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Abstract
The recent measurement by ATLAS of light-by-light scattering in LHC Pb-
Pb collisions is the first direct evidence for this basic process. We find that
it excludes a range of the mass scale of a nonlinear Born-Infeld extension of
QED that is . 100 GeV. In the case of a Born-Infeld extension of the Standard
Model in which the U(1)Y hypercharge gauge symmetry is realized nonlin-
early, the limit on the corresponding mass reach is ∼ 90 GeV, which in turn
imposes a lower limit of & 11 TeV on the magnetic monopole mass in such a
U(1)Y Born-Infeld theory.
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1 Introduction
Over 80 years ago, soon after Dirac proposed his relativistic theory of the electron [1] and his interpreta-
tion of ‘hole’ states as positrons [2], Halpern [3] in 1933 and Heisenberg [4] in 1934 realized that quan-
tum effects would induce light-by-light scattering, which was first calculated in the low-frequency limit
by Euler and Kockel [5] in 1935. Subsequently, Heisenberg and Euler [6] derived in 1936 a more general
expression for the quantum nonlinearities in the Lagrangian of Quantum Electrodynamics (QED), and
a complete calculation of light-by-light scattering in QED was published by Karplus and Neuman [7]
in 1951. However, measurement of light-by-light scattering has remained elusive until very recently. In
2013 d’Enterria and Silveira [8] proposed looking for light-by-light scattering in ultraperipheral heavy-
ion collisions at the LHC, and evidence for this process was recently presented by the ATLAS Collabo-
ration [9], at a level consistent with the QED predictions in [8] and [10].

In parallel with the early work on light-by-light scattering in QED, and motivated by a ‘unitarian’
idea that there should be an upper limit on the strength of the electromagnetic field just as the speed of
light is an upper limit, Born and Infeld [11] proposed in 1934 a conceptually distinct nonlinear modifi-
cation of the Lagrangian of QED:

LQED = −1

4
FµνF

µν →

LBI = β2
(

1−
√

1 +
1

2β2
FµνFµν −

1

16β4
(FµνF̃µν)2

)
,

(1)

where β is an a priori unknown parameter with the dimension of [Mass]2 that we write as β ≡M2, and
F̃µν is the dual of the field strength tensor Fµν . Interest in Born-Infeld theory was revived in 1985 when
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Fradkin and Tseytlin [12] discovered that it appears when an Abelian vector field in four dimensions
is coupled to an open string, as occurs in models inspired by M theory in which particles are localized
on lower-dimensional ‘branes’ separated by a distance ' 1/

√
β = 1/M in some extra dimension 1.

Depending on the specific brane scenario considered, M might have any value between a few hundred
GeV and the Planck scale ∼ 1019 GeV.

When considering phenomena at energies � M as in this paper, the most relevant terms are
those of fourth order in the gauge field strengths in (1). Until now, there has been no strong lower limit
on the Born-Infeld scale β or, equivalently, the brane mass scale M and the brane separation 1/M . A
constraint corresponding toM & 100 MeV was derived in [14] from electronic and muonic atom spectra,
though the derivation has been criticized in [15]. Measurements of photon splitting in atomic fields [16]
were considered in [17], where it was concluded that they provided no limit on the Born-Infeld scale,
and it was suggested that measurements of the surface magnetic field of neutron stars [18] might be
sensitive to M =

√
β ∼ 1.4× 10−5 GeV. More recently, measurements of nonlinearities in light by the

PVLAS Collaboration [19] are somewhat more sensitive to the individual nonlinear terms in (1), but are
insensitive to the particular combination appearing in the Born-Infeld theory, as discussed in [20] where
more references can be found. Fig. 1 is taken from that paper: the left panel shows the prediction of
Heisenberg and Euler for the coefficients of the (FµνF

µν)2 and (FµνF̃
µν)2 terms in LBI (1) (black dot),

denoted by c2,0 and c0,2, respectively, and the right panel displays the experimental constraints available
until now. The dashed lines are possible values in Born-Infeld theory [11], and the only constraint on the
Born-Infeld combination of c2,0 and c0,2 comes from Lamb shift measurements (region on the right side
of the right panel with close diagonal lines), which yield M & O(100) MeV.

Fig. 1: Left panel: The prediction of Heisenberg and Euler [6] (black dot) for the coefficients of the (FµνF
µν)2

and (Fµν F̃
µν)2 terms in LBI (1), denoted by c2,0 and c0,2, respectively. Right panel: Previous experimental

constraints on these coefficients. Born-Infeld theory predicts [11] values of c2,0 and c0,2 along the dashed lines.
Figure adapted from [20].

Here we show that the agreement of the recent ATLAS measurement of light-by-light scattering
with the standard QED prediction provides the first limit on M in the multi-GeV range, excluding a
significant range extending to

M & 100 GeV , (2)

and entering the range of interest to brane theories. This limit is obtained under quite conservative
assumptions, and plausible stronger assumptions discussed later would strengthen this lower bound to
M & 200 GeV.

1Remarkably, the maximum field strength is related to the fact that the brane velocity is limited by the velocity of light [13],
confirming the insight of Born and Infeld [11].
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One may also consider a string-motivated Born-Infeld extension of the Standard Model in which
the hypercharge U(1)Y gauge symmetry is realised non-linearly, in which case the limit (2) is relaxed to

MY = cos θWM & 90 GeV, (3)

where we have used Bµ
Y = cosθW AµEM − sinθW Zµ and sin2 θW ' 0.23, with θW the weak mixing

angle. As a corollary of this lower limit on the U(1)Y brane scale, we recall that Arunasalam and
Kobakhidze recently pointed out [21] that the Standard Model modified by a Born-Infeld U(1)Y theory
has a finite-energy electroweak monopole [22, 23] solution M, whose mass they estimated as MM '
4 TeV + 72.8MY . Such a monopole is less constrained by Higgs measurements than electroweak
monopoles in other extensions of the Standard Model [24], and hence of interest for potential detection
by the ATLAS [25], CMS and MoEDAL experiments at the LHC [26]. However, our lower limit MY &
90 GeV (2) corresponds to a 95% CL lower limit on the mass of this monopoleMM & 11 TeV, excluding
its production at the LHC.

2 Light-by-Light Scattering in LHC Pb-Pb Collisions

Fig. 2: Left panel: Cartoon of light-by-light scattering through photon-photon collisions in ultra-peripheral Pb-Pb
collisions. Right panel: Comparison between the angular distributions (with arbitrary normalisations) as functions
of cos θ in the centre-of-mass frame (where θ is the polar angle) for the leading-order differential cross-sections in
U(1)EM Born-Infeld theory and QED, plotted as solid blue and dashed red lines, respectively.

Following the suggestion of [8], we consider ultra-peripheral heavy-ion collisions in which the
nuclei scatter quasi-elastically via photon exchange: Pb + Pb (γγ)→Pb(∗) + Pb(∗)+ X, as depicted in the
left panel of Fig. 2, effectively acting via the equivalent photon approximation (EPA) [27] as a photon-
photon collider. The EPA allows the electromagnetic field surrounding a highly-relativistic charged
particle to be treated as equivalent to a flux of on-shell photons. Since the photon flux is proportional to
Z2 for each nucleus, the coherent enhancement in the exclusive γγ cross-section scales asZ4, whereZ =
82 for the lead (Pb) ions used at the LHC. This is why heavy-ion collisions have an advantage over proton-
proton or proton-lead collisions for probing physics in electromagnetic processes [8]. Photon fusion in
ultra-peripheral heavy-ion collisions has been suggested as a way of detecting the Higgs boson [28, 29]
and, more recently, the possibility of constraining new physics beyond the Standard Model (BSM) in this
process was studied in [30, 31].

As already mentioned, the possibility of directly observing light-by-light scattering at the LHC
was proposed in [8], and this long-standing prediction of QED was finally measured earlier this year
with 4.4σ significance by the ATLAS Collaboration [9] at a level in good agreement with calculations
in [8, 10]. The compatibility with the Standard Model constrains any possible contributions from BSM
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physics. Born-Infeld theory is particularly interesting in this regard, in the absence of constraints from
low-energy optical and atomic experiments [19, 20].

The leading-order cross-section for unpolarised light-by-light scattering in Born-Infeld theory in
the γγ centre-of-mass frame is given by [17, 32]:

σBI(γγ → γγ) =
1

2

∫
dΩ

dσBI

dΩ
=

7

1280π

m6
γγ

β4
, (4)

where mγγ is the diphoton invariant mass and the differential cross-section is

dσBI

dΩ
=

1

4096π2
m6
γγ

β4
(3 + cos θ)2 . (5)

We recall that the parameter β = M2 enters as a dimensionful parameter in the Born-Infeld theory of
non-linear QED defined by the Lagrangian (1). If this originates from a Born-Infeld theory of hyper-
charge then the corresponding mass scale is MY = cos θWM .

We plot in the right panel of Fig. 2 the angular distributions as functions of cos θ in the centre-
of-mass frame (where θ is the polar angle) for the leading-order differential cross-sections in both Born-
Infeld theory and QED (with arbitrary normalisations), as solid blue and dashed red lines, respectively.
We see that the Born-Infeld distribution is less forward peaked than that for QED. For the latter, we used
the leading-order amplitudes for the quark and lepton box loops in the ultra-relativistic limit from [33],
omitting the percent-level effects of higher-order QCD and QED corrections, as well the W± contribu-
tion that is negligible for typical diphoton centre-of-mass masses at the LHC.

The total exclusive diphoton cross-section from Pb+Pb collisions is obtained by convoluting the
γγ → γγ cross-section with a luminosity function dL/dτ [34],

σexcl. =

∫ 1

τ0

dτ
dL

dτ
σγγ→γγ(τ) . (6)

We have introduced here a dimensionless measure of the diphoton invariant mass, τ ≡ m2
γγ/sNN ,

where
√
sNN = 5.02 TeV is the centre-of-mass energy per nucleon pair in the ATLAS measurement.

The luminosity function, derived for example in [34], can be written as an integral over the number
distribution of photons carrying a fraction x of the total Pb momentum:

dL

dτ
=

∫ 1

τ
dx1dx2f(x1)f(x2)δ(τ − x1x2) , (7)

where the distribution function f(x) depends on a nuclear form factor. We follow [34] in adopting the
form factor proposed in [29], while noting that variations in the choice leads to ∼ 20% uncertainties
in the final cross-sections [8]. A contribution with a non-factorisable distribution function should also
be subtracted to account for the exclusion of nuclear overlaps, but this is not a significant effect for
the relevant kinematic range, causing a difference within the 20% uncertainty [31] from the photon
luminosity evaluated numerically using the STARlight code [35]. For

√
sNN = 5.5 TeV and mγγ > 5

GeV we obtain a QED cross-section of σQED
excl. = 385 ± 77 nb, in good agreement with [8]. The ATLAS

measurement is performed at
√
sNN = 5.02 TeV and for mγγ > 6 GeV, for which we find σQED

excl. =
220± 44 nb.

This total γγ → γγ cross-section is reduced by the fiducial cuts of the ATLAS analysis, which
restrict the phase space to a photon pseudorapidity region |η| < 2.4, and require photon transverse
energiesET > 3 GeV and the diphoton system to have an invariant massmγγ > 6 GeV with a transverse
momentum pγγT < 2 GeV and an acoplanarity Aco = 1 − ∆φ/π < 0.01. We simulate the event
selection using Monte-Carlo sampling, implementing the cuts with a 15% Gaussian smearing in the
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photon transverse energy resolution at low energies and 0.7% at higher energies [9, 36] above 100 GeV.
Since the differential cross-section does not depend on φ we implement the acoplanarity cut as a fixed
85% efficiency in the number of signal events after the pγγT selection, following the ATLAS analysis [9].
The total reduction in yield for the QED case is a factor ε ∼ 0.30, which results in a fiducial cross-section
σQED

fid. = 53± 11 nb for
√
sNN = 5.02 TeV, in good agreement with the two predictions of 45 and 49 nb

quoted by ATLAS [9].

Fig. 3: The distributions in the scaled diphoton invariant mass τ ≡ m2
γγ/sNN , normalised by the total γγ → γγ

cross-section, for the QED case in the upper panel and for U(1)EM Born-Infeld theory with M =
√
β = 200 GeV

in the lower panel.

Following this validation for the QED case, we repeat the procedure for the Born-Infeld cross-
section. Since the Born-Infeld γγ → γγ cross-section grows with energy, the dominant contribution to
the cross-section comes from the τ . 0.2 part of the integral, compared with τ . 10−4 for the QED
case. We show in Fig. 3 the distributions of the σ(γγ → γγ) cross-section multiplied by the photon flux
luminosity factor – normalised by the total exclusive cross-section – as functions of the invariant diphoton
mass distribution, for the QED case in the left panel and in Born-Infeld theory with M =

√
β = 200

GeV in the right panel.

We see that the invariant-mass distribution in the Born-Infeld case extends to mγγ > M , where
the validity of the tree-level Born-Infeld Lagrangian may be questioned because the Taylor expansion
of the square root in the non-polynomial Born-Infeld Lagrangian (1) could break down. With this in
mind, we use two approaches to place plausible limits on M =

√
β. In the first and most conservative

method we consider γγ scattering only for mγγ ≤M , while in the second approach we integrate the γγ
cross-section (4) up to the diphoton invariant mass where the unitarity limit σBI ∼ 1/m2

γγ is saturated,
beyond which we assume that the cross-section saturates the unitarity limit and falls as ∼ 1/m2

γγ .

We find fiducial efficiencies for the cut-off and unitarization approaches to be ε ∼ 0.39 and 0.14,
respectively. Whilst the ET and η cuts have much less effect than for QED, as expected from the differ-
ence in the angular distributions visible in the right panel of Fig. 2, the larger invariant masses appearing
in the Born-Infeld case are much more affected by the pγγT requirement.

3 Constraint on Born-Infeld Extension of QED
Our calculations of the corresponding U(1)EM Born-Infeld fiducial cross-sections are plotted in the left
panel of Fig. 4 as a function of M =

√
β: the green curve is for the more conservative cut-off approach,

and the blue curve assumes that unitarity is saturated. These calculations are confronted with the ATLAS
measurement of σfid. = 70 ± 24 (stat.) ± 17 (sys.) nb [9], assuming that these errors are Gaussian and
adding them in quadrature with a theory uncertainty of±10 nb. We perform a χ2 fit to obtain the 95% CL
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Fig. 4: The fiducial cross section for light-by-light scattering in relativistic heavy-ion collisions, σ(Pb+Pb(γγ)→
Pb(∗) +Pb(∗)γγ) as a function ofM =

√
β in the U(1)EM Born-Infeld theory is shown as a solid green (blue) line

for a hard cut-off (unitarized) approach, respectively, as discussed in the text. The lower diphoton invariant mass
cut-off is set at 6 GeV (25 GeV) on the upper (lower) plot. This is compared with the 95% CL upper limit obtained
from the ATLAS measurement [9] by combining the statistical and systematic errors in quadrature as well as a
10 nb theoretical uncertainty in the cross section predicted in QED [8,10] (horizontal dashed line), which excludes
the higher range shaded pink. The corresponding 95% CL lower limits M & 100 (190) GeV for mγγ > 6 GeV,
and M & 210 (330) GeV for mγγ > 25 GeV, are shown as vertical dashed lines in green (blue).

upper limit on a Born-Infeld signal additional to the 49 nb Standard Model prediction 2. This corresponds
to the excluded range shaded in pink above σ95%CL

fid. ∼ 65 nb in the left panel of Fig. 4, which translates
into the limit M =

√
β & 100 (190) GeV in the cut-off (unitarized) approach, as indicated by the green

(blue) vertical dashed line in Fig. 4, respectively.

These limits could be strengthened further by considering the mγγ distribution shown in Fig. 3(b)
of [9], where we see that all the observed events had mγγ < 25 GeV, in line with expectations in QED,
whereas in the Born-Infeld theory most events would havemγγ > 25 GeV. Calculating a ratio of the total
exclusive cross-section of QED for mγγ > 6 GeV and > 25 GeV as σmγγ>25GeV

excl. /σ
mγγ>6GeV
excl. ∼ 0.02,

we estimate a 95% CL upper limit of ∼ 2 nb for mγγ > 25 GeV. The corresponding exclusion plot is
shown in the right panel of Fig. 4, where we see a stronger limit M =

√
β & 210 (330) GeV in the

cut-off (unitarized) approach with the same colour coding as previously.

Our lower limit on the QED Born-Infeld scale M =
√
β & 100 GeV is at least 3 orders of

magnitude stronger than the sensitivities to M =
√
β of previous measurements of nonlinearities in

light [14–17,19,20]. Because of the kinematic cuts made in the ATLAS analysis, our limit does not apply
to a range of values of M . 10 GeV for which the nonlinearities in (1) should be taken into account.
However, our limit is the first to approach the range of potential interest for string/M theory constructions,
since models with (stacks of) branes separated by distances 1/M : M = O(1) TeV have been proposed
in that context [37]. Our analysis could clearly be refined with more sophisticated detector simulations
and the uncertainties reduced. However, in view of the strong power-law dependence of the Born-Infeld
cross-section onM =

√
β visible in (4), the scope for significant improvement in our constraint is limited

unless experiments can probe substantially larger mγγ ranges. In this regard, it would be interesting to
explore the sensitivities of high-energy e+e− machines considered as γγ colliders.

2We neglect possible interference effects that are expected to be small due to the different invariant mass and angular
distributions involved.
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4 Born-Infeld Extension of the Standard Model and the Mass of a Magnetic Monopole
As mentioned in the Introduction, Arunasalam and Kobakhidze have recently pointed out [21] that the
Standard Model modified by a Born-Infeld theory of the hypercharge U(1)Y contains a finite-energy
monopole solution with mass MM = E0 + E1, where E0 is the contribution associated with the Born-
Infeld U(1)Y hypercharge, and E1 is sssociated with the remainder of the Lagrangian. Arunasalam and
Kobakhidze have estimated [21] that E0 ' 72.8MY , where MY = cos θWM , and Cho, Kim and Yoon
had previously estimated [23] thatE1 ' 4 TeV 3. Combining these calculations and using our lower limit
M & 100 GeV (2), we obtain a lower limit MM & 11 TeV on the U(1)Y Born-Infeld monopole mass 4.
Unfortunately, this is beyond the reach of MoEDAL [26] or any other experiment at the LHC [25], but
may be accessible at a future 100-TeV pp collider [38] or in a cosmic-ray experiment.
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