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Abstract
We review the photon structure functions in the past and at present and discuss
the future of this field.
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1 Prologue
In e+e− collider experiments, the two-photon process in which one of the virtual photons is very far off
shell (large Q2 ≡ −q2) while the other is close to the mass shell (small P 2 ≡ −p2) can be viewed as
a deep-inelastic electron-photon scattering [1] . In the deep-inelastic scattering off a photon target, we
can study the structure of photon. Two (unpolarized) structure functions F γ2 (x,Q2) and F γL(x,Q2) of
the real photon (P 2 = 0) can be measured in the single-tag events, while in the double-tag events we
observe F γ2 (x,Q2, P 2) and F γL(x,Q2, P 2) of the virtual photon.

2 Photon structure functions — Past
The structure functions F γ2 (x,Q2) and F γL(x,Q2) were first studied in the parton model [2] and then
investigated in perturbative QCD (pQCD). The leading order (LO) [3] and the next-to-leading order
(NLO) [4] QCD contributions to F γ2 were calculated and the moments of F γ2 is expressed as

∫ 1

0
dxxn−2F γ2 (x,Q2) =

α

4π

1

2β0

{ 4π

αs(Q2)
an + bn + hn(αs(Q

2)) +O(αs(Q
2))
}

(1)

where x is the Bjorken variable, β0 is the one-loop QCD β function and α (αs(Q2)) is the QED (QCD
running) coupling constant. Since 1/αs(Q

2) behaves as ln(Q2/Λ2) at large Q2, where Λ is the QCD
scale parameter, the first term an/αs(Q

2) dominates over the bn term and also over the hadronic term
hn(αs(Q

2)). The LO contributions an were definite [3]. Meanwhile, the NLO corrections bn were
calculated only for n>2 [4]. For n>2, the hadronic moments hn(αs(Q

2)) vanish in the large-Q2 limit
and the bn terms give finite contributions. However, at n = 2, the hadronic energy-momentum tensor
operator comes into play. Due to the conservation of this operator, bn shows a singularity at n= 2 and
hn=2(αs(Q

2)) does not vanish at large Q2. Actually, hn(αs(Q
2)) also develops a singularity at n= 2

which cancels out the one of bn, and hn(αs(Q
2)) and bn in combination give a finite but perturbatively

incalculable contribution at n=2 [5]. The fact that a definite information on the NLO second moment is
missing prevents us to fully predict the shape and magnitude of the structure function of F γ2 (x,Q2) up
to the order O(α).

It was then pointed out [5] that the situation changes significantly when we analyze the structure
function of a virtual photon with P 2 much larger than Λ2, more specifically, in the kinematical region
Λ2 � P 2 � Q2. In this region, the hadronic component of the photon can also be dealt with per-
turbatively and thus a definite prediction of the whole structure function, its shape and magnitude, may
become possible. In fact, the virtual photon structure function F γ2 (x,Q2, P 2) for Λ2 � P 2 � Q2 was
calculated in LO (the order α/αs) and NLO (the order α) [5] without any unknown parameters. It is
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notable that the pathology of singularity, which appeared at n= 2 in the term bn of Eq. (1) for the real
photon target, disappeared from the moments of F γ2 (x,Q2, P 2).

Then what happens to the moments of F γ2 (x,Q2, P 2) with arbitrary P 2 but P 2 � Q2? If we
employ the framework of the operator product expansion supplemented by the renormalization group
method, we need to know the photon matrix element (PME), 〈γ(p)|Oin(µ2)|γ(p)〉, with i = S,G,NS, γ,
where |γ(p)〉 is the “target” virtual photon state with momentum p, Oin are the relevant twist-2 spin-n
operators and µ2 is the renormalization point. The indices S,G,NS and γ refer to singlet quark, gluon,
nonsinglet quark and photon, respectively. To lowest order in the QED coupling, 〈γ(p)|Oγn(µ2)|γ(p)〉 =
1. Choosing the renormalization point at µ2 = Q2

0 with the condition Λ2 � Q2
0 � Q2 , we write the

PME’s of the hadronic operators ~On = (OSn , O
G
n , O

NS
n ) as 〈γ(p)| ~On(µ)|γ(p)〉|µ2=Q2

0
= α

4π
~An(Q2

0;P
2).

Now when photon state becomes far off-shell and P 2 approaches Q2
0, its point-like nature prevails and

~An(Q2
0;P

2) becomes calculable perturbatively. Let us put ~An(Q2
0;P

2 = Q2
0) ≡ ~A

(1)
n in one-loop

order. For an arbitrary P 2 in the range 0 ≤ P 2 ≤ Q2
0, we divide ~An(Q2

0;P
2) into two pieces such that

~An(Q2
0;P

2) =
~̃
An(Q2

0;P
2) + ~A

(1)
n . Note that ~̃An(Q2

0;P
2) contains nonperturbative contributions (i.e.,

hadronic components) when P 2 is in the range 0 ≤ P 2 ≤ Q2
0, and satisfies the boundary condition by

definition ~̃An(Q2
0;P

2 = Q2
0) = 0. Then the following formula is obtained for the moments of F γ2 up to

NLO in QCD (the extension to NNLO is straightforward),

∫ 1

0
dxxn−2F γ2 (x,Q2, P 2)/

( α
4π

1

2β0

)
=

4π

αs(Q2)

∑

i=+,−,NS

L̃ni
1 + dni

{
1−

(
αs(Q

2)

αs(Q2
0)

)1+dni }

+
∑

i=+,−,NS

Ãni
dni

{
1−

(
αs(Q

2)

αs(Q2
0)

)dni }
+

∑

i=+,−,NS

B̃ni
1 + dni

{
1−

(
αs(Q

2)

αs(Q2
0)

)1+dni }
+ Cn

+2β0
~̃
An(Q2

0;P
2) ·

∑

i=+,−,NS
Pni ~Cn(1, 0)

(
αs(Q

2)

αs(Q2
0)

)dni
, (2)

which is applicable for an arbitrary target mass squared P 2 in the range 0 ≤ P 2 ≤ Q2
0. Here the

coefficients L̃ni , Ãni , B̃ni and Cn are written in terms of the quantities calculable by the pQCD. Their
explicit expressions are found in Ref. [5]. The exponents dni are given by dni = λni /2β0 (i = +,−, NS)
where λni are the eigenvalues of the one-loop anomalous dimension matrix γ̂(0)n , which is expanded as
γ̂0n =

∑
i λ

n
i P

n
i with Pni being the projection operators [4]. The terms an and bn in Eq. (1) correspond to∑

i L̃ni /(1+dni ) and
∑

i Ãni /dni +
∑

i B̃ni /(1+dni )+Cn, respectively. Since dn=2
− = 0, Ãn−/dn− and thus

bn become singular at n = 2. But we see that the product (Ãn−/dn−)×
[
1−(αs(Q

2)/αs(Q
2
0))

dn−
]

is finite

in the limit n→ 2. There appear no singularities in the expression in Eq. (2). When P 2 approaches Q2
0,

the last term with ~̃An(Q2
0;P

2) vanishes, and we recover the result of Ref. [5]. For an arbitrary P 2 below
Q2

0, however, we need to use the experimental data once or resort to some nonperturbative methods (like

lattice QCD) or employ models (like the vector meson dominance model) to estimate ~̃An(Q2
0;P

2).

3 Photon structure functions — Present
The work toward the next-to-next-to-leading order (NNLO) (O(ααs)) analysis of the real photon F γ2
started in Ref. [6], where the lowest six even-integer Mellin moments of the three-loop photon-parton
(quark and gluon) splitting functions were calculated and the parton distributions in the real photon were
analyzed. Later the virtual photon F2(x,Q

2, P 2) was investigated up to NNLO [7] using the results of
the three-loop anomalous dimensions for the quark and gluon operators [8] and of the three-loop photon-
parton splitting functions [9]. The NNLO result is shown in Fig. 1 together with three curves: the LO,

2
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NLO QCD results and the box (tree) diagram contribution [5],

F
γ(Box)
2 (x,Q2, P 2) =

3α

π
nf 〈e4〉

{
x
[
x2 +(1−x)2

]
ln
Q2

P 2
−2x

[
1−3x+3x2 +(1−2x+2x2) lnx

]}
,

where nf 〈e4〉 =
∑nf

i=1 e
4
i with ei being the electric charge of the active quark with flavor i and nf is the

number of active quarks. We observe that the NNLO corrections reduce F2(x,Q
2, P 2) at large x.

Regarding the longitudinal structure function F γL , its LO contribution which is of order α, was
calculated in QCD for the real photon (P 2 =0) target in Ref. [3]. The analysis was made for the case of
the virtual photon F γL(x,Q2, P 2) (Λ2 � P 2 � Q2) in LO [5] and extended up to NLO (O(ααs)) [7].
The results for the virtual photon target are shown in Fig. 2 , where the box (tree) diagram contribution
is expressed by F

γ(Box)
L (x,Q2, P 2) = 3α

π nf 〈e4〉
{

4x2(1− x)
}

.
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Fig. 1: Virtual photon structure function
F γ2 (x,Q2, P 2) in units of (3αnf 〈e4〉/π) ln(Q2/P 2)

for Q2 =100 GeV2 and P 2 =1 GeV2 with nf =4 and
Λ=0.2 GeV. [7]
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Fig. 2: Longitudinal photon structure function
F γL(x,Q2, P 2) in units of (3αnf 〈e4〉/π) for Q2 =100

GeV2 and P 2 = 1 GeV2 with nf = 4 and Λ = 0.2

GeV. [7]

In the framework of the QCD improved parton model, the structure function F γ2 is expressed in a
factorized form, i.e., as convolutions of coefficient functions and parton distributions in the photon:

F γ2 (x,Q2, P 2) =
∑

i

Ci2 ⊗ qγi + CG2 ⊗Gγ + Cγ2 ⊗ Γγ (3)

where qγi , Gγ and Γγ are quark (with i-flavour), gluon and photon distributions, respectively, and Ci2,
CG2 and Cγ2 are corresponding coefficient functions. In the leading order of α, Γγ does not evolve with
Q2 and we set Γγ = δ(1−x), which means that Cγ2 contributes directly to F γ2 . These parton distribution
functions satisfy the well known DGLAP evolution eqs. Solving the DGLAP eqs. with the appropriate
initial conditions at P 2 one obtains the parton distributions atQ2. But the coefficient functions and parton
distributions are dependent on the factorization-scheme (FS) adopted for defining these quantities. It is
the standard choice to use the modified minimal subtraction (MS) scheme for the multi-loop calculations
of the relevant quantities, namely, the coefficient functions, the splitting functions of partons and the β
function parameters. Using these results one obtains the parton distributions in the MS scheme. However
it was observed [6,10] that the multi-loop photonic MS contributions to Cγ2 are negative and singular for
x→ 1 and that, in the MS scheme, these singularities have to be compensated by the quark distributions
which thus have rather different behaviours at NLO and NNLO from the LO contribution. Under such
circumstance a new factorization scheme, which is called DISγ , was introduced [10]. In this scheme
the photonic coefficient function Cγ2 , which is the direct photon contribution to F γ2 in MS scheme, is
absorbed into the quark distributions, so that Cγ2 |DISγ = 0 while the gluon distribution Gγ2 is intact, i.e.,
Gγ2 |DISγ = Gγ2 |MS.
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Parton distributions in the real photon were investigated up to NNLO [6]. For the case of the virtual
photon the analyses were made at NLO [11] and NNLO [12]. The results of the flavour-singlet-quark
distribution qγS ≡

∑
i q
γ
i in the virtual photon are shown in Fig. 3 (MS scheme) and in Fig. 4 (DISγ).

We observe that (i) the quark distribution shows quite different behaviours in two schemes, especially
in large-x region; (ii) in MS scheme, the behaviours of the (LO+NLO) and (LO+NLO+NNLO) curves
are quite different from the LO curve. They lie below the LO curve for 0.2 < x < 0.8 but diverge as
x → 1; (iii) in DISγ scheme, the three curves LO, (LO+NLO) and (LO+NLO+NNLO) rather overlap
below x = 0.6, which means that the NLO and NNLO contributions to the quark distribution are small
for moderate x —- appropriate behaviours from the viewpoint of “perturbative stability" [6]; (iv) the
gluon distribution in the photon is very small in absolute value except in small-x region.
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Fig. 3: Singlet-quark distribution xqγS(x,Q2, P 2) in MS

scheme. [12]

Fig. 4: Singlet-quark distribution xqγS(x,Q2, P 2) in
DISγ scheme. [12]

A heavy quark h with mass m2
h (here, charm and beauty in mind) contributes to the structure

function F γ2 (x,Q2) when (p + q)2 = Q2( 1x − 1) > (2mh)2. There are several approaches in which
the heavy-quark mass effects are taken into account. In the fixed flavour-number scheme (FFNS), heavy
quarks only appear in the final state of the process and their contributions are described by the heavy-
quark coefficient functions [13, 14]. The distributions qh(x,Q2) are set to be zero. The FFNS is not
appropriate when Q2 � m2

h. In the zero-mass variable flavour-number scheme (ZVFNS), heavy-quark
distributions appear similar to the light partons. When Q2 is larger than a threshold associated with a
heavy quark (usually taken as Q2 = m2

h), this quark is considered as an extra massless parton [15]. The
distribution qh(x,Q2) differs from zero when Q2 > m2

h but otherwise qh(x,Q2) = 0. The ZVFNS is
not appropriate if Q2 ≈ m2

h. The third one is called as the ACOT(χ) scheme [16, 17], which combines
both features of the FFNS and ZVFNS. In order to treat the kinematical threshold for the heavy-quark
production correctly, it introduces a new variable χh ≡ x(1 + 4m2

h/Q
2) and modifies the integration

range of convolution as follows:
∫ 1
x
dy
y f(y)C(xy )⇒

∫ 1
χh

dy
y f(y)C(xy ). Experimental data analyses of F γ2

with heavy-quark mass effects taken into account have been performed by several groups [13–15,17,18].
But we need more data to refine models for the treatment of heavy-quark contributions.

4 Photon structure functions — Future
With the discovery of the Higgs boson at the LHC, plans for building the next-generation e+e− collid-
ers [19] are attracting growing attention. In these collider machines, we may obtain highly polarized e+

and e− beams. Using these polarized beams we can study another aspect of the photon: its spin structure.
For a recent review see [20]. The QCD analysis of the polarized structure function gγ1 (x,Q2) for a real
photon target was performed in LO [21] and in NLO [22, 23]. The polarized virtual photon structure
function gγ1 (x,Q2, P 2) with Λ2 � P 2 � Q2 was investigated up to NLO in QCD [24]. At P 2 = 0, the

4
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structure function gγ1 satisfies a remarkable sum rule, which is non-perturbative and independent of Q2,
due to gauge invariance [25, 26]: ∫ 1

0
gγ1 (x,Q2)dx = 0 . (4)

But when the target photon becomes off-shell, P 2 6= 0, the first moment of gγ1 (x,Q2, P 2) does not
vanish any more. The NLO result in QCD for the case Λ2 � P 2 � Q2 is [24, 26],

∫ 1

0
dxgγ1 (x,Q2, P 2) = −3α

π

[ nf∑

i=1

e4i

(
1− αs(Q

2)

π

)
− 2

β0

( nf∑

i=1

e2i

)2(αs(P 2)

π
− αs(Q

2)

π

)]
. (5)

The first term in the square brackets resulted from the QED axial anomaly while the second term from
the QCD axial anomaly. The sum rule was extended up to NNLO in QCD [27].

5 Epilogue
For future investigation on the photon structure, we still need to understand: (i) hadronic contributions to
photon; (ii) heavy-quark mass effects; (iii) transition from real to virtual photon target; (iv) behaviours
of F γ2 and parton distributions near x = 0 and x = 1; (v) the spin structure of photon. To that end it is
essential for us to have more new experimental data on the photon structure.
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