetric IP dispersion,
and, at the same time, transit from a crossing angle to a head-on collision scheme. Either the additional
bending magnets or electrostatic separators needed to realize the head-on collision that could be used to
generate the necessary IP dispersion, or we can maintain a crossing geometry and deploy crab cavities
together with horizontal IP dispersion.
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