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Abstract

The European School of High-Energy Physics is intended to give young physicists an introduction to the the-
oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on
the Standard Model of electroweak interactions, quantum chromodynamics, Higgs physics, physics beyond the
Standard Model, flavour physics, and practical statistics for particle physicists.
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Preface

The twenty-first event in the series of the European School of High-Energy Physics took place in Parád-
fürdő, Hungary, from 5 to 18 June 2013. It was organized jointly by CERN, Geneva, Switzerland, and JINR,
Dubna, Russia, with support from several bodies in Hungary: Academy of Science; Scientific Research Fund;
University of Debrecen; Wigner Research Centre for Physics. The local organization team was chaired by Pro-
fessor Dezső Horváth. The other members of the local committee included: Csaba Hajdu, Gergő Hamar, János
Karancsi, Ferenc Siklér, Balázs Ujvári, Viktor Veszprémi, and Anna Zsigmond.

A total of 114 students coming from 27 different countries attended the school, mainly from member
states of CERN and/or JINR, but also a few from other regions. The participants were generally students in
experimental High-Energy Physics in the final years of work towards their PhDs.

The School was hosted at the Erzsébet Park Hotel complex in Parádfürdő, about 120 km from Budapest.
According to the tradition of the school, the students shared twin rooms mixing participants of different nation-
alities.

A total of 31 lectures were complemented by daily discussion sessions led by six discussion leaders. The
students displayed their own research work in the form of posters in an evening session in the first week, and
the posters stayed on display until the end of the School. Each discussion group carried out a collaborative
project, studying in detail the analysis from a published paper from one of the LHC experiments; a summary
was presented by a student representative of each group in an evening session in the second week of the School.
The full scientific programme was arranged in the on-site conference facilities.

Our thanks go to the local-organization team and, in particular, to Dezső Horváth and Csaba Hajdu for all
their work and assistance in preparing the School, on both scientific and practical matters, and for their presence
throughout the event. Our thanks also go to the efficient and friendly hotel management and staff who assisted
the School organizers and the participants in many ways.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good spirits
during two intense weeks, undoubtedly appreciated listening to and discussing with the teaching staff of world
renown.

We would like to express our appreciation to Professor Rolf Heuer, Director General of CERN, and Pro-
fessor Victor Matveev, Director General of JINR, for their lectures on the scientific programmes of the two
organizations and for discussing with the School participants.

In addition to the rich scientific programme, the participants enjoyed numerous sports and leisure activities
in and around the Erzsébet Park Hotel complex. Particularly noteworthy were the very nice excursions to the
nearby town of Eger, to Budapest with impressive views of the Danube in flood in addition to the normal sites
of the capital city, and to the spectacular Aggtelek caves. Sports and leisure facilities, including the swimming
pool, wellness centre and ten-pin bowling, provided an excellent environment for informal interactions between
staff and students.

We would also like to thank Professor József Pálinkás, President of the Hungarian Academy of Sciences,
and Professor Péter Lévai, Director General of the Wigner Research Centre for Physics in Budapest, for visiting
the School and more generally for their interest and support. We are very grateful to Kate Ross and Tatyana
Donskova for their untiring efforts in the lengthy preparations for and the day-to-day operation of the School.
Their continuous care of the participants and their needs during the School was highly appreciated. We would
also like to thank Hélène Haller for her help in the early stages of preparing the School.

The success of the School was to a large extent due to the students themselves. Their poster session was very
well prepared and highly appreciated, their group projects were a great success, and throughout the School they
participated actively during the lectures, in the discussion sessions and in the different activities and excursions.

Nick Ellis
(On behalf of the Organizing Committee)
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Quantum Field Theory and the Electroweak Standard Model

E. Boos
M. V. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (SINP MSU),
Moscow 119991, Russia

Abstract
The Standard Model is one of the main intellectual achievements for about the
last 50 years, a result of many theoretical and experimental studies. In this
lecture a brief introduction to the electroweak part of the Standard Model is
given. Since the Standard Model is a quantum field theory, some aspects for
understanding of quantization of abelian and non-abelian gauge theories are
also briefly discussed. It is demonstrated how well the electroweak Standard
Model works in describing a large variety of precise experimental measure-
ments at lepton and hadron colliders.

1 Introduction
The Standard Model (SM) of strong and electroweak (EW) interactions is the basis for understanding
of nature at extremely small distances. In high-energy physics usually the relativistic system of units
is used in which the Planck constant ~ and the speed of light c are equal to unity, ~ = c = 1. Taking
into account well-known values for ~ = 1.055 · 1027 erg s, c = 3 · 1010 cm/s and the positron electric
charge e = 1.6 · 10−19 C and using the relation between the electronvolt and erg (1 eV = e· 1 V = 1 V
·1.6 · 10−19 C = 1.6 · 10−12 erg), one easily gets the following very useful relation between length and
energy units: 1/GeV = 2 · 10−14 cm. Due to the Heisenberg uncertainty principle, ∆x∆p ≥ 1/2, the
above relation allows us to understand which energies (momentum transfers) are needed approximately
to probe certain distances:
100 GeV→ 10−16 cm,
1 TeV→ 10−17 cm,
10 TeV→ 10−18 cm.
Therefore, at the LHC one can study the structure of matter at distances of 10−18–10−17 cm. For small
distances of the order of 10−16 cm or correspondingly 100 GeV energies the SM works very well, as
follows from many studies and measurements.

The SM is a quantum field theory; it is based on a few principles and requirements:

– gauge invariance with lowest dimension (dimension four) operators; SM gauge group: SU(3)C ×
SU(2)L × U(1)Y ;

– correct electromagnetic neutral currents and correct charge currents with (V–A) structure as fol-
lows from four fermion Fermi interations (1)

GF√
2

[ν̄µ · γα(1− γ5) · µ ] [ē · γα(1− γ5) · νe ] + h.c.; (1)

– three generations without chiral anomalies;
– Higgs mechanism of spontaneous symmetry breaking.

Fermions are combined into three generations forming left doublets and right singlets with respect to the
weak isospin (see Fig.1).

fL,R =
1

2
(1∓ γ5)f,
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Fig. 1: Fermion generation
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The SM Lagrangian written in accord with the mentioned requirements looks very simple:

L = −1
4W

i
µν(Wµν)i − 1

4BµνB
µν − 1

4G
a
µν(Gµν)a

+
∑

f=`,q Ψ̄f
L(iDL

µγ
µ)Ψ†L +

∑
f=`,q Ψ̄f

R(iDR
µ γ

µ)Ψ†R + LH,

LH = LΦ + LYukawa,

LΦ = DµΦ†DµΦ− µ2Φ†Φ− λ(Φ†Φ)4,

LYukawa = −Γijd Q̄
′
L
i
Φd′R

j
+ h.c.− Γiju Q̄

′
L
i
ΦCu′R

j
+ h.c.− Γije L̄

′
L
i
Φe′R

j
+ h.c.

The field strength tensors and covariant derivatives have very familiar forms:

W i
µν = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν ,

Bµν = ∂µBν − ∂νBµ,
Gaµν = ∂µA

a
ν − ∂νAaµ + gSf

abcAbµA
c
ν ,

DL
µ = ∂µ − ig2W

i
µτ

i − ig1Bµ

(
Y fL
2

)
− igSA

a
µt
a,

DR
µ = ∂µ − ig1Bµ

(
Y fR
2

)
− igSA

a
µt
a,

where i = 1, 2, 3, a = 1, . . . , 8; W i
µ are gauge fields for the weak isospin group, Bµ are gauge fields for

the weak hypercharge group and Aµ are gluon gauge fields for the strong SUC(3) colour group.

Yf = 2Qf − 2I3
f ⇒ YLi = −1, YeRi = −2, YQi =

1

3
, YuRi =

4

3
, YdRi = −2

3
.

The Lagrangian is so compact that its main part can be presented on the CERN T-shirt (see Fig. 2).

It is hard to imagine that such a simple Lagrangian allows one to describe basically all the phe-
nomena of the microworld. But the SM Lagrangian, being expressed in terms of physics components,
is not that simple, leading after quantization to many interaction vertices between particles or quanta of
corresponding quantum fields.

This lecture is organized as follows. In the next section some aspects of quantum field theory are
briefly discussed. After a motivation as to why do we need a quantum field theory, we consider scalar
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Fig. 2: CERN T-shirt with SM Lagrangian

fields and introduce the Feynman propagator and functional integral approach as a quantization method.
The functional integral given in the holomorphic representation allows us to clarify boundary conditions
and show the connection between the Green functions and S-matrix elements. Feynman diagrams are
introduced. The formalism is extended to the fermion and gauge fields stressing peculiarities in the
quantization procedure and Feynman rule derivation. In the next section a construction of the EW SM
Lagrangian is presented. We discuss experimental facts and theory principles based on which the EW part
of the SM Lagrangian for fermion and gauge fields is constructed. We show explicitly which conditions
on weak hypercharges allow us to get correctly electromagnetic and charge current (CC) interactions
and predict additional neutral currents (NCs). We demonstrate how potentially dangerous chiral anoma-
lies cancelled out. Then spontaneous symmetry breaking, the Goldstone theorem and the appearance
of Nambu–Goldstone bosons are briefly discussed. The Brout–Englert–Higgs–Hagen–Guralnik–Kibble
mechanism of spontaneous symmetry breaking is introduced leading to non-zero masses of the gauge
fields and appearance of the Higgs boson. Very briefly we discuss in addition to the unitary gauge the
covariant gauge, propagators of Goldstone bosons and ghosts. At the end of the section it is shown how
the spontaneous symmetry breaking mechanism leads to non-zero masses for the fermions in the SM
and how very naturally the Cabibbo–Kobayashi–Maskawa mixing matrix appears. In the next section we
concentrate on some phenomenological aspects of the EW SM such as connections between the Fermi
constant GF, the Higgs vacuum expectation value v, consistency of low-energy measurements and W,
Z mass measurements, W-, Z-boson decay widths and branching ratios, number of light neutrinos, two-
fermion processes in e+e− collisions, tests of the gauge boson self-interactions, top-quark decays and
the EW top production (single top). Briefly we discuss the EW SM beyond the leading order, renormal-
ization and running coupling in quantum electrodynamics (QED), as a simplest example, running masses
and running parameters in the SM, precision EW data and global parameter fits. Concluding remarks are
given in the next section. The quantum chromodynamics (QCD) part of the SM and the phenomenol-
ogy of the Higgs boson are not discussed in these lectures as they are addressed in other lectures of the
School.

For a deeper understanding of the topics discussed, one can recommend a number of very good
textbooks and reviews [1–9] and lectures given at previous schools and specialized reviews [10, 12–15],
which have been used in preparation of this lecture.

2 Introductory words to quantum theory
In classical mechanics a system evolution follows from the principle of least action:

δS = δ

tf∫

ti

dtL(q(t), q̇(t)) = 0;

tf∫

ti

[
∂L

∂q
δq +

∂L

∂q̇
δ(q̇)

]
= 0; δ(q̇) =

d

dt
δq.

3
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For an arbitrarily small variation δq, one gets the well-known Lagrange equation of motion

∂L

∂q
=

d

dt

(
∂L

∂q̇

)
. (2)

For a non-relativistic system described by the Lagrangian L = mq̇2

2 − V (q), the second Newton law
follows from Eq. (2),

mq̈ = −∂V
∂q

= F.

The Hamiltonian of the system is related to the Lagrangian in the following well-known way:

H(p, q) = pq̇ − L(q, q̇),

where q̇ is a solution of the equation p = ∂L
∂q̇ .

In quantum mechanics the coordinate and momentum are replaced by corresponding operators
p, q → p̂, q̂ with postulated commutator relation [p̂(0), q̂(0)] = −i~. In the Heisenberg picture the
system evolution is described by the Heisenberg equation with time-dependent operators; for example,
the equation for the coordinate operator has the following form:

∂q̂

∂t
=

i

~
[Ĥ, q̂] (3)

with a formal solution
q̂(t) = e

i
~ Ĥtq̂(0)e−

i
~ Ĥt.

This easily follows from the equalities

∂q̂

∂t
=

i

~
Ĥe

i
~ Ĥtq̂(0)e−

i
~ Ĥt + e

i
~ Ĥtq̂(0)e−

i
~ ĤtĤ =

i

~
Ĥq̂(t)− i

~
q̂(t)Ĥ =

i

~
[Ĥ, q̂].

For the coordinate and momentum operators, one can prove the following inequality:

4q · 4p ≥ 1/2,

which is called the Heisenberg uncertainty principle.

Let us recall a simple proof of the Heisenberg uncertainty principle. The mid value of any operator
Â and its dispersion are given by the relations

〈ψ|Â|ψ〉 = A, 〈ψ|(Â−A)2|ψ〉.

Let us take the following operator constructed from the momentum and coordinate operators
([p̂, q̂] = −i~) with arbitrary constant γ:

Â = p̂+ iγq̂ − (p+ iγq).

Then the conjugated operator has the form

Â† = p̂− iγq̂ − (p− iγq).

For any state |ψ〉 we have
〈ψ|Â†A|ψ〉 ≥ 0

,
〈ψ| [(p̂− p)− iγ(q̂ − q)] [(p̂− p) + iγ(q̂ − q)] |ψ〉

= (∆p)2 + γ2∆q2 − iγ(q̂p̂− p̂q̂) = (∆p)2 + γ2∆q2 + γ~ ≥ 0.

4
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This is true for any value of γ and therefore the determinant is not positive:

~2

4
−∆q2∆p2 ≤ 0.

Thus, we immediately arrive at the uncertainty principle:

∆q∆p ≥ 1

2
~.

Let us consider the simplest system, the harmonic oscillator, described by the Hamiltonian (we
put ~ = 1)

Ĥ =
1

2
(p̂2 + ω2q̂2),

and construct two operators â and â† which are called the annihilation and creation operators:

q̂ =
1√
2ω

(â+ â†); p̂ = −i

√
ω

2
(â− â†).

=⇒ â =

√
ω

2
q̂ + i

1√
2ω
p̂; â† =

√
ω

2
q̂ − i

1√
2ω
p̂. (4)

From the equation [p̂, q̂] = −i, one gets [â, â†] = 1 and the Hamiltonian takes the form

Ĥ =
ω

2
(ââ† + â†â).

It is easy to show the following commutation relations with the Hamiltonian:

[Ĥ, â] = −ωâ and [Ĥ, â†] = ωâ†.

From (3),
dâ

dt
= i[Ĥâ] = −iωâ =⇒ â(t) = â(0)e−iωt; â†(t) = â†(0)eiωt.

Let us consider states with definite energy:

Ĥ|E〉 = E|E〉.

Then the state â|E〉 (â†|E〉) corresponds to the energy (E − ω) ((E + ω)). Indeed,

Ĥâ|E〉 = âĤ|E〉 − ωâ|E〉 = (E − ω)â|E〉,

Ĥâ†|E〉 = (E + ω)â†|E〉.

Let us construct states (Hilbert space of states) starting from the ‘vacuum’ state |0〉:

â|0〉 = 0.

What is the energy of the vacuum state? This is

Ĥ|0〉 =
ω

2
(ââ† + â†â)|0〉 =

ω

2
|0〉.

The state |n〉 we introduce as |n〉 = (â†)n|0〉; its energy is given by

Ĥ(â†)n|0〉 = ω(n+ 1/2)|n〉.

As we know, such a construction is very successful in describing non-relativistic quantum phenomena
(spectra of atoms, molecules, nuclei etc).

But there are well-known problems:
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– In experiments we have not only particle creation and annihilation but also production of new
particles and antiparticles.

– Relativity and causality might be in conflict with quantum principles.
If in four-dimensional areas X and Y points are separated by the space-like interval (x− y)2 < 0,
events in the points x and y are causally independent. But in QM we have the uncertainty principle,
∆p∆x ≥ 1, and in some regions of the order of ∆x 1/m close to indistinct boundaries of the areas
X and Y the causality might be violated.

Quantum field theory allows us to resolve both of these problems simultaneously.

To describe a particle and an antiparticle with mass m, momentum ~k and energy ωk = k0 =√
~k2 +m2, let us consider two sets of creation and annihilation operators for each momentum point ~k

â, â† and b̂, b̂†. Vacuum is defined by the requirements â|0〉 = b̂|0〉 = 0. The Hamiltonian for every
momentum point ~k obviously has the following form:

Hk =
ωk
2

(â(~k)â†(~k) + â†(~k)â(~k) + b̂(~k)b̂†(~k) + b̂†(~k)b̂(~k)),

where ωk = k0 =
√
~k2 +m2. Please note that the mass parameter m is the same for all oscillators with

different ~k.

One can use a different normalization of an integral measure in order to get the commutation
relations: ∫

dk[â(~k)â†(~k)] = 1;

∫
dk[b̂(~k)b̂†(~k)] = 1.

We are using

dk =
d3~k

(2π)32ωk
⇒ [â(~k)â†(~k′)] = (2π)22ωkδ(~k − ~k′).

Total momentum and charge operators taken in so-called ‘normal ordering’ have the following
form:

P̂µ =

∫
dkkµ

[
â†(~k)â(~k) + b̂†(~k)b̂(~k)

]
,

Q̂ =

∫
dk
[
â†(~k)â(~k)− b̂†(~k)b̂(~k)

]
.

One can prove the following commutator relations, which clarify the meaning of the operators:
[
P̂µ, â†(~k)

]
= kµâ†(~k);

[
P̂µ, â(~k)

]
= −kµâ(~k),

[
Q̂, â†(~k)

]
= â†(~k);

[
Q̂, b̂†(~k)

]
= −b̂†(~k).

Now one can construct the field operator:

Φ̂(x) =

∫
dk
[
e−ikxâ(~k) + eikxb̂†(~k)

]
.

The momentum operator acts on the field operator leading to a coordinate translation:

eiP̂µyµΦ̂(x)e−iP̂µyµ = Φ̂(x+ y).

Indeed, one may prove this in a very simple way. Let us introduce an operator Â(α) depending on some
numerical parameter α:

eiαyµP̂µ â(k)e−iαyµP̂µ = Â(α).
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The operator obeys the following equation:

dA

dα
= iyµP̂µÂ− iyµP̂µÂ = −iyµ

[
P̂µÂ

]
.

One finds a solution in the form Â = â(~k)f(α), from which one can immediately see the needed
translation relation:

=⇒ â(k)
df

dα
= −iyµf(α)kµâ(k) =⇒ df

dα
= −iyµkµf(α) =⇒

eiαyµP̂µ â(k)e−iαyµP̂µ = â(k)e−ikµyµ =⇒ Φ̂(x) = Φ̂(x+ y).

It is very important to note that such a field operator obeys the Klein–Gordon equation:

[�2 +m2]Φ̂(x) =

∫
dk
[
e−ikx(−k2 +m2)â(k) + eikx(−k2 +m2)b̂(k)

]
= 0

because of
−k2 +m2 = −k2

0 + ~k2 +m2 = −ω2
k + ω2

k = 0

What charge has the state created by the operator Φ̂(x)? Let us act on the vacuum state by the
Φ̂(x) operator: Φ̂(x)|0〉. This state has the following charge:

Q̂Φ̂(x)|0〉 = −Φ̂(x)|0〉.
In the same way, one gets

Q̂Φ̂†(x)|0〉 = Φ̂†(x)|0〉.

This means that the field operator Φ̂(x) acting on vacuum produces the state with the negative
charge (–1) and the field operator Φ̂†(x) produces the state with the positive charge (+1).

Now let us consider two space–time points x1 and x2:

u u
t1, ~x1 t2, ~x2

and two-point correlation functions—products of field operators between vacuum states. If t1 < t2, the
operator Φ̂(x1)|0〉 in the correlator

〈0|Φ̂†(x2)Φ̂(x1)|0〉
creates the charge –1 at t1, and the operator Φ̂†(x2)Φ̂(x1)|0〉 annihilates this charge at t2. So, charge –1
propagates from the point x1 to x2 and t2 > t1. If t2 < t1, the operator Φ̂†(x2)|0〉 in the correlator

〈0|Φ̂(x1)Φ̂†(x2)|0〉

creates the charge +1 at t2, and Φ̂(x1)Φ̂†(x2)|0〉 annihilates this charge at t1. So, charge +1 propagates
from the point x2 to x1 and t2 < t1.

Since both these actions do not change the vacuum, we should take both correlators into account
to see the causal relation of events in points x1 and x2:

〈0|T{Φ̂†(x2)Φ̂(x1)}|0〉
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= 〈0|Φ̂†(x2)Φ̂(x1)|0〉Θ(t2 − t1) + 〈0|Φ̂(x1)Φ̂†(x2)|0〉Θ(t1 − t2)

= i

∫
d4k

(2π)4

e−ik(x2−x1)

k2 −m2 + i0
= Dc(x2 − x1).

The function

Dc(x) = i

∫
d4k

(2π)4

e−ikx

k2 −m2 + i0
(5)

is called the Feynman propagator. Obviously, the Feynman propagator is a Green function of the Klein–
Gordon equation. One can check that all the commutators between the field operators in the points x
and y separated by the space-like interval (x − y)2 < 0 are equal to zero. So, the causality takes place.
Also, one can construct multiparticle states by acting of the creation operators (operators have different
quantum numbers corresponding to different kinds of particles) on the vacuum state

∣∣∣~k1, . . . ,~kn

〉
=

∏n
i=1 â

†(~ki) |0〉. The energy and momentum of the states are then obtained by acting of the operators

P̂ 0
∣∣∣~k1, . . . ,~kn

〉
= Ĥ

∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

k0
i

)∣∣∣~k1, . . . ,~kn

〉
,

~̂P
∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

~ki

)∣∣∣~k1, . . . ,~kn

〉
.

Of course, one can get the same results using the usual canonical quantization with the correspon-
dence

q(t), q̇(t), L(q, q̇), S =

∫
dtL(q, q̇)⇐⇒

ϕ(x), ∂µϕ(x), L(ϕ, ∂µϕ), S =

∫
d4xL(ϕ, ∂µϕ).

The field momentum is then
π(x) =

∂L

∂(∂0ϕ(x))
; ∂0ϕ(x) = ϕ̇.

The Lagrangian of the complex scalar field has the form

L = ∂µϕ
†∂µϕ−m2ϕ†ϕ,

π(x) = ϕ̇†(x); π†(x) = ϕ̇(x).

In the same way, as in classical mechanics, the equation of motion comes from the principle of least
action:

∂L

∂ϕ
= ∂µ

∂L

∂µϕ
−→ (�−m2)ϕ = 0.

The Feynman propagator Dc introduced above is a Green function of the equation of motion. For the
field and momentum operators, one naturally assumes the equal-time commutation relation

[π̂(~x, t), ϕ̂(~x′, t′)]
∣∣
t=t′ = −iδ(~x− ~x′).

The Lagrangian is invariant under a global phase shift:

ϕ(x)→ eiαϕ(x), α ≡ Const.

Such a combination, called a current, is conserved (this is a simple example of the first Noether theorem):

jµ(x) = i∂µϕ†ϕ− iϕ†∂µϕ,
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∂µj
µ = i�ϕ†ϕ+ i∂µϕ†∂µϕ− i∂µϕ

†∂µϕ− iϕ†�ϕ = 0.

Conservation of the current leads to the conservation of the charge:

Q =

∫
d3~xj0 =

∫
d~x(iϕ̇†ϕ− iϕ†ϕ̇),

dQ

dt
=

∫
d~x∂0j

0 =

∫
d~x(∂ij

i) =

∫

Ω
d~n~j = 0

for falling-off fields.

3 Functional integral in quantum mechanics
However, for our further consideration, the functional integral approach to quantum field theory is more
useful. In particular, it allows us to quantize non-abelian gauge field theories, to clarify better boundary
conditions and renormalization procedure and to get a reduction formula (connection between S-matrix
elements and the Green functions).

Once more we begin with the quantum mechanics as a simple example.

L(qi, q̇i) → pi =
∂L

∂qi
, H(qi, pi) = q̇ipi − L(qi, q̇i)|q̇=f(t)

[
q̂i(t), p̂j(t)

]
= i~δij 1̂.

Let us consider a simple system described by the non-relativistic Hamiltonian

H(p̂, q̂) =
p̂2

2m
+ V (q̂).

In the Schrödinger picture, the evolution of a quantum system follows from the Schrödinger equation

i
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 .

The formal solution of the Schrödinger equation is

|Ψ(t)〉 = e−iĤt |Ψ(0)〉 .

One can define states:
|q, t〉 : q̂ |q, t〉 = q |q, t〉 .

Then the wave function coordinate representation is

Ψ(q, t) = 〈q|Ψ(t)〉 =
〈
q
∣∣∣e−iĤt

∣∣∣Ψ(0)
〉

and
〈
q|q′
〉

= δ(q − q′).

If we introduce a complete set of states |q0〉 such that

1̂ =

∫
dq0 |q0〉 〈q0| ,

we can write

Ψ(q, t) =

∫
dq0 〈q| e−iĤt |qo〉 〈q0|Ψ(0)〉 =

∫
dq0K(q, q0, t) 〈q0|Ψ(0)〉 ,

where K is the so-called kernel of the Schrödinger equation.

Obviously, [Ĥ, Ĥ] = 0 and therefore

e−iĤT = e−iĤ(tn+1−tn) · e−iĤ(tn−tn−1) ... e−iĤ(t1−t0).
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u u u u
t0 t1 t2 ... tn+1 = T

At each time moment ti we can introduce a unity operator

1̂ =

∫
dqi |qi〉 〈qi| .

Then, for the kernel K, we obtain the following formula:

K(q, q0, T − t0) =

∫
lim
n→inf

n∏

i=1

dqi |qn+1−i〉
〈
qi

∣∣∣e−iĤδt
∣∣∣ qn−i

〉
. . .
〈
q1

∣∣∣e−iĤδt
∣∣∣ q0

〉
,

eε(Â+B̂) = eεÂ + eεB̂(1 + o(ε2)),
〈
qi+1

∣∣∣e−iĤδt
∣∣∣ qi
〉

=

〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt · e−iV̂ (q)δt

∣∣∣∣ qi
〉
.

For very small (δt), e−iV̂ (q)δt could be factorized out, and therefore
〈
qi+1

∣∣∣e−iĤδt
∣∣∣ qi
〉
≈ e−iV̂ (qi)δt ·

〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt

∣∣∣∣ qi
〉
.

The last term can be expressed in the following way:
〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt

∣∣∣∣ qi
〉

=

∫
dp

2π

〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt

∣∣∣∣ p
〉
〈p|qi〉 =

∫
dp

2π
e−ip(qi+1−qi)δte−i p̂

2

2m
δt,

where 〈q|p〉 = eipq, 〈p|q〉 = e−ipq and 1̂ =
∫ dp

2π |p〉 〈p|.
One could make the following substitution of the integration variable:

p′ =
[

p√
2m
−
√

2m(qi+1 − qi)
1

2

]
∼ eim

2
(qi+1−qi)2 1

δt
.

Then, for the kernel K, one gets

K(q, q0; t) = N

∫
dqi
∏

i

e
i

[
m
2

(
qi+1−qi
δt2

)2
−V (qi)

]
δt

= N

∫

Dq
ei
∫ t
o dt[mv

2

2
−V (q)] =

∫
eiSD(q).

For our consideration it is not needed, but if one takes the integral of dp, one gets the following repre-
sentation for the functional integral measure:

D(q) = lim
n→inf,δt= t

n
→0
·
√

m

2πiδt

n∏

T=1

(√
m

2πiδt
dqT

)
.

We do not discuss mathematical aspects of how well such a construction is determined.

The formula for the kernel, being written as

K(q, q0; t) =

∫
D(q)eiS =

∫
D(q)ei

∫ t
0 dtL(q,q̇,t), (6)

can be generalized to the case of quantum field theory. For that we need to recall a few simple but
important formulas for multidimensional Gaussian integrals.
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4 Gaussian integrals
Let us consider n coordinates y1, . . . , yn as a formal vector

y =




y1
...
yn


 .

Obviously, yT = (y1 . . . yn) with a formal definition of ‘scalar’ product

yT · x =
∑

i

yixi.

The well-known answer for the Gaussian integral has the form

Z =

∫
dx1 . . . dxn · e−

1
2
xTAx =

(2π)n/2√
detA

, (7)

where A is a positive-definite n× n matrix.

Problem. Take the integral and obtain the above formula.

Reminder: detA =
∏n
i=1 λi, where λi is the eigenvalue of the matrix A.

The integral (7) is an analogue of the integral in a field theory without external sources, as we shall
see in the next part. An analogue of the functional integral with a source is as follows:

Z[J ] =

∫
dx1 . . . dxn · e−

1
2
xTAx+JTx, (8)

where J is some vector JT = (J1 . . . Jn). If we make a substitution of integration variable

x′ = x− (A−1)J,

the integral (8) will take the form

Z[J ] = e
1
2
JTA−1J ·

∫
dx′1 . . . dx

′
n · e−

1
2
x′TAx′ .

So, the integral Z[J ] is given by

Z[J ] = e
1
2
JTA−1J · Z = e

1
2
JTA−1J · (2π)n/2√

detA
.

Generalization of the above formula for the case of complex variables of integration is straightforward.

Let z = x+ iy and z∗ = x− iy. We need to compute the integral

ZC =

∫ n∏

k=1

dz∗kdzke
−z†Bz,

where B is a Hermitian matrix and z† = (z∗)T. One can diagonalize the quadratic form z∗TBz by
applying a unitary transformation of variables z′ = U · z such that the matrix UBU † becomes diagonal:

UBU † =




λ1 0
. . .

0 λn


 .
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The integral ZC then takes the form

ZC =

∫ n∏

k=1

dz′∗k dz′ke
−λk|z′k|2 =

∫ n∏

k=1

dxkdyke
−λk(x2k+y2k) =

πn

detB
. (9)

If we add the external complex ‘source’ J ,

ZC [J ] =

∫ n∏

k=1

dz∗kdzke
−z†Bz+J†z+z†J ,

with the shift of variables of integration we get

ZC [J ] = eJ
†B−1J · ZC = eJ

†B−1J · πn

detB
. (10)

In the field theory we have to consider interacting fields. So, we need to consider more complicated
integrals involving source ‘interactions’:

Zint[J ] =
1

Zint

∫ ∏
dxe−

1
2
xAx+Jx−V (x),

where Zint = Zint[0].

If we expand the exponent e−V (x) in ‘perturbation’ theory we can easily get the following form
for the integral Zint[J ]:

Zint[J ] =
1

Z[0]
e−V [ ∂

∂J
] · Z[J ] = e−V [ ∂

∂J
] · e 1

2
JA−1J .

5 Functional integral in quantum field theory
As we have seen already, a transition from mechanics to a field theory could be done by means of a
formal correspondence between the coordinate and its derivative and the field ϕ(x) and its derivative:

q(t)→ ϕ(x); q̇(t)→ ∂µϕ(x).

With this analogy one can immediately write down the following formula for the evolution kernel in the
case of quantum field theory:

Z[J ] =

∫
D(ϕ)ei

∫
d4xL(ϕ,∂µϕ)+i

∫
d4xJ(x)ϕ(x), (11)

where the measure D(ϕ) =
∏
x dϕ(x) corresponds to the integration over all possible trajectories (field

configurations).

Now all the formulas we derived for Gaussian integrals in the previous section can be applied here
using the functional derivative instead of the usual one. For example,

δJ(y)

δJ(x)
= δ(4)(x− y).

If we consider the Lagrangian for the free scalar field

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 = −1

2
ϕ
(
�2 +m2

)
ϕ ≡ −1

2
ϕD−1

c ϕ, (12)

we can get for Z[J ],

Z[J ] = exp

(
1

2

∫
d4xd4yJ(x)Dc(x− y)J(y)

)
, (13)
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where the normalization of the measure is taken such that

Z[0] = 1.

Here the function Dc is the Green function of the equation of motion:

D−1
c ·Dc = 1,

which more accurately means that

i
(
�2 +m2

)
x
Dc(x− y) = δ(4)(x− y).

In the momentum representation, by taking the Fourier transform of both sides of this equation, one gets

i
(
−p2 +m2

)
D(p) = 1.

The formal solution of the equation is

D(p) =
i

p2 −m2
.

But we need to fix how to deal with the pole. The only possible choice is to add +iε. In this case the
function Dc(p) has the familiar form of the Feynman propagator:

Dc(p) =
i

p2 −m2 + iε
.

Indeed, such fixing of the denominator leads to the fact that in the expression for the functional integral

Z[J ] =

∫
D(ϕ) exp

(
i

∫
d4x

[
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + Jϕ

])
, (14)

m2 gets a shift m2 → m2 − iε and the term

∫
D(ϕ) exp

(
−ε
∫

dxϕ2(x)

)

ensures the convergence of the integral.

On the other hand, as we have discussed already, such a form of the Feynman propagator leads to
Feynman boundary conditions, namely if x0 < y0 the particle propagates from ~x to ~y, and if x0 > y0

the corresponding antiparticle propagates from ~x to ~y, as follows from the expression

Dc(x− y) = −
∫

d~p

(2π)32ωp
ei~p(~x−~y)

[
Θ(t)e−iωpt + Θ(−t)eiωpt

]
.

So, the Feynman propagator is a Green function and, in other words, the inverse quadratic form in the
action (12).

In the case of an interacting potential V (ϕ) we get from (13) the following general expression for
the generating functional:

ZV [J ] = exp

(
−i

∫
d4xV

(
δ

iδJ(x)

))
· exp

(
1

2

∫
dydzJ(y)Dc(y − z)J(z)

)
. (15)

As will be discussed, one can get the Green functions by taking the needed number of functional deriva-
tives with respect to the source. However, this is not enough, since we do not know how exactly the
functional integral, called the generalized functional integral, and the Green functions are related to the
S-matrix elements needed to compute physics observables.
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6 Functional integral in holomorphic representation
We start with the harmonic oscillator as we did before:

H(p, q) =
p̂2

2
+
ω2q̂2

2
.

The creation and annihilation operators have the form (4) with the commutator

[â, â†] = 1. (16)

The Hamiltonian of the system taken in a normal form (all creation operators are on the right-hand side)
is

H = ωâ†â.

The commutator relation (16) has a very nice representation in terms of holomorphic functions, which
are introduced by means of the following scalar product:

〈f1|f2〉 =

∫
(f1(a∗))∗ f2(a∗)e−a

∗ada∗da
2πi

.

With such a definition of the scalar product, the set of functions Ψn(a∗) = (a∗)n√
n!

, n ≥ 0, forms an
orthonormal basis

〈Ψn|Ψm〉 =
1√
n!m!

∫
an(a∗)me−a

∗ada∗da
2πi

= δnm. (17)

One can easily prove that
∑

n |Ψn 〉〈 |Ψn| = 1.

Problem. Prove the relation (17).

The operators â† and â act according to the following rules:

â† · f(a∗) = a∗f(a∗), âf(a∗) =
d

da∗
f(a∗). (18)

By direct substitution, one can prove the following relation:
〈
f1|â†f2

〉
= 〈âf1|f2〉 , (19)

which means that the operators â† and â are conjugate to each other.

Now we will show a few simple formulas for the holomorphic representation given above, which
are useful for a construction of the S-matrix.

Let us take some operator Â with matrix element in our basis

Anm =
〈

Ψn|Â|Ψm

〉
. (20)

The function

A(a∗, a) =
∑

nm

Anm
(a∗)n√
n!

am√
m!

=
∑

nm

|n 〉〈m| (21)

is called the kernel of the operator Â. The kernel of a product of two operators is given by the convolution
of kernels:

A1A2(a∗a) =

∫
A1(a∗α)A2(α∗a)e−α

∗αdα∗dα
2πi

.

The operator Â can be decomposed into a formal series of normal ordered creation and annihilation
operators:

Â =
∑

nm

Knm(â†)n(â)m. (22)
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The following function is called the normal symbol of the operator Â:

K(a∗, a) =
∑

nm

Knm(a∗)nam. (23)

Problem. Prove the relation between the kernel and the normal symbol of the operator Â:

A(a∗, a) = ea
∗aK(a∗, a). (24)

(Check the equality (24) for the particular case Â = â†nâl.)

Now we use the relations (22), (23) and (24) to construct the functional integral in the holomorphic
representation.

Let the Hamiltonian of some system be Ĥ(â†, a). The evolution operator has the form

Û = e−iĤ·4t.

From (22) and (24), one can get the following formula for the kernel of the evolution operator:

U(a∗, a) = e[a∗a−ih(a∗a)]4t (25)

for a small time interval4t.
In the case of a finite interval, we can split it into small pieces t′′ − t′ = N · 4t and using our

orthonormal bases (17) we get the following form for the normal symbol of the evolution operator, which
is a convolution of products of the evolution operators:

U(a∗, a; t′′, t′) =

∫
exp

(
[a∗αN−1 − α∗N−1αN−1 + · · · − α∗1α1 + α∗1α0]

− i4t[h(a∗, αN−1) + · · ·+ h(α∗, α0)]) ·
N−1∏

k=1

dα∗kdαk
2πi

.

In the limit4t→ 0, N →∞,4N = t′′ − t′, one gets

U(a∗, a; t′′, t′) =

∫
ea
∗α(t′′) · exp

(∫ t′′

t′
[−α∗α− ih(α∗, α)]dt

)
·
∏

t

dα∗dα
2πi

, (26)

where the boundary conditions are α∗(t′′) = a∗, α(t′) = a.

In our case for the harmonic oscillator h(a∗, a) = ωa∗a the integral (26) can be easily computed.
To do this, one should take a variation

δ

[
a∗α(t′′) +

∫ t′′

t′
[−α∗α− ih(α∗, α)]dt

]

= a∗δα(t′′) +

∫ t′′

t′
dt[−δα∗α̇− α∗δα̇− iωα∗δα− iωδα∗α]

= a∗δα(t′′)− α∗(t′′)δα(t′′) +

∫ t′′

t′
dt[−δα∗(α̇+ iωα) + δα(α∗ − iωα∗)].

The extremum condition gives us the answer. Note that the first two terms cancel each other because of
the boundary condition α∗(t′′) = a∗. Extremum conditions can be simply solved:

a(t) = e−iω(t−t′)a(t′), a∗(t) = e−iω(t′′−t)a∗(t). (27)
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Then, for the normal symbol of the evolution operator, we get

U(a∗, a; t′′, t′) = exp(a∗ae−iω(t−t′)), (28)

substituting the solution (27) into the exponent in (26) where a non-zero contribution comes only from
the first term in the exponent.

An important consequence of this is that for the operator Â with the kernel A(a∗, a) the kernel of
the operator eiĤ0t′′Âe−iĤ0t′ is given by the convolution of corresponding kernels and is equal to

A
(
a∗eiωt′′ , ae−iωt′

)
. (29)

This relation demonstrates the power of the holomorphic representation in which the evolution is simply
reduced to the substitution of arguments:

a→ ae−iωt.

Now we come back to the field theory. The field operator is given by

Φ̂(x) =

∫
d~k

(2π)32k0
[e−ikxâ+ eikxâ†(k)]

and the corresponding 4-momentum operator is

P̂µ =

∫
d~k

(2π)32k0
kµa†(k)a(k).

Vacuum |0〉 is the state â(k) |0〉 = 0 and the one-particle state is
∣∣∣~k
〉

= â†(k) |0〉. The operator P̂µ acts
on the one-particle state as

(
P̂ 0 = Ĥ

) ∣∣∣~k
〉

= k0
∣∣∣~k
〉
, ~̂P

∣∣∣~k
〉

= ~k
∣∣∣~k
〉
.

A multiparticle state is constructed as
∣∣∣~k1, . . . ,~kn

〉
=
∏n
i=1 â

†(~ki) |0〉. Obviously,

Ĥ
∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

k0
i

)∣∣∣~k1, . . . ,~kn

〉
,

~̂P
∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

~ki

)∣∣∣~k1, . . . ,~kn

〉
.

If Ĥ is the Hamiltonian of a system and Ĥ0 is a free Hamiltonian, then the S-matrix is determined as the
following limit of the evolution operator:

Ŝ = lim
t′→−∞
t′′→+∞

eiĤ0t′′Û(t′′, t′)e−iĤ0t′ . (30)

With such a definition, it is clear that Ŝ = 1 if Ĥ = Ĥ0.

From the formulas (26) and (29), we can obtain the following representation for the kernel of the
S-matrix:

S(a∗, a) = lim
t′→−∞
t′′→+∞

e
∫

d~k
(2π)32k0

(
α∗(~k,t”)α(~k,t′′)−

∫ t′′
t′ [α∗(~k,t)α̇(~k,t)+h(α∗,α)]dt

)

·
∏

t,~k

dα∗dα
2πi

, (31)
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where α∗(~k, t′′) = a∗(~k)eiωt′′ , α(~k, t′) = a(~k)e−iωt′ .

Now we consider the system with an external source J(x):

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + J(x)ϕ.

The kernel of the interaction operator V = −J(x)ϕ̂(x) is given by

V (a∗, a) =

∫
d~k

(2π)32k0

[
γ(~k, t)a∗(~k) + γ∗(~k, t)a(~k)

]
,

where γ(~k, t) = −
∫
J(~x, t)e−ikxd~x. In order to take the integral (31) once more, we should solve the

extremum conditions
α̇(~k, t) + iω(~k)α(~k, t) + iγ(~k, t) = 0,

α̇∗(~k, t)− iω(~k)α∗(~k, t)− iγ∗(~k, t) = 0
(32)

with the boundary conditions

α∗(~k, t′′) = a∗(~k)eiωt′′ , α(~k, t′) = a(~k)e−iωt′ . (33)

The solution of these equations has the following form:

α(~k, t) = a(~k)e−iωt − ie−iωt

∫ t′′

t′
eiωsγ(~k, s)ds,

α∗(~k, t) = a∗(~k)eiωt + ieiωt

∫ t′′

t′
e−iωsγ∗(~k, s)ds.

If one substitutes the obtained solutions into the integral (31), one will get the following formula for the
kernel of the S-matrix:

SJ(a∗, a) = exp

(∫
d~k

(2π)32k0

[
a∗(~k)a(~k)

+

∫
dt

∫
d~xJ(~x, t)

(
a∗(~k)eiωt−i~k~x + a(~k)e−iωt+i~k~x

)
/(2ω) (34)

−1

2

∫ ∞

−∞
dt

∫ ∞

−∞
ds

∫
d~xd~yJ(~x, t)J(~x, t)/(2ω)e−iω|t−s|ei~k~x−i~k~y

])
.

A transition from the kernel to the normal symbol for the S-matrix corresponds to omitting the first term
in the exponent.

Now let us recall the solution of the free Klein–Gordon equation

ϕ0(x) =

∫
d~k

(2π)32k0

[
a(~k)eiωt + a∗(~k)e−iωt

]

and the Green function (the propagator)

Dc(x) = i

∫
d~k

(2π)32ω
ei~k~xe−iωk|t| = i

∫
d4ke−ikx

k2 −m2 + i0
.

In terms of ϕ0(x) and Dc(x), one can rewrite the normal symbol for the S-matrix in the following way:

SJ(ϕ0) = exp

(
i

∫
d4xJ(x)ϕo(x) +

1

2

∫
d4xd4yJ(x)Dc(x− y)J(y)

)
. (35)
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Generalization of (35) to the case of the integration potential V (ϕ) is rather straightforward. We can
explore the relation we already faced with

exp

(
−i

∫
d4xV (ϕ)

)
= exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)
exp

(
i

∫
ϕJd4y

)∣∣∣∣
J=0

. (36)

Then the expression for the normal symbol of the S-matrix takes a simple and elegant form:

SV (ϕ0) = exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)

· exp

(
i

∫
J(y)ϕ0(y)d4y +

1

2

∫
d4zd4yJ(y)Dc(y − z)J(z)

)∣∣∣∣
J=0

. (37)

If we do not put the source J → 0 after taking functional derivatives, we have the normal symbol of the
S-matrix in the presence of an external source:

SV (ϕ0, J) = exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)

· exp

(
i

∫
J(y)ϕ0(y)d4y +

1

2

∫
d4zd4yJ(y)Dc(y − z)J(z)

)
. (38)

One can see that if we put ϕ0 = 0 we get the same formula we as already derived for the generating
functional

ZV (J) = exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)
· exp

(
1

2

∫
d4zd4yJ(y)Dc(y − z)J(z)

)
. (39)

This observation allows us to get a very important relation, which is called the Lehmann–Symanzik–
Zimmermann reduction formula. To do this, we introduce in (38) some arbitrary external field ϕ(x)
instead of ϕ0(x). Then, by direct computation of functional derivatives with respect to ϕ(x) and J(x),
one can check the following relation:

∫ ∏

i

dxiϕ0(xi)

[
1

i

δ

δϕ1
. . .

δ

δϕn
SV (ϕ0, J)|ϕ,J=0

−1

i

δ

δJ̃1(x1)
. . .

δ

δJ̃n(xn)
Z(J̃)

∣∣∣
J=0

]
= 0, (40)

where J̃(x) =
∫
Dc(x− y)J(y). If we keep in mind that the expression of the S-matrix

SV (ϕ0) =
∑

n

1

n

∫
dx1 . . . dxnϕ0(x1) . . . ϕ0(xn)Sn(x1 . . . xn)

gives us the coefficient functions Sn(x1, . . . , xn) of S-matrix scattering elements, and on the other hand
the expansion of the generating functional

ZV (J) =
∑

n

1

n!

∫
dx1 . . . dxnJ(x1) . . . J(xn)

δZ

iδJ(x1) . . . iδJ(xn)

gives us the Green functions

Gn(x1 . . . xn) =
δZ

iδJ(x1) . . . iδJ(xn)
,

we observe a simple correspondence. The reduction formula (40) tells us how to compute S-matrix
elements by computing corresponding Green functions:

18

E. BOOS

18



1. one should compute the Green function;
2. multiply all legs to the inverse propagator or, in other words, apply the operator

n∏

i=1

(
�i +m2

)

to each of the legs;
3. multiply the result by the product of the corresponding free fields:

1

n

∏

i

ϕ0(xi).

Schematically, the procedure is shown in Fig. 3.

Fig. 3: Transition from the Green functions to the S-matrix elements

This rule is very general and could be applied for all types of fields, not only for the scalar fields.

7 Generating functional for Green functions and perturbation theory
Now we return to the generating functional written in the form

Z[J ] =

∫
D(ϕ) · exp

(
i

∫
d4xL(ϕ, ∂µϕ) + i

∫
d4xJ(x)ϕ(x)

)
, (41)

where L = 1
2∂µϕ · ∂µϕ− 1

2m
2ϕ2 − V (ϕ). If we take the second derivative,

δ(2)Z

iδJ(x1)iδJ(x2)

∣∣∣∣∣
J=0

= 〈ϕ1(x1)ϕ2(x2)〉 ,

we obtain the Feynman propagator Dc(x1 − x2), as can be easily seen from the form for Z[J ]:

Z[J ] = exp

(
−i

∫
dxV

(
δ

δJ

))
· exp

(
1

2

∫
dydzJ(y)Dc(y − z)J(z)

)
. (42)

We obtain the same function as we have obtained from the time-ordered product of field operators (see
(5))

Dc(x1 − x2) = 〈0|T{Φ̂(x1)Φ̂(x2)} |0〉 = 〈ϕ1(x1)ϕ2(x2)〉 .
This is always the case. Derivatives of the generating functional automatically give T -products of the
corresponding field operators:

δ(2)Z

iδJ(x1) . . . iδJ(xn)
≡ 〈ϕ1(x1) . . . ϕn(xn)〉 = 〈0|T{Φ̂(x1) . . . Φ̂(xn)} |0〉 .
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At this point let us consider as an example a theory with V (ϕ) = λ
4!ϕ

4. In such a theory if we take two
derivatives and expand the exponent on λ, we get

〈ϕ1(x1)ϕ2(x2)〉 = Dc(x1 − x2) + λ
[
Dc(x1 − x2)D2

c(0) + · · ·
]

+1
2

(
λ
4!

)2 [
72D2

c(0)D2
c(x1 − x2) + 24D4

c(x1 − x2) + · · ·
]

+ · · · .

It is very useful to introduce the Feynman rules and Feynman diagrams. The closed line corre-
sponds to the propagator

1

i
Dc(x− y).

Each interaction vertex corresponds to

−iλ = −i
d4V (ϕ)

dϕ4

∣∣∣∣
ϕ=0

.

In terms of Feynman rules, the corrections to the two-point correlation function (43) are given by Feyn-
man diagrams shown in Fig. 4.

+ + +
x1 x2 x1 x2

x1 x2 x1 x2

Fig. 4: Illustration of (43)

One should add a symmetry factor, which corresponds to possible permutations of equivalent
lines. If one takes the Fourier transformation, one can formulate the rules in momentum space, which
are usually used in practical computations. In momentum space the integral

∫
dp

(2π)4

corresponds to each loop and in each vertex the momentum conservation law takes place.

We will be more specific and precise later in the formulation of Feynman rules for the case of the
SM.

But now we need to consider a few more properties of the generating functional. As we have
seen already from the two-point correlator the perturbative expansion contains disconnected diagrams,
which are not really needed in computations. The way out of this problem is to consider the logarithmic
function of the generating functional:

iW [J ] = lnZ[J ], Z[J ] = eiW [J ].

Then, for the functional derivatives, one gets

δW

δJ
=

1

Z

δZ

iδJ
,

δ2W

δJ1δJ2
= i

1

Z

δ2Z

iδJ1iδJ2
− 1

Z2

δZ

iδJ1

δZ

iδJ2
. . . ,

where additional terms exactly cancel out disconnected pieces in the Green functions. The property that
the logarithmic function leads to connected diagrams is a particular example of a more general theorem
in graph theory.

The functional
W [J ] =

1

i
lnZ[J ] (43)
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is called the generating functional for connected Green functions.

The next important observation is related to the functional Legendre transformation:

Γ[ϕcl] = W [J ]−
∫

d4xJ(x)ϕcl(x), (44)

where ϕcl = δW/δJ with a formal solution J = J(ϕcl). If we take functional derivatives of the
functional Γ[ϕcl], we get the so-called one-particle irreducible Green functions (Feynman diagrams cor-
responding to such functions cannot be split up into disconnected pieces by cutting only one internal
line):

δΓ

δϕcl
=
δW

δJ

δJ

δϕcl
− J(x)− ϕcl

δJ

δϕcl
. (45)

The functional Γ is called the effective action. Two terms in (45) are cancelled out and we get

δΓ

δϕcl(x)
= −J(x). (46)

Now one can take functional derivatives from both sides of (46) and get the following relations:

δ2Γ

δϕcl(x1)δϕcl(x2)
= − δJ(x1)

δϕcl(x2)
= −

[
δW

δJ(x1)δJ(x2)

]−1

. (47)

If we introduce notation for the connected Green function:

Gn(x1, . . . , xn) = −i
δW [J ]

iδJ(x1) . . . iδJ(x2)

∣∣∣∣
J=0

and for the one-particle irreducible Green function:

Γn(x1, . . . , xn) = −i
δ(n)Γ[ϕcl]

δϕcl(x1) . . . δϕcl(xn)

∣∣∣∣∣
ϕcl=0

,

then the formula (47) can be written in the following form:

Γ2 = G−1
2 ,

which means that the irreducible two-point Green function is nothing but the inverse propagator. If
we take more derivatives on both sides of (47) we obtain relations between connected and one-particle
irreducible Green functions. For the three-point Green function, it is presented schematically in Fig. 5.
If we restore the Planck constant ~, the generating functional has the form

=
x1 x2

x3

x1 x2

x3

G3
G2G2

G2

Г3

Fig. 5: Connected three-point Green function is equal to one-particle irreducible three-point function convoluted
with three propagators.

Z[J ] =

∫
D(ϕ) exp

(
i

~
S[ϕ] + i

∫
dxJ(x)ϕ(x)

)
,
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where S[ϕ] is the action. In the quasiclassical limit (~→ 0), the functional integral is dominated by the
stationary trajectory:

δS[ϕ]

δϕ(x)

∣∣∣∣
ϕ=ϕcl

+ J = 0

Therefore

Z[J ] ∼ exp

(
i

~
S[ϕcl] + i

∫
dxJ(x)ϕcl(x)

)

and one can see from (43) that

W [J ] = S[ϕcl] +

∫
dxJ(x)ϕcl

and, by comparing with (44), we obtain

Γ[ϕcl] = S[ϕcl].

So, we can conclude that the irreducible Green functions are Γn(x1, . . . , xn), the effective vertices of the
theory:

Γn(x1, . . . , xn) = (−i)
δ(n)S[ϕcl]

δϕcl(x1) . . . δϕcl(xn)
. (48)

We obtain this formula for the case of scalar fields as an example, but it remains true for any theory
with corresponding obvious changes. Note that the formula (48) is very useful to get Feynman rules
for complicated vertices in the interaction Lagrangian. For example, three- and four-gluon vertices are
obtained with all needed symmetry properties.

Up to now we have considered basic ingredients of the quantum field theory for the case of scalar
fields. However, there are many other fields and corresponding particles which have different spin prop-
erties. In the SM there are leptons and quarks, being fermions with the spin 1/2, and the boson fields
with the spin 1. We begin our brief consideration with spin-1/2 fermion fields.

8 Fermion fields
Spin-1/2 particles with mass m are described by the four-component field Ψ. The Lagrangian for the
field has the well-known form

L = Ψ̄i∂µγ
µΨ−mΨ̄Ψ. (49)

The least-action principle leads to the famous Dirac equation of motion:

(iγµ∂µ −m) Ψ = 0, (50)

where γµ (γ0, γ1, γ2, γ3) are the Dirac (4 × 4) matrices. The matrices γµ obey the anticommutation
relation

{γµγν} = 2ηµν . (51)

There are several representations for γ-matrices. In the SM chiral or Weyl spinors are of particular
importance. Therefore, we use the Weyl representation of γ-matrices

γµ =

(
0 σµ

σ̄µ 0

)
. (52)

where σ0 = I , σi = τ i, σ̄0 = I , σ̄i = −τ i and τ i are the (2× 2) Pauli matrices.

In this representation the γ5-matrix has the following form:

γ5 = iγ1γ2γ3γ4 =

(
−I 0
0 I

)
. (53)
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Chiral spinors

ΨL,R =
1∓ γ5

2
Ψ (54)

in this notation

ΨL =




Ψ1

Ψ2

0
0


 , ΨR =




0
0

Ψ3

Ψ4




are in fact two-component objects.

In momentum space the function Ψ(x) is decomposed into positive- and negative-energy parts

uλ(p)e−ipx and vλ(p)eipx (55)

and the spinors u(p) and v(p) obey the Dirac equation in the following form:

(pµγ
µ −m)uλ(p) = 0,

(pµγ
µ +m) vλ(p) = 0.

(56)

The concrete form of spinors is different in different parametrizations of γ-matrices, and in the Weyl
representation the spinors are

uλ =

( √
p0 + ~p~σξλ√
p0 − ~p~σξλ

)
, (57)

vλ =

( √
p0 + ~p~σηλ

−√p0 − ~p~σηλ

)
, (58)

where ξ and η are two-component spinors determined by fixing some quantization axis. Left and right
chiral spinors are then

uL,R =
1∓ γ5

2
uλ,

vL,R =
1∓ γ5

2
vλ.

Normalization conditions and summation over indices are as follows:

ūλuλ′ = 2mδλλ′ , v̄λvλ′ = −2mδλλ′ ,

∑

λ

uλūλ = pµγ
µ +m,

∑

λ

vλv̄λ = pµγµ −m.

Quantization of the Dirac field is similar to the scalar case considered above with a very impor-
tant difference. In order to have correct Fermi statistics and obey the Pauli principle, the commutation
relations in the scalar case should be replaced by corresponding anticommutation relations:

{
π̂α(t, ~x),Ψβ(t, ~x′)

}
= −iδαβδ(~x− ~x′), (59)

where α = 1, 2, 3, 4 and the field momentum is

πα(t, ~x) =
∂L

∂Ψ̇α

= iΨ†α.

The fermionic field operator may be constructed with the help of spinors obeying the Dirac equation

Ψ(x) =

∫
d~p

(2π)3p0

∑

λ=1,2

[
b̂λ(p)uλ(p)e−ipx + d̂†λ(p)vλ(p)eipx

]
,
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Ψ̄(x) = Ψ†γ0 =

∫
d~p

(2π)3p0

∑

λ=1,2

[
b̂†λ(p)ūλ(p)eipx + d̂λ(p)v̄λ(p)e−ipx

]
.

It is easy to check that from the anticommutators (59) the creation and annihilation operators satisfy the
anticommutation relations in the following form:

{
b̂λ(~p), b̂λ′(~p

′)
}

=
{
d̂λ(~p), d̂λ′(~p

′)
}

= (2π)32p0δ(~p− ~p′)δλλ′ . (60)

Then one-particle and one-antiparticle states are obtained from the vacuum state |0〉 by acting of the
creation operators:

b̂†λ(~p) |0〉 and d̂†λ(~p) |0〉 .
In the same way, by acting of creation operators for particle and antiparticle on the vacuum state, one
gets two-, three-, . . . particle states. Because of zero anticommutators, for any creation operator one gets
nicely the Pauli principle:

{
b̂†λ(~p), b̂†λ(~p)

}
= 0 ⇒ b̂†λ(~p), b̂†λ(~p) |X〉 ≡ 0 (61)

for any state |X〉 . From the field operators one can get the Feynman propagator (T-ordered correlator) in
a similar way as was done for the scalar case:

〈0|T
(
Ψ̄(x1)Ψ(x2)

)
|0〉 =

−1

i

∫
dp

(2π)4

pµγ
µ +m

p2 −m2 + i0
. (62)

Considering the path-integral method for the fermion field, one can construct the holomorphic
representation similar to the scalar case. However, now we have to deal with anticommuting numbers
called Grassmann numbers, which form the Grassmann algebra:

(aα)∗ = a∗α, (a∗α)∗ = aα,

{aαaβ} =
{
a∗αa

∗
β

}
=
{
aαa

∗
β

}
= 0,

caα = aαc; ca∗α = a∗αc,

where α = 1, . . . , n, c are the usual numbers.

A function of Grassmann variables has therefore the generic form

f(a, a∗) = f00 +
∑

α1
fα1|0aα1 +

∑
α1
f0|α1

a∗α1

+
∑

α1α2
fα1|α2

aα1a
∗
α2

+ · · · f1...n|n...1a1 . . . ana
∗
n . . . a

∗
1.

(63)

The expression (63) reminds us of the norm-ordering operator products we have used already. The
operations of differentiation and integration are defined as follows:

∂

∂aα
aβ =

∂

∂a∗α
a∗β = δαβ,

∂

∂aα
a∗β =

∂

∂a∗α
aβ = 0,

∂

∂aα
f = fα;

∂

∂a∗α
f = f̄α,

∫
daαf = fα;

∫
da∗αf = f̄α,

where fα does not depend on aα and f̄α does not depend on a∗α. One can check the anticommutation
relation for differentials:

{daαdaβ} =
{

da∗αda∗β
}

=
{

daαda∗β
}

= 0.

If we denote
da∗da = da∗1 . . . da

∗
ndan . . . da1
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and take into account that for the function defined in (63)
∫

da∗daf(a, a∗) = f1...n|n...1,

we can easily prove the following relation by expanding in series in a and a∗:
∫

da∗da exp
(∑

a∗αAαβaβ +
∑

η∗αaα + i
∑

ηαa
∗
α

)
= detA exp

(
η∗αA

−1
αβηβ

)
. (64)

One can see from (64) that in contrast to the integration with the usual complex numbers (see (9)) the
determinant appears in the numerator in the case of anticommuting Grassmann numbers (64).

Similar to the case of the scalar field, one can get a formula for the S-matrix normal symbol:

Sη(b
†, d†, b, d) =

1

N
exp

(
−i

∫
η̄SCη + i

∫
(η̄Ψ0 + Ψ0η)

)
,

where Ψ̄0 = Ψ†0γ
0, Ψ0 is a solution of the free Dirac equation

Ψ0(x) =

∫
d~k

(2π)32k0


∑

λ=1,2

bλ(~k)uλ(~k)e−ikx +
∑

λ=1,2

d∗λ(~k)vλ(~k)eikx


 ,

η(x) is the fermion source and

SC(x) =
i

(2π)4

∫
dke−ikx k̂ +m

k2 −m2 + i0

is the Feynman propagator for the fermion field.

Taking into account the following relation for the functional measure:
∏

t,k,λ

db∗λ(t,~k)dbλ(t,~k)dd∗λ(t,~k)ddλ(t,~k) = Const.
∏

x,α

dΨ̄α(x)dΨα(x),

one gets the answer for the generating functional for the fermion Green functions in compact form similar
to the scalar case:

Z(η̄, η) = N−1

∫
exp

(
i

∫
d4x(L(x) + η̄Ψ + Ψ̄η)

)∏

x

dΨ̄(x)dΨ(x).

9 Quantization of theories with the gauge fields
The gauge field was first introduced in QED when the Maxwell equations were rewritten in terms of the
4-vector potential Aµ(x).

The equation in terms of the field Aµ,

∂µF
µν = 0,

where Fµν = ∂µAν − ∂νAµ, is invariant under the local U(1) transformation:

A′µ = Aµ + ∂µα(x).

It is easy to check the U(1) invariance of the QED Lagrangian

L = −1

4
FµνF

µν + Ψ̄(iD̂ −m)Ψ, Ψ→ eieαΨ, Aµ → Aµ + ∂µα, (65)
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where Dµ = ∂µ − ieAµ is the covariant derivative.

In the SM we deal not only with the abelian U(1) group but also with non-abelian SU(N) groups,
SU(2) for the EW and SU(3) for the strong forces.

We are not discussing here generic structure and properties of Lie groups but introduce briefly
the SU(N) group. SU(N) is a group of unitary matrices U (U †U = 1) with determinant equal to 1
(detU = 1). Elements of the group U(x) may depend on the space–time point xµ.

If we want the theory to be invariant under SU(N) transformation the covariant derivative in the
Lagrangian

L = Ψ̄(iD̂ −m)Ψ (66)

should transform as
DµΨ→ (DµΨ)U = UDµΨ,

(
∂µ − igAUµ

)
UΨ = U (∂µ − igAµ) Ψ.

From this, one gets the following transformation form for the potential A:

AUµ = UAµU
−1 +

i

g
U∂µU

−1. (67)

The kinetic term for the non-abelian Aµ field is constructed as the gauge-invariant operator

LA = −1

2
Tr(FµνFµν). (68)

In the SM all gauge fields are taken in the adjoint representation:

Aµ(x) = Aaµ(x)ta,

where ta (a = 1, . . . , N − 1 for SU(N)) are so-called generators of the group. As do all generators for
the Lie group, the generator ta obeys the following commutation relation:

[ta, ta] = fabctc, Tr(ta) = 0.

One may choose normalization conditions as

Tr(tatb) =
1

2
δab. (69)

Then the Lagrangian for the gauge field takes the form

L = −1

4
F aµνF

aµν , (70)

where the field strength tensor is

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (71)

One can express the unitary matrix U(1) in the form U(x) = eigαa(x)ta . Then the transformation for the
gauge field Aaµ takes the form

Aaµ → (Aα)aµ = Aaµ + ∂µα
a + gfabcAbµα

c = Aaµ +Dac
µ α

c, (72)

where the covariant derivative in components is

Dac
µ = ∂µδ

ac + gfabcAbµ.
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Part of the SM describing strong interactions is based on the SUC(3) group. It is called QCD with
the Lagrangian

LQCD = −1

4
GaµνG

µνa + q̄i

(
i(Dµ)ijγ

µ
ij −mδij

)
qj , (73)

where q = 1, 2, 3, (Dµ)ij = ∂µδij − ig(ta)ijA
a
µ.

On the classical level abelian and non-abelian theories look very elegant. However, problems
appear when the theories are quantized. The reason can be seen already in QED, where we know that in
a theory described by the field Aµ we have four components but only two of them are physical degrees
of freedom corresponding to two polarizations of the physics photon. This problem is manifested in the
fact that the quadratic form of the Lagrangian

AµD−1
µνA

ν = Aµ (�gµν − ∂µ∂ν)Aν

or, in momentum space, (
k2gµν − kµkν

)

does not have an inverse form. As we have seen in cases of scalar and fermion fields the inverse of the
differential operator, the Green function, is the propagator. So, here one cannot get the propagator in
such a way.

The way out of this problem is a correct quantization procedure called the quantization of con-
strained systems. The reason that the functional integral

∫ ∏

µ,x

dAµ(x) exp

{
i

∫
dx

(
−1

4
F aµνF

aµν

)}
(74)

does not give a reasonable result is that there are an infinite number of gauge configurations (Aα)aµ,
which differ only by the gauge transformation, leading to identical physics results since the action is
gauge invariant. So, one should perform the functional integration taking only one representative from
such gauge configuration.

Without going into details, the final recipe is as follows:
∫
DAδ (F (A)) det

(
∆F
gh

)
eiS(A), (75)

where DA =
∏
µ,x dAµ(x) and the so-called Faddeev–Popov determinant det

(
∆F
gh

)
is introduced to

ensure the gauge invariance of the functional measure. The δ-function fixes the gauge condition of gauge
choice F (A) = 0.

We recall briefly the main ideas of the method proposed by Faddeev and Popov. Let us introduce
a functional integral that is equal to unity:

1 =

∫
Dα · δ (F (Aα)) det

(
δF

δα

)
, (76)

whereDα =
∏
x dα(x). Substituting (76) into the integral (16) and performing the gauge transformation

(Aα)aµ(x)→ Aaµ(x), one gets

∫
Dα

∫
DAeiS[A] · δ (F (A)) · det

(
δF

δα

)
. (77)

The factor det
(
δF
δα

)
does not depend on α and therefore the integration over the gauge group is factorized

out. This infinite factor is included into the normalization factor of the functional measure and therefore
could be dropped.
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The main idea of quantization and the Faddeev–Popov method could be illustrated in a very simple
example with the usual integrals. Let us consider an integral

I =

∫ ∫ ∞

−∞
dx1dx2e−x

2
1−x22+2x1x2 =

∫
dx1dx2e−xiAijxj , (78)

where

Aij =

(
1 −1
−1 1

)
and detA = 0.

We can obviously see that by making a substitution of variables we get

I = c

∫ ∞

−∞
dx

∫ ∞

−∞
dye−x

2
when x = x1 − x2, y = x1 + x2.

The ‘action’ in the integral I is invariant under translation:

x1 → x1 + a, x2 → x2 + a.

And, the integral
∫∞
−∞ dy gives simply the infinite volume of the algebra corresponding to the translation

group.

Now let us substitute 1̂ into the integral I:
∫ ∞

−∞
dωδ (F (xi + ω)) det

(
δF

δω

)
= 1,

∫
dω

∫
dx1dx2e−xiAijxjδ (F (xi + ω)) det

(
δF

δω

)
.

After the ‘gauge’ substitution xi → xi − ω, one can drop the infinite group integral
∫

dω and get the
final integral in a form symmetric with respect to integration variables:

IG =

∫
dx1

∫
dx2e−xiAijxjδ (F (xi))

∣∣∣∣
∂F

∂ω

∣∣∣∣ .

The determinant det
(
δF
δα

)
is the Faddeev–Popov determinant and ∆ch = δF

δα is the so-called ghost
operator.

Obviously, in the abelian case the Lorentz gauge condition, F = ∂µAµ, leads to the ghost operator
∆ch = ∂µ · ∂µ. Since the operator does not depend on the field, it is cancelled in the connected Green
functions and does not give any contribution.

However, this is not so in the non-abelian case where ∆ch is a non-trivial operator depending on
the gauge field. Technically it is convenient to express det(∆ch) also as a functional integral. As we
know, a determinant in the numerator appears when one integrates over anticommuting fields:

det(∆ch) =

∫ ∏
dc̄dcei

∫
c̄∆chc, (79)

where the anticommuting fields c are called Faddeev–Popov ghosts.

As an example, let us consider the gauge condition in the covariant form:

F (A) = ∂µA
µ − a(x) (80)

with an arbitrary function a(x). The functional integral (77) in this case takes the form

eiW [J ] =

∫ ∏

µ,x

dAaµ(x)dc̄a(x)dca(x) · δ (∂µA
aµ − aa(x)) ·
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exp

(
i

∫
d4x

[
−1

4
F aµνF

aµν + c̄a
(
�ca − fabc∂µ(Acµc

b)
)

+ JaµA
aµ

])
.

The Green function does not depend on a(x), so one can integrate (9) with the exponent
∫

da exp

(
−a

2

2ξ

)
δ (∂µA

µ − a) = exp

(
−(∂µA

µ)2

2ξ

)
.

As the result, we get the following quadratic part of the action in (9):

S =

∫
dx

[
−1

4
(∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)− 1

2ξ
∂µA

aµ∂νA
aν + c̄�c

]
,

where the numerical parameter ξ is the gauge parameter. Now there is the inverse form, and we get the
following propagators for non-abelian gauge and ghost fields, respectively:

Dab
µν(k) = −i

δab

k2 + i0

[
gµν − (1− ξ)kµkν

k2

]
, (81)

Dab
ch(k) = i

δab

k2 + i0
. (82)

There are a few famous choices of the parameter ξ used in concrete computations:
ξ = 1—the ’t Hooft–Feynman gauge,
ξ = 0—the Landau gauge,
ξ = 3—the Frautschi–Yenni gauge.
Of course, any computed physics observable such as cross-section or distribution does not depend on ξ.
As we see,

kµDab
µν = −ξkν i

δab

k2 + i0
= −ξkνDab

ch(k).

So, ghosts are acting in a way to cancel a dependence on ξ in physics quantities.

Now one can use our formula (48) in momentum space:

Γa1...anµ1...µn(p1 . . . pn) · (2π)4δ(p1 + · · ·+ pn) = i
δ(n)S

δAa1µ1(p1) . . . δAanµn(pn)
(83)

in order to get Feynman rules in momentum space for all the vertices in abelian and non-abelian theories.
Note that by taking functional derivatives in (83) one gets vertex functions with all needed symmetries.
In the formula (83), µ and a indicate proper Lorentz and other group indices identifying the field.

As an example, let us consider the QED Lagrangian

L = Ψ̄ (iDµγ
µ −m) Ψ, Dµ = ∂µ + ieQAµ. (84)

For the interaction vertex of the fermion field Ψ with the photon field Aµ, we obtain

Γµ(p1, p2; p3)(2π)4δ(p1 + p2 + p3)

= i
δ(3)

δΨ̄(p1)δΨ(p2)δAµ(p3)
·
∫

dxi · (ieQ)Ψ̄(x)γµAµ(x)Ψ(x)

= −ieQ
δ(3)

δΨ̄(p1)δΨ(p2)δAµ(p3)
·

·
∫

dxdq1dq2dq3 exp (−iq1x− iq2x− iq3x) Ψ̄(q1)γµΨ(q2)Aµ(p3)
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= −ieQ(2π)4δ(p1 + p2 + p3)γµ

and so Γµ(p1, p2; p3) = −ieQγµ, where Q = −1 for the fermion field (say, an electron) and +1 for the
antifermion field (say, a positron) etc.

In a similar way, one gets all other interaction vertices in the case of the SM Lagrangian, which will
be considered later. Also, similar to the scalar field theory, the reduction formula allows us to compute
S-matrix elements from the corresponding connected Green functions by cutting out propagators on all
legs and multiplying by corresponding free-particle wave functions.

A well-known visual way for presenting and computing S-matrix elements is given by Feynman
rules—lines for different types of propagators and external particles, and points for vertices:

−i
k2+i0

δab[gµν − (1− ξ)kµkν
k2

] for massless gauge field

i
k2+i0

δab for the ghost field

p
u(p) for an incoming fermion

p
v̄(p) for an incoming antifermion

p
u(p) for an outgoing fermion

p
v̄(p) for an outgoing antifermion

p
i

p̂+m
p2 −m2 + i0

for a fermion propagator

p
igγµ(ta) for a fermion–gauge boson vertex

p1 a1 μ1

p2 a2 μ2

p3 a3 μ3

gfa1a2a3 [gµ1µ2(p1 − p2)µ3

+gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 ]

We do not derive here formulas for cross-sections and decay widths; they are given in many
textbooks. We use notation of the Particle Data Group:

dσab =
|M |2

4
√

(papb)2 −m2
am

2
b

dΦn,

where

dΦn = (2π)4δ(pi − pf ) · d3~p1

(2π)32p0
1

. . .
d3~pn

(2π)32p0
n

,

dΓ =
|M |2
2ma

dΦn.
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Fig. 6: µ+µ− production in e+e− collisions

As we see, one needs to compute the matrix element squared in order to get a scattering cross-section
and a decay width.

Also, one can formulate the Feynman rules for the matrix element squared directly.

In Fig. 6, the square diagram is shown for µ+µ−-pair production in e+e− collisions in QED. The
crossed lines correspond to external particles summed over polarizations. Concrete expressions for the
sums over polarizations for particles and antiparticles with different spins are as follows:

1 for scalar particles

{ ∑
λ uλ(p)× ūλ(p) = pµγ

µ +m∑
λ vλ(p)× v̄λ(p) = −pµγµ +m

for spin-1/2 Dirac particles

∑
λ e

µ
λ(k)e∗νλ (k) = gµν − kµkν

k2
for massless gauge fields
in the Landau gauge

∑
λ e

µ
λ(k)e∗νλ (k) = gµν in the ’t Hooft–Feynman gauge

∑
λ e

µ
λ(k)e∗νλ (k) = gµν − kµkν

M2 for vector fields in the unitary gauge

The Feynman rules for propagators and vertices in the case of matrix elements squared are the same as
for the case of amplitudes. Note that the sums over polarizations represent the spin-density matrix and
coincide with numerators of the propagators of corresponding particles. Note also, in computations using
the Feynman rules for matrix elements squared, that the ghosts should be added into initial and final lines
together with corresponding gauge-boson lines. Each loop with crossed ghost lines should include extra
factor (–1) with respect to the corresponding gauge-boson loop. This –1 sign reflects the anticommuting
property of the ghost fields.

10 Electroweak interactions in the SM
As we know from school textbooks, the weak interactions are responsible for decay of elementary par-
ticles. As we shall see, there are also scattering processes due to weak interactions, as were predicted
by the SM and discovered in experiments. Studies of weak interactions started from decays, and have a
long history, which we do not describe here. From various experimental studies it was realized that (1)
electron and muon neutrinos are not the same, and the electron neutrino and antineutrino are different.
There are processes νen → e−p, ν̄ep → e+n, νµn → µ−p, ν̄µp → µ+n, but there are no processes
ν̄en→/ e−p, νep→/ e+n, ν̄µn→/ µ−p, νµp→/ µ+n;

(2) the decays µ→ eX have never been observed;

(3) only left-handed leptons and right-handed antileptons participate in the process with |∆Q| = 1
for leptons from the same generations;

(4) three generations have been observed.
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p

J

p

J

ℓ ℓ

The observations lead to the assumption that the lepton interactions with |Q| = 1 occur via charge
current in so-called V–A form:

J` ∼ ¯̀γµ(1− γ5)ν`. (85)

The corresponding four-fermion interaction Lagrangian for muon and electron currents is

L =
GF√

2
µ̄γσ(1− γ5)νµēγσ(1− γ5)νe + h.c., (86)

where the notation µ, e, ν stands for the corresponding fermion fields and GF is the well-known Fermi
constant with dimension [m]−2. With the help of the Lagrangian (86), one can easily compute the decay
width of µ− → e−ν̄eνµ, the Feynman diagram for which is shown in Fig. 7.

pμ

μ−

νμ

e−

νe
—

pν

Fig. 7: Feynman diagram for µ− decay due to four fermion interaction

From dimensional analysis, one can say without any computations that Γ ∼ G2
F ·m5

µ.

The formula for the width is

Γµ =
G2

Fm
5
µ

192π3
· f
(
m2
e

m2
µ

)
, (87)

where f = 1 + 0
(
m2
e

m2
µ

)
. Today’s GF is measured from the muon decay very precisely:

GF = (1.166371± 6 · 10−6) · 10−5 GeV−2.

As we know, any fermion field Ψ(x) may be presented as

Ψ =
1− γ5

2
Ψ +

1 + γ5

2
Ψ = ΨL + ΨR.

Therefore, the current (85) involves the left component of the fermion field only and has the form

J` = Ψ̄LγµΨL. (88)

We want to construct a quantum field theory (the SM) which obeys a few requirements:

– correct electromagnetic neutral currents and V–A charge currents (Fermi);
– three generations without chiral anomalies;
– gauge-invariant dimension-four operators.

Because there are two leptons (charge lepton and corresponding neutrino) in each generation and
the left components interact, a very natural assumption is to choose the gauge group for the EW part of
the SM to be

SUL(2)⊗ UY (1), (89)
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where SUL(2) is called the weak isospin group (the weak isospin is an analogue of the usual isospin
introduced by Heisenberg to describe the proton and the neutron) and UY (1) is the weak hypercharge
group. The hypercharge group is needed because we need to have somehow the U(1) group in order to
describe the electromagnetic interactions, as we already know. But if one includes simply the electro-
magnetic group Uem(1) instead of UY (1) the construction would not give us interactions correctly for all
the fermions. The EW part SUL(2)⊗UY (1) and the SUC(3) group for strong interactions are combined
into the gauge group of the SM.

The fermion fields are taken to be in three generations, and in each generation the left components
are combined into SU(2) doublets and the right components transform as SU(2) singlets:

(
νe

e

)

L

(
νµ
µ

)

L

(
ντ
τ

)

L
eR µR τR.

(90)

Right-handed neutrinos are present in the original version of the SM.

For the quarks, a similar structure of representations is assumed but with singlet right-handed
components for up and down types of quarks:

(
u

d

)

L

(
c

s

)

L

(
t

b

)

L
uR, dR cR, sR tR, bR.

(91)

We begin with the construction of the gauge and fermion parts. Now the requirements of the
gauge invariance and lowest possible dimension four of terms fix uniquely the form of the EW interaction
Lagrangian. The strong interactions are described by the SUC(3) gauge group:

L = −1
4W

i
µν(Wµν)i − 1

4BµνB
µν − 1

4G
a
µν(Gµν)a

+
∑

f=`,q Ψ̄f
L(iDL

µγ
µ)Ψ†L +

∑
f=`,q Ψ̄f

R(iDR
µ γ

µ)Ψ†R,
(92)

where the field strength tensors and covariant derivatives have forms very familiar to us:

W i
µν = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν

Bµν = ∂µBν − ∂νBµ, (93)

Gaµν = ∂µA
a
ν − ∂νAaµ + gSf

abcAbµA
c
ν ,

DL
µ = ∂µ − ig2W

i
µτ

i − ig1Bµ

(
Y f

L

2

)
− igSA

a
µt
a,

DR
µ = ∂µ − ig1Bµ

(
Y f

R

2

)
− igSA

a
µt
a, (94)

where i = 1, 2, 3, a = 1, . . . , 8; W i
µ are gauge fields for the weak isospin group, Bµ are gauge fields

for the weak hypercharge group and Aµ are gluon gauge fields for the strong SUC(3) colour group.
The gauge fields are taken in the adjoint representations and the lepton and the quark fields are in the
fundamental representation of SUL(2) and SUC(3) groups. The strongly interacting part of the SM
related to the SUC(3) colour group is called QCD, which is covered in a separate course of lectures.

Often when the SM is described the weak hypercharges Y f
L and Y f

R are chosen from the beginning
such that the Gell-Mann–Nishijima formula is satisfied for each of the left and right chiral fermions:

Qf = (T f3 )L +
Y f

L
2 ,

Qf = (T f3 )R +
Y f

R
2 ,

(95)
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where (T3)ν` = 1/2 and (T3)` = −1/2 are projections of weak isospin operators, +1/2 for the up-type
and −1/2 for the down-type fermions.

However, we do not know at this moment why the Gell-Mann–Nishijima formula should work in
our case for the EW part. So, we do not assume from the beginning the Gell-Mann–Nishijima relations
for weak hypercharges. Let us take weak hypercharges as free parameters for a moment, and try to fix
them from two physics requirements:

1. correct electromagnetic interactions;
2. V–A weak charge currents.

Let us consider for simplicity only fermions from the first generation. We will consider the case of three
generations later by introducing the quark mixing matrix.

From the covariant derivatives for the left and right chiral fields (94), one gets the following La-
grangian for leptons of the first generation:

L` = −i2 (ν̄eL ēL) γµ




1
2g2W

3
µ + g1

Y `
L
2 Bµ g2

W+
µ√
2

g2
W−µ√

2
−1

2g2W
3
µ + g1

Y `
L
2 Bµ



(
νeL
eL

)
(96)

+ēRγµg1
Y `

R

2
BµeR.

Here the relation following from the Pauli matrices is used:

τ iW i =
σi

2
W i =

1

2

(
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

)
, (97)

where W±µ =
(
W 1
µ ∓ iW 2

µ

)
/
√

2.

Products of non-diagonal elements give us the form of the charge current:

L`CC =
g2√

2
ν̄eLγµW

+
µ eL + h.c. =

g2

2
√

2
ν̄eγµ(1− γ5)W+

µ e+ h.c. (98)

The interaction Lagrangian (98) contains the lepton charge current with the needed V–A structure.

Products of diagonal elements in (96) lead to the neutral current interaction Lagrangian1:

L`NC = ν̄eLγµ

(
1
2g2W

3
µ + g1

Y `
L
2 Bµ

)
νeL

+ēLγµ

(
−1

2g2W
3
µ + g1

Y `
L
2 Bµ

)
eL

+ēRγµg1
Y `

R
2 BµeR.

(99)

Generically, the neutral component of theW field and theB field can mix with some mixing angle
θW:

W 3
µ = Zµ cos θW +Aµ sin θW, (100)

Bµ = −Zµ sin θW +Aµ cos θW.

The angle θW is called the Weinberg mixing angle.
1Question for students: why can arbitrary hypercharge not exist in the case of non-abelian gauge symmetry?
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One of these fields, say A, we try to identify with the photon—it should not interact with the
neutrino and should have the well-known Dirac interaction with the electron field as needed in QED.
These two physics requirements lead to three simple equations:

1

2

(
−g2

2
sin θW +

g1

2
Y `

L cos θW

)
+

1

2

g1

2
Y `

R cos θW = Qee (Qe = −1), (101)

1

2

(g2

2
sin θW −

g1

2
Y `

L cos θW

)
+

1

2

g1

2
Y `

R cos θW = 0, (102)

g2

2
sin θW +

g1

2
Y `

L cos θW = 0. (103)

The first equation (101) comes from the coefficient in front of the γµ structure in the interaction of the
electron with the Aµ field, the second equation (102) follows from the coefficient in front of the γµγ5

structure and the third one (103) comes from the absence of the interaction of the neutrino field with Aµ.

Therefore,
−g2

2
sin θW +

g1

2
Y `

L cos θW =
g1

2
Y `

R cos θW = Qee. (104)

From the equations (104), we get
g1Y

`
L cos θW = −e,
g2 sin θW = e

and
Y `

R = 2Y `
L . (105)

As we can see, the hypercharges of the left and right chiral leptons are proportional but not fully fixed.

In the quark sector there are both left and right chiral components for up and down quarks:
(
u

d

)

L

, uR, dR.

Then, from the Lagrangian (92), the interaction of the quarks with gauge fields is

(
ūd̄
)

L
γµ




1
2g2W

3
µ + g1

Y q
L
2 Bµ g2

W+
µ√
2

g2
W−µ√

2
−1

2g2W
3
µ + g1

Y q
L
2 Bµ







u

d




L

+ūRγµg1
Y u

R
2 BµuR + d̄Rγµg1

Y d
R
2 BµdR.

(106)

The charge current has, as expected, the needed V–A form:

LqCC =
g2

2
√

2
ūγµ(1− γ5)W+

µ d+
g2

2
√

2
d̄γµ(1− γ5)W−µ u. (107)

In the same way as was done for the lepton case, one should require correct electromagnetic interactions
for both u and d quarks. This means that one should have a QED electromagnetic Lagrangian with
electric charges 2

3 for up-quark and −1
3 for down-quark fields. Substituting W 3

µ and Bµ in terms of Aµ
and Zµ fields (99) into (106), we get the following equalities:

1

2
g2 sin θW +

1

2
g1Y

q
L cos θW =

1

2
Y u

R g1 cos θW =
2

3
e, (108)

−1

2
g2 sin θW +

1

2
g1Y

q
L cos θW =

1

2
Y d

Rg1 cos θW = −1

3
e.
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From these four equations one gets the following four equalities:




g2 sin θW = e,

g1Y
q

L cos θW = 1
3e,

Y u
R = −2Y d

R ,

Y u
R + Y d

R = 2Y q
L ,

(109)

which are consistent with equalities we obtained from the lepton sector:





g2 sin θW = e,

g1Y
`

L cos θW = −e,
Y `

R = 2Y `
L .

(110)

Note that, as follows from (109) and (110),

Y `
L = −3Y q

L ,

which means that there is only one independent hypercharge, say Y `
L , and all the others may be expressed

in terms of it.

Let us recall that up to now we did not assume any additional relations such as (Q = T3 + Y/2),
which are usually assumed from the very beginning.

Now we can write the generic Lagrangian for neutral current interactions with introduced bosons
Aµ and Zµ in the following form:

LNC = e
∑

f

QfJ
em
fµA

µ +
e

4 sin θW cos θW
·
∑

f

JZfµZ
µ, (111)

where Jem
fµ = f̄γµf , Qν = 0, Qe = −1, Qu = 2/3, Qd = −1/3,

JZfµ = f̄γµ[vf − afγ5]f,

vν = 1, aν = 1, ve = −1 + 4 sin2 θW, ae = −1;

vu = 1− 1

3

(
4 +

Y u
R

Y q
L

)
sin2 θW, au = 1− 1

3

(
4− Y u

R

Y q
L

)
sin2 θW,

vd = −1 +
1

3

(
2− Y d

R

Y q
L

)
sin2 θW, ad = −1 +

1

3

(
2 +

Y d
R

Y q
L

)
sin2 θW.

Since the structure of all three generations is the same, the equality (111) is the same for all
leptons and quarks. Vector and axial-vector couplings vf and af may be expressed for all the fermions in
a compact common form via the fermion charge Qf and a component of the fermion weak isospin T f3 :

vf = 2T f3 − 4Qf sin2 θW, af = 2T f3 .

Note that the hypercharge parameters Y `
L and Y `

R are not present in (111) while in the quark sector
one free parameter, which as we saw may be expressed in terms of Y `

L , remains taking into account (109),

Y u
R

Y q
L

+
Y d

R

Y q
L

= 2.
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We have obtained the Lagrangian, the sum of (98), (107), (111) and the gauge boson kinetic terms
from (92), which contains QED with massless fermions, an additional vector particle Zµ interacting with
new neutral currents, two charge massless vector particles W±µ interacting with V–A charge currents and
self-interactions of the gauge particles.

Since our Lagrangian has a rather non-trivial chiral structure, an important question arises as to
whether or not our construction is free of chiral anomalies, which is absolutely needed for a theory to be
self-consistent.

11 Anomalies
Detailed discussion of anomalies is not a subject of our brief notes and can be found in a number of
textbooks (see for example [6, 8]).

Generically, anomalies correspond to a situation in the field theory when some symmetry takes
place at the level of a classical Lagrangian but it is violated at quantum loop level. For us an important
anomaly is the chiral anomaly. In short, it means that, for example, the Lagrangian

L = Ψ̄Liγµ
(
∂µ − igAaµt

a
)

ΨL = Ψ̄iγµ
(
∂µ − igAaµt

a
) 1− γ5

2
Ψ (112)

is invariant under the transformation

Ψ→ exp

(
iαata

1− γ5

2

)
Ψ, Aµ → Aaµ +

1

g
∂µα

a + fabcAbµα
c. (113)

This invariance according to the Noether theorem leads to conserving of the current:

jaµ = Ψ̄γµ
1− γ5

2
taΨ. (114)

However, after quantization one finds that the current (114) cannot be conserved due to the triangle loop
contributions shown in Fig. 8.

k

q

p = k + q

ta

tс

tb

+

Fig. 8: Loop corrections

The diagrams in Fig. 8, after a convolution with the momentum pµ instead of being equal to zero,
are proportional to the factor

g2

8π2
εµναβkαqβ · Tr

[
ta{tbtc}

]
. (115)

If the anomaly is not vanishing the theory loses its gauge invariance and therefore cannot be
acceptable. (However, in cases of some currents external with respect to the theory, which have nothing
to do with symmetries of the theory and the Noether theorem, anomalies or such currents may take
place. This does not lead to any problems. Moreover, such type of anomalies may have very important
physics consequences, as in the case of π0 decay to two photons.) In the SM there are simultaneously
contributions from left and right chiral fermions which contribute to the anomaly with opposite signs.
The anomaly is then proportional to the differences between traces of group generators coming from
fermions with left and right chiralities:

Anom ∼ Tr
[
ta{tbtc}

]
L
− Tr

[
ta{tbtc}

]
R
. (116)
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In the theories like QED or QCD there are no γ5 matrices involved in the Lagrangians. Therefore, the
left and right chiral contributions exactly compensate each other, the anomaly is equal to zero and the
theories perfectly make sense.

In the EW part of the SM left and right states couple to UY (1) gauge bosons with different hyper-
charges, and only the left components couple to the SU2(2) gauge bosons. So, it is not obvious a priori
that chiral anomalies vanish. In fact, zero anomalies is a request to the SM to be a reasonable quantum
theory.

Since the generators of the SUL(2) group are the matrices ti = σi/2, then any combination of
three SUC(2) generators gives zero traces in (116) and therefore zero anomalies. The only potentially
dangerous ones are

(SUL(2))2 · UY (1) and UY (1)3

anomalies. For the first type we have to take into account {ti, tj} = 1
2δ
ij and then the only non-zero

contribution is

Anom ∼ Tr
[
Y {ti, tj}

]
L

=
1

2
δijTrYL =

1

2
δij
[
NC · 2Y q

L + 2Y `
L

]
. (117)

From the relations (108) and (109), as already was mentioned, we have the following relation
between hypercharges:

Y `
L = −3Y q

L . (118)

After substitution of (118) into (117), we get

Anom ∼ 1

2
δij2Y q

L (NC − 3). (119)

It is very interesting that the anomaly vanishes only for the number of colours equal to three, as it
does in QCD. However, the value of the hypercharge Y q

L is not fixed.

The second type ((UY (2))3) of anomaly for the fermions for each generation is proportional to

Anom ∼ Tr
(
Y 3

L

)
− Tr

(
Y 3

R

)

= NC(Y q
L )3 · 2 + (Y `

L)3 · 2−NC

[
(Y u

R )3 + (Y d
R)3
]
− (Y `

R)3,
(120)

where the factor (2) in the left-hand contribution comes from two (u and d) quarks and two (e and νe)
leptons. Taking into account from (118) and (108) that Y u

R + Y d
R = 2Y q

L , one gets from (120) the
following:

Anom ∼ Y `
L

[
2NC(1

3Y
`

L + Y u
R )2 − 6(Y `

L)2
]

= Y `
L · 6(1

3Y
`

L + Y u
R − Y `

L)(1
3Y

`
L + Y u

R + Y `
L).

(121)

In order to get zero for the anomaly,

Y u
R =

2

3
Y `

L or Y u
R = −4

3
Y `

L . (122)

At this point one cannot prefer one of the relations in (122). This value will be finally fixed only after
SUL(2)× UY (1) symmetry breaking.

So, we note once more that we have constructed a theory with the Lagrangian for massless
fermions and gauge bosons, which gives us:

1. correct V–A charge currents;
2. correct electromagnetic interactions;
3. no chiral anomalies;
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4. predictions of additional neutral currents observed experimentally.

However, obviously such a theory cannot describe nature correctly. We do not observe massless
EW vector particles, except for the photon, and we do not observe massless fermions, except for, maybe,
the neutrinos (or one of the neutrinos). Massive W and Z bosons, massive leptons and quarks are observed
experimentally.

So, we have to introduce masses in the theory. But we cannot do it directly without violation
of the basic principle of gauge invariance. Indeed, the mass term for the vector field m2

V V
µVµ is not

invariant under the gauge transformation Vµ → Vµ + ∂µα, and the mass term for fermions mΨΨ̄Ψ, the
Dirac mass, is equal to m

(
Ψ̄LΨR + Ψ̄RΨL

)
, and it is also not gauge invariant. Indeed, the left field

ΨL is the doublet and the right field ΨR is the singlet with respect to the group SUL(2). How to make
massive particles without violation of the basic principle of gauge invariance? There is a way to resolve
this problem, which is related to spontaneous symmetry breaking, the Nambu–Goldstone theorem and
the Brout–Englert–Higgs–Hagen–Guralnik–Kibble mechanism.

12 Spontaneous symmetry breaking and the
Brout–Englert–Higgs–Hagen–Guralnik–Kibble mechanism

The situation when the Lagrangian is invariant under some symmetry while the spectrum of the system
is not invariant is very common for spontaneous symmetry breaking (for example, Ginzburg–Landau
theory). But a naive realization of ideas of spontaneous symmetry breaking leads to a problem manifested
in the appearance of so-called Nambu–Goldstone bosons with zero masses.

To illustrate this, let us consider a very simple scalar model with the Lagrangian

L = ∂µϕ
†∂µϕ− µ2ϕ†ϕ− λ(ϕ†ϕ)2. (123)

The Lagrangian (123) is invariant under the phase shift ϕ→ ϕeiω with ω = Const. The case with µ2 > 0
is trivial and not interesting for us. In the case µ2 = −|µ2| < 0, the potential shown in Fig.9

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (124)

has a non-trivial minimum:

dV

dϕ†

∣∣∣∣
ϕ0

= −|µ2|ϕ0 + 2λ(ϕ†0ϕ0)ϕ0 = 0 ⇒ |ϕ0| =
√
|µ2|
2λ

=
v√
2
> 0.

The system takes some concrete value for the vacuum solution, say ϕ0 = +v/
√

2, which violates the
phase-shift symmetry.

V(φ)

φ
v

Fig. 9: Higgs potential
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A complex scalar field can be parametrized by two real fields

ϕ =
1√
2

(v + h(x))e−iξ(x)/v. (125)

In terms of the new fields h(x) and ξ(x), the Lagrangian has the following form:

L = 1
2∂µh∂

µh− λv2h2 − λvh3 − λh4/4

+1
2∂µξ∂

µξ + 2
v∂µξ∂

µξh+ 1
v2∂µξ∂

µξh2 + λv4/4.
(126)

The Lagrangian (126) describes the system of a massive scalar field h with mass m2
h = 2λv2

interacting with a massless scalar field ξ(x). The field ξ(x) is called the Nambu–Goldstone boson field.

This is a particular case of the generic Goldstone theorem. If the theory is invariant under a
global group with m generators but the vacuum is invariant under transformations generated only by
`-generators, then in theory there exist m− ` massless Nambu–Goldstone bosons.

Consider the system described by the Lagrangian

L =
1

2
∂µϕ∂

µϕ− V (ϕ).

Let the Lagrangian be invariant under i = 1, . . . ,m transformations:

ϕ→ ϕ′ = ϕ+ δϕ, δϕi = iδΘAt
A
ijϕj .

The invariance of the potential means that

δV = (∂V/∂ϕi)δϕi = iδΘA(∂V/∂ϕi)t
A
ijϕj = 0. (127)

Let the potential have a minimum (vacuum) at some field value ϕi = ϕ0
i :

(∂V/∂ϕi)(ϕi = ϕ0
i ) = 0. (128)

We consider the case that the vacuum is invariant under transformations generated only by `-generators
from all m generators corresponding to the symmetry, which means that

tAijϕ
0
j = 0 (129)

only for i = 1, . . . , ` (` < m).

The second derivative from the invariance condition (127) at the minimum leads to

∂2V

∂ϕk∂ϕi
(ϕi = ϕ0

i )t
A
ijϕ

0
j +

∂V

∂ϕi
(ϕi = ϕ0

i )t
A
ij = 0.

The second term here is equal to zero due to (128) and therefore

∂2V

∂ϕk∂ϕi
(ϕi = ϕ0

i )t
A
ijϕ

0
j = 0.

For the first `, this equality takes place because of (129). However, for other fields with i = `+1, . . . ,m,
the following equality has to be valid:

∂2V

∂ϕk∂ϕi
(ϕi = ϕ0

i ) = 0. (130)

40

E. BOOS

40



But the second derivative of the potential in (130) is nothing but the mass term for these i = `+1, . . . ,m
fields. And, the equation (130) tells us that the masses of these fields are equal to zero. So, in such a
situation when the vacuum of a system is not invariant under all the symmetry transformations of the
Lagrangian there are m− ` massless fields (Nambu–Goldstone bosons) corresponding to the number of
generators violating the symmetry.

Let us return to the SM gauge group SUL(2) × UY (1) and add to the system one additional
complex scalar field Φ(x), being an SUL(2) doublet and a UY (1) singlet:

LΦ = DµΦ†DµΦ− µ2Φ†Φ− λ(Φ†Φ)4. (131)

The Lagrangian LΦ is gauge invariant; the covariant derivative has the form

Dµ = ∂µ − ig2W
i
µτ

i − ig1
YH

2
Bµ. (132)

As in our previous example, let the mass parameter squared be negative, µ2 = −|µ2|, and therefore the
field potential has a non-trivial minimum at Φ = v/

√
2.

One can parametrize the complex field doublet Φ(x) by four real fields in the following generic
way:

Φ(x) = exp

(
−i
ξi(x)ti

v

)(
0

(v + h)/
√

2

)
, (133)

where four scalar fields ξ1, ξ2, ξ3 and h are introduced.

The Lagrangian (131) in invariant under an SUL(2) transformation:

Φ(x)→ Φ′(x) = exp
(
ig2α

iti
)

Φ(x), (134)

where ti = σi/2 are the generators of the SUL(2) gauge group. If we compare (133) and (134), we can
choose a special gauge g2α

i(x) = ξi(x)/v such that the unitary factor exp
(
−iξi(x)ti/v

)
disappears

from all the formulas. This gauge is called the unitary gauge. The Higgs field Φ(x) in this gauge takes
therefore the following form:

Φ =
1√
2

(
0

v + h(x)

)
. (135)

The field Φ has a non-zero vacuum expectation value and as we know it leads to a violation of the
symmetry of the system.

After such spontaneous symmetry breaking, the substitution of (135) into the Lagrangian (131)
with the covariant derivative (132) yields the following Lagrangian in terms of fields W±µ , Aµ and Zµ
introduced before:

L =
1

2
(∂µh)2 − 1

2
(2λv2)h2 − λvh3 − λ

4
h4 (136)

+M2
WW

+
µ W

µ−(1 + h/v)2 +
1

2
M2
ZZµZ

µ(1 + h/v)2,

where
M2
h = 2λv2 (137)

is the mass of the scalar field h called the Higgs boson and

MW =
1

2
g2v and MZ =

1

2
(g2 cos θW + g1YH sin θW) v (138)

are masses of the vector fields W±µ and Zµ. The field Aµ is not present in the Lagrangian (136) and
therefore remains massless only in the case where the corresponding coefficient in front of it is equal to
zero:

−1

2
g2 sin θW + g1

Y H

2
cos θW = 0.
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The condition from the lepton sector (103)

g2 sin θW = −g1Y
`

L cos θW

tells us that the field A has the correct electromagnetic interactions and has zero mass simultaneously if
the charged lepton and Higgs field hypercharges have equal moduli and opposite signs:

YH = −Y l
L.

One should note that if the vacuum is invariant under some group transformation, then the gener-
ator of the group gives zero acting on the vacuum. Indeed, the invariance of the vacuum means that

eiTiΘiΦvac = Φvac;

therefore, the generator Ti is given by
TiΦvac = 0.

In our case

Φvac =
1√
2

(
0

v

)

and the generator of unbroken symmetry should have a generic form:

TΦvac =
1√
2

(
a11 a12

a21 a22

)(
0

v

)
= 0, ⇒ T =

(
a11 0
0 0

)

taking into account the fact that the generator should be Hermitian. For the group SUL(2)×UY (1), such
a generator is

T3 +
1

2
YH =

1

2

(
1 0
0 −1

)
+

1

2
YH

(
1 0
0 1

)
=

(
1 0
0 0

)
only if YH = +1.

This reflects the fact that the vacuum should be neutral, and the remaining group is naturally the unbroken
electromagnetic group Uem(1):

SUL(2)× UY (1)→ Uem(1),

T3 +
1

2
YH = QH = 0, YH = +1. (139)

Because YH = 1, one gets the following relation:

g2 sin θW = g1 cos θW. (140)

If one substitutes (140) into the equality for MZ (138), one gets the well-known relation between masses
of W and Z bosons:

MW = MZ cos θW. (141)

The value of the Higgs hypercharge YH = 1 fixes the lepton hypercharge Y `
L = −1. Now, from

the connection between hypercharges (109, 110) and following from them

Y `
L = −3Y q

L ,

all the values for hypercharges of leptons and quarks with left and right chiralities are fixed:

Y `
R = −2, Y q

L = Y u
L = Y d

l = 1/3, Y u
R = 4/3, Y d

R = −2/3.
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This confirms the Gell-Mann–Nishijima relation

I3 +
Y

2
= Q

for all three leptons and for all quarks with both chiralities. It should be so from the relation between
SUL(2) and UY (1) generators leading to an unbroken Uem(1) generator.

Coming back to the Lagrangian (136) and adding to it the kinetic terms and self-interactions of
the gauge fields W±µ , Aµ and Zµ, which come from the terms of the SM Lagrangian

−1

4
W i
µνW

iµν − 1

4
BµνB

µν ,

we get the Lagrangian describing the massive Higgs boson h, massive vector fields W i
µ and Zµ and

massless field Aµ. From the Goldstone theorem we expect 4 − 1 = 3 massless Nambu–Goldstone
bosons. But they are not present in the Lagrangian. Three would-be Nambu–Goldstone bosons ξ1, ξ2

and ξ3 are ‘eaten’ by three longitudinal components of the fields W−µ , W
+
µ and Zµ. One should stress

that while the symmetry is spontaneously broken, the gauge symmetry of the Lagrangian itself remains
unbroken.

This is the famous Brout–Englert–Higgs mechanism of spontaneous symmetry breaking (Nobel
prize for 2012) confirmed by the discovery of the Higgs-like boson in ATLAS and CMS experiments at
the LHC.

Now we consider the fermions, leptons and quarks, of the SM, and show how the mechanism
of spontaneous symmetry breaking allows us to get massive fermions without violation of the gauge
invariance.

As we know, in the SM the left fermions are the SU(2) doublets and the right fermions are the
singlets. There are only two gauge-invariant dimension-four operators of the Yukawa-type preserving
the SM gauge invariance:

Q̄LΦdR and Q̄LΦCuR, (142)

where

QL =

(
uL

dL

)

is the doublet of left fermions and

Φ =
1√
2

(
0

v + h

)
and ΦC = iσ2Φ† =

1√
2

(
v + h

0

)

are the Higgs and conjugated Higgs SUL(2) doublet fields in the unitary gauge. Corresponding to (142),
charge conjugated operators have the form

(
Q̄LΦdR

)†
= d†RΦ†

(
Q̄L

)†
= d†Rγ

0γ0Φ†γ0QL = d̄RΦ†QL

and (
Q̄LΦCuR

)†
= ūR

(
ΦC
)†
QL.

As one can easily see, the operators of (142) type lead after spontaneous symmetry breaking to the
needed terms for the fermion masses. Indeed,

(ūLd̄L)

(
0

v

)
dR + d̄R(0 v)

(
uL

dL

)
= d̄LdR + vd̄RdL = v

(
d̄LdR + d̄RdL

)
= vd̄d,

which is the Dirac mass term for the fermion. Similarly, the operator with the ΦC field leads to the
correct Dirac mass term for the up-type fermions:

vūu.
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However, most general operators preserving the SM gauge invariance may include mixing of the
fermion fields from various generations. The most general interaction Lagrangian including operators of
(142) type has the following form:

LYukawa = −Γijd Q̄
′
L
i
Φd′R

j
+ h.c.− Γiju Q̄

′
L
i
ΦCu′R

j
+ h.c.− Γije L̄

′
L
i
Φe′R

j
+ h.c., (143)

where there are no terms with a right-handed neutrino, and Γu,d,e are generically possible mixing coeffi-
cients. After spontaneous symmetry breaking, one can rewrite the Lagrangian (143) in the unitary gauge
as follows:

LYukawa = −
[
M ij
d d̄
′
L
i
d′R

j
+M ij

u ū
′
L
i
u′R

j
+M ij

e ē
′
L
i
e′R

j
+ h.c.

]
·
(

1 +
h

v

)
, (144)

where M ij = Γijv/
√

2.

The physics states are the states with definite mass. So, one should diagonalize the matrices in
order to get the physics states for quarks and leptons. This can be done by unitary transformations for all
left- and right-handed fermions:

d′Li = (UdL)ijdLj ; d′Ri = (UdR)ijdRj ; u′Li = (UuL )ijuLj ; u′Ri = (UuR)ijuRj

`′L = (U `L)`L; `′R = (U `R)`R

ULU
†
L = 1, URU

†
R = 1, U †LUL = 1.

The matrices U are chosen such that

(UuL )†MuU
u
R =




mu 0 0
0 mc 0
0 0 mt


 ; (UdL)†MdU

d
R =




md 0 0
0 ms 0
0 0 mb




(U `L)†M`U
`
R =




me 0 0
0 mµ 0
0 0 mτ


 .

Therefore, the Yukawa-type Lagrangian (144) is

LYukawa = −
[
mi
dd̄L

i
dR

i +m∗id d̄R
i
dL

i+

+mi
uūL

iuR
i +m∗iu ūR

iuL
i +mi

`
¯̀
L
i
`R

i +m∗i` ¯̀
R
i
`L
i
]
·
(

1 +
h

v

)
.

We consider only real mass parameters m ≡ m∗. So, the Yukawa Lagrangian after diagonalization of
the mass matrices contains masses of fermions and their interactions with the Higgs boson:

=⇒ LYukawa = −
[
mi
dd̄
idi +mi

uū
iui +mi

`
¯̀i`i
]
·
(

1 +
h

v

)
. (145)

Now one can easily see what the fermion interactions with the gauge bosons look like in the basis
of the fermion physics state with definite masses.

Neutral currents have the same structure (110) with respect to flavours as the mass terms. And
they, after the unitary rotation Ψ′ → UΨ, become diagonal simultaneously with the mass terms:

Ψ̄′ÔNΨ′ → Ψ̄ÔΨ.

However, charge currents
JC ∼ ūLÔchdL + h.c.
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contain fermions rotated by different unitary matrices for the up- and down-type fermions:

u′ → (UuL )u, d′ → (UdL)d.

Therefore, after the rotation one gets for the charge current

JC ∼ (UuL )†UdLūLQ̂dL.

The unitary matrix
VCKM = (UuL )†UdL

is called the Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix:

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (146)

Concrete values for the elements of the CKM matrix are not predicted in the SM. One can show that an
arbitrary unitary matrix with N ×N complex elements may be parametrized by N(N −1)/2 real angles
and (N − 1)(N − 2)/2 complex phases. So, the CKM 3 × 3 matrix contains three real parameters and
one complex phase. The presence of this phase leads to parity and charge (CP) violation, which in this
sense is a prediction of the SM with three generations. In this lecture we do not discuss physics of the
CKM matrix. The flavour physics is covered in a special lecture course at the School.

Now we have all parts of the EW part of the SM Lagrangian expressed in terms of physics fields
in unitary gauge:

LSM = LGauge + LFG + LH. (147)

Here, as was mentioned, the self-interactions of the gauge fields W±µ , Aµ and Zµ come from the terms
of the SM Lagrangian −1

4W
i
µνW

iµν − 1
4BµνB

µν :

LGauge = −1
4FµνF

µν − 1
4ZµνZ

µν − 1
2W

+
µνW

−µν

+e
[
W+
µνW

−µAν + h.c.+W+
µ W

−
ν F

µν
]

+ecW
sW

[
W+
µνW

−µZν + h.c.+W+
µ W

−
ν Z

µν
]

−e2 1
4s2

W

[
(W−µ W

+
ν −W−ν W+

µ )W−µW+ν + h.c.
]

−e
2

4 (W+
µ Aν −W+

ν Aµ)(W−µAν −W−νAµ)

−e
2

4
c2

W

s2
W

(W+
µ Zν −W+

ν Zµ)(W−µZν −W−νZµ)

−e
2

2
cW
sW

(W+
µ Aν −W−ν Aµ)(W+µZν −W−νZµ) + h.c.,

(148)

where cW = cos θW, sW = sin θW; the gauge for a photon field may be taken differently, for example
(∂µA

µ) = 0. The Lagrangian for the interactions of fermions with the gauge bosons is

LFG =
∑

f

f̄(i∂̂)f + LNC + LCC, (149)

where LNC and LCC are given by (111), (99) and (107). The Lagrangian for the Higgs boson and its
interactions with the gauge and fermion fields is

LH = 1
2(∂µh)(∂µh) +

M2
h

2 h2 − M2
h

2v h
3 − M2

h

8v2 h
4

+
(
M2
WW

+
µ W

−µ + 1
2M

2
ZZµZ

µ
) (

1 + h
v

)2
−∑f mf f̄f

(
1 + h

v

)
.

(150)
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All Feynman rules following from the Lagrangian (147) can be obtained with the help of the formula
(83). The kinetic parts of the Lagrangians LGauge (148) and LFG (148) being taken together with the
gauge and fermion mass terms from LH (150) give the propagators for fermions, massless photons,
massive W± and Z bosons, and for the Higgs boson by inverting the corresponding quadratic forms, as
we know already2.

The propagator for the massive gauge bosons requires special care. The propagators for massive
vector fields follow directly from the Lagrangian by inverting the quadratic form:

V µ
(
�gµν − ∂µ∂ν + gµνM

2
V

)
V ν . (151)

Then the propagator for massive vector fields (V = W,Z) has the following structure in the unitary
gauge:

Dµν(p) =
−i

p2 −M2
V

[
gµν −

pµp
ν

M2
V

]
. (152)

However, the term pµp
ν/M2

V has a bad ultraviolet behaviour. This leads to the problem of proving renor-
malizability of the SM. To resolve the problem, one can use another gauge in which the bad ultraviolet
behaviour is absent. It is convenient to express the Higgs field as follows:

Φ(x) =

( −iw+
g

(v + h+ izg)/
√

2

)
(153)

and Φ† containsw−g , where the notationw±g and zg for the Goldstone bosons is introduced. The covariant
derivative, being expressed in terms of the fields W±µ , Zµ and Aµ, and constants e and sin θW = sW,
takes the form

DµΦ =




∂µ − i
e(1− 2s2

W)
2sWcW

Zµ − ieAµ −i e√
2sW

W+
µ

−i e√
2sW

W−µ ∂µ + i e
2sWcW

Zµ.


Φ (154)

Simple algebraic manipulation leads to the following Lagrangian for the Higgs-gauge part of the
SM:

L = (DµΦ)†(DµΦ)− λ
(
ΦΦ† − v2/2

)2

= 1
2(∂µh)(∂µh) +M2

WW
+
µ W

µ−(1 + h/v)2 + 1
2M

2
ZZµZ

µ(1 + h/v)2

−M2
hh

2 − λvh3 − λ
4h

4

−MW∂µw
+
g W

µ− −MW∂µw
−
g W

µ+ −MZ∂µzgZ
µ

+∂µw
+
g ∂

µw−g + 1
2∂µzg∂

µzg

−λh(h+ 2v)
(
w−g w

+
g + zg/2

)
− λ

(
w−g w

+
g + zg/2

)2

+more cubic and quadratic terms involving w±g and zg fields.

(155)

The first two lines in (155) are exactly the same as in the SM in the unitary gauge. The fourth line involves
massless scalar fields, the Goldstone bosons w±g and zg. There are many terms describing interactions of
the Goldstone fields. But we would like to draw attention to the third line in (155) describing the kinetic
mixing of the w±g and zg fields with W± and Z fields, respectively. Such a mixing should be removed
from the Lagrangian. This can be achieved by choosing proper gauge conditions.

2The complete list of the Feynman rules for interaction vertices can be found in many books and listed explicitly, for
example, in the model files for the SM used in computer codes like CompHEP, Grace, CalcHEP, MadGraph, Wizard, Sherpa
etc.
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Indeed, if we add to (155) the following gauge fixing terms:

LGF = −1

ξ

(
∂µW

+
µ − ξMWw

+
g

) (
∂νW

µ− − ξMWw
−
g

)
− 1

2ξ
(∂µZ

µ − ξMZzg)2 , (156)

the mixing terms are cancelled out. Then the quadratic part of the SM Lagrangian for W±µ and Zµ fields
which gives their propagators is

−1
4ZµνZ

µν + 1
2M

2
ZZνZ

ν − 1
2ξ

(∂µZ
µ)2

−1
2W

+
µνW

−µν +M2
WW

+
ν W

−ν − 1
ξ

(∂µW
+µ) (∂νW

−ν) ,
(157)

where terms with
Zµν = ∂µZν − ∂νZµ, W±µν = ∂µW

±
ν − ∂νW±µ

come from the kinetic part of the SM Lagrangian, as in the unitary case. Inverting the quadratic form
(157), one gets the propagator of the massive gauge field in the so-called Rξ gauge:

Dξ
µν =

−i

k2 −M2
V

[
gµν − (1− ξ) kµkν

k2 − ξM2
V

]
, (158)

where MV is MW or MZ and ξ is the gauge parameter.

The unitary gauge is restored by the formal limit ξ → ∞. In the Landau gauge ξ = 0, we get
the transverse structure

(
gµν − kµkν/k2

)
, while in the ’t Hooft–Feynman gauge ξ = 1 the propagator

contains only the part with the gµν tensor. However, one should stress that in both these gauges as well as
in the genericRξ gauge one should take into account the appearance of Faddeev–Popov ghost fields. This
is done with the help of the Faddeev–Popov method in the functional integral, which we have described
already. Without going into details, the following ghost fields appear: c±W , cZ and cA, corresponding to
the gauge fixing terms (156) and the gauge fixing −(∂µA

µ)2/2ξ term for the photon field. In contrast
to pure electrodynamics where the photon ghost fields do not interact and can be omitted, in the SM the
photon ghost field cA has non-trivial interactions with the ghost c±W and Goldstone w±g fields.

Propagators of all the ghost fields have the following form:

Dc =
i

p2 − ξM2
V

,

whereM2
V is equal toM2

Z for cZ ,M2
W for cW and 0 for cA ghost fields. (The complete set of all Feynman

rules for interaction vertices of Goldstone and ghost fields in the SM in the Rξ gauge is rather long and
can be found in the mentioned computer codes such as CompHEP.)

So, all the propagators for massive gauge, Goldstone and ghost fields have good ultraviolet be-
haviour, and therefore the SM is a renormalizable quantum field theory.

13 Phenomenology of the SM in lowest order
The Fermi constant GF is measured with high precision from the muon lifetime:

GF = 1.166 378 7(6)× 10−5 GeV−2. (159)

The decay is described in the SM by the Feynman diagram shown in Fig. 10.

Since the muon massmµ �MW , one can neglect the W-boson momentum in the propagator, and
one immediately gets the following relation:

g2
2

8M2
W

=
GF√

2
. (160)
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W

ν

e –µ

e

νµ
–

–

Fig. 10: µ→ e−ν̄eνµ decay diagram

As we have seen, the W-boson mass is obtained in the SM due to the Higgs mechanism and is propor-
tional to the Higgs field vacuum expectation value v:

M2
W =

1

4
g2

2v
2. (161)

From these two relations, we obtain

v =
1√√
2GF

= 246.22 GeV. (162)

The Higgs field expectation value v is determined by the Fermi constant GF introduced long before the
Higgs mechanism appeared. At this point one can see the power of the gauge invariance principle; g2 is
the same gauge coupling in the relations (160) and (161).

Now from (160) using the relation (140), g1cW = g2sW = e and keeping in mind MW = MZcW,
one gets

M2
W

(
1− M2

W

M2
Z

)
=

παem√
2GF

≡ A2
0, (163)

where αem = e2/4π is the usual electromagnetic fine structure constant. The low-energy

αem = (137.035 999 074(44))−1

follows mainly from the electron anomalous magnetic measurements. One gets A0 very precisely from
low-energy experimental results:

A0 = 37.2804 GeV. (164)

On the other hand, one gets A0 from measured values of the masses of W and Z bosons:

MW = 80.385 ±0.015 GeV,
MZ = 91.1876 ±0.0021 GeV

(165)

by substituting (165) into the left-hand side of (163):

A0 = 37.95 GeV. (166)

The values (163) and (166) are rather close. The difference is about 1.5%. If one takes into account
properly the higher-order corrections to the relation (163), the agreement between the two numbers will
be improved further.

CC and NC interactions of the SM fermions, as has been shown in the previous section, have the
following structure (see (111)):

LCC =
g2

2
√

2

∑
ij Vij ūiγµ(1− γ5)dj = e

2
√

2sW

∑
ij Vij ūiγµ(1− γ5)dj ,

LNC = e
∑

f Qf f̄γµfA
µ + e

4sWcW

∑
f f̄γµ(vf − afγ5)fZµ,

(167)
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where Vij are the CKM matrix elements, i, j = 1, 2, 3 the number of the SM fermion generations and

vui = 1− 8
3s

2
W, aui = 1; vdi = −1 + 4

3s
2
W, adi = −1;

v` = −1 + 4s2
W, a` = −1; vν = 1, aν = 1

are the vector and axial-vector coupling constants.

The Feynman rules following from (166) allow us to get tree level formulas for the W- and Z-boson
partial decay widths, as shown below at tree level:

W

uf 

df 
_ Γ(W → uf d̄f ) = |Vij |2Nc

α
12s2

W

MW ,

(168)

Z

f 

f 
_ Γ(Z → ff̄) = Nc

αMZ

12 sin2(2θW)
[v2
f + a2

f ],

(169)

where the number of colours Nc = 3 for quarks and Nc = 1 for leptons.

The total W- and Z-boson widths are obtained by summing up all the partial widths (168) and
(169). Since CCs for all SM fermions have the same V–A structure, one can very easily obtain branching
fractions for W-decay modes:

∑
q Br(W → qq̄) = 2Nc · 1

9 = 2
3 ,∑

` Br(W → `ν) = 3 · 1
9 = 1

3 .
(170)

The measured Br(W → `ν) = (10.80 ± 0.09)% is in reasonable agreement with the simple tree level
result

Br(W → `ν) =
1

9
= (11.11)%. (171)

QCD corrections to the branching ratio Br(W → qq̄) improve the agreement.

The decay width of the Z boson to neutrinos, the invisible decay mode, allows us to measure the
number of light (mν < MZ/2) neutrinos by comparing

ΓZinv = ΓZtot − ΓZhad − ΓZ`+`− (172)

with the tree level formula obtained from (169):

ΓZinv = ΓZνν̄ = Nν ·
αMZ

12 sin2(2θW)
(1 + 1). (173)

Experimentally, Γtot is measured from the shape of the Z-boson resonance according to the well-known
Breit–Wigner formula

ΓZtot = 2.4952± 0.0023 GeV.

Decay widths to hadrons and charged leptons are measured directly in e+e− collisions (LEP1) to be

ΓZhad = 1744.4± 2.0 MeV,

ΓZ`+`− = 83.984± 0.086 MeV.
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As a result, ΓZinv obtained from (172) is

ΓZinv = 0.4990± 0.0015 GeV.

This gives for Nν

Nν = 2.984± 0.008,

which is close to the number of known neutrinos. The test is an important confirmation of three genera-
tions of fermions assumed in the SM and observed in experiments as shown in Fig. 11.
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Fig. 11: Nν from LEP measurements

One can make this test by looking at the ratio ΓZinv/Γ
Z
e+e− . In the SM, the ratio follows from (169)

and (173):
ΓZinv

ΓZ
e+e−

=
2Nν

1 + (1− 4s2
W)2

. (174)

The measured value (5.942 ± 0.016) is in agreement with 5.970 coming from the formula (174) for
Nν = 3 and s2

W = 0.2324.

An important part of information about the EW interactions and couplings of the SM fermions
comes from e+e− annihilation to fermion–antifermion pairs. The differential cross-section computed
from the diagrams shown in Fig. 12 has a well-known form neglecting fermion masses compared to the

e+

e–

e+

e–

f

f

f

f

––

γ Z
+

Fig. 12: e+e− diagram

centre of mass energy
√
s:

dσ
d cos θ

= 2πα2

4s NC

{
(1 + cos2 θ)·

·
[
Q2
f − 2χ1vevfQf + χ2(a2

e + v2
e)(a

2
f + v2

f )
]

+2 cos θ [−2χ1aeafQf + 4χ2aeafvevf ]} ,

(175)
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where

χ1 =
1

16s2
Wc

2
W

s(s−M2
Z)

(s−M2
Z)2 +M2

ZΓ2
Z

,

χ2 =
1

256s2
Wc

2
W

s2

(s−M2
Z)2 +M2

ZΓ2
Z

.

The cross-section obtained from the differential form (175) is in good agreement with the experimental
data, as shown in Fig. 13. In the region far below the Z-boson pole, one can neglect the Z-boson exchange
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Fig. 13: The cross section of hadron production in e+e− collisions showing a good agreement between the SM
computation and various experiments in the energy range up to 220 GeV including the contribution of the Z-boson
resonance.

diagram and restore the well-known QED formula

dσ

d cos θ
=
πα2

2s
Q2
fNC(1 + cos2 θ), σ =

4πα2

3
Q2NC . (176)

From the formula (175), one can get a number of asymmetries, which have been measured, in particular,
at LEP1 and SLC. In the region close to the Z-boson pole the photon exchange part is small and can be
neglected. Then the forward–backward asymmetry is

AFB ≡
NF −NB

NF +NB
,

where

NF =

∫ 1

0
d(cos θ)

dσ

d cos θ
, NB =

∫ 0

−1
d(cos θ)

dσ

d cos θ
.

Simple integration of (175) gives the following result:

AFB =
3

2
Ae ·Af , Ae,f =

2ae,fve,f
a2
e,f + v2

e,f

.
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Measurements of decay widths being proportional to (a2
f + v2

f ) and asymmetries for different
fermions f allow us to extract the coefficients af and vf . Then one can get a precise value for the
Weinberg mixing angle from the relation involving the lepton couplings:

sin2 θlept
eff =

1

4

(
1− vl

al

)
.

Results of the measurements are shown in Fig.14 as obtained by the EW working group [16].
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Fig. 14: Effective electroweak mixing angle from various observables [16]

In the SM there are no 1 → 2 decays of fermions to the real Z boson due to absence of FCNCs
(flavour-changing neutral currents). The top quark is heavy enough to decay to a W boson, as shown in
Fig. 15. The decay mode to the b-quark is dominant in the top decays due to the CKM mixing matrix

q

t

Fig. 15: Top-quark decay

structure, where
Vtb ∼ 1� Vts, Vtd.

52

E. BOOS

52



A direct tree level computation leads to

Γtop =
GFM

3
t

8π
√

2

(
1− M2

W

M2
t

)2(
1 + 2

M2
W

M2
t

)
, (177)

where one neglects the b-quark mass:

Γ(t→ bW )LO ' 1.53 GeV, Γ(t→ bW )corr = 1.42 GeV.

The top-quark lifetime τtop = 1/Γtop is about 5 · 10−25 s, which is much smaller than the typical time of
strong bound state formation τQCD ∼ 1/ΛQCD ∼ 3·10−24 s. The top quark decays before hadronization.
Therefore, there are no hadrons containing the top quark.

Since the top-quark mass is larger than the W-boson and b-quark masses, one can use the EW
equivalence theorem to get the leading top width up to the term m2

W /m
2
t . According to the EW equiva-

lence theorem, amplitudes with external W and Z bosons are dominated by the longitudinal polarization
of the bosons

(
eW,ZL ∼ p0/MW,Z

)
. But the longitudinal component in the SM appears by ‘eating’ the

Goldstone bosons wg, zg. So, one can compute simply the diagram

q

t

wg

with the Yukawa vertex Mt/(v
√

2). Then one immediately obtains for the top width the following
formula:

Γ =
2

32π

(
Mt

v

)2

·Mt =
GFM

3
t

8π
√

2
,

which is exactly equal to the first term in (177), as expected.

The EW single top quark production is another confirmation of the EW fermion structure of the
SM. There are three mechanisms of single top production at hadron colliders differing by the typical
virtuality (Q2

W ) of the W boson involved:

q

q' b

t

– –W
s-channel, Q2

W > 0,

q q'

b t
W t-channel, Q2

W < 0,

g

b

t

W

t

+W -associated, Q2
W ≈M2

W .

quart t-channel and s-channel production mechanisms have been observed at the Tevatron, while t-
channel and W -associated production was observed at the LHC. There are a number of important QCD
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next-to-leading-order (NLO) and next-to-next-to-leading-order (NNLO) corrections which are needed to
be taken into account in order to get SM predictions with needed accuracy to be compared to experimental
results. Up to now a good agreement with SM computations was observed.

A well-known example demonstrating correctness of the Yang–Mills interactions of the gauge
bosons is the gauge boson pair production. Triple gauge boson vertices WWγ and WWZ have been
tested at LEP2 (e+e− → W+W−) and at the Tevatron (qq̄ → W+W−, qq̄′ → Wγ, qq̄′ → WZ). The
diagrams for the process e+e− →W+W− form the so-called CC3 set of diagrams, as shown in Fig. 16.
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Fig. 16: e+e− →W+W−

The triple vertex of the Yang–Mills interaction:

ΓWWγ/Z
m1m2m3

(p1p2p3) = gγ,Z [(p1 − p2)m3gm1m2 + (p3 − p1)m2gm1m3 + (p2 − p3)m1gm2m3 ] ,

where gγ = e, gZ = g2cW = e cWsW , is confirmed perfectly experimentally, as shown in Fig. 17.
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no ZWW vertex (Gentle)

only νe exchange (Gentle)

LEP

Fig. 17: Measurements of the W-pair production cross-section, compared to the theoretical predictions. For expla-
nations, see [17].

The quartic gauge coupling WWγγ has been tested recently at the Tevatron and the LHC in W-
pair production in association with two protons or a proton and an antiproton. The quartic couplings
WWγZ, WWZZ have not been tested yet. This is a challenging task for the LHC and will require a
high-luminosity regime at a linear collider.

14 The electroweak SM beyond the leading order
All the above examples confirming the structure of the SM interactions are leading order processes.
However, in many cases a high accuracy of experimental measurements requires the SM computations
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beyond the leading order. In the SM, being a quantum field theory, computations of higher-order cor-
rections face divergences of ultraviolet and infrared/collinear nature. In general, the ultraviolet (hard)
divergences are treated with the help of the renormalization procedure while the infrared/collinear (soft)
divergences are cancelled out due to the Kinoshita–Lee–Nauenberg theorem in summing virtual and real
contributions to squared matrix elements.

The renormalization procedure is the usual way to deal with the ultraviolet divergences. We de-
scribe briefly only the main ideas of the procedure. In the SM the dimensions of all the coupling constants
are equal to zero. This property has important consequences making the theory renormalizable. In simple
words, the renormalizability means that all the UV divergences may be incorporated into a redefinition of
a few constants such as coupling constants, masses and field normalization constants. In renormalizable
theories only a few diagrams are UV divergent.

As an example, let us consider QED.

The divergency index of a diagram depends only on the number of external legs, and for QED can
be expressed in a well-known form

w = 4− Lγ − 3/2Le,

where Lγ is the number of external photon lines and Le is the number of external electron lines.

So, there are only three types of divergent diagrams with two external photon lines, the photon

self-energy , with two external electron lines, the electron self-energy and,

with one photon and two electron external lines, the electron–photon vertex .

It is convenient to consider the renormalization procedure in the functional integral approach al-
ready familiar to us. The generating functional integral in QED in the covariant gauge is given by

Z[J, η, η̄] =
∫
D(Ψ̄ΨA) exp

(
i
∫

d4xΨ̄(iD/−m)Ψ + ieA+ JµA
µ

+ η̄Ψ + Ψ̄η − 1
4FµνF

µν + 1
2ξ

∫
d4x(∂µA

µ)2
)
.

(178)

The photon propagator is obtained from (178) by taking two functional derivatives on J and setting the
sources J , η and η̄ to zero:

iDαβ(x1, x2) =
∫
D(Ψ̄ΨA)Aµ(x1)Aµ(x2)

· exp
(
i
∫

d4x[−1
4FµνF

µν + Ψ̄(i∂/−m)Ψ + eΨ̄A/Ψ]
)
.

(179)

The Dyson–Schwinger equation for the photon propagator is obtained as a consequence of the
invariance of the measure of the functional integral with respect to the shift Aµ(x)→ Aµ(x) + εµ(x).

The equation for the inverse propagator takes, after Fourier transformation, the form

D−1
αβ (k) = (D0)−1

αβ + Παβ (180)

or, graphically,

( ) ( )= +
–1 –1

,

where denotes the dressed fermion propagator and is the truncated one-particle irreducible
vertex function Γµ(p1, p2, k).

At one-loop level the function Παβ(k) is given by the following Feynman integral:

(−ie)2

∫
d4p

(2π)4
Tr
[

p/+m

p2 −m2 + i0
γα

(p/− k/) +m

(p− k)2 −m2 + i0
γβ

]
. (181)
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The integral (181) is quadratically divergent from formal power counting. In order to deal with divergent
integrals, we need to introduce some regularization. We use the dimensional regularization

d4p→ dDp(µ2)2−D/2.

One can see that (181) gives zero, being convoluted with the external moments kα or kβ . Indeed,

kαγ
α = (p/)− (p/− k/) = (p/−m)− [(p/− k/)−m]. (182)

If we substitute (182) into (181), we get

(µ2−D/2)(−ie)2

∫
dDp

(2π)D
Tr
[(

p/+m

p2 −m2 + i0
− (p/− k/) +m

(p− k)2 −m2 + i0

)
γβ

]
= 0. (183)

In fact, this result is valid to all perturbation orders due to the Ward identity

kµΓµ(p1, p2, k) = S−1(p1)− S−1(p2). (184)

The identity (183) can be easily derived from U(1) gauge invariance of (178).

The property means that Παβ has the following form:

Παβ(k) =
(
gαβk

2 − kαkβ
)

Π(k2). (185)

Therefore, the dressed photon propagator can be written as

Dαβ(k) = − i

k2

[
1

1 + Πγ(k2, ε, µ2)

(
gαβ −

kαkβ
k2

)
+ ξ

kαkβ
k2

]
. (186)

Of course, in the case where Πγ = 0, we obtain the free photon propagator.

The factor (1 + Πγ(k2, ε, µ2))−1, being taken at zero momentum, should be removed for the
correct normalization of the kinetic term. It can be done by rescaling the field Aµ(x) in the following
way:

Aµ(x)→ 1√
Z3
Aµ, where Z(a)

3 = (1 + Πγ(0, ε))−1. (187)

Direct computation of (181) with well-known Feynman techniques gives

Πγ(k2, ε, µ2) = α
3πε + Πfinite

and therefore Z−1
3 = 1 + α

3πε,
(188)

where ε = (4−D)/2.

Now let us consider the fermion propagator taking functional derivatives of (178) on the fermion
sources η̄ and η.

Now the expression for the dressed inverse fermion propagator is

S−1(p) = S−1
0 (p)− Σ(p). (189)

The formula (188) is also the Dyson–Schwinger equation for the dressed fermion propagator, graphically
presented as

( ) ( )= ––1 –1
k

p1 p

Γ

.
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The equation involves the same truncated vertex function Γµ(p1p2; k). In the second order of perturbation
theory, Σ(2)(p) is as follows:

−iΣ(2)(p) = (−ie)2

∫
dDk

(2π)D
(µ2)2−D/2 · γµDµν(k)

p/− k/+m

(p− k)2 −m2
γν . (190)

Direct computation gives the following answer:

Σ2 =
α

8π
(4m− p/)2

ε
+ Σfinite. (191)

The generic structure of Σ(p) is as follows:

Σ(p) = p/f1(p2)−mf2(p2).

Due to (189), this means that the fermion propagator has the form

S(p) =
1

p/(1− f1(p2))−m(1− f2(p2))
= − 1

1− f1(p2)

1

p/−m1− f2(p2)

1− f1(p2)

. (192)

Close to physics mass, one should have

mphys = m
1− f2(m2

phys)

1− f1(m2
phys)

.

So, the fermion propagator has the following form close to physics mass:

S(p) =
Z2(ε, µ)

p̂−mphys(ε, µ)
, (193)

where Z2 = (1 − f1)−1, mphys = m Z2
Zm

and Zm = (1 − f2)−1. From the one-loop result (191), we
obtain

Z−1
2 = 1 +

α

4πε
+O(α), (194)

Z−1
m = 1 +

α

πε
+O(α). (195)

The remaining divergent QED diagram is the vertex function correction given by the integral

μ

αβ

k

q

p

ieΓ
(2)
µ (p, q) = (−ie)3(µ2)2−D/2 ∫ dDk

(2π)D

·γα(i)
p/− q/− k/+m

(p− q − k)2 −m2 + i0

·γµ(i)
p/− q/+m

(p− q)2 −m2 + i0
· γβ −i

k2 + i0
gαβ

(196)

In order to compute the divergent part, one can simplify the problem and compute (196) in the limit
q → 0. The answer is

Γ(2)
µ (p, 0) = γµ

[
α

4π

1

ε
+O(α)

]
. (197)
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Therefore, the vertex function including one-loop correction may be written in the form

−ieΓµ = −ieZ1γµ, (198)

where
Z1 = 1− α

4π

1

ε
+O(α).

We can see from (194) and (198) that Z1 = Z2 including the one-loop part. The equality Z1 = Z2 takes
place to all orders of perturbation theory due to the Ward identity

Γµ(p, 0) = ∂µS
−1(p), (199)

as follows from (183) in the limit of the photon momentum k → 0.

Why did we do all the above computations of divergent graphs , and ?

Let us rewrite our initial (before renormalization) QED Lagrangian

L = −1

4
F 0
µνF

0µν + Ψ̄0(iD/ 0 −m0)Ψ0, (200)

where F 0
µν = ∂µA

0
ν − ∂νA0

µ, D0
µ = ∂µ − ie0A

0
µ (we use the symbol (0) to stress that all the objects are

not renormalized, or bare, as one usually says) in terms of physical fields and parameters labelled by the
symbol ph and additional terms ∆L:

L = −1

4
F ph
µν F

phµν + Ψ̄ph(iD/ph −mph)Ψph + ∆L, (201)

where Aph
µ = Z

−1/2
3 A0

µ, Ψph = Z
−1/2
2 Ψ, mph = (Z2/Zm)m0, e0 = Z1Z

−1
2 Z

−1/2
3 (µ)D/2−2eph,

Dph
µ = ∂µ − iephA

ph
µ and

∆L = −(Z3 − 1)1
4F

ph
µν F phµν + (Z2 − 1)Ψ̄ph(i∂/)Ψph

+(Zm − 1)mphΨ̄phΨph + (Z1 − 1)ephΨ̄ph(A/ph)Ψph.
(202)

The Lagrangian ∆L contains so-called counter-terms. In the leading order we computed all the coeffi-
cients in front of the counter-terms. Now when one computes some effect using the Lagrangian (201) all
UV divergences are cancelled out order by order in perturbation theory by contributions of the counter-
terms.

Let us look in more detail at the relation for the coupling constant

e0 = Z1Z
−1
2 Z

−1/2
3 (µ)D/2−2eph(µ),

where (µ)D/2−2 is the dimension of the charge. As we discussed above, Z1 = Z2 due to the Ward
identity, and

e0 = Z
−1/2
3 (µ)D/2−2eph(µ). (203)

Note that eph(µ) is a function of the dimension regularization parameter µ, while e0 does not depend on
µ. From (203), one gets the following equality for α = e2

4π (D = 4− 2ε):

α0 = Z−1
3 (µ2)−εαph(µ). (204)

Taking the derivative µ ∂
∂µ on both sides of (204), we get the following equation:

µ
∂α

∂µ
=

2α2

3π
≡ β(α). (205)
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The equation (205) is a particular example of the renormalization group equation, which we do not
discuss in this brief lecture course. The function on the right-hand side of (205) is called the β-function.
So, at the one-loop level the β-function in QED is given by the following formula:

β(α) =
b0
π
α2, b0 =

2

3
. (206)

One should stress that the coefficient b0 = 2
3 in QED is positive. The equation (205) can be easily solved:

α(µ) =
α(µ1)

1− α(µ1)
3π ln(µ/µ1)2

. (207)

This is the running coupling constant. If one measures the constant α at some scale µ1, one gets values
for the constant at other scales. The coupling constant α = 1/137 being measured at very small scale
(small momentum transfer or large distance) in Thompson scattering increases with the scale growing
and becomes α(M2

Z) ≈ 1
129 at the Z mass. This fact was confirmed nicely in LEP experiments. Note

that, in order to get 1/129, one should take into account the contribution of all SM charged particles
to the photon vacuum polarization function Πγ . This means that the charged particle–antiparticle pairs
screen the bare charge at small µ2 or at large distances. The QED running coupling constant is illustrated
in Fig.18 [18].
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Fig. 18: Running electromagnetic coupling as a function of collision energy measured at various energies, in
particular, at LEP by the OPAL collaboration [18].

Note that in QCD the β-function is negative, leading to an antiscreening effect; αS becomes
smaller with increasing of the momentum scale (momentum transfer) or decreasing distances. This is
a famous asymptotic freedom property in QCD. In QED the situation is the opposite. If the scale µ
increases to very large values the well-known Landau pole

b0
π

ln(µ/µ1)2 = 1

59

QUANTUM FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

59



is approached where the perturbation picture in QED breaks down.

One should note that in QED all terms in the four-dimensional Lagrangian (gauge-invariant oper-
ators) have dimension four. As a result, the coupling constant in QED is dimensionless. This is crucial
to have renormalizable theory, where all UV divergences are cancelled to all orders with the help of a
finite number of counter-terms. This is also the case in the SM. All terms of the SM Lagrangian have
dimension four and all the coupling constants are dimensionless. So, the SM is a renormalizable theory
in the same manner as QED.

Naively, one may think that the EW higher-order corrections are not that important. The perturba-
tion theory expansion parameters α/π with αem ∼ 1/129 and αweak ∼ 1/30 are very small. However,
the experimental accuracies are so high in various cases that even one-loop EW corrections might not be
sufficient. Indeed, selected lists of measured parameters by LEP1, LEP2, SLD and Tevatron are given
below:

MZ = 91.1875 ± 0.0021 GeV 0.002%
ΓZ = 2.4952 ± 0.0023 GeV 0.09%
MW = 80.385 ± 0.015 GeV 0.02%
Mtop = 173.2 ± 0.9 GeV 0.52%

The most important higher-order corrections come from resummation of the large logarithms, log
M2
t

m2
e
≈

24.2, as we have seen with running α (1/137→ 1/129). The second class of large corrections comes from
contributions of the order ofM2

top/M
2
W , which originate from EW Goldstone boson (or longitudinal W/Z

polarization state) couplings to the quarks of the third generation. The later corrections lead to the shifts
in W- and Z-boson masses coming from the diagram in Fig. 19.

t

b
W W

t

t
Z Z–

Fig. 19: Loop corrections

Loop corrections lead to the fact that SM parameters, coupling constants and masses, are running
parameters, and they are non-trivial functions of each other. A famous example is given in Fig.20 [17]
showing the dependence of the W-boson mass as a function of the top-quark mass at different values of
the Higgs boson mass.

One should recall that the top-quark mass has been determined indirectly from the analysis of loop
corrections, it being

mt = 178± 8
+17
−20

GeV,

which is remarkably close to today’s precise measured value 173.2± 0.9 GeV.

The low Higgs mass range was preferred by a similar analysis of the Tevatron and LEP data, as
one can clearly see in Fig.20.

A summary of comparisons of the EW precision measurements at LEP1, LEP2, SLD and the
Tevatron and a global parameter fit is given in the well-known plot shown in Fig.21 [16].

The only one discrepancy on the level of 3σ is observed for bb̄-pair forward–backward asymmetry.

15 Concluding remarks
1. The SM is a renormalizable anomaly-free gauge quantum field theory with spontaneously broken

EW symmetry. Remarkable agreement with many experimental measurements is observed.
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Fig. 20: W boson mass as a function of the top quark mass at varios masses of the Higgs bosos (see details in [17]).

2. All SM leptons, quarks, gauge bosons and, very probably, the Higgs boson have been discovered.

3. The SM predicts the structure of all interactions: fermion-gauge, gauge self-interactions, Higgs-
gauge, Higgs-fermion and Higgs self-interactions. As a result, the SM allows us to compute
various cross-sections, distributions and decay rates taking into account higher-order corrections.
However, not yet all of the interactions were tested experimentally. Parameters of the theory are
not predicted by the theory itself but extracted from the measurements.

4. The EW SM has 17 parameters and QCD has one more parameter fixed from experiments:

– the gauge-Higgs sector contains four parameters g1, g2, µ2, λ or in terms of best measured
αem, GF,MZ ,Mh;

– six quark masses, three lepton masses;
– three mixing angles and one phase of the CKM matrix (more parameters come from the

neutrino mixing matrix, which we do not consider here);
– the QCD coupling constant αs.

5. There are facts which cannot be explained in the SM:

– fermions have very much different masses (Mtop = 173 GeV, Me = 0.5 MeV) coming from
the same mechanism;

– dark matter exists in the Universe, and there are no dark-matter candidates in the SM;
– the CKM phase as a source of CP violation in the SM is too small to explain particle–

antiparticle asymmetry in the Universe;
– neutrino masses, mixing and oscillations cannot be understood in the framework of the SM

EW symmetry breaking mechanism;
– there is some tension in explaining the muon anomalous magnetic moment.

6. As is well known, the simplest Higgs mechanism in the SM is not stable with respect to quan-
tum corrections (naturalness problem). In the SM there is no symmetry which protects a strong
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

Fig. 21: Global fit of the EW precision measurements at LEP1, LEP2, SLD and the Teva-
tron by the SM computations including loop corrections [16] (the latest update version of the plot
http://lepewwg.web.cern.ch/LEPEWWG/plots/winter2012/)

(quadratic) dependence of the Higgs mass on a possible new scale. Something is needed in addi-
tion to the SM to stabilize the mass parameter.

7. In addition, the SM does not give answers to many questions, such as:

– What is a generation? Why are there only three generations?
– How are quarks and leptons related to each other?; what is the nature of the quark–lepton

analogy?
– What is responsible for gauge symmetries, why are charges quantized? Are there additional

gauge symmetries?
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– What is responsible for the formation of the Higgs potential?
– To which accuracy is the CPT (charge, parity, and time) symmetry exact?
– Why is gravity so weak compared to other interactions?

In our lecture we focused mainly on the EW part of the SM and aspects of the field theory needed
clarifying, and we did not discuss QCD physics, Higgs boson physics, neutrino physics, flavour physics,
problems of the SM models leading to BSM (beyond the Standard Model) scenarios and sequences for
cosmology. These are the subjects of the lectures by Z. Trócsányi, J. Ellis, B. Gavelo, Z. Ligetti, C. Csaki
and D. Gorbunov at the 2013 European School.
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QCD for collider experiments

Z. Trócsányi*
Department of Physics and MTA-DE Particle Physics Research Group, University of Debrecen,
Debrecen, Hungary

Abstract
These lectures are intended to provide the theoretical basis of describing high-
energy particle collisions at a level appropriate to graduate students in exper-
imental high energy physics. They are supposed to be familiar with quantum
electrodynamics, the concept of Feynman rules, Feynman graphs and compu-
tation of the cross section in quantum field theory.

When you measure what you are speaking about and express it in numbers, you know something about
it, but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin

1 QCD as quantum field theory of the strong interaction
The Lagrangian of the quark-gluon field based on a non-abelian gauge symmetry was first proposed in
Ref. [1] forty years ago. The paper discussed the advantages of the colour-octet picture. Since then an
immense amount of research lead to a lot of interesting results and a deep understanding of the strong
interaction based on this quantum field theoretical description of chromo-dynamics, QCD. Today we are
convinced that QCD is the correct description of the strong interaction, yet we still lack a complete and
satisfactory solution. In such a situation one may set two goals: (i) either an ambitious one: solve QCD,
or (ii) a more pragmatic one: develop tools for modeling particle interactions in high energy collider
experiments. In these lectures we go for the second one.

Our aim is to understand high-energy particle collisions quantitatively from first principles. Ex-
amples of such events recorded by the CMS experiment at the LHC are shown in Fig. 1. In these events
kinematic characteristics of particles, such as energy and momentum, are collected. Analyzing many
such events, we can produce distributions of kinematic variables, for instance, differential distribution
of the inclusive jet cross section with respect to pseudorapidity, dσ/dη. There is a long way from the
QCD Lagrangian to making predictions for such distributions, full of difficulties. I clearly do not expect
students in high energy experimental physics to be able to solve those difficulties. Instead I would like
to explain the consequences of solving the difficulties, because an incomplete understanding of these
consequences can easily lead to false interpretation of correct measurements.

1.1 The QCD Lagrangian
The quantum field theory (QFT) of the strong interactions is a part of the Standard Model (SM) of
elementary particle interactions. The SM is based upon the principle of local gauge invariance. The
underlying gauge group is

SU(3)c × SU(2)L × U(1)Y ,

where c stands for “colour”, L for “left” (or “weak isospin”) and Y for “hypercharge”. As we concentrate
on QCD, which is based on SU(3)c gauge symmetry, we can write the Lagrangian as

LQCD = L(0)
QCD + Lsources , (1)
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Fig. 1: A violent proton-proton collision resulting in two hard jets. Left: tracks and energy deposits in the calorime-
ters, right: energy deposits represented by towers in the pseudorapidity–azimuthal angle plane.

where
L(0)

QCD = LC + LGF + LG , (2)

while the electroweak sector (based on the SU(2)L × U(1)Y symmetry) act as sources. In Eq. (2) LC

is the classical Lagrangian, while LGF is the gauge-fixing term. The last piece is the ghost Lagrangian,
absent if we use physical gauges, which will be our choice.

To find the classical Lagrangian, one starts with the Lagrangian of free Dirac fields,

L(0)
q (qf , mf ) =

Nc∑

k,l=1

q̄kf (iγµ∂
µ −mf )kl q

l
f , (3)

where the γµ matrices satisfy the Clifford algebra,

{γµ, γν} = 2gµν ,
{
γµ, γ5

}
= 0 . (4)

The matter field content is dictated by the electroweak sector. The fermion fields are called quark
fields: qkf with masses mf and f = 1, . . . , nf , where nf is the number of different flavours. The
quark fields also have an additional degree of freedom: colour, labelled by k, that can take Nc values,
k = 1, . . . , Nc. The precise matter content is shown in Table 1.

If we apply a transformation qk → q′k = Uklq
l, with

Ukl = exp



i

N2
c−1∑

a=1

ta θa




kl

≡ exp {it · θ}kl ,

where θa ∈ R, then the Lagrangian of free Dirac fields remains invariant, L(0)
q (q) = L(0)

q (q′). The
(ta)kl are Nc × Nc matrices that constitute the fundamental representation of the generators T a (called

2
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Table 1: The six quark flavours as dictated by the electroweak sector. Their baryon number is B = 1/3. Each
quark flavour comes in three colours, not shown. For light flavours (u, d and s) the mass values are not without
controversy and still under investigation. For flavours c and b the mass values are running MS quark masses at
2 MeV (see definition below), while for t it is the pole mass.

f 1 2 3 4 5 6
qf u d s c b t
mf ≈ 3 MeV ≈ 6 MeV ≈ 100 MeV 1.2 GeV 4.2 GeV 172.6 GeV

colour-charge operators), which satisfy the Lie algebra:
[
T a, T b

]
= i fabc T c , with normalizaiton TR(T aT b) = TRδ

ab . (5)

For SU(3) the matrices ta are the Gell-Mann matrices (see e.g., [2]).

Next we ask the question if we can make L(0)
q (q) invariant under local SU(Nc) transformations.

The answer is yes, we can through the following steps:

1. Introduce Aaµ coloured vector field with the following transformation property under SU(Nc)
transformations:

t ·Aµ −→ t ·A′µ = U (x) t ·AµU
−1 (x) +

i

gs
(∂µU (x))U−1 (x) ,

where U (x) = exp {it · θ(x)}.
2. Replace ∂µδkl with Dµ [A]kl = ∂µδkl + igs (t ·Aµ)kl. This covariant derivative Dµ [A]kl ql (x)

transforms the same way as the quark field qk (x).
3. Introduce a kinetic term

Lg(A) = −1

4
F aµν [A]F aµν [A] ,

with the non-abelian field strength F aµν given by

F aµν [A] = ∂[µA
a
ν] − gs fabcAbµAcν︸ ︷︷ ︸

“Aµ×Aν”

,

so the Lagrangian contains cubic and quartic terms of the gauge field.

The constants fabc are the structure constants of the Lie algebra. The structure constants are completely
antisymmetric and are related to the adjoint representation of the generators F abc by F abc = −ifabc.

Thus we find that the gauge boson field, called gluon field, is a consequence of the local SU(Nc)
(gauge) invariance. The classical Lagrangian of QCD is a sum of interacting Dirac Lagrangians for spin
1/2 fermion fields and a Lagrangian of a gauge field,

LC = Lf + Lg =

nf∑

f=1

Lq(qf , mf ) + Lg(A) , (6)

where

Lq(qf , mf ) =

Nc∑

k,l=1

q̄kf (iγµD
µ[A]−mf )kl q

l
f . (7)
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The gluon field is also coloured and self-interacting. In fact, these self-interactions are the sources of the
main difference between QED and QCD. We shall see that as a result, QCD is a ‘perfect theory’ in the
sense that it is asymptotically free. Furthermore, among quantum field theories in d = 4 dimensions only
non-Abelian gauge theories are asymptotically free (see discussion after Eq. (21)). It is also plausible
that the self-interactions are the sources of colour confinement, i.e., the colour neutrality of hadrons, but
we do not have a proof based on first principles.

It is clear that there is an unprecedented large number of degrees of freedom we have to sum over
when computing a cross section:

1. spin and space-time as in any field theory, not exhibited above,
2. flavour, which also appears in electroweak theory, and colour, which is specific to QCD only.

As a result computations in QCD are rather cumbersome. During the last two decades a lot of effort was
invested and great progress was made to find “simple” ways of computing QCD cross sections and to
automate the computations.

Exercise 1.1 Show that in QED the covariant derivative transforms the same way as the field itself, i.e.,
if f(x)→ U(x)f(x) then Dµf(x)→ U(x)Dµf(x), where Dµ = ∂µ + i eAµ.

Exercise 1.2 Show that in QED
[Dµ, Dν ] = i e Fµν ,

where Dµ = ∂µ + i eAµ.

Exercise 1.3 Show that the generators of a special unitary group are traceless and hermitian.

Exercise 1.4 The generators in the fundamental representation of SU(2) are the Pauli matrices divided
by two:

taf =
σa

2
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

The adjoint representation of a group is defined as

(tbA)ac = ifabc .

Compute the generators in the adjoint representation of SU(2).

We define the constant TR for a representation R by the condition

Tr[taRt
b
R] = δabTR .

Compute this constant from the explicit form of the fundamental (TF) and the adjoint (TA) representation.

The quadratic Casimir C2(R) of a representation R is defined by

C2(R)1 =
∑

a

taRt
a
R .

Compute the quadratic Casimir in the fundamental (CF) and the adjoint (CA) representation of SU(2)
using the explicit form of the representation matrices.

Exercise 1.5 Show that in SU(N) gauge theories

[Dµ, Dν ] = igF aµνT
a with F aµν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν .

4
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Exercise 1.6 Show that F aµν transforms according to the adjoint representation of SU(N):

F aµν → F aµν − fabcθbF cµν .

1.2 Feynman rules
The Feynman rules can be derived from the action,

S = i

∫
d4x(Lf + Lg) ≡ S0 + SI , where S0 = i

∫
d4xL0 , and SI = i

∫
d4xLI .

In this decomposition L0 contains the terms bilinear in the fields and LI does all other terms, called
interactions. The gluon propagator ∆g,µν(p) is the inverse of the bilinear term in Aµ. In momentum
space we have the condition (we suppress colour indices as these terms are diagonal in colour space)

∆g,µν (p) i
[
p2gνρ − pνpρ

]
= δρµ . (8)

However, [
p2gνρ − pνpρ

]
pρ = 0 , (9)

which means that the inverse does not exist, the matrix
[
p2gνρ − pνpρ

]
is not invertible. We can exploit

gauge invariance to rewrite the classical Lagrangian in a physically equivalent form (action remains the
same) such that ∆g,µν exists, which is called gauge fixing. This amounts to imposing a constraint on
Aµ by adding a term to the Lagrangian with a Lagrange multiplicator (like in classical mechanics). For
example, the covariant gauges are defined by requiring ∂µAµ (x) = 0 for any xµ. Adding

LGF = − 1

2λ
(∂µA

µ)2 , λ ∈ R,

to L, the action S remains the same. The bilinear term becomes in this case

i

(
p2gνρ −

(
1− 1

λ

)
pνpρ

)
,

with inverse

∆g,µν (p) = − i

p2

[
gµν − (1− λ)

pµpν
p2

]
.

Of course, physical results must be independent of λ. It is customary to choose λ = 1 (called covariant
Feynman gauge).

In covariant gauges unphysical degrees of freedom (longitudinal and time-like polarizations) also
propagate, and these unphysical degrees of freedom are canceled by, so-called, ghost contributions. This
can be avoided by choosing axial (physical) gauges, defined with an arbitrary, but fixed vector nµ,
different from pµ:

LGF = − 1

2λ
(nµAµ)2 ,

which leads to

∆g,µν (p, n) = − i

p2

(
gµν −

pµnν + nµpν
p · n +

(
n2 + λ p2

)
pµpν

(p · n)2

)
.

Since p2 = 0, we have:

∆g,µν (p, n) pµ = 0 , ∆g,µν (p, n) nµ = 0 .

5
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Thus, only 2 degrees of freedom propagate (transverse ones in the nµ+pµ rest-frame). A usual choice is
n2 = 0, λ = 0, called light-cone gauge. The price we pay by choosing this gauge instead of a covariant
one is that the propagator looks more complicated and it diverges when pµ becomes parallel to nµ. In
this gauge

∆g,µν(p, n) =
i

p2
dµν(p, n)

with
dµν (p, n) = −gµν +

pµnν + nµpν
p · n =

∑

λ=1,2

ε(λ)
µ (p)ε(λ)

ν (p)∗ , (10)

where ε(λ)
µ (p) is the polarization vector of the gauge field (photon in QED, gluon in QCD).

1.3 Feynman rules for QCD
Propagators (Feynman’s ‘+iε’-prescription is assumed, but not shown):

gluon propagator: ∆ab
g,µν (p) = δab ∆g,µν (p) −→ a, µ b, ν

p

quark propagator: ∆ij
q (p) = δij i /p+m

p2−m2 −→ i j
p

ghost propagator: ∆ab (p) = δab i
p2 −→ a b

p

(not needed in physical gauges)

Vertices:

quark-gluon: Γµ, agqq̄ = −igS (ta)ijγ
µ −→

j i

a , µ

three-gluon: Γabcαβγ (p, q, r) = −igs (F a)bc Vαβγ (p, q, r) −→
b, β c, γ

a, α

q

p

r

Vαβγ (p, q, r) = (p− q)γ gαβ + (q − r)α gβγ + (r − p)β gαγ , pα + qα + rα = 0

four-gluon: Γabcdαβγδ = −ig2
s




+fxac fxbd (gαβgγδ − gαδgβγ)
+fxad fxbc (gαβgγδ − gαγgβδ)
+fxad fxbc (gαγgβδ − gαδgβγ)


 −→

a, α

c, γ

b, β

d, δ

ghost-gluon: Γµ, agηη̄ = −igS (F a)ij p
µ −→ (not needed in physical gauges).j i

a , µ

The four-gluon vertex differs from the rest of the Feynman rules in the sense that it is not in
a factorized form of a colour and a tensor factor. This is an inconvenient feature because it prevents
the separate summation over colour and Lorentz indices and complicates automation. We can however
circumvent this problem by introducing a fake field with propagator

6

Z. TRÓCSÁNYI

70



a b
γ δ

α β
= i

2δ
ab(gαβgγδ − gαδgβγ) , that couples only to the gluon with vertex

a, α

c, γ

x
ξ

ζ
= i
√

2gs f
xacgαξgγζ .

We can check that a single four-gluon vertex can be written as a sum of three graphs. This way the
summations over colour and Lorentz indices factorize completely, which helps automation and makes
possible for us to concentrate on the colour algebra independently of the rest of the Feynman rules.

Finally, we have to supply the following factors for incoming and outgoing particles:

• outgoing fermion: ū (p) • outgoing antifermion: v (p)

• incoming fermion: u (p) • incoming antifermion: v̄ (p)

• outgoing photon or gluon: ε(λ)
µ (p)∗ • incoming photon or gluon: ε(λ)

µ (p) .

Exercise 1.7 Show that the four-gluon vertex can be written as a sum of three graphs, with the help of
the fake field such that in each graph the colour and Lorentz indices are factorized:

1.4 Basics of colour algebra
Examining the Feynman rules, we find that there are two essential changes as compared to QED. One is
that there is an additional degree of freedom: colour. The second is that there are new kind of couplings:
the self couplings of the gauge field. We now explore the effect of the first.

In order to see how to treat the colour degrees of freedom, we set to one all but the colour part of
the Feynman rules and try first to develop an efficient technique to compute the coefficients involving
the colour structure. This is possible because the colour degrees of freedom factorize from the other
degrees of freedom completely. We use the following graphical representation for the colour charges in
the fundamental representation:

j i

a
= (ta)ij .

The normalization of these matrices is given by Tr
(
tatb
)

= TRa ab b = TR δ
ab .

The usual choice is TR = 1
2 , but TR = 1 is also used often. We shall use both.

In the adjoint representation the colour charge T a is represented by the matrix (F a)bc that is related
to the structure constants by

(F a)bc =
(
F b
)
ca

= (F c)ab = −i fabc =

b c

a

where F a with a = 1, . . . , (N2
c − 1) are

(
N2

c − 1
)
×
(
N2

c − 1
)

matrices which again satisfy the com-
mutation relation (5). The graphical notation in the adjoint representation is not unique. For the matrix

7
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(F a)bc we assume an arrow pointing from index c to b, opposite to which we read the indices of (F a)bc
(similarly as for the matrices ta). On the structure constants the indices are not distinguished, there-
fore arrows do not appear. However, these are completely antisymmetric in their indices, therefore, the
ordering matters. By convention, in the graphical representation, the ordering of the indices is counter-
clockwise. The representation matrices are invariant under SU(N) transformations.

The sums
∑

a t
a
ijt

a
jk and Tr

(
F aF b

)
have two free indices in the fundamental and adjoint represen-

tation, respectively. These are invariant under SU(N) transformations, therefore, must be proportional
to the unit matrix, ∑

j,a

taijt
a
jk = CF δik , Tr

(
F aF b

)
= CA δ

ab ,

which is depicted graphically as

CF

CA

ijjk ik

b baa .

Here CF and CA are the eigenvalues of the quadratic Casimir operator in the fundamental and adjoint
representation, respectively. In the familiar case of angular momentum operator algebra (SU(2)), the
quadratic Casimir operator is the square of the angular momentum with eigenvalues j(j + 1). The
fundamental representation is two dimensional, realized by the (half of the) Pauli matrices acting on
two-component spinors, when j = 1/2 and CF = 1/2(1/2 + 1) = 3/4. In the adjoint representation
j = 1 and CA = 2. Below we derive the corresponding values for general SU(N).

The commutation relation (5) can be represented graphically by

a b ab a b

.

Multiplying this commutator first with another colour charge operator with summing over the fermion
index and then taking the trace over the fermion line (i.e., multiplying with δik) we obtain the resolution
of the three-gluon vertex as traces of products of colour charges:

TR

= Tr(tatbtc)− Tr(tctbta) = iTRf
abc .

We now show some examples of how one can compute the colour algebra structure of a QCD
amplitude, in particular we will also find an explicit value for CF and CA. Taking the trace of the
identity in the fundamental and in the adjoint representation we obtain

= Nc , = N2
c − 1 ,

respectively. Then, using the expressions for the fermion and gluon propagator corrections, we immedi-
ately find

8
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= CFNc , = CA

(
N2

c − 1
)

.

The generators are traceless,

= Tr (ta) = 0 , = Tr (F a) = 0 .

We can now find the value of CF as follows. On the one hand we know that

TR CFNc

while on the other, the left hand side is also equal to TR

(
N2

c − 1
)
. Thus

CF = TR
N2

c − 1

Nc
.

Analogously one can find
CA = 2TRNc .

As the colour factors CF and CA depend on Nc, their measurement gives information on the number
of colours. The experiments of the Large Electron Positron collider measured the values of the colour
factors based on fits of theoretical predictions [3] to four-jet angular distributions that are sensitive to both
CF and CA. The result of the simultaneous measurement of the colour factors and the strong coupling
by the OPAL collaboration is shown in Fig. 2 [4]. The values corresponding to Nc = 3 are marked with
the star, just in the middle of the confidence-ellipses.

Fig. 2: Measurement of the colour factors by
the LEP collaborations [4]

The expression
∑

a t
a
ijt

a
kl is invariant under SU(N)

transformations, therefore has to be expressible as a linear
combination of δilδkj and δijδkl (the third combination of
Kronecker δ’s is not possible, the direction of arrows do not
match). The two coefficients can be obtained by making con-
tractions with δilδjk and δijδkl. Thus we obtain the Fierz
identity,

∑

a

taijt
a
kl = TR

(
δilδkj −

1

Nc
δijδkl

)
,

or graphically:

TR
1

Nc

.

These graphical rules make the evaluation of colour
algebra easy. Nevertheless, nowadays computer alge-
bra codes make computation of colour sums an auto-
mated procedure. For instance, you may try In[1]:=
Import["http://www.feyncalc.org/install.m"] in your Mathematica session to see one solution.

Exercise 1.8 Consider the process qq̄ → ggg. Compute the color structures that appear in the squared
matrix element.

9
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Exercise 1.9 Try using the Fierz identity to obtain −TRCF

.

Exercise 1.10 Determine the color factors A,B,C in the following equations:

C

B

A

,

C

B

A

, C

B

A

.

1.5 Are we done?
We now have the Feynman rules with colour and the rest factorized, and we gained some insight how
to perform the colour algebra. Thus it seems that we are in the position to compute the cross section of
any process up to the desired accuracy in perturbation theory (PT), just as we can do in QED. So it may
appear that conceptually we are done. Well, we are going to see big surprises!

2013.06.09. Zoltán Trócsányi: QCD@CERN School 
of Physics 2013 33 

Fig. 3: Illustration of the approximation of hadronic final
states by partonic events in electron-positron annihilation: the
sprays of hadrons (called jets) are assumed to originate from
primary quarks and gluons, thus approximated by quarks and
gluons as shown by the magnification

The first conceptual challenge is due to
a phenomenological observation. In QED, PT
is applicable because the elementary excita-
tions of the quantum fields, the electrons and
photons, can be observed as stable, free par-
ticles. Thus asymptotic states are parts of the
physical reality. On the contrary, free quarks
and gluons (usually called simply partons)
have never been observed in nature. This ex-
perimental fact can be reformulated saying
that the probability of observing a final state
with any fixed number of on-shell partons is
zero. This negative result has been turned into
the principle of ‘quark confinement’. Thus it
is questionable whether a QFT of quark and
gluon fields can describe the observed world
of particles where in addition to leptons only
hadrons have been found. In fact, a main
research project at the LEP was to find an
answer to this question in a well controlled
quantitative manner. It turned out that the an-
swer is positive if we make an assumption that
we cannot prove from first principles:

The result of a low-order perturbative computation in QCD is an approximation to suffi-
ciently inclusive hadronic cross section if (i) the total centre-of-mass energy Q of partons is
much larger than the mass of quarks, Q >> mq, and (ii) Q is far from hadronic resonances
and thresholds.

We shall define precisely what ‘sufficiently inclusive’ means later. Predictions made on the basis of this
assumption agree with measurements (e.g. made at LEP) within the expected accuracy of the prediction,
which we are to define also later.
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Based on this assumption, it makes sense to make predictions with quark and gluon asymptotic
states. However, in QCD the complexity of the Feynman rules will make higher order computations
prohibitive. Indeed, the largest effort in QCD computations during the past 20 years went into devising
ever more efficient methods to decrease the algebraic complexity of the computations. This research is
driven by the observation that the QCD Lagrangian is highly symmetric, which has to be reflected in
the final results. Thus the complications somehow appear mainly because with our rules we artificially
introduce complications at intermediate steps of the computations, which cancels to large extent in the
final formulae. Learning about the symmetries of QCD is interesting and useful not only for technical
purposes, so let us make an inventory of those.

1.6 Symmetries of the classical Lagrangian
The symmetries can be grouped into two large categories: exact symmetries and approximate ones.
Space-time symmetries are exact. These consist of invariance against continuous transformations: trans-
lations and Lorentz-transformations (rotations and boosts). In addition Lcl is invariant under scale trans-
formation:

xµ → λxµ Aµ(x)→ λ−1Aµ(λx) q(x)→ λ−3/2q(λx) ,

and conformal transformations, which we do not detail here. The Lagrangian is also invariant under
charge conjugation (C), parity (P) and time-reversal (T), in agreement with observed properties of strong
interactions (C, P and T violating strong decays are not observed).

We already discussed exact symmetry in colour space: local gauge invariance. In addition to
the classical Lagrangian of Eq. (6), there exists additional gauge invariant dimension-four operator, the
Θ-term:

LΘ =
Θgs
32π2

∑

a

F aµνF̃
a,µν , with F̃ a,µν =

1

2
εµναβF aαβ ,

that violates P and T. As experimentally Θ < 10−9, we set Θ = 0 in perturbative QCD.

Another interesting feature of Lcl is that it is almost supersymmetric. For one massless flavour

Lcl = −1

4

∑

a

F aµνF
a,µν + q̄i /Dq ,

which is very similar to the Lagrangian of N = 1 supersymmetric gauge theory,

LSUSY
cl = −1

4

∑

a

F aµνF
a,µν + λ̄i /Dλ .

The only difference is that the quark q transforms under the fundamental, while the gluino λ under the
adjoint representation of the gauge group.

An important approximate symmetry of the classical Lagrangian is related to the quark mass-
matrix. Let us introduce the quark flavour triplet

ψ =




u
d
s


 =




q1

q2

q3


 ,

with each component being a four-component Dirac spinor, and the combinations

P± =
1

2

(
1± γ5

)
. (11)

The latter are projections:

P+ P− = P− P+ = 0 , P 2
± = P± , P+ + P− = 1 .
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It follows from Clifford-algebra that γµP± = P∓γµ. We define ψ± = P±ψ. Using γ2
5 = 1, we find that

ψ± are eigenvectors of γ5 with ±1 eigenvalues:

γ5ψ± = ±ψ± .

From the definition of the Dirac adjoint, ψ = ψ†γ0, we obtain ψ± = ψP∓. Thus the quark sector of the
Lagrangian can be rewritten in terms of the chiral fields ψ±:

Lcl = ψ i γµD
µ ψ = ψ(P+ + P−) i γµD

µ (P+ + P−)ψ = ψP+ i γµD
µ P−ψ + ψP− i γµD

µ P+ψ =

= ψ− i γµD
µ ψ− + ψ+ i γµD

µ ψ+ = L− + L+ ≡ LL + LR .

This decomposition would not work if the gluon field in the covariant derivative were not Lorentz-
vector. In this chiral form the left- and right-handed fields decouple, so the Lagrangian is invariant under
separate U(Nf) transformations for the left- and right-handed fields, i.e., under UL(Nf)×UR(Nf), hence
it is called chiral symmetry. Indeed, if (gL, gR) ∈ UL(Nf)× UR(Nf), then under the transformation

ψL → gLψL , ψL → ψLg
†
L , gR = 1

LL remains invariant. This symmetry is exact if the quarks are massless. The group elements can be
parametrized using 2N2

f real numbers {α, αa, β, βb} (a, b = 1 , . . . N2
f − 1),

(gL, gR) =

(
exp(iα) exp(iβ) exp

(
i
∑

a

αaT
a

)
exp

(
i
∑

b

βbT
b

)
,

exp(iα) exp(−iβ) exp

(
i
∑

a

αaT
a

)
exp

(
−i
∑

b

βbT
b

))

∈ UV(1)⊗ SUL(Nf)⊗ UA(1)⊗ SUR(Nf) ,

where the matrices T a represent the generators of the group (Nf × Nf matrices). The transforma-
tions (exp (i

∑
a αaT

a), exp (i
∑

a αaT
a)), acting as ψ → exp (i

∑
a αaT

aI)ψ, form a vector subgroup
SUV(Nf). The transformations (exp

(
i
∑

b βbT
b
)
, exp

(
−i
∑

b βbT
b
)
), acting asψ → exp

(
i
∑

b βbT
bγ5

)
ψ,

however, do not form an axial-vector subgroup because

[T aγ5, T
bγ5] = i

∑

c

fabcT cI (γ2
5 = I 6= γ5) .

This chiral symmetry is not observed in the hadron spectrum. Therefore, we assume that vacuum
has a non-zero VEV of the light-quark operator,

〈0|q̄q|0〉 =
〈
0|ūu + d̄d|0

〉
' (250 MeV)3 ,

a chiral condensate that connect left- and right-handed fields,

〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 .

The condensate breaks chiral symmetry spontaneously to SUV(Nf)⊗UV(1). This remaining symmetry
explains the existence of good quantum numbers of isospin and baryon number, as well as the appearance
of N2

f − 1 = 8 massless mesons, the Goldstone bosons. As non-zero quark masses violate the chiral
symmetry, which is broken spontaneously, the Goldstone bosons are not exactly massless. Thus we
have natural candidates for the Goldstone bosons: we can identify those with the pseudoscalar meson
octet. In practice, we assume exact chiral symmetry and treat the quark masses as perturbation. This
procedure leads us to chiral perturbation theory (χPT) [5], which is capable to predict the (ratios of)
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masses of light quarks [6, 7], scattering properties of pions [8] and many more. Although, χPT is a non-
renormalizable QFT, it can be made predictive order by order in PT if the measured values of sufficiently
many observables are used to fix the couplings of interaction terms at the given order.

The QCD Lagrangian was written forty years ago. Since then many attempts were tried to solve
it and mature fields emerged that aim at solving the theory in a limited range of physical phenomena.
For instance, χPT is a PT that uses low-energy information (in the MeV range) to explain the world
of hadrons and masses of light quarks. In the same energy range non-perturbative approaches, notably
lattice QCD and sum rules have been developed for the same purpose. By now it is possible to explain
the light hadron spectrum from first principles using lattice results [9]. The main goal at colliders, our
focus in these lectures, is different. We shall prove that PT can give reliable predictions for scattering
processes at high energies, which is the topic of jet physics.

We have seen that the classical QCD Lagrangian shows many interesting symmetry properties
that can be utilized for (i) easing computations, (ii) checking results, (iii) hinting on solving QCD. We
shall see that some of these symmetries are violated by quantum corrections, which leads to important
physical consequences. In QCD an important example is scaling violations. Another example is the axial
anomaly which provides strong constraints on possible QFT’s, but it is discussed within the electroweak
theory usually.

1.7 What is scaling?
Let us consider a dimensionless physical observable R that depends on a large energy scale R = R(Q2).
Large means that Q is much bigger than any other dimensionful parameter, for instance, masses of
quarks. Thus we assume that these other dimensionful parameters can be set zero.1 Classically, dimR =
0 and, since Q is dimensionful, it follows that dR

dQ = 0. So limQ2→∞R =constant, which is called
scaling.

In these lectures we do not have room for a complete description of ultraviolet (UV) renormal-
ization of QCD. We simply state that in a renormalized QFT R depends also on another scale, the
renormalization scale µR. So

R = lim
Q2→∞

R

(
Q2

µ2
R

, αs

(
µ2

R

))
6= constant,

R need not be a constant. This is called scaling violation. The first term in parenthesis is the only
dimensionless combination of Q and µR. However, µR is arbitrary. If R depended on µR, then its value
could not be predicted. For simplicity from now on we drop the subscript “R” from µR. As µ is an
arbitrary, un-physical parameter (the classical Lagrangian did not contain µ), we expect that measurable
(physical) quantities cannot depend on it, which is expressed by the renormalization group equation
(RGE):

0 = µ2 d

dµ2
R

(
Q2

µ2
, αs

(
µ2
))

=

(
µ2 ∂

∂µ2
+ µ2 ∂αs

∂µ2

∂

∂αs

)
R .

We can simplify this equation a bit by introducing the new variable t and the function β(αs),

t = ln
Q2

µ2
, β(αs) = µ2 ∂αs

∂µ2

∣∣∣∣
αs fixed

. (12)

Then the RGE becomes (
− ∂

∂ t
+ β(αs)

∂

∂αs

)
R
(
et, αs

)
= 0 . (13)

1We shall study the validity of this assumption in the next subsection.
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To present the solution of this partial differential equation, we introduce the running coupling
αs(Q

2), defined implicitly by

t =

∫ αs

(
Q2
)

αs

dx

β(x)
, with αs ≡ αs

(
µ2
)
, (14)

where αs ≡ αs

(
µ2
)

is an arbitrarily fixed number. The derivative of Eq. (14) with respect to the variable
t gives

1 =
1

β (αs (Q2))

∂αs

(
Q2
)

∂ t
, which implies β

(
αs

(
Q2
))

=
∂αs

(
Q2
)

∂ t
.

The derivative of Eq. (14) with respect to αs gives

0 =
1

β (αs (Q2))

∂αs

(
Q2
)

∂αs
− 1

β(αs)

∂αs

∂αs
,

from which it follows that
∂αs

(
Q2
)

∂αs
=
β
(
αs

(
Q2
))

β(αs)
.

It is now easy to prove that the value of R for µ2 = Q2, R
(
1, αs

(
Q2
))

solves Eq. (13):

− ∂

∂ t
R
(
1, αs

(
Q2
))

= − ∂ R

∂αs (Q2)

∂αs

(
Q2
)

∂ t
= −β

(
αs

(
Q2
)) ∂ R

∂αs (Q2)

and

β(αs)
∂

∂αs
R
(
1, αs

(
Q2
))

= β(αs)
∂αs

(
Q2
)

∂αs

∂ R

∂αs (Q2)
= β

(
αs

(
Q2
)) ∂ R

∂ αs (Q2)
.

It then follows that the scale-dependence in R enters only through αs

(
Q2
)
, and we can predict the

scale-dependence of R by solving Eq. (14), or equivalently,

∂αs

(
Q2
)

∂ t
= β

(
αs

(
Q2
))
. (15)

So far our analysis was non-perturbative. Assuming that PT is applicable, which we shall discuss
at the end of this subsection, we may try to solve Eq. (15) in PT where the β-function has the formal
expansion:

β(αs) = −αs

∞∑

n=0

βn

(αs

4π

)n+1
. (16)

The first four coefficients are known from cumbersome computations [10]

β0 =
11

3
CA −

4

3
TR nf > 0 , β1 =

34

3
C2
A −

20

3
CATR nf − 4CFTR nf ,

β2 =
2857

2
− 5033

18
nf +

325

54
n2

f , β3 = 29243− 6946.3nf + 405.9n2
f + 1.5n3

f .

(17)

The first two coefficients in the expansion of the β function are independent of the renormalization
scheme. The second two coefficients in Eq. (17) are valid in the MS renormalization scheme.2

Another often used convention is

β(αs) = −b0α2
s

[
1 +

∞∑

n=1

bn α
n
s

]
, (18)

2As we have not gone through the renormalization procedure, we cannot define precisely what we mean by ‘renormalization
scheme’. Various schemes differ by finite renormalization of the parameters and fields in the Lagrangian.
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where b0 =
β0
4π and b0b1 =

β1

(4π)2 , thus b1 =
β1

4πβ0
.

If αs

(
Q2
)

is small we can truncate the series. The solution at leading-order (LO) accuracy is

Q2 ∂αs

∂ Q2
=
∂αs

∂ t
= −b0α2

s ⇒ −
[

1

αs (Q2)
− 1

αs (µ2)

]
= −b0t ⇒ αs

(
Q2
)

=
αs

(
µ2
)

1 + b0t αs (µ2)
, (19)

which gives αs

(
Q2
)

as a function of αs

(
µ2
)

if both are small; αs

(
µ2
)

is a number to be measured. We
observe that:

αs

(
Q2
) Q2→∞−→ 1

b0t

Q2→∞−→ 0 . (20)

This behaviour is called asymptotic freedom. The sign of b0 (positive for QCD) plays a crucial role
in establishing whether or not a theory is asymptotically free. If it is, then the use of PT is justified:
the higher Q2, the smaller the coupling. The coefficient b0 is easiest to compute in background field
gauge [11] where only three graphs contribute, the quark and gluon loops:

�  justifies the use of PT  
�  sign of b0 is crucial 
�  in background field gauge 2 graphs 

contribute: 

�  quark loop negative: -4TRNf/3 
�  gluon loop positive: 11CA/3 

2013.06.09. Zoltán Trócsányi: QCD@CERN School 
of Physics 2013 8 

, (21)

and a similar ghost loop. The contribution of the quark loop is negative −4
3TRnf , while that of the

gluon+ghost loop is positive 11
3 CA. (We knew the colour factors immediately, only the coefficients have

to be computed!) The net result is positive up to nf < 17 in QCD. In 2004 D.J. Gross, H.D. Politzer and
F. Wilczek were awarded the Nobel prize for their discovery of asymptotic freedom in QCD [12, 13].

Clearly, it is the gluon self-interaction that makes QCD perfect in PT. In QED, in the absence of
photon self-interaction, b0 < 0, hence the coupling increases with energy, but remains perturbative up to
the Planck scale (' 1019 GeV) where we expect that any known physics breaks down.

Asymptotic freedom gives rationale to perturbative QCD, but we shall see that LO accuracy is not
enough. The analysis is also simple at next-to-leading order (NLO):

[
α2

s (1 + b1αs)
]−1 ∂αs

∂ t
= −b0.

αs

(
Q2
)

is then given implicitly by the equation

1

αs (Q2)
− 1

αs (µ2)
+ b1 ln

αs

(
Q2
)

αs (µ2)
− b1 ln

1 + b1αs

(
Q2
)

1 + b1αs (µ2)
= bt ,

which can be solved numerically.

Using the formula for the sum of the geometric series, (1 + x)−1 =
∑∞

j=0(−x)j and recalling
Eq. (19), we find that the running coupling sums logarithms,

R
(
1, αs

(
Q2
))

= R0 +R1αs

(
µ2
) ∞∑

j=0

[
− αs

(
µ2
)
b0t
]j
.

The NLO term R2α
2
s gives logarithms with one power less in each term.

1.8 Measuring αs(µ
2)
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Fig. 4: Results of measurements of the strong coupling at
different scales. The theoretical prediction with four-loop
running, fixed at µ = MZ is marked as ‘QCD’.

We know αs

(
Q2
)

if αs

(
µ2
)

is known. We there-
fore, have to measure αs at some scale µ. The
perturbative solution of the renormalization group
equation (RGE, Eq. (13)) is never unique. The dif-
ference between two solutions at O (αns ) is sup-
pressed by αs, i.e. at O

(
αn+1

s

)
. Nevertheless,

this difference can lead to significant difference
in αs

(
Q2
)

if µ2 and Q2 are far from each other,
which is important in present day precision mea-
surements. Therefore, the scale µ is chosen to be
µ = MZ becauseMZ = 91, 2 GeV is not far from
the scales where αs(Q

2) is used in current exper-
imental analyses. In Figs. 4 and 5 we show the
present status of αs measurements from Ref. [14].

Fig. 5: Results of different measurements of
the strong coupling run to µ = MZ

Another approach to solving the RGE is to introduce a refence scale Λ by

ln
Q2

Λ2
=

∫ ∞

αs

(
Q2
)

dx

β(x)
.

The scale Λ indicates where the coupling becomes strong. The following exercise is to explore the
characteristics of this choice.

Exercise 1.11 The running of the strong coupling constant is given by Eq. (12). The perturbative expan-
sion of the QCD beta function is given by Eq. (18) with b0, b1 ≥ 0. Determine (i) the expression for the
coupling constant in leading order (b0 6= 0, b1 = 0) and the corresponding scale Λ0 (see below) (ii) the
expression for the coupling constant in next-to-leading order (b0 6= 0, b1 6= 0) and the corresponding
scale Λ1 (see below).

Hints:

1. Solve the differential equation for α(µ); you’ll get an integration constant.
2. Express your result in the form

α(µ) =
1

K ln( µ
2

Λ2
0
)
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where K is a constant.
3. Solve the differential equation using b1 6= 0

∫
dα

1

−b0α2 − b1α3
=
b0 + b1α log(α)− b1α log(b0 + b1α)

b20α
+K

4. This time the solution cannot be solved for α analytically. One can nevertheless find an approxi-
mate solution by expanding α in log µ2

Λ2
1
. The constant K is not equal to the one in the first part of

this exercise.
5. Cast your equation for α into the form

α =
1

K ln µ2

Λ2
1

1

1 + c1
ln(c2+b0α)

ln µ2

Λ2
1

with a suitable choice of Λ1.
6. Expand the right hand side of your equation in t = 1

ln µ2

Λ2
1

and keep only the first order term. Use

the expansion
1

1 + C1 t ln(C3
1
t + C2)

= 1 + t C1 ln(
1

t
) +O(t) .

1.9 Quark masses and massless QCD
Quark masses mq are parameters of LQCD like the gauge coupling, which need to be renormalized. In
QED the electron mass is measured in the laboratories at µ2

R = 0 (classical limit). We cannot similarly
isolate a quark at µ2

R = 0 (at low scale quarks are confined). Instead, we can perform a similar RGE
analysis as with αs. For simplicity we assume one quark flavour with mass m, which is yet another
dimensionful parameter, so the RGE becomes:

[
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− γm(αs)m

∂

∂m

]
R

(
Q2

µ2
, αs,

m

Q

)
= 0 , (22)

where γm is called the mass anomalous dimension and the minus sign before γm is a convention. In PT
we can write the mass anomalous dimension as

γm(αs) = c0αs

(
1 + c1αs +O

(
α2

s

))
,

with known coefficient up to c3. At NLO accuracy we need only c0 = 1
π and c1 =

303−10nf
72π . As R is

dimensionless, the dependence on the dimensionful parameters has to cancel
(
Q2 ∂

∂ Q2
+ µ2 ∂

∂µ2
+m2 ∂

∂ m2

)
R

(
Q2

µ2
, αs,

m

Q

)
= 0 . (23)

The difference of Eqs. (22) and (23) gives the dependence of R on Q:
[
Q2 ∂

∂ Q2
− β (αs)

∂

∂αs
+

(
1

2
+ γ (αs)

)
m

∂

∂m

]
R

(
Q2

µ2
, αs,

m

Q

)
= 0 . (24)

This equation is solved by introducing the running mass (in addition to the running coupling) m
(
Q2
)

obeying

Q2 ∂ m

∂ Q2
= −γm (αs)m

(
Q2
)
, ⇒ ln

m
(
Q2
)

m (µ2)
= −

∫ Q2

µ2

dq2

q2
γm
(
αs

(
q2
))
. (25)
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Exponentiating, changing integration variable from q2 to αs and using the definition of the β function,
we obtain

m
(
Q2
)

= m
(
µ2
)

exp

[
−
∫ αs(Q2)

αs(µ2)
dαs

γm (αs)

β (αs)

]
Q2→∞−→ 0 , (26)

which means that asymptotically free QCD is a massless theory at asymptotically large energies. At LO
in PT theory the solution of (26) is given by

−γm (αs)

β (αs)
=

c0

b0αs
⇒ m

(
Q2
)

= m
[
αs

(
Q2
)] c0

b0 ,

where we introduced the abbreviation m = m
(
µ2
) [
αs

(
µ2
)]− c0

b0 . At NLO the solution becomes

m
(
Q2
)

= m
[
αs

(
Q2
)] c0

b0

(
1 +

c0

b0
(c1 − b1)

(
αs

(
Q2
)
− αs

(
µ2
))

+O
(
α2

s

))
.

In terms of the running coupling and mass, R
(

1, αs(Q
2), m(Q2)

Q

)
is a solution of Eq. (24), proven

similarly as R
(
1, αs(Q

2)
)

being the solution of Eq. (13). Expanding around m(Q2) = 0, we obtain

R

(
1, αs(Q

2),
m(Q2)

Q

)
= R

(
Q2

µ2
, αs, 0

)
+
∞∑

n=1

1

n!

(
m(Q2)

Q

)n
R(n)

(
Q2

µ2
, αs, 0

)
. (27)

We see from Eq. (27) that derivative terms are suppressed by factors of 1/Qn at large Q2. From the

dependence of R on
m(Q2)
Q we can conclude that the effect of mass is suppressed at high Q2 by its

physical dimension and also by its anomalous dimension, which justifies the assumption about negligible
quark masses. The expansion in Eq. (27) has a deeper consequence. The dimensionless observable R

may depend on ln
m(Q2)
Q that can become large when Q2 is large. If we want to avoid such large

logarithms, we should consider physical observables (that is physically measurable quantities) that have
a finite zero-mass limit.

2 Predictions in perturbative QCD

Fig. 6: An event with four hard muons in the CMS detector

In a typical collider experiment we col-
lect collision events with something in-
teresting in the final state. For in-
stance, in searching for the Higgs bo-
son, events with four hard muons such
as in Fig. 6 are interesting. Count-
ing the event rate of such events we
obtain measured cross sections, which
compare to theoretical predictions. Fol-
lowing our assumption about the use
of low-order perturbative predictions in
QCD, for such comparisons we need
predictions for cross sections with par-
tons. We start with the simplest pos-
sible case when partons appear only in
the final state: electron-positron annihilation into hadrons (and possibly other particles).

Let us consider a measurable quantityO, that has non-vanishing value for at least m partons in the
final state. At LO accuracy the basic formula for the differential cross section in O is

dσ

dO
= N

∫
dφm(p1, . . . , pm;Q)

1

S{m}
|Mm(p1, . . . , pm)|2 δ

(
O −O(m)

m (p1, . . . , pm)
)
, (28)
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whereN contains non-QCD factors (e.g., the flux factor), dφm is the phase space of m particles, Sm is a
symmetry factor, |Mm(p1, . . . , pm)|2 is the squared matrix element (SME), and O(m)

m is the value of O
computed from the m final state momenta. The integration is usually done by Monte Carlo integration
and the hard part of the computation is to obtain the SME. In these lectures we can compute hardly any
SME explicitly. Fortunately, there are freely available computer programs [15–19] that can be used to
check the formulae. Even more, these programs can often be used to obtain the cross sections at LO
accuracy, too.

We now use Eq. (28) to make predictions for the cross section of electron-positron annihilation
into hadrons.

2.1 R ratio at lowest order
The leading-order (LO) perturbative contribution to the cross section σ (e+e− → hadrons) is e+e− →
qq̄. The calculation is like in the case of e+e− → µ+µ−, supplemented with colour and fractional
electric charge of qj . The colour diagram is a loop in the fundamental representation which corresponds
to a factor Nc as we have seen in the previous chapter. While the annihilation into µ+µ− contains only
one flavour in the final state, quarks can have three, four or five flavours depending on the centre-of-mass
energy.3 We have, therefore, to sum over all possible flavours which can appear. The ratio of the two
cross sections is thus given by

R ≡ σ (e+e− → qq̄)

σ (e+e− → µ+µ−)
=

(∑

q

e2
q

)
Nc, (29)

where eu = ec = 2
3 and ed = es = eb = −1

3 . If we consider only the up, down, strange and charm
quarks

∑
q e

2
q = 24

9 + 21
9 = 10

9 . Considering also the bottom quark
∑

q e
2
q = 11

9 . This step-wise
increasing behavior of the R-ratio was observed (see Fig. 7), providing an experimental confirmation of
the existence of 3 families of quarks and of the SU(Nc) gauge-symmetry of QCD with Nc = 3.

According to our basic assumption, pQCD cannot give predictions for the resonances in Fig. 7.
However, there is one exception, the impressive Z peak. The LO prediction uses the cross section for
the e+e− → qq̄ process. A 2→ 2 process has only a single free kinematic variable, the scattering angle
ϑ. In the full SM the differential cross section for electron-positron annihilation into a massless and

colourless fermion pair ff̄ is obtained from the square of a single Feynman graph,
∣∣∣∣

∣∣∣∣
2

, as

dσ

d cosϑ
=
πα2

2s

{(
1 + cos2 ϑ

)[
e2
f +

(
A2
e + V 2

e

)(
A2
f + V 2

f

) κ2s2

(s−M2
Z)2 + Γ2

ZM
2
Z

+ . . .

]}
, (30)

where we neglected terms that vanish at centre-of-mass energy
√
s = MZ , or after integration. ef , Af

and Vf denote the fractional charge, axial-vector and vector electroweak couplings of the fermions and
κ =

√
2GFM

2
Z/(16παem) ' 0.374 is a number. Well below the Z peak the Z propagator becomes

negligible and the total cross section is obtained by integrating over the scattering angle and we find
the LO prediction σLO(s) = σ0(s)e2

f , where σ0(s) = 4πα2

3s . On the Z peak the same integration

results in σLO(M2
Z) = σ0(M2

Z)

[
e2
f +

(
A2
e + V 2

e

)(
A2
f + V 2

f

)
κ2M

2
Z

Γ2
Z

]
. Then we can make prediction

for the hadronic R ratio at LO accuracy by simply counting the contributing final states and relating
their total charge factors to that of the muon and find RLO = 3

∑
q e

2
q away from the Z peak and

RZ,LO = 3
∑

q(A
2
q+V

2
q )/(A2

µ+V 2
µ ) on theZ peak. The factor three is due to the three colours of quarks.

Considering five quark flavours, i.e., mb << s << mt, we find RLO = 11/3 and RZ,LO = 20.09. We
have seen on Fig. 7 that 11/3 is fairly close to the measured value away from the Z peak. The measured

3The sixth flavour, the top is so heavy that it cannot contribute at CM energies attained in e+e− experiments so far.
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Fig. 7: Experimental measurements of the R-ratio as a function of the total centre-of mass energy (taken from
Ref. [14]).

value of RZ at LEP is RZ = 20.79 ± 0.04 [20]. The LO prediction works amazingly well. The 3.5%
difference is mainly due to QCD radiation effects that we call NLO corrections. Our next goal is to
understand the origin of those corrections.

Exercise 2.1 Derive the result in Eq. (30) (at least below the Z peak, where you consider only photon
intermediate state) and integrate it over ϑ.

Exercise 2.2 Use Mathematica and the Package Tracer.m (or FORM) to compute the following traces:

Tr
(
/p2
γν(/p1

− /k1)γµ/p1
γµ(/p1

− /k1)γν

)

Tr (γµ1γµ2γµ3γµ4γµ5γµ6γµ7γµ8γµ9γµ10γµ1γµ2γµ3γµ4γµ5γµ6γµ7γµ8γµ9γµ10)

2.2 Ultraviolet renormalization of QCD
The strong coupling is rather large as compared to the other couplings in the SM, and as a result, the
QCD radiative corrections are also large. Therefore, it is always important to compute at least the NLO
accuracy, but if possible, even higher order corrections.4

The computation of QCD radiative corrections is technically quite involved and a good organi-
zation of the calculations is very important. Thus, first we introduce some notation. The tensor prod-
uct of the ket vectors |c1, . . . , cm〉 ⊗ |s1, . . . , sm〉 denotes a basis vector in colour and helicity space,

4There is even a more severe reason that we shall discuss later.
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|Am (p1, . . . , pm)〉 is a state vector of n = m − 2 final-state particles in colour and helicity space.
The amplitude for producing n final-state particles of colour (c1, . . . , cn), spin (s1, . . . , sn), momentum
(p1, . . . , pn) is

Ac1... cm,s1... smm (p1 . . . pm) ≡ 〈c1 . . . cm| ⊗ 〈s1 . . . sm|Am (p1, . . . , pm)〉 (31)

(m = n+ 2), so
∑

colour

∑

helicity

|Ac1... cm,s1... smm ({pi})|2 = 〈Am ({pi}) |Am ({pi})〉 . (32)

The loop expansion in terms of the bare coupling, i.e., the coupling that appears in the classical La-

grangian, g(0)
s ≡

√
4πα

(0)
s is:

|Am〉 =

(
α

(0)
s µ2ε

4π

) q
2
[∣∣∣A(0)

m

〉
+

(
α

(0)
s µ2ε

4π

)∣∣∣A(1)
m

〉
+O

(
(α(0)

s )
)2
]
, (33)

where q ∈ N, µ is the dimensional regularization scale, introduced to keep α(0)
s dimensionless in d =

4 − 2ε dimensions. The exponent q2 in the prefactor takes account of the power of αs at LO, the loop-
expansion is an expansion in the strong coupling αs. For instance, q = 0 for e+e− → qq̄, while q = 1

for e+e− → qq̄g. The tree amplitude
∣∣∣A(0)

m

〉
is finite, while the one-loop correction

∣∣∣A(1)
m

〉
is divergent

in d = 4 dimensions, which is manifest in terms of 1/ε2 and 1/ε poles if dimensional reglarization is
used. These poles have both ultraviolet (UV) and infrared (IR) origin.

The UV poles can be removed by multiplicative redefinition of the fields and parameters in the
Lagrangian, systematically order by order in PT. This is a hard task even at one loop, but presently known
up to four loops [21] – a truly remarkable computation! It turns out that when computing scattering
amplitudes in massless QCD at one-loop accuracy, the renormalization amounts to the simple substitution

α(0)
s µ2ε −→ αs

(
µ2

R

)
µ2ε

RS
−1
ε

[
1− αs

(
µ2

R

)

4π

β0

ε
+O

(
α2

s

)
]
, (34)

with Sε = (4π)ε

Γ(1−ε) . Note that on the left of this substitution µ is the dimensional regularization scale to

keep α(0)
s dimensionless, while on the right µR is the renormalization scale. We discussed in Sect. 1.8

when we extract αs from measurements, we have to define µR. The dimensional regularization scale
turns into the renormalization scale through the substitution (34).

Why does the substitution (34) work? Each Feynman graph consists of vertices with propagators
connecting those and external lines. Moreover,

• each vertex receives a factor Zg (or Z2
g for quartic vertex) and factors of

√
Zi, (i = q, A) for each

field connected to the vertex,
• each propagator of field i receives a factor of Z−1

i ,

• each external leg of field i receives a factor of Z
− 1

2
i .

Thus the renormalization field factors cancel from each graph and only the charge renormalization (Zg)
is needed in practice! This can be seen as a consequence of the fact that in massless QCD the only free
parameter besides the gauge-fixing parameter λ is αs. The scattering amplitudes are physical, and any
physical quantity has to be independent of λ, so the only remaining parameter, which the amplitudes may
depend on, is the coupling. The renormalization factor Zg is most easily computed in background field
gauge, defined by

LGF = − 1

2λ

∑

a

(
∂µAaµ + g fabcAbµAµ c

)2
, (35)
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where Abµ is a background field and Acµ describes the quantum fluctuations on this background. It can
be shown [11] that in this gauge the field and coupling renormalization factors are related by the Ward

identity Z
− 1

2
A = Zg, and ZA can be computed from loop insertions into the propagator shown in (21).

The simple substitution rule (34) for the coupling leads to a simple shift in the amplitude. As
[

1− αs

(
µ2

R

)

4π

β0

ε

] q
2

= 1− q

2

αs

(
µ2

R

)

4π

β0

ε
+O(α2

s )

we obtain for the renormalized amplitudes
∣∣M(i)

m

〉
(i = 0, 1)

∣∣M(0)
m

〉
=

(
αs

(
µ2

R

)
µ2ε

R

4π
S−1
ε

) q
2 ∣∣A(0)

m

〉
q ∈ N,

∣∣M(1)
m

〉
=

(
αs

(
µ2

R

)
µ2ε

R

4π
S−1
ε

) q
2 αs

(
µ2

R

)

4π
S−1
ε

(
µ2ε

R

∣∣A(1)
m

〉
− q

2

β0

ε
Sε
∣∣A(0)

m

〉)
.

(36)

The renormalized theory is UV finite, yet
∣∣∣M(1)

m

〉
is still infinite in d = 4 dimensions, as it is di-

vergent also in the infrared. After UV renormalization is achieved we can use dimensional regularization
to regulate the amplitudes in the IR by continuing into d > 4 (ε < 0). The integrals that are scaleless
in d = 4 have

(
q2
)−ε mass dimension in d = 4 − 2ε dimensions. Therefore, in the massless limit all

integrals can depend only on momentum invariants raised to a positive fractional power (ε < 0). We
conclude that when all external invariants vanish, the continued integral must also vanish (“scaleless
integrals vanish in dimensional regularization”).

For IR-safe observables these IR poles vanish and we can set d = 4 at the end of the computations,
and we obtain the UV finite, IR regularized SME that can be used to compute cross sections.

Exercise 2.3 Compute the contribution to the beta function from the fermion loop: TRa ab b

1. Write down carefully the amplitude and compute the trace.
2. The following types of integrals occur:

Iµ2 =

∫
dd`

(2π)d
`µ

`2 (`− p)2 , Iµν2 =

∫
dd`

(2π)d
`µ`ν

`2 (`− p)2 (37)

Express these as linear combination of

I2(p) =

∫
dd`

(2π)d
1

`2 (`− p)2 . (38)

3. Obtain I2 from

I2(p,m) =

∫
ddl

(2π)d
1[

(l − p)2 −m2
]
l2

=
i

(4π)2−εΓ (ε)
(
p2
)−ε ∫ 1

0
dx

(
x
m2

p2
− x (1− x)− iε

)−ε

(39)
and find the divergent pieces.

The contribution to β0 is the coefficient of the 1/ε pole without the coupling factor.
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2.3 R ratio at NLO accuracy
This is by far the simplest example of computing QCD radiative corrections. As we saw in Sect. 2.1
it requires the total hadronic cross section that depends only on a single kinematic invariant, the total
centre-of-mass energy

√
s. As a result, the emerging integrals in this computation can be evaluated

exactly. Nevertheless, the complete computation is still too lengthy, and we shall be able to present the
main step and filling the details is left to the student.

There are two kinds of corrections that contribute at NLO accuracy. One is the real correction,
with an additional gluon in the final state, so the SME is computed from Feynman graphs as

〈
M(0)

3

∣∣M(0)
3

〉
=

∣∣∣∣
∣∣∣∣
2

, which gives an O(αs) correction. The other kind

of contribution
is the virtual correction, with an additional gluon providing a loop in the final state,

〈
M(1)

2

∣∣M(0)
2

〉
+
〈
M(0)

2

∣∣M(1)
2

〉
= 2Re

〈 ∣∣∣∣
〉

.

The real correction has three particles in the final state. The three-particle phase space has five
independent variables: two energies and three angles. As we are looking for the total cross section,
we integrate over the angles and use yij = (pi + pj)

2/s = 2pi · pj/s scaled two-particle invariants to
write both the phase space and the SME. Momentum conservation implies 1 = (p1 + p2 + p3)2/s =
y12 + y13 + y23. The complete real contribution to the total cross section is

σR = σ0R0

∫ 1

0
dy13

∫ 1

0
dy23CF

αs

2π

(
y23

y13
+
y13

y23
+

2y12

y13y23

)
Θ(1− y13 − y23) . (40)Real%correc)ons:%the%phase%space%

2013.10.17.% Zoltán%Trócsányi:%QCD@CERN%School%of%
Physics%2013% 1%

%
%%%%%%%%%%%%%%%%%%%%%%y23%
%%%%%%%%%%%%%%%%%%%%%%%%1%
%
1&3%collinear%
%

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1%%%%%%%%%%%%%%y13%
%%%%%%%%%%%%%%%3%soF%%%%2&3%collinear%%

Fig. 8: Region of integration for
real correction

This integral is divergent along the boundaries at y13 = 0, y23 = 0 as
well as in the point y13y23 = 0, so the singularities are in the IR parts of
the phase space. As yi3s = 2EiE3(1− cosϑi3), the divergence occurs
either when E3 → 0, which is called soft-gluon singularity, or when
ϑi3 → 0, which is called collinear singularity (the gluon is collinear to
either of the quarks). The region of integration with the singular places
is shown in Fig. 8.

To make sense of the integral, we use dimensional regulariza-
tion, which amounts to the computation of the phase space and the
SME in d = 4− 2ε dimensions. The result is

σR(ε) = σ0R0H(ε)

∫ 1

0

dy13

yε13

∫ 1

0

dy23

yε23

Θ(1− y13 − y23) (41)

×CF
αs

2π

[
(1− ε)

(
y23

y13
+
y13

y23

)
+

2y12

y13y23
− 2ε

]
,

where H(ε) = 1 +O(ε) (the exact form of this function will turn out to be irrelevant). The integrals can
be evaluated exactly, but actually the Laurent-expansion around ε = 0 is sufficient,

σR(ε) = σ0R0H(ε)CF
αs

2π

[
2

ε2
+

3

ε
+

19

2
− π2 +O(ε)

]
. (42)

The computation of the virtual correction is even more cumbersome due to the loop integral. We
present only the result:

σV(ε) = σ0R0H(ε)CF
αs

2π

[
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

]
, (43)
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We now see that the sum of the real and virtual contribution is finite in d = 4, so for the sum we can set
ε → 0 and find the famous αs/π ' 0.037 correction: R = R0

(
1 + αs

π +O(α2
s )
)
. The correction is the

same for RZ .

Actually there is a much easier way of computing the radiative corrections to the total cross section
from the imaginary part of the hadronic vacuum polarization, using the optical theorem (σ ∝ Imf(γ →
γ))). The state of the art is R at O(α4

s ) [22]. The result of the computation at next-to-next-to-leading
order (NNLO) accuracy,

R

R0
= 1 + c1αs(µ) +

[
c2 + c1b0 ln

µ

Q2

]
αs(µ)2

+

[
c3 +

(
2c2b0 + c1b1 + c1b

2
0 ln

µ2

Q2

)
ln
µ2

Q2

]
αs(µ)3 +O(α4

s )

(44)

satisfies the RGE to order αs(µ)4. The coefficients c1 = 1/π, c2 = 1.409/π2, c3 = −12.85/π3 suggest
that the perturbation series is convergent. Our more complicated way of computing R is instructive for
our studies in the next section.

NLO

NNLO

NNNLO

0 20 40 60 80 100 120 140 160 180 200
(GeV)

20.6

20.7

20.8

20.9

21.0

21.1

21.2
R(
M
Z)

(5) = 230 MeV

Fig. 9: Dependence on the renormalization scale of the
hadronic ratio on the Z pole

The predictions at the first three fixed or-
ders in PT forRZ are shown in Fig. 9. TheR ratio
at LO accuracy does not depend on the strong cou-
pling, hence it is independent of the scale. The fig-
ure is meant to show the general pattern of QCD
predictions which, with the exception of the R ra-
tio, depend on the scale already at LO. The NLO
curve shows the typical feature of LO predictions:
it depends on the renormalization scale in a mono-
tonically decreasing way. As this scale is unphys-
ical, in principle, its value can be arbitrary. Thus
the prediction at LO is in general only an order of
magnitude indication of the cross section, but not
a precision result. (In the case of the hadronic ra-
tio the QCD corrections are actually quite small as
compared to many other QCD cross sections and
the precision is actually better than usual.) As a
result, if we want to make reliable predictions in
pQCD, the NLO accuracy (NNLO for R) is abso-
lutely necessary unless we have some way to fix
the scale.

However, there is no theorem that tells us the proper scale choice. The usual practice is to set the
scale at a characteristic physical scale of the process. A reasonable assumption that the strength of the
QCD interaction for a process involving a momentum transfer Q is given by αs(Q), so µ = Q is the
proper scale choice, to minimize logarithmic contributions ln(µ/Q) in higher-order terms. For instance,
in case of electron-positron annihilation the total centre-of-mass energy is the usual choice, while for a
jet cross section in proton-proton collisions the transverse momentum of the jet5 is used. The application
of this recipe appears clear as long as there is only one hard scale in the process. In the state of the art
computations there are complex processes with several scales and it is not obvious which one to choose.
For instance, in vector boson hadroproduction in association with m jets (m ≤ 5) [23], in addition to the
transverse momentum of the vector boson EV,⊥ =

√
p2
V,x + p2

V,y there are the transverse momenta of

the jets. In this example, the choice µ = EV⊥ was found to result in a badly behaving perturbation series

5We discuss jets in the next section.
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with corrections driving theE⊥ distribution of the second hardest jet at NLO accuracy even unphysically
negative for m = 3 and E⊥ > 475 GeV at the LHC. Choosing a dynamical scale, set event by event,
appears a better choice. For instance, half the total transverse energy of the final-state particles (both
QCD partons and leptons from the decay of the vector boson), µ = ĤT/2, leads to much milder scale
dependence and a similar shape of the distributions at LO and NLO accuracies.

There are suggestions on making educated guesses for the best scale. Among those are the
principle of fastest apparent convergence (FAC), that of minimal sensitivity (PMS), or the BLM scale
choice [24–26], beyond the scope of these lectures. The experience is that in hadron collisions there is
no choice that works well for any process and it is best to choose a dynamical scale chosen by examining
the process.

As there is no unique scale, the standard procedure is to choose a default scale µ0, related to the
typical momentum transfer in the process, and to assign a theoretical uncertainty by varying the scale
within a certain range around the default choice µ0. The usual range is between half and twice the default
choice. However, this is again an indication only of the scale uncertainties and there is no mathematical
theorem that states this procedure yields the true theoretical uncertainty due to neglected higher order
terms. In order to have a measure on the effect of neglected higher orders, i.e., to understand the reliability
of the assigned theoretical uncertainty one has to compute the NNLO corrections. The latter are very
demanding computations both technically and numerically and predictions at NNLO accuracy for some
fairly simple processes, with one or two final-state particles in the prediction at LO, constitute the state
of the art of pQCD.

Exercise 2.4 Show that the d-dimensional three-particle phase space for q → p1 + p2 + p3 can be
expressed in terms of the Lorentz-invariants sij = (pi + pj)

2

dφ3 = (2π)3−2d 2−1−d (q2)
2−d

2 dd−2Ωdd−3Ω (s12s13s23)
d−4

2 ds12 ds13 ds23 δ
(
q2 − s12 − s13 − s23

)
.

where ddΩ is the measure of the hypersurface element in d dimensions,
∫

dd−3Ω = Ωd = 2πd/2/Γ(d/2).
Hints:

1. The d-dimensional volume measure in spherical coordinates is recurisvely given by

dd+1p = E dE dd pE = E dE Ed−1ddΩ , ddΩ = (sin θ1)d−1dθ1dd−1Ω .

2. Show that
sin2 θ1 =

1

4

s12 s13 s23

q2E2
1 E

2
2

,

where θ1 is the angle between p1 and p2.

Exercise 2.5 Let yij =
sij
q2 . Using the previous exercise, compute the real correction to the process

e+ e− → qq̄ given in Eq. (42). Hint: Transform the triangular integration region into the unit square
and evaluate the B (Euler β) functions.
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3 Jet cross sections
In the first two sections we established our theoretical playground to make predictions for hadronic cross
sections. Based on RGE analysis we showed that PT can only be fully consistent in an asymptotically
free QFT, like QCD. We found that predictions can be made only for those quantities that remain finite
in the limit of vanishing masses of light quarks. We computed the radiative corrections for such a
quantity, the total hadronic cross section in electron-positron annihilation. We found that at intermediate
steps of the computations there are singular contributions of two types: of UV and IR origin. The
UV singularities can be removed by renormalization, and the remaining IR ones can be regularized in
dimensional regularization where IR singularities appear as 1/ε poles. When adding all contributions,
these poles cancel and we obtain the finite correction after setting ε = 0. Our question in this section is
whether there are more exclusive observables than the totally inclusive one for which this procedure can
be applied.

Fig. 10: Two events observed in the OPAL detector

It is clear from experiments that typical final states have structures. For instance, Fig. 10 shows
two events, one with two and the other with three sprays of hadrons, called hadron jets. If we count the
relative number of events with two, three, four jets, an interesting pattern emerges:

# of events with 2 jets : # of events with 3 jets : # of events with 4 jets ' O(α0
s ) : O(α1

s ) : O(α2
s ).

Recalling our basic assumption and Fig. 3 we find that jets reflect the partonic structure of the events.
We now use our pQCD formalism to describe these structures theoretically. For this purpose, we need a
function of the final state momenta Jm({pi}) that quantifies the structure of the final state in some ways
(we give examples below). This function is called jet function.

Let us consider again the process e+e− → hadrons. If we are not interested in the orientation of
the final state events, we can average over the orientation and find that the SME |M2|2 has no dependence
on the parton momenta. Then the two-particle phase space is dφ2 = dy12δ(1− y12), and contribution of
the process e+e− → qq̄ to the cross section is

σLO = |M2|2
∫ 1

0
dy12δ(1− y12)J2(p1, p2) , (45)
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which sets our normalization of |M2|2. The two kinds of NLO corrections are

dσR = |M2|2Sε
dy13

yε13

dy23

yε23

CF
αs

2π

[
(1− ε)

(
y23

y13
+
y13

y23

)
+

2y12

y13y23
− 2ε

]
J3(p1, p2, p3) ,

dσV = |M2|2SεCF
αs

2π

(
µ2

s

)ε [
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

]
dy12δ(1− y12)J2(p1, p2) .

(46)

Contrary to the case of the total cross section, where Jm = 1, we cannot simply perform the integration
analytically and combine the results, neither we can combine the integrands. The general method to deal
with this problem is to regularize both with a properly chosen subtraction,

dσNLO
3 = dσRJ3 − dσAJ2 , and dσNLO

2 =
(
dσV + dσA

)
J2 ,

such that both terms are separately integrable in d = 4 dimensions. This requires a special property of
the jet function Jn, called IR safety, expressed analytically as

lim
y13,y23→0

J3 = J2 . (47)

Qualitatively IR safety means that the jet function is insensitive to an additional soft particle, or to a
collinear splitting in the final state.

How can we construct such an approximate cross section? For this simple process we can follow
the steps:

y23

y13
+
y13

y23
+

2y12

y13y23
=
y23

y13
+

1

y13

2y12

y13 + y23
+ (1↔ 2)

=
1

y13

[
y23 +

(
2

=1︷ ︸︸ ︷
y12 + y13 + y23

y13 + y23
− 2

)]
+ (1↔ 2) .

(48)

Then introduce the new variable z1 ≡ z1,2 = y12

y12+y23
, so that y13 + y23 = 1− y12 = 1− z1(1− y13) and

y23

y13
− 1

y13
=
y23(1− y13)− y12 − y23

y13(y12 + y23)
=
−y23y13 − y12

y13(y12 + y23)
= − y23

y12 + y23
− z1

y13
,

and substitute these into Eq. (48):

y23

y13
+
y13

y23
+

2y12

y13y23
=

[
1

y13

(
2

1− z1(1− y13)
− 1− z1

)
− y23

y12 + y23

]
+ (1↔ 2) . (49)

The term y23/y12 + y23 never becomes infinite, thus the approximate cross section

dσA = |M2|2Sε
dy13

yε13

dy23

yε23

CF(V13,2 + V23,1) , with (50)

Vij,k =
αs

2π

[
1

yij

(
2

1− zi,k(1− yij)
− 1− zi,k

)
− ε(1− zi,k)

]
(51)

is a proper subtraction term that regularizes the real contribution in all of its singular limits in d dimen-
sions. Consequently, the difference dσNLO

3 = dσRJ3 − dσAJ2 can be integrated in any dimensions, in
particular, we can set ε = 0 and integrate in d = 4 numerically.

To obtain dσNLO
2 we integrate the two terms separately. For V13,2 we change variables in the phase

space to y13 and z1, and find

dσA = |M2|2Sε
(
µ2

s

)ε ∫ 1

0
dy13

∫ 1

0
dz1y

−ε
13 (1− y13)1−2εCFV13,2 + (1↔ 2) . (52)
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We shall see that this factorization of the singular terms is universal. We can now perform the integration
over the factorized one-particle phase space, independently of the jet function, and obtain the integrated
subtraction term in the form dσA = |M2|2I(ε) with insertion operator

I(ε) = CF
αs

2π

1

Γ(1− ε)

(
4πµ2

s

)ε [
2

ε2
+

3

ε
+ 10− π2

3
+O(ε)

]
. (53)

Comparing this integrated subtraction to Eq. (46), we see that the sum dσNLO
2 =

(
dσV + dσA

)
J2 is

finite if ε = 0,

σNLO
2 = |M2|2CF

αs

π

(
1 +

π2

3

)∫ 1

0
dy12δ(1− y12)J2(p1, p2) +O(ε) , (54)

and so can be integrated in d = 4 dimensions.

3.1 Infrared safety
A natural question is if we can construct the approximate cross section universally, i.e., independently of
the process and observable. Our presentation above suggests the affirmative answer. To understand how,
we have to study the origin of the singular behaviour in the SME. This singularity arises from propagator
factors that diverge

∝ 1
(pi+ps)2 = 1

2 pi·ps = 1
2EiEs(1−cos θ) ' 1

EiEsθ2
Mm

pi

ps, µ

In the collinear limit, θ → 0 andMm+1 ' Mm/θ+ less singular terms (a factor of θ appears
in the numerator factors). In the soft limit, Es → 0 andMm+1 ' Mm/Es+ less singular terms. The
gluon phase space is

d3ps
2Es

=
1

2
Es dEs dcos θ dφ ' 1

4
Es dEs dθ2 dφ ,

so in the cross section we find logarithmic singularities in both the soft and the collinear limits: dEs
Es

or
dθ2

θ2 . These are the IR singular limits. In dimensional regularization the logarithmic singularities appear
as poles: ∫

dyis y
−1−ε
is = −1

ε
.

Thus, the singular behaviour arises at kinematically degenerate phase space configurations, which at the
NLO accuracy means that one cannot distinguish the following configurations: (i) a single hard parton,
(ii) the single parton splitting into two nearly collinear partons, (iii) the single parton emitting a soft
gluon (on-shell gluon with very small energy). Then an answer to the question posed at the beginning of
Sect. 3 is given by the Kinoshita-Lee-Nauenberg (KLN) theorem [27, 28]:

In massless, renormalized field theory in four dimensions, transition rates are IR safe if
summation over kinematically degenerate initial and final states is carried out.

For the e+e− → hadrons process, the initial state is free of IR singularities. Typical IR-safe quantities
are (i) event shape variables and (ii) jet cross sections.

3.2 Event shapes
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Fig. 11: Distribution of thrust as measured at
LEP compared to pQCD predictions obtained
with vector and scalar gluon

Thrust, thrust major/minor, C- and D-parameters, oblate-
ness, sphericity, aplanarity, jet masses, jet-broadening,
energy-energy correlation, differential jet rates are exam-
ples of event shape variables. The value of an event shape
does not change if a final-state particle further splits into two
collinear particles, or emits a soft gluon, hence it is (quali-
tatively) IR safe. As as example we consider the thrust T ,
which is defined by

T = max
~n

∑m
i=1 |~pi · ~n|∑m
i=1 |~pi|

, (55)

where ~n is a three-vector (the direction of the thrust axis)
such that T is maximal. The particle three-momenta ~pi are
defined in the e+e− centre-of-mass frame. T is an example
of the jet function Jm. It is infrared safe because neither
pj → 0, nor replacing pi with zpi + (1 − z)pi change T . At LO accuracy it is possible to perform the
phase space integrations and

1

σ

dσ

dT
= CF

αs

2π

[
2
(
3T 2 − 3T + 2

)

T (1− T )
ln

(
2T − 1

1− T

)
− 3(3T − 2)

2− T
1− T

]
. (56)

We see that the perturbative prediction for the thrust distribution is singular at T = 1. In addition to
the linear divergence in 1 − T there is logarithmic divergence, too. The latter is characteristic to events
shape distributions. In PT at nth order logarithms of 1− T in the form αns lnm(1/(1− T )) ,m ≤ n+ 1
appear in the exponent of the cross-section. These spoil the convergence of the perturbation series and
call for resummation if we want to make reliable prediction near the edge of the phase space, for large
values of T where the best experimental statistics are available. Resummations of leading (m = n + 1)
and next-to-leading (m = n) logarithms are available for many event shape variables, but the discussion
of this technique is beyond the scope of these lectures.

Exercise 3.1 Verify that T as defined in Eq. (55) is infrared und collinear safe. What is the range of
values that T can take if (i) there are only two particles in the final state, or (ii) m → ∞ and all ~pi are
distributed spherically?

3.3 Jet algorithms
Jets are sprays of energetic, on-shell, nearly collinear hadrons. The number of jets does not change if
a final-state particle further splits into two collinear particles, or emits a soft gluon, hence it is again
qualitatively IR safe. To quantify the jet-like structure of the final states jet algorithms have been in-
vented. These have a long history with rather slow convergence. The reason is that the experimental and
theoretical requirements posed to a jet algorithm are rather different. Experimentally we need cones that
include almost all hadron tracks at cheap computational price. Theoretically the important requirements
are IR safety, so that PT can be employed to make predictions and resummability, so that we can make
predictions in those region of the phase space where most of the data appear.

For many years experimenters preferred cone jet algorithms (according to the ‘Snowmass accord’)
[29]. These start from a cone seed (centre of the cone) in pseudorapidity (η) and azimuthal-angle (φ)
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plane: (ηc, φc). We define a distance of a hadron track i from the seed by dic =
√

(ηi − ηc)2 + (φi − φc)2.
A track belongs to the cone if dic < R, with a predefined value forR (usually 0.7). It turned out however,
that (i) this is an IR unsafe definition and (ii) there is a problem how to treat overlapping cones, so the
cone jet definition has been abandoned.

Theoreticians prefer iterative jet algorithms, consisting of the following steps. (i) First we define
a distance between two momenta (of partons or hadron tracks) and a rule to combine two momenta, pi
and pj into p(ij). (ii) Then we select a value for resolution dcut and consider all pairs of momenta. If the
minimum of {dij} is smaller than dcut, then we combine the momenta pi and pj and start the algorithm
again. If the minimum is larger than dcut, then the remaining momenta (after the combinations) are
considered the momenta of the jets, and the algorithm stops. The drawback of this algorithm is that it
becomes very expensive computationally for many particles in the final state. This is not an issue in
pQCD computations because according to our basic assumption there are only few partons, but a major
problem for the final states in the detectors where hundreds of hadrons may appear in a single event.

At LEP theory won and the Durham (or k⊥) algorithm was used. It was invented so that resumma-

tion of large logarithms could be achieved [30]. The distance measure is dij = 2
min(E2

i ,E
2
j )

s Rir, where
Rij = 1−cos θij and the recombination scheme is simple addition of the four momenta, pµ(ij) = pµi +pµj .
The resolution parameter ycut = dcut/s can take values in [0, 1]. The pQCD prediction contains loga-
rithmically enhanced terms of the form αns lnm(1/ycut), at any order, which has to be resummed if we
want to use small value of ycut, where we find the bulk of the data (see Figure 12). Predictions are
available with leading- (m = 2n) and next-to-leading (2n− 1) logarithms (LL and NLL) summed up to
all orders [30].

Figure 12 shows the fixed order LO and NLO predictions, as well as predictions where NLO
and NLL are matched. K denotes an improvement in the resummation accuracy. The curve at NLO
accuracy gives a good description of the measure data by the ALEPH collaboration [31], but only for
ycut > 0.01. As αs ln2(100) = 2.5, for smaller values of ycut resummation is indispensable. The
resummed prediction however, is not expected to give a good description at large ycut because in the
resummation formula only the collinear approximation of the matrix element is used. Matching the two
predictions gives a remarkably good description of the data over the whole phase space.

At hadron colliders the k⊥ algorithm needs modifications. First, instead of energy, the boost-
invariant measure of hardness, transverse momentum is used to define the distance between tracks, dij =

min(p2
⊥,i, p

2
⊥,j)

R2
ij

R2 where R2
ij = (yi − yj)2 + (φi − φj)2 (distance in rapidity–azimuthal-angle plane),

R is a small positive real number, and we need a distance from the beam diB = p2n
⊥,i, too. Also, the

algorithm needs modification because either dij or diB can be the smallest distance. If a dij is the
smallest value, then i and j are merged, while if the smallest is a diB , then momentum pi becomes a jet
momentum and is removed from the tracks to be clustered. We then call jet candidates with transverse
momentum p⊥,i > ER resolved jets. The merging rule changes as well. In one merging scheme we add
transverse momenta, p⊥,(ij) = p⊥,i + p⊥,j , and we add rapidities y and azimuthal angles φ weighted,
y(ij) = (wiyi + wjyj)/(wi + wj) and φ(ij) = (wiφi + wjφj)/(wi + wj), where the weight can be
wi = p⊥,i, p2

⊥,i, E⊥,i, or E2
⊥,i. Such a merging is boost invariant along the beam. In another widely used

scheme at hadron colliders one simply adds the four-momenta of the particles. The parameter R plays
a similar role as dcut in electron-positron annihilation or the cone radius R in the cone algorithms: the
smaller R, the narrower the jet.

The iterative k⊥-algorithm is infrared safe and resummation of large logarithmic contributions of
the form αns ln2n and αns ln2n−1 is possible, which is a clear advantage from the theoretical point of view.
The logarithms are those of 1/R and/orQ/ER,Q being the hard process scale. By takingER sufficiently
large in hadron-hadron collisions, we avoid such leading contributions from initial-state showering and
the underlying event, so these terms are determined by the time-like showering of final-state partons
(when the virtuality of the parent parton is always positive). Particles within angular separation R tend
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Fig. 12: Comparison of pQCD predictions to data for three- and four-jet leptoproduction [32]. The data points
include corrections from hadrons to partons based on Monte Carlo simulations.

to combine and particles separated by larger distance than R from all other particles become jets. The
algorithm assigns a clustering sequence to particles within jets, so we can look at jet substructure.

Nevertheless, at the TeVatron experiments the k⊥-algorithm did not become a standard for several
reasons. The jets have irregular, often weird shapes as seen on Fig. 13(a) because soft particles tend
to cluster first (even arbitrary soft particles can form jets). As a result there is a non-linear dependence
on soft particles, energy calibration and estimating acceptance corrections are more difficult. The un-
derlying event correction depends on the area of the jet (in η − φ plane). It was also very expensive
computationally, so experimenters had a clear preference of cone algorithms.

Fig. 13: Jets in a proton-proton scattering event obtained with the (a) k⊥, (b) anti-k⊥ clustering algorithms

The breakthrough occurred with Refs. [33, 34] where variants of the k⊥ algorithm and an improved,

fast implementation was introduced. The distance formula was modified to dij = min(p2n
⊥,i, p

2n
⊥,j)

R2
ij

R2
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(n = −1, 0, 1). IR-safety is independent of n, as well as NLL resummation of large logarithms. It was
found that with n = −1 (called anti-k⊥-alogrihtm) particles close in angle cluster first, which results
in regular cone-like shapes as seen on Fig. 13(b) without using stable cones. As a result it became the
standard jet algorithm at the LHC experiments. Yet, one should keep in mind that there is no ‘perfect’
jet algorithm. For instance, the anti-k⊥ one does not provide useful information on jet substructure. It is
important to remember that in pQCD theoretical prediction can be made only with IR-safe jet functions,
but among those the goal of the study may help decide which algorithms to use.

4 Towards a general method for computing QCD radiative corrections
We have seen that (i) in pQCD the computation of radiative corrections at NLO accuracy is indispensable,
(ii) the NLO corrections are of two kinds: real and virtual, that are separately divergent and contain
different number of particles in the final state, (iii) these singularities cancel for IR-safe cross sections.
To find the finite NLO corrections we have to develop a method for combining the real and virtual
corrections. In order to be able to automate the NLO computations such a method has to be general, i.e.,
independent of the measurable quantity and the process. To devise such a general method, we need to
study the origin of the singularities in a more precise way than we did in the previous section. We shall
find factorization formulae of the SME’s that find many important applications in QCD, and so belong
to the most important features of QCD.

4.1 Factorization of |Mn|2 in the soft limit
The soft limit is defined by pµs = λ qµ, with λ ∈ R+ and λ → 0 for qµ fixed. In this limit the emission
of the soft gluon from (internal) propagators is IR finite. If we consider the emission of a soft gluon off
an external quark we find

Mm

pi

ps, µ

∝MmT
s
i gs ū(pi, si)γ

µ /pi+/ps
sis

ps→0' MmT
s
i gs

pµi
pi·ps ū(pi, si).

In taking the limit, we used the anti-commutation relation (4) to write γµ/pi = −/piγ
µ+2pµi and the Dirac

equation of the massless bi-spinor, ū(pi)/pi = 0. The factor pµi
pi·ps is the “square root” of the eikonal factor

Sik (s) = 2sik
sissks

. In the same limit, we can derive after a bit more algebra the factorization formula for
soft-gluon emission off a gluon line. The emission of a soft gluon off an external gluon (in light-cone
gauge) is given by

Mm

pi

ps

µ, s

ν, a

λ, b ∝ Mmε
µ (ps, n) 1

sis
dλλ

′
(pi + ps, n) Γasbνµλ′ (−pi,−ps, pi + ps) ε

ν (pi, n),

where in the three-gluon vertex

Vνµλ(−pi,−ps, pi + ps) = − (pi + 2ps)ν gµλ + (2pi + ps)µ gνλ − (pi − ps)λ gµν
= 2piµ gλν + [− (pi + ps)λ gµν − piν gµλ] + [psµ gνλ + 2ps λ gµν − 2psν gµλ]
ps→ 0' 2piµ gνλ − [(pi + ps)λ gµν + piν gµλ] .

We use dλλ
′
(pi + ps, n) (pi + ps)λ = 0 and εν (pi, n) pi ν = 0, thus

1

sis
dλλ

′
(pi + ps, n) Γasbνµλ′ (−pi,−ps, pi + ps) ε

ν (pi, n)
ps→ 0' −T sb gs

piµ
pi ·ps

[
dλλ

′
(pi, n) gλ′νε

ν (pi, n)
]

︸ ︷︷ ︸
−ελ(pi,n)

.

These two results can be unified and formalized by

Ŝs 〈 cs| Mm+1 (ps, . . .)〉 = gsε
µ (ps) Jµ (s) |Mm (. . .)〉 ,
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where cs is the colour index of the soft gluon s, Ŝs is an operator which takes the soft limit and keeps the
leading 1

λ singular term, and the soft gluon current Jµ (s) is given by

Jµ (s) =

m∑

k=1

T sk
pk µ
pk · ps

.

The soft gluon can be emitted from any of the external legs, therefore the sum in the previous formula
runs over all external partons. A soft quark leads to an integrable singularity because the fermion prop-
agator is less singular than that of the gluon. Colour conservation implies that the current Jµ (s) is
conserved,

pµs Jµ (s) |Mm〉 =
m∑

k=1

T sk |Mm〉 = = 0 .
+ +

Then the soft limit of the SME
〈
M(0)

m

∣∣∣M(0)
m

〉
is as follows:

Ŝs |Mm+1 (ps, . . .)|2 = 4παsµ
2ε

m∑

i=1

m∑

k=1

εµ (s) ε∗ν (s)︸ ︷︷ ︸
dµν(ps,n)

pµi p
ν
k

pi · ps pk · ps
〈Mm|T i · T k |Mm〉 (57)

= −8παsµ
2ε

m∑

i,k=1

1

2
Sik (s)

∣∣∣M(0)
m (i,k)

∣∣∣
2

+ gauge terms = . . . .+ +

The gauge terms give zero contribution on on-shell matrix elements due to gauge invariance.

4.2 Factorization of |Mn|2 in the collinear limit
The collinear limit of momenta pi and pr is defined by Sudakov parametrization:

pµi = zip
µ + kµi⊥ −

k2
i⊥
zi

nµ

2 p · n , pµr = zrp
µ + kµr⊥ −

k2
r⊥
zr

nµ

2 p · n
where kµi⊥ + kµr⊥ = 0 and zi + zr = 1. The momentum pµ is the collinear direction and

p2 = p2
i = p2

r = n2 = 0 , ki⊥ · p = kr⊥ · n = 0 ,

In the collinear limit kµi⊥, k
µ
r⊥ → 0 and sir = − k2

r⊥
zizr

. We now state the following theorem

In a physical gauge, the leading collinear singularities are due to the collinear splitting of
an external parton.

This means that we need to compute in the collinear limit. There are three cases:

Factoriza)on+of+|Mm|2+in+the+collinear+
limit++

2013.10.21.+ Zoltán+Trócsányi:+QCD@CERN+School+of+
Physics+2013+ 1+

•                                    fj+
+++++++++++++++++++M         (ij)                            M*+

+++++++++++++++++++++++++++++++++fi 

++

f+

fir → fi + fr
q → q + g
g → q + q̄
g → g + g

We compute explicitly the first case and leave the second and the third as exercise.

For the case of a quark splitting into a quark and a gluon we have

= CF g
2
sµ

2ε /pi + /pr
sir

γµ/piγ
ν dµν (pr, n)

/pi + /pr
sir

= CF 4παsµ
2ε /pi + /pr

sir

(
−γµ/piγµ +

/pr/pi/n+ /n/pi/pr
pr · n

)
/pi + /pr
sir

.

(58)
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pi

pr

pi

pr

Using

−γµ/piγµ = (d− 2) /pi , /pi/pi = p2
i 1 , and /pi/pr/pi = sir/pi − p

2
i /pr = sir/pi ,

we find
(
/pi + /pr

)(
−γµ/piγµ

)(
/pi + /pr

)
= (d− 2) sir/pr ,

/pr/pi/n = −/pi/pr/n+ sir/n = /pi/n/pr − 2/pipr ·n+ sir/n == −/n/pi/pr + 2pi ·n/pr − 2/pipr ·n+ sir/n .

Then
(
/pi + /pr

)(
/pr/pi/n+ /n/pi/pr

)(
/pi + /pr

)
=

= 2
(
/pi + /pr

)(
pi ·n /pr − pr ·n /pi + pi ·pr /n

)(
/pi + /pr

)

= 2
[
pi ·n sir/pi − pr ·n sir/pr + pi · pr

(
2 (pi + pr)·n

(
/pi + /pr

)
− (pi + pr)

2 /n
)]

= sir

[
4pi ·n /pi + 2pi ·n /pr + 2pr ·n /pi − sir/n

]
.

Substituting these results and then the Sudakov parametrization of the momenta into Eq. (58) we obtain

pi‖pr' 1

sir
CF 4παsµ

2ε

[
2 (1− ε) zr + 4

z2
i

zr
+ 4zi +O (k⊥)

]
/p

=
1

sir
CF 8παsµ

2ε

[
2
zi
zr

+ (1− ε) zr
]
/p =

1

sir
CF 8παsµ

2ε

[
1 + z2

i

1− zi
− ε (1− zi)

]
/p

Similarly to the soft case we can define an operator Ĉir which takes the collinear limit and keeps the
leading singular (O(1/k2

⊥)) terms:

Ĉir

∣∣∣M(0)
m+1

∣∣∣
2

= 8παsµ
2ε 1

sir

〈
M(0)

m (p, . . .)
∣∣∣ P̂ (0)

qg (zi, zr, k⊥; ε)
∣∣∣M(0)

m (p, . . .)
〉
. (59)

The kernel P̂qg, called Altarelli-Parisi splitting function for the process q → q + g, is diagonal in the
spin-state of the parent (splitting) parton:

〈 s| P̂qg
∣∣s′
〉

= CF

[
2
zi
zr

+ (1− ε) zr
]
δss′ .

Similar calculations give the splitting kernels for the gluon splitting processes, which however, contain
azimuthal correlations of the parent parton

〈µ| P̂ (0)
qq̄ (zi, zr, k⊥; ε) |ν〉 = TR

[
−gµν + 4zizr

kµ⊥k
ν
⊥

k2
⊥

]
(60)

〈µ| P̂ (0)
gg (zi, zr, k⊥; ε) |ν〉 = 2CA

[
−gµν

(
zi
zr

+
zr
zi

)
− 2 (1− ε) zizr

kµ⊥k
ν
⊥

k2
⊥

]
. (61)

The soft and collinear limits overlap when the soft gluon is also collinear to its parent parton:

Ĉjr Ŝr

∣∣∣M(0)
m+1 (pr, . . .)

∣∣∣
2

= −8παsµ
2ε
∑

k 6=j

2zj
sjr zr

∣∣∣M(0)
m(j,k) (. . .)

∣∣∣
2

= 8παsµ
2ε T 2

j

2

sjr

zj
zr

∣∣∣M(0)
m

∣∣∣
2
.
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The notation for the splitting kernels in these lectures is different from the usual notation in the
literature. Usually, P̂ (0)

ij (z, k⊥; ε) denotes the splitting kernel for the process fi(p)→ fj(zp) + fk((1−
z)p), which does not lead to confusion for 1 → 2 splittings because the momentum fraction of parton
j determines that of parton k as their sum has to be one. For splittings involving more partons, it is
more appropriate to introduce as many momentum fractions zi as the number of offspring partons, with
the constraint

∑
i zi = 1, and use the flavour indices to denote the offspring partons in the order of the

momentum fractions in the argument. For 1 → 2 splittings this means the use of P̂ (0)
ir (zi, zr, k⊥; ε)

for the splitting process fk(p) → fi(zip) + fr(zrp). The flavour of the parent parton fk is determined
uniquely by the flavour summation rules, q + g = q, q + q̄ = g + g = g. These flavour summation rules
are unique also for 1→ 3 splittings.

Exercise 4.1 Compute the Altarelli-Parisi-splitting function P̂qg(z) for the process q → qg from the
collinear limit of the matrix element for the process e+e− → qq̄g:

∣∣M
(
e+e− → qq̄g

)∣∣2 ∝
(

(1− ε)
(
y23

y13
+
y13

y23

)
+ 2

(
y12

y13y23
− ε
))

.

Exercise 4.2 The Altarelli-Parisi splitting function P̂qq̄ (z) for the process g → qq̄ is defined by the
following collinear limit:

〈M(0)
n+1 (pi, pr, . . .)

∣∣M(0)
n+1 (pi, pr, . . .)〉

pi‖pr' 1

sir
8παsµ

2ε 〈M(0)
n (p, . . .)

∣∣P̂ (0)
qq̄ (z, k⊥)

∣∣M(0)
n (p, . . .)〉

=
1

sir
8παsµ

2ε 〈M(0)
n (p, . . .)

∣∣µ〉〈µ
∣∣∣P̂ (0)
qq̄ (z, k⊥)

∣∣∣ ν〉〈ν
∣∣M(0)

n (p, . . .)〉

=
1

sir
8παsµ

2ε 〈M(0)
n (p, . . .)

∣∣µ〉 dµρ
sir

Πρσ dσν
sir
〈ν
∣∣M(0)

n (p, . . .)〉 .

Compute 〈µ
∣∣∣P̂ (0)
qq̄ (z, k⊥)

∣∣∣ ν〉 in leading order in k⊥. Hint: In which sense does Πµν = dµρΠ
ρσdσν

hold?

Exercise 4.3 Derive the flavour summation rules for 1→ 3 splittings.

Exercise 4.4 Compute the soft limit of Eq. (59) and the collinear limit of Eq. (57).

4.3 Regularization of real corrections by subtraction
The cross section at NLO accuracy is a sum of two terms, the LO prediction and the corrections at one
order higher in the strong coupling,

σNLO = σLO + σNLO ,

where σLO is the integral of the fully differential Born cross section over the available phase space defined
by the jet function, while σNLO is the sum of the real and virtual corrections:

σLO =

∫

m
dσB Jm({p}m) , σNLO =

∫

m+1
dσR Jm({p}m+1) +

∫

m
dσV Jm({p}m) .
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Both contributions to σNLO are divergent in four dimensions, but their sum is finite for IR-safe jet func-
tions.

The factorization of the squared matrix elements in the soft and collinear limits allows for a process
and observable independent method to regularize the real corrections in their singular limits. The essence
of the method is to devise an approximate cross section dσA that matches the singular behaviour of
the real cross section dσR in all kinematically degenerate regions of the phase space when one parton
becomes soft or two partons become collinear. Then we subtract this approximate cross section from the
real one and the difference can be integrated in four dimensions. Next, we integrate dσA over the phase
space of the unresolved parton and we add it to dσV . The integrated subtraction term cancels the explicit
poles in the virtual correction and the sum can also be integrated in four dimentions. The key for this
procedure is a proper mapping of the (m + 1)-parton phase space to the m-parton one which respects
the limits, thus the approximate cross section is defined with the m-parton jet function. This way we can
rewrite the NLO correction as a sum of two finite terms,

σNLO =

∫

m+1

[
dσR Jm({p}m+1)− dσA Jm({p̃}m)

]
ε=0

+

∫

m

[
dσV +

∫

1
dσA

]

ε=0

Jm({p}m) . (62)

The definition of the approximate cross section is not unique and the best choice may depend on further
requirements that we do not discuss here. We also skip the precise definition of the momenta p̃µ which
are obtained by mapping the (m + 1)-particle phase space onto an m-particle phase space times a one-
particle phase space. A widely used general subtraction scheme that can be used also for processes
including massive partons with smooth massless limits is presented in Ref. [35], where these definitions
are given explicitly. This method uses the factorization of the SME in the soft and collinear limits.
The challange posed by the overlapping singularity in the soft-collinear limit is solved by a smooth
interpolation between these singular regions.

The factorization properties of Eqs. (57) and (59) play other very important roles in pQCD. The
numerical implementation of the SME is in general a process prone to errors. Testing the factorization
in the kinematically degenerate phase space regions serves a good check of the implementation. The
computation is even more difficult for the virtual corrections. Similar factorization holds for those. The
factorized form of the SME can be used in resumming logarithmically enhanced terms at all orders, or in
devising a parton shower algorithm for modelling events (see Sect. 6.3). The splitting kernels that appear
in the collinear factorization have a role in the evolution equations of the parton distribution functions
(see Sect. 5.6).

The state of the art in making precision predictions assaults on the one hand the full automation of
computations at NLO, and on the other the realm of next-to-next-to-leading order (NNLO) corrections.
The automation of computing jet cross sections at NLO accuracy has been accomplished and several
programs are available with the aim to facilitate automated solutions for computing jet cross sections at
NLO accuracy:

– aMC@NLO (http://amcatnlo.web.cern.ch)
– BlackHat/Sherpa (https://blackhat.hepforge.org)
– FeynArts/FormCalc/LoopTools (http://www.feynarts.de)
– GoSam (https://gosam.hepforge.org)
– HELAC-NLO (http://helac-phegas.web.cern.ch)
– MadGolem (http://www.thphys.uni-heidelberg.de/ lopez/madgolem-corner.html).

In the NNLO case the IR singularity structure is much more involved than in the case of NLO
computations due to complicated overlapping singly- and doubly-unresolved configurations. Several
subtraction methods have been proposed for the regularization of the IR divergences and there is intense
research to find a general one that can be automated. To provide an impression about the importance of
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NNLO corrections, we present QCD predictions at various accuracies for the three-jet rate computed with
αs = 0.118 and at a centre-of-mass energy of

√
s = 35 GeV in Fig. 14. Figure 14(a) shows comparison

of prediction at NLO with that at matched NLO and resummed next-to-leading logarithmic (denoted by
NLLA in the figure) accuracy, while Fig. 14(b) presents comparison of prediction at NNLO with that
at matched NNLO and resummed NLL accuracy. The inserts in both cases show the ratio between the
matched and the unmatched predictions. For all calculations the uncertainty band reflects the uncertainty
due to the variation of the renormalization scale around the default scale µ =

√
s by factors of 2 in both

directions.
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Fig. 14: QCD predictions for the three-jet rate in electron-positron annihilation [36]

5 Deeply inelastic lepton-proton scattering
Perturbative QCD stems from the parton model that was developed to understand deeply inelastic lepton-
hadron scattering (DIS). The purpose of those experiments was to study the structure of the proton by
measuring the kinematics of the scattered lepton. In Fig. 15(a) we show a real event in the H1 experiment
at the HERA collider. The value ofQ2, which is the modulus squared of the momentum transfer between
the lepton and the proton is 21475 GeV2 >> 1 GeV2, signifying that the scattering is well in the deeply
inelastic region. The parton model interpretation of the event is shown in Fig. 15(b): the lepton is
scattered by an angle θ due to the exchange of a virtual photon with one of the constituents of the proton
(a parton). The measurement is inclusive from the point of view of hadrons (X means any number of
hadrons that are not observed separately), thus the process can be described in pQCD.

The DIS kinematics is described by the following varibales

centre-of-mass energy2 = s = (P + k)2 ,

momentum transfer = qµ = kµ − k′µ ,
| momentum transfer|2 = Q2 = −q2 = 2MExy ,

scaling variable = x = Q2/(2P · q) ,
energy loss = ν = (P · q)/M = E − E′ ,

relative energy loss = y = (P · q)/(P · k) = 1− E′/E ,

recoil mass2 = W 2 = (P + q)2 = M2 +
1− x
x

Q2 ,

where we set the more important ones for these lectures in red.
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e−(k) θ

e−(k′)

p(P )
X

q

Fig. 15: Deeply inelastic lepton-proton scattering (a) in the H1 detector and (b) parton model interpretation of such
an event

5.1 Parametrization of the target structure
The cross section for e(k) + p(P )→ e(k′) +X reads

dσ =
∑

X

1

4ME

∫
dφ

1

4

∑

spin

|M|2 . (63)

We factorize the phase space and the SME into two parts, one for the lepton and one for the hadrons:

dφ =
d3k′

(2π)32E′
dφX ,

1

4

∑

spin

|M|2 =
e4

Q4
LµνHµν .

Then the hadron part of the cross section is the dimensionless Lorentz tensor Wµν = 1
8π

∑
X

∫
dφXHµν

(the factor of 1
8π is included here by convention). As it depends on two momenta Pµ and qµ, the most

general gauge invariant combination of the Lorentz tensor can be written as

Wµν(P, q) =

(
−gµν +

qµqν
q2

)
W1(x,Q2) +

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)
W2(x,Q2)

P · q ,

where the structure functions Wi(x,Q
2) are dimensionless functions of the scaling variable and the

momentum transfer.

For the lepton part we express the kinematical relations E′ = (1 − y)E, cosϑ = 1 − xyM
(1−y)E to

change variables to scaling variable and relative energy loss:

d3k′

(2π)32E′
=

dϕ

2π

E′

8π2
dE′ d cosϑ =

dϕ

2π

yME

8π2
dy dx ,

and compute the trace Lµν = 1
2Tr[/kγ

µ/k
′
γn] = kµk

′ν + kνk
′µ − gµνk · k′ . Then the differential cross

section in x and y is obtained from Eq. (63) as

d2σ

dx dy
=

4πα2

y Q2

[
y2W1(x,Q2) +

(
1− y
x
− xyM

2

Q2

)
W2(x,Q2)

]
,

which we rewrite in the scaling limit, defined by Q2 →∞ with x fixed, as

d2σ

dx dy
=

4πα2

y Q2

[(
1 + (1− y)2

)
F1 +

1− y
x

(
F2 − 2xF1

)]
. (64)
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Fig. 16: Measured value of the F2 structure function at several dif-
ferent values of Q2

The dimensionless functions F1

and F2 were first measured by the
SLAC-MIT experiment [37]. The re-
sult of that measurement supplemented
by some later ones is shown in Fig. 16.
The interesting feature is that in the
scaling limit F2 becomes independent
of Q2, F2(x,Q2)→ F2(x) (in fact, the
independence starts at quite low values
of Q2).

5.2 DIS in the parton model
Let us now describe the same scatter-
ing process by assuming the proton is
a bunch of free flying quarks and the
lepton exchanges a hard virtual photon
with one of those quarks as shown in
Fig. 15(b). The struck quark carries a
momentum pµ, which is a fraction of
the proton momentum, pµ = ξPµ, so
we consider the process e(k) + q(p)→
e(k′) + q(p′). The corresponding cross

section is
dσ̂ =

1

2ŝ

∫
dφ2

1

4

∑

spin

|M|2 ,

with ŝ = (p + k)2. The SME is proportional to the product of the lepton tensor Lµν and a similar
quark tensor Qµν = 1

2Tr[/qγ
µ/q′γn] = qµq

′ν + qνq
′µ − gµνq · q′, i.e., LµνQµν = 2(ŝ2 + û2), where

û = (p − k′)2 = −2p · k′. As y = P · q/P · k = 2p · q/2p · k = (ŝ + û)/ŝ, momentum conservation,
p′µ = pµ+qµ, implies for the on-shell condition of the scattered quark 0 = p

′2 = (p+q)2 = 2p ·q+q2 =
ŝ+ û−Q2. We have y = Q2/ŝ and û = (y − 1)ŝ, so

1

4

∑

spin

|M|2 =
e2
qe

4

Q4
LµνQµν = 2e2

qe
4 ŝ

2

Q4

(
1 + (1− y)2

)
.

Also Q2 = 2p · q = 2ξP · q, so p
′2 = Q2(ξ/x− 1). Then the two-particle phase space is

dφ2 =
d3k′

(2π)32Ek′

d4p′

(2π)4
2πδ+

(
p
′2) (2π)4 δ4(k + p− k′ − p′) =

dϕ

2π

E′

4π
dE′ d cosϑ

x

Q2
δ(ξ − x) ,

or using E′ =

√
ŝ

2 (1− y) and cosϑ = 1− 2yx
ξ(1− y)

, we obtain dφ2 =
dϕ

(4π)2
y ŝ
Q2 dy dx δ(ξ − x) . The

differential cross section in x and y

d2σ̂

dx dy
=

4πα2

Q2

[
1 + (1− y)2

] 1

2
e2
qδ(ξ − x) . (65)

Comparing Eqs. (64) and (65), we find the parton model predictions

F1(x) ∝ e2
qδ(ξ − x) , F2 − 2xF1 = 0 , called Callan-Gross relation. (66)

Thus F2 probes the quark constituent of the proton with ξ = x. However, this prediction for F2 cannot
be correct because F2(x) is not a δ function as seen from Fig. 16, which leads us to formulate the naïve
parton model in the following way:
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the virtual photon scatters incoherently off the constituents (partons) of the proton;
the probability that a quark q carries momentum fraction of the proton between ξ and ξ+δξ
is fq(ξ)dξ.

Exercise 5.1 Compute the contribution to the DIS cross section in Eq. (64) with the exchange of a trans-
versely polarized photon. Hint: Use Eq. (10) for the numerator in the propagator of the transversely
polarized photon and the Callan-Gross relation in Eq. (66). Can you identify the result with any of the
terms in Eq. (64)? What is the source of the remainder?

5.3 Measuring the proton structure
With the assumptions of the naïve parton model the Callan-Gross relation predicts

F2(x) = 2xF1(x) =
∑

q

∫ 1

0
dξ fq(ξ)x e

2
q δ(x− ξ) = x

∑

q

e2
q fq(x) . (67)

Taking into account four flavours and simplifying the notation by using fq(x) ≡ q(x), we obtain a
prediction for the structure function measured in scattering of charged-lepton off proton (neutral current
interaction):

F em
2 (x) = x

[
4

9

(
u(x) + ū(x) + c(x) + c̄(x)

)
+

1

9

(
d(x) + d̄(x) + s(x) + s̄(x)

)]
.

Similarly, in charged current interactions the prediction is

F ν̄2 (x) = 2x
[
u(x)+d̄(x)+c(x)+s̄(x)

]
(with W−) , F ν2 (x) = 2x

[
d(x)+ū(x)+s(x)+c̄(x)

]
(with W+) .

Further information can be obtained if we use different targets. Assuming two flavours and isospin
symmetry, the proton (with uud valence quarks) structure is

F proton
2 (x) = x

[
4

9

(
up(x) + ūp(x)

)
+

1

9

(
dp(x) + d̄p(x)

)]
, (68)

and that of the neutron (with udd valence quarks) is

F neutron
2 (x) = x

[
4

9

(
un(x)+ūn(x)

)
+

1

9

(
dn(x)+d̄n(x)

)]
= x

[
1

9

(
up(x)+ūp(x)

)
+

4

9

(
dp(x)+d̄p(x)

)]
.

(69)
The measurements are supplemented by sum rules. For instance, as the proton consists of uud valence
quarks, we have

∫ 1

0
dx
(
up(x)− ūp(x)

)
= 2 ,

∫ 1

0
dx
(
dp(x)− d̄p(x)

)
= 1 ,

∫ 1

0
dx
(
sp(x)− s̄p(x)

)
= 0 .

The combination of the measurements and sum rules gives separate information on the quark distribu-
tions in the proton fq(x). The result of such measurements performed by the NMC collaboration [38] is
shown in Fig. 17(a) together with a fit to the data by the CTEQ collaboration [39]. The parton distribu-
tions deduced from the fit are shown in Fig. 17(b).

We can infer the proton momentum from the measurements. The surprising result is that quarks
give only about half of the momentum of the proton,

∑
q

∫ 1
0 dxxfq/p(x) ' 0.5. By now we know that the

other half is carried by gluons, but clearly the naïve parton model is not sufficient to interpret the gluon
distribution in the proton. With our experience in pQCD we try to compute radiative corrections to the
quark process to see if that helps to find the role of the gluon distribution.
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Fig. 17: (a) Measurement of combination of F2 structure functions on proton and deuteron targets by the NMC
collaboration fit by CTEQ6D PDF set, (b) CTEQ6D valence and sea quark distributions

Exercise 5.2 It is not feasible to use a neutron target experimentally. Instead deuteron is used which
is the bound state of a proton and a neutron. The corresponding structure function is F deuteron

2 (x) =
1
2(F proton

2 (x)+F neutron
2 (x)), with F proton

2 and F neutron
2 given in Eqs. (68) and (69), respectively. Which

combination of the structure function on proton and deuteron targets gives the u- and d-quark distribu-
tions?

5.4 Improved parton model: pQCD

Using the relations dy = dQ2/ŝ and δ(ξ − x) = 1
ξ δ
(

1− x
ξ

)
, we rewrite the differential cross section

(65) in a more usual notation,

d2σ

dx dQ2
=

∫ 1

0

dξ

ξ

∑

i

fi(ξ)
d2σ̂

dx dQ2

(
x

ξ
,Q2

)
, (70)

which gives the cross section as a convolution of a long-distance component (the PDF) and a short-
distance component (the hard scattering cross section). This form of the cross section is the main content
of the factorization theorem, which we derived heuristically, but a rigorous proof, based on QFT exists.

The factorization formula (70) raises some questions. Knowing that the quarks do not give the
total momentum of the proton, it is natural to include the contribution of gluons in Eq. (70). However,
we do not yet know the corresponding hard scattering cross section. We also do not know how we can
apply PT. Furthermore, the scaling was exact in the parton model. Is it so in QCD? There is a common
answer to these questions: DIS in pQCD.

To develop pQCD for DIS, let us revisit the IR singularities once more. Let us denote the hard
scattering cross section for some final state by σh. Then the cross section in the collinear approxima-
tion for the same final state with an extra gluon of relative transverse momentum k⊥ = Eθ, carrying
momentum fraction (1− z) is
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σh

zp

(1 − z)p

p
θ : σh+g ' σh2CF

αs

π

dE

E

dθ

θ
= σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

Integrating over z up to one and over k⊥ we find soft and collinear divergence, respectively. In studying
pQCD we found that these IR singularities in the final state cancel against IR divergences in the virtual
correction for IR safe quantities:

σh
p: σh+V ' −σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

If there is a coloured parton in the initial state, then the splitting may occur before the hard scat-
tering and the momentum of the parton that enters the hard process is reduced to zpµ, so

zp

(1 − z)p

p

θ
σh

: σh+g(p) ' σh(zp)2CF
αs

π

dE

E

dθ

θ
= σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

Integrating over z up to one and over k⊥ we again find soft and collinear divergence, respectively. The
corresponding ε poles multiply σh(zp), while in the virtual correction the poles multiply σh(p), irrespec-
tive whether the IR divergence is in the initial or final state:

p σh
p : σh+V ' −σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

The sum of the real and virtual corrections then contains an uncancelled singularity,

σh+g + σh+V ' CF
αs

π

∫ Q2

m2
g

dk2
⊥

k2
⊥︸ ︷︷ ︸

infinite if mg=0

∫ 1

0

dz

1− z [σh(zp)− σh(p)]

︸ ︷︷ ︸
finite

,

where we used a finite gluon mass to regulate the collinear divergence (instead of dimensional regular-
ization) to make manifest that the collinear singularity remains, while the soft one (at z → 1) vanishes
in the sum.

This uncancelled collinear singularity in the initial state is a general feature of pQCD computations
with incoming coloured partons and its form is universal, so we can find its precise form studying the
structure function at NLO accuracy. We know that in the parton model (QCD at LO) the prediction for
hard scattering cross section F̂2 is finite:

F̂2,q(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

= e2
qx δ(1− x) , F̂2,g(x) =

d2σ̂

dx dQ2

∣∣∣∣
F2

=
∑

q

e2
q x · 0

i.e., it is zero in the gluon channel because the virtual photon does not interact with the gluon directly.
At one order higher in αs we finds

F̂2,q(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

= e2
qx

[
δ(1− x) +

αs

4π

(
Pqg(x) ln

Q2

m2
g

+ Cq2(x)

)]
, (71)

and

F̂2,g(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

=
∑

q

e2
qx

[
0 +

αs

4π

(
Pqq̄(x) ln

Q2

m2
q

+ Cg2 (x)

)]
, (72)
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where Pij(x) is the Altarelli-Parisi splitting function (regularized at x = 1), obtained from the splitting
kernel P̂ij in four dimensions by (i) averaging over the spin states of the splitting parton and (ii) adding
the contribution from the loop graphs, while C2(x) is the remaining finite term, called coefficient func-
tion. We see that at NLO the prediction for F̂2 is finite in the UV and final state IR divergences cancel,
but un-cancelled singularity remains in the initial state IR, regularized with a small mass here.

The hard scattering function is not measurable, only the structure function is physical:

F2,q(x,Q
2) = x

∑

i

e2
qi

[
f (0)
qi (x) +

αs

2π

∫ 1

0

dξ

ξ
f (0)
qi (ξ)

(
Pqg

(
x

ξ

)
ln
Q2

m2
g

+ Cq2

(
x

ξ

))]
.

However, this function appears divergent if the regulator is removed, mg → 0. While C2(x) depends on
the process under investigation, the divergence does not because it is multiplied with universal splitting
functions.

Exercise 5.3 Compute the coefficient Cg2 (x) in Eq. (72).

5.5 Factorization in DIS
If the remaining divergences are universal (and they are because do not depend on the hard scattering),
we can absorb the singularity into the PDF’s. For instance, defining

fq(x, µF) = f (0)
q (x) +

αs

2π

∫ 1

0

dξ

ξ

[
f (0)
q (ξ)Pqg

(
x

ξ

)
ln
µ2

F

m2
g

+ zqq

(
x

ξ

)]
, (73)

the structure function becomes

F2,q(x,Q
2) = x

∑

i

e2
qi

[
fi(x, µF)+

αs(µR)

2π

∫ 1

0

dξ

ξ
fi(ξ, µF)

(
Pqg

(
x

ξ

)
ln
Q2

µ2
F

+
(
Cq2 − zqq

)(x
ξ

))]
.

(74)
Defining the convolution in x-space, f ⊗x g ≡

∫ 1
0

dξ
ξ
f(ξ) g

(
x
ξ

)
, we see that the structure function is

‘factorized’ in the form of a convolution,

F2,q(x,Q
2) = x

∑

i

e2
qi fi(µF)⊗x F̂2,i(µR, t) , t = ln

Q2

µ2
F

.

The long distance physics is factored into the PDF’s that depend on the factorization scale µF. The short
distance physics is factored into the hard scattering cross section that depends on both the factorization
and the renormalization scales. Both scales are arbitrary, unphysical scales. The term z defines the
factorization scheme. It is not unique, finite terms can be shifted between the short and long distance
parts, but it is important that it must be chosen the same in all computations (the MS scheme is the
standard).

Exercise 5.4 The regularization of the splitting functions at z = 1 is achieved by the +-prescription
defined by ∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx
f(x)− f(1)

1− x
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for any smooth test function f(x). The contribution of the loop corrections has the same kinematics as
the LO one, so it has to be proportional to δ(1−x). Thus the complete regularized splitting function has
the form

Pqg(x) = CF

[
1 + x2

(1− x)+
+Kδ(1− x)

]
.

We can obtain the parton distribution for quark in quark from Eq. (73) by the substitution f (0)
q (x) →

δ(1− x)

fq(x, µF) = δ(1− x) +
αs

2π
Pqg(x) ln

µ2
F

m2
g

.

Integration over x gives the number of quarks in a quark that has to be one, independently of µF . Thus
we have the condition

∫ 1
0 dxPqg(x) = 0. Compute the regularized splitting function.

5.6 DGLAP equations
The short-distance component of the factorized structure function in Eq. (74) can be computed in pQCD.
It depends on the renormalization scale, but recall that it has to satisfy the RGE.

We cannot compute the PDF’s in PT, so it seems that this is the end of the story: pQCD appears
non-predictive for processes with hadrons in the initial state. However, the arguments that lead to the
RGE come to the rescue. While the right hand side of Eq. (74) depends on both renormalization and
factorization scales, the measurable quantity F2 does not, which can be expressed by RGE. Of course,
this statement has to be understood perturbatively, namely at any order in PT, the right hand side of
the RGE is not exactly zero, but may contain terms that are higher order in PT. Only infinite order is
expected to give exact independence of the scales. The RGE gives the missing piece of information
needed to make the theory predictive.

To write the RGE, we introduce Mellin transforms defined by f(N) ≡
∫ 1

0 dxxN−1f(x), which
turns a convolution into a real product:

∫ 1

0
dxxN−1

∫ 1

0

dξ

ξ
f(ξ) g

(
x

ξ

)
=

∫ 1

0
dxxN−1

∫ 1

0
dξ

∫ 1

0
dyδ(x− yξ)f(ξ) g(y)

=

∫ 1

0
dξ

∫ 1

0
dy (ξy)N−1f(ξ) g(y) = f(N)g(N) .

So F2,q(N,Q
2) = x

∑
i e

2
qi fi(N,µF)F̂2,i(N,µR, t) is independent of µF, expressed as

µF
dF2

dµF
= 0

(
= O

(
αn+1

s

)
in PT at O

(
αns
))

.

Let us explore the consequences of this RGE. For simplicity, let us assume one quark flavour,
F2,q(N,Q

2) = xe2
qi fq(N,µF )F̂2,i(N,µR, t). Then the RGE reads

F̂2,q(N, t)
dfq
dµF

(N,µF ) + fq(N,µF )
dF̂2,q

dµF
(N, t) = 0 .

Dividing with fq F̂2,q, it turns into

µF
d ln fq
dµF

(N,µF ) = −µF
d ln F̂2,q

dµF
(N, t) ≡ −γqg(N) , (75)

44

Z. TRÓCSÁNYI

108



where γqg(N) is called the anomalous dimension because it acts as a factor µ−γqg(N)
F in the dimensionless

function ln fq(N,µF). Taking the Mellin moment of Eq. (73) and then its derivative with respect to µF,
we obtain that the anomalous dimension is

γqg(N) = −µF
d ln fq
dµF

(N,µF ) = −αs(µR)

π
Pqg(N) +O

(
α2

s

)
, (76)

i.e., it is the Mellin transform of the splitting function, which can be computed in PT. Equation (75)
implies that the scale dependence of the PDF can be predicted in PT. This together with the universality
of PDF’s makes pQCD predictive: we can measure the PDF’s in one process at a certain scale and then
use it in another process at another scale to make predictions.

How shall we choose the renormalization and factorization scales? If we want to avoid large
logarithms that spoil the convergence of the perturbative series, the scales should be chosen near the
characteristic physical scale of the process Q, e.g., µ2

R = µ2
F = Q2. Then the RGE becomes

Q2 d ln fq
dQ2

(N,Q2) = −1

2
γqg

(
N,αs

(
Q2
))

, (77)

which is the Mellin transform of

Q2 dfq
dQ2

(x,Q2) =
αs

(
Q2
)

2π
Pqg ⊗x fq

(
Q2
)
. (78)

Our discussion was highly simplified by considering only one quark flavour and neglecting the mixing
of partons. If we make the full computation we obtain the gold-plated formula

Q2 df(ij)

dQ2
(x,Q2) =

αs

(
Q2
)

2π

∑

i

Pij ⊗x fi
(
Q2
)
, (79)

called DGLAP (for Dokshitzer [40], Gribov-Lipatov [41] and Altarelli-Parisi [42]) equation.

Let us now solve the (simplified) DGLAP equation in Mellin space, Eq. (77). It is a simple first
order differential equation whose solution is

fq(N,Q
2) = fq(N,Q

2
0) exp

[
−
∫ t

t0

dt γqg

(
N,αs

(
Λ2et

))]
.

Let us recall the one-loop formula in Eq. (20), αs

(
Q2
)

= 1
b0t
, t = ln Q2

Λ2 and introduce the abbreviation

dqg(N) = −γqg(N)
2πb0

≤ 0. Then

fq(N,Q
2) = fq(N,Q

2
0) exp

[
dqg(N)

∫ t

t0

dt

t

]
, or fq(N,Q

2) = fq(N,Q
2
0)

(
t

t0

)dqg(N)

, (80)

called scaling violation.

As γqg(1) = 0, the valence q-quark in the proton, given by the integral
∫ 1

0 dx fq(x,Q
2), is inde-

pendent ofQ2. Higher moments vanish more rapidly, therefore, the average x decreases asQ2 increases.
Thus we predict that fq(x,Q2) increases at small x and decreases at large x. This prediction is seen to
be valid from the measurements shown in Fig. 18(a).

Exercise 5.5 Compute the anomalous dimension γqg(x) using Eq. (76).
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Fig. 18: (a) Measurement of F2 structure function at differentQ2 as a function of x, (b) evolution of valence quark,
sea quark and gluon distributions

6 Hadron collisions
While electron-positron annihilation and DIS played very important role in establishing pQCD for un-
derstanding high-energy scattering experiments, presently and in the mid-term future the experiments at
the energy frontier can be found at the Large Hadron Collider (LHC). Thus we are most interested in the
theoretical tools needed to understand high-energy proton-proton collisions.

6.1 Factorization theorem
Fortunately, the tools we have developed so far can be generalized straightforwardly to hadron collisions.
The most general form of the factorization theorem includes convolution with two PDF’s, one for each
colliding parton, the hard scattering cross section, and possibly a convolution with a fragmentation func-
tion (FF) of a parton into an identified hadron in the final state. Thus, the differential cross section for a
hypothetical process pp→ Z + π +X has the form

dσpp→Z+π+X(s, x, αs, µR, µF) =
∑

i,j,k

∫ 1

0
dx1fi/p(x1, αs, µF)

∫ 1

0
dx2fj/p(x2, αs, µF)

×
∫ 1

x

dz

z
dσ̂ij→Z+k+X(ŝ, z, αs(µR), µR, µF)Dπ/k

(x
z
, ŝ
)

+O
(

Λ

Q

)p
.

(81)

In Eq. (81) s is the total centre-of-mass energy squared, x/z is the longitudinal momentum fraction
of the pion in the parton k, µR and µF are the renormalization and factorization scales, fi/p(x) is the
PDF for parton i in the proton with momentum fraction x, dσ̂ij→Z+k+X(ŝ) is the hard scattering cross
section for the partonic process, Dπ/k(x) is the FF for the process parton k → π. The last term shows
that contributions suppressed at high Q2 are neglected (p > 1). Substituting the PDF’s and FF’s with δ
functions (in momentum and flavour) we obtain the cross section formulae in DIS and electron-positron
annihilation.
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The PDF’s and FF’s constitute the non-perturbative, long-distance components of the cross section
that cannot be computed in pQCD, only extracted from measurements. Thus, it is a natural question
whether or not the factorization theorem is predictive. The answer is a clear yes for the following reasons.

We can compute the hard scattering cross section in PT, which involves (i) renormalization of UV
divergences (order by order in PT), (ii) cancellation of IR ones for IR safe observables using a subtraction
method, (iii) absorbing initial state collinear divergences into renormalization of PDF’s (and possibly
uncancelled final state ones into that of the FF). The non-perturbative components are universal, so can
be measured in one process and used to make prediction in another one. Furthermore, the evolution of
these with Q2 can be predicted in PT (DGLAP equations), shown in Fig. 18(b).

In summary, we are prepared to make predictions for any high-energy scattering process. The
theoretical framework for such predictions relies on pQCD and the factorization theorem. In PT we can
compute the hard scattering cross section and the evolution of the PDF’s. There are universal elements,
such as the PDF’s and FF’s, as well as the subtraction method for computing radiative corrections.

6.2 Are we happy?
At this point theorists can make precision predictions for distributions of IR safe observables. The
main bottleneck to make such predictions is the algebraic complexity of computing amplitudes and the
analytic complexity of evaluating loop integrals. The state of the art considers the computation of NLO
corrections a solved problem with automated implementations for processes up to about five partons in
the final state (at tree level). The exact number depends on the process being considered because the
numerical integrations become too expensive eventually. Nevertheless, all processes listed in the ‘Les
Houches wishlist (2011)’ are known by now. Furthermore, there is also a computer code to compute
seven-jet production in electron-positron annihilation [43].

For experimenters the situation is less satisfactory. While pQCD predictions are based on a solid
theoretical ground, those lack important features. On the one hand pQCD gives predictions for final
states with few partons, detectors detect hadrons. A tool that can simulate real events with hadrons at
correct rates would be much more handy. To finish these lectures we look into modeling events in a
qualitative way. A more detailed description can be found in Ref. [44].

6.3 Modelling events

Fig. 19: Artistic view of a proton-proton scattering
event at high energy (curtesy of F. Krauss)

Figure 19 shows our view of a proton-proton scatter-
ing event at high energy. The three parallel lines end-
ing in discs from both sides represent the two incoming
protons. At high energies these protons consist of (al-
most) free-flying partons, two of which (one from each)
collide at high centre-of-mass energy and produce the
hard scattering, with perturbatively computable cross
section. This is where signs of new physics may ap-
pear. The hard scattering cross section is process de-
pendent. We have discussed how it can be computed
from first principles, which can be improved systemat-
ically by computing the radiative corrections.

Before collision the colliding partons may emit
other partons collinear with the beam. These collinear
emissions in the initial state give rise to divergences
that can be factored into the renormalized parton dis-
tribution functions. After collision few energetic par-
tons appear that may emit less energetic partons and each develops showers of partons. Emissions into
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almost the same direction as the original parton occur with enhanced probability (due to the collinear
divergence) as well as emissions of soft gluon. This is represented in Figure 19 by red quark and gluon
lines. Both factorization and parton showering can be described from first principles based upon known
physics of QCD, and are universal, i.e., independent of the process and observable. We have seen how
factorization works, but have not discussed how parton showers are modelled with shower Monte Carlo
(SMC) programs [45,46]. We mentioned marginally how the large logarithms emerging in the final state
splittings can be resummed, which gives improved prediction for the cross section (as seen in Fig. 14),
but does not simulate events.

Parton showers still only give a description of events in terms of quarks and gluons, whereas
detectors detect only hadrons. We do not know how to compute hadronization, the transition from quarks
and gluon to hadrons, from first principles. Yet the idea of local parton-hadron duality (LPHD) provides
some sort of theoretical understanding (see, e.g., Ref. [47]). It states that after accounting for all gluon
and quark production down to scales' ΛQCD, the transition from partons to hadrons is essentially local
in phase space. Thus the hadron directions and momenta will be closely related to that of the partons,
and the hadron multiplicity will reflect the parton multiplicity, too. This is illustrated by the green lines
with dots.

In addition to the energetic partons in the initial state, there are also low-energy ones that may
collide, which is energy and process dependent. This low-energy physics is described in models of
underlying event, which are also part of modern SMC’s. The underlying event produces low-energy
partons. Also at the end of the shower low-energy partons emerge. As QCD confines partons, these
partons turn into hadrons before detection, a process called hadronization. We do not have a theory of
hadronization based on first principles. Instead, SMC’s include models that describe hadronization in a
process independent way. These models contain parameters that are fixed experimentally.

7 Conclusions
In these lectures we discussed the theoretical basis of interpreting the results of high-energy collider
experiments. We discussed how pQCD can be made predictive and also the main uncertainties in the
predictions. We used the following key ingredients in this tour: (i) gauge invariance that allows us to
write down the Lagrangian and which predicts many important features of the theory; (ii) renormalization
that cancels ultraviolet divergences systematically order-by-order in perturbation theory and introduces a
dimensionful scale into even the scaleless Lagrangian of massless QCD, leading to scaling violations of
one-scale observables that would be scale independent in the classical theory; (iii) asymptotic freedom at
high energies emerging from the quantum structure of the theory and the non-Abelian nature of the gauge
group; (iv) need for infrared safety, emerging from asymptotic freedom, to ensure that the IR divergences,
associated with unresolved parton emission, cancel between real and virtual contributions, allowing the
perturbative calculation of jet cross sections, without a detailed understanding of the mechanism by
which partons become jets; (v) factorization that makes possible to use perturbative QCD to calculate
the interactions of hadrons, since all the non-perturbative physics gets factorized, into parton distribution
functions; (vi) evolution and universality of PDF’s that allows us to extract those measuring cross sections
in one process, like DIS, and then used to predict the cross sections for any other process. Again, this
factorization introduces a scale dependence into the parton model so that the structure functions of DIS,
and other one-scale observables become scale dependent. These features make pQCD predictive, without
forcing us to solve the theory at all possible scales: unknown or uncalculable high- and low-energy effects
can be renormalized, factorized and cancelled away.

Of course, in four double lectures, it was impossible to give full treatment of any of the topics we
encountered. For that I refer to any of the classic textbooks about QCD at colliders [48–50].
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Higgs Physics
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Abstract
These lectures review the background to Higgs physics, its current status fol-
lowing the discovery of a/the Higgs boson at the LHC, models of Higgs physics
beyond the Standard Model and prospects for Higgs studies in future runs of
the LHC and at possible future colliders.

KCL-PH-TH/2013-49, LCTS/2013-36, CERN-PH-TH/2013-315

1 Motivations and Context
1.1 To Higgs or not to Higgs?
The Standard Model describes all the visible matter in the Universe in terms of a limited number of
fermionic constituents of matter: six quarks, three charged leptons and three light neutrinos. It also
comprises three fundamental gauge interactions between these constituents, namely the electromagnetic,
strong and weak forces, to which should be added gravitation. The Standard Model is in good agreement
with all confirmed experimental results from particle accelerators. However, there was, until July 4th
2012, one crucial missing ingredient: the origin of particle masses. Without a mass for the electron there
would be no atoms, as electrons would escape from nuclei at the speed of light, and the weak interactions
would not live up to their name: they would be stronger than electromagnetism. So discovering the origin
of particle masses has been a Big Deal.

In addition to elucidating the origin of particle masses and establishing whether a/the Higgs boson
exists, there are many important open questions beyond the Standard Model. Why are there so many dif-
ferent types of matter particles? Why do weak interactions mix them the way they do? How/why do they
discriminate between matter and antimatter, and might this difference explain the dominance of matter
over antimatter in the Universe today? What is the nature of the invisible dark matter that, according to
astrophysicists and cosmologists, dominates over the visible matter described by the Standard Model?
Are the fundamental forces unified, and what is the full quantum theory of gravity?

The key to answering many of these other questions may be provided by finding the origin of
particle masses. For example, decays of the Higgs boson may discriminate between matter and antimat-
ter, and might lie at the origin of the cosmological matter-antimatter asymmetry. In many theoretical
extensions of the Standard Model, the Higgs boson is accompanied by other new particles, the lightest
of which might provide the astrophysical dark matter. A possible unified theory of all the elementary
particle interactions might employ a symmetry-breaking mechanism analogous to that in the Standard
Model, and the existence of any light ‘elementary’ scalar boson would pose a challenge for many quan-
tum theories of gravity.

The equations describing the gauge interactions of the Standard Model do not discriminate be-
tween matter particles with the same quantum numbers, which differ only in their masses. The mass-
generation mechanism must discriminate between these otherwise-identical particles of matter and be-
tween the different force-carrying vector bosons: it must break the symmetries between them. One way
to achieve this might be to break the symmetry explicitly in the equations, but then the calculability of
the theory would be lost. The alternative is to retain symmetric equations but break the symmetry in their
solutions.
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The issue then is whether to break the symmetry throughout space, or via boundary conditions.
The latter is not possible in conventional three-dimensional space, since it has no boundaries. However,
it would be possible in theories with additional dimensions of space: one could postulate different be-
haviours in the extra dimension(s) for different particle species. The discovery of a/the Higgs boson at the
LHC [1, 2] has somewhat deflated interest in extra-dimensional models, unless their spectrum features a
low-mass excitation that resembles closely the Higgs boson of the Standard Model.

This discovery seems to mark the latest success of a long-running theoretical strategy in particle
physics: when in trouble, postulate one of more new particles. A partial list includes reconciling quantum
mechanics and special relativity (antimatter), nuclear spectra (the neutron), the continuous spectrum in
β decay (the neutrino), nucleon-nucleon interactions (the pion), the suppression of µ → eγ (the second
neutrino), flavour SU(3) (Ω− and quarks), the suppression of flavour-changing neutral currents (charm),
CP violation (the third generation), strong dynamics (the gluons), the discovery of the τ lepton (the b and
t quarks), weak interactions (the W± and Z0), and their renormalizability (a/the Higgs boson) 1.

The discovery of a/the Higgs boson marks the completion of the Holy Trinity of particle types
seen in Table 1.2. It has been known for decades that the only type of field theory capable of making
non-trivial over many magnitudes of energy is a renormalizable one. Also, it has been a theorem for some
40 years that such a theory could only contain (i) gauge vector bosons, (ii) spin-1/2 fermions, and (iii)
scalar bosons. Specification of a renormalizable theory is completed by choosing (a) the gauge group,
(b) the fermion representations, and (c) the scalar fields used to realize the desired symmetry-breaking
pattern. We have long known that the answer (so far) to (a) is SU(3)×SU(2)×U(1) and that the fermion
representations are triplets of SU(3) and singlets and doublets of SU(2). Finally we have an example
of category (iii), a scalar boson, and there is strong evidence that it is responsible for (c) electroweak
symmetry breaking.

The first of these lectures describes the long road towards the discovery of a/the Higgs boson, the
second lecture describes the state of our knowledge after Run 1 of the LHC, and the third lecture outlines
some of the prospects for future studies, including supersymmetric Higgs bosons and concepts for Higgs
factories.

1.2 Summary of the Standard Model
Table 1.2 summarizes the particle content of the Standard Model [3–6]. The electromagnetic and weak
interactions are described by an SU(2)L×U(1)Y group [7], where the subscript L reminds us that the
weak SU(2) group acts only the left-handed fermions, and Y is the hypercharge. The SU(2)L×U(1)Y
part of the Standard Model Lagrangian may be written as

L = −1

4
FaµνF

aµν

+ iψ̄/Dψ + h.c.

+ ψiyijψjφ+ h.c.

+ |Dµφ|2 − V (φ) , (1)

which is short enough to write on a T-shirt!

The first two lines of (1) have been confirmed in many different experiments with a high degree
of accuracy. However, consistency with the precision electroweak measurements made at LEP and other
accelerators agreed with the Standard Model if only if there was a relatively light Higgs boson weighing
< 180 GeV or so [8, 9]. However, until July 2012 there was no direct experimental evidence for the last
two lines [1, 2]. One of the main objectives of the LHC was to discover whether they are right, need

1Outstanding examples include dark matter (the axion or a WIMP?) and the fine-tuning problem (supersymmetry?). De-
pressed advocates of supersymmetry should remember that it took 48 years to discover a/the Higgs boson, whereas at the time
of writing four-dimensional supersymmetric gauge theories are ‘only’ 40 years old.
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Gauge bosons Scalar bosons
γ, W+, W−, Z0, g1...8 φ (Higgs)

Spin-1/2 Fermions
Quarks (each with 3 colour charges) Leptons

Charges + 2/3 :
−1/3 :

(
u
d

)
,

(
c
s

)
,

(
t
b

)
Charges 0 :

−1 :

(
νe
e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)

Table 1: The particle content of the Standard Model with a minimal Higgs sector

modification, or are simply wrong. The most important result of the first run of the LHC has been to find
some evidence that these lines do indeed contain a grain of truth.

The first line in (1) is the kinetic term for the gauge sector of the electroweak theory, with a running
over the total number of gauge fields: three associated with SU(2)L, which we call B1

µ, B2
µ, B3

µ, and one
associated with U(1)Y , which we call Aµ. Their field-strength tensors are

F aµν = ∂νB
a
µ − ∂µBa

ν + gεbcaB
b
µB

c
ν for a = 1, 2, 3 ; (2)

fµν = ∂νAµ − ∂µAν . (3)

In (2), g is the coupling constant of the weak-isospin group SU(2)L, and the εbca are its structure con-
stants. The last term in this equation stems from the non-Abelian nature of SU(2). The gauge fields are
massless in the absence of any scalar fields, but we will see later how specific linear combinations of
the four electroweak gauge fields can acquire masses by spontaneous symmetry breaking induced by a
scalar field.

The second line in Eq. (1) describes the interactions between the matter fields ψ, described by
Dirac equations, and the gauge fields via covariant derivatives.

The third line is the Yukawa sector and incorporates the interactions between the matter fields
and the scalar field φ that is responsible for giving fermions their masses when electroweak symmetry
breaking occurs.

The fourth and final line is the engine room of the scalar sector. The first piece is the kinetic term
for φ with the covariant derivative defined here to be

Dµ = ∂µ +
ig′

2
AµY +

ig

2
τ ·Bµ , (4)

where g′ is the U(1) coupling constant, and Y and τ ≡ (τ1, τ2, τ3) are the Pauli matrices that generate,
respectively, U(1) and SU(2). The second piece of the final line of (1) is the effective potential V (φ)
constructed in such a way that its minimization gives rise to a non-zero v.e.v. for the scalar field, and
hence spontaneous electroweak symmetry breaking.

1.3 The (NG)AEBHGHKMP Mechanism
This mechanism is often called the Higgs mechanism, but the history is quite complicated, with many
antecedents to the Higgs papers, with antecedents in condensed-matter physics, e.g., in the theories of
superfluidity and superconductivity [10] 2. Spontaneous global symmetry breaking was introduced into
four-dimensional, relativistic particle physics by Nambu [11], providing insight into the lightness of the
pion and spontaneous chiral symmetry breaking. Subsequently, a simple field-theoretical model was
formulated by Goldstone [12], and the appearance and number of massless scalar bosons appearing in
such theories was specified by a theorem proved in [13]. In parallel, Nambu [14] and Anderson [15]

2The wheel has turned full circle with their importance for the construction of the LHC!
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had shown how to interpret superconductivity in terms of a spontaneously-broken local U(1) symme-
try. Moreover, Anderson had conjectured that this could occur also in the four-dimensional case, but
Gilbert [16] argued in early 1964 that this would be impossible in a relativistic theory.

However, later in 1964 several papers successfully introduced spontaneously-broken local symme-
try into particle physics. The initial paper by Englert and Brout [17] was followed a few weeks later by
two papers written by Higgs, who did not know about their work at the time. The first Higgs paper [18]
pointed out that Gilbert’s objection to a four-dimensional extension of Anderson’s approach could be cir-
cumvented, and the second proposed a specific four-dimensional model with a massive scalar boson [19].
The subsequent paper by Guralnik, Hagen and Kibble [20] developed the ideas proposed in these earlier
papers. Also of note is a relatively-unknown 1965 paper by Migdal and Polyakov [21], which discusses
the partial breaking of a local non-Abelian symmetry, ahead of the influential paper of Kibble [22].

Of all these authors, Higgs was the only one who mentioned explicitly the existence of a massive
scalar boson (see equation (2b) of his second paper [19]), and he went on to write a third paper in
1966 [23] that discusses the properties of this ‘Higgs boson’ in surprising detail including, e.g., its decays
into massive vector bosons.

1.4 Spontaneous Symmetry-Breaking in a U(1) Model
As an illustration of spontaneous symmetry breaking [24], consider first a single complex scalar field
φ = φ1 + φ2 with the following effective potential:

V (φ∗φ) = µ2 (φ∗φ) + λ (φ∗φ)2 , (5)

where µ2 and λ > 0 are real constants. This Lagrangian is clearly invariant under global U(1) phase
transformations

φ→ eiαφ , (6)

where α is a phase (rotation) angle. If the parameter µ2 in (5) is positive, there is a unique vacuum state
with 〈φ〉 = 0. Perturbing around this vacuum reveals that, in this case, φ1 and φ2, have the same mass.
The symmetry of the original Lagrangian is explicit in this case.

Consider now the case µ2 < 0, corresponding to the ‘Mexican Hat’ potential illustrated in Fig.1.
When we minimize the potential (5) we find a non-zero vacuum expectation value, or v.e.v., of the scalar
field with:

|φ|2 = φ2
1 + φ2

2 = −µ
2

2λ
, (7)

and the phase α undetermined. Thus, when µ2 < 0 there is a set of equivalent minima lying around a
circle of radius

√
−µ2/ (2λ), and choosing one of them breaks the rotational symmetry spontaneously.

The U(1) symmetry is now implicit, since it relates the different equivalent vacua, corresponding
to the appearance of spontaneous symmetry breaking. In order to see the particle content, we choose,
without loss of generality, a particular ground state around which to perturb:

φ1,vac =

√
−µ

2

2λ
≡ v√

2
, φ2,vac = 0 . (8)

The perturbations may be parametrized by

η√
2
≡ φ1 −

v√
2

,
ξ√
2
≡ φ2 , (9)

so that φ = (v + η + iξ) /
√

2, where η and ξ are real fields. In terms of these, the effective potential
becomes

L = −µ
2

2
η2 − λ

2

[
(v + η)2 + ξ2

]2
− µ2vη − µ2

2
ξ2 − 1

2
µ2v2 .
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Fig. 1: An illustration of the Higgs potential (5) in the case that µ2 < 0, in which case the minimum is at
|φ|2 = −µ2/(2λ). Choosing any of the points at the bottom of the potential breaks spontaneously the rotational
U(1) symmetry.

The scalar particle corresponding to η is massive with m2
η = −µ2 > 0, whereas the scalar particle

corresponding to ξ is massless.

This particle is a prototype of a (Nambu-)Goldstone boson. It is massless because there is a
direction in field space, corresponding to changing the phase, in which the potential energy does not
change. Its appearance is a general feature of models with spontaneously-broken global symmetries, as
proven in [13]. The total number of such massless particles corresponds in general to the number of
field directions in which the potential is flat. Nambu introduced this idea into particle physics in order to
describe the (relatively light) pion of QCD [11], which he identified as a (pseudo-)Goldstone boson of
chiral symmetry that would have no mass if the up and down quarks were exactly massless. The simple
field-theoretical model is due to Goldstone [12].

We now discuss how this spontaneous symmetry breaking of symmetry manifests itself in the
presence of a U(1) gauge field [17, 19, 20]. In order to construct a theory that is invariant under local
U(1) phase transformations, i.e.

φ→ eiα(x)φ , (10)

we introduce a gauge field Aµ that transforms under U(1) as follows:

A′µ → Aµ +
1

q
∂µα (x) . (11)

The space-time derivatives appearing in the kinetic term for the scalar field φ are replaced by covariant
derivatives

Dµ = ∂µ + iqAµ , (12)

where q is the conserved charge. Including kinetic terms for both the scalar field and the Aµ field:
(1/4)FµνFµν where Fµν ≡ ∂νAµ − ∂µAν , which is invariant under the U(1) gauge transformation
(11), we have the Lagrangian

L = [(∂µ − iqAµ)φ∗] [(∂µ + iqAµ)φ]− V (φ∗φ)− 1

4
FµνFµν , (13)

which we now analyze.
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We minimize the potential V (φ) as before, and write the Lagrangian in terms of the perturbations
around the ground state (9):

L =

{
1

2

[
(∂µη) (∂µη)− µ2η2

]
+

1

2
(∂µξ) (∂µξ)−

1

4
FµνFµν +

1

2
q2v2AµAµ

}

+ vq2AµAµη +
q2

2
AµAµη2 + q (∂µξ)Aµ (v + η)− q (∂µη)Aµξ

− µ2vη − µ2

2
ξ2 − λ

2

[
(v + η) + ξ2

]2 − µ2v

2
. (14)

As before, the first three terms describe a (real) scalar particle, η, with mass
√
−µ2 and a massless

Goldstone boson, ξ. The fourth term describes the free U(1) gauge field. However, whereas previously
the Lagrangian (13) apparently described a massless gauge boson field, we now see in the spontaneously-
broken phase (14) a term proportional to AµAµ, corresponding to a mass for the gauge field:

mA = qv , (15)

that is proportional to the vacuum expectation value of the Higgs field.

The other terms in (14) describe couplings between the fields Aµ, η and ξ, including a bilinear
interaction coupling ∝ Aµ∂µξ. The correct particle interpretation of (14) is obtained by diagonalizing
the bilinear terms, which is easily done by using the gauge freedom of Aµ to replace

Aµ → A′µ = Aµ +
1

qv
∂µξ , (16)

and making the local phase transformation

φ→ φ′ = e−iξ(x)/vφ =
v + η√

2
. (17)

Following this transformation, the field ξ disappears, and (14) takes the simple form

L =
1

2

[
(∂µη) (∂µη)− µ2η2

]
− 1

4
FµνFµν +

q2v2

2
Aµ ′A′µ + . . . . (18)

where the . . . represent trilinear and quadrilinear interactions.

The Goldstone boson ξ that appeared when the global U(1) symmetry was broken spontaneously
by the choice of ground state when µ2 < 0 has been absorbed (or ‘eaten’) by the gauge field Aµ, which
thereby acquired a mass. Remember that, whereas a massless gauge boson has only two degrees of
freedom (transverse polarization states), a massive gauge boson has a third (longitudinal) polarization
state that is supplied by the Goldstone boson of the spontaneously-broken U(1) global symmetry. This is
the Englert-Brout-Higgs mechanism.

In order for this mechanism to work, the magnitude of the v.e.v. of the scalar field must be
fixed dynamically, which occurs in this model because the potential varies non-trivially in the radial
(|φ|) direction. The mass term for the η field in (18) is a reflection of this variation in the potential.
The appearance of such a massive scalar boson is an unavoidable signature of spontaneous symmetry
breaking.

1.5 Spontaneous Symmetry Breaking in the Standard Model
As already mentioned, the gauge group of the Standard Model is SU(2)L×U(1)Y [3, 4, 7], and the La-
grangian can be written in the form

L = Lgauge + Lleptons
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Lgauge = −1

4
F aµνF

aµν − 1

4
fµνf

µν

Lleptons = R
(
∂µ + i

g′

2
AµY

)
R + Liγµ

(
∂µ + i

g′

2
AµY + i

g

2
τ ·Bµ

)
L , (19)

where the field-strength tensors, Fµν and fµν , were defined in (2) and (3), respectively, g is the SU(2)
coupling and g′ is the U(1) hypercharge coupling. The symbol L represents doublets of left-handed
fermions and R represents right-handed fermions. As written in (19), the theory contains four massless
bosons (Aµ, B1

µ, B2
µ, B3

µ).

We now introduce a scalar field that is a complex doublet of SU(2) [3, 4]:

φ =

(
φ+

φ0

)
, (20)

and add to the Lagrangian
LHiggs = (Dµφ)† (Dµφ)− V

(
φ†φ
)
, (21)

with an effective potential of similar form to (5):

V
(
φ†φ
)

= µ2
(
φ†φ
)

+ λ
(
φ†φ
)2

, (22)

with µ2 < 0 and λ > 0. We also include Yukawa interactions between this scalar field and the matter
fermions:

LYukawa = −Ge
[
Rφ†L + LφR

]
, (23)

which yield masses for the matter fermions, as we see later.

As in the U(1) case when µ2 < 0, 〈φ〉 = 0 is an unstable local maximum of the effective potential.
The minimum has 〈φ〉 6= 0 with an arbitrary SU(2)×U(1) orientation, leading to spontaneous symmetry
breaking. Minimizing the effective potential as in the U(1) case, we obtain

∂

∂ (φ†φ)
V
(
φ†φ
)

= µ2 + 2λ〈φ〉0 = µ2 + 2λ
[(
φ+

vac
)2

+
(
φ0

vac
)2]

= 0 . (24)

Without loss of generality, we may set φ+
vac = 0 and take φ0

vac =
√
−µ2/ (2λ). This choice breaks both

the SU(2) and U(1) symmetries, but preserves invariance under a residual U(1) gauge symmetry that we
may identify with electromagnetism. Since three of the four generators are broken spontaneously by the
v.e.v., the spectrum of the global theory would contain three massless (Nambu-)Goldstone bosons.

To see how these are ‘eaten’ by three of the gauge bosons, we consider perturbations around the
chosen vacuum, representing the scalar field as

φ = exp

(
iξ · τ
2v

)(
0

(v + η) /
√

2

)
. (25)

Just as in the U(1) case discussed in the previous section where we rotated away the Goldstone boson ξ,
we are able in this case to make the following gauge transformation on the scalar φ and the gauge and
matter fields:

φ → φ′ = exp

(−iξ · τ
2v

)
φ =

(
0

(v + η) /
√

2

)
. (26)

τ ·Bµ → τ ·B′µ (27)

L → L′ = exp

(−iξ · τ
2v

)
L , (28)
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where τ is an SU(2) matrix, which leaves Aµ and R invariant.

In this unitary gauge, and henceforward simplifying the notation: φ′ → φ, etc., so that

φ =

(
0

(v + η) /
√

2

)
, (29)

and

φ†φ =

(
v + η√

2

)2

, (30)

we see that

V
(
φ†φ
)

= µ2

(
v + η√

2

)2

+ λ

(
v + η√

2

)4

. (31)

We also have

Dµφ = ∂µφ+
ig′

2
AµY φ+

ig

2
τ ·Bµφ , (32)

which may be written in the form

Dµφ =




ig
2

(
v+η√

2

) (
B1
µ − iB2

µ

)

1√
2
∂µη +

(
v+η√

2

)
i
2

(
ig′Aµ − igB3

µ

)


 (33)

and hence

(Dµφ)† (Dµφ) =
g2

8
(v + η)2 |B1

µ − iB2
µ|2 +

1

2
(∂µη) (∂µη) +

1

8
(v + η)2 (g′Aµ − gB3

µ

)2
. (34)

The final form of the scalar Lagrangian is therefore

LHiggs =

{
1

2
(∂µη) (∂µη)− µ2

2
η2 +

v2

8

[
g2|B1

µ − iB2
µ|2 +

(
g′Aµ − gB3

µ

)2]
}

+

{
1

8

(
η2 + 2vη

) [
g2|B1

µ − iB2
µ|2 +

(
g′Aµ − gB3

µ

)2]
}

−
{

1

4
η4 − λvη3 − µ2

2
η2 −

(
λv3 + µ2v

)
η −

(
λv4

4
+
µ2v2

2

)}
, (35)

whose interpretation we now discuss.

The second term on the first line of (35) is a mass term for the η field: this is the Higgs boson,
which appears in the same way as in the previous U(1) case. A priori, there is no theoretical prediction
within the Standard Model for the Higgs mass

mH = −2µ2 , (36)

since µ is not determined by any of the known parameters of the Standard Model. The following terms
on the first line of (35) are mass terms for the massive vector bosons, to which we return later. The
second line includes interactions of the Higgs boson with these massive gauge bosons, and the last line
describes self-interactions of the Higgs boson.

We define the charged gauge fields W±µ as the combinations

W±µ ≡
B1
µ ∓ iB2

µ√
2

, (37)

and identify the following neutral gauge boson mass eigenstates:

Zµ ≡
−g′Aµ + gB3

µ√
g2 + g′ 2

, (38)
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Aµ ≡
gAµ + g′B3

µ√
g2 + g′ 2

. (39)

Substituting these expressions in the Lagrangian (35), we find

LHiggs =

[
1

2
(∂µη) (∂µη)− µ2

2
η2

]
+

v2g2

8
W+ µW+

µ +
v2g2

8
W− µW−µ +

(
g2 + g′ 2

)
v2

8
ZµZµ

+ ... , (40)

and it is evident that the field Aµ is massless. This is due to the unbroken U(1) symmetry (i.e., the sym-
metry under eiQα(x) rotations) that we identify with electromagnetism. On the other hand, the charged
vector bosons W± and the neutral vector boson Z0 have masses

mW =
gv

2
, mZ =

v

2

√
g2 + g′ 2 . (41)

We see that the couplings of the Higgs boson to the W± and Z0 in (35) are related to these masses. They
are related through

mZ = mW

√
1 + g′ 2/g2 . (42)

It is convenient to introduce the angle θW to parametrize the mixing of the neutral gauge bosons, defined
by

tan θW =
g′

g
, (43)

so that

cos θW =
g√

g2 + g′ 2
, sin θW =

g′√
g2 + g′ 2

. (44)

Eqs. (38) and (39) can then be written as

Zµ = − sin θWAµ + cos θWB
3
µ , (45)

Aµ = cos θWAµ + sin θWB
3
µ , (46)

and the relation (42) between the masses of W± and Z0 becomes

mW = mZ cos θW . (47)

The ratio

ρ ≡ m2
W

m2
Z cos2 θW

(48)

is equal to unity at the tree level in the Standard Model. This is a direct consequence of the choice of
isospin 1/2 for the Higgs field (20).

This choice also enables the Higgs field to give masses to the Standard Model fermions [3], as we
now discuss. Looking at the fermion Lagrangian (23) in the unitary gauge, it becomes

LYukawa = −Ge
[
eRφ

†
(
νL
eL

)
+ (νL eL)φeR

]
= −Ge

v + η√
2

(eReL + eLeR) . (49)

In terms of e ≡ (eR, eL) and e ≡ (eL, eR)T , (49) becomes

LYukawa = −Gev√
2
ee− Geη√

2
ee , (50)

and we see that the electron has a mass
me = Ge

v√
2
. (51)
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The same holds for all the Standard Model fermions, and their couplings to the Higgs boson are pro-
portional to their masses. Thus, the Higgs boson prefers to decay into the heaviest fermions f that are
kinematically accessible, i.e., have mf < mH/2.

At first sight, the Lagrangian (35) may look rather artificial. However, as described above, the
spontaneous symmetry breaking mechanism for giving masses to vector bosons and fermions is in fact
very generic. It suffices to have a scalar field φ and choose the coefficient µ2 of the quadratic term in
its effective potential to be negative, and the mass-generation mechanism follows automatically. The
original Lagrangian (21) is in fact very symmetric, and this symmetry is still present, though hidden, in
(35).

Since the theory (35) still possesses symmetry, it is a renormalizable theory at the quantum
level [25], which enables many detailed calculations to be compared with precise experimental mea-
surements. In fact, not only is it a renormalizable theory, it is the only way to construct a renormalizable
theory of interacting massive vector bosons [26–28]. In order to get some flavour why this is the case,
considerW+W− →W+W− scattering. At the tree level, the combination of γ and Z0 exchanges in the
direct and crossed channels with the point-like quartic coupling, shown in the two upper rows of Fig. 2,
yields a scattering amplitude that grows quadratically with energy:

MV = −g2 E
2

m2
W

+O(E0) . (52)

This is a problem when one calculates loop diagrams, since the integral over the loop momenta is uncon-
trollably divergent. If one now includes a scalar with a coupling gHWW to the vector bosons, the direct
and crossed-channel scalar exchanges, shown in the bottom row of Fig. 2, yield an amplitude

MS = +g2
HWW

E2

m2
W

+O(E0) . (53)

Adding these contributions, we find

M = MV +MS =
m2
H

v2

(
2 +

m2
H

s−m2
H

+
m2
H

t−m2
H

)
+ . . . , (54)

where the . . . represent terms that are subdominant at high energies, iff the HWW coupling coincides
with the prediction from spontaneous symmetry breaking. The fact that the resultant amplitude M is
asymptotically constant for this particular choice of gHWW ensures that the integration over the loop
momentum is controllable and permits the theory to be renormalizable 3 - which it is if the other particle
couplings also coincide with the spontaneously-broken gauge theory.

1.6 A Phenomenological Profile of the Higgs Boson
1.6.1 Before the LHC
For a decade after the original papers after spontaneously-broken gauge theories were formulated, and
even for several years after they were proven to be renormalizable, rather few people took seriously
Higgs’ prediction of the boson that bears his name. Indeed, only a handful of papers discussed its
possible experimental signatures before the paper that Mary Gaillard, Dimitri Nanopoulos and I wrote in
1975 [29] with the same title as this Section heading. In the last sentence of our paper we wrote that “we
do not want to encourage big experimental searches for the Higgs boson". Fortunately, the experimental
community did not pay attention to this caveat, and the ATLAS and CMS experiments announced the
discovery of a candidate for a (the?) Higgs boson on July 4th 2012 [1, 2].

3A similar argument applies to fermion-W scattering and the scalar-fermion coupling, which must also coincides with the
prediction from spontaneous symmetry breaking.
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Fig. 2: Contributions to WW scattering from diagrams due to vector boson exchange and the four-point gauge
interaction in the absence of a Higgs boson (upper two rows), and diagrams due to Higgs boson exchange (lowest
row).

The search for the Higgs boson at LEP was advertized in the first survey of LEP physics made
in 1976 [30] and featured strongly in the subsequent LEP experimental programme [31]. These direct
searches for the Higgs boson resulted in the lower limit [32]

mH > 114.4 GeV , (55)

shown as the left-hand of the two yellow excluded regions in Fig. 3. The search for the Higgs boson was
also advertized at the first LHC physics workshop in 1984 and grew subsequently to become one of the
major objectives of the LHC experimental programme.

Fig. 3: The status of the Higgs search in March 2012 [8]. The left-hand yellow-shaded region is the LEP exclusion,
and the right-hand yellow-shaded region is the Tevatron exclusion at that time [33].

Although LEP found no direct evidence for the Higgs boson, the precision of electroweak mea-
surements at LEP and elsewhere provided indirect indications on the Higgs mass through the sensitivity
of electroweak observables to quantum loop corrections. For example, there is a one-loop correction ∆r
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to the W± and Z0 masses:

m2
W sin2 θW = m2

Z cos2 θW sin2 θW =
πα√
2GF

(1 + ∆r) . (56)

The one-loop correction ∆r and other electroweak radiative corrections are in turn sensitive to the masses
of heavy virtual particles, in particular mt and mH :

∝ 3GF

8π2
√

2
m2
t ,

√
2GF

16π2

(
11

3
ln
m2
H

m2
Z

+ . . .

)
(57)

in the limits of large mt and mH � mW,Z . Note that the sensitivity to mt is quadratic [34], whereas that
to mH is only logarithmic [35]. The large-mass divergences in (57) reflect the fact that the electroweak
theory would become renormalizable if these particles were absent. In the case of the top quark, its
absence would leave us with an incomplete fermion doublet, and the problems arising in the absence of
the Higgs boson were discussed at the end of the previous Section.

First attempts to use precision measurements to constrain mH were made before the discovery of
the top quark [36], and already indicated that mH = O(mW ). The discovery of the top quark with a
mass consistent with predictions based on electroweak data and (56) enabled the prediction of mH to be
sharpened, as has the inclusion of QCD and higher-order electroweak effects, as illustrated by the blue
band in Fig. 3.

A conservative estimate of the current estimate of mH on the basis of precision electroweak data
alone is [8, 9]

mH = 100± 30 GeV , (58)

which is quite compatible with the direct lower limit (55) and the exclusion by the Tevatron ofmH ∼ 160
to 170 GeV. Combining the LEP and Tevatron exclusions with the precision electroweak data led in mid-
2011 to the prediction [37]:

mH = 125± 10 GeV . (59)

This has been an impressively successful prediction!

1.6.2 Higgs Production at the LHC
Several production modes are measurable at the LHC for a Higgs boson weighing ∼ 125 GeV, as dis-
played in Fig. 4 for Higgs production at the LHC at 8 TeV. The dominant mechanism is calculated to be
gluon-gluon fusion: gg → H via loops of heavy coloured particles [38], of which the most important in
the Standard Model is the top quark. Since the leading-order contribution to the production amplitude is
O(αs), making an accurate calculation is particularly challenging. However, the cross section has been
calculated by different theoretical groups at next-to-next-to-leading order (NNLO), including also the
most important logarithms at higher orders (NNLL), with good agreement between the calculations as
seen in Fig. 5 [39]. The main remaining uncertainties in the calculation are associated with the choice of
renormalization scale in the calculation, and in the gluon parton distribution function within the proton.
The overall theoretical uncertainty is currently estimated to be about 10%, and a significant rise in the
cross section is expected when the LHC reaches 13/14 TeV in 2015.

The second-largest contribution to Higgs production at the LHC is due to vector-boson fusion
(VBF) [40]. This has now been calculated at NNLO in αs and including electroweak corrections at
NLO, and the perturbation expansion is converging well. In this case, the uncertainties in quark parton
distribution functions are relatively small, so this cross section is known more accurately, and it grows
with energy more rapidly than gluon-gluon fusion [39].

The third-largest contribution is associated production of the Higgs with a massive vector boson
V = W±, Z0 [41]. This has also been calculated at NNLO in αs and including electroweak corrections
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Fig. 4: The principal Higgs production cross sections at the LHC at 8 TeV. The insets depict the corresponding
fundamental production subprocesses.

Fig. 5: The cross sections for gg → H production at the LHC at 7 and 14 TeV, comparing two next-to-next-leading
order (NNLO) calculations that also include leading higher-order logs (NNLL) [39].

Fig. 6: The cross sections for VBF production of the H at the LHC at 7 and 14 TeV, comparing calculations at
NLO in the electroweak interactions and at NLO and NNLO in QCD [39].

at NLO, as seen in the left panel of Fig. 7. and the perturbation expansion again converges well. Here
the rate of growth of the cross section is less rapid.
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Fig. 7: The cross sections for production of the H in association with a massive vector boson V (left panel) and in
association with t̄t (right panel) at the LHC at 7 and 14 TeV [39].

The next contribution is from associated t̄t + H production, which is currently known less accu-
rately: it has been calculated at NLO in αs, so there are larger uncertainties in the perturbation expansion,
and the choice of parton distributions is also an important uncertainty [39]. This process has the most
rapid cross section increase with energy, as seen in the right panel of Fig. 7, offering interesting prospects
for measurement at LHC 13/14.

Finally, interest has recently been attracted byH production in association with a single t or t̄ [42].
This has a relatively small cross section in the Standard Model, but it may be enhanced or suppressed
significantly in models where the Ht̄t coupling differs from its Standard Model value [43, 44], as we
discuss later.

LHC experimentalists are indeed fortunate that all of these mechanisms are potentially measurable
at the LHC formH ∼ 125 GeV! This would not have been the case if the Higgs mass had been 400 GeV,
say, in which case only gg → H and VBF could have been measurable.

1.6.3 Higgs Decays [45]
The Higgs decay rate into a pair of fermions is given at the tree level by

Γ(H → f̄f) = Nc
GFmH

4π
√

2
m2
f , (60)

where Nc = 3(1) for decays into quarks (leptons). Since the tree-level Higgs couplings to other particles
are proportional to their masses (squared in the cases of massive vector bosons), the dominant Higgs
decays are into the heaviest particles that are kinematically accessible. This implies that the dominant
two-body decays of the Higgs weighing ∼ 125 GeV are expected to be into b̄b, c̄c and τ+τ−, as seen in
the left panel of Fig. 8. However, decays into b̄b have yet to confirmed, there is no evidence for c̄c, and
H → τ+τ− decay has only recently has the been observed unambiguously [46].

The H decay rate into a pair of W± bosons, one on- and one off-shell, is given by

Γ(H →WW ∗) =
GFm

3
H

8π
√

2
F (r) , (61)

where F (r ≡ mW /mH) is a kinematic factor, and the corresponding decay into a pair of Z bosons is
given by a similar formula withmW → mZ and a symmetry factor of 1/2 [45]. The decaysH → virtual
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Fig. 8: The most important decay branching fractions for the decays of a Standard Model Higgs boson (left panel),
and the total decay rate ΓH (right panel) [45].

W+W− and Z0Z0 are important for mH ∼ 125 GeV, as seen in the left panel of Fig. 8, despite the fact
that mH < 2mW and 2mZ .

Moreover, although the decays H → gg and γγ are absent at the tree level, they are generated by
quantum loops, as discussed above in connection with gg → H production. The dominant contributions
to the H → γγ decay amplitude are due to massive charged particles [29], the most important in the
Standard Model being the t quark and the W± boson, whose contributions interfere destructively. At the
one-loop level

Γ(H → γγ) =
GFα

2m3
H

128π3
√

2

∣∣ΣfNcQ
2
fA1/2(rf ) +A1(rW )

∣∣2 , (62)

where A1/2 and A1 are known functions of rf ≡ mf/mH and rf ≡ mW /mH that have opposite
signs [45].

Decays into strongly-interacting final states have been evaluated at NNNLO in αs, while elec-
troweak decays have been evaluated at NLO. The total Higgs decay rate in the Standard Model is ex-
pected to be ∼ 4.2 MeV for mH ∼ 125 GeV, as seen in the right panel of Fig. 8 [45].

Once again, Nature has been kind in her choice of the Higgs mass, with half-a-dozen Higgs decays
being observable at the LHC for mH ∼ 125 GeV. If the Higgs mass had been 300 GeV, say, only the
decays H →W+W− and Z0Z0 would have been measurable.

1.6.4 From Discovery to Measurement
Following the dramatic announcements of the discoveries of the Higgs boson by the ATLAS and CMS
Collaborations on July 4th, 2012 [1, 2], the emphasis is now on measurements and the information they
provide about physics within and beyond the Standard Model.

The strengths of the signals observed in many channels are compatible with the Standard Model
predictions [47]. However, the bulk of the evidence concerns production by gluon-gluon fusion. There
have been several observations of VBF channels at the 2-σ level, and the overall significance of the
evidence for VBF is some 3 σ. So far the best evidence for production in association with massive vector
bosons comes from the CDF and D0 experiments at the Fermilab Tevatron, and there are only upper
limits on production in association with t̄t.

The primary evidence forH decays is in final states involving vector bosons: ZZ∗, γγ andWW ∗,
whereas the direct evidence for decays into fermions is much weaker. Concerning leptons, although
evidence for H → τ+τ− decay is emerging [46], but there are only upper limits on the decay into
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µ+µ− [47] (which may be the only second-generation final state accessible at the LHC) 4, and the
prospects for measuring the He+e− coupling look very dim. Concerning quarks, evidence for H → b̄b
decay is also emerging, but there is only indirect evidence for an Ht̄t coupling via measurements of
gg → H production and H → γγ decay. In the future, more information could be provided by H →
Z0γ decay and H production in association with a single t or t̄ [42–44], as well as Ht̄t production.

1.6.5 The Higgs Mass - Evidence for Physics beyond the Standard Model?
There are two ways to measure the Higgs mass accurately with the present data: usingH → ZZ∗ → 4`±

and γγ decays. In the case of CMS, these two final states yield very similar masses, with mγγ slightly
lower. In the case of ATLAS, there is some tension between the measurements in the two channels,
with mγγ higher by ∼ 2 GeV, corresponding to a ∼ 2-σ discrepancy. However, the CMS and ATLAS
measurements [47] are quite consistent, and a naive global average is

mH = 125.6± 0.4 GeV . (63)

As seen in Fig. 9, this is consistent at the ∆χ2 ∼ 1.5 level with the estimate ofmH provided by precision
electroweak data [9]. A victory for the Standard Model at the quantum (loop) level!

Fig. 9: Comparison of the indirect estimate of the Higgs mass based on precision electroweak data with the direct
measurement by ATLAS and CMS [9].

However, issues arise when we consider the effective Higgs potential. There are two important
sources of renormalization of the quartic Higgs self-coupling λ: that due to the Higgs self-coupling itself:

λ(Q) =
λ(v)

1− 3
4π2λ(v) ln Q2

v2

+ . . . , (64)

where Q is some renormalization scale above the electroweak scale v, and that due to the Ht̄t coupling:

λ(Q) = λ(v)− 3m4
t

4π2v4
ln
Q2

v2
+ . . . , (65)

where in each case the . . . represent subleading terms in the solution of the renormalization-group equa-
tion. We see in (64) that the self-renormalization tends to increase λ as Q increases, leading to an

4It would also be interesting to search for the flavour-changing decays H → τµ and τe. These are highly suppressed in
the Standatd Model, but model-independent upper bounds from low-energy flavour-changing processes allow these decays to
occur at rates similar to H → τ+τ− [48].
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apparent singularity (a so-called Landau pole). On the other hand, the renormalization by the t quark
tends to reduce λ as Q increases, potentially driving it negative at some scale above v.

This would imply an instability in the electroweak vacuum if [49]

mH <

[
129.4 + 1.4

(
mt − 173.1 GeV

0.7

)
− 0.5

(
αs(mZ)− 0.1184

0.0007

)
± 1.0TH

]
GeV . (66)

The measured values of mt ∼ 173 GeV and mH (63) would drive the quartic Higgs self-coupling
negative at some scale ∼ 1010 to 1014 GeV, as seen in the left panel of Fig. 10, if no physics beyond
the Standard Model intervenes at some lower energy scale. (One example of possible new physics
is supersymmetry, to which we return later.) However, the lifetime of the vacuum is estimated to be
probably much longer than the age of the Universe, as seen in the right panel of Fig. 10, so it is not
an immediate issue for the future of humanity, leading some people to suggest that this instability is
not a problem. My own point of view is that such an instability would make it much more difficult to
understand why the current vacuum energy (cosmological constant) is so close to zero in natural units.
Why should our present vacuum energy be small if we are in a temporary state on the way to a state with
vacuum energy much larger in magnitude than now (and negative)?

Fig. 10: Negative renormalization of the Higgs self-coupling by the top quark is calculated within the Standard
Model to lead to an instability in the effective Higgs potential for field values∼ 1013 to 1014 GeV (left panel). The
current estimates of mt and mH suggest that the current electroweak vacuum is in fact metastable (right panel),
though a definite conclusion must wait a more accurate measurement of mt, in particular. Figures taken from [49].

It should be emphasized, however, that the conclusion that the electroweak vacuum is unstable
is not definite, even within the Standard Model. The stability or otherwise of the electroweak vacuum
depends sensitively on mt as well as mH (and. to a lesser extent, αs). In addition to the quoted ex-
perimental error in mt, there is also a theoretical uncertainty associated with the way mt is defined and
introduced into experimental Monte Carlo programmes [50], which warrants more study.

1.6.6 The Higgs Discovery is a Big Deal
As already mentioned, without the Higgs boson (or something to replace it), there would be no atoms,
because massless lectrons would escape from nuclei at the speed of light without forming atoms, and the
weak interactions would not be weak, everything would be radioactive, and life would be impossible.
The discovery of a/the Higgs boson tells us how gauge symmetry is broken and whether there is such
a thing as an elementary scalar field. it is likely to be the portal to new physics such as dark matter.
The switch-on of the Higgs v.e.v. would have caused a phase transition in the Universe when it was
about 10−12 seconds old, and may have played a role then in generating the matter in the Universe via
electroweak baryogenesis. A related inflaton might have made the Universe expand exponentially when
it was about 10−35 seconds old, and might contribute 1060 too much to today’s dark energy!
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2 What we know now
2.1 The Particle Jigsaw Puzzle
Fig. 11 summarizes our state of knowledge concerning the H signal strengths in the various different
final states: b̄b, τ+τ−, γγ,WW ∗ and ZZ∗, averaged over the results of ATLAS, CMS and the Tevatron
experiments. The signal strengths in different production channels are presented (in blue), followed by
the global combinations in each final state (in black). The combined mean signal strength in all channels
(in red) is

µ = 1.02+0.11
−0.12 , (67)

and finally the combination of the signal strengths in the VBF and associated V +H channels is shown
(in green). We see that there is no indication of any significant deviation from the Standard Model
predictions: Peter Higgs should be smiling!

Fig. 11: A compilation of the Higgs signal strengths measured by the ATLAS, CDF, D0 and CMS Collaborations
in the b̄b, τ+τ−, γγ, WW ∗ and ZZ∗ final states. We display the combinations of the different channels for each
final state, and also the combination of all these measurements, with the result for the VBF and VH channels
(excluding the γγ final state) shown separately in the bottom line. Figure taken from [51].

The current situation of particle physicists resembles that of someone who has spent more than
100 years putting together a jigsaw puzzle, and has finally (after 48 years) discovered what may be the
last missing piece, hidden away in the back of the sofa and with the picture rubbed off. Have the LHC
experiments really discovered the missing piece, or is it an impostor? Does it have the right shape to fit
into the empty space in the puzzle, and does it have the right size?

The rest of this lecture is devoted to answering these questions as best we can on the basis of the
present data.

2.2 Is it the Missing Piece?
2.2.1 Does it have Spin 0 or 2?
The question ‘does the newly-discovered H particle have the right shape to be the missing piece of the
puzzle?’ can be parsed as the question ‘what is its spin?’ Since the H particle decays into pairs of
photons - identical spin-1 bosons - it must have some spin 6= 1. The simplest possibilities are spin 0 and
2, the Standard Model being an example of the former case, a Kaluza-Klein graviton being an example
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of the second case. A higher spin cannot be excluded a priori, but I am unaware of any model with spin
> 2.

Several ways to diagnose the H spin have been proposed, including the characteristics of pro-
duction in association with W± or Z0 [52, 54], the angular distribution of γγ decays [55, 56], and the
kinematic correlations of leptons in WW ∗ and ZZ∗ decays [57]. In general, a massive spin-2 particle
has many possible couplings to Standard Model particles, and distinguishing the spin-0 and general spin-
2 hypotheses is difficult. Here we consider the simplest spin-2 case (see [58] and references therein), in
which it has minimal graviton-like couplings, as in simple models with extra dimensions:

Lint = Σi
ci

Meff
GµνT iµν , (68)

where the sum is over Standard Model particle types i and the overall mass scale and the individual
coefficients ci are model-dependent.

For definiteness, we can consider warped compactifications of 5-dimensional theories [58], in
which the metric takes the form:

ds2 = w(z)2
(
ηµνdx

µdxν − dz2
)
. (69)

In such a scenario we expect identical coefficients for the couplings of a spin-2 particleX to the massless
vector bosons g and γ:

cg = cγ = 1/

∫ zIR

zUV

w(z)dz . (70)

since their wave functions are uniform in the extra dimension. This implies the following simple relation
between the decay rates of a spin-2 particle X into photons and gluons:

Γ(X → gg) = 8Γ(X → γγ) , (71)

which is disfavoured by the data on theH(126) decay branching ratios, as seen in Fig. 12. The couplings
of the other Standard Model particles are non-universal, reflecting their different wave functions in the
extra dimension. In simple warped compactifications one expects

cb ' ct >∼ cW ' cZ = O(35)× (cg = cγ > cu,d) . (72)

The experimental data on H(126) decays also disfavour the expected hierarchy (72) between cW ' cZ
and cg = cγ , as also seen in Fig. 12 5.

The difference between the spin-2 couplings (69) and spin-0 couplings also affect the kinematics
of production in association with massive vector bosons W± and Z0. For example, the V X invariant
mass distributions for spin 2 and a scalar 0+ particle are very different, as seen in Fig. 13 [52], as also are
the invariant mass distributions for a pseudoscalar 0− particle. The Tevatron experiments have studied the
related transverse-mass distribution, as seen in Fig. 14, and have found that the spin-2 and 0− hypotheses
are disfavoured at the 99% CL [53] - assuming that these experiments have indeed observed the same
particle as discovered by ATLAS and CMS.

The differences in the couplings also lead to different energy dependences in the spin-2, 0+ and 0−

cases, as seen in the left panel of Fig. 15. If one accepts the Tevatron evidence forH(126) production, the
ratio of the cross section to that at the LHC is also strong evidence against the spin-2 and 0− hypotheses,
as seen in the right panel of Fig. 15.

The polar angle distributions in the H(126) centre-of-mass frame under the spin-2 and -0 hy-
potheses are also expected to be easily distinguishable. In the case of gg → H → γγ production, one

5Another problem for this scenario is that one expects, as in QCD, that the tensor boson should have a higher mass than the
lightest Kaluza-Klein vector boson, which has not been seen.
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Fig. 12: The correlation between the values of cW /cγ (horizontal axis) and cg/cγ (vertical axis) found in a global
fit to the current experimental data under the spin- two hypothesis [58].
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Fig. 13: The distributions in the Z + H invariant mass MZH for the 0+ (solid black), 0− (pink dotted) and 2+

(blue dashed) assignments for the H particle discovered by ATLAS [1] and CMS [2], calculated for the reaction
p̄p→ Z +H at the TeVatron (left) and for the reaction pp→ Z +H at the LHC at 8 TeV (right) [52].

expects the initial state to be an incoherent superposition of parallel and antiparallel gluon spins along
the proton-proton collision axis. This knowledge of the initial state enables the final-state γγ polar-angle
distribution to be calculated: it is expected to be non-uniform and peaked in the forward and backward
directions, whereas the angular distribution would be isotropic in the spin-0 case. The ATLAS Collabo-
ration has found that the spin-2 case is disfavoured at more than the 99% CL [59], and has extended the
analysis to include an arbitrary admixture of q̄q initial states (which would be suppressed in the warped
compactification scenario discussed above).

The azimuthal and polar angle distributions of the charged leptons in H → W±W∓∗ → `+`− +
. . . decays also provide significant power to distinguish between the spin-2 and -0 hypotheses [55, 57],
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Fig. 14: The distribution in the Z + H transverse mass MZH measured by the D0 Collaboration compared with
simulations for the 0+ (red), 0− (blue) and 2+ (mauve) hypotheses for the H particle [53].
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Fig. 15: Left - The energy dependence of the cross section for production of h in association with a Z boson under
different hypotheses for the JP of H: 0+ (black), 2+ (red) and 0− (green). Right - The likelihood for the ratio
Rdata = µLHC 8/µTeVatron extracted from the experimental data at 8 TeV (blue) and 7 TeV (green). The spin-two
expectations RSpin 2 = 5.4 and 6.7 for 7 and 8 TeV, respectively, are excluded, and the 0− expectations R0− = 3.1

and 2.7 for 7 and 8 TeV, respectively, are highly disfavoured, whereas the 0+ expectation R = 1 is quite consistent
with the data [54].
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as seen in Fig. 16, and also disfavour the interpretation of H(126) as a spin-2 particle with graviton-like
couplings. Finally, the multiple kinematical observables in H → Z0Z0∗ → 2`+2`− also provide many
powerful ways to distinguish between different spin-parity assignments for the H(126) particle.

Fig. 16: Correlated distributions for the lepton polar angles in H → W±W∓∗ → `+`− + . . . decays for the 0+

assignment (left panel) and for a graviton-like 2+ particle (right panel) [55].

It is on the basis of a combination of γγ,W±W∓∗ and Z0Z0∗ measurements, the ATLAS Collab-
oration has been able to exclude the graviton-like spin-2 hypothesis at more than the 99.9% CL, as seen
in Fig. 17 [59]. Peter Higgs can continue smiling!

Fig. 17: Combining measurements in the H → γγ, ZZ∗ → 4`± and WW ∗ → 2`±νν̄ final states, the AT-
LAS Collaboration excludes the spin-2 hypothesis for H at more than the 99.9% CL for any combination of H
production via gg and q̄q collisions [59].

2.2.2 Is it Scalar or Pseudoscalar?
As has been discussed above, many of the analyses that discriminate between the spin-2 and 0+ hy-
potheses can also be used to discriminate between 0− and 0+. For example, the V + H invariant mass
distributions in associated production are different, and already disfavour 0− quite strongly. The angu-
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lar distribution of the γγ final state does not distinguish, but the angular and kinematic distributions in
H → W±W∓∗ → `+`− + . . . and H → Z0Z0∗ → 2`+2`− do offer discrimination between 0+ and
0− [57]. Thus the possibility of a pure 0− spin-parity assignment can also be excluded beyond the 99%
CL [59].

On the other hand, in the presence of CP violation the H particle could decay as a mixture of
scalar and pseudoscalar, and the fractions could be different in different final states. At the moment,
the admixture of a substantial fraction of pseudoscalar final states in H → W±W∓∗ and H → Z0Z0∗

decays cannot be excluded. It is important to extend probes of a possible 0− admixture to final states
involving fermions, and measurements in τ+τ− final states, t̄t + H and single t + H production (see
later) have been proposed [44]. But, for the time being, Peter Higgs can continue smiling!

2.2.3 Is it Elementary or Composite?
This question may be addressed by constructing a phenomenological Lagrangian L with free parameters
to describe the interactions of the ‘Higgs’ boson, and constraining the parameters using data on H pro-
duction and decay. Motivated by the success of the Standard Model relation ρ ≡ mW /mZ cos θW = 1, it
is usually assumed that this phenomenological Lagrangian possesses a custodial symmetry: SU(2)×SU(2)
→ SU(2). In this case, one may parameterize the leading-order terms in L as follows [60]:

L =
v2

4
TrDµΣ†DµΣ

(
1 + 2a

H

v
+ b

H2

v2
+ . . .

)

− ψ̄iLΣ

(
1 + c

H

v
+ . . .

)

+
1

2
(∂µH)2 +

1

2
m2
HH

2 + d3
1

6

(
3m2

H

v

)
H3 + d4

1

24

(
3m2

H

v

)
H4 + . . . , (73)

where

Σ ≡ exp

(
i
σaπa

v

)
, (74)

and the effective interaction with massless gauge bosons is written as

L∆ = −
(αs

8π
cgGaµνG

µν
a +

αem
8π

cγFµνF
µν
)(H

v

)2

. (75)

The free coefficients a, b, c, d3, d4, cg and cγ are all normalized such that they are unity in the Stan-
dard Model: composite models may give observable deviations from these values. For example, in the
composite model known as MCHM4 one has [51]

a = c =
√

1− ξ : ξ ≡
(
v

f

)2

, (76)

where f is an analogue of the pion decay constant in QCD. On the other hand, in the MCHM5 composite
model, one has

a =
√

1− ξ , c =
1− 2ξ√

1− ξ , (77)

and in a pseudo-dilaton model one has
a = c =

v

V
, (78)

where V is the dilaton v.e.v. that breaks scale invariance. On may also consider an ‘anti-dilaton’ scenario
in which a = −c.
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The signal strengths R in various channels relative to the Standard Model values are related in
an obvious way to the parameters in (73). For example, for vector boson fusion and production in
association with V = W,Z one has

RV BF = RV H = a2 , (79)

and for production in association with t̄t and the rates for decays into b̄b and τ+τ− one has

Rf̄f = c2 . (80)

The corresponding ratio for the ggH coupling strength depends on the t̄t coupling:

Rgg = c2
g = c2 + . . . , (81)

where the . . . represent possible contributions from particles beyond the Standard Model, and the ratio
for the Hγγ coupling depends on both a and c as well as possible non-Standard Model contributions:

Rγγ = c2
γ =

(
−8

3cFt + aFW
)2

(
−8

3Ft + FW
)2 + . . . , (82)

where Ft,W are form factors that depend on the ratios mH/mt and mH/mW , respectively. It is apparent
from these expressions that only Rγγ is sensitive to the relative sign of the Hf̄f and HV V couplings.
The principal dependences of the signal strengths in various channels on the a and c parameters in (73)
are summarized in Table 2.

Production sensitive to Decay sensitive to
channel a c a c

γγ X X X X
γγ VBF X × X X
WW X X X ×

WW + 2 jets X × X ×
WW + 0,1 jet × X X ×

bb̄ X × × X
ZZ X X X ×
ττ X X × X

ττ VBF, VH X × × X
Table 2: The dominant dependences on the model parameters (a, c) (73) of the H signal strengths in various
channels, from [61].

Fig. 18 shows how measurements of these various channels at the Tevatron collider and the LHC
combine to constrain the parameters (a, c) [51]. We see in the top left panel that the data on b̄b final
states already disfavour leptophobic models in which the H particle has no couplings to fermions - here
the Tevatron experiments play an important rôle. In the top right panel we see that data on the τ+τ− final
state also disfavour leptophobic models. However, as expected on the basis of (80), these measurements
by themselves offer no information about the sign of the fermion coupling coefficient c. The middle left
panel shows the constraint imposed by the data on the γγ final state. As seen in (82), this final state gives
a constraint that is not symmetric between the signs of c, since there is interference between the virtual
t̄t and W+W− intermediate states that may be either constructive of destructive, depending on the sign
of c. The middle right panel of Fig. 18 shows the constraint imposed by measurements of WW ∗ final
states as well asH production viaW+W− VBF and production in association withW±, and the bottom
left panel shows the corresponding constraint on the HZZ coupling. These measurements are highly
consistent with custodial symmetry: SU(2)×SU(2)→ SU(2), as assumed in writing (73).
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Fig. 18: The constraints in the (a, c) plane imposed by the measurements in Fig. 11 of the b̄b final state (top left),
of the τ+τ− final state (top right), of the γγ final state (middle left), of the WW coupling (middle right) and in
the ZZ coupling (bottom left). The combination of all these constraints is shown in the bottom right panel [51].

Finally, the bottom right panel of Fig. 18 displays the constraints in the (a, c) plane obtained in
a global combination of these measurements [51]. We see that the positive sign of c, as expected in
the Standard Model, is strongly favoured. This point is made explicitly in Fig. 19, where we see that
the data favour a ∼ 1 and disfavour c < 0 by ∆χ2 ∼ 9, i.e., 3 standard deviations. The continuous
yellow lines the bottom right panel of Fig. 18 show the predictions of various composite alternatives to
the Standard Model. As already mentioned, leptophilic models (represented by the horizontal line) are
strongly disfavoured, as are ‘anti-dilaton’ models with a = −c (downwards-sloping line). The global
analysis is compatible with the MCHM4 and dilaton models iff they are tuned to resemble the Standard
Model, with ξ ∼ 0, f ∼ v in the MCHM4 (76) or V ∼ v in the pseudo-dilaton (78) model (upwards-
sloping line). Likewise, the MCHM5 model is compatible with the data only if ξ ∼ 0 in (77). Clearly,
there is no evidence for any significant deviation from the Standard Model, and Peter Higgs may continue
to smile!
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Fig. 19: The one-dimensional likelihood functions for the boson coupling parameter a (left panel) and the fermion
coupling parameter c (right panel), as obtained by marginalizing over the other parameter in the bottom right panel
of Fig. 18 [51].

Before concluding this Section, it is interesting to discuss in more detail a Higgs production chan-
nel that could give direct information on the sign and magnitude of c, namely single t (or t̄) production in
association with H [42,43]. The two dominant amplitudes are due to Higgsstrahlung from an exchanged
W boson and the final-state t quark. In the Standard Model with c > 0, these diagrams interfere de-
structively, as a precursor of the good high-energy behaviour expected in a spontaneously-broken gauge
theory, whereas if c < 0 the production cross section may be much larger. Even establishing an upper
limit on single t (or t̄) production in association with H may be sufficient to determine the sign of c,
independently of the γγ measurement [43]. One may also consider the possibility of a CP-violating t̄tH
vertex c̃t in addition to a conventional scalar vertex with coefficient ct relative to the Standard Model
value. The right panel of Fig. 20 shows the dependences of the t̄tH , tH and t̄H cross sections on
ζt ≡ arctan(c̃t/ct) [44] for choices of the ct and c̃t that are compatible with the constraints on the Hgg
and Hγγ couplings shown in Fig. 23 [51]. We see that measurements of the t̄tH , tH and t̄H cross
sections could provide interesting information on the top-H couplings.

t
ζ

-2 -1 0 1 2

SMσ/σ

0
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Fig. 20: Left panel: The cross section for single t + H production as a function of the scalar top-H coupling ct
normalized to its Standard Model value [43]. Right panel: The cross sections for t̄t+H , single t and t̄+H produc-
tion relative to their Standard Model values for ranges of the scalar and pseudoscalar couplings (ct, c̃t) compatible
with current data on gg → H production and H → γγ decay [51], as functions of ζt ≡ arc tan(ct/c̃t) [44].
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2.2.4 Are its Couplings Proportional to Particle Masses?
It is a key property of the Higgs boson of the Standard Model that its couplings to other particles should
be proportional to their masses, and this is verified implicitly by the type of analysis reviewed in the
previous Section. In order to verify it more explicitly, we may consider a parametrization of the H
couplings to fermions λf and massive bosons gV of the form [51, 61]

λf =
√

2
(mf

M

)1+ε
, gV = 2

(
m

2(1+ε)
V

M1+2ε

)
. (83)

In the Standard Model, one would expect the power ε = 0 and the scaling coefficientM = v = 246 GeV.
The results of a fit in terms of the two parameters (M, ε) is shown in Fig. 21. It is represented in the
left panel by the dashed line, with the one-σ excursions shown as dotted lines. The solid red line is the
prediction of the Standard Model, and the points with error bars are the predictions of the two-parameter
fit. We see that these are completely compatible with the Standard Model predictions. In the right panel
of Fig. 21 we see the 68 and 95% CL regions given by the fit in the (M, ε) plane. Here the solid horizontal
and vertical lines represent the Standard Model predictions ε = 0 and M = 246 GeV. The data are quite
close to the bull’s eye! We display in the left panel of Fig. 22 the one-dimensional χ2 function for ε,
marginalized over M , and in the right panel the one-dimensional χ2 function for M , marginalized over
ε. The central values and the 68% CL ranges of M and ε are:

M = 244+20
−10 GeV , ε = −0.022+0.042

−0.021 . (84)

As we wrote in [61]: "It walks and quacks like a Higgs boson."

Fig. 21: The constraints on M and ε (83) imposed by the measurements in Fig. 11. The left panel shows the
strengths of the couplings to different fermion flavours and massive bosons predicted by this two-parameter (M, ε)

fit. The red line is the Standard Model prediction, the black dashed line is the best fit, and the dotted lines are the
68% CL ranges. For each particle species, the black error bar shows the range predicted by the global fit, and the
blue error bar shows the range predicted for that coupling if its measurement is omitted from the global fit. The
right panel displays the fit constraint in the (M, ε) plane [51].

2.2.5 Are there Extra Contributions to its Loop Couplings?
The previous two Sections show that the tree-level H couplings are similar to those of a Standard Model
Higgs boson. What can one say about its loop couplings to gg and γγ? Here we assume that its couplings
to fermions and massive vector bosons are indeed Standard Model-like, so that a = c = 1, and investigate
whether there is any evidence for other coloured (in the case of the gg coupling) or charged (in the case
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Fig. 22: The one-dimensional χ2 functions for ε (left panel) and M (right panel), as obtained by marginalizing
over the other fit parameter [51].

of the γγ coupling) particles contributing via triangular loop diagrams, so that cg and/or cγ 6= 1 in (75).
We see in Fig. 23 that the central value of cγ > 1 and the central value of cg < 1 [51]:

cγ = 1.18± 0.12 , cg = 0.88± 0.11 . (85)

However, the data are compatible with the Standard Model at the 68% CL, as seen by the location of
the green star in Fig. 23. Thus, there is no good evidence for new particles circulating in loop diagrams.
Fig. 24 displays the one-dimensional χ2 functions for cγ (left panel) and cg (right panel), assuming, as
above that a = c = 1, so that the the tree-level couplings to massive bosons and fermions have the
Standard Model values.

Fig. 23: The constraints in the (cγ , cg) plane imposed by the measurements in Fig. 11, assuming that a = c = 1,
i.e., the Standard Model values for the tree-level couplings to massive bosons and fermions [51].

2.2.6 What is its Total Decay Rate?
We now assume that the Higgs has no other decays beyond those in the Standard Model, and discuss the
total Higgs decay rate in the two global fits discussed above, in terms of the parameters (a, c) and (M, ε)
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Fig. 24: The one-dimensional χ2 functions for cγ (left panel) and cg (right panel), assuming that a = c = 1, so
that the tree-level couplings to massive bosons and fermions have the Standard Model values [51].

and assuming no contributions from non-Standard-Model particles. The left panel of Fig. 25 displays
contours of the Higgs decay width relative to the Standard Model prediction in the (a, c) plane shown
in the bottom right panel of Fig. 18, and the right panel of Fig. 25 displays analogous contours in the
(M, ε) plane. We see that in each case the best fit has a total decay rate close to the Standard Model
value. Fig. 26 displays the one-dimensional χ2 function for the total Higgs decay width relative to its
Standard Model value. The solid line is obtained assuming that a = c (or, equivalently, that ε = 0 but
M is free), the dashed line is obtained by marginalizing over (a, c), and the dot-dashed line is obtained
by marginalizing over (M, ε). In all cases, we see that the total H decay width is compatible with the
Standard Model prediction [51].

Fig. 25: Contours of the total Higgs decay rate relative to the Standard Model prediction in the (a, c) plane shown
in the bottom right panel of Fig 18 (left) and the (M, ε) plane shown in the right panel of Fig. 21 (right) [51].

In the absence of an assumption about H decays into non-Standard Model particles, it is difficult
to obtain an accurate measurement of the total Higgs decay rate ΓH . The CMS Collaboration has given
a model-independent upper limit of 3 GeV, based on the width of the H → γγ signal peak that they
observe, which is dominated by the experimental resolution. It has also been suggested [62] that one
could establish an upper limit on ΓH using measurements of ZZ final states mediated by off-shell H
bosons. Using CMS data for mZZ ∈ (100, 800) GeV, it was estimated in [62] that ΓH < 163 MeV
at the 95% CL, it was suggested that restricting to MZZ > 300 GeV this bound could be improved
to ΓH < 88 MeV, and it was suggested that the ultimate LHC sensitivity would be to ΓH ∼ 40 MeV
(see also [63]). Similar sensitivity may be obtained from an analysis of off-resonance W+W− final
states [64].
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Fig. 26: The one-dimensional χ2 function for the total Higgs decay width relative to its value in the Standard
Model, R ≡ Γ/ΓSM , assuming decays into Standard Model particles alone and assuming a = c or equivalently
ε = 0 (solid line), marginalizing over (a, c) (dashed line) and marginalizing over (M, ε) (dot-dashed line) [51].

Another way to constrain or measure ΓH may be via interference effects between the QCD and H
contributions to the γγ final state, which could shift the γγ peak relative to its position in the ZZ∗ →
4`± final state. (These are the only two observed H states where the invariant mass can be measured
accurately.) This mass shift is sensitive to the sign and magnitude of the Hγγ coupling, by an amount
that depends on the production kinematics. For ΓH similar to the Standard Model value, the mass shift
∼ 70 MeV, as seen in Fig. 27 [65], so this is not a measurement for the faint-hearted! The published
mass measurements have the problems that ATLAS and CMS find opposite signs for the γγ and 4`±

final states, though they are compatible within the experimental uncertainties, and their sensitivity is not
yet very interesting.

Fig. 27: The shift ∆MH between measurements of the H mass in the γγ and 4`± final states due to interference
with QCD processes yielding γγ final states, calculated in NLO QCD as a function of ΓH relative to its value in
the Standard Model [65].
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2.2.7 The Story so Far
The discovery of the H particle has opened a new chapter in particle physics. Alternatives to the expec-
tation that it is a scalar boson have been excluded with a high degree of confidence, and its couplings are
consistent with those of a Standard Model Higgs boson. In particular, they exhibit the expected correla-
tion with the masses of other particles. This is why we wrote in [51]: “Beyond any reasonable doubt, it
is a Higgs boson." 6.

Experiments are placing severe constraint on composite models, pushing upwards the possible
scale of compositeness. On the other hand, an elementary scalar is a challenge for theorists, in particular
because of the issue of quadratic divergences, that are symptomatic of extreme sensitivity to details of the
ultraviolet completion. However, an elementary Higgs boson fits naturally within supersymmetry and, as
we shall see in the next Section, simple supersymmetric models predict a Higgs mass below ∼ 130 GeV,
as observed, and also predict that its couplings should be very similar to those of a Standard Model Higgs
boson. As yet, there are no signs of supersymmetric particles, and we wait with interest to see what the
LHC will reveal at 13/14 TeV, and in its high-luminosity incarnation.

In 1982 I was introduced to Mrs. Thatcher when she visited CERN, and she asked me what I did.
I replied that “My job as a theorist is to think of thing for the experiments to look for, but then we hope
they find something different." Mrs. Thatcher liked things to be the way she wanted them to be, so she
asked “Wouldn’t it be better if they found what you predicted?". I responded along the lines that “If they
just find exactly what we predict, we would have no clues how to progress." In this spirt, let us all hope
that the Higgs boson is not exactly that of the Standard Model, and that higher-energy LHC running
will reveal other new physics beyond the Standard Model. In the next lecture I will discuss some of the
prospects for these hopes.

3 What may the Future hold?
3.1 Theoretical Confusion
So far, though experiments at the LHC have discovered the Higgs boson, as yet they have found no
direct hint of any new physics beyond the Standard Model such as supersymmetry or compositeness.
The combination of these facts has caused a high mortality rate among theories, though not among
theorists! As discussed previously, however, the fact that the measured values of mH and mt lie in a
region where the electroweak vacuum would be unstable (OK, metastable) has led to suggestions that
there should be new physics below 1010 GeV to stabilize the vacuum. There have also been suggestions
that the proximity of (mH ,mt) to the stability boundary may be an indirect hint for some new physical
principle 7.

Supersymmetrists are among the most confused theorists. Motivated by the apparent fine-tuning
of the electroweak scale and several phenomenological considerations such as dark matter, many of them
had expected supersymmetry to appear during the first LHC run. In my view, this should be understood
as the first run of the LHC at or close to its design energy of 14 TeV, so we should wait a while before
jumping to conclusions. However, voices have been heard favouring very high-scale supersymmetry or
split supersymmetry. The faint-hearted are asking whether we should modify or abandon the principle
of naturalness. It is a reasonable question whether Nature needs to care about the naturalness of the
electroweak scale, as long as she can find one set of parameters that includes the Standard Model. This
is one possibility opened up by the string landscape, which comprises an exceedingly large number of
possible vacua that all seem consistent with our current understanding. My own point of view is that
supersymmetry anywhere would be better than nowhere, in terms of reducing the required amount of

6This phrase was quoted by the Royal Swedish Academy of Sciences in the Advanced Information it released about the
award of the 2013 Nobel Physics Prize [66]. Ironically, this phrase had been removed from the published version of [51] at the
request of the referee, who found the phrase “unscientific".

7This is also sometimes linked to the fact that the cosmological constant (dark energy) lies close to the upper bound proposed
by Weinberg [67].

31

HIGGS PHYSICS

147



fine-tuning. In any case, supersymmetry alone could not explain the hierarchy between the electroweak
and gravitational scales: another mechanism would be needed to establish the hierarchy. New ideas are
clearly needed!

In the absence of signatures of physics beyond the Standard Model at the LHC, there has been a
tendency among some physicists to wonder whether the Standard Model is all there is, despite the per-
sistence of a few loose ends such as the hierarchy, dark matter, the origin of matter, quantum gravity, etc.
History gives many examples where such pessimism has turned out to be unwarranted: consider the ex-
amples of Albert Michelson (1894) “The more important fundamental laws and facts of physical science
have all been discovered" or Lord Kelvin (1900) “There is nothing new to be discovered in physics now.
All that remains is more and more precise measurement", not to mention a Spanish Royal Commission,
rejecting the proposal of Christopher Columbus to sail west (before 1492) “So many centuries after the
Creation, it is unlikely that anyone could find hitherto unknown lands of any value".

Perhaps we should rather follow the approach of Sherlock Holmes in the “Silver Blaze" story who,
when asked by a policeman “Is there any other point to which you would wish to draw my attention?",
responded “To the curious incident of the dog in the night-time." The policeman then remarked that
“The dog did nothing in the night-time", to which Holmes replied “That was the curious incident." In
our case, the "curious incident" is that no beyond the Standard Model dog has yet barked. Nevertheless,
experiments have already provided theorists with many other clues: perhaps we need next to examine
them more carefully, as well as planning ambitious future experiments. These are the themes of this
Lecture.

3.2 Additional Topics in Higgs Studies
3.2.1 Higher-Dimensional Operators
A powerful way to probe indirectly possible physics beyond the Standard Model is to consider addi-
tional higher-dimensional operators that might be generated by new physics such as the exchanges of
heavy particles, use data to constrain their coefficients, and thereby constrain the possibilities for physics
beyond the Standard Model. In principle, this offers a way to constrain new physics in a coherent and
effective way using a formalism that is consistent with all the established gauge and other symmetries.
As an example, the CP-conserving dimension-6 operators in an effective Lagrangian involving just boson
fields may be written in the form [68]:

LCP+6 =
c̄H
2v2

∂µ
[
Φ†Φ

]
∂µ
[
Φ†Φ

]
+

c̄T
2v2

[
Φ†
←→
D

µ
Φ
][

Φ†
←→
D µΦ

]
− c̄6λ

v2

[
H†H

]3 (86)

+
ig c̄W
m2
W

[
Φ†T2k

←→
D µΦ

]
DνW k

µν +
ig′ c̄B
2m2

W

[
Φ†
←→
D µΦ

]
∂νBµν (87)

+
2ig c̄HW
m2
W

[
DµΦ†T2kD

νΦ
]
W k
µν +

ig′ c̄HB
m2
W

[
DµΦ†DνΦ

]
Bµν (88)

+
g′2 c̄γ
m2
W

Φ†ΦBµνBµν +
g2
s c̄g
m2
W

Φ†ΦGaµνG
µν
a . (89)

The coefficients c̄H , c̄T , c̄W , c̄B, c̄HW , c̄HB, c̄γ and c̄g may then be constrained using precision elec-
troweak data, measurements of Higgs production and decays, triple-gauge-boson couplings, etc. These
constraints may then be compared with calculations in specific extensions of the Standard Model such as
supersymmetry or composite models. One can also consider a CP-violating set of dimension-6 bosonic
operators:

LCP−6 =
ig c̃HW
m2
W

DµΦ†T2kD
νΦW̃ k

µν +
ig′ c̃HB
m2
W

DµΦ†DνΦB̃µν +
g′2 c̃γ
m2
W

Φ†ΦBµνB̃µν (90)

+
g2
s c̃g
m2
W

Φ†ΦGaµνG̃
µν
a +

g3 c̃3W

m2
W

εijkW
i
µνW

νj
ρW̃

ρµk+
g3
s c̃3G

m2
W

fabcG
a
µνG

νb
ρG̃

ρµc , (91)
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Fig. 28: Effects of the dimension-6 operators c̄γ , c̃γ , c̄HW , c̄W and c̃HW from (89, 90) on the H → ZZ∗ and
γγ partial widths (left panel) and the H → WW ∗ and H → ZZ∗ partial widths (right panel). In each case, the
Standard Model prediction is indicated by an orange dot [68].

where the dual field strength tensors are defined by

B̃µν =
1

2
εµνρσB

ρσ , W̃ k
µν =

1

2
εµνρσW

ρσk , G̃aµν =
1

2
εµνρσG

ρσa . (92)

Two specific examples of possible effects on H decays due to higher-dimensional operators are shown
in Fig. 28. In the left panel, we see the effects of the terms ∝ c̄γ and c̃γ on H → ZZ∗ and γγ decays,
and in the right panel we the effects of the ∝ c̄HW , c̄W and c̃HW on H → ZZ∗ and WW ∗ decays,.

Some of the operators in (89) and (90) may also affect the production cross sections and kinematic
distributions of the H boson. An example is provided by the double ratio of the cross sections for H
production in association with a vector boson at 14 and 8 TeV:

R ≡
(
σ(
√
S = 14 TeV )

σ(
√
S = 8 TeV )

)

c̄i

/

(
σ(
√
S = 14 TeV )

σ(
√
S = 8 TeV )

)

SM

(93)

in the presence of an operator with coefficient c̄i, as illustrated in the left panel of Fig. 29 for the case
of c̄HW . The right panel of Fig. 29 illustrates the effects on the WH invariant mass distribution for
the cases c̄HW (blue dotted histogram) and c̄W = 0.1 (black histogram), the shaded histogram being the
prediction of the Standard Model. We see that the double ratio (93) and the invariant mass distribution are
interesting tools for constraining such operator coefficients, just as they provide discrimination between
the 0+, 0− and 2+ hypotheses for the H spin.

3.2.2 A or The?
Now that the H particle has been established ’beyond any reasonable doubt" to be a Higgs boson, the
questions arise whether it is the Higgs boson of the Standard Model, and whether there are any others.
Possibilities proposed include models with an extra singlet field, models with a fermiophobic Higgs
boson, and models with two Higgs doublets (2HDM) such as the minimal supersymmetric extension of
the Standard Model (the MSSM). The ATLAS and CMS experiments have established upper limits on
the couplings of possible massive H ′ boson, as we shall see later in connection with the MSSM.

Also on the agenda of the LHC experiments is to measure V V scattering and make a closure test,
so as to check the Standard Model H cancellation discussed earlier. Does the Higgs boson discovered
by ATLAS and CMS cure its high-energy behaviour so that the theory is indeed renormalizable?

Another strategy is to search for non-Standard Model decays, e.g., into invisible final states, or
into pairs of light (pseudo)scalars aa, or into lepton-flavour-violating final states such as µτ or eτ , as
discussed in the next Section.
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Fig. 29: Left panel: the double ratio R (93) of total cross sections at
√
S = 8 TeV and 14 TeV for the associated

production process pp→ W±H → `νbb̄ may provide a useful constraint on the dimension-6 operator coefficient
c̄HW . Right panel: the invariant-mass distribution mV H is displayed for the Standard Model (shaded histogram)
and with additional couplings c̄HW = 0.1 (blue-dotted histogram) and c̄W = 0.1 (black histogram) [68].

Fig. 30: Left: Tree-level diagram contributing to a generic flavour-changing amplitude via H exchange. Right:
One-loop H loop diagram contributing to anomalous magnetic moments and electric dipole moments of charged
leptons (i = j), or radiative LFV decay modes (i 6= j) [48].

3.2.3 Flavour-ChangingH Decays
In the Standard Model one expects flavour-changing Higgs decays to occur only far below the sensitivity
of present and prospective LHC measurements. However, this might not be true, e.g., in some composite
Higgs models, so searches for flavour-violating H decays present an interesting opportunity to look for
new physics beyond the Standard Model. Model-independent constraints on such decays are provided
by measurements of flavour-violating processes at low energies, including the effects of four-fermion
interactions generated by H exchange and H loop contributions to dipole moments, as illustrated in
Fig. 30 [48].

Constraints from ∆F = 2 processes such asK−K̄,D−D̄,B−B̄ andBs−B̄s mixing constrain
flavour-changingH couplings so severely that quark-flavour-violatingH decays are too suppressed to be
detectable in the foreseeable future. However, the upper limits on lepton-flavour-changing H couplings
are much weaker, and leave open the possibility that either H → τµ or H → τe might have a branching
ratio as large as ∼ 10%, comparable to the branching ratio for H → ττ . (The upper limit on µ → eγ
forbids both branching ratios from being large simultaneously.) On the other hand, the constraints on
the flavour-violating Hµe coupling from anomalous µ→ e conversion on nuclei and µ→ eγ are much
stronger, and require BR(H → µe) <∼ O(10−9) [48].
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3.2.4 Measuring the Triple-Higgs Coupling
If the Englert-Brout-Higgs field gives masses to elementary particles, and if this field is itself elementary,
and if the Higgs boson is the particle associated with this field, what gives a mass to the Higgs boson? The
answer within the Standard Model is the Englert-Brout-Higgs field itself, via the triple-Higgs coupling.
Examining the effective Lagrangian (35), we see the following terms:

LHiggs 3 −
µ2

2
η2 − λvη3 − 1

4
η4 , (94)

where η denotes the quantum fluctuation in the Englert-Brout-Higgs field around its classical v.e.v., see
(29).

The triple-Higgs coupling may be measured via H pair production [69], which should be within
reach of the LHC with high luminosity 8. The dominant mechanism forHH production is expected to be
gg fusion: gg → H∗ → HH , with an important background from t and b box diagrams for gg → HH .
Another strategy for measuring the triple-Higgs coupling is indirectly via its effects on the cross section
for e+e− → Z +H [70].

3.3 Supersymmetry
What else is there beyond the Higgs boson already discovered? Supersymmetry is my personal favourite
candidate for physics beyond the Standard Model [5]. In my view, the discovery of a/the Higgs boson
has strengthened the scientific case for supersymmetry. In addition to the traditional arguments that low-
energy supersymmetry could resolve the fine-tuning (naturalness) aspect of the electroweak hierarchy
problem, could provide the astrophysical dark matter, could facilitate grand unification and is essential
(?) for string theory, we should remember that simple supersymmetric models stabilize the electroweak
vacuum, predicted successfully the existence of a Higgs boson weighing < 130 GeV [71], and also
predict (successfully, so far) that Higgs couplings should be within a few % of their Standard Model
values. No wonder I wrote the word ‘supersymmetry’ in the largest possible font on one of my slides!

Historically, the first motivation for supersymmetry at the TeV scale came from considerations of
quantum (loop) corrections to the Higgs mass-squared, m2

H , and thereby to the electroweak scale [5].
For example, a generic fermionic loop such as that in Fig. 31(a) yields a correction:

∆m2
H = −

y2
f

8π2
[2Λ2 + 6m2

f ln(Λ/mf ) + ...], (95)

where yf is the Yukawa coupling: yfHψψ, and Λ is an ultraviolet cutoff that represents the scale up to
which the Standard Model remains valid, beyond which new physics appears. This contribution to the
mass of the Higgs diverges quadratically with Λ. Hence if the Standard Model were to remain valid up
to the Planck scale, MP ' 1019 GeV, so that Λ = MP , this correction would be ' 1034 times larger
than the physical mass-squared of the Higgs, namely (102) GeV)2. Moreover, the loop of a scalar field
S, shown in Fig. 31(b), makes a similarly divergent contribution:

∆m2
H =

λS
16π2

[Λ2 − 2m2
S ln(Λ/mS) + ...], (96)

where λS is the quartic coupling of S to the Higgs boson.

Comparing (95) and (96), we see that the quadratically-divergent terms ∝ Λ2 would cancel if,
corresponding to every fermion f there is a scalar S with quartic coupling

λS = 2y2
f . (97)

8Measuring the quadruple-Higgs coupling would require measuring triple-H production, which is likely to require a higher-
energy collider such as the VHE-LHC described later.
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Fig. 31: One-loop quantum corrections to the mass-squared of the Higgs boson due to (a) the loop of a generic
fermion f , (b) a generic scalar S.

This is exactly the relationship imposed by supersymmetry! Therefore, there are no quadratic diver-
gences in supersymmetric field theories, not just at the one-loop level discussed above, but also at the
multi-loop level 9. This means that if there is some dynamical mechanism that imposes a large hierarchy
between different physical mass scales at the tree level, supersymmetry anables it to be maintained in a
natural way.

A different motivation for supersymmetry is provided by the measured mass of the Higgs boson.
As already remarked, the electroweak vacuum would not be stable in the absence of any new physics,
since the (negative) renormalization by top quark loops would drive the quartic Higgs self-coupling
negative at some scale � 1019 GeV, probably in the range 1010 to 1013 GeV. This could be averted if
there were some new physics to counteract the negative renormalization by the top quark. In order to
have the opposite sign to the top loop, this new physics should be bosonic, much like the stop squark [72]
But then one must consider all the quartic bosonic couplings permitted (enforced) by renormalizability,
end ensure that none of them blow up or generate an instability, which requires fine-tuning to one part
in 103 in the simplest case studied. However, this fine-tuning could be made more natural by postulating
a new fermion, much like the Higgsino. Thus, one finishes up with a theory that looks very much like
supersymmetry!

Within a supersymmetric theory, the renormalization due to the top quark could prove to be a
blessing in disguise! After cancelling the quadratic divergences in (95, 96), one is left with residual
logarithmic divergences that can be resummed using the renormalization-group equations (RGEs). Not
knowing how supersymmetry is broken, one often assumes that this occurs far above the TeV scale,
e.g., around the grand unification or Planck scale, MGUT or MP . In this case, the Higgs and other
supersymmetry-breaking masses for scalars and gauginos are renormalized significantly by time the elec-
troweak scale is reached. At leading order in the RGEs, which resum the leading one-loop logarithms,
the renormalizations of the soft gaugino masses Ma coincide with the corresponding gauge couplings:

Q
dMa

dQ
= βaMa, (98)

where βa is the one-loop renormalization coefficient including supersymmetric particles. Hence, to
leading order

Ma(Q) =
αa(Q)

αGUT
m1/2 (99)

if the gaugino masses are assumed to have a universal value m1/2 at the same large mass scale MGUT as
the gauge couplings αa. For this reason, one expects the gluino to be heavier than the wino: mg̃/mW̃ '
α3/α2 and the bino to be lighter again.

The gaugino masses contribute to the renormalizations of the soft supersymmetry-breaking scalar
masses-squared m2

i via the gauge couplings, and the scalar masses and the trilinear soft supersymmetry
9Moreover, many logarithmic corrections to couplings are also cancelled in a supersymmetric theory.
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breaking parameters Aλ contribute via the Yukawa couplings:

Qdm2
i

dQ
=

1

16π2

[
−g2

aM
2
a + λ2(m2

i +A2
λ)
]
. (100)

For most of the scalar partners of Standard Model fermions, one has at leading order

m2
i (Q) = m2

i + Cim
2
1/2, (101)

where the coefficients Ci depends on the gauge quantum numbers of the corresponding fermion. Since
renormalization by the strong coupling is largest, one expects the squarks to be heavier than the sleptons.
Specifically, if all the mi and the Ma are each assumed to be universal at the GUT scale (a scenario
known as the CMSSM), at the electroweak scale one finds:

Squarks : m2
q̃ ∼ m2

0 + 6m2
1/2, (102)

Left− handed sleptons : m2
˜̀
L
∼ m2

0 + 0.5m2
1/2, (103)

Right− handed sleptons : m2
˜̀
R
∼ m2

0 + 0.15m2
1/2. (104)

Typical results of calculations of these renormalization effects in the CMSSM are shown in Fig. 37.

Supersymmetry requires at least two Higgs doublets, one to give masses to charge-(+2/3) quarks,
Hu, and the other to give masses to charge-(-1/3) quarks and charged leptons, Hd, and we denote the
ratio of their v.e.v.s as tanβ. As we see in Fig. 32, renormalization by the top quark Yukawa coupling
is important for one of the Higgs multiplets 10, and may drive m2

Hu
negative at the electroweak scale.

This may explain the negative sign of the quadratic term in the effective Standard Model potential, and
would trigger electroweak symmetry breaking. If the top quark is heavy, it is possible for the electroweak
scale to be generated naturally at a scale ∼ 100 GeV if mt ∼ 100 GeV. For this reason, supersymmetry
theorists actually suggested that the top quark should be heavy, before its discovery.

Fig. 32: Results of calculations of the renormalization of soft supersymmetry-breaking sparticle masses, assuming
universal scalar and gaugino masses m0,m1/2 at MGUT . In general, strongly-interacting sparticles have larger
physical masses at low scales, and the m2

Hu
is driven negative, triggering electroweak symmetry breaking.

10Renormalization by the other third-generation sfermions may also be important if tanβ is large.
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The two complex Higgs doublets of the MSSM have eight degrees of freedom, of which three
are used by the Higgs mechanism for electroweak breaking to give masses to the W± bosons and to the
Z0, leaving five physical Higgs bosons in the physical spectrum. Of these, two (h,H) are neutral Higgs
bosons that are CP-even (scalar), one (A) is neutral and CP-odd (pseudoscalar), and two are charged, the
H±. At tree level, the masses of the scalar supersymmetric Higgs bosons are:

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A +m2

Z)2 − 4m2
Am

2
Z cos2 2β

)
, (105)

and the mass of the h is bounded from above by mZ . This upper limit arises because the quartic Higgs
coupling λ is fixed in the MSSM to be equal to the square of the electroweak gauge coupling (up to
numerical factors), so that λ and hence mh0 cannot be very large.

However, there are important radiative corrections to the above relations [71], the most important
correction for mh being the one-loop effect of the top quark and stop squark:

∆m2
h =

3m4
t

4π2v2
ln

(
mt̃1

mt̃2

m2
t

)
+ . . . , (106)

where mt̃1,2
are the physical masses of the stops. The correction ∆m2

h (106) depends quartically on the
mass of the top, and after including this and higher-order corrections the mass of the lightest Higgs boson
may be as large as [71, 73]:

mh . 130 GeV. (107)

for stop masses of about a TeV, as seen in Fig. 33. The uncertainty in the calculation of mh for given
values of the supersymmetric model parameters is typically ∼ 1.5 GeV. As noted earlier, the range (107)
is perfectly consistent with the mass measured by ATLAS and CMS, yet another attractive feature of
supersymmetry.

Fig. 33: The masses of the supersymmetric Higgs bosons as functions of mA for fixed values of the other MSSM
parameters.

In general, the couplings of the supersymmetric Higgs bosons differ from those in the Standard
Model.

ghV V = sin(β − α)gSMHV V , (108)

gHV V = cos(β − α)gSMHV V , (109)

38

J. ELLIS

154



ghAZ = cos(β − α)
g′

2 cos θW
, (110)

ghb̄b, ghτ+τ− = − sinα

cosβ
gSMhb̄b , g

SM
hτ+τ− . (111)

If mA � mW , the masses of the other four Higgs bosons are very similar: mH ∼ mA ∼ mH± .
However, there is a different and interesting possibility of mA is small, namely that mH ∼ 125 GeV, in
which case the Higgs discovered at the LHC might actually be the second-lightest Higgs boson, and there
might be a lighter one waiting to be discovered [74] 11. Fig. 34 compares the predictions for various Higgs
decays, relative to their Standard Model values, for fits in which the Higgs boson discovered is assumed
to be the lightest one h (upper panel) and in which it is the heavier scalar H (lower panel). Overall, the
quality of the conventional fit is better, but the unconventional fit may not yet be excluded. Experiments
should continue the search for a lighter Higgs boson, remembering that it might have different couplings
from those in the Standard Model.

Fig. 34: Results of fits to Higgs data assuming (upper panel) that the Higgs boson discovered is the lightest
supersymmetric Higgs h (upper panel) and in which it is the heavier scalar H (lower panel) [74].

3.4 Higgs and Supersymmetry
Let us now explore the implications for supersymmetry of the Higgs discovery, assuming that it is in-
deed the lighter scalar supersymmetric Higgs boson h. Important constraints on supersymmetric models
are imposed by electroweak precision observables and flavour physics observables, the cosmological
density [75] and astrophysical searches for cold dark matter [76], as well as LHC searches. In the fol-
lowing, we also take into account the experimental measurement of the anomalous magnetic moment
of the muon, gµ − 2, which disagrees with theoretical calculations within the Standard Model by ∼ 3
standard deviations [77]. This discrepancy could be explained by supersymmetry at a relatively low
mass scale, although this possibility is disfavoured in simple supersymmetric models by the LHC Higgs
mass measurement and the absence (so far) of direct evidence for supersymmetric particles at the LHC.
Fig. 35 displays the relevant constraints provided by various ATLAS searches for supersymmetry with

11There are more possibilities for a lighter Higgs boson in the next-to-minimal supersymmetric extension of the Standard
Model (NMSSM).
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the full Run 1 data set of ∼ 20/fb of data at 8 TeV [78], using signatures with missing transverse en-
ergy (MET), jets, leptons and b quarks, interpreted within the CMSSM in which there are universal soft
supersymmetry-breaking scalar masses m0, gaugino masses m1/2 and trilinear parameters A0 = −2m0

at the input GUT scale, assuming that tanβ = 30. We see that at smallm0 the most important constraint
is provided by searches for jets + MET, whereas searches for leptons, b-jets and MET are more important
at large m0.

Fig. 35: Constraints on the universal soft supersymmetry-breaking scalar masses m0, and gaugino masses m1/2

of the CMSSM from ATLAS searches for supersymmetry with the full Run 1 data set of ∼ 20/fb of data at 8 TeV,
using signatures with missing transverse energy (MET), jets, leptons and b quarks, assuming trilinear parameters
A0 = −2m0 at the input GUT scale and tanβ = 30 [78].

In the following I present some results from a recent analysis [79] of these constraints made us-
ing the MasterCode framework [80], which incorporates a code for the electroweak observables based
on [81], the flavour codes SuFla [82] and SuperIso 3.3 [83], SoftSUSY 3.3.9 [84] and FeynHiggs
2.10.0 [73] for spectrum calculations, and the MicrOMEGAs 3.2 [85] code for dark matter, which are
interfaced using the SUSY Les Houches Accord [86]. We use the MasterCode framework to construct
a global likelihood function (χ2) that includes contributions from all the relevant observables.

Fig. 36 displays the regions of the (m0,m1/2) plane alowed at the 95% CL (blue lines) and
favoured at the 68% CL (red lines) after taking all these constraints into account [79]. The solid lines
and filled star are obtained using the current 20/fb ATLAS constraints, and the dashed lines and open star
are based on the previous constraints from 7/fb of LHC data at 7 TeV. The mh constraint has the effect
of favouring relatively large values of m1/2 beyond the reach of the direct LHC searches for supersym-
metric particles, which have an impact only at low values of m1/2. We note that the mh constraint is
relatively independent of m0. Large values of m1/2 are excluded by the dark matter density constraint.

The one-dimensional χ2 function for the gluino mass mg̃ resulting from this analysis of the
CMSSM is shown in the upper left panel of Fig. 37 [79]. Again, the solid line is based on the cur-
rent data set and the dotted line is based on the previous data set. We see that updating from the 7/fb
7-TeV data to the 20/fb 8-TeV data does not change the χ2 function substantially. The current 95% CL
lower limit on mg̃ ∼ 1350 GeV. A similar plot for the mass of a generic supersymmetric partner of a
right-handed quark is shown in the upper right panel of Fig. 37. In this case, the 95% CL lower limit
is mq̃R ∼ 1650 GeV. The lighter supersymmetric partner of the top quark may be significantly lighter,
as shown in the lower left panel of Fig. 37, with a 95% CL lower limit mt̃1

∼ 750 GeV. Finally, the
corresponding plot for the lighter supersymmetric partner of the τ lepton is shown in the lower right
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Fig. 36: The (m0,m1/2) plane in the CMSSM after implementing the constraints from ATLAS MET searches,
precision electroweak.data, flavour physics, gµ − 2, mh and dark matter. The results of the current CMSSM fit
are indicated by solid lines and a filled star, and a fit to previous data is indicated by dashed lines and open stars.
The red lines denote ∆χ2 = 2.30 contours (corresponding approximately to the 68% CL), and the red lines denote
∆χ2 = 5.99 (95% CL) contours [79].

panel of Fig. 37. This is expected to be the next-to-lightest supersymmetric particle, after the dark matter
particle χ, and may have a mass as low as 330 GeV at the 95% CL.

Ref. [87] provides estimates of the supersymmetry discovery reach of the LHC with 14 TeV, e.g.,
the (m0,m1/2) plane displayed in Fig. 38. As seen there, the 5-σ discovery reach for squarks and gluinos
with 300/fb of luminosity should be to mg̃ ∼ 3500 GeV and mq̃R ∼ 2000 GeV in the CMSSM, and
the discovery range with 3000/fb of luminosity would extend a few hundred GeV further. Thus, large
parts of the CMSSM parameter space will be accessible in future runs of the LHC 12. The priorities and
prospects for future colliders will depend whether the LHC discovers supersymmetry during its runs at
14 TeV, but certainly more detailed studies of the Higgs boson will be on the agenda of the LHC and
future accelerators, as discussed in the last Section of these lectures.

3.5 What Accelerator Next: a Higgs Factory?
One of the possible options for a future accelerator is a ‘Higgs Factory’ designed to study the Higgs
boson in detail. In fact, we already have a Higgs Factory, namely the LHC, which has already produced
millions of Higgs bosons, though only a small fraction of them have been observed. High-energy runs
of the LHC will start in 2015, and luminosity upgrades are being planned. Accordingly, the capabilities
of the LHC are being rethought from the Higgs Factory perspective. However, although the upgraded
LHC will produce orders of magnitude more Higgs bosons, its capabilities are limited by theoretical
uncertainties in the production cross section as well as by the backgrounds that render unobservable
some interesting decay modes.

Both these shortcomings would be avoided at a lepton collider, and various options are being
considered. The most mature concept is a linear e+e− collider, and two projects are being developed:
the ILC that would operate initially at energies up to 500 GeV [88], and CLIC that could possibly operate
at energies up to 3 TeV [89], where the Higgs production cross section would be larger.

12It should be emphasized that the likelihood estimates made here are specific to the models studied, as are the estimates of
the physics reaches.
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Fig. 37: The one-dimensional χ2 likelihood functions in the CMSSM for mg̃ (upper left), mq̃R (upper right), mt̃1

(lower left) and mτ̃1 (lower right). In each panel, the solid line is derived from a global analysis of the present
data, and the dotted line is derived from an analysis of a previous data set, using current implementations of the
constraints applied there [79].

In the last couple of years, the alternative possibility of a circular e+e− collider has been re-
vived [90]. Proposals include LEP3, a design for a high-luminosity

√
s = 240 GeV e+e− collider that

could be installed in the LHC tunnel, and TLEP, a
√
s = 350 to 500 GeV collider that could be installed

in a larger tunnel with a circumference of 80 to 100 km. Also under consideration is a µ+µ− collider,
that would benefit from the (expected) larger coupling of the Higgs to the muon. Finally, there is the
idea of a photon-photon collider, for example SAPPHiRE [91] that would exploit the recirculating linear
accelerators proposed for the LHeC electron-proton collider.

Fig. 39 displays ATLAS estimates of the measurement uncertainties in Higgs signal strengths µ
(left) and ratios of partial decay widths (right) with integrated luminosities of 300/fb (green) and 3000/fb
(blue) [87] 13. We see good prospects for significant improvements with 300/fb relative to the current
measurements, and for further improvements with 3000/fb that would enable several Higgs couplings to
be measured with accuracies . 10 %.

Fig. 40 displays estimates of the accuracies of measurements of the Higgs couplings to other
particles that would be possible with the ILC [88], combining data from

√
s = 250, 500 and 1000 GeV.

This figure exhibits the prospective improvements in testing the linear dependence of the couplings on
the other particle masses expected in the Standard Model.

13The possible improvements in τ+τ− measurements that could be provided by a more complete analysis are shown in
brown.
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Fig. 38: The physics reach of the LHC in the (m0,m1/2) plane provided by searches for squarks and gluinos
assuming that the LSP mass is negligible. the different colours represent the production cross section at 14 TeV.
The solid (dashed) lines display the 5-σ discovery reach (95% CL exclusion limit) with 300/fb and 3000/fb respec-
tively [87].

Fig. 39: Summary of ATLAS Higgs analysis sensitivities to signal strengths µ (left) and ratios of partial decay
widths (right) with integrated luminosities of 300/fb (green) and 3000/fb at

√
s = 14 TeV for a Standard Model

Higgs boson with a mass of 125 GeV [87].
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Fig. 40: Summary of the possible ILC accuracies for measurements of the Higgs couplings to other particles that
could be obtained by combining data at 250, 500 and 1000 GeV [88].

As compared to linear e+e− colliders, circular colliders possess the feature that the achievable
luminosity increases at lower energies, assuming that a fixed amount of power can be supplied to the
beams. This feature is illustrated in Fig. 41 for the cases of TLEP, CLIC and the ILC [92]. Another
feature of a circular e+e− collider is that it can accommodate multiple interaction points (IPs), whereas
a linear collider has only a single IP, possibly with multiple detectors operated alternately in push-pull
mode.

Fig. 41: Comparison of the luminosities estimated for TLEP with either one or four interaction points (IPs), CLIC
and the ILC (which would have only a single IP) as functions of

√
s [92].

The experimental conditions at circular and linear e+e− colliders are similar, with the difference
that the bean energies are spread by beamstrahlung in the linear case and by synchrotron radiation in
the circular case, which yields a lower probability of large energy loss. Preliminary studies of possible
Higgs measurements at TLEP have been made with simulations of the CMS detector that was designed
for LHC physics [92]. Fig. 42 shows one example, that of the process e+e− → H + Z followed by
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H → e+e−, µ+µ−: a detector specifically designed for e+e− collisions such as those developed for the
ILC or CLIC would undoubtedly improve on these measurements.

Fig. 42: Example of a simulation of the process e+e− → H + Z followed by H → e+e−, µ+µ− at TLEP using
a simulation of the CMS detector that was designed for LHC physics [92].

Fig. 43 shows a comparison of the estimated uncertainties in possible measurements of Higgs
couplings with the high-luminosity upgrade of the LHC at

√
s = 14 TeV (HL-LHC, green), the ILC

(blue) and TLEP (red) operating at
√
s = 350 GeV [92]. In the case of the HL-LHC, just one experiment

is included, and the dashed lines neglect the possibility of improved theoretical calculations leading to
reduced theoretical uncertainties. In each case, we see that TLEP could provide an accuracy considerably
superior to that of the ILC, which is traceable directly to the higher statistics made available by the higher
luminosity of TLEP visible in Fig. 41.

Fig. 43: Comparison of the estimated uncertainties of measurements of Higgs couplings with the high-luminosity
upgrade of the LHC (HL-LHC, green), the ILC (blue) and TLEP (red) operating at

√
s = 350 GeV [92].

Fig. 44 shows the result of a two-parameter (M, ε) fit (83) to the TLEP coupling measurements
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listed in Figs. 43, assuming the same central values as the Standard Model, which yields

M = 246.0± 0.8 GeV, ε = 0.0000+0.0015
−0.0010 , (112)

offering the possibility of probing the Standard Model couplings at the few per-mille level. From this
analysis we see that TLEP offers peerless capabilities for measuring Higgs properties. It is worth men-
tioning that TLEP also offers unique possibilities for other precision measurements of the Standard
Model, e.g., at the Z0 peak and in W+W− production. However, the full exploitation of these ac-
curate measurements will require a new generation of high-precision calculations within the Standard
Model, posing a challenge to the theoretical community.

Fig. 44: The result of a two-parameter (M, ε) fit (83) to the TLEP coupling measurements listed in Figs. 43,
assuming the same central values as the Standard Model, to be compared with the left panel of Fig. 21.

This point is exemplified in Fig. 45. The horizontal bars represent the experimental accuracies with
which various Higgs couplings can be measured at the LHC with 300/fb of luminosity, at the HL-LHC
with 3000/fb of luminosity, at the ILC and at TLEP. Also shown are the deviations from the Standard
Model predictions for various Higgs branching ratios calculated in typical supersymmetric fits within the
models described in the previous Section. The good news is that TLEP would have sufficient precision
to distinguish these models from the Standard Model. Unfortunately, there is some bad news as well.
Fig. 45 that shows the current theoretical uncertainties in these branching ratios quoted by the LHC Higgs
cross-section working group [39] dwarf the TLEP experimental uncertainties. More precise theoretical
calculations will be sorely needed.

3.6 A Vision for the Future
It would be premature to decide on the top priority for a possible future large collider before we see at
least some first results from the LHC at 13/14 TeV. The physics landscape will be completely different
if supersymmetric particles or some other new physics is discovered at the TeV scale. In my opinion, in
that case it would be a mistake to invest the world’s particle physics resources in a collider incapable of
studying the new TeV-scale physics.

Beyond any reasonable doubt, the ATLAS and CMS experiments at the LHC have discovered a
Higgs boson, but it remains an open question whether there may be others. However, the existence of an
(apparently) elementary scalar boson poses a big challenge for theoretical physics. Most of the responses
to this challenge postulate some new physics at the TeV scale. There is some puzzlement that no such
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Fig. 45: From top to bottom: uncertainties in the measurements of Higgs branching ratios that may be made at the
LHC with 300/fb, the HL-LHC with 3000/fb, the ILC and TLEP, and finally the current theoretical uncertainties
within the Standard Model. Also shown are the deviations from Standard Model predictions found in representative
fits within supersymmetric models [92].

new physics turned up in the first LHC run at 7 and 8 TeV, but it is too soon for disappointment, still
less despair. The LHC has broad possibilities for discovering new physics beyond the Standard Model
when it restarts at 13/14 TeV. If it does discover new physics at the TeV scale, the top priority will be to
study it, and beyond the LHC, a very-high-energy pp collider may offer the best prospects for long-term
studies of this new physics. If the LHC does not discover more new physics, it would be natural to
focus on studies of the Higgs boson that has already been discovered, in which case TLEP offers the best
prospects, also for other high-precision physics.

The TLEP project is part of a vision for the future of particle physics that combines indirect ex-
ploration of possible new physics at the 10-TeV scale in e+e− collisions with direct exploration of this
energy scale in very-high-energy pp collisions at

√
s . 100 TeV in the same tunnel with a circumfer-

ence of 80 to 100 km [93]. The communities interested in these complementary exploratory projects
should work together to realize this vision, whose physics case will require a major effort to develop and
convince those who control the global resources for scientific research.
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Beyond the Standard Model
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Abstract
We introduce aspects of physics beyond the Standard Model focusing on su-
persymmetry, extra dimensions, and a composite Higgs as solutions to the Hi-
erarchy problem. Lectures given at the 2013 European School of High Energy
Physics, Parádfürdő, Hungary, 5 – 18 June 2013.

This document is based on lectures by C.C. on physics beyond the Standard Model at the 2013
European School of High-Energy Physics. We present a pedagogical introduction to supersymmetry,
extra dimensions, and composite Higgs. We provide references to useful review literature and refer to
those for more complete citations to original papers on these topics. We apologize for any omissions in
our citations or choice of topics.

1 The Hierarchy Problem
At loop level, the Higgs mass receives corrections from self interactions, gauge loops, and fermion loops
(especially the top quark). Diagrammatically,

= + +

These loops are quadratically divergent and go like
∫
d4k (k2 −m2)−1 ∼ Λ2 for some cutoff scale Λ.

Explicitly,

δm2
H =

Λ2

32π2

[
6λ+

1

4

(
9g2 + 3g′2

)
− y2

t

]
(1.1)

If Λ � 10 TeV (for example, Λ ∼ MPl), then the quantum correction to the Higgs mass is much larger
than the mass itself, δm2

H � m2
H . This is the Hierarchy problem: the Higgs mass is quadratically

sensitive to any mass scale of new physics. This problem is specific to elementary scalars.

Unlike scalars, the quantum corrections to fermion and gauge boson masses are proportional to the
particle masses themselves. In this way, small fermion and gauge boson masses are technically natural:
the loop corrections are suppressed by the smallness of the tree-level parameter. For fermions this is
because of the appearance of a new chiral symmetry in the massless limit. For gauge bosons this is
because gauge symmetry is restored in the massless limit. By dimensional analysis, the corrections to
these mass parameters cannot be quadratically sensitive to the cutoff, Λ,

∆me ∼ me ln

(
Λ

me

)
(1.2)

∆M2
W ∼M2

W ln

(
Λ

me

)
. (1.3)

The Hierarchy problem is independent of the renormalization scheme. It is sometimes argued
that in dimensional regularization there are no quadratic divergences since the 1/ε poles correspond
to logarithmic divergences. This is fallacious. The Hierarchy problem isn’t about the cancellation of
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Ψ

Ψ

Fig. 1: Heuristic two-loop contributions to the Higgs mass from heavy fermions, Ψ. Even though the Ψ
do not directly couple to the Higgs, they reintroduce a quadratic sensitivity to the new scale.

divergences, it is about the separation of the electroweak and UV scales. Any new physics coupled to
the Higgs will reintroduce the quadratic dependence on the scale at which the new physics appears. For
example, suppose new physics enters at the scale mS by a four-point interaction between the Higgs and
an additional complex scalar, ∆L ⊃ λS |H|2|S|2. The contribution to the Higgs mass from a loop of the
S particle is

δm2
H =

λS
16π2

[
Λ2

UV − 2m2
S ln

(
ΛUV

mS

)
+ (finite)

]
. (1.4)

Suppose one chose to ignore the term quadratic in the loop regulator, Λ2
UV—note that there’s no justi-

fication to do this—the logarithmically divergent piece (corresponding to the 1/ε) and the finite pieces
are proportional to the squared mass scale of the new physics, m2

S . The regulator ΛUV is not a physical
scale, but m2

S is the scale of new physics. The Higgs mass is quadratically sensitive to this scale, no
matter how one chooses to regulate the loop.

This quadratic sensitivity is true even if these new states are not directly coupled to the Higgs but
only interact with other Standard Model fields. For example, suppose there were a pair of heavy fermions
Ψ which are charged under the Standard Model gauge group but don’t directly interact with the Higgs.
One still expects two loop contributions to the Higgs mass from diagrams such as those in Fig. 1. These
contributions are of the form

δm2
H ∼

(
g2

16π2

)2 [
aΛ2

UV + 48m2
F ln

ΛUV

mF
+ (finite)

]
. (1.5)

This is indeed of the same form as (1.4). Note that in this case, the sensitivity to the new scale is softened
by a loop factor.

The Higgs mass operator |H|2 is a relevant and thus grows in the infrared. From the Wilsonian
perspective, the Hierarchy problem is the statement that is is difficult (finely tuned) to choose a renormal-
ization group trajectory that flows to the correct Higgs mass. In summary, the Hierarchy problem is the
issue that the Higgs massmH is sensitive to any high scale in the theory, even if it only indirectly couples
to the Standard Model. Thus naïvely one would expect that mH should be on the order of the scale of
new physics. In the Wilsonian picture, the Higgs mass is a relevant operator and so its importance grows
towards the IR. Indeed, mH is the only relevant operator in the Standard Model.

The implication of the Hierarchy problem is that there should to be new physics at the TeV scale
that eliminates the large loop contributions from above the TeV scale1. In these lectures we explore some
of options for the physics beyond the SM that enforce naturalness. Before going into further detail, here
is a brief overview of some of the possibilities for this to happen:

– Supersymmetry: relate the elementary scalar Higgs to fermions in such a way that the chiral
symmetry protecting the fermion mass is extended to also protect the scalar mass.

1See [1] for a recent discussion of naturalness and fine-tuning in the post-Higgs era.
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– Gauge-Higgs unification: relate the the elementary scalar Higgs to an elementary gauge field so
that gauge symmetry also protects the Higgs mass.

– Technicolor, Higgsless: there is no Higgs boson, just a dynamically generated condensate.

– Composite Higgs, warped extra dimensions: There is a Higgs, but it is not elementary. At
the TeV scale the Higgs “dissolves”: it becomes sensitive to large form factors that suppresses
corrections.

– Pseudo-Goldstone Higgs: The Higgs is a pseudo-Goldstone boson of a spontaneously broken
symmetry. This gives some protection against quadratic divergences, usually removing the one-
loop contribution. In practice one must still combine with additional mechanisms, such as in little
Higgs models.

– Large extra dimensions: The fundamental Planck scale is actually∼ TeV and only appears much
larger because gravity is diluted through its propagation in more directions.

2 Supersymmetry
Recall that under an infinitesimal transformation by an ‘ordinary’ internal symmetry, a quantum field φ
transforms as

ϕi → (1ij + iεaT aij)ϕj , (2.1)

where εa is an infinitesimal parameter, T a is the [bosonic] generator of the symmetry, and i, j label the
representation of φ with respect to this symmetry. These internal symmetries do not change the spin of
φ: bosons remain bosons and fermions remain fermions. Supersymmetry (SUSY) is a generalization
of this ‘ordinary’ symmetry where generator is now fermionic. Thus a SUSY transformation changes
fermions into bosons and vice versa.

Further reading: Wess and Bagger [?] is the canonical reference for the tools of supersymmetry. The text by Terning
has a broad overview of SUSY and its modern applications in particle physics. Additional reviews include [?, ?, 2]. Key
historical papers are collected in [3] and a more personal account is presented in [4]. More formal topics in SUSY that are
beyond the scope of these lectures, but are key tools for model builders, can be found in [5–7].

2.1 The SUSY algebra
The ’60s were very successful for classifying hadrons based on Gell-Mann’s SU(3) internal symmetry.
Physicists then tried to enlarge this group to SU(6) so that it would include

SU(3)Gell-Mann × SU(2)spin, (2.2)

but they were unable to construct a viable relativistic model. Later this was understood to be a result
of the Coleman-Mandula ‘no go’ theorem which states that one cannot construct a consistent quantum
field theory based on a nontrivial combination of internal symmetries with space-time symmetry [8].
The one exception came from Haag, Lopuszanski, and Sohnius: the only non-trivial combination of an
internal and spacetime symmetry is to use a graded Lie algebra whose generators are fermionic [9].
Recall that fermionic objects obey anti-commutation relations rather than commutation relations. The
main anti-commutation relation for SUSY is:

{
QAα , Qα̇B

}
= 2Pµσ

µ

αβ̇
δAB, (2.3)
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where the Q and Q are SUSY generators (supercharges) and Pµ is the momentum operator. Here the α
and α̇ are Lorentz indices while A,B index the number of supercharges. For completeness, the rest of
the algebra is

[Mµν ,Mρσ] = i(Mµνηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ) (2.4)

[Pµ, P ν ] = 0 (2.5)

[Mµν , P σ] = i(Pµηνσ − P νηµσ) (2.6)

[QAα ,M
µν ] = (σµν) β

α QAβ (2.7)

[QAα , P
µ] = 0 (2.8)

{QAα , QBβ } = εαβZ
AB. (2.9)

The ZAB may appear forN > 1 and are known as central charges. By the Coleman-Mandula theorem,
we know that internal symmetry generators commute with the Poincaré generators. For example, the
Standard Model gauge group commutes with the momentum, rotation, and boost operators. This carries
over to the SUSY algebra. For an internal symmetry generator Ta,

[Ta, Qα] = 0. (2.10)

This is true with one exception. The SUSY generators come equipped with their own internal symmetry,
called R-symmetry. For N = 1 there exists an automorphism of the supersymmetry algebra,

Qα → eitQα Qα̇ → e−itQα̇, (2.11)

for some transformation parameter t. This is a U(1) internal symmetry. Applying this symmetry pre-
serves the SUSY algebra. If R is the generator of this U(1), then its action on the SUSY operators is
given by

Qα → e−iRtQαeiRt. (2.12)

By comparing the transformation of Q under (2.12), we find the corresponding algebra,

[Qα, R] = Qα [Qα̇, R] = −Qα̇. (2.13)

Note that this means that different components of a SUSY multiplet have different R charge. For N > 1
the R-symmetry group enlarges to U(N ).

2.2 Properties of supersymmetric theories
Supersymmetric theories obey some key properties:

1. The number of fermionic degrees of freedom equals the number of bosonic degrees of freedom.
To see this, first introduce an operator (−)NF such that,

(−)NF |q〉 =

{
+ |q〉 boson
− |q〉 fermion

(2.14)

where NF is the fermion number operator. Note that

(−)NFQAα |q〉 = −QAα (−)NF |q〉 (2.15)

so that (−)NF and the supercharges anticommute,
{

(−)NF , QAα
}

= 0. Next consider the operator
in (2.3) weighted by (−)NF . When one sums over the states in a representation—which we write
as a trace over the operator—one finds:

Tr
[
(−)NF

{
QAα , Q

B
β̇

}]
= Tr

[
−QAα (−)NFQ

B
β̇ + (−)NFQ

B
β̇Q

A
α

]
= 0, (2.16)
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where in the last step we’ve used the cyclicity of the trace to convert the first term into the second
term up to a minus sign. By (2.3) the left-hand side of this equation is simply Tr

[
(−)NF 2σµ

αβ̇
Pµ

]
.

Note that since Poincaré symmetry is assumed to be unbroken, Pµ is identical for each state in a
representation. Thus we are left with the conclusion that

Tr(−)NF = 0, (2.17)

which implies that there is an equal number of fermions and bosons.

2. All states in a supersymmetry multiplet (‘supermultiplet’ or superfield) have the same mass. This
follows from the equivalence of Pµ acting on these states.

3. Energy for any state Ψ is positive semi-definite 〈Ψ|H|Ψ〉 ≥ 0 and the energy for any vacuum with
unbroken SUSY vanishes exactly, 〈0|H|0〉 = 0.

2.3 Classification of supersymmetry representations
For the basic case of N = 1 SUSY there is a single supercharge Q and its conjugate Q. The massless
representations of this class of theories are separated into two cases:

– (anti-)chiral superfield: contains a complex scalar and a 2-component (Weyl) spinor.

– vector superfield: contains a 2-component (Weyl) spinor and a gauge field.

These are the only N = 1 representations that do not involve fields with spin greater than 1.

Multiplets when there is more supersymmetry. If there are more SUSY charges, e.g.N = 2, then the smallest represen-
tation is the hypermultiplet which contains a 4-component (Dirac) fermion and two complex scalars. For supersymmetric
extensions of the SM it is sufficient to focus only on theN = 1 case since this is the only case which admits the observed
chiral fermions of the Standard Model.

One can compare the number of bosonic and fermionic degrees of freedom in these representa-
tions. In the chiral superfield, the complex scalar carries 2 degrees of freedom while the complex Weyl
spinor carries 4 degrees of freedom. Recall, however, that fermions only have two helicity states so that
in fact only 2 of these fermionic degrees of freedom propagate on-shell. Since one of the key points of
using fields to describe physical particles is that we can describe off-shell propagation, we would like to
also have supersymmetry hold off-shell. This requires adding two ‘dummy’ scalar degrees of freedom,
which we package in a non-propagating ‘auxiliary’ complex field F :

Field off-shell degrees of freedom on-shell degrees of freedom
scalar, φ 2 2
fermion, ψ 4 2
auxiliary, F 2 0

For the vector superfield the Weyl spinor has 4 (2) off-(on-)shell degrees of freedom while the
massless gauge boson has 3 (2) off(on-)shell degrees of freedom after identifying gauge equivalent states.
As in the chiral superfield, the number of on-shell degrees of freedom match automatically while the
number of off-shell degrees of freedom require an additional non-propagating auxiliary field. In this
case we introduce a real scalar, D:

Field off-shell degrees of freedom on-shell degrees of freedom
fermion, ψ 4 2
gauge boson, Aµ 3 2
auxiliary, D 1 0
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2.4 Superspace
The most convenient way to describeN = 1 supersymmetric field theories is to use the superspace for-
malism. Here we understand the supersymmetry transformation generated by Q and Q to be a spacetime
transformation in an additional fermionic dimension. To do this, we introduce Weyl spinor superspace
coordinates θα and θ̄α̇. Superfields are functions of x, θ, and θ̄ and encode all of the off-shell degrees of
freedom of a supermultiplet.

Weyl spinors and van der Waerden notation. We assume familiarity with two-component Weyl spinors. These are the
natural language for fermions in four-dimensions. We use the van der Waerden notation with dotted and undotted indices
to distinguish the indices of left- and right-chiral spinors. Readers unfamiliar with this notation may consult [?, ?]. The
encyclopedic ‘two component bible’ is a useful reference for full details and as a template for doing calculations [10].

The SUSY algebra tells us that the effect of a SUSY transformation with infinitesimal parameters ε
and ε̄ on a superspace coordinate (x, θ, θ̄) is

(xµ, θ, θ̄)→ (xµ + iθσµε̄− iεσµθ̄, θ + ε, θ̄ + ε̄). (2.18)

It is useful to define the superspace covariant derivatives,

Dα = +
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ Dα̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ. (2.19)

These are ‘covariant derivatives’ in that they anticommute with the SUSY generators2. They satisfy

{Dα, Dβ̇} = −2i(σµ)αβ̇∂µ and {Dα, Dβ} = {Dα̇, Dβ̇} = 0 (2.20)

By expanding in the fermionic coordinates, a generic superfield F (x, θ, θ̄) can be written in terms
of component fields of different spin that propagate on ordinary spacetime,

F (x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θ2M(x) + θ̄2N(x) + θσµθ̄vµ(x) + θ2θ̄λ̄(x) + θ̄2θξ + θ2θ̄2D(x).

This expansion is exact because higher powers of θ or θ̄ vanish identically because an anticommuting
number θ1 satisfies (θ1)2 = 0. As a sanity check, we are allowed quadratic terms in θ since it is a Weyl
spinor and θ2 = θαθα = εαβθβθα = 2θ1θ2.

With modest effort, one can work out the transformation of each component of this general super-
field by applying the transformation (2.18), expanding all fields in θ and θ̄, and matching the coefficients
of each term. Some of the terms require massaging by Fierz identities to get to the correct form. Fortu-
nately, the general superfield above is a reducible representation: some of these fields do not transform
into one another. We can restrict to irreducible representations by imposing one of the following condi-
tions:

chiral superfield DαΦ = 0 (2.21)

anti-chiral superfield Dα̇Φ = 0 (2.22)

vector (real) superfield V = V † (2.23)

linear superfield D
2
L = D2L = 0 (2.24)

The chiral and anti-chiral superfields carry Weyl fermions of left- and right-handed helicity respectively.
It is convenient to write all anti-chiral superfields into chiral superfields, for example by swapping the
right-handed electron chiral superfield with a left-handed positron superfield. The field content is identi-
cal, one is just swapping which is the ‘particle’ and which is the ‘anti-particle.’

2One may be used to thinking of covariant derivatives as coming from local symmetries with some gauge field. Here,
however, we consider only global SUSY. Geometrically, the covariant derivative comes from the fact that even rigid superspace
carries torsion [11].
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The linear superfield. The defining condition for this superfield includes a constraint that the vector component is
divergence free, ∂µV µ = 0. It is thus a natural supersymmetrization of a conserved current. We will not consider linear
superfields further in these lectures.

2.5 Supersymmetric Lagrangians for chiral superfields
One can check that because Dα̇(xµ + iθσµθ̄) = 0, any function of yµ = xµ + iθσµθ̄ is automatically a
chiral superfield (χSF). Indeed, the most compact way of writing the components of a χSF is

Φ(y, θ) = ϕ(y) +
√

2θψ(y) + θ2F (y). (2.25)

Again, we point out that this expansion is exact since higher powers of the Weyl spinor θ vanish by the
antisymmetry of its components. Under a SUSY transformation with parameter ε, the components of the
χSF each transform as

δεϕ(x) =
√

2εψ(x) (2.26)

δψ(x) = i
√

2σµε̄∂µϕ(x) +
√

2εF (x) (2.27)

δεF (x) = i
√

2ε̄σ̄µ∂µψ(x). (2.28)

Observe that the auxiliary field transforms into a total spacetime derivative. This is especially nice since
a total derivative vanishes in the action and so the highest component of a χSF is a candidate for a
SUSY-invariant term in the Lagrangian. Thus we arrive at our first way of constructing supersymmetric
Lagrangian terms: write the F -term of a chiral superfield.

To generate interesting interactions we don’t want to write the F -terms of our fundamental fields—
indeed, these are generally not even gauge invariant. Fortunately, one can check that a product of chiral
superfields is itself a chiral superfield. Indeed, a general way of writing a supersymmetry Lagrangian
term built out of chiral superfields is

L =

∫
d2θ W (Φ) + h.c., (2.29)

whereW is a holomorphic function of chiral superfields called the superpotential. Note that the integral
over d2θ is an ordinary fermionic integral that just picks out the highest component of W . Performing
the fermionic integral gives Lagrangian terms

L = −∂
2W (ϕ)

∂Φi∂Φj
ψiψj −

∑

i

∣∣∣∣
∂W (ϕ)

∂Φi

∣∣∣∣
2

. (2.30)

Observe that the superpotential is evaluated on the scalar components of the superfields, Φ = ϕ. One
can check that restricting to renormalizable terms in the Lagrangian limits the mass dimension of the
superpotential to [W ] ≤ 3.

Cancellation of quadratic divergences. One can check from explicit calculations that the SUSY formalism ensures the
existence of superpartner particles with just the right couplings to cancel quadratic divergences. A more elegant way to
see this, however, is to note that the symmetries of superspace itself prevent this. While it is beyond the scope of these
lectures, the superpotential is not renormalized perturbatively—see, e.g. [5,12] for details. The holomorphy of W plays a
key role in these arguments. The symmetries of the theory enforce the technical naturalness of parameters inW , including
scalar masses.

Superpotential terms, however, do not include the usual kinetic terms for propagating fields. In
fact, one can show that these terms appear in the θ2θ̄2 term of the combination

Φ†Φ
∣∣∣
θ2θ̄2

= FF ∗ +
1

4
ϕ∗∂2ϕ+

1

4
∂2ϕ∗ϕ− 1

2
∂µϕ

∗∂µϕ+
i

2
∂µψ̄σ̄

µψ − i

2
ψ̄σ̄∂µψ. (2.31)

Two immediate observations are in order:
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1. The complex scalar ϕ and Weyl fermion ψ each have their canonical kinetic term. The non-
propagating field, F , does not have any derivative terms: its equation of motion is algebraic and
can be solved explicitly. This is precisely what is meant that F is auxiliary.

2. Φ†Φ is not a chiral superfield. In fact, it’s a real superfield and the θ2θ̄2 component is the auxiliary
D field. Indeed, in the same way that the highest component of a χSF transforms into a total
derivative, the highest component of a real superfield also transforms into a total derivative and is
a candidate term for the Lagrangian.

We thus arrive at the second way to write supersymmetric Lagrangian terms: take the D-term of a real
superfield. We may write this term as an integral over superspace,

∫
d4θ Φ†Φ, where d4θ = d2θ d2θ̄.

More generally, we may write a generic real function K(Φ,Φ†) of chiral superfields, Φ and Φ†,
whose D term is supersymmetric contribution to the Lagrangian. This is called the Kähler potential.
The simplest Kähler potential built out of chiral superfields is precisely (2.31) and includes the necessary
kinetic terms for the chiral superfield. One can check that restricting to renormalizable terms in the
Lagrangian limits the mass dimension of the Kähler potential to [K] ≤ 2. Combined with the condition
that K is real and the observation that chiral superfields are typically not gauge invariant, this usually
restricts the Kähler potential to take the canonical form, K = Φ†iΦi.

The most general N = 1 supersymmetric Lagrangian for chiral superfields is thus

L =

∫
d4θ K(Φ,Φ†) +

(∫
d2θ W (Φ) + h.c.

)
. (2.32)

This expression is general, but renormalizability restricts the mass dimensions to be [K] ≤ 2 and [W ] ≤
3. For theories with more supersymmetry, e.g. N = 2, one must impose additional relations between
K and W . Assuming a renormalizable supersymmetric theory of chiral superfields Φi, we may plug in
K = Φ†iΦi and integrate out the auxiliary fields from (2.32). The result is

L = ∂µϕ
∗
i ∂

µϕi + iψ̄iσ̄
µ∂µψi −

∂2W

∂ϕi∂ϕj
ψiψj −

∑

i

∣∣∣∣
∂W

∂ϕi

∣∣∣∣
2

. (2.33)

Here the superpotential is assumed to be evaluated at its lowest component so that W [Φi(y, θ)] →
W [ϕi(x)]. Observe that dimension-2 terms in the superpotential link the mass terms of the Weyl fermion
and the complex scalar. Further, dimension-3 terms in the superpotential connect Yukawa interactions to
quartic scalar couplings.

2.6 Supersymmetric Lagrangians for vector superfields
Until now, however, we have only described supersymmetric theories of complex scalars and fermions
packaged as chiral superfields. In order to include the interactions of gauge fields we must write down
SUSY Lagrangians that include vector superfields.

Suppose a set of chiral superfields Φ carry a U(1) charge such that Φ(x) → exp(−iΛ)Φ(x). For
an ordinary global symmetry this is an overall phase on each component of the chiral superfield. For a
gauge symmetry, the transformation parameter is spacetime dependent, Λ = Λ(x). Note, however, that
this is now problematic because our definition of a chiral superfield, DαΦ = 0, contains a spacetime
derivative. It would appear that the naïve gauge transformation is not consistent with the irreducible
SUSY representations we’ve written because it does not preserve the chiral superfield condition.

This inconsistency is a relic of keeping Λ(x) a function of spacetime rather than a function of the
full superspace. We noted above that a function of yµ = xµ + iθσµθ̄ is a chiral superfield and, further,
that a product of chiral superfields is also a chiral superfield. Thus a consistent way to include gauge
transformations is to promote Λ(x) to a chiral superfield Λ(y) so that exp(−iΛ(y))Φ(y) is indeed chiral.
In this way we see that supersymmetry has ‘complexified’ the gauge group.
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Under this complexified gauge transformation, the canonical Kähler potential term that contains
the kinetic terms transforms to

Φ†Φ→ Φ†e−i(Λ−Λ†)Φ. (2.34)

For gauge theories one must modify the Kähler potential to accommodate this factor. This is unsurprising
since gauging an ordinary quantum field theory requires one to modify the kinetic terms by promoting
derivatives to covariant derivatives which include the gauge field. To correctly gauge a symmetry, we
introduce a vector (real) superfield (VSF) V which transforms according to

V → V + i(Λ− Λ†) (2.35)

and promote the Kähler potential to

K(Φ,Φ†) = Φ†eV Φ. (2.36)

A generic VSF has many components, but many can be eliminated by partially gauge fixing to the
Wess-Zumino gauge where

V =− θσµθ̄Vµ(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ2θ̄2D(x). (2.37)

here Vµ(x) is the gauge field of the local symmetry, λ(x) and λ̄(x) = λ†(x) are gauginos, and D(x) is
the auxiliary field needed to match off-shell fermionic and bosonic degrees of freedom. The two gauginos
are the pair of two-component spinors that make up a Majorana four-component spinor. This gauge
choice fixes the complex part of the ‘complexified’ gauge symmetry, leaving the ordinary spacetime
(rather than superspace) gauge redundancy that we are familiar with in quantum field theory.

We have not yet written a kinetic term for the vector superfield. A useful first step is to construct
the chiral superfield,

Wα =− 1

4
D
α̇
Dα̇DαV (2.38)

=− iλα(y) + θβ

[
δβαD(y)− i

2
(σµσ̄ν)βα Fµν(y)

]
+ θ2σµαα̇∂µλ̄

α̇(y). (2.39)

One can see thatWα is a chiral superfield becauseDβ̇Wα = 0 from the antisymmetry of the components
of D̄, (2.20). Observe that unlike Φ, the lowest component is a spin-1/2 field. Further, W contains the
usual gauge field strength. Indeed, one can write the supersymmetric Yang Mills kinetic terms for the
vector superfield as

LSYM =
1

4
WαWα|2θ + h.c. =

1

4

∫
d2θW2 + h.c.. (2.40)

One can check that this gives the usual kinetic terms for the gauge field and gauginos as well as an
auxiliary term. For completeness, the general form of the field strength superfield for a non-Abelian
supersymmetric gauge theory is

T aWa
α = −1

4
D
ȧ
Dȧe

−TaV aDαe
TaV a . (2.41)

Under a non-Abelian gauge transformation the chiral and vector superfields transform as

Φ→ e−gT
aΛaΦ (2.42)

eT
aV a → eT

aΛa†eT
aV aeT

aΛa . (2.43)
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The final form of the renormalizable, gauge-invariant, N = 1 supersymmetric Lagrangian is

L =

∫
d4θΦ†ie

gV Φi +

∫
d2θ

(
1

4
Wa
αWαa + h.c.

)
+

∫
d2θ (W (Φ) + h.c.) . (2.44)

Non-renormalization and the gauge kinetic term. Although W2 looks like it could be a superpotential term, it is
important to treat it separately since it is the kinetic term for the gauge fields. Further the arguments that the superpotential
is not renormalized in perturbation theory do not hold for theW2 term. Indeed, the prefactor ofW2 can be identified with
the [holomorphic] gauge coupling, which is only corrected perturbatively at one loop order. One way to see this is to note
that for non-Abelian theories, the gauge kinetic termW2 d2θ+ h.c. also includes a topological term, FF̃ , which we know
is related to anomalies. Another way to see this is the note that the simplest demonstration of non-renormalization of the
superpotential makes use of holomorphy and the global symmetries of W : the vector (real) superfield from whichWα is
built, however, is not holomorphic and its fields cannot carry have the U(1) global symmetries used in the proof.

2.7 Example: SUSY QED
As a simple example, consider the supersymmetric version of quantum electrodynamics, SQED. In ordi-
nary QED we start with a Dirac spinor representing the electron and positron. Since we’ve seen above
that a chiral superfield only contains a Weyl spinor, we require two chiral superfields, Φ±, which we
may interpret to be the electron and positron superfields. Our only two inputs are the electromagnetic
coupling e and the electron mass m. The latter suggests a superpotential

W (Φ+,Φ−) = mΦ+Φ−. (2.45)

Writing out the resulting Lagrangian in components:

LSQED =

[
1

2
D2 − 1

4
FµνF

µν − iλσµ∂µλ̄
]

+ F ∗+F+ + |Dµϕ+|2 + iψ̄+Dµσ̄
µψ+

+ F ∗−F− + |Dµϕ−|2 + iψ̄−Dµσ̄
µψ−

− ie√
2

(
ϕ+ψ̄+λ̄− ϕ−ψ̄−λ̄

)
+ h.c.

+
e

2
D
(
|ϕ+|2 − |ϕ−|2

)

+m (ϕ+F− + ϕ−F+ − ψ+ψ−) + h.c. (2.46)

We can write this out explicitly by solving for the auxiliary fields D, F±. The equations of motion are

D = −e
2

(
|ϕ+|2 − |ϕ−|2

)
F± =−mϕ∗∓. (2.47)

Plugging this back into the Lagrangian gives

LSQED =
∑

i=±

(
|Dµϕi|2 + iψ̄iDµσ̄

µψi
)
− 1

4
FµνF

µν − iλσµ∂µλ̄

−m2
(
|φ+|2 + |φ−|2

)
−mψ+ψ− −mψ̄+ψ̄−

− e2

8

(
|ϕ+|2 − |ϕ−|2

)2 −
[
ie√

2

(
ϕ+ψ̄+λ̄− ϕ−ψ̄−λ̄

)
+ h.c.

]
. (2.48)

The first line gives the kinetic terms for the electron ψ−, positron ψ−, selectron (φ−), spositron (φ+),
photon Aµ, and photino λ. The second line gives an equivalent mass to the chiral scalars and fermions.
The last line gives vertices that come from the supersymmetrization of the kinetic terms: four-point scalar
interactions from the D terms and a three-point Yukawa-like vertex with the ‘chiral’ scalars and photino.
The relation between the gauge group and the four-point scalar interaction plays a central role in how the
Higgs fits into SUSY, as we show below.
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χSF SU(3)c SU(2)L U(1)Y

Q 3 2 1/6

Ū 3 1 −2/3

D̄ 3 1 1/3

L 1 2 −1/2

Ē 1 1 −1
Hd 1 2 1/2

Hu 1 1 −1/2

Table 1: Matter content of the MSSM. Note that we have used 2 = 2 for SU(2)L.

2.8 The MSSM
We now focus on the minimal supersymmetric extension of the Standard Model, the MSSM. To go from
the SM to the MSSM, it is sufficient to promote each SM chiral fermion into a chiral superfield and each
SM gauge field into a vector superfield. Thus for each SM fermion there is a new propagating scalar
sfermion (squarks or sleptons) and for each SM gauge field there is also a propagating gaugino, a fermion
in the adjoint representation. As we showed above, off-shell SUSY also implies non-propagating auxiliary
fields.

The matter (χSF) content of the MSSM is shown in Table 1. It is the same as the SM except that we
require two Higgs doublet chiral superfields. This is necessary for the cancellation of the SU(2)2

L×U(1)Y
and SU(2)L Witten anomalies coming from the Higgs fermions, or Higgsinos. An additional hint that this
is necessary comes from the observation that the superpotential is a holomorphic function of the chiral
superfields while the Standard Model up-type Yukawa coupling requires the conjugate of the Higgs,
H̃ = iσ2H∗.

The most general renormalizable superpotential made with these fields can be split into two terms,
W = W (good) +W (bad),

W (good) =yiju Q
iHuŪ

j + yijd Q
iHdD̄ + yije L

iHdĒ
j + µHuHd (2.49)

W (bad) =λijk1 QiLjD̄k + λijk2 LiLjĒk + λi3L
iHu + λijk4 D̄iD̄jŪk. (2.50)

In W (good) one can straight forwardly identify the Standard Model Yukawa couplings which give the
SM fermions their masses. Since these are packaged into the superpotential these terms also encode the
additional scalar quartic interactions required by supersymmetry. The last term inW (good) is a supersym-
metric Higgs mass known as the µ-term. By supersymmetry this term also gives a mass to the Higgsinos,
which we require since we do not observe any very light chiral fermions with the quantum numbers of a
Higgs.

The W (bad) terms, on the other hand, are phenomenologically undesirable. These are renormal-
izable interactions which violate baryon (B) and/or lepton (L) number and are thus constrained to have
very small coefficients. Compare this to the SM where B and L are accidental symmetries: all renor-
malizable interactions of SM fields allowed by the SM gauge group preserve B and L. Violation of these
symmetries only occurs at the non-renormalizable level and are suppressed by what can be a very high
scale, e.g. MGUT.

We see that in the MSSM we must find ways to forbid, or otherwise strongly suppress, the terms
in W (bad). Otherwise one would be faced with dangerous rates for rare processes such as proton decay,
p+ → e+π0 or ν̄π+ (or alternately with π replaced with K) as shown in Fig. 2. Observe that this is a
tree level process and all of the couplings are completely unsuppressed.

A simple way to forbid W (bad) is to impose matter parity, which is a Z2 symmetry with assign-
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d̄

ū

˜̄d, ˜̄s, ˜̄b

λ4 λ1

Q

L

ū ū

Fig. 2: Proton decay mediated by squarks. Arrows indicate helicity and should not be confused with the
‘charge flow’ arrows of Dirac spinors [10]. Tildes indicate superpartners while bars are used to write
right-chiral antiparticles into left-chiral fields in the conjugate representation.

ments:

Superfield Matter parity
quark, lepton χSF PM = −1
Higgs χSF PM = +1
gauge VSF PM = +1.

Under these assignments, all terms in W (good) have PM = +1 while all terms in (bad) have PM = −1.
One can check that one may write matter parity in terms of baryon and lepton number as

PM = (−)3(B−L). (2.51)

A common variation of this is to impose the above constraint using R-parity,

PR = (−)3(B−L)+2s, (2.52)

where s is the spin of the field. Conservation of matter parity implies conservation of R-parity. This is
because the (−)2s factor always cancels in any interaction term since Lorentz invariance requires that
any such term has an even number of fermions. Observe that all SM fields have R-parity +1 while all
superpartner fields haveR-parity−1. (This is similar to T -parity for Little Higgs models.) The diagrams
assocaited with electroweak precision observables carry only SM external states. Since R-parity requires
pair-production of superpartners, this means that electroweak precision corrections cannot occur at tree-
level and must come from loop diagrams.

It is important to understand that R-parity (or matter parity) is an additional symmetry that we
impose on top of supersymmetry. R-parity has some important consequences:

1. The lightestR-parity odd particle is stable. This is known as the lightest supersymmetric particle
or LSP. If the LSP is an electrically neutral color singlet—as we shall assume—it is a candidate for
WIMP-like DM.

2. Each superpartner (sparticle) other than the LSP will decay. At the end of any such sequence of
decays one is left with an odd number (usually one) of LSPs.

3. In collider experiments, the initial state has PR = +1 so that only an even number of sparticles
can be produced at a time (e.g. via pair production). At the end of the decay these end up as LSPs
which manifest themselves as missing energy signals at colliders.

For most of this document we postulate that the MSSM has exact R-parity conservation—though this is
something of an ad-hoc assumption.
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2.9 Supersymmetry breaking
Any scalar partners to the SM leptons or quarks with exactly degenerate masses as their SM partner would
have been discovered long ago. Thus, the next piece required to construct a realistic MSSM is a way to
break supersymmetry and split the mass degeneracy between the SM particles and their superpartners.
Since we want to keep the desirable ultraviolet behavior of supersymmetry, we assume that SUSY is a
fundamental symmetry of nature which is spontaneously broken.

SUSY is unbroken when the supercharges annihilate the vacuum, Q|0〉 = Q|0〉 = 0. The SUSY

algebra, {Q,Q} = 2σµPµ allows us to write the four-momentum operator as Pµ = 1
4 σ̄

ν{Q,Q} so that
the Hamiltonian is

H = P 0 =
1

4

(
Q1Q1̇ +Q1̇Q1 +Q2Q2̇ +Q2̇Q2

)
. (2.53)

Observing that this expression is positive semi-definite, we see that

if SUSY is unbroken, 〈0|H|0〉 = 0
if SUSY is broken, 〈0|H|0〉 > 0

.

The vacuum energy can be read from the scalar potential,

V [φ] = VF [φ] + VD[φ] (2.54)

VF [φ] =
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

=
∑

i

|Fi|2 (2.55)

VD[φ] =
∑

a

1

2
g2

∣∣∣∣∣
∑

i

φ†iT
aφi

∣∣∣∣∣

2

=
∑

a

1

2
gDaDa. (2.56)

We see that SUSY breaking corresponds to one of the auxiliary fields, Fi or Di, picking up a vacuum
expectation value (VEV). We refer to the case 〈Fi〉 6= 0 as F -type SUSY breaking and the case 〈D〉 6= 0
as D-type SUSY breaking.

When an ordinary global symmetry is spontaneously broken due to a field picking up a VEV there
exists a massless boson in the spectrum of the theory known as the Goldstone boson. In the same way,
when SUSY is broken spontaneously due to a auxiliary field picking up a VEV, there exists a massless
fermion in the theory known as the Goldstino3. The spin of this field is inherited by the spin of the
SUSY generators. Heuristically, the massless Goldstone modes correspond to acting on the VEV with the
broken generators and promoting the transformation parameters to fields. Since the SUSY transformation
parameter is fermionic, the Goldstone field must also be fermionic.

For example, if 〈F 〉 6= 0, then the transformation of the fermion ψ under the broken (SUSY)
generator is

δεψ = 2ε〈F 〉. (2.57)

SUSY acts as a shift in the fermion, analogously to the shift symmetry of a Goldstone boson under a
spontaneously broken global internal symmetry. If there is more than one superfield with a non-zero F
term, then

δεψi = 2ε〈Fi〉 (2.58)

ψGoldstone =
∑

i

Fi√∑
i F

2
i

ψi. (2.59)

3This is somewhat unfortunate nomenclature. One would expect the massless mode coming from spontaneously broken
SUSY to be called a Goldstone fermion whereas the ‘Goldstino’ should refer to the supersymmetric partner of a Goldstone
boson coming from the spontaneous breaking of an ordinary symmetry.
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Note that we have used the convention that, when there is no ambiguity, F refers to the SUSY breaking
background value, dropping the brackets 〈· · · 〉 to avoid clutter. One can further generalize this to include
a linear combination of gauginos when there is also D-term SUSY breaking.

When ordinary spontaneously broken internal symmetries are promoted to gauge symmetries, their
Goldstone modes are ‘eaten’ and become the longitudinal polarization of the gauge fields. Similarly,
gauging supersymmetry corresponds to writing a theory of supergravity. The gravitino then becomes
massive by eating the Goldstino from spontaneous SUSY breaking.

2.10 Sum rule for broken SUSY
Even when it is spontaneously broken, SUSY is a strong constraint on the parameters of a theory. One
of the most important constraints is the SUSY sum rule, which relates the traces of the mass matrices of
particles of different spins.

First consider the mass terms for chiral fermions (ψ) and gauginos (λ):

i
√

2g (T a)ij
(
ϕiλ̄

aψ̄j − ϕ∗λψ
)
− ∂2W

∂ϕi∂ϕj
ψiψj + h.c. (2.60)

We may write this succinctly as a mass matrix,

(
ψi λa

)( Fij
√

2Dbi√
2Daj 0

)(
ψj
λb

)
, (2.61)

where we use the shorthand notation

Fij =
∂Fi
∂ϕj

=
∂2W

∂ϕi∂ϕj
Dai =

∂Da

∂ϕi
= gϕ∗iT

a. (2.62)

Call this fermion mass matrix m(j=1/2). Next, the scalar mass matrix
(
m2
)(j=0)

ij
is obtained by the

Hessian of the scalar potential,



∂2V
∂ϕi∂ϕ∗j

∂2V
∂ϕi∂ϕj

∂2V
∂ϕ∗i ∂ϕ

∗
j

∂2V
∂ϕ∗i ∂ϕj


 =

(
F̄ ijFkj +Di

aDaj +Di
ajDa F̄ ijkFk +Dj

aD
j
a

FijkF̄
k +DaiDaj FikF̄

jk +DaiD
j
a +Dj

aiDa

)
. (2.63)

Finally, the gauge boson matrix comes from the kinetic terms
∑

i

g2|AaµT aαβφiα|2 = |AaµDi
a|2, (2.64)

and may thus be written

(m2)
(j=1)
ab = Di

aDbi +DaiD
i
b. (2.65)

The traces of the squared mass matrices are, respectively,

Tr m(j=1/2)
(
m(j=1/2)

)†
=FijF̄

ij + 4|Dai|2 (2.66)

Tr
(
m(j=0)

)2
=2F ijF̄ij + 2Di

aDai + 2DaD
i
ai (2.67)

Tr
(
m(j=1)

)2
=2DaiD

i
a. (2.68)
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For convenience, we may define the supertrace, a sum of the squared mass matrices weighted by the
number of states,

STr
(
m(j)

)2
≡
∑

j

Tr (2j + 1)(−)2jm2 (2.69)

=− 2FF̄ − u|Dai|2 + 2FF̄ + 2Di
aDai + 2DaD

i
ai + 3 · 2DaiD

i
a (2.70)

=2Da(Da)
i
i (2.71)

=2Dã

∑

i

q
(ã)
i (2.72)

Note that 〈Da〉 6= 0 only for U(1) factors, so (Da)
i
i =

∑
qi, the sum of all U(1) charges. We have written

ã to index only the U(1) factors of the gauge group. Note, however, that usually
∑

i

q
(ã)
i = 0 (2.73)

due to anomaly cancellation. This leads to the very stringent constraint that

STr m2 = 0. (2.74)

Note that this is a tree-level result that assumes renormalizable interactions4.

2.11 Soft breaking and the MSSM
The sum rule (2.74) is a road block to SUSY model building. To see why, consider the scalar mass matrix
(2.63) applied to squarks. In order to preserve SU(3)c, the squarks should not obtain a VEV. This implies
that the D-terms vanish, Di

a = Dcolor = 0, for squarks. Thus further means that quarks only get their
masses from the superpotential.

Similarly preserving U(1)EM implies that the D-terms corresponding to the electrically charged
SU(2)L directions should also vanish: D± = D1,2 = 0. This means that the only D-terms which are al-
lowed to be non-trivial areD3 andDY , corresponding to the third generator of SU(2)L and hypercharge.
The scalar mass matrix for the up-type quarks is then

m2
2/3 =

(
m2/3m

†
2/3 +

(
1
2gD3 + 1

6g
′DY

)
1 ∆

∆† m2/3m
†
2/3 − 2

3g
′DY 1

)
(2.75)

m2
1/3 =

(
m1/3m

†
1/3 +

(
−1

2gD3 + 1
6g
′DY

)
1 ∆′

∆′† m1/3m
†
1/3 + 1

3g
′DY 1

)
, (2.76)

where the ∆ and ∆′ are the appropriate expressions from (2.63) andm2/3,1/3 correspond to the quadratic
terms in the superpotential that contribute to the quark masses.

Charge conservation requires the sum of D terms to vanish, so that at least one D term is less than
or equal to zero. For example, suppose that

1

2
gD3 +

1

6
g′DY ≤ 0. (2.77)

Let β be the direction in field space corresponding to the up quark. Then β is an eigenvector of the quark
mass matrix m2/3 with eigenvalue mu. Then (2.77) implies that

(
β† 0

)
m2

2/3

(
β
0

)
≤ m2

u. (2.78)

4Non-renormalizable terms in the Kähler potential, for example, modify how the superpotential terms contribute to the
scalar potential since one has to rescale fields for them to be canonically normalized.
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This implies that there exists a squark in the spectrum that has a tree-level mass less than the up quark.
Such an object would have been discovered long ago and is ruled out.

More generally, the observation that there is at least one negative D-term combined with the form
of the squark matrices (2.75) and (2.76) implies that there must exist a squark with mass less than or
equal to either mu or md. Thus even if SUSY is broken, it appears that any supersymmetric version of
the Standard Model is doomed to be ruled out at tree level.

In order to get around this restriction, one typically breaks SUSY in a separate supersymmetry
breaking sector (���SUSY) that is not charged under the Standard Model gauge group. This ���SUSY sector
still obeys a sum rule of the form (2.74) but the spectrum is no longer constrained by observed SM

particles. In order for the���SUSY sector to lend masses to the SM superpartners, one assumes the existence
of a messenger sector which interacts with both the SM and the ���SUSY sectors. The messenger sector
transmits the SUSY-breaking auxiliary field VEV to the SM sector and allows the SM superpartners to
become massive without violating the sum rule (2.74). Note that this also allows a large degree of
agnosticism about the details of the���SUSY sector—as far as the phenomenology of the MSSM is concerned,
we only need to know about the���SUSY scale and the properties of the messenger sector.

There are two standard types of assumptions for the messenger sector depending on how one
assumes it couples to the SM:

– Gravity mediation: here one assumes that the SM and ���SUSY breaking sectors only communicate
gravitationally. The details of these interactions fall under the theory of local supersymmetry, or
supergravity (SUGRA), but are typically not necessary for collider phenomenology.

– Gauge mediation: The messenger sector contains fields which are charged under the SM gauge
group.

An alternative way around the ���SUSY sum rule is to construct a ‘single sector’ model based on strong
coupling [13,14]. These turn out to be dual to 5D models of SUSY breaking using tools that we introduce
in Section 3.

Often we are only interested in the properties of the Standard Model particles and their superpart-
ners. We can ‘integrate out’ the details of the messenger sector and parameterize SUSY breaking into
non-renormalizable interactions. As an example, suppose that a superfield, X , breaks supersymmetry
by picking up an F -term VEV: 〈X〉 = · · · + 〈F 〉θ2. X may also have a scalar VEV, but this does not
break SUSY. We then parameterize the types of non-renormalizable couplings that are generated when
we integrate out the messenger sector. We have four types of terms:

1. Non-holomorphic scalar masses are generated by higher order Kähler potential terms such as
∫
d4θ

X†X
M2

Φ†Φ =

(
F

M

)2

ϕ∗ϕ+ (SUSY preserving terms). (2.79)
∫
d4θ

X +X†

M
Φ†Φ =

(
F ∗

M

)∫
d2θ Φ†Φ + h.c. + (SUSY preserving terms). (2.80)

We have written the SUSY-breaking part of (2.80) suggestively to appear as a non-holomorphic
superpotential term. Since Φ† only contains θ̄s and not θ,

∫
d2θΦ†Φ = ϕ∗Fϕ = ϕ∗W ′[ϕ∗]. For

renormalizable superpotentials, this can give an A-term of the form (2.82) or a b-term of the form
(2.81) below; the latter with a slightly different scaling with F .

The mass scale M is required by dimensional analysis and is naturally the scale of the mediator
sector that has been integrated out. For gravity mediation M ∼ MPl while for gauge mediation
M ∼ Mmess, the mass of the messenger fields. Doing the Grassmann integral and picking the
terms that depend on the SUSY breaking order parameter F gives a mass m2 = (F/M)2 to the
scalar ϕ. Note that F has dimension 2 so that this term has the correct mass dimension.
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2. Holomorphic scalar masses are generated by a similar higher order Kähler potential term,

∫
d4θ

X†X
M2

[
Φ2 +

(
Φ†
)2
]

=

(
F

M

)2 (
ϕ2 + ϕ∗2

)
+ (SUSY preserving terms). (2.81)

These are often called b-terms. One may want to instead write these masses at lower order in F by
writing a superpotential term W ⊃ XΦ2. This, however, is a renormalizable interaction that does
not separate the ���SUSY sector from the visible sector—as one can see the mediator mass does not
appear explicitly in such a term. Thus W ⊃ XΦ2 is subject to the SUSY sum rule and is not the
type of soft term we want for the MSSM.

3. Holomorphic cubic scalar interactions are generated from the superpotential,
∫
d2θ

X

M
Φ3 + h.c. =

F

M

(
ϕ3 + ϕ∗3

)
+ (SUSY preserving terms). (2.82)

These are called A-terms and are the same order as the scalar mass.

4. Gaugino masses are generated from corrections to the gauge kinetic term,
∫
d2θ

X

M
WαWα + h.c. =

F

M
λλ+ h.c. + (SUSY preserving terms). (2.83)

This is a gaugino mass on the same order as the scalar mass and the A-term.

In principle one could also generate tadpole terms for visible sector fields, but we shall ignore this case
and assume that all field are expanded about their minimum. These four types of terms are known as
soft supersymmetry breaking terms. The key point is that these do not reintroduce any quadratic UV

sensitivity in the masses of any scalars. This is clear since above the SUSY breaking mediation scale M ,
the theory is supersymmetric and these divergences cancel.

It is common to simply parameterize the soft breaking terms of the MSSM in the Lagrangian:

Lsoft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃

)
+ h.c. (2.84)

−
(
auQ̃Hu˜̄u+ adQ̃Hd

˜̄d+ aeL̃Hd˜̄e
)

+ h.c. (2.85)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ũ†m2
u
˜̄u− d̃†m2

d
˜̄d− ẽ†m2

e
˜̄e−m2

HuH
∗
uHu −m2

Hd
H∗dHd (2.86)

− (bHuHd + h.c.)) . (2.87)

This is simply a reparameterization of the types of soft terms described in (2.79 – 2.83), from which one
can read off the scaling of each coefficient with respect to F/M .

Note that the trilinear soft terms, au,d,e, and the soft masses m2
Q,L,u,d,e are 3× 3 matrices in flavor

space. The trilinear terms are in a one-to-one correspondence with the Yukawa matrices except that they
represent a coupling between three scalars. In general, the soft masses cause the squarks and sleptons to
have different mass eigenstates than the SM fermions.

Phenomenologically, we assume that

M1,2,3, au,d,e ∼ mSUSY (2.88)

m2
Q,u,d,L,e,Hu,Hd

, b ∼ m2
SUSY, (2.89)

where mSUSY is between a few hundreds of GeV to a TeV. This is the range in which generic MSSM-like
models provide a solution to the Hierarchy problem.
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R-symmetry, gauginos, supersymmetry breaking. Recall that when an R-symmetry exists, the different components
of a superfield carry different R charges. Because the O(θ) component ofWα, Fµν , is real, it cannot carry an R charge.
This means that the lowest component, the gaugino λ, must have non-zero R-charge. Further, the gaugino mass term
(2.83) breaks this symmetry. One will find that R-symmetry plays an important role in many non-perturbative results in
SUSY. Two important results related to SUSY breaking and gaugino masses are [15, 16].

2.12 Electroweak symmetry breaking in the MSSM
The most important feature of the Standard Model is electroweak symmetry breaking. Recall that this is
due to a tachyonic Higgs mass at the origin being balanced by a positive quartic coupling leading to a
non-zero vacuum expectation value. In the MSSM we have two Higgs doublets,

Hu =

(
H+
u

H0
u

)
Hd =

(
H0
d

H−d

)
. (2.90)

We have already seen that supersymmetry relates the scalar quartic coupling to the other couplings of the
theory. This then constrains the expected Higgs boson mass.

To preserve SU(3)c and U(1)EM we assume that no squarks or sleptons pick up VEVs. Then the
quartic terms in the Higgs potential come from D-terms, (2.56):

VD =
g2

4

(
H†uσ

aHu +H†dσ
aHd

)(
H†uσ

aHu +H†dσ
aHd

)
+
g′2

4

(
|Hu|2 − |Hd|2

)2

=
1

2
g2|H†uHd|2 +

1

8
(g2 + g′2)

(
|Hu|2 − |Hd|2

)2
, (2.91)

where we have simplified the SU(2)L terms using the relation σaijσ
a
k` = 2δi`δjk − δijδk`. We see imme-

diately that the Higgs quartic λ coupling goes like the squared electroweak couplings, g2 and g′2. This
connection between the Higgs sector and the gauge parameters does not exist in the Standard Model

In addition to the D-term contribution, there is also the supersymmetric F -term contribution com-
ing from the µ-term in the superpotential. The quadratic contributions to the Higgs potential are,

VF = |µ|2|Hu|2 + |µ|2|Hd|2 + · · · (2.92)

We have dropped terms proportional to the Yukawa couplings since we assume the scalar partners of
the SM fermions do not acquire VEVs. On top of this, there are the soft supersymmetry breaking terms.
These include soft masses for each Higgs doublet and a ‘holomorphic’ b-term which is called Bµ (or
sometimes Bµ),

Vsoft = m2
Hu |Hu|2 +m2

Hd
|Hd|2 + (BµHu ·Hd + h.c.) . (2.93)

Note that the contraction of Hu and Hd in the D-term (2.91) is different from that in the Bµ term (2.95).
Specifically, Hu ·Hd is contracted using the εab tensor and gives H+

u H
−
d −H0

uH
0
d . Further, the D-term

couplings are real since they are part of a real superfield. The F -term couplings are made real because
they are the modulus of a complex parameter. The couplings of the soft terms, on the other hand, carry
arbitrary sign and phase.

Combining all of these factors, the full Higgs potential is

VH = VD + VF + Vsoft (2.94)

=
1

2
g2|H†uHd|2 +

1

8
(g2 + g′2)

(
|Hu|2 − |Hd|2

)2

+
(
|µ|2 +m2

Hu

)
|Hu|2 +

(
|µ|2 +m2

Hu

)
|Hd|2 + (BµHu ·Hd + h.c.) . (2.95)
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To simplify this, we can assume that the charged components of the doublets pick up no VEV and write
everything in terms of only the neutral components (we address the validity of this assumption below):

VH =
1

8
(g2 + g′2)

(
|H0

u|2 − |H0
d |2
)2

+
∑

i=u,d

(
|µ|2 +m2

Hi

)
|H0

i |2 − 2BµRe(H0
uH

0
d). (2.96)

Observe that this potential has a direction in field space, |H0
u|2 = |H0

d |2 where the D-term quartic
vanishes. This is called a D-flat direction and requires caution. In order to break electroweak symmetry,
we must destabilize the origin of field space with a tachyonic mass term to force a linear combination
of the neutral Higgses to pick up a VEV. In the SM destabilization is balanced by the quartic coupling
which forces the VEV to take a finite value. We see now in the MSSM that one has to take special care
to make sure that the destabilized direction does not align with the D-flat direction or else the potential
isn’t bounded from below. In other words, we must impose a negative mass squared in one direction in
the Higgs moduli space while making sure that there is a positive definite mass squared along the D-flat
direction. This can be written as two conditions:

1. We require exactly one negative eigenvalue in the neutral Higgs mass matrix,
∣∣∣∣
|µ|2 +m2

Hu
−Bµ

−Bµ |µ|2 +m2
Hd

∣∣∣∣ =
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
−B2

µ < 0. (2.97)

2. The mass squared term is positive when |H0
u| = |H0

d |. For simplicity, suppose Bµ, 〈H0
u〉, and

〈H0
d〉 are all real (see below). Then this imposes

(
|µ|2 +m2

Hu

)
+
(
|µ|2 +m2

Hd

)
+ 2Bµ > 0. (2.98)

The conditions (2.97) and (2.98) are the requirements for electroweak symmetry breaking in the MSSM.

Note that a natural choice for the soft masses, m2
Hu

= m2
Hd

, does not obey the restrictions (2.97)
and (2.98). One way to nevertheless enforce this relation is to impose it as a boundary condition at
some high scale and allow the renormalization group flow to differentiate between them. This is actually
quite reasonable, since the β-function for these soft masses include terms that go like the squared Yukawa
coupling. The two soft masses flow differently due to the large difference in the top and bottom Yukawas.
In fact, the up-type Higgs mass parameter shrinks in the IR and it is natural to assume

m2
Hu < m2

Hd
. (2.99)

A convenient choice is m2
Hu

< 0 and m2
Hd

> 0. In this way the MSSM naturally admits radiative
electroweak symmetry breaking where the tachyonic direction at the origin is generated by quantum
effects.

Since there are many parameters floating around, it use useful to summarize that the following all
prefer electroweak symmetry breaking and no runaway directions:

– Relatively large Bµ

– Relatively small µ

– Negative m2
Hu

.

Be aware that these are only rough guidelines and are neither necessary nor sufficient.

It is standard to parameterize the VEVs of the two Higgses relative to the SM Higgs VEV by
introducing an angle, β,

〈H0
u〉 =

vu√
2

=
v√
2

sinβ 〈H0
d〉 =

vd√
2

=
v√
2

cosβ. (2.100)
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Minimizing the potential, ∂V/∂H0
u = ∂V/∂H0

d = 0, one obtains

sin 2β =
2Bµ

2|µ|2 +m2
Hu

+m2
Hd

(2.101)

M2
Z

2
= −|µ|2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
. (2.102)

The second relation is especially strange: it connects the supersymmetric µ term to the soft-breaking
masses, even though these come from totally different sectors of the theory. In other words, unlike the
quartic and gauge couplings which are tied together by supersymmetry, these parameters have no reason
to have any particular relation with each other. Further, M2

Z is experimentally measured and much
smaller than the typical expectation for either µ or m2

Hu,d
, so it appears that there’s some cancellation

going on.

The Higgs sector of the MSSM contains the usual CP-even Higgs h, a heavier CP-even Higgs, the
Goldstones of electroweak symmetry breaking, an additional pair of charged Higgses H±, and a CP-odd
Higgs A. With a little work, one can show that the CP-even Higgs masses are

m2
h =

1

2

[
M2
Z +m2

A ±
√(

M2
Z +m2

A

)2 − 4m2
AM

2
Z cos2 2β

]
, (2.103)

where m2
A = Bµ/(sinβ cosβ). One can further show that this is bounded from above,

mh ≤MZ |cos 2β| ≤MZ . (2.104)

Of course, we now know that mh ≈ 125 GeV. In fact, even before the LHC it was known from LEP that
mh & 114 GeV. While at first glance (2.104) appears to be ruled out experimentally, this is only a tree-
level bound. What this is really saying is that one requires large corrections to the quartic self-coupling
to pull up the Higgs mass from its tree level value. Due to the size of yt, the main effect comes from top
and stop loops.

To maximize the quartic coupling, we are pushed towards large values of tanβ since this would put
most of the Higgs VEV in Hu and would make the light Higgs be primarily composed of Hu. Examining
the H4

u coupling at loop level, consider diagrams of the form:

H0
u H0

u

H0
u H0

u

tR tL

tL

tR

H0
u H0

u

H0
u H0

u

t̃L,R t̃L,R

Assuming negligible A terms, the result is

λ(mt) = λSUSY +
2Ncy

4
t

16π2
ln

(
mt̃1

mt̃2

m2
t

)
, (2.105)

where λSUSY comes from theD-term potential andNc is the number of colors. This equation tells us that
in order to push the Higgs mass above the tree-level bound of MZ , one must increase mt̃. The correction
is

∆m2
h =

3

4π2
v2y4

t sin2 β ln

(
mt̃1

mt̃2

m2
t

)
. (2.106)

For further details, we refer to the treatment in [17] or the encyclopedic reference [18].
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2.13 The little hierarchy problem of the MSSM
It has been well known since LEP that in order to push mh > 114 GeV in the MSSM, one requires large
stop masses, mt̃ ∼ 1 − 1.4 TeV. Pushing the stop mass this heavy comes at a cost, unfortunately. The
stops contribute not only to the Higgs quartic—which we need to push the Higgs mass up—but also to
the soft mass m2

Hu
from loops of the form

+

The larger one sets mt̃, the larger the shift in m2
Hu

. Recall, however, the strange cancellation we noted
in (2.102). This equation seems to want m2

Hu
∼M2

Z/2. The loop corrections above contribute a shift of
the form

∆m2
Hu =

3y2
t

4π2
m2
t̃

ln

(
ΛUV

mt̃

)
. (2.107)

For mt̃ = 1.2 TeV and ΛUV = 1016 this balancing act between m2
Hu

and M2
Z/2 requires a fine tuning of

M2
Z/2

∆m2
Hu

∼ 0.1%.

Physically what’s happening is that the stop plays a key role in naturalness by canceling the sensitivity to
the UV scale. By pushing the stop to be heavier to increase the Higgs quartic, one reintroduces quadratic
sensitivity up to the scale of the stop mass. This is known as the little hierarchy problem of the MSSM.

2.14 SUSY breaking versus flavor
The soft breaking Lagrangian introduces many new masses, phases, and mixing angles on top of those
found in the Standard Model for a total of 124 parameters [19]. Most of this huge parameter space,
however, is already excluded from flavor and CP violating processes. Recall that in the SM, there are no
tree-level flavor-changing neutral currents (FCNC) and loop-level contributions are suppressed by the GIM

mechanism. Lepton number violation is similarly strongly suppressed. In the limit where the Yukawa
couplings vanish, y → 0, the Standard Model has a U(3)5 flavor symmetry where each of the five types
of matter particles are equivalent. This flavor symmetry is presumably broken at some scale ΛF in such
a way that the only imprint of this UV physics at scales well below ΛF are the Yukawa matrices. This
flavor scale can be very large so that effects of this flavor breaking go like 1/ΛF and are plausibly very
small.

In the MSSM, one must further check that the flavor breaking dynamics has already ‘frozen out’ at
the SUSY breaking scale so that the only non-trivial flavor structure in the SUSY breaking parameters are
the Yukawa matrices themselves. This means we would like the mediator scale M to be below the flavor
scale, M � ΛF . In gravity mediation, however, Λmed = MPl, and we can no longer guarantee that the
SUSY breaking mediators are insulated from flavor violating dynamics. This leads to strong constraints
on the flavor structure of the MSSM soft parameters.

For example, consider one of the most carefully studied FCNC processes, kaon anti-kaon (K-K̄)
mixing. The quark content of the mesons are K = ds̄ and K̄ = d̄s. In the SM this process is mediated
by diagrams such as
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d s

s d

W W

ui

uj

Each vertex picks up a factor of the CKM matrix. The GIM observation is the fact that the unitarity of
the CKM matrix imposes an additional suppression. In the MSSM, on the other hand, the squark soft
masses introduce an additional source of flavor violation so that the quark and squark mass matrices are
misaligned. This manifests itself as flavor-changing mass insertions, ∆m2

ds, on squark propagators when
written in terms of the Standard Model mass eigenstate combinations:

d s

s d

g̃ g̃

d̃

s̃

s̃

d̃

Note that rather thanW bosons, this diagram is mediated by gluinos which carry much stronger coupling
constants α3 � α2. Further, Since there are no factors of VCKM, there is no GIM suppression. The loop
integral goes like d4k/k10 ∼ 1/m6

SUSY. Thus we can estimate this contribution to kaon mixing to be

MMSSM
KK̄ ∼ α3

3

(
∆m2

ds

m2
SUSY

)2
1

m2
SUSY

. (2.108)

Comparing this to the experimental bound,

∆m2
ds

m2
SUSY

. 4 · 10−3
( mSUSY

500 GeV

)
. (2.109)

There are similar constraints on CP violating and lepton number violating processes (e.g. dipole moments
and µ→ eγ). This is the SUSY flavor problem: a generic flavor structure for the MSSM soft parameters
is phenomenologically ruled out. We are led to conclude that the off-diagonal flavor terms must be
strongly suppressed to avoid experimental bounds.

One way to do this is to suppose an organizing principle in the SUSY breaking parameters, soft-
breaking universality,

1. Soft breaking masses are all universal for all particles at some high scale. This means thatm2
Q ∝ 1

in flavor space, and similarly for each MSSM matter multiplet.

2. If a-terms are not flavor-universal, then the Higgs VEV induces similar problematic mixings,

La = auijQiŪjHu + adijQiD̄jHd + aeijLiĒjHd. (2.110)

To avoid this, assume that aIij is proportional to the Yukawa matrix,

aIij = AIyIij . (2.111)

This way, the rotation that diagonalizes the SM fermions also diagonalizes their scalar partners.
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3. To avoid CP violation, assume that all non-trivial phases beyond those in the Standard Model CKM

matrix vanish.

These are phenomenological principles. Ultimately, one would like to explain why these properties
should be true (or at least approximately so).

2.15 Gauge mediated SUSY breaking
One straightforward realization of soft-breaking universality is to have the messenger sector be flavor
universal. A natural way to do this is gauge mediation since the SM gauge fields are blind to flavor
[20–23]. See [24] for a review.

���SUSY messenger MSSM

〈FX〉 6= 0 Φi, Φ̄i

SM gauge

The main idea is that the SUSY breaking sector has some superfield (or collection of superfields)
X which pick up F -term VEVs, 〈FX〉 6= 0. This generates mass splittings in the messenger sector
superfields, Φi and Φ̄i. These messengers obey the tree-level SUSY sum rules discussed above but are
not problematic since all of the components can be made heavy. One then assumes that the messengers
are charged under the SM gauge group so that the MSSM superfields will feel the effects of SUSY breaking
through loops that include the messenger fields. Note that anomaly cancellation of the SM gauge group
typically requires the messenger superfields to appear in vector-like pairs, Φ and Φ̄ with opposite SM

quantum numbers.

The messenger fields generate non-renormalizable operators that connect the MSSM and the SUSY

breaking sector without introducing any flavor dependence for the soft masses. Further, because the
messenger scale is adjustable, one can always stay in regime where it is parametrically smaller than the
flavor scale M � ΛF . Recall the estimates in Section 2.11 for the size of the MSSM soft terms. For
gauge mediation, M is the mass of the messenger sector fields Φi and Φ̄i and F is the SUSY breaking
VEV, FX . Below M we integrate out the messengers to generate the MSSM soft parameters.

The simplest realization of this is minimal gauge mediation. Here one assumes only one SUSY

breaking fieldX andNm mediators, Φi and Φ̄i, in the fundamental representation of an SU(5) GUT. The
superpotential coupling between these sectors is

W = Φ̄XΦ. (2.112)

The contribution to the potential is
∣∣∣∣
∂W

∂Φ

∣∣∣∣
2

= |〈X〉|2 |ϕ|2 + |〈X〉|2 |ϕ̄|2 + ϕϕ̄〈FX〉 (2.113)

The messenger masses are

mψ = X (2.114)

m2
ϕ = X2 ± FX , (2.115)

using the notation where the angle brackets 〈· · · 〉 are dropped when it is clear that we are referring to
the VEV of a field. Observe that the messenger scale is set by the lowest component VEV of the SUSY
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breaking parameter, M = X . In what follows we make the typical assumption that F/M2 � 1. Note
that these masses satisfy the SUSY sum rule.

Now let’s consider the spectrum arising from this simple set up. The gauginos of the SM gauge
group pick up a mass contribution from diagrams of the form

〈FX〉

〈X〉
ψΦ̄ψΦ

ϕ̄ϕ

λ λ

The 〈X〉 insertion on the ψΦ line is required to flip the gaugino helicity (recall that arrows on fermion
indicate helicity). The F insertion on the ϕ line is required to connect to SUSY breaking so that this is
indeed a mass contribution that is not accessible to the gauge boson. The F VEV is also required to flip
from a ϕ to a ϕ̄ so that the scalar of the chiral superfield picks up a sense of chirality as well. Using
powerful methods based on holomporphy [25, 26], the gaugino mass for the ith gauge factor is

Mλi =
FM

M2

g2
i

16π2
Nm =

αi
4π
Nm

F

M
. (2.116)

This expression—which one could have guessed from a back-of-the-envelope estimate—turns out to
be exact to leading order in F/M2. This is a reflection of the powerful renormalization theorems in
supersymmetry, see e.g. [?]. One of the concrete predictions of minimal gauge mediation is the relation

Mλ1 : Mλ2 : Mλ3 = α1 : α2 : α3. (2.117)

The heaviest superpartners are those which couple to the largest rank gauge group.

The scalar partners of the SM matter particles do not directly couple to the messengers. Thus the
masses for the squarks and sleptons must be generated at two loop level. There are many diagrams that
include loops of both the messenger scalar and fermion:

ϕ ψ ϕ ϕ

ϕ ψ ϕ ϕ

The loops either include a gauge boson or otherwise use the scalar quartic D-term interaction between
messengers and sfermions. The result is that the soft scalar masses go like

m2
soft ∼

(
g2

16π2

)2

Nm
F 2

M2
Ci, (2.118)
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where Ci is the relevant quadratic casimir. Observe that m2
soft ∼ m2

λ so that the sfermions which couple
to the higher rank gauge factors pick up more mass. Including the various gauge charges and taking the
limit α3 � α2 � α1 gives a prediction for the sfermion spectrum in minimal gauge mediation,

m2
q̃ : m2

˜̀ : m2
Ẽ

=
4

3
α2

3 :
3

4
α2

2 :
3

5
α2

1. (2.119)

Note that (2.117) and (2.119) are only predictions of minimal gauge mediation. A parameterization of
the soft terms from a generic gauge mediation model is presented in [27,28] under the banner of general
gauge mediation. Requiring that the superpartner masses are around the electroweak scale sets

F

M
∼ 100 TeV. (2.120)

Note that since the messengers interact with the SM superfields only through gauge interactions, the
holomorphic soft terms (A and B terms) are typically very small in gauge mediation.

One important phenomenological consequence of gauge mediation is that the lightest supersym-
metric partner (LSP) is not one of the MSSM fields but rather the gravitino whose mass is [24],

m3/2 ∼
F√
3MPl

∼
( √

F

100 TeV

)2

2.4 eV. (2.121)

Thus the gravitino is much lighter than the electroweak scale, but is also similarly weakly coupled. The
relevant couplings at low energies are not gravitational, but rather through the Goldstino component of
the gravitino. This coupling is proportional to the SUSY breaking VEV F . Because of R-parity, any su-
persymmetric partner produced in the MSSM will eventually decay into the next-to-lightest superpartner
(NLSP). This NLSP must eventually decay into the gravitino LSP since it is the only decay mode available.
When

√
F & 106 GeV, the NLSP is so long lived that on collider scales it behaves effectively like the

LSP. On the other hand, if
√
F . 106 GeV, the NLSP decays within the detector. This gives a fairly

unique signal with displaced photons and missing energy if the NLSP is the bino, B̃.

2.16 The µ–Bµ problem of gauge mediation
Let’s return to an issue we addressed earlier when discussing electroweak symmetry breaking. We wrote
two relations (2.101 – 2.102) satisfied at the minimum of the Higgs potential. We noted the µ-problem
associated with (2.102): µ andm2

Hu,d
seem to come from different sectors of the theory but must conspire

to be roughly the same scale. In principle, since µ is a supersymmetric dimensionful parameter (the only
one in the MSSM), it could take a value on the order of the Planck mass. We now present a solution to the
µ-problem, but we shall see that this solution will cause problems in gauge mediation due to the second
relation, (2.101).

One way to address this µ-problem is to forbid it in the supersymmetric limit and then assume that
it is generated through the SUSY breaking sector. For example, a global Peccei-Quinn (PQ) symmetry,

Hu →eiαHu (2.122)

Hd →eiαHd, (2.123)

prohibits the µ term in the superpotential. Gravity, however, is believed to explicitly break global sym-
metries. Indeed, gravity mediation of SUSY breaking will produce a µ term. Consider, for example, the
higher order Kähler potential term that couples the SUSY breaking superfield X to the Higgses [29],

∫
d4θ

X†Hu ·Hd

MPl
+ h.c. (2.124)
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When 〈X〉 ∼ θ2F , one generates an effective µ term of order µ ∼ F/MPl. This neatly addresses the
µ-problem and ties the µ term to the SUSY breaking masses. The Bµ term that is generated comes from

∫
d4θ

X†XHu ·Hd

M2
Pl

(2.125)

and thus is of the same order as µ2. This is consistent with the observation in (2.101) that Bµ, µ, and the
soft breaking terms seem to want to be the same order. We remark that this is no longer true in gauge
mediation since F � 1011 GeV, the µ and Bµ terms generated from gravitational breaking are far too
small. This must be addressed separately in such theories.

2.17 Variations beyond the MSSM
The MSSM is under pressure from the LHC. For a review of the status after Run I of the LHC, see [30].
There are two main issues:

1. The Higgs mass mh = 125 GeV is hard to achieve in the MSSM since it requires a large radiative
correction to the tree level upper bound of mh = MZ .

2. There are no signs of superpartners. With the simplest assumption that mq̃ ∼ mg̃, the LHC pushes
the scale of colored superpartners to be over 1.2 TeV. This appears to no longer be natural.

In this section we present some model-building directions that the LHC data may be suggesting.

2.17.1 AdditionalD-term contributions
One simple direction to increase the tree-level Higgs mass is to add extra D-terms to increase the Higgs
quartic coupling [31–35]. This requires charging the Higgs under an additional U(1)X gauge group which
one must break above the weak scale. This technique is able to indeed push the tree-level Higgs mass
up to the observed value, but one is constrained by changes to Higgs decay branching ratios, particularly
h→ bb̄ [36, 37].

2.17.2 The NMSSM
At the cost of adding an additional singlet superfield S to the MSSM sector, one may solve the µ problem
and also raise the Higgs mass by enhancing its quartic coupling [38–42]. The Higgs sector superpotential
for this “next-to-minimal” supersymmetric SM (NMSSM, see [43, 44] for reviews) is

WNMSSM = yuHuQŪ + ydHdQD̄ + yeHdĒ + λSHuHd +
1

3
κS3. (2.126)

The κ term breaks the Peccei-Quinn symmetry, (2.122 – 2.123), to a Z3. Since S is a gauge singlet,
the D-term potential is unchanged from (2.91). Note, however, that there is no longer a µ term in the
superpotential, instead the SHuHd coupling has taken its place. Thus the F -term potential differs from
that of the MSSM, (2.92), and is instead

VF,NMSSM = λ2|S|2
(
|Hu|2 + |Hd|2

)
+ λ2 |HuHd|2 . (2.127)

We observe that the combination λ〈S〉 plays the role of an effective µ term and solves the µ-problem.
Finally, there are additional soft terms allowed which augment Vsoft in (2.93),

∆Vsoft,NMSSM = m2
S |S|2 + λAλ(SHuHd + h.c.) +

1

3
κAκ(S3 + h.c.). (2.128)
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The resulting expression for the Higgs mass is approximately

m2
h ≈M2

Z cos2 2β + λ2v2 sin2 2β − λ2v2

κ2
(λ− κ sin 2β)2 +

3m4
t

4π2v2

[
ln

(
mt̃

mt

)
+
A2
t

mt̃

(
1− A2

t

12mt̃

)]
.

(2.129)

This can be larger than the value in the MSSM depending on the value of λ. There are limits on the size
of λ coming from perturbativity, but lifting the Higgs mass to 125 GeV is fine. The singlet S contributes
an additional complex scalar to the Higgs sector and an additional neutralino.

2.17.3 Natural SUSY
The simplest choices for the MSSM parameters—those that treat all the flavors universally, as preferred by
the flavor problem—are tightly constrained by the non-observation of new physics at the LHC. Because
the LHC is a proton-proton collider, it is easy for it to produce colored superpartners such as squarks
and gluinos. These, in turn, are expected to show up as events with many jets and missing energy as the
heavy colored states decay into the LSP. The fact that no significant excesses have been found pushes
one to consider other parts of the large MSSM parameter space.

Instead of biasing our parameter preferences by simplicity, one may take a different approach and
ask what is the minimal sparticle content required for naturalness? In other words, which superpartners
are absolutely required to cancel quadratic divergences? Once these are identified, one may decouple the
remaining sparticles and check the experimental constraints on the resulting spectrum. The ingredients
of a ‘minimally’ natural MSSM spectrum are [45, 46] (see [47–50] for a re-examination from the early
LHC run)

1. Light stops. The largest SM contribution to the Higgs quadratic UV sensitivity is the top loop.
Naturalness thus requires that its superpartner, the stop, is also accessible to cancel these loops.
Since the stop lives in both the UR and QL superfields, this typically also suggests that the left-
handed sbottom is also light.

2. Light Higgsinos. In order to preserve natural electroweak symmetry breaking, µ should be on the
order of the electroweak scale. This is the same parameter that determines the Higgsino mass, so
the Higgsinos should also be light.

3. Not-too-heavy gluinos. The stop is a scalar particle which is, itself, quadratically UV sensitive at
face value. The main contribution to the stop mass comes from gluon loops so that naturalness
requires ‘not-too-heavy’ (∼ 1.5 TeV) gluinos to cancel these loops. In other words, the gluino
feeds into the Higgs mass at two-loop order since it keeps the light-stop light enough to cancel the
Higgs’ one-loop UV sensitivity.

4. Light-ish electroweak-inos (optional). Finally, if one insists on grand unification, the scale of
the gluinos imposes a mass spectrum on the electroweak gauginos with MEW-ino < Mgluino. As a
rough estimate, Majorana gluinos should have mass . 2mt while Dirac gluinos should have mass
. 4mt.

5. All other particles decoupled. All of the other squarks and sleptons are assumed to be well above
the TeV scale and effectively inaccessible at Run-I of the LHC.

These are shown in Fig. 3.

The simplest models have a light stop t̃L which decays either to a top and neutralino/gravitino,
t + Ñ , or a bottom and a chargino, b + C̃. Bounds on these decays depend on the Ñ (C̃) mass. The
‘stealthy’ region near m

Ñ
= 0 and the ‘compressed’ region near m

Ñ
≈ mt are especially difficult to

probe kinematically.
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H̃

t̃R, t̃L b̃L

g̃

W̃

B̃

Fig. 3: Heuristic picture of a natural SUSY spectrum. All other superpartners are assumed to have masses
well above the TeV scale and decouple.

2.17.4 R-parity violation
One of the main ways to search for ‘vanilla’ SUSY signatures is to trigger on the large amount of missing
energy (MET or��ET ) expected from the neutral LSP. Underlying this assumption isR-parity, which forces
the LSP to to be stable.

Recall that R-parity was something that we embraced because it killed the supersymmetric terms
in the superpotential (2.50) that would violate lepton and baryon number and would be severely con-
strained by experiments, most notably proton decay. If, however, there were another way to suppress
these dangerous operators, then perhaps we could avoid the experimental bounds while giving the LSP a
way to decay into non-supersymmetric particles. This would allow us to consider models with R-parity
violation (RPV) with no missing energy signal [51–55], see [56] for a review. Such models would be
immune to the usual MET-based SUSY search strategies.

The simplest way to do this is to turn on only the λ4ŪD̄D̄ term. This violates baryon number but
preserves lepton number so that protons remain stable. Motivated by naturalness, we may now allow the
stop to be the LSP since this is no longer a dark matter candidate. The RPV coupling would allow a decay
t̃→ b̄s̄, which would be hidden in the large QCD di-jet background.

One still has to worry about the effects of this RPV coupling on the partners of the light squarks.
Phenomenologically, the strictest bounds come from neutron–anti-neutron oscillation and dinucleon de-
cay. Indeed, most of the flavor bounds on the MSSM come from the first two generations of sparticles.
One interesting model-building tool is to invoke minimal flavor violation, which posits that the flavor
structure of the entire MSSM is carried by the Yukawa matrices [57]. This then implies that the coefficient
of the Ū iD̄jD̄k RPV coupling is proportional to a product of Yukawa elements depending on the gener-
ations i,j, and k. This gives a natural explanation for why the RPV couplings of the first two generation
squarks are much smaller than the stop.

3 Extra Dimensions
The original proposal for extra dimensions by Kaluza [58], Klein [59], and later Einstein [60] were
attempts to unify electromagnetism with gravitation. Several decades later the development of string
theory—originally as a dual theory to explain the Regge trajectories of hadronic physics—led physicists
to revisit the idea of compact extra dimensions [61–63]. In early models, the non-observation of an
additional spatial direction was explained by requiring the compactification radius to be too small for
macroscopic objects.

Further reading: Two of the authors’ favorite reviews on this subject are [64] and [65]. This lecture is meant to be largely
complementary. Additional references include [66–71], which focus on different aspects.
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3.1 Kaluza-Klein decomposition
The simplest example to begin with is a real scalar field in 5D where the fifth dimension is compactified
to a circle of radius R. The details of the compactification do not change the qualitative behavior of the
theory at low energies. The Lagrangian is

S =

∫
d5x

1

2
∂Mφ(x, y)∂Mφ(x, y) =

∫
d5x

1

2

[
∂µφ(x, y)∂µφ(x, y)− (∂yφ(x, y))2

]
, (3.1)

where M = 0, · · · , 5 and x5 = y. Since y is compact, we may identify energy eigenstates by doing a
Fourier decomposition in the extra dimension,

φ(x, y) =
1√
2πR

∞∑

n=−∞
φ(n)(x) ei

n
R
y. (3.2)

Since φ is real,
(
φ(n)

)†
= φ(−n). Plugging this expansion into the action allows us to use the orthogo-

nality of the Fourier terms to perform the dy integral. This leaves us with an expression for the action
that is an integral over only the non-compact dimensions, but written in terms of the KK modes φ(n)(x),

S =

∫
d4x

∑

mn

(∫
dy

1

2πR
ei

(m+n)
R

y

)
1

2

[
∂µφ

(m)(x)∂µφ(n)(x) +
mn

R2
φ(m)(x)φ(n)(x)

]
(3.3)

=
1

2

∫
d4x

∑

n

[
∂µφ

(−n)∂µφ(n) − n2

R2
φ(−n)φ(n)

]
(3.4)

=

∫
d4x

∑

n>0

[(
∂µφ

(n)
)†
∂µφ(n) − n2

R2

∣∣∣φ(n)
∣∣∣
2
]
. (3.5)

From the 4D point of view, a single 5D scalar becomes a ‘Kaluza-Klein (KK) tower’ of 4D particles,
each with mass n/R. If there were more than one extra dimension, for example if one compactified on
an k-dimensional torus with radii R5, R6, . . ., then the KK tower would have k indices and masses

m2
n5,n6,··· ,nk = m2

0 +
n2

5

R2
5

+
n2

6

R2
6

+ · · ·+ n2
k

R2
k

, (3.6)

where m2
0 is the higher dimensional mass of the field.

3.2 Gauge fields
A more complicated example is a gauge field. We know that gauge fields are associated with vector
particles, but in 5D the vector now carries five components,AM . We perform the same KK decomposition
for each component M ,

AM (x, y) =
1√
2πR

∑

n

A
(n)
M (x) ei

n
R
y. (3.7)

Note that this decomposes into a KK tower of 4D vectors, A(n)
µ , and a KK tower of 4D scalars, A(n)

5 .
Similarly, the field strengths are antisymmetric with respect to indices M and N so that the action is
decomposed according to

S =

∫
d4x dy

(
−1

4
FMNF

MN

)
(3.8)

=

∫
d4x dy − 1

4
FµνF

µν +
1

2
(∂µA5 − ∂5Aµ) (∂µA5 − ∂5A

µ) (3.9)
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=

∫
d4x

∑

n

−1

4
F (−n)
µν F (n)µν +

1

2

(
∂µA

(−n)
5 − ∂5A

(−n)
µ

)(
∂µA

(n)
5 − ∂5A

(n)µ
)
. (3.10)

This looks complicated because there is an odd mixing between the 4D vector, A(n)
µ , and the 4D scalar

A
(n)
5 . Fortunately, this mixing term can be removed by fixing to 5D axial gauge,

A(n)
µ → A(n)

µ −
i

n/R
∂µA

(n)
5 A

(n)
5 → 0, (3.11)

for n 6= 0. Note that for n = 0 there’s no scalar–vector mixing anyway. The resulting action takes a
much nicer form,

S =

∫
d4x − 1

4

(
F (0)
µν

)2
+

1

2

(
∂µA

(0)
5

)
+
∑

n≥1

2

(
−1

4
F (−n)
µν F (n)µν +

1

2

n2

R2
A(−n)
µ A(n)µ

)
. (3.12)

The spectrum includes a tower of massive vector particles as well as a massless (zero mode) gauge boson
and scalar.

Recall the usual expression for the number of degrees of freedom in a massless 4D gauge boson:

(4 components in Aµ)− (longitudinal mode)− (gauge redundancy). (3.13)

When the gauge boson becomes massive, it picks up a longitudinal mode from eating a scalar by the
Goldstone mechanism. This is precisely what has happened to our KK gauge bosons, A(n)

µ : they pick up
a mass by eating the scalar KK modes, A(n)

5 .

In a theory with (4+n) dimensions, the (4+n)-component vectorAM decomposes into a massless
gauge boson, n massless scalars, a tower of massive KK vectors Aµ, and a tower of (n− 1) massive KK

scalars.

One may similarly generalize to spin-2 particles such as the graviton. In (4 +n) dimensions these
are represented by an antisymmetric (4 + n)× (4 + n) tensor,

gMN =


 gµν Aµ

ϕ


 . (3.14)

The massless 4D zero modes include the usual 4D graviton, a vector, and a scalar. At the massive level,
there is a KK tower of gravitons with (n− 1) gauge fields and [1

2n(n+ 1)− n] scalars. Here we observe
the graviton and vector eating the required degrees of freedom to become massive.

3.3 Matching of couplings
It is important to notice that the mass dimension of couplings and fields depend on the number of space-
time dimensions. The action is dimensionless, [S] = 0, since it is exponentiated in the partition function.
Then, in (4 + n) dimensions, the kinetic term for a boson gives

[
d(4+n)x (∂φ)2

]
= −(4 + n) + 2 + 2[φ] = 0 ⇒ [φ] = 1 +

n

2
. (3.15)

Note that this is consistent with the dimensions in the KK expansion (3.2). The 5D scalar contains the
4D scalars with a prefactor∼ R−1/2 that has mass dimension 1/2. Similarly, for fermions, [ψ] = 3

2 + n
2 .

With this information, dimensions of the Lagrangian couplings can be read off straightforwardly. For
example, the 5D gauge field lives in the covariant derivative,

Dµ = ∂µ − ig5Aµ = ∂µ − i
g5√
2πR

A(0)
µ + · · · . (3.16)
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We see that [g5] = −1/2 since [∂] = 1 and [AM ] = 3/2. Further, we find an explicit relation between
the 5D parameter g5 and the observed 4D gauge coupling,

g4 =
g5√
2πR

. (3.17)

More generally, in (4 + n) dimensions the 4D coupling is related to the higher dimensional coupling by
the volume of the extra dimensional space,

g2
4 =

g2
(4+n)

Voln
. (3.18)

One can read off the matching of the gravitational coupling by looking at the prefactor of the Ricci term
in the action,

S(4+n) = −M2+n
(4+n)

∫
d4+nx

√
g R(4+n) = −M2+n

(4+n)Vn

∫
d4x

√
g(4)R(4) + · · · , (3.19)

where we’ve written g for the determinant of the metric. From this we identify 4D Planck massMPl from
the fundamental higher dimensional Planck mass, M(4+n),

M2
Pl = M2+n

(4+n)Vn. (3.20)

The higher dimensional Planck mass is a good choice for a fundamental mass scale for the theory,

M∗ = M(4+n). (3.21)

In a (4+n) dimensional theory where the characteristic mass scale isM∗ and a compactification radiusR.
Then dimensional analysis tells us that the higher dimensional gauge couplings, which are dimensionful,
characteristically scale like

g(4+n) ∼M−n/2∗ . (3.22)

Relating this to the 4D couplings with (3.18) and relating M∗ to the 4D Planck mass with (3.20) gives

R ∼ 1

MPl
g

(n+2)/N
4 . (3.23)

Plugging in the observed SM gauge couplings on the right hand side gives a compactification radius
which is far too small to be relevant at colliders—the first KK modes will be near the Planck scale.

3.4 Branes and Large Extra Dimensions
In the mid ’90s, developments in string theory led to a new ingredient that renewed interest in extra
dimensions that might be accessible at collider scales. The key idea is that branes, solitonic objects
which form lower dimensional subspaces, can trap fields. In other words, not all fields have to propagate
in all dimensions. This was introduced by Rubakov and Shaposhnikov [72], who showed that instead of
a very small radius of compactification, it may be that our observed universe is constrained to live in a
(3+1)-dimensional subspace of a higher dimensional spacetime.

Terminology. Models that make use of branes to localize fields are known as braneworld models and are distinguished
from models where all fields propagate in the extra dimensions, known as universal extra dimensions. In braneworld
models, fields which are allowed to propagate in the full space are said to live in the bulk.
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Fig. 4: Cartoon pictures of a (3+1) dimensional brane in a compact 5D space. (LEFT) The brane (red
line) as a subspace. Gravity propagates in the entire space ‘diluting’ its field lines relative to forces
localized on the brane. (RIGHT) SM processes localized on the brane, now with an additional dimension
drawn, emitting a graviton into the bulk.

Allowing the fields to be brane-localized buys us quite a lot. It allows us to separate particle
physics from gravity. One can, for example, force the SM fields to be truly four-dimensional objects
that are stuck to a (3+1)-dimensional brane. This avoids the bound on the size of the extra dimension in
(3.23), since that relied on the SM propagating in the bulk.

With this in mind, one could allow the volume of the extra dimensions to actually be quite large.
This idea was explored by Arkani-Hamed, Dimopoulos, and Dvali in the ADD or large extra dimension
scenario [73]. If this were feasible, then (3.20) gives a new way to address the Hierarchy problem. The
large volume factor allows the fundamental scale of nature to be much smaller than the observed Planck
mass, M∗ �MPl. If, for example, M∗ ∼ 1 TeV, then there is no Hierarchy problem. Gravity appears to
be weaker at short distances because its flux is diluted by the extra dimensions. As one accesses scales
smaller than R, however, one notices that gravity actually propagates in (4 + n) dimensions. A cartoon
of the braneworld scenario is shown in Fig. 4.

How large can this extra dimension be? Doing a rough matching and using Voln = rn in (3.20)
gives

R =
1

M∗

(
MPl

M∗

)2/n

. (3.24)

Pushing the fundamental scale to M∗ ∼ TeV requires

R = 1032/n TeV−1 = 2 · 10−17 1032/n cm, (3.25)

using GeV−1 = 2 ·10−14 cm. We make the important caveat that this is specifically for the ADD model.
Considering different numbers of extra dimensions,

– n = 1. For a single extra dimension we have R = 1015 cm, which is roughly the size of the solar
system and is quickly ruled out.

– n = 2. Two extra dimensions brings us down to R ≈ 0.1 cm, which is barely ruled out by
gravitational Cavendish experiments.

– n = 3. Three extra dimensions pushes us down to R < 10−6 cm.

How much do we know about gravity at short distances? Surprisingly little, actually. Cavendish exper-
iments (e.g. Eöt-Wash5) test the r−2 law down to 10−4 m. These set a direct bound on the n = 2 case
that R < 37 µm and M∗ > 1.4 TeV. For larger n one is allowed to have M∗ = TeV.

5The name is a play on the Eötvös experiment by University of Washington researchers.
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One might have objected that one cannot say that M∗ is the fundamental scale while allowing R,
itself a dimensionful quantity, float to take on any value. Indeed, in a completely natural theory, one
expects R ∼ 1/M∗ so that R ∼ TeV−1. This is quite different from what we wrote in (3.24). Indeed,
what we have done here is swapped the hierarchy in mass scales to a Hierarchy between R and M−1

∗ . In
other words, we have reformulated the Hierarchy problem to a problem of radius stabilization. This is
indeed very difficult to solve in ADD.

Nevertheless, we may explore the phenomenological consequences of an ADD type model at col-
liders and through astrophysical observations.

– The first thing to consider is the production of KK gravitons.

f

f
G

γ, g

The KK graviton couples too weakly to interact with the detector so it appears as missing energy.
By itself, however, missing energy is difficult to disentangle from, say, neutrino production. Thus
it’s useful to have a handle for the hardness of the event (more energetic than Z → νν̄) so one can
look for processes that emit a hard photon or gluon. Thus a reasonable search is a jet or photon
with missing energy. It is worth noting that this is the same search used for searching for dark
matter, which is also typically a massive particle which appears as missing energy.

– Alternately, one may search for s-channel virtual graviton exchange in processes like e+e− → ff̄ .
One expects a resonance at the KK graviton mass.

– Supernovae can cool due to the emission of gravitons. This is similar to the supernovae cooling
bounds on axions. The strongest bounds on n = 2 theories push M∗ & 100 TeV.

– An additional byproduct of lowering the fundamental gravitational scale is that one may form
microscopic black holes at energies kinematically accessible to the LHC and cosmic rays. For
ECM > M∗ black holes are formed with a radius

RS ∼
1

M∗

(
MBH

M∗

) 1
n+1

. (3.26)

the cross section is roughly the geometric value, σBH ∼ πR2
S and can be as large as 400 pb. These

microscopic black holes decay via Hawking radiation,

TH ∼
1

RS
(3.27)

with this energy distributed equally to all degrees of freedom, for example 10% going to leptons,
2% going to photons, and 75% going to many jets.

3.5 Warped extra dimensions
We’ve seen that the framework of large extra dimensions leads to interesting phenomenology, but the
ADD realization leaves the size of the radius unexplained and is therefore not a complete solution to the
Hierarchy problem. The Randall-Sundrum (RS) proposal for a warped extra dimension offers a more
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interesting possibility [74]. The set up differs from ADD in that the space between the two branes has a
non-factorizable metric that depends on the extra space coordinate, z,

ds2 =

(
R

z

)2 (
ηµνdx

µdxν − dz2
)
. (3.28)

This is the metric of anti-de Sitter space (AdS) with curvature k = 1/R. There are two branes located
at z = R (the UV brane) and z = R′ > R (the IR brane) that truncate the extra dimension; in this sense
the RS background is often described as a ‘slice of AdS.’ We see that 1/R is naturally a fundamental
UV scale of the theory. The metric (3.28) warps down the natural physical scale as a function of the
position along the extra dimension. In particular, when R′ � R one finds that near z = R′, the scales
are warped down to much smaller values. Note the different notation from the ADD case: the size of the
extra dimension is R′ −R ≈ R′, while R should be identified with the radius of curvature.

To see how this works, suppose that the Higgs is localized to live on the IR brane at z = R′. The
action on this brane depends on the 4D induced metric ĝµν (note that

√
ĝ =
√
g/
√
g55),

S =

∫
d4x
√
ĝ

[
∂µH∂νHĝ

µν −
(
|H|2 − v2

2

)2
]

(3.29)

We assume that the Higgs VEV is on the order of the UV scale, v = 1/R, since this is the fundamental
5D scale. Plugging in the metic gives

S =

∫
d4x

(
R

R′

)4
[
∂µH∂

µH

(
R′

R

)2

−
(
|H|2 − v2

2

)2
]

z=R′

, (3.30)

where indices are implicitly raised with respect to the Minkowski metric. Canonically normalizing the
kinetic term via

Ĥ =
R

R′
H, (3.31)

allows us to write the action in the form,

S =

∫
d4x

(
∂µĤ

)2
− λ

[
|Ĥ|2 − 1

2

(
v
R

R′

)2
]2

, (3.32)

where we see that the canonically normalized Higgs picks up a VEV that is warped down to the TeV

scale. One can further imagine that the cutoff for loops contributing to the Higgs mass are similarly
warped down to, say, the TeV scale. In this way, the warped extra dimension gives a new handle for
generating hierarchies. Readers should be skeptical that we’re not just hiding the Hierarchy problem in
some fine tuning of the IR scale R′ relative to the fundamental scale R. Indeed, the real solution to the
Hierarchy problem requires a mechanism for radius stabilization, which we present below. Note that
typically R ≈M−1

Pl and R′ ≈ TeV−1 so that R′ is roughly the size of the extra dimension. A cartoon of
this scenario is shown in Fig. 5.

In the remainder of this lecture we’ll focus on the RS background. In the appendices we present
some additional technical results that may be useful for building RS models. Further details of the RS

gravitational background are discussed in Appendices A.1 and A.2. Details of bulk matter fields are
discussed in Appendices A.3 and A.4

3.6 The Planck scale and hierarchy in RS
We have seen how the AdS curvature can warp mass scales to be much smaller than the fundamental 5D
scale 1/R. It is instructive to also check the observed Planck scale. With respect to the fundamental
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Fig. 5: Cartoon of the RS scenario with a brane-localized SM. The warp factor, (R/z)2, causes energy
scales to be scaled down towards the IR brane.

Planck scale M∗ (ostensibly M∗ ∼ 1/R), the gravitational action is

Sg = M3
∗

∫ R′

R
dz

∫
d4x

√
g(5)R(5), (3.33)

where the quantities with subscripts are the determinant of the 5D metric and the 5D Ricci scalar, respec-
tively. By performing the dz integral one finds the effective 4D gravitational action,

Sg = M3
∗

∫ R′

R
dz

(
R

z

)3 ∫
d4x

√
g(4)R(4) = M3

∗

[
1−

(
R

R′

)2
]∫

d4x
√
g(4)R(4). (3.34)

We can thus identify the effective 4D Planck mass by reading off the coefficient,

M3
Pl = M3

∗

[
1−

(
R

R′

)2
]
≈M3

∗ , (3.35)

so that for a large extra dimension, R′ � R, the 4D Planck mass is insensitive to R′ and is fixed by the
5D Planck mass, M∗ ∼ 1/R. This is precisely what we have set out to construct: assuming there is a
dynamical reason for R′ � R, we are able to warp down masses to the TeV scale by forcing particles to
localize on the IR brane while simultaneously maintaining that 4D observers will measure a Planck mass
that is much heavier.

An alternate way of saying this is that the Hierarchy problem is solved because the SM Higgs is
peaked towards the IR brane while gravity is peaked towards the UV brane. What we mean by the latter
part of this statement is that the graviton zero mode has a bulk profile that is peaked towards the UV

brane. Recall that in flat space, zero modes have flat profiles since they carry no momentum in the extra
dimension. In RS, the warping of the space also warps the shape of the graviton zero mode towards the
UV brane; the weakness of gravity is explained by the smallness of the graviton zero mode profile where
the Standard Model particles live. This should be compared to the case of a flat interval where the zero
mode wave function decouples as the size of the extra dimension increases. In this case the coupling
with the IR brane indeed becomes weaker, but the graviton KK modes become accessible and can spoil
the appearance of 4D gravity. In RS the zero mode doesn’t decouple and one doesn’t need to appeal to
a dilution of the gravitational flux into the extra dimensions as in the ADD model. See [64] for more
explicit calculations in this picture.
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3.7 Bulk scalar profiles in RS
In the original RS model, only gravity propagates in the bulk and has KK modes. However, it is instructive
to derive the KK properties of a bulk scalar.

– This serves as a simple template for how to KK reduce more complicated fields, such as the gravi-
ton, in a warped background.

– We’re anticipating the ‘modern’ incarnations of the RS where gauge and matter fields are pulled
into the bulk.

– As mentioned above, the solution to the Hierarchy problem depends on stabilizing the position of
the IR brane, z = R′, relative to the UV brane, z = R. The standard technique for doing this
requires a bulk scalar.

Start with a bulk complex scalar Φ(x, z) with a bulk mass parameter m. The bulk action is

S =

∫ R′

R
dz

∫
d4x
√
g
[
(∂MΦ)∗ ∂MΦ−m2Φ∗Φ

]
. (3.36)

In principle one may have additional brane-localized interactions proportional to δ(z−R′) or δ(z−R).
We use M,N to index 5D coordinates while µ, ν only run over 4D coordinates. Varying with respect to
Φ∗ yields an equation of motion

∂M
(√
ggMN∂NΦ

)
−√gm2Φ = 0. (3.37)

In writing this we have dropped an overall surface term that we picked up when integrating by parts.
Specializing to the RS metric, this amounts to picking boundary conditions such that

Φ∗(z)∂zΦ(z)|R,R′ = 0, (3.38)

with the appropriate modifications if there are brane-localized terms. We see that we have a choice of
Dirichlet and Neumann boundary conditions. We now plug in the Kaluza-Klein decomposition in terms
of yet-unknown basis functions f (n)(z) which encode the profile of the nth mode in the extra dimension:

Φ(x, z)
∞∑

n

φ(n)(x)f (n)(z). (3.39)

By assumption the φ(n) are eigenstates of ηµν∂µ∂ν with eigenvalue −m2
(n), the KK mass. We are thus

left with a differential equation for f (n)(z),
[(

R

z

)3

m2
(n) −

3

z

(
R

z

)3

∂z +

(
R

z

)3

∂2
z −

(
R

z

)5

m2

]
f (n)(z) = 0. (3.40)

This is a Strum-Liouville equation with real eigenvalues and real, orthonormal eigenfunctions,

∫ R′

R
dz

(
R

z

)3

f (n)(z)f (m)(z) = δmn. (3.41)

Just as we saw in Section 3.1 for a flat extra dimension, this orthonormality relation diagonalizes the KK

kinetic terms. One may now solve (3.40) by observing that through suitable redefinitions this is simply a
Bessel equation. The result is a general solution for n > 0 of the form

f (n)(z) = c1z
2Jα(m(n)z) + c1z

2Yα(m(n)z), (3.42)
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where J, Y are the familiar Bessel functions and α =
√

4 +m2R2. The integration constants c1,2 and
the spectrum of KK massesm2

(n) can be found using boundary conditions on each brane and the orthonor-
mality relation (3.41). The states have a discrete spectrum with spacing of approximately R′−1 ∼ TeV

with profiles peaked towards the IR brane.

For n = 0 the zero mode profile is

f (0)(z) = c1z
2−
√

4+m2R2
+ c2z

2+
√

4+m2R2
. (3.43)

We use this result in the Goldberger-Wise mechanism discussed below, but let us remark that the zero
mode is neither consistent with Neumann nor Dirichlet boundary conditions and requires brane localized
terms to generate boundary conditions that permit a zero mode.

The same general procedure can be used to find the profiles of higher spin bulk fields. In Appen-
dices A.3 and A.4 we work through the additional subtleties coming from fermions and gauge bosons. A
Standard Model field is associated with the zero mode of a 5D field, where the SM mass is a correction
from electroweak symmetry breaking on the zero mass from the KK decomposition. Note that the mean-
ing of the 5D profile is that a 4D particle, even though it is localized and pointlike in the four Minkowski
dimensions, is an extended plane wave in the fifth dimension. The boundary conditions imposed by the
branes mean that this system is essentially identical to a waveguide in electrodynamics6.

3.8 Radius stabilization
We’ve now shifted the Hierarchy problem to a question of why the IR scale R′ is so much larger than the
UV scaleR. In fact, one should think aboutR′ as the expectation value of a dynamical degree of freedom,
R′ = 〈r(x, z)〉, called the radion. This is identified with the 4D scalar arising from the dimensional
decomposition of the 5D metric. This isn’t surprising since the metric is, of course, the quantity which
measures distances. Thus far in our description of the RS framework, the radion is a modulus—it has no
potential and could take any value. This is problematic since excitations of this field would be massless
and lead to long-range modifications to gravity. It is thus important to find a mechanism that dynamically
fixes R′ ∼ TeV−1 to (1) provide a complete solution to the Hierarchy problem and (2) avoid constraints
from modifications to gravity.

Don’t be fooled by coordinate choices. The original RS literature used variables such that the metric explicitly contained
an exponential warping ds2 = e−2kydx2−dy2 so that anO(10) value of kπR′ leads to large hierarchies. Do not confuse
this variable choice with a solution to the Hierarchy problem—it just shifts the fine tuning into a parameter to which the
theory is exponentially sensitive. The reason why the exponential hierarchy is actually physical in RS (with a dynamically
stabilized radius) is that fields propagating in the space are redshifted as they ‘fall’ towards the IR brane in the gravitational
well of the AdS background.

A standard solution in the RS model is the Goldberger-Wise mechanism7 [76, 77], where radion
kinetic and potential energy terms conspire against one another to select vacuum with finite R′. To do
this, we introduce a massive bulk scalar field Φ(x, z) of the type in Section 3.7. We introduce brane-
localized potentials for this field which force it to obtain a different VEV at each brane, ϕUV 6= ϕIR,

∆L = −λδ(z −R)
(
Φ2 − ϕ2

UV

)2 − λδ(z −R′)
(
Φ2 − ϕ2

IR

)2
λ→∞. (3.44)

This causes the scalar to pick up a z-dependent VEV that interpolates between ϕUV and ϕIR,

〈Φ(x, z)〉 = ϕ(z) ϕ(R) = ϕUV ϕ(R′) = ϕIR. (3.45)

6This should have been no surprise given the appearance of Bessel functions.
7While the Goldberger-Wise mechanism is just one simple option to stabilize the size of the extra dimension, it is close to

what actually happens in string compactifications that tacitly UV complete the RS scenario [75].
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The general form of ϕ(z) is precisely the zero mode profile in (3.43) since the VEV carries zero momen-
tum in the Minkowski directions. One may now consider the terms in the action of Φ(x, z) (evaluated
on the VEV ϕ(z)) as contributions to the potential for the radion via R′ = 〈r(x, z)〉. The kinetic term for
Φ(x, z) contributes a potential to r(x, z) that goes like ϕ′(z)2.

1. This gradient energy is minimized when ϕ(z) has a large distance to interpolate between ϕUV,IR

since larger R′ allows a smaller slope.

2. On the other hand, the bulk mass for Φ(x, z) gives an energy per unit length in the z-direction
when ϕ(z) 6= 0. Thus the energy from this term is minimized when R′ is small.

By balancing these two effects, one is able to dynamically fix a value for R′. A pedagogical derivation
of this presented in [66]. The main idea is that for small values of the bulk Φ(x, z) mass, m2 � R−2,
one may write the Φ(x, z) VEV as

ϕ = c1z
−ε + c2z

4+ε, (3.46)

where ε = α − 2 =
√

4 +m2R2 − 2 ≈ m2R2/4 is small. The coefficients c1,2 are determined by the
boundary conditions (3.45). The potential takes the form

V [R′] = ε
ϕ2

UV

R
+
R3

R′4

[
(4 + 2ε)

(
ϕIR − ϕUV

(
R

R′

)ε)2

− εϕIRR
′−4

]
+O

(
R4

R′8

)
, (3.47)

where judicious checkers of dimensions will recall that the dimension of the 5D scalar is [ϕ(x, z)] = 3
2 .

The minimum of this potential is

R′ = R

(
ϕUV

ϕIR

)1/ε

. (3.48)

We can generate the Planck-weak hierarchy with 1/ε ∼ 20 and ϕUV/ϕIR ∼ 10. A key point here is
that we may write the radius in terms of a characteristic energy scale, R′ ∼ 1/µ, and the potential for µ
carries terms that go like µ4 times a polynomial in µε. This is reminiscent of dimensional transmutation
and, indeed, we explain below that the RS scenario can be understood as a dual description of strongly
coupled 4D dynamics.

The above description of the Goldberger-Wise mechanism neglects the effect of the background
Φ field on the RS geometry. For example, one may wonder if the RS metric is even compatible with
the Φ VEV. In order to account for this gravitational backreaction, one must solve the Φ equation of
motion combined with the Einstein equation as a function of the metric (discussed in Appendix A.1)
in the presence of the Φ VEV. This set of coupled second order differential equations is generically
very difficult to solve. Fortunately, there exists a ‘superpotential8’ trick that one may apply to solve the
system exactly. This method is described and demonstrated pedagogically for the Goldberger-Wise field
in [64,67]. One finds that it is indeed possible to maintain the RS background in the presence of the bulk
field necessary to stabilize the radius.

3.9 Holographic interpretation

8The trick was inspired by similar calculations in supergravity but otherwise is only related to SUSY in the sense that the
‘superpotential’ here also allows one to write first order equations of motion [78].
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Fig. 6: Cartoon of the AdS/CFT correspondence. The isometries of the extra dimensional space enforce
the conformal symmetry of the 4D theory. Moving in the z direction corresponds to a renormalization
group transformation (rescaling) of the 4D theory.

Gauge/gravity duality is a way to understand the physics of a warped extra dimension as the dual to a strongly coupled
4D theory. Our goal here is to develop the intuition to use and understand the AdS/CFT dictionary as an interpretational
tool. The most rigorous explicit derivations of this duality are often presented in the language of string theory. This idea
is presented pedagogically in the language of 4D quantum field theory (rather than string theory) in [69,70,79–83]. Those
interested in presentations that connect to supergravity and string theory may explore [?,?,?,?,?,84], listed roughly in order
of increasing formal theory sophistication starting from very little assumed background. We also point out [85] which is
an excellent presentation of dualities between 4D supersymmetric gauge theories that are analogous to the gauge/gravity
correspondence.

We now introduce a way to re-interpret the observables of RS scenario in terms of the dynamics of a
purely four-dimensional theory in its non-perturbative regime. The idea is that the symmetries of the
bulk AdS space enforce the symmetries of a conformal theory in 4D—this latter theory approximates a
strongly coupled theory near a fixed point. Combined with the observation that a shift in z causes an
overall rescaling of the AdS metric (3.28), we can identify slices of constant z as scale transformations
of the 4D [approximately] conformal theory. In this way, the 5D AdS theory ‘geometrizes’ the renormal-
ization group flow of the 4D theory. One then interprets the physics on the UV brane as a 4D conformal
theory that sets the boundary conditions for the 5D fields. Slices of constant z describe the RG evolution
of this theory at lower energies, µ ∼ 1/z. Because the higher-dimensional theory encodes information
about the behavior of a lower-dimensional theory on its boundary, this identification is known as the
holographic interpretation of warped extra dimensions. This interpretation is sketched in Fig. 6.

3.9.1 Plausibility check from an experimentalist’s perspective
As a very rough check of why this would be plausible, consider the types of spectra one expects from
an extra dimensional theory versus a strongly coupled 4D theory. In other words, consider the first thing
that an experimentalists might want to check about either theory. The theory with an extra dimension
predicts a tower of Kaluza-Klein excitations for each particle. The strongly coupled gauge theory predicts
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a similar tower of bound states such as the various meson resonances in QCD. From the experimentalist’s
point of view, these two theories are qualitatively very similar.

3.9.2 Sketch of a more formal description
We can better motivate the holographic interpretation by appealing to more formal arguments. One
of the most powerful developments in theoretical physics over the past two decades is the AdS/CFT

correspondence—more generally, the holographic principle or the gauge/gravity correspondence [79,
86–88]. The conjecture states that type IIB string theory on AdS5 × S5 is equivalent to 4D N = 4
superconformal SU(N) theory on Minkowski space in the large N limit:

AdS5 × S5 ⇐⇒ N = 4 super Yang-Mills. (3.49)

The essence of this duality is the observation that a stack of N so-called D3-branes in string theory can
be interpreted at low energies in two ways:

1. A solitonic configuration of closed strings which manifests itself as an extended black hole-like
object for which AdS5 × S5 is a solution.

2. Dirichlet boundary conditions for open strings which admit a non-Abelian U(N) gauge symmetry
associated with the N coincident D3-branes.

These correspond to the left- and right-hand side of (3.49) and form the basis of the AdS/CFT correspon-
dence.

The key for us is that the AdS5×S5 extra dimension ‘geometrizes’ the renormalization group flow
of the strongly coupled theory by relating the position in the extra dimension z with the RG scale µ. An
operator Oi in the 4D theory has a source ji(x, µ) that satisfies an RG equation

µ
∂

∂µ
ji(x, µ) = βi(jj(x, µ), µ). (3.50)

The gauge/gravity correspondence identifies this source as the value of a bulk field ji(x, µ) ⇔ Φi(x, z)
at the UV boundary of the AdS5 extra dimension. The profile of Φi in the extra dimension is associated
with the RG flow of ji(x, µ). Each Minkowski slice of AdS5 represents a picture of the 4D theory probed
at a different energy scale µ ∼ 1/z.

More concretely, the duality gives a prescription by which the correlation functions of one theory
are identified with correlation functions of the other. The parameters of these two theories are related by

R4

`4
= 4πg2N, (3.51)

where R is the AdS curvature, ` is the string length, and g is the Yang Mills coupling. Here we see why
AdS/CFT is such a powerful tool. In the limit of small string coupling α′ ∼ `2 where string theory can
be described by classical supergravity, the dual gauge theory is strongly coupled and very ‘quantum’.
The correlation functions of that theory are non-perturbative and difficult to calculate, whereas the dual
description is weakly coupled. The duality gives a handle to calculate observables in theories outside the
regime where our usual tools are applicable.

3.9.3 What it means to geometrize the RG flow
For our purposes, it is only important that we understand the warped extra dimension as the renormal-
ization group flow of a strongly coupled 4D gauge theory. To see how this RG flow is ‘geometrized,’ we
consider the internal symmetries of the two theories.
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– The isometry of the S5 space is SO(6) ∼= SU(4). This is precisely the R-symmetry group of the
N = 4 gauge theory.

– The isometry of the AdS5 space is SO(4, 2), which exactly matches the spacetime symmetries of
a 4D conformal theory.

Since RS only has a slice of the AdS space without the S5, we expect it to be dual to a conformal theory
without supersymmetry. Steps towards formalizing the holographic interpretation of Randall-Sundrum
are reviewed in [85].

Armed with this background, we can develop a working understanding of how to interpret RS

models as a picture of a strong, four-dimensional dynamics. Observe that in the conformal coordinates
that we’ve chosen, the metric has a manifest scale symmetry

z → αz x→ αx. (3.52)

Consider 4D cross sections perpendicular to the z direction. Moving this cross section to another position
z → αz is equivalent to a rescaling of the 4D length scales. Increasing z thus corresponds to a decrease
in 4D energy scales. In this way, the AdS space gives us a holographic handle on the renormalization
group behavior of the strongly coupled theory.

3.9.4 What it means to take a slice of Anti-de Sitter
The RS scenario differs from AdS5 due to the presence of the UV and IR branes which truncate the
extra dimension. Since flows along the extra dimension correspond to scale transformations, the branes
represent scales at which conformal symmetry is broken. The UV brane corresponds to an explicit UV

cutoff for the 4D conformal theory. The IR brane sets the scale of the KK modes. We heuristically
identified these with bound states of the strongly coupled theory, and so we can identify the IR brane as a
scale where conformal symmetry is spontaneously broken, the theory confines, and one finds a spectrum
of bound states. Recall that the bound state profiles are localized toward the IR brane; this is an indication
that these bound states only exist as one approaches the confinement scale. The picture of the RS ‘slice
of AdS’ is thus of a theory which is nearly conformal in the UV that runs slowly under RG flow down to
the IR scale where it produces bound state resonances.

The SM, and in particular the Higgs, exist on the IR brane and are thus identified with composite
states of the strongly coupled theory. In the extra dimensional picture, we argued that the Higgs mass
is natural because the UV cutoff was warped down to the TeV scale. In the dual theory, the solution to
the Hierarchy problem is compositeness (much like in technicolor): the scalar mass is natural because
above the confinement scale the scalar disappears and one accesses its strongly coupled constituents. By
comparison, a state stuck on the UV brane is identified with an elementary (non-composite) field that
couples to the CFT.

3.9.5 The meaning of 5D calculations
At the level presented, it may seem like the AdS/CFT correspondence is a magic wand for describing
strong coupling perturbatively—and indeed, if you have started to believe this, it behooves you to always
know the limits of your favorite tools. A 5D calculation includes entire towers of 4D strongly coupled
bound states—in what sense are are we doing a perturbation expansion? First of all, we underscore
that the AdS/CFT correspondence assumes the ’t Hooft large N limit, where N is the rank of the gauge
group [?]. Further, whether in four or five dimensions, a scattering calculation assumes a gap in the
particle spectrum. This gap in the 5D mass is translated into a gap in the scaling dimension ∆ of the 4D
CFT operators. Thus one of the implicit assumptions of a holographic calculation is that the spectrum of
the CFT has a gap in scaling dimensions. More practically, a scattering process in 5D include 4D fields
with large KK masses. We can say definite things about these large KK mass states, but only as long as
these questions include a sum over the entire tower.
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3.10 The RS Radion is a Dilaton
We have already met the radion as the dynamical field whose VEV sets the distance between the UV

and IR brane. Excitations of the radion about this VEV correspond to fluctuations in the position of the
IR brane. From its origin as a part of the 5D dynamical metric, it couples to the trace of the energy-
momentum tensor,

r

ΛIR
Tµµ . (3.53)

Observe that this is very similar to the coupling of the SM Higgs except that it is scaled by a factor of v
ΛIR

and there are additional couplings due to the trace anomaly—for example, a coupling to gluons of the
form [77, 89]

[
r

ΛIR
− 1

2

r

ΛIR
F1/2(mt)

]
αs
8π

(Gaµν)2, (3.54)

where F1/2(mt) = −8m2
t /m

2
h + · · · is a triangle diagram function, see e.g. (2.17) of [90].

Why should the radion coupling be so similar to the Higgs? Before one stabilizes the radion VEV

(e.g. as in Section 3.8), the radion is a modulus and has a flat potential. In the holographic 4D dual, the
radion corresponds to the Goldstone boson from the spontaneous breaking of conformal symmetry by
the confining dynamics at the IR scale. In other words, in the 4D theory, the radion is a dilaton. This
is the reason why it is so similar to the SM Higgs: the Higgs is also a dilaton in a simple limit of the
Standard Model.

In the SM the only dimensionful parameter is that of the Higgs mass,

V (H) = λ

(
H†H − v2

2

)2

. (3.55)

In the limit when λ→ 0, the Standard Model thus enjoys an approximate scale invariance. If we maintain
v 6= 0 while taking λ→ 0, that is, we leave the Higgs VEV on, then:

– Electroweak breaking SU(2)×U(1) →U(1) gives the usual three Goldstone bosons eaten by the
W± and Z

– The breaking of scale invariance gives an additional Goldstone boson, which is precisely the Higgs.

Indeed, the Higgs couples to the sources of scale invariance breaking: the masses of the fundamental SM

particles,

h

v

(
mf Ψ̄Ψ +M2

WWµW
µ + · · ·

)
. (3.56)

This observation leads to an interesting possibility: could one construct a complete model with
no elementary scalar Higgs, but where a condensate breaks electroweak symmetry and scale invariance?
Then the dilaton of this theory may have the properties of the SM Higgs. If one can reproduce the
observed Higgs mass then it could be very difficult to tell the scenario apart from the SM [91].

3.11 Realistic Randall-Sundrum Models
While the original RS model is sometimes used as a template by LHC experiments to put bounds on KK

gravitons, most theorists usually refer to RS to mean a more modern variant than the model presented thus
far. In the so-called ‘realistic’ version of Randall-Sundrum, all of the Standard Model fields are allowed
to propagate in the bulk [92–94]. Doing this allows one to use other features of the RS framework to
address other model building issues. For example, pulling the gauge fields into the bulk can help for
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grand unification, but this typically leads to unacceptably large corrections to the Peskin-Takeuchi S-
parameter. One way to control this is to also allow the fermions to live in the bulk. We explain below
that the bulk fermions open up a powerful new way to use the RS background to generate the hierarchies
in the Yukawa matrix.

Solving the Hierarchy problem requires the Higgs to either be stuck on the IR brane or otherwise
have a bulk profile that is highly peaked towards it. Allowing the fermions and gauge fields to propagate
in the bulk introduces a tower of KK modes for each state. These tend to be peaked towards the IR brane
and, as we learned above, are identified with bound states of the strongly coupled holographic dual. The
Standard Model matter and gauge content are identified with the zero modes of the bulk fields. These
carry zero KK mass and pick up small non-zero masses from their interaction with the Higgs. When
boundary conditions permit them, zero mode profiles can have different types of behavior:

– Fermion zero modes9 are either exponentially peaked toward the IR brane or the UV brane. The
parameter controlling this behavior is the bulk mass10, see (A.40).

– Gauge boson zero modes are flat in the extra dimension, though electroweak symmetry breaking
on the IR brane distorts this a bit, see (3.61).

The holographic interpretation of a Standard Model field with a bulk profile is that the SM state is par-
tially composite. That is to say that it is an admixture of elementary and composite states. This is
analogous to the mixing between the ρ meson and the photon in QCD. States whose profiles are peaked
towards the UV brane are mostly elementary, states peaked toward the IR brane are mostly composite,
and states with flat profiles are an equal admixture.

The effective 4D coupling between states depends on the overlap integral of their extra dimensional
profiles. This gives a way to understand the hierarchies in the Yukawa matrices, since these are couplings
to the Higgs, which is mostly localized on the IR brane [93–99]. This is a realization of the split fermion
scenario11 [100–103]. The zero-mode fermions that couple to the Higgs, on the other hand, can be
peaked on either brane. We can see that even with O(1) 5D couplings, if the zero-mode fermions are
peaked away from the Higgs, the dz overlap integral of their profiles will produce an exponentially small
prefactor. We can thus identify heavier quarks as those whose bulk mass parameters cause them to lean
towards the Higgs, while the lighter quarks are those whose bulk mass parameters cause them to lean
away from the Higgs. Because the 5D couplings can be arbitrary O(1) numbers, this is often called
flavor anarchy. This scenario is sketched in Fig. 7.

This framework tells us how to search for ‘realistic’ RS models. Unlike the original RS model,
whose main experimental signature were KK gravitons decaying to SM states like leptons, the profiles of
our SM fields tell us what we expect realistic RS to produce. The most abundantly produced new states
are those with strong coupling, say the KK gluon. Like all of the RS KK states, this is peaked towards the
IR brane. The SM field which couples the most to this state are the right-handed tops. This is because we
want the tops to have a large Yukawa coupling, and the left-handed top cannot be too peaked on the IR

brane or else the bottom quark—part of the same electroweak doublet—would become heavy. These KK

gluons are expected to have a mass & 3 TeV, so we expect these tops to be very boosted. This suggests
experimental techniques like jet substructure (see [104–106] for reviews).

There are additional features that one may add to the RS scenario to make it even more realistic.
From the picture above, the electroweak gauge KK modes lean towards the IR brane where the Higgs
can cause large mixing with the SM W and Z. This causes large corrections to the Peskin-Takeuchi

9One immediate concern with bulk fermions is that in 5D the basic spinor representation is Dirac rather than Weyl. Thus
one does not automatically obtain a chiral spectrum of the type observed in the SM. While heavy KK states indeed appear as
Dirac fermions, one may pick boundary conditions for the bulk fermion field that project out the ‘wrong chirality’ zero-mode
state. See Appendix A.3.6.

10Observe that this is a manifestation of our identification of bulk masses and scaling dimension in Sec. 3.9.5.
11Note that the use of an extra dimension to explain flavor hierarchies does not require warping.
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Fig. 7: A cartoon of the zero mode profiles of various SM particles in the ‘realistic’ RS scenario.

T parameter which seems to push up the compactification scale, causing a reintroduction of tuning. A
second issue is that the third generation SM fermions also have a large overlap with the Higgs and can
induce a large Zb̄b coupling through the neutral Goldstone. This coupling is well measured and would
also require some tuning in the couplings. It turns out, however, that imposing custodial symmetry in the
bulk can address both of these problems [107, 108]. The symmetry is typically gauged and broken on
the IR brane so that it is holographically identified with a global symmetry of the 4D theory—just as in
the SM. This introduces several new states in the theory, many of which are required to have boundary
conditions that prevent zero modes.

3.12 A sketch of RS flavor
Let us assume that the Higgs is effectively IR brane-localized. The effective 4D Yukawa coupling be-
tween a left-handed quark doublet and a right-handed quark singlet is given by the O(1) anarchic (non
hierarchicial) 5D Yukawa coupling multiplied by the zero-mode fermion profiles evaluated on the IR

brane, ε,

yui j ∼ O(1)ij × εQi εuRj . (3.57)

Here we have implicitly treated the Higgs boson profile as a δ-function on the IR brane and integrated
over the profiles. In the 4D mass eigenstate basis, yt ∼ 1, we can write εuR3 ∼ εQ3 ∼ 1. For a choice of
these parameters, one may then use the bottom mass to determine the value of εdR3 . This, in turn, may be
used in conjunction with the CKM matrix,

VCKM≤ij ∼ O
(
εQi

εQj

)
, (3.58)

to determine the εs of lower generations and so forth. One automatically obtains a hierarchical pattern of
mixing.

Neutrino zero modes, on the other hand, must be highly peaked on the UV brane. In fact, these
are typically even more peaked on the UV brane than the Higgs is peaked on the IR brane. In other
words, one should no longer treat the Higgs as purely brane localized12 and rather as a profile which
is exponentially small on the UV brane. In this limit, one can treat the right-handed neutrinos as each
having a δ-function profile on the UV brane. Even with O(1) anarchic Yukawa couplings, the smallness

12This itself causes some conceptual issues since the interactions of a purely brane Higgs is incompatible with the boundary
conditions required to make the fermion zero modes chiral [109].
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of the Higgs profile then suppresses the neutrino mass to automatically be small. Further, since each
neutrino Yukawa coupling has the same Higgs mass, one finds larger mixing than in the quark sector, as
phenomenologically observed.

3.13 Example: the coupling of the Z in RS
As a sample calculation, consider the coupling of the Z boson in RS. We first derive the effective 4D (SM)
coupling of the Z in terms of the 5D parameters and then calculate the FCNC induced by the zero mode
Z. In the SM the Z is, of course, flavor universal and flavor-changing coupling. Indeed, at zeroth order,
RS also prevents such a FCNC since the gauge boson zero mode profile is flat and therefore universal. We
will see, however, that the correction to the Z profile induces a small FCNC term.

Let us first state some results that are derived in the appendix. The localization of the normalized
zero mode fermion profile is controlled by the dimensionless parameter c,

Ψ(0)
c (x, z) =

1√
R′

( z
R

)2 ( z
R′

)−c
fcPLΨ(0)

c (x), (3.59)

where c/R is the fermion bulk mass and PL is the left-chiral projection operator. Right chiral states
differ by PL → PR and c → −c. We have also used the RS flavor function characterizing the fermion
profile on the IR brane (larger f means larger overlap with the Higgs),

fc =

√
1− 2c

1− (R/R′)1−2c
. (3.60)

Each SM fermion has a different bulk mass c which according to the size of its SM Yukawa coupling.
For simplicity of notation, we will simultaneously use c as the bulk mass parameter and as a flavor index
rather than ci. Further, the profile for the zero mode Z boson is

h
(0)
Z (z) =

1√
R logR′/R

[
1− M2

Z

4

(
z2 − 2z2 log

z

R

)]
, (3.61)

Starting in the canonical 5D basis where the bulk masses (c parameters) are diagonal, the zero mode
fermion coupling to the zero mode Z is

g4DZ
(0)
µ (x)Ψ̄(0)

c (x)γµΨ(0)
c (x) + · · · =

∫
dz

(
R

z

)5

g5DZ
(0)
M (x, z)Ψ̄(0)

c (x, z)ΓMΨ(0)(x, z), (3.62)

where ΓM = z
Rγ

M , the prefactor coming from the vielbein. Plugging in the profiles gives

gcc4D = g5D

∫ R′

R
dz

1

R′

( z
R

)−2c
f2
c

1√
R logR′/R

[
1 +

MZ

4

(
z2 − 2z2 log

z

R

)]
, (3.63)

where the cc superscripts index fermion flavor. We write gcc4D = gSM + gccFCNC in anticipation that the term
in the bracket proportional to MZ is non-universal and will contribute a FCNC. The leading term, on the
other hand, gives the usual SM coupling. Performing the dz integral for that term gives

gSM =
g5f

2
c (R′)2c

R′
√
R logR′/R

R′

1− 2c

[
1−

(
R

R′

)1−2c
]

=
g5√

R logR′/R
. (3.64)

This is indeed flavor-universal since it is independent of c so that upon diagonalization of the zero mode
mass matrix with respect to the Yukawa matrices, this contribution remains unchanged.
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On the other hand, the term proportional to MZ gives a non-universal contribution. Performing a
change of variables to y = z/R and performing the dy integral gives

gccFCNC = −g5
(MZR

′)2 logR′/R
2(3− 2c)

f2
c , (3.65)

where we’ve dropped a subleading term that doesn’t have the logR′/R enhancement. Consider, for
example, the coupling between a muon and an electron through the zero mode Z. The unitary transfor-
mation that diagonalizes the Yukawa mass matrix goes like fi/fj so that

gZ0µe
FCNC =

(
U †geeU

)
µe
∼ − fe

fµ

(
f2
µ

3− 2cµ
− f2

e

3− 2ce

)
(MZR

′)2 1

2
log

R′

R
gSM. (3.66)

We can drop the second term since flavor anarchy requires f2
e � f2

µ. The result is

gZ0µe
FCNC = −gSM

(MZR
′)2

2(3− 2cµ
log

R′

R
fµfe. (3.67)

The observation that the coupling is suppressed by (MzR
′)2 is sometimes called the ‘RS GIM mecha-

nism.’ Note that in order to do a full calculation, one must also include the non-universal contribution
from KK Z bosons. These couplings do not have a (MzR

′)2 suppression, but FCNC diagrams with these
KK modes are suppressed by the Z(n) mass.

4 The Higgs from Strong Dynamics

Further reading: The original phenomenological Lagrangian papers lay the foundation for the general treatment of
Goldstone bosons [110, 111]. See §19.6 of [112] for a slightly more pedagogical treatment that maintains much of the
rigor of [110, 111], or Donoghue, et al. for a discussion tied closely to QCD [?]. Very readable discussions can be found
in [?,?]. For a rather comprehensive review that emphasizes the role of ‘gauge’ symmetries, see [113]. For the composite
Higgs see [114] or the 2012 ICTP “School on Strongly Coupled Physics Beyond the Standard Model” [115] for a modern
set of lectures and [116] for a phenomenological review. Finally, see [117, 118] for reviews of the little Higgs scenario.

For our last topic we explore models where strong dynamics at a scale Λ ∼ 10 TeV produces a light,
composite Higgs. The solution to the Hierarchy problem is that there is no elementary scalar—beyond
Λ one becomes sensitive to the underlying ‘partons’ that make up the Higgs. Through the holographic
principle, we have already discussed many broad features of this paradigm in the context of warped extra
dimensions above.

One key question to address is the lightness of the Higgs mass. If Λ ∼ 10 TeV, how is it that the
Higgs appears at 125 GeV? By comparison, the strong coupling scale for quantum chromodynamics is
ΛQCD ∼ O(300 MeV) while most QCD states, such as the ρ meson and proton are at least as heavy as
this13. Those who are sharp with their meson spectroscopy will quickly observe that there is a counter-
example in QCD: the pions are all lighter than ΛQCD, albeit by only an O(1) factor.

The reason that the pions can be appreciably lighter than the other QCD states is the well-known
story of chiral perturbation theory, a subset of the more general nonlinear Σ model (NLΣM) construc-
tion. The pions are the Goldstone bosons of the spontaneously broken SU(2)L×SU(2)R flavor symmetry
coming from chiral rotations of the up and down quarks. Small explicit breaking of this symmetry gen-
erates a mass for the pions so that they are pseudo-Goldstone modes. In the composite models that we
consider in this section, we assume a similar structure where the Higgs is a pseudo-Goldstone boson of

13A better comparison is Λ = 4πfπ ∼ O(GeV), where fπ is the pion decay constant. ‘Typical’ QCD states such as the ρ
meson have masses of at least this value, mρ ∼ Λ. We explain the distinction in Section 4.3.7.
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some symmetry for which Λ ≈ 4πf with breaking scale f ≈ 1 TeV. We show that the generic composite
Higgs set up still requires some tuning between the electroweak scale v and the symmetry breaking scale
f . One way to generate this ‘little hierarchy’ is through the mechanism of collective symmetry break-
ing.We close this section by drawing connections to models of an extra dimension and by providing a
phenomenological taxonomy of composite Higgs models to help clarify nomenclature.

4.1 Pions as Goldstone bosons
Before exploring composite Higgs models in earnest, it is useful to review strong electroweak symmetry
breaking in QCD since this gives a concrete example of the effective theory of Goldstone bosons. It
is also useful because electroweak symmetry breaking in QCD formed the motivation for technicolor
models that have since fallen out of favor—it is useful to see why this is, and how composite Higgs
models are different from a revival of technicolor.

First, consider the Lagrangian for pure QCD: a theory of vector-like quarks and gluons, where
‘vector-like’ mean the left- and right-handed quarks come in conjugate representations,

LQCD = −1

4
GaµνG

aµν q̄(i /D −m)q. (4.1)

This is a theory which becomes strongly coupled and confines at low energies, leading to a spectrum of
composite states. This makes it a good template for our own explorations into compositeness. We can
already guess that at low energies the effective theory is described by Goldstone bosons, the pions. In
anticipation, we examine the global symmetries of the theory.

We focus only on the three lightest quarks with masses mi � ΛQCD. In the chiral limit, m → 0,
the physical quarks are Weyl spinors and have an enhanced U(3)L×U(3)R global flavor symmetry acting
separately on the left- and right-handed quarks,

qiL → (UL)ijq
j
L (4.2)

qiR → (UR)ijq
j
R. (4.3)

One may write the currents for this global symmetry. For compactness we move back to Dirac spinors
and write in terms of the vector (UL = UR) and axial (UL = U †R) transformations:

(jaV )µ = q̄γµT aq (jaA)µ = q̄γµγ5T
aq (4.4)

(jV )µ = q̄γµq (jA)µ = q̄γµγ5q, (4.5)

where the T a are the generators of SU(3). We can identify jV with baryon number, which is conserved
in QCD, and we note that jA is anomalous so that it is not a good symmetry and we don’t expect to see
it at low energies14. The vectorial SU(3), with current jaV , is precisely the symmetry of Gell-Mann’s
eightfold way and can be used to classify the light hadrons. What do we make of the axial SU(3), jaA?

Phenomenologically we can observe that the axial SU(3) is not a symmetry of the low energy
spectrum, otherwise we would expect a parity doubling of all the ‘eightfold way’ multiplets. There is
one way out: this symmetry must be spontaneously broken. What could possibly enact this breaking in a
theory with no Higgs boson? It turns out that QCD itself can do the job! We assume that the axial SU(3)A
is broken spontaneously by a quark–anti-quark condensate,

〈q̄q〉 = 〈q̄iLqRi + h.c.〉 6= 0 (4.6)

14What happens to this symmetry at low energies is rather subtle and was known as the ‘U(1) problem.’ There is a lot more
to the story than simply saying that the axial U(1) is anomalous and so does not appear at low energies. One can construct a
current out of jA and a Chern-Simons (topological) current that is anomaly-free and spontaneously broken. This current indeed
has a Goldstone pole. However, Kogut and Susskind showed that this current is not gauge invariant. There are actually two
Goldstone bosons that cancel in any gauge invariant operator [119].
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in such a way that the vector SU(3)V is preserved. This is the unique combination that preserves
Lorentz invariance and breaks SU(3)A. By dimensional analysis, this ‘chiral condensate’ takes the form
〈q̄iqj〉 ∼ δijΛ

3
QCD. Given that QCD is strongly interacting in the IR, the existence of this non-trivial vac-

uum condensate should not be surprising and is indeed supported by lattice calculations. However, the
exact mechanism by which this condensate forms is non-perturbative and not fully understood. This
also gives a robust prediction: we should have eight pseudoscalar Goldstone bosons as light excitations.
These are precisely the pions, kaons, and η. Because SU(3)A is only a symmetry in the chiral m → 0
limit, these are not exactly Goldstone bosons as the symmetry is explicitly broken by the quark masses
and electromagnetism. However, because this explicit breaking is small relative to ΛQCD, these excita-
tions are still very light mπ � ΛQCD and are often referred to as pseudo-Goldstone bosons (sometimes
pseudo-Nambu–Goldstone bosons, pNGB, in the literature).

Note that the electroweak group sits inside the QCD flavor symmetry15,

SU(3)L × SU(3)R × U(1)B ⊃ SU(2)L × U(1)Y. (4.7)

We can see this since an SU(3)L fundamental contains (uL, dL, sL), where the first two components
form the usual SU(2)L first generation quark doublet. In this way, SU(2)L is simply the upper left 2× 2
component of the SU(3)L generators. Similarly, hypercharge is a combination of the diagonal generators,

Y = TR3 +
B

2
. (4.8)

We say that the electroweak group is weakly gauged with respect to low energy QCD. By this we mean
that the gauge couplings are perturbative in all energy scales of interest. This weak gauging is a small
explicit breaking of the QCD flavor symmetries and accounts for the mass splitting between the π0 and
π±.

4.2 A farewell to technicolor
Because of (4.7), the spontaneous breaking of SU(3)A by the chiral condensate 〈q̄q〉 also breaks elec-
troweak symmetry. This is an important observation: even if there were no Higgs boson, electroweak
symmetry would still be broken and W and Z bosons would still be massive, albeit with a much smaller
mass. This mass comes from ‘eating’ part of the appropriately charged pseudo-Goldstone bosons. We
will see this in slightly more detail below. Readers unfamiliar with this story are encouraged to follow
the treatment in [120].

The observation that strong dynamics can—and indeed, does in QCD—break electroweak sym-
metry led to the development of technicolor theories where the SM is extended by a confining sec-
tor [121–125]. Note that by the holographic interpretation of extra dimensions, this type of electroweak
symmetry breaking is analogous to the RS scenario where a brane-localized Higgs picks up a VEV. The
large hierarchy between the Planck and electroweak scales is then understood to be a result of dimen-
sional transmutation. The simplest constructions of these models, however, suffer from several issues.
These include the requirement for an additional mechanism to generate fermion masses [126, 127] and
generically large deviations in flavor and electroweak precision observables [127–129]. However, the
nail in the coffin for most of these models is observation of the Higgs boson at 125 GeV, much lighter
than the compositeness scale. Such a state—even if it is not the Standard Model Higgs—is very difficult
to explain in the context of these models.

As such, even though the models we consider here encode strong dynamics, they are distinct
from the pre-Higgs technicolor strong dynamics of the past. All of these models require a Higgs. We
will borrow from the above story, however, the importance of the effective theory of pseudo-Goldstone
bosons. By identifying the Higgs as one of these pion-like states, we can explain its lightness.

15It has to be true that the electroweak gauge group sits in the full QCD global symmetry group in order for some of the
quarks to have non-trivial electroweak charges.
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Fig. 8: Cartoon of the Goldstone excitation for a ‘Mexican hat’ potential. Image from [?].

4.3 Chiral perturbation theory
In this section we review the main framework for describing Goldstone bosons of chiral symmetry break-
ing, known as chiral perturbation theory. Many of the results highlight general principles that appear in
any theory of Goldstone bosons, known as nonlinear sigma models. A completely general treatment of
spontaneously broken global symmetries is captured in the the so-called Callan-Coleman-Wess-Zumino
(CCWZ) construction, which we present in Appendix B.

The importance of having a Lagrangian theory of Goldstone bosons is clear from the success of
SM predictions before the Higgs discovery. Naïvely, one might wonder how we knew so much about the
Standard Model before the Higgs discovery—isn’t the Higgs a very central piece to the theory? As we
saw above, the key feature is actually electroweak symmetry breaking: whether or not there is a Higgs,
one always has the Goldstone bosons which are eaten by the W± and Z to become massive. It is this
nonlinear sigma model that pre-Higgs experiments had studied so carefully. The discovery of the Higgs
is a statement that the nonlinear sigma model is UV completed into a linear sigma model.

4.3.1 Framework
We begin with the concrete example of low-energy QCD that we described above. Given that the chiral
condensate 〈q̄q〉 breaks SU(3)A, we proceed to write down the effective theory describing the interaction
of the resulting Goldstone bosons. Let us write U0 to refer to the direction in field space associated with
the chiral condensate, U0 ∼ 〈q̄q〉. This transforms as a bifundamental with respect to SU(3)L×SU(3)R,

U(x)→ ULU(x)U †R, (4.9)

where UL and UR are the transformation matrices under the SU(3)L and SU(3)R respectively. The ob-
servation that SU(3)A is broken corresponds to U0 = 1. Note that this indeed preserves the SU(3)V
transformations UL = UR.

We now consider the fluctuations U(x) about U0—these are what we identify with the Goldstone
bosons. Recall the picture of spontaneous symmetry breaking through the ‘Mexican hat’ potential in
Fig. 8. The action of an unbroken symmetry does not affect the VEV (represented by the ball), while
broken symmetries shift the VEV along the vacuum manifold. This gives an intuitive picture of how to
identify the Goldstone modes:

1. Identify a convenient VEV, U0
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2. Act on that VEV with the broken group elements

3. Promote the transformation parameter to a field, identify these with the Goldstones.

For the chiral Lagrangian, our broken symmetries are those for which UL = U †R. Writing UL =
exp(iεaT a), we act on U0 = 1,

eiε
aTa




1
1

1


 eiε

aTa = e2iεaTa . (4.10)

We now promote the transformation parameter εa to Goldstone fields, εa ∼ πa(x). Since εa is dimen-
sionless, in order for πa to have canonical scaling dimension we should rescale by the decay constant16

f . We may understand the physical meaning of f if we recall Fig. 8, since we want ε to be an angle
that parameterizes the position along the vacuum circle: the Goldstone is a periodic variable with period
2πf , so that f is identified with the value of the symmetry breaking VEV. The angle ε is then π(x)/f .
We thus promote εa → π(x)/f so that we may define the field U(x),

U(x) = e
i
πa(x)
f

Ta
U0 e

i
πa(x)
f

Ta
= e

2i
πa(x)
f

Ta
. (4.11)

We now have an object U(x) which packages the Goldstone fields, πa(x). Note that U(x) transforms
linearly under the full SU(3)L×SU(3)R group, U(x)→ ULU(x)U †R, but the fields that actually describe
the low energy spectrum are related in a non-trivial way to U(x).

4.3.2 How pions transform
We can determine the transformation of the pions πa by using the transformation of the linear field U(x).
Under the SU(3)V (unbroken) symmetry, UL = UR = UV, we have

U(x)→ UVU(x)U †V = UV

(
1 + 2i

πa(x)

f
T a + · · ·

)
U †V, (4.12)

where we can see from the first term that πa(x)T a → UV π
a(x)T aU †V . In other words, πa(x) transforms

linearly under the unbroken symmetry. Note that the higher order terms also obey this by trivially
inserting factors of U †V UV = 1. Indeed, we expected this result because we know that Gell-Mann’s
eightfold way is precisely a realization of SU(3)V, so our pions must transform as octets.

Things are not as simple for the broken symmetry, UL = U †R = UA. In this case the transformation
is

U(x)→ UAU(x)UA ≡ e2i
π′a(x)
f

Ta
. (4.13)

In this case the pion does not transform in a nice, linear way17. Unlike the above case, there is no sense in
which this looks like πa(x)T a → UAπ

a(x)T aU †A. The best we can do is say that we have moved U0 to a
new point on the vacuum manifold, which we parameterize by an angle 2π′a(x)/f . The transformation
πa(x)→ π′a(x) is nonlinear. To leading order,

1 + 2i
π′a(x)

f
T a = (1 + icaT a)

(
1 + 2i

πa(x)

f
T a
)

(1 + icaT a) (4.14)

16The name comes from identifying the appearance of this factor in the matrix element for pion decays, e.g.
〈0|ūγµγ5d|π−〉 ≡ ifpµ.

17This may seem confusing since U(x) transforms as a bifundamental under SU(3)L × SU(3)R. However, components of
U(x) are not independent due to the nonlinear constraints of being unitary and having unit determinant.
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so that

π′a(x)T a = πa(x)T a + fcaT a. (4.15)

In other words, to leading order the pion shifts πa → fca. This shift symmetry in the nonlinear re-
alization is precisely why the pion is massless; the only non-trivial pion Lagrangian terms must carry
derivatives.

Coset space description. In anticipation of the more general CCWZ construction, let us restate the above arguments in a
more compact way. The symmetry breaking pattern is the coset SU(3)L×SU(3)R/SU(3)V. Using the notation above, this
means that group elements of the full symmetry UL,R can be written as a product of elements of the unbroken group UV

and the [left] coset UA ∈ SU(3)L×SU(3)R/SU(3)V,

UL = UAUV UR = U†AUV. (4.16)

One can check that this matches the above cases when one sets UA = 1 or UV = 1. The general transformation of the
linear packaging of the pions, U(x) = exp (2iπa(x)T a/f), is

U(x)→ UA

(
UVU(x)U†V

)
UA. (4.17)

From here it is clear that SU(3)V is realized linearly while SU(3)A is realized non-linearly.

SU(3)A is not a subgroup of SU(3)L × SU(3)R. While one can divide the algebra of SU(3)L × SU(3)R into axial and
vector generators, one should note that there is no such thing as an ‘axial subgroup’ of SU(3)L × SU(3)R. One can check
that the commutation relations of axial generators include vector generators so that the SU(3)A algebra doesn’t close by
itself.

4.3.3 Lagrangian description
Thus far we have found a convenient way to package the Goldstone fields πa(x) into a linear real-
ization of the full SU(3)L×SU(3)R symmetry. We would like to write down a Lagrangian describing
the dynamics of the Goldstones. Our strategy will be to write the lowest order terms in U(x) that are
SU(3)L×SU(3)R invariant and then expand U(x) in Goldstone excitations about U0. One can see that
many invariants, such as U(x)†U(x), are independent of the Goldstones. In fact, only derivative terms
contain the Goldstone fields. This is consistent with our argument that Goldstones must have derivative
couplings. The lowest order non-trivial term is

L =
f2

4
Tr
[(
∂µU †(x)

)
∂µU(x)

]
(4.18)

The pre-factor is fixed by expanding U(x) = 1 + 2iπ
a(x)
f T a + · · · and ensuring that the kinetic term

for πa(x) is canonically normalized. We have used the normalization that TrT aT b = 1
2δ
ab. The higher

order terms in the expansion of U yield a series of non-renormalizable pion–pion interactions.

Next we weakly gauge the electroweak group. Recall that this sits in SU(3)L×SU(3)R×U(1)B.
The left- and right-chiral quarks are fundamentals under SU(3)L and SU(3)R respectively and have
baryon number 1/3. This information, combined with knowing how SU(2)L sits in SU(3)L and (4.8),
determines the quantum numbers of the linear field U(x), which transforms as a 3̄ × 3 × 0 under
SU(3)L×SU(3)R×U(1)B. To ‘turn on’ the electroweak gauge interactions, we simply promote derivatives
to covariant derivatives ∂µ → Dµ where

DµU(x)ij = ∂µU(x)ij − igW a
µ

1

2
(τa)ik U(x)kj + ig′Bµ

1

2

(
T 3
R

) k
i
U(x)ik. (4.19)
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We have written the SU(2)L generators as

1

2
τa =

1

2


 τa 0

0 0 0


 ⊂ SU(3)L. (4.20)

Promoting ∂µ → Dµ in (4.18) yields

L =
f2

4
Tr
∣∣∣∣
(
∂µ −

ig

2
W a
µ (x)τa

)
U(x)

∣∣∣∣
2

+ · · · , (4.21)

where we leave the similar term with Bµ(x) implicit.

4.3.4 Electroweak symmetry breaking
One may check that (4.21) has terms that are linear in W (x) such as g

2fW
+
µ (x)∂µπ−(x) + h.c. This

is precisely a mixing term between the π+(x) and the W+
µ (x). In other words, the W has eaten the

Goldstone boson to pick up a longitudinal polarization. This is precisely electroweak symmetry breaking
at work. Note that similar terms mixing the W 3

µ and Bµ with the π0. As usual, the masses of the heavy
gauge bosons come from the gauge fields acting on the U0 ‘VEV’ part of U(x), the resulting spectrum is

∆L =
g2f2

4
W+W− +

g2 + g′2

4
f2Z

2

2
. (4.22)

The characteristic mass scale is 100 MeV, much smaller than the actual W and Z since most of the mass
contribution to those fields comes from the Higgs VEV. Diagrammatically, we can imagine the mixing
as follows:

= + Π + Π Π + · · · (4.23)

We have parameterized the strong dynamics in terms of a momentum-dependent form factor Π(q2).
What the W boson is really coupling to is the SU(2)L current formed from the quarks,

Πµ ν = QCDµ ν (4.24)

where the W bosons are coupling to quarks which then interact strongly with one another. In other
words,

iΠµν(q) = 〈J+
µ (q)J−ν (−q)〉. (4.25)

The QCD corrected W propagator ∆µν(q) from resumming the diagrams in (4.23) is

∆µν(q) =
−i

q2 − g2Π(q2)/2
Πµν(q) =

(
ηµν −

qµqν
q2

)
Π(q2). (4.26)

The observation that a charged pion has been ‘eaten’ to make theW massive is the statement that Πµν(q2)
has a zero-momentum pole. Indeed, 〈0|J+

µ |π−(p)〉 = ifπpµ/
√

2. The QCD blobs in (4.23) also encode,
however, the effects of heavier resonances and has poles at the masses of these states. In the ‘large
N ’ limit (large number of colors) one may write the current-current correlation function as a sum of
resonances [?, ?, 130],

(
ηµν −

qµqν
q2

)
Π(q2) =

(
q2ηµν − qµqν

)∑

n

f2
n

q2 −m2
n

, (4.27)

where the Goldstone pole appears for m0 = 0.
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Fig. 9: ‘Cat diagram’ adapted from [131]. Despite the silly appearance, the key point is that the photon
couples to the electric current Jµ = eΨ̄γµΨ (‘ears’) formed from interactions with fundamental quarks
in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone external states when expanding
the U(x) field in (4.28). The contribution to the charged meson masses come from the ‘two whisker’
diagram.

4.3.5 Electromagnetic mass splitting
In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L×SU(3)R group
is also broken explicitly from the gauging of U(1)EM ⊂ SU(3)V. The neutral Goldstones (pions, kaons,
and the η) are unaffected by this. The charged Goldstones, on the other hand, pick up masses from
photon loop diagrams of the form in Fig. 9. These diagrams contribute to an operator that gives a shift
in the [pseudo-]Goldstone mass,

∆L ∼ e2Tr
[
QU(x)†QU(x)

]
, (4.28)

where Q = 1
3diag(2,−1,−1) is the matrix of quark electric charges. Since the electromagnetic force

does not distinguish between the down and strange quarks, this diagram gives an equal shift to both the
charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark have the same
charge, the bound state is more energetic than the neutral mesons and we expect the shift in the mass-
squared to be positive [131, 132]. Note that the contribution to the charged pion mass is quadratically
sensitive to the chiral symmetry breaking scale, though it is also suppressed by the smallness of αEM.

4.3.6 Explicit breaking from quark spectrum
One can add quark masses that constitute a small (mq � ΛQCD) explicit breaking of the global symmetry
and generate small masses to the pseudo-Goldstone bosons. One can write this as a spurion M =
diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these terms to the
effective Lagrangian by forming the appropriate global symmetry group invariant. In particular, we add
to the Lagrangian

∆L ∼ Tr [MU(x)] ∼ Tr

[
M

(
πa(x)

f
T a
)2
]

+ · · · (4.29)

In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and η (different components of πa) to derive the Gell-Mann–Okubo relation,

m2
η +m2

π = 4m2
K . (4.30)

4.3.7 NDA: When the theory breaks down
Finally, let us note that the effective Lagrangian for pions is non-renormalizable, so we should say some-
thing about the cutoff for this theory. At tree-level, the two-to-two scattering of pions with characteristic
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momentum p goes like p2/f2 from (4.18). Using naïve dimensional analysis (NDA) [133–135], we see
that the loop contributions go like

∼
∫
d̄ 4k

(
p2k2

f4

)
1

k4
∼ Λ2p2

16π2f4
. ∼ × Λ2

16π2f2
, (4.31)

where we have used the shift symmetry (the full SU(3)2 group structure) to tell us that at the numerator
of the integrand carries at least two powers of the external momenta. Validity of our loop expansion thus
requires that Λ ∼ 4πf ∼ GeV, and this is indeed the scale at which additional QCD states appear. Note
that this cutoff, based on perturbativity of the 1/f couplings in the chiral Lagrangian, is slightly different
from ΛQCD ∼ O(300 MeV), which is the scale where αs becomes non-perturbative.

Indeed, this UV behavior of the theory of Goldstones is one of the reasons why we expected either
the Higgs or something new to be manifest at the LHC: the SM without a Higgs is simply a nonlinear
sigma model. By the Goldstone equivalence theorem, the scattering cross section for longitudinal W
boson scattering grows linearly with the center of mass energy. In order to maintain unitarity, one requires
that either there is a Higgs boson (a linearization of the nonlinear sigma model) or that the theory becomes
strongly coupled so that higher order terms can cancel the unphysical behavior.

4.3.8 NDA: Characteristic couplings
To show the power of NDA, let’s consider the generic behavior of a strongly coupled theory beyond the
Goldstone modes. At the level of dimensional analysis, there is one relevant mass scale: the mass of
the lowest non-Goldstone resonances, mρ, where we use the ρ meson as an example. Let us identify the
separation between the mass of the ρ and the compositeness scale f with the parameter gρ = mρ/f that
describes the coupling of ρ to the strong sector.

For a strong sector field φ, define the dimensionless combinations

x = gρ
h

mρ
y =

∂

mρ
. (4.32)

We’d like to build an NDA Lagrangian to estimate the size of couplings. We start by writing some
dimensionless function f(x, y). In order to obtain the correct mass dimension of a Lagrangian, we
further define F (x, y) = m4

ρf(x, y). This function is assumed to contain a kinetic term,

F (x, y) ⊃ m4
ρx

2y2 = g2
ρO(∂2, φ2). (4.33)

We see that we have to rescale by g−2
ρ to obtain a canonically normalized Lagrangian,

L =
1

g2
ρ

F (x, y) =
m4
ρ

g2
ρ

f(x, y) = m2
ρf

2f(x, y). (4.34)

As an example that is useful below, let us use this to determine the expected size of a quartic
coupling of strong sector fields. This comes from the O(x4) term in the expansion of f(x, y) so that

L ⊃
m2
ρ

g2
ρ

g4
ρ

φ4

m4
ρ

= g2
ρφ

4. (4.35)

Thus we expect the quartic coupling of the φ to go like g2
ρ ∼ m2

ρ/f
2.

4.4 Composite, pseudo-Goldstone Higgs
The main idea for composite pseudo-Goldstone Higgs models is that the Higgs mass parameter is pro-
tected against quadratic quantum corrections up to the compositeness scale because it is a pseudo-
Goldstone boson. Above the scale of compositeness, it is simply not an elementary scalar. This should
be contrasted with the solutions to the Hierarchy problem already discussed:
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– SUPERSYMMETRY: due to the extended spacetime symmetry, thre is a cancellation of the quadratic
corrections through the introduction of different-spin partners.

– TECHNICOLOR/HIGGS-LESS: there is no elementary Higgs and electroweak symmetry breaking
proceeds through a Fermi condensate. This is now excluded.

– WARPED EXTRA DIMENSIONS: the Higgs itself is a composite state so that above the compos-
iteness scale it no longer behaves like a fundamental scalar. However, there is no explanation for
why the Higgs is lighter than the confinement scale.

Note, in particular, that the composite Higgs scenario that we’re interested in is distinct from technicolor:
the pseudo-Goldstone nature of the Higgs is an explanation for why the Higgs mass is so much lighter
than the other bound states in the strongly coupled sector.

Goldstone bosons, however, behave very differently from the Standard Model Higgs. We saw that
Goldstone bosons have derivative couplings owing to their shift symmetry. The Higgs, on the other hand,
has Yukawa couplings and the all important electroweak symmetry-breaking potential. Our goal in this
section is to see how to construct a theory of Goldstones which can produce a Higgs particle that has all
of the required couplings of the SM Higgs.

We shall closely follow the discussion in [114] and refer the reader there for further details and
references.

4.4.1 The framework
Start with a large global symmetry group G, analogous to the ‘large’ SU(3)L×SU(3)R global symmetry
of low energy QCD. We will break this symmetry in two ways:

1. We assume that the strong dynamics spontaneously breaks G to a subgroup Hglobal. This is analo-
gous to chiral symmetry breaking in QCD, SU(3)L × SU(3)R → SU(3)V.

2. In addition to this, we will explicitly breakG by weakly gauging a subgroupHgauge which contains
the SM electroweak group SU(2)L × U(1)Y. This is analogous to the gauging of U(1)EM.

We assume that the SM electroweak group is a subgroup of H = Hgauge ∪ Hglobal so that it is gauged
and preserved by the strong dynamics. This is shown on the left of Fig. 10. This results in dimHgauge
transverse gauge bosons and

(
dimG− dimHglobal

)
Goldstone bosons. The breaking G → Hglobal also

breaks some of the gauge group so that there are a total of
(
dimHgauge −H

)
massive gauge bosons and(

dimG− dimHglobal
)
−
(
dimHgauge − dimH

)
‘uneaten’ massless Goldstones.

Now we address the white elephant of the Higgs interactions—can we bequeath to our Goldstone
bosons the necessary non-derivative interactions to make one of them a realistic Higgs candidate? This is
indeed possible through vacuum misalignment, which we illustrate on the right of Fig. 10. The gauging
ofHgauge gives loop-level corrections to the dynamical symmetry breaking pattern since this is an explicit
breaking of the global symmetry. This is analogous to how the gauged U(1)EM splits the masses of the
charged and neutral pions through a photon loop. Loops of SM gauge bosons can generate an electroweak
symmetry breaking potential for the Higgs. We illustrate this below.

One key point here is that since the Higgs potential is generated dynamically through SM gauge
interactions, the electroweak scale v is distinct from theG→ H symmetry breaking scale f . The ‘angle’

ξ =

(
v

f

)2

(4.36)

parameterizes this separation of scales and quantifies the degree of vacuum misalignment. Note that this
is a separation of scales which does not exist in technicolor and is the key to parameterizing how the
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HglobalHgauge
H

EW

EM

G

Hgauge

Hoblique

H ′

ξ =

(
v

f

)2

Fig. 10: Pattern of symmetry breaking. (LEFT, tree level) Strong dynamics breaks G → Hglobal
spontaneously, while Hgauge ⊂ G is explicitly broken through gauging. The unbroken group H =
Hgauge ∩Hglobal contains the SM electroweak group, SU(2)L×U(1)Y. (RIGHT, loop level) Vacuum mis-
alignment from SM interactions shifts the unbroken group H → H ′ and breaks the electroweak group
to U(1)EM. The degree of misalignment is parametrized by ξ, the squared ratio of the EWSB VEV to the
G→ H VEV. Adapted from [?].

Higgs remains light relative to the heavier resonances despite not being a ‘true’ Goldstone boson. The
limits ξ → 0 and ξ → 1 correspond to the SM (heavy states completely decoupled) and technicolor,
respectively. We note that this parameter is also a source of tuning in realistic composite Higgs models.
Once the pseudo-Goldstone Higgs state is given non-derivative interactions, these interactions generi-
cally introduce quadratic divergences at loop level which would lead to an expected O(1%) tuning. To
avoid this, one needs to introduce a smart way of dealing with these explicit breaking terms called col-
lective symmetry breaking which we discuss below. First, however, we focus on the effects of gauge
bosons on the Higgs potential.

We have the following constraints for picking a symmetry breaking pattern:

1. The SM electroweak group is a subgroup of the unbroken group, SU(2)L × U(1)Y ⊂ H . In fact,
it is better to have the full custodial SU(2)L × SU(2)R ∼= SO(4) group embedded in H since this
will protect against large contributions to the ρ-parameter.

2. There is at least one pseudo-Goldstone boson with the quantum numbers of the SM Higgs. To
protect the ρ-parameter, it is better to have a (2,2) under the custodial group.

At this point we have said nothing about the SM fermions. These, too, will have to couple to the
strong sector to generate Yukawa couplings with the Higgs. We show below that a reasonable way to
do this is to allow the SM fermions to be partially composite, a scheme that we had already seen in the
holographic interpretation of the RS scenario. Indeed, extra dimensions provide a natural language to
construct composite Higgs models.

4.4.2 Minimal Composite Higgs: set up
We now consider an explicit example, the minimal composite Higgs model, which was explored in
[136, 137] using the intuition from the RS framework. Following the guidelines set above, we would
like to choose choose Hglobal = SO(4), the custodial group which is the minimal choice to protect the
ρ-parameter. However, the SO(4) = SU(2)L×SU(2)R charge assignments don’t give the correct U(1)Y
charges, as is well known in left-right symmetric models. Thus our ‘minimal’ choice for Hglobal requires
an additional U(1)X so that one may include hypercharge in the unbroken group, H ,

Y = (TR)3 +X. (4.37)
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We then choose G = SO(5) × U(1)X and introduce a linear field Σ that is an SO(5) fundamental
and uncharged under U(1)X. Note that we can ignore the U(1)X charge in our spontaneous symmetry
breaking analysis since it’s really just ‘coming along for the ride’ at this point. Σ acquires a VEV to break
SO(5)→ SO(4),

〈Σ〉 = (0, 0, 0, 0, 1)T . (4.38)

This is analogous to the QCD chiral condensate. We can now follow the intuition we developed with
chiral perturbation theory. The Goldstone bosons of this breaking are given by transforming this VEV by
the broken generators. A useful parameterization of the four broken generators is

T âij =
i√
2

(
δki δ

5
j − δkj δ5

i

)
, (4.39)

where â ∈ {1, · · · 4}. We refer to the unbroken generators with an undecorated index: T a. The SO(5)
group element that acts non-trivially on the VEV, exp(ihâT â/f), can be written in terms of sines and
cosines by separately summing the odd and even terms of the exponential. The linear field Σ can then be
decomposed into the Goldstone pieces hâ(x) and a radial component h(x) =

√
hâ(x)hâ(x),

Σ = eih
â(x)T â/f 〈Σ〉 =

sin(h/f)

h

(
h1, h2, h3, h4, h cot(h/f)

)
. (4.40)

With this parameterization, the SM Higgs doublet is

H =
1√
2

(
h1 + ih2

h3 + ih4

)
. (4.41)

4.4.3 Gauge couplings
We would like to write down a Lagrangian for this theory and parameterize the effects of the strong
sector on the SM couplings. A useful trick for this is to pretend that the global SO(5)×U(1)X symmetry
is gauged and then ‘demote’ the additional gauge fields to spurions—i.e. turn them off. We can then
parameterize the quadratic part of the Lagrangian for the full set of SO(5) [partially spurious] gauge
bosons, Vµ = AaµT

a + AâµT
â, and the U(1)X gauge boson, X , by writing down the leading SO(5) ×

U(1)X-invariant operators:

∆L =
1

2

(
ηµν +

qµqν

q2

)[
ΠX(q2)XµXν + Π0(q2)Tr(AµAν) + Π1(q2)Tr(ΣAµAνΣT )

]
. (4.42)

Where the form factors are completely analogous to (4.25) and (4.26). Contained in this expression are
the kinetic and mass terms of the SM electroweak gauge bosons. To extract them, we must expand the
form factors Π(q2) in momenta and identify the O(q0) terms as mass terms and the O(q2) terms as
kinetic terms. Since the ΠX and Π0 terms include gauge fields in the unbroken directions, they should
vanish at q2 = 0, otherewise masses would be generated for those directions. The Π1 term, however,
selects out the broken direction upon inserting the Σ→ Σ0 and thus contains the Goldstone pole, (4.27).
We thus find

Π0(0) = ΠX(0) = 0 Π1(0) = f2. (4.43)

Assuming that the Higgs obtains a VEV, one may rotate it into a convenient location (h1, · · · , h4) =
(0, 0, v/

√
2, 0) corresponding to the usual SM Higgs VEV parameterization. We now assume that Hgauge

is the SM electroweak group and drop all spurious gauge bosons. Using (4.40), the strong sector contri-
bution to the Lagrangian of these gauge bosons to O(q2) is

∆Lq0 =

(
ηµν +

qµqν

q2

)
1

2

(
f2

4
sin2 〈h〉

f

)(
BµBν +W 3

µW
3
ν − 2W 3

µBν + 2W+
µ W

−
ν

)
(4.44)
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∆Lq2 =
q2

2

[
Π′0(0)W a

µW
a
ν +

(
Π′0(0) + Π′X(0)

)
BµBν

]
, (4.45)

where we have used the choice of SO(5) generators in the appendix of [138]. ∆Lq2 gives contributions
to the kinetic terms of the gauge bosons. Observe that these are not canonically normalized, but instead
can be thought of as shifts in the gauge coupling,

∆

(
1

g2

)
= −Π′0(0) ∆

(
1

g′2

)
= −

(
Π′0(0) + Π′X(0)

)
. (4.46)

Thus if the SU(2)L gauge bosons have a ‘pure’ gauge coupling g0 when one turns off the strongly coupled
sector, the full observed SU(2)L gauge coupling is

1

g2
SM

=
1

g2
0

−Π′0(0), (4.47)

and similarly for g′SM.

∆Lq0 corresponds to contributions the masses of the heavy electroweak gauge bosons. Taking into
account the need to canonically normalize with respect to ∆Lq2 , we obtain the usual W± and Z masses
by identifying the SM Higgs VEV as v = f sin(〈h〉/f). We see the appearance of the misalignment
angle,

ξ = sin2 〈h〉
f
≡ v2

f2
. (4.48)

Finally, by restoring 〈h〉 → h(x) in (4.44) we may determine the composite Higgs couplings to the
gauge bosons18. The key is the expansion

f2 sin2 h(x)

f
= v2 + 2v

√
1− ξh(x) + (1 + 2ξ)h(x)2 + · · · . (4.49)

From this we can make a prediction for the SO(5)/SO(4) composite Higgs couplings to the heavy
electroweak gauge bosons V = W±, Z relative to their SM values,

gV V h =
√

1− ξgSM
V V h gV V hh = (1− 2ξ)gSM

V V hh. (4.50)

At this point, these couplings introduce gauge boson loops which are quadratically divergent. These
loops go like

∼ g2

16π2
Λ2 ∼ g2

SM(1− ξ)f2, (4.51)

where we have used the dimensional analysis limit Λ = 4πf . We see that having explained the lightness
of the Higgs by appealing to the Goldstone shift symmetry, reintroducing the Higgs couplings to the
gauge bosons breaks this shift symmetry and wants to push the Higgs mass back up towards the symmetry
breaking scale. In order to avoid this, one additional ingredient called collective breaking (along with
light gauge and top partners) is necessary. We present this in Section 4.5.

18This is a trivial use of the Higgs low-energy theorem: the low-momentum Higgs couplings are equivalent to promoting the
VEV to h(x) like [139, 140] This theorem can be used, for example, to calculate the Higgs coupling to photons by evaluating
the mass dependence of the running of the QED gauge coupling. The application of the theorem to composite Higgs models is
explored in [141].
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(a) Mass from technicolor (b) Higgs and SM fermion (c) Yukawa coupling

Fig. 11: Fermion couplings to the composite sector, represented by shaded blobs. (a): Bilinear coupling
of fermions to the composite sector (4.52) lead to fermion masses from the condensate of techniquarks.
(b): Partial compositeness scenario. In addition to the Higgs being part of the strong sector, the elemen-
tary SM fermions mix linearly with strong sector operators with the same quantum numbers. (c): Yukawa
interactions are generated through the strong sector dynamics. Adapted from [138].

4.4.4 Partial compositeness
Having introduced the Higgs couplings to the gauge bosons, we can move on to finding a way to incor-
porate the Yukawa couplings into composite Higgs models. The way this is done in technicolor is to
introduce a four-Fermi interaction that is bilinear in SM fields, e.g.

∆L ∼ (Q̄LuR)(ψ̄TCψTC) (4.52)

where the (ψ̄TCψTC) are bilinears of the techni-quarks. The resulting fermion mass is shown in Fig. 11a.
This strategy typically runs afoul of constraints on CP violation and flavor-changing neutral currents
since one can imagine the composite sector similarly generating a four-fermion operator between SM

states unless elaborate flavor symmetry schemes are assumed.

Instead of connecting the strong sector to a SM fermion bilinear, we can consider a linear con-
nection. This is known as partial compositeness and is shown in Fig. 11b. We assume that instead of
(4.52), the elementary fermions mix with a fermionic composite operator,

∆L ∼ Q̄LOQL , (4.53)

where OQL is a strong sector operator that interpolates a composite quark doublet. We assume similar
mixing terms for each of the other SM fermions. In order to preserve the SM quantum numbers we must
assume that the the SM gauge group is a weakly gauged subgroup of the strongly coupled sector’s flavor
symmetries. Note that the gauge bosons are also partially composite19, as we saw in (4.23). The resulting
Yukawa interactions are shown in Fig. 11c.

The degree of mixing is now a freedom in our description. Let us parameterize the elementary–
composite mixing by ‘angles’ ε,

|observed particle〉 ∼ |elementary〉+ ε|composite〉. (4.54)

We can use this degree of compositeness to control flavor violation. Since the strongest flavor constraints
are for the first two generations, we assume that the first two generations have very small mixing with

19In this framework the longitudinal modes of the massive SM gauge bosons pick up this partial compositeness from the
Higgs. It is also possible to have a scenario where the transverse modes are partially composite, see [142, 143] for explicit
realizations.
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the composite sector. This suppresses dangerous flavor-violating four-fermion operators. On the other
hand, we may assume that the third particles are more composite than the first two generations,

ε3 � ε1,2. (4.55)

Since the degree of compositeness also controls the interaction with the Higgs, this means that the third
generation particles have a larger Yukawa coupling and, upon electroweak symmetry breaking, have
heavier masses. The astute reader will note that this is exactly the same as the flavor structure of the
‘realistic’ Randall-Sundrum models in Sec. 3.11-3.12. The observation that light fermions can automat-
ically avoid flavor bounds is precisely what we called the ‘RS GIM mechanism.’ This is no surprise since
the holographic interpretation of the RS model is indeed one where the Higgs is composite.

4.4.5 Breaking electroweak symmetry
Having addressed the Higgs couplings to both the SM gauge bosons and fermions, we move on to the
Higgs self-couplings. Until now we have simply assumed that the strong sector generates an electroweak-
symmetry breaking potential. We now check that this assumption is plausible by arguing that loops
involving the third generation quarks generate such a potential; this is similar to the Nambu–Jona-Lasinio
model [144, 145].

The SM fermions do not form complete representations of the global group G = SO(5)× U(1)X.
We thus follow the same strategy that we used for the gauge bosons in Sec. 4.4.3. Let us promote the SM

fermions to full SO(5) spinor representations,

ΨQ =

(
QL
χQ

)
Ψu =



ψu
uR
χu


 Ψd =



ψd
χd
dR


 , (4.56)

where the dashed line separates the SU(2)L × SU(2)R parts of SO(4) ⊂ SO(5). The ψ and χ fields are
spurions. Recall from Sec. A.3.1 that the fundamental spinor representation for SO(5) is a Dirac spinor
which decomposes into two Weyl spinors. Do not confuse these Weyl spinors (4.56) with Poincaré
representations—these are representations of the global SO(5) internal group. In other words, the entire
Ψ multiplet are Weyl spinors with respect to Poincaré symmetry but are Dirac spinors with respct to the
internal SO(5) symmetry. The upper half of the Dirac Ψ spinors are charged under SU(2)L while the
lower half is charged under SU(2)R. This imposes a U(1)X charge of 1/6 on the Ψ fields to give the
correct hypercharge assignments on the SM fields.

Now let us parameterize the strong sector dynamics in the couplings of the SO(5) fermions Ψ
and the linear field Σ in (4.40) that encodes the composite Higgs. Since the Σ is an SO(5) vector, it
can appear in a fermion bilinear as ΣiΓ

i, where the Γ are the 5D Euclidean space representation of the
Clifford algebra. The effective SM fermion bilinear terms are

L =
∑

r=Q,u,d

Ψ̄r/p [Πr0 + Πr1(Γ · Σ)] Ψr +
∑

r=u,d

Ψ̄Q/p [Mr0 +Mr1(Γ · Σ)] Ψr + h.c. (4.57)

where, as before, the form factors Π and M are momentum-dependent. We shall focus on only the QL
and tR pieces since they have the largest coupling to the strong sector.

Keeping track of conjugate fields. One should be careful with the conjugate fields in the above expression. For the
Lorentz group in four and five dimensions, SO(3,1) and SO(4,1), we use the Dirac conjugate Ψ̄ ≡ Ψ†γ0 to form Lorentz
invariants. Recall that this is because objects like Ψ†Ψ are not necessarily invariant because representations of the Lorentz
group are not unitary—boosts acting on the spinor representation do not satisfy U†U = 1. This is due to the relative sign
between the time-like and space-like directions in the Minkowski metric. The Dirac conjugate is a way around this. For
the case of the G = SO(5) internal symmetry, however, there is no issue of non-unitarity. Hence no additional Γ0 (acting
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on the internal SO(5) space) is necessary in the Lagrangian. To be clear, we can write out the spacetime γ and internal Γ
matrices explicitly:

Ψ̄ = Ψ†γ0 6= Ψ†γ0Γ0. (4.58)

The matrix Γ · Σ takes the form

Γ · Σ =
1

h

(
h cos(h/f) /h sin(h/f)
/̄h sin(h/f) −h cos(h/f)

)
, (4.59)

where /h and /̄h are appropriate contractions with Pauli matrices. With the above caveat that there is no Γ0

acting on the SO(5) conjugate, we may write out the Lagrangian for QL and tR by dropping the spurious
components of the Ψ fields,

L = Q̄L/p

[
ΠQ0 + ΠQ1 cos

h

f

]
QL + t̄R/p

[
Πt0 + Πt1 cos

h

f

]
tR + Q̄LMu1

[
h sin

h

f
Hc

]
tR, (4.60)

where Hc = iσ2H is the usual conjugate Higgs doublet in the SM20. Observe that upon canonical
normalization, the top mass can be read off the Yukawa term,

m2
t =

(
v

f

)2 M2
t1

(ΠQ0 + ΠQ1) (Πt0 −Πt1)
, (4.61)

where the form factors are evaluated at zero momentum. One may write similar expressions for the other
fermions.

In order to determine whether electroweak symmetry is broken, we can now plug this information
into the Coleman-Weinberg potential for the Higgs, also known as the [quantum] effective potential. This
is the potential term in the effective action after taking into account quantum corrections from integrating
out the top quarks. In other words, it is the potential that determines the vacuum expectation value of
fields. The result is

VCW = −6

∫
d̄ 4p log

(
ΠQ0 + ΠQ1 cos

h

f

)

+ log

[
p2

(
ΠQ0 + ΠQ1 cos

h

f

)(
Πt0 −Πt1 cos

h

f

)
M2
t1 sin2 v

f

]
. (4.62)

Expanding this to first order and keeping the leading order terms in the Higgs gives

VCW(h) = α cos
h

f
− β sin2 h

f
, (4.63)

where α and β are integrals over functions of the form factors where β is typically of the order the top
Yukawa. If α ≤ 2β, then the Higgs acquires a VEV parameterized by

ξ ≡ sin2 〈h〉
f

= 1−
(
α

2β

)2

. (4.64)

This means that a small ξ typically requires a cancellation between α and β. Since these come from
different sources, this is generically a tuning in the theory.

One can also ask if it was necessary to rely on the top quark. For example, we know that the gauge
sector also breaks the Goldstone shift symmetry so that loops of gauge bosons can generate quadratic

20Here we have used the SO(5) basis in [114].
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and quartic terms in the Higgs potential. However, for a vector-like strong sector, gauge loops contribute
with the wrong sign to the β term and pushes to align—rather than misalign—the vacuum [146, 147].

There are, however, alternate mechanisms to enact electroweak symmetry breaking for a compos-
ite Higgs. For example,

– mixing the composite Higgs with an elementary state [131],

– making use of an explicitly broken global symmetry [148]

– enlarging the Hgauge so that it cannot be completely embedded into Hglobal [149–151].

4.5 Collective symmetry breaking
The general composite Higgs is a useful framework for working with the Higgs as a psuedo-Goldstone
boson. However, we saw in Section 4.4.1 and equation (4.51) that this is not enough to avoid tuning.
The source is clear: a pure Goldstone Higgs is protected from quadratic corrections to its mass because
of its shift symmetry. This very same shift symmetry prevents the required Higgs couplings to gauge
bosons, fermions, and itself. One must break this shift symmetry in order to endow the Higgs with these
couplings; this generically reintroduces a dependence on the cutoff, Λ = 4πf .

This may make it seem like a no-go theorem for any realistic model of a pseudo-Goldstone Higgs.
However, there is a nice way out of this apparent boondoggle called collective symmetry breaking
that was originally introduced in ‘little Higgs’ models [152–154] (see [117, 118] for reviews) and is
now an a key ingredient in composite Higgs models21. The idea is that one can separate the scales v
and f by introducing new particles which cancel the quadratic divergences at one-loop order. Unlike
supersymmetry, these partner particles carry the same spin as the Standard Model particles whose virtual
contributions are to be cancelled. Further, this cancellation only occurs for one-loop diagrams: higher
loop diagrams are expected to contribute quadratically at their naïve dimensional analysis size, but these
are suppressed relative to the leading term.

The general principle that allows this cancellation is that the shift symmetry is redundantly pro-
tected. A process is only sensitive to explicit symmetry breaking—as necessary for SM-like Higgs
couplings—if this explicit breaking is communicated by at least two different sectors of the theory.
More concretely, the symmetry is only explicitly broken if multiple couplings are non-zero in the theory
so that any diagram that encodes this explicit breaking must include insertions from at least two different
couplings. This softens the cutoff sensitivity of various operators by requiring additional field insertions
that decrease the degree of divergence of loop diagrams.

4.5.1 Collective breaking in action
We now demonstrate collective symmetry breaking in a model based on the ‘anatomy’ in Fig. 12. The
reader may find it useful to refer to the explicit example of a simple little Higgs model in Section 4.5.2
below. Instead of a simple global groupG, suppose thatG = G′×G′′. Each of these factors breaks spon-
taneously to subgroups H ′global and H ′′global, respectively. The spontaneous symmetry breaking pattern is
thus

G = G′ ×G′′ → H ′global ×H ′′global. (4.65)

This gives us two linear fields Σ′ and Σ′′ analogous to (4.40) so that there are two separate sets of
Goldstone bosons.

We explicitly breakG by gaugingHgauge ⊂ G. Suppose that bothH ′global andH ′′global are subgroups
of Hgauge in such a way that both Σ′ and Σ′′ are charged under Hgauge with nonzero charges q′ and q′′

21In Section 4.7.4 we present an alternate protection mechanism based on a Z2 symmetry.
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G

HglobalHgauge
H

EW

= Hglobal

Hgauge

G′

G′′

H ′global

H ′′
global

Fig. 12: Anatomy of collective symmetry breaking, following the conventions in Fig. 10.

(a) q′, q′′ 6= 0 (b) q′ = 0, q′′ 6= 0 (c) q′ 6= 0, q′′ = 0

Fig. 13: Collective symmetry breaking. Upper (blue) and lower (red) blobs represent H ′ and H ′′ in
Fig. 12. The thick black line represents the gauged symmetry Hgauge under which Σ′ has charge q′ and
Σ′′ has charge q′′. When either q′ or q′′ vanishes, the unbroken group is H ′global ×H ′′global.

respectively. A piece of each subgroup is gauged, as shown in Fig. 13a. H ′global×H ′′global is then explicitly
broken to a smaller subgroup, for example a vectorial subgroup identified by the gauging, H .

On the other hand, when either q′ or q′′ is set to zero, only one of the global subgroups is gauged,
as shown in Fig. 13b and 13c. In either of these cases, the resulting global symmetry group is still
H ′global×H ′′global. In other words, one requires both q′ and q′′ to explicitly breakHglobal = H ′global×H ′′global.

When one of the global subgroups is uncharged under the gauged subgroup, say H ′′global, those
Goldstone bosons pick up no mass from the gauge sector. For the other global subgroup which is charged
under the gauge group, say H ′global, there are two possibilities:

1. IfHgauge ⊆ H ′global, then loops of the gauge bosons will feed into the mass of the pseudo-Goldstone
bosons. In the absence of collective symmetry breaking, this gives a contribution that is quadratic
in the cutoff.

2. If, on the other hand22, G′ ⊂ Hgauge, then the would-be Goldstone bosons from G′ → H ′global are
eaten by the (G/H ′global) ∩Hgauge gauge bosons. There is no quadratic sensitivity to the cutoff.

In the second case, the Higgs mechanism removed the Λ2 contribution to the pseudo-Goldstone mass,
but it also got rid of the pseudo-Goldstones themselves.

22It is sufficient to consider some subgroup G̃′ ⊆ G′ that contains H ′global as a proper subgroup
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This leads us to consider the case when both G′ and G′′ (not just their Hglobal subgroups ) are
charged under the gauged symmetry. For simplicity, suppose G′ = G′′ = Hgauge so that one gauges the
vectorial combination. In this case, both the Σ′ and Σ′′ fields carrying our Goldstone bosons are charged
under the gauge group. The gauge fields become massive by the Higgs mechanism, but there are twice
as many Goldstone bosons than it can eat23. Indeed, the ‘axial’ combination of G′ and G′′ furnishes a
set of Goldstone bosons that remain uneaten and are sensitive to explicit breaking effects so that they
are formally pseudo-Goldstones. Any contribution to the pseudo-Goldstone mass, however, must be
proportional to (gq′)(gq′′), where g is the gauge coupling. In other words, it requires interactions from
both Σ′ and Σ′′. The resulting mass term is suppressed since this requires factors of the Σ′ and Σ′′ VEVs
to soak up additional boson legs. We now demonstrate this with an explicit example.

Why can’t you just rotate to a different basis? Based on Fig. 13, one might wonder if we can repartition G = G′×G′′
so that the H ′global and H ′′global subgroups are always both gauged. Alternately, perhaps one can repartition G so that only
one subgroup is ever gauged. This cannot be done, even when q′ = q′′. The reason is precisely what we pointed out above
Sec. 4.3.3: the axial combination of two groups is not itself a group since its algebra doesn’t close.

4.5.2 Explicit example: (SU(3) → SU(2))2

Let us see how this fits together in a simple little Higgs model—though we emphasize that collective
symmetry breaking is a generic feature of all realistic composite Higgs models, not just those of little
Higgs type. We classify composite Higgs models in Section 4.7 to clarify this disambiguation. Consider
the case where G′ = G′′ = SU(3) and H ′global = H ′′global = SU(2). We thus have two fields which are
linear representations of SU(3) and carry the Goldstone bosons,

Σ′ = exp


 i

f ′


 02×2 H ′

H ′† 0








0
0

f ′


 =




0
0

f ′


+ i


H

′

0


− 1

2f


 0

H ′†H ′


 , (4.66)

and similarly for Σ′′. For simplicity let us set f ′ = f ′′ ≡ f . The kinetic terms for the Σ fields are

L = |DµΣ′|2 + |DµΣ′′|2 = · · ·+ (gq′)2
∣∣V a
µ T
′aΣ′

∣∣2 + (gq′′)2
∣∣V a
µ T
′′aΣ′′

∣∣2 , (4.67)

where T ′a = T ′′a are the generators of the gauged group. To see the contribution to the Higgs mass, one
can Wick contract the two gauge bosons in these terms—this is precisely the analog of the ‘cat diagram’
in Fig. 9. This contraction ties together the gauge boson indices so that the resulting term goes like

[loop factor] (gq′)2Σ′†T ′aT ′aΣ′ = [loop factor]
(gq′)2

2
C2Σ′† 1gauge Σ′, (4.68)

and similarly for Σ′′. Here the loop factor contains the quadratic dependence on the cutoff, [loop factor] ∼
Λ2/16π2, and the factor 1gauge is the identity matrix in the appropriate gauged subgroup. Here we have
used T aT a = C21, where C2 is the quadratic Casimir operator of the representation24. Now let’s explic-
itly demonstrate how collective breaking works.

– If only the SU(2)= H ′global = H ′′global parts of G′ and G′′ were gauged, then there would be two
separate sets of pseudo-Goldstone bosons H ′ and H ′′. We plug in the expansion of Σ′ (4.66) into
(4.68) and note that in this case,

1gauge =




1 0 0
0 1 0
0 0 0


 . (4.69)

23This is a manifestation of general outdoors advice: if you (a Goldstone boson) are being chased by a hungry bear (a gauge
boson), it is not necessary for you survival that you can outrun it (have zero coupling). It is sufficient that you are with friends
whom you can outrun. Collective breaking is, in part, the requirement that you have more slow friends than hungry bears.

24C2(fundamental) = (N2 − 1)/2N for SU(N ).
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This picks up the Goldstones in the second term on the right-hand side of (4.66) so that there is
indeed a Goldstone mass term proportional to Λ2 = (4πf)2 for each set of Goldstones.

– On the other hand, in the case where G′ and G′′ are both gauged with q′ = q′′, the matrix 1gauge
becomes a true identity operator,

1gauge =




1 0 0
0 1 0
0 0 1


 . (4.70)

Now the global symmetry breaking VEVs 〈Σ′〉 and 〈Σ′′〉 break part of the gauge symmetry and the
Higgs mechanism tells us that there are gauge bosons that eat would-be Goldstones. Indeed, the
first term on the right-hand side of (4.66)—which is no longer projected out by 1gauge—encodes
the mass picked up by the gauge bosons. Observe, however, what has happened to the Λ2 mass
contribution in the previous scenario: it is now cancelled by the cross term between the first and
third terms on the right hand side of (4.66). In other words, the terms which gave the quadratic
sensitivity to the cutoff have vanished.

If we were only considering a single SU(3)→SU(2) global symmetry breaking, then we would still be out
of luck since the massive gauge bosons would have eaten all of our Goldstone bosons—so even though
we got rid of the Λ2 sensitivity of the pseudo-Goldstone masses, we also would have gotten rid of the
pseudo-Goldstones themselves. With foresight, however, we have followed the advice of footnote 23:
we have more Goldstones than our gauge bosons can possibly eat.

A useful way to parameterize our Goldstones is to follow the convention in (4.16):

Σ′ =exp


 i
f


 02×2 V

V † 0




 exp


 i
f


 02×2 H

H† 0








0
0

f


 (4.71)

Σ′′ =exp


 i
f


 02×2 V

V † 0




 exp


−i
f


 02×2 H

H† 0








0
0

f


 , (4.72)

where we have identified the Higgs as the axial combination of global shifts, while the vector combina-
tion of Goldstones, V , is eaten by the gauge bosons to become massive.

Now the H pseudo-Goldstones only pick up mass from diagrams that involve both the (gq′) and
the (gq′′) couplings. In other words, it requires a combination of the Σ′ and the Σ′′ fields. The leading
order contribution comes from diagrams of the form

Σ′ Σ′

Σ′′ Σ′′

∼ g4

16π2
log Λ2

∣∣∣Σ′†Σ′′
∣∣∣
2
. (4.73)

Since Σ′†Σ′′ = f2−2H†H+ · · · , we see that the leading term in the Higgs mass is only logarithmically
sensitive to Λ because it required one power each of the Σ′ and Σ′′ VEVs. The Higgs mass sets the
electroweak scale to be on the order of f/(4π). This is a factor of (4π) suppressed compared to the
global symmetry breaking scale f—generating the hierarchy in ξ that we wanted—and also a further
factor of (4π) from the cutoff Λ = 4πf . In this sense, collective symmetry breaking shows us what we
can buy for factors of (4π) and why those factors are important in naïve dimensional analysis.
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4.5.3 Top partners
As before, the largest contribution to the Higgs mass comes from the top quark. In the simple scenario
above, we have extended our gauge group25 from SU(2)L to Hgauge =SU(3) so we’ll need to also extend
the usual top doublet to include a partner TL

Q =

(
tL
bL

)
→ Q =



tL
bL
TL


 . (4.74)

We must also include a right-handed SU(3) singlet T ′R as a partner for the TL, in parallel to the usual
right-handed t′R partner of the SM tL. The prime on the t′R—what is normally called tR in the SM—is
for future convenience. The Yukawa terms for the top quarks are,

Ltop = λ′Σ′†Qt′†R + λ′′Σ′′†QT ′†R + h.c. (4.75)

where the fermions are written in terms of Weyl spinors. Other terms, such as Σ′†QT ′R
† or Σ′′†Qt′R

†,
can typically be prohibited by invoking chiral symmetries. Observe that the λ′ term is invariant under G′

if Q is a fundamental under G′. Similarly, the λ′′ term is invariant under G′′ if Q is a fundamental under
G′′. This is indeed consistent since Q is a fundamental under Hgauge which is the diagonal subgroup of
G′ × G′′. This shows us how collective symmetry breaking is embedded in the Yukawa sector. When
only one of the λ terms is nonzero, Ltop is G′ × G′′ invariant. However, when both are turned on, the
global symmetry is broken down to the diagonal subgroup.

This is collective breaking is similar to the breaking of the global U(3)Q ×U(3)U ×U(3)D flavor
symmetry to U(3) by the up- and down-type Yukawas in the Standard Model. If yu = 0 and yd 6= 0, then
the flavor symmetry would be enhanced to U(3)2 since the right-handed up-type quarks could be rotated
independently of the other fields.

We can now plug in the expansion (4.71 – 4.72) into the Yukawa terms (4.75), ignoring the V
terms since we now know those are eaten by the gauge bosons. Expanding the resulting product gives

Ltop =iH†Q(λ′′T †R − λ′t
′†
R) +

(
f − H†H

2f

)
TL

(
λ′t′†R + λ′′T †R

)
. (4.76)

From this we can write out the right-handed top eigenstates

TR =
λ′t′R + λ′′T ′R√
λ′2 + λ′′2

tR = i
λ′′T ′R − λ′T ′R√
λ′2 + λ′′2

(4.77)

and the resulting top Yukawa, top partner mass, and top partner coupling to H†H ,

Ltop = λtH
†Qt†R + λtfTLT

†
R −

λt
2f
H†HTLT

†
R, (4.78)

where we see that all of the couplings are simply related to the SM top Yukawa, λt =
√
λ′2 + λ′′2. These

relations ensure the cancellation between diagrams that give a Λ2 contribution to the Higgs mass,

h h
t

λt λt

+

h h

λtf

−λt/f

T
= O(log Λ). (4.79)

25For simplicity we ignore the U(1)Y factor, it is straightforward to assign charges appropriately.
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Note the symmetry factor of 1/2 in the h2TLT
†
R Feynman rule. For simplicity we also drop an overall√

2 in the normalization of the h field which is irrelevant for the Λ2 cancellation. We see that indeed
collective symmetry breaking can protect against the reintroduction of quadratic sensitivity to the cutoff
by the Yukawa interactions.

Just as in the case of natural SUSY, an important signature of this class of models is to look for the
‘partner top’ particles which are responsible for the softening of the cutoff dependence of Higgs mass
from the top sector. One can search for these objects at the LHC through either pair production,

qq̄/gg → T T̄ , (4.80)

or through single production in association with a SM quark,

bq → Tq′ qq′ → Tb. (4.81)

The top partner decays are fixed by the Goldstone equivalence theorem. The partner top decays ap-
proximately 50% of the time to bW , with the remaining decay products split evenly between tZ and
th [155]. The lower bound on the top partner mass from vector-like heavy top (also referred to as fourth
generation) searches is & 700 GeV [156].

One can continue to calculate the Coleman-Weinberg potential in this scenario to check for elec-
troweak symmetry breaking and further study the phenomenology of these models. We refer the reader
to the excellent reviews [117, 118] for a pedagogical introduction in the context of the little Higgs.
See [157–159] for a more general discussion of experimental bounds on top partners.

4.6 Deconstruction and moose models
We now briefly mention some connections with extra dimensional models and introduce a diagrammati-
cal language that is sometimes used to describe the symmetry breaking pattern in composite models.

In Section 3.9 we introduced the holographic principle as a connection between strongly coupled
4D theories and weakly coupled theories on a curved spacetime with an extra spatial dimension. This
turns out to be a natural tool to get a handle for some of the strong dynamics encoded into the form factors.
Indeed, the minimal composite Higgs model described above was developed using these insights [136].

There is, however, another way to connect 5D models to 4D models. 5D models have dimensionful
couplings and are manifestly non-renormalizable. One proposal for a UV completion is to discretize
(‘latticize’) the extra dimension [154, 160, 161]. In this picture, the extra dimension is split into N
discrete sites which should no longer be thought of as discrete spacetimes, but rather as nodes in a ‘theory
space’ that describe a gauge symmetry structure on a single 4D spacetime. The bulk gauge symmetry G
latticized into a 4D gauged G on each of the N nodes,

G G G G

At this level the nodes are just N separate gauge groups; after all, this is precisely what we mean by a
local symmetry (see [162, 163] for a discussion in depth). We next introduce a set of (N − 1) scalar
link fields Φi which are in the bifundamental representation with respect to the N th and (N + 1)th gauge
groups: (Ni, N̄i+1). We may draw these link fields as lines between the nodes,

G G G G
Φ1 Φ2 Φ3 ΦN−1

The arrow on the link field keeps track of the representation with respect to a group:
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– Arrows leaving a node are fundamental with respect to that group.

– Arrows entering a node are anti-fundamental with respect to that group.

Now suppose each of these link fields acquires a VEV proportional to 1 in their respective Gi × Gi+1

internal spaces. Each link field would spontaneously break the symmetry Gi × Gi+1 → Gdiag. The
symmetries are broken down toG. One can diagonalize the mass matrix for the gauge boson—a problem
that is mathematically identical to solving the waves in a system ofN−1 springs in series [164]—to find
that the spectrum looks like a tower of Kaluza-Klein modes. In fact, the link fields can be identified with
the KK modes of the fifth component of the bulk gauge field A5. This construction also shows explicitly
that the Kaluza-Klein gauge fields in 5D acquire their masses from eating the KK modes of theA5, which
are here manifestly would-be Goldstone bosons. By coupling matter appropriately, one constructs a UV

complete 4D model of a product of gauge groups that gives the same ‘low’ energy physics as an extra
dimension. We refer the reader to the original literature for details [154, 160, 161] or [68] for a brief
summary.

Rather than just way to UV complete extra dimensions, deconstructions are also a useful tool for
motivating models of chiral symmetry breaking. In fact, they are a manifestation of a more general tool
for composite models called moose diagrams26 [166, 167]. One can use this diagrammatic language to
construct little Higgs models; indeed, this was the original inspiration for the development of collective
symmetry breaking paradigm in Section 4.5. The topology of these diagrams encodes information about
spectrum of Goldstone modes [168]. From the dimensional deconstruction of an extra dimension, it’s
clear that all of the Goldstones are eaten by the KK modes of gauge bosons. More general connections
between nodes, however, allow more Goldstones to survive hungry gauge bosons.

As an example, we present the ‘minimal moose’ little Higgs model from [169]. The basic building
block is the coset for chiral symmetry breaking, SU(3)L × SU(3)R/SU(3)V. We gauge the electroweak
subgroup GEW of SU(3)L and the entire SU(3)R, which we represent schematically with shaded blobs:

GEW

SU(3)L SU(3)R

SU(3)R

Σ

The minimal moose model actually requires four copies of this basic structure. As before, we only gauge
the vectorial GEW of each of the SU(3)L factors and similarly for the SU(3)R factors. In other words, the
theory only has two gauge couplings. This is shown schematically in Fig. 14. We note that typically one
only draws nodes for the gauge groups so that the usual moose diagram for this model is:

GEW SU(3)R

See §4.1 of [118] for a review of this particular model. A full discussion of these moose-based little Higgs
models is outside of the scope of these lectures. In addition to the reviews mentioned above [117, 118],
see [170] for the self-described ‘bestest’ little Higgs model and [157, 171] for a discussion of the status
of composite Higgs models after the first run of the LHC.

26These diagrams are also called quiver diagrams by string theorists [165].
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GEW SU(3)R

Fig. 14: Full symmetry structure of the minimal moose little Higgs model. Shaded blobs represent
gauged subgroups. We explicitly show that only the ‘diagonal’ subgroups are gauged.

4.7 A taxonomy of composite Higgs models
Having surveyed the main features of composite Higgs models, let us classify the landscape of such
theories. This section is meant to clarify the distinctions between what is colloquially called a ‘composite
Higgs’ versus a ‘little Higgs’ or a ‘holographic composite Higgs’ versus a ‘dilatonic Higgs.’ We closely
follow the discussion in Sections 2 – 3 of [116], to which we refer the reader for further details and
references.

As a warm up and review, recall the Standard Model Higgs potential

V (h) = −µ2|H|2 + λ|H|4 −→ −1

2
µ2h2 +

λ

4
h4. (4.82)

Minimizing the potential and matching to experiment yields

v = 〈h〉 =
µ2

λ
= 246 GeV m2

h = 2µ2 = (125 GeV)2 , (4.83)

where v has long been known from the masses and couplings of the electroweak gauge bosons, but m2
h

is new data from 2012. This new information tells us that µ = 89 GeV and, from the expression for v,
that λ = 0.13.

Let us now map this onto a convenient parameterization of the Higgs potential in composite Higgs
models.

V (h) =
g2

SMM
2

16π2

(
−ah2 +

b

2f2
h4

)
. (4.84)

One can compare this to (4.63). Here gSM is a characteristic Standard Model coupling, such as g2
SM =

Ncy
2
t . Implicit in this parameterization is the expectation that the Higgs potential is radiatively generated,

giving a g2
SM/16π2 prefactor. With this normalization, tree-level contributions appear as coefficients a, b
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MODEL O(a) O(b) O(g∗) COMMENTS

Bona-fide composite Higgs 1 1 4π Requires tuning of both a and b.
Little Higgs 1 16π2

g2∗
� 4π Tree level quartic, h too heavy.

Holographic Higgs 1 1 � 4π ∼ little Higgs with loop-level quartic.
Twin Higgs 1 1− 16π2

g2∗
gSM Z2 rather than collective breaking.

Dilatonic Higgs SEE TEXT Related to RS radion Higgs.

Table 2: Taxonomy of composite Higgs models according to the couplings in (4.84) and (4.85); based
on [116]. Models must be tuned when phenomenology requires values of the couplings that are very
different from the expected magnitudes shown here.

that go like 16π2/g2
SM. The mass scale M is typically that of the new states (e.g. top partners) that

cut off the quadratic divergence introduced by the explicit breaking of the Goldstone shift symmetry, as
discussed in Section 4.4.3. It is useful to parameterize this in terms of the coupling of these new states
to the strong sector g∗,

M = g∗f. (4.85)

These states are typically lighter than the cutoff, 4πf , to help with the little hierarchy problem. We
expect the lighter mass comes from a weaker coupling to the strong sector, g∗, motivating the definition
(4.85). The experimental information that the SM quartic is λ = 0.13 is strongly suggestive of a loop
induced coupling. Using the NDA scaling of a strong sector quartic (4.35) and a proportionality factor
from an explicit global symmetry breaking SM loop, g2

SM/16π2, we estimate

λloop ≈ 2
1

16π2
g2

SMg
2
∗ ≈ 0.15×

(
gSM√
Ncyt

)2 (g∗
2

)2
. (4.86)

Here the factor of 2 comes from two top partner polarizations and the scaling with respect to g∗ = M/f
comes from NDA [135]. Thus the coupling of the new state is g∗ � 4π and is expected to be weakly
coupled. This is a more quantitative version of the statement that the discovery of the 125 GeV Higgs
signaled the death of technicolor, as we explained qualitatively in Section 4.2. The other implication of
this weak coupling is that the new particles that cancel the quadratic sensitivity of the Higgs potential
have masses well below the strong coupling scale, M � Λ = 4πf ; where we recall the NDA cutoff from
Section 4.3.7.

Comparing (4.84) to (4.82 – 4.83) gives

v2 =
a

b
f2 = (246 GeV)2 m2

h = 2
g2

SM
16π2

M2a = 4v2 g
2
SMg

2
∗

16π2
b = (125 GeV)2 . (4.87)

In the remainder of this section we examine five classes of composite Higgs models and classify
them according to their natural expectations for a, b, and g∗. These are summarized in Table 2.

4.7.1 Bona-Fide Composite Higgs
The ‘bona-fide composite Higgs’ models in the first row of Table 2 are the simplest realizations of the
Higgs as pseudo-Nambu–Goldstone boson idea: a strongly coupled sector has a global symmetry which
is spontaneously broken and yields a Goldstone with the quantum numbers of the Higgs. The Higgs
potential is assumed to be radiatively generated by explicit breaking terms so that in the parameterization
(4.84), a ∼ b ∼ O(1). From the left-side equation of (4.87), a parametric separation between v and f
requires a to be tuned small by an amount ξ in (4.36).
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Even with this, however, this is a second tuning required on b since the new states are expected to
couple to the strong sector with strong couplings, g∗ ∼ 4π. Thus one finds that the quartic coupling is
too large in (4.86) compared to λ = 0.13. In other words, one predicts a Higgs mass that is heavier than
observed in (4.87). This is mapped onto a tuning of b.

4.7.2 Little Higgs
In little Higgs models, collective symmetry breaking naturally gives a hierarchy

ξ =
v2

f2
∼ g2

∗
16π2

� 1. (4.88)

The quartic coupling appears at tree-level, λ ∼ gSM. This is shown as b ∼ 16π2/g2
∗ in Table 2. Prior to

the Higgs discovery, this set up was seen to be a feature: one explains the separation between v and f .
However, (4.87) shows that this predicts a Higgs mass that is on the order of 500 GeV for gSM ∼ 1.

4.7.3 Holographic Higgs
These models are motivated by AdS/CFT duals of warped extra dimensional models, as we discussed in
Section 3.9. Like the ‘bona-fide composite Higgs,’ the entire potential for these models are radiatively
generated. This thus suffers the same O(ξ = v2/f2) to obtain the correct electroweak symmetry break-
ing scale. Unlike the ‘bona-fide composite Higgs,’ however, g∗ is still weak and thus no additional tuning
is required to keep the Higgs light.

The holographic Higgs also has a version of collective symmetry breaking that is a result of locality
in 5D [162]. Unlike the little Higgs models above, however, holographic Higgs models have radiative
quartics. These models have the minimal amount of tuning: just ξ, which is a tuning of a few percent.

4.7.4 Twin Higgs and neutral naturalness
Twin Higgs models [172, 173] have received a lot of interest after the non-discovery of any top-partners
at Run I of the LHC. Rather than protecting the pseudo-Goldstone Higgs from quadratic corrections with
collective symmetry breaking, these models impose aZ2 symmetry that protects the Higgs potential. The
key phenomenological feature of this framework is that the partner particles that enact this protection are
uncharged under the Standard Model. Since the top partners aren’t colored, one no longer expects a
large production cross section at the LHC and one avoids the Run 1 bounds. These models are thus often
referred to under the banner of ‘neutral naturalness’ and are considered a last bastion for naturalness
against collider bounds.

We illustrate the twin mechanism with the toy example presented in [172]; the interested reader is
encouraged to read the succinct paper in its entirety. Suppose a theory has a global G =SU(4) symmetry
and a field H in the fundamental representation with a symmetry-breaking potential,

V (H) = −µ2|H|2 + λ|H|4. (4.89)

The field develops a VEV 〈|H|〉 = m/
√

2λ ≡ f and breaks SU(4) → SU(3). Now let us gauge a
subgroup SU(2)A×SU(2)B of the global symmetry. We decompose H into a doublet under each gauge
group, HA and HB . We may identify A with the Standard Model SU(2)L. As we saw in Section 4.4.3,
this gauging generates mass terms for the would-be Goldstone bosons,

V ⊃ 9Λ2

64π2

(
g2
A|HA|2 + g2

B|HB|2
)
. (4.90)

Next impose a Z2 ‘twin’ symmetry which swaps A ↔ B. This imposes gA = gB so that the quadratic
potential becomes,

V ⊃ 9g2Λ2

64π2
|H|2 + · · · , (4.91)

71

BEYOND THE STANDARD MODEL

239



which respects the original SU(4) symmetry of the theory and thus does not contribute to the mass of the
Goldstone bosons. The higher order terms still introduce logarithmically divergent terms that break this
SU(4) symmetry.

We can see the ‘twin’ cancellation in the top couplings:

L ⊃ −ytHAt̄
(A)
L t

(A)
R − ytHB t̄

(B)
L t

(B)
R . (4.92)

The SU(4)→SU(3) breaking imposes 〈ha〉2 + 〈hb〉2 = f2. Expanding the SU(4) fundamental H analo-
gously to (4.40), one may expand to O(h2/f2),

HA → h, HB → f − h2

2f
. (4.93)

Inserting this into (4.92) yields a cancellation that is diagramatically identical to (4.79) with the important
difference that the t(B) and t̄(B) are charged under a ‘twin’ QCD, but not ordinary QCD.

Having demonstrated the basic principle, we refer the reader to the original literature for a demon-
stration of a complete model. In our phenomenological taxonomy of composite Higgs models, we have
written b ∼ O(1− 16π2/g2

∗) reflecting that the original twin Higgs models included a tree-level quartic
put in by hand to generate the v � f hierarchy. As we have discussed, the observed λ = 0.13 disfavors
the inclusion of this tree-level term.

4.7.5 Dilatonic Higgs
Rather than being a pseudo-Goldstone of an internal global symmetry, this scenario assumes that the
Higgs is a dilaton coming from the spontaneous breaking of scale invariance [91, 174–179]. We have
already explored this scenario in Section 3.10, where we identified the radion in a warped extra dimen-
sion as a state which is holographically dual to the dilaton. This is distinct from the ‘holographic Higgs’
scenario where the Higgs is the Goldstone of an internal global symmetry.

In this scenario the dilaton VEV, f , sets the scale of the potential and is unrelated to the electroweak
VEV. Thus the parameterization in (4.84) is not relevant for comparison with the other composite Higgs
models discussed: the dilaton is a completely different type of beast. The explicit breaking terms in
the dilaton potential come from the explicit breaking from the running of the couplings. The scale f is
naturally separated from the UV scale only when gSM ∼ 4π at the condensation scale, implying that the
symmetry-breaking potential is driven by either the top Yukawa or new physics.

Unlike the other composite Higgs scenarios where phenomenology prefers f � v, the dilaton
resembles the SM Higgs when f ≈ v. Calculations using AdS/CFT, however, imply that f � v in the
large N limit where these calculations are valid.

4.8 Parameterization of phenomenology
We see that the composite Higgs can be probed through its deviations from the SM Higgs couplings. A
phenomenological parameterization of the space of light, composite Higgs models is presented in [180]
as the ‘strongly interacting light Higgs’ (SILH, pronounced “silch”) effective Lagrangian and revised
in [181]. We briefly review the main results and refer to [180, 181] for a detailed discussion including
matching to specific composite Higgs models. We now examine a convenient parameterization of the
phenomenological Lagrangian,

LSILH =LSM
H +

c̄H
2v2

∂µ(H†H)∂µ(H†H) +
c̄T
2v2

(
H†
←→
DH

)2
− c̄6

v2
λ(H†H)3

+
( c̄u

2v2
yuH

†HQ̄LH̃uR + · · ·
)

+
ic̄W g

2M2
W

(
H†σi

←→
H
)

(DνWνµ)i + · · · , (4.94)
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where H†
←→
D µH = H†DµH −DµH

†H and the · · · represent similar terms for the other fermions and
gauge bosons. The expected sizes of these coefficients are

c̄H , c̄T , c̄6, c̄ψ ∼
v2

f2
c̄W,B ∼

M2
W

g2
ρf

2
. (4.95)

Here gρ parameterizes the size of the non-Goldstone composite states, for example in chiral perturbation
theory the first such state is the spin-1 ρ meson where gρ is defined to be

mρ = gρf. (4.96)

In this sense gρ is a ratio of mass scales, but when one includes this state in chiral perturbation theory
(using the CCWZ formalism introduced in Appendix B), this ratio is manifestly the value of the ρππ
coupling. Following [181], the operators in (4.94) are normalized with respect to the Higgs VEV v rather
than the scale f in [180]; this is why the expected values of the barred couplings c̄i differ by factors of
v/f from the couplings ci ∼ 1 in equation (15) of [180].

The phenomenological Lagrangian (4.94) can be constructed systematically from the non-linear
sigma model including symmetry breaking terms which we assume are parameterized by the SM cou-
plings that break those symmetries: the Higgs quartic coupling λ (breaking the pseudo-Goldstone Higgs
shift symmetry) and the Yukawas (breaking shift and flavor symmetries). See Appendix B of [182] for a
detailed discussion in terms of naïve dimensional analysis. The general strategy is to write

LSILH =
m4
ρ

g2
ρ

L̃
(
U,

∂

mρ

)
, (4.97)

where U is the dimensionless linear field containing the Goldstones, analogous to (4.11) and the partial
derivative carries a factor of m−1

ρ to make it dimensionless. Note that the expansion of U in Goldstones
π automatically comes with factors of f−1 to keep each term dimensionless. In this way the prefactor
m4
ρg
−2
ρ = m2

ρf
2 carries the dimension of the Lagrangian. Note that this is analogous to the prefactor

Λ2f2 in naïve dimensional analysis [133–135] except that we replace Λ with a scale which exists in
the effective theory, mρ < Λ. This inequality is equivalent to gρ < 4π and parameterizes the regime
in which the NLΣM is weakly coupled. We then take the dimensionless function L̃ to be a derivative
expansion analogous to (4.18); the SILH interactions appear at higher order from the term

LSILH =
m4
ρ

g2
ρ


· · ·+ 1

3

(
π(x)

f

←→
∂

mρ

π(x)

f

)2

+ · · ·


 (4.98)

where π(x) is identified with the Higgs doublet H(x) and the partial derivatives ∂µ are promoted to
SM gauge covariant derivatives. Gauge field strengths are included with factors of m−2

ρ since Fµν ∼
[Dµ, Dν ]. The c̄H and c̄T terms encode the O(H4, ∂2) interactions after shifting the Higgs by a factor
proportional to (H†H)H/f2 (see [180]). The c̄6, c̄u, c̄W (and analogous terms) break the shift symme-
tries of the NLΣM and carry explicit factors of the SM couplings that break those symmetries: the Higgs
quartic interaction, the Yukawas, or SM gauge couplings, respectively. Electroweak precision observ-
ables27 set bounds on composite Higgs models [181, 188]; at 2σ:

−1.5× 10−3 < c̄T < 2.2× 10−3 (4.99)

−1.4× 10−3 < c̄W + c̄B < 1.9× 10−3, (4.100)

coming from the T̂ and Ŝ parameters respectively. The former condition reflects the requirement of
custodial symmetry [189] (see [190] for an introduction) which is assumed in the latter bound. The

27See [183, 184] for pedagogical reviews and [185–187] for details.
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observation of the 125 GeV Higgs and the opportunity to measure its couplings offers additional data to
fit the phenomenological Lagrangian. For example, the c̄H and cf (f running over the SM fermions) are
related to each other via the couplings of the Higgs to W bosons [191]. The Higgs mass sets (at 3σ)

c̄H ≤ 0.16. (4.101)

This and other bounds on composite Higgs models coming from Higgs observables are reviewed in [192,
193] using a slightly different effective theory parameterization introduced in [138]. In that notation,
(4.101) comes from a2 ≥ 0.84. Further phenomenological bounds and their relations to specific models
can be found in [116, 180, 181, 194]. At 2σ, Higgs data constraints the minimal composite Higgs model
to satisfy [195]

v

f
. 0.5. (4.102)

The bounds on composite Higgs models coming from Higgs observables are reviewed in [181,192,193].
Further phenomenological bounds and their relations to specific models can be found in [116, 180, 194].

5 Closing Thoughts
We briefly review interconnections between some of the salient ideas in these lectures, acknowledge
topics omitted, and point to directions of further study. One of the themes in the latter part of these
lectures were weakly coupled descriptions of strong dynamics and we close by highlighting this common
thread.

5.1 Covariant Derivatives
Each of the scenarios that we explored carries its own sense of covariant derivative. The most ex-
plicit example is in a warped extra dimension, where spacetime is explicitly curved. The holographic
principle made use of this geometry: the isometries of AdS match the conformal symmetries of the
strongly coupled theory near a fixed point. The system is so constrained by these symmetries that the
behavior of 5D fields could be identified with the renormalization group flow of 4D operators. Even in
supersymmetry—where superspace can be thought of a ‘fermionic’ extra dimension—we introduced a
SUSY covariant derivative. Even though superspace is flat, there is a covariant derivative came from it
being torsion-free [?]. Finally, the nonlinear realizations we used for composite Higgs models also has a
geometric structure coming from the coset space. This is seen in the CCWZ formalism reviewed in Ap-
pendix B, where one identifies covariant derivative and gauge field for the coset space that are necessary
to construct invariant Lagrangians.

5.2 Nonlinear realizations
The simplest handle on strong dynamics is to work in an effective theory of pseudo-Goldstone bosons
given by the pattern of global symmetry breaking in the strong sector. In composite Higgs models, one
addresses the Hierarchy problem by assuming that the Higgs is a pseudo-Goldstone boson associated
with the dynamics of a strongly coupled sector that break global symmetries at a scale f . We saw that
generically the SM interactions required for a Higgs boson tend to push its mass back up towards the
compositeness scale, Λ ∼ 4πf . One way to push the Higgs mass back down is to invoke collective
symmetry breaking, which can often be described succinctly using ‘moose’ diagrams.

5.3 Holographic and deconstructed extra dimensions
We saw that the holographic principle is an alternative way to describe the dynamics of a strongly cou-
pled sector through the use of a higher dimensional theory with a non-trivial geometry. From the extra
dimensional perspective, the Higgs mass is natural because it is localized towards the IR brane where
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GSM����SUSY GSM

Light fermions 3rd gen, Higgs

Fig. 15: Schematic moose diagram for natural SUSY.

the Planck scale is warped down to TeV scale. Holographically, this is interpreted as the Higgs being a
composite state. Indeed, the minimal composite Higgs model [136] was constructed using holography
as a guiding principle.

Further, the little Higgs models that first highlighted collective symmetry breaking were motivated
by deconstructions of an extra dimension. This picture allowed us to clearly see that the Goldstone modes
of the spontaneously broken global symmetries can be identified with the scalar component of a 5D gauge
field. In the deconstruction, the gauge bosons from each copy of the gauge group eat these Goldstone
modes to become the spectrum of heavy KK modes. In this sense, little Higgs and holographic composite
Higgs constructions are similar to gauge-Higgs unification scenarios in 5D where the Higgs is the zero
mode of a bulk gauge field, see [196] and references therein. One way to interpret the lightness of the
Higgs mass is via locality in the deconstructed extra dimension: the symmetries are only broken on the
boundaries and one needs a loop that stretches between the boundaries to generate a Higgs potential.
This implies that the loop cannot be shrunk to zero and that the Higgs potential is finite since it can have
no short-distance divergences. The natural cutoff is set by the size of the extra dimension.

Deconstruction itself, however, is rooted in the idea of a hidden local symmetry in nonlinear
models. See [113] for a comprehensive review. A 5D version of the little Higgs in AdS was presented
in [197]. Shortly after, [162] connected the holographic composite Higgs to a little Higgs theory, relating
the CCWZ formalism of Appendix B to the hidden local symmetry construction.

5.4 Natural SUSY and partial compositeness
We began these lectures with what appeared to be a completely different subject: supersymmetry. We
saw that the natural setting for SUSY is superspace, which is superficially an ‘extra quantum dimension’
that is both Grassmannian and spinorial. One way to see how SUSY solves the Hierarchy problem is to
observe that it requires the existence of superpartners (differing by half integer spin) that cancel the loop
contributions of particles to superpotential parameters such as the Higgs mass. We saw a similar cancel-
lation when invoking collective symmetry breaking (or the twin Higgs mechanism) in composite Higgs
theories with the notable difference that the partner particles had the same spin as their SM counterparts.

SUSY, however, must be broken. These effects feed into the large parameter space of the minimal
supersymmetric Standard Model and are required (in the MSSM) for electroweak symmetry breaking.
The LHC puts tight bounds on the simplest MSSM spectra and leads us to consider ways to hide SUSY.
One of these solutions is ‘natural SUSY’ where one only maintains the minimal spectrum of superpart-
ners required for the naturalness of the Higgs mass. Among the predictions of natural SUSY is a light
stop and heavy first and second generation quarks. This type of spectrum, however, is automatic when
supersymmetrizing the RS model with anarchic flavor28. When SUSY is broken on the UV brane29, 5D
superfields which are localized near the UV brane are more sensitive to the splitting between the SM and

28One should note that because 5D spinors are Dirac, N = 1 SUSY in 5D corresponds to N = 2 SUSY in 4D. N = 2 was
used in [198] to generate Dirac gaugino masses, which can help soften the two-loop quadratic corrections to the Higgs mass.
See [199] for a recent analysis of prospects.

29This is of the ways to interpret anomaly mediation of SUSY breaking [200].
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FIELD 5D LOCALIZATION 4D INTERPRETATION SUPERPARTNER

Higgs IR localized Composite state ≈ degenerate, mixes with B̃, W̃
Top Peaked toward IR Mostly composite Slightly heavier than top
Light quarks Peaked toward UV Mostly elementary Large SUSY breaking masses

Table 3: Holographic picture of natural SUSY spectra. Superfields localized near the IR brane have a large
overlap with the Higgs so that the SM component of the superfield picks up a large mass. Superfields
localized near the UV brane have a large overlap with SUSY breaking so that the ‘superpartner’ component
of the superfield picks up a large mass. Thus light SM fermions have heavy superpartners and vice versa.

superpartner masses. Invoking what we know about the anarchic flavor 5D mass spectrum (i.e. localiza-
tion of the fermion profiles), we come to the conclusions in Table 3. Holographically this is interpreted
as supersymmetry being an accidental symmetry in the IR. That is, the strong sector flows to a fixed point
that is supersymmetric, even though the theory at the UV is not manifestly supersymmetric. As a par-
ticle becomes more composite, it becomes more degenerate in mass with its superpartner. A schematic
moose diagram is shown in Fig. 15; note that one of the sacrifices of this realization of natural SUSY is
conventional unification, see e.g. [201].

5.5 Naturalness and top partners
The three classes of physics beyond the Standard Model that we have explored all generically predict new
particles accessible at high energy colliders. For supersymmetry and extra dimensions, these particles
were a manifestation of the extended spacetime symmetry under which the SM particles must transform.
For a composite Higgs, this reflected a larger global symmetry breaking pattern and included additional
fermions that appear necessary to generate an SM-like Higgs potential. At a technical level, we needed
new particles to run in Higgs loops to soften the quadratic sensitivity to the cutoff. Since the top quark
has the largest coupling to the Higgs, a generic prediction for naturalness are light (i.e. accessible at the
LHC) states to cancel the top loop. While these particles may have different spin, the examples we’ve
explored focused on the case where they have the same SM quantum numbers as the top. The color charge
of these new particles make them easy to produce at the LHC so that their non-observation is particularly
disconcerting. One model building direction out of this puzzle is to consider models where the top
partner is not color charged. We saw this in the twin Higgs model in Section 4.7.4. A supersymmetric
cousin on these models go under the name of folded SUSY [202], where the top partners are uncolored
but still carry electroweak charges.

5.6 Seiberg duality
In the composite Higgs models, same-spin partners cancelled the leading SM particle contributions to
the quadratic cutoff contributions to the Higgs mass. We saw that this was not coincidental, but rather
imposed by the structure of collective symmetry breaking. In the same way, the protection of the Higgs
mass in SUSY is most clearly understood from the tremendous constraints put on the theory by supersym-
metry. Among other things, these constraints imposed that the holomorphy of the superpotential which,
in turn, prevents the perturbative renormalization of any of the superpotential terms—the Higgs mass
being just one example. A derivation of this important result is beyond the scope of these lectures, but is
explored—along with further implications of SUSY—in the reviews already mentioned.

Supersymmetry turns out to also be a powerful constraint on the behavior of gauge theories. In
fact, they allow one to map out the entire phase structure of the supersymmetric generalization of QCD,
SQCD. This, in itself, is a topic of depth and elegance which is covered very well in [?, 2, 5–7]. One
key outcome of this exploration in the 1990s was the observation that two distinct supersymmetric non-
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F FN

Q Q̄

(a) Supersymmetric QCD

F FF −NF F
Q Q̄

M

(b) SUSY QCD + meson

Fig. 16: Moose diagrams for a pair of Seiberg duals. Green nodes are gauged symmetries while white
notes are global symmetries. Note that the lines now represent superfields.

Abelian gauge theories, shown in Fig. 16, flow to the same IR fixed point. One theory, SQCD, is a standard
SU(N ) supersymmetric gauge theory with F flavors such that

F > N + 1. (5.1)

In the case where N + 1 < F < 3
2N , this theory is asymptotically free and confines in the IR. The other

theory is an SU(F −N ) gauge theory with F flavors and an additional color singlet ‘meson’ which is a
bifundamental under the SU(F )×SU(F ) flavor symmetry. This theory has a superpotential,

W ∼ Q̄MQ, (5.2)

which can be understood as a loop in the moose diagram since all indices are contracted. In the case
where N + 1 < F < 3

2N , the dual theory is IR free and is perturbative at the fixed point.

The fact that these two a priori unrelated theories flow to the same fixed point suggest a compelling
interpretation: the asymptotically free theory confines at low energies and is replaced by the effective
description of the IR free theory. This is an ‘electromagnetic’ duality in the sense of exchanging strongly
and weakly coupled descriptions of the same physics, similar to the AdS/CFT correspondence.

This Seiberg duality is a powerful handle on strongly coupled physics via a weakly coupled 4D
dual description. One popular application was to simplify the construction of models with dynamical
SUSY breaking, see [7, 203] for reviews. In some sense this is completely analogous to using chiral
perturbation theory to describe low-energy QCD. However, unlike QCD, the low energy (‘magnetic’)
theory is not composed of gauge singlets. In fact, there is an emergent SU(F − N ) gauge symmetry
that appears to have nothing to do with the original SU(N ) gauge symmetry of the ‘electric’ theory. One
recent interpretation, however, is that this magnetic gauge group can be identified with the ‘hidden local
symmetry’ in nonlinear models [204], which we previously mentioned in the context of deconstruction
and moose models. In this construction, the ρ meson in QCD (the lightest spin-1 meson) is identified as
the massive gauge boson of a spontaneously broken gauge symmetry present in the nonlinear Lagrangian.

One can also relate Seiberg duality to the AdS/CFT correspondence through explicit string realiza-
tions. Note that (5.1) is typically a different regime from the large N limit invoked in AdS/CFT. From a
purely field theoretical point of view, the AdS/CFT correspondence can be understood as a duality cas-
cade where a SUSY gauge theory has a renormalization trajectory that zig-zags between a series of fixed
points. This is reviewed pedagogically for a field theory audience in [85].
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5.7 Multiple guises of strong dynamics
In this final section we have touched on multiple ways in which we can address strong dynamics in field
theory: nonlinear realizations based on the symmetry breaking structure, holographic extra dimensions,
and Seiberg duality in SUSY. The lesson to take away from this overview is that one should be flexible to
think about strong dynamics in different languages. Often the intuition from one understanding of strong
dynamics can shed light on constructions based on a different description.

One example is the use of Seiberg duality to describe a [partially-]composite electroweak sector
based on the ‘fat Higgs’ model [205]. The idea is to take super-QCD with F = N + 2 flavors so that
the magnetic gauge group can be linked with SU(2)L. The realization of this idea in [142] described this
in terms of moose diagrams where the magnetic gauge group is ‘color-flavor locked’ with an externally
gauged SU(2)L. This mixes the magnetic gauge bosons with the external gauge bosons so that the
observedW and Z are partially composite. Independently, a similar model was presented in [143] where
the nature of this mixing was explained in terms of the intuition from a warped extra dimension. In
particular, one hope that one could directly identify the magnetic SU(2) with the electroweak SU(2)L.
This, however, is not possible since—as we know from composite model building—at the compositeness
scale the näive dimensional analysis expectation is that the composite vector boson couples strongly:
g ∼ 4π/

√
N . In other words, if the electroweak gauge bosons are strongly coupled bound states,

then one would expect a large residual interaction with other strongly coupled bound states. In the RS

language, a composite W and Z would have IR brane localized profiles and this would typically predict
very strong couplings. This would require a very large running to squeeze the profile on the IR brane.
In the Seiberg dual picture, this requires a very large number of flavors if one maintains that the W and
Z are purely composite but have the observed SM couplings, leading one to prefer partial compositeness
of these particles. This general framework was later used to construct a model of natural SUSY in which
follows the general deconstruction/moose in Fig. 15 [206].

5.8 Omissions
We have necessarily been limited in scope. Even among the topics discussed, we have omitted an explo-
ration of SUSY gauge theories (leading up to Seiberg duality), variants of the ‘realistic’ RS models (as
well as ‘universal extra dimension’ models), the virtues of different cosets for composite Higgs model
building, and an overview of product space (moose-y) little Higgs models. Many explicit calculations
were left out and are left to the dilligent reader as exercises, and we only made cursory nods to the
phenomenology of these models. In addition to the three major topics covered in these lectures, there
are various other extensions to the Standard Model that we have not discussed. Our preference fo-
cused on models that address the Higgs hierarchy problem, and as such we have omitted discussions of
many important topics such as grand unification, dark matter, flavor, strong CP, cosmology (of which the
cosmological constant is the most extreme fine tuning problem), or any of the phenomenology of inter-
preting possible experimental signals from colliders/telescopes/underground experiments/etc. We have
only presented very cursory comparisons to current data; we refer the reader to the appropriate experi-
ments’ results pages and conference proceedings for the latest bounds. See also [207] for an overview
of the Run I searches for new physics. All of these topics—and perhaps many others—are, in some
combination, key parts of a model builder’s toolbox in the LHC era.
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Appendices
A Appendix: Extra Dimensions
A.1 The RS gravitational background
We have assumed the metric (3.28). In this appendix we derive it from the assumption of a non-
factorizable metric of the form

ds2 = e−A(z)
(
ηµνdx

µdxν − dz2
)

(A.1)

and check the conditions for which a flat 4D background exists. This generic form of the metric is useful
since it is an overall rescaling of the flat metric, that is, it is conformally flat. We can thus use a convenient
relation between the Einstein tensors GMN = RMN − 1

2gMNR of two conformally equivalent metrics
gMN = e−A(x)g̃MN in d dimensions [?],

GMN = G̃MN +
d− 2

2

[
1

2
∇̃MA∇̃NA+ ∇̃M∇̃NA− g̃MN

(
∇̃K∇̃KA−

d− 3

4
∇̃KA∇̃KA

)]
.

(A.2)

When A = A(z) this is straightforward to calculate by hand for g̃MN = ηMN . Alternately, one may
use a computer algebra system to geometric quantities for general metrics, e.g. [?]. We assume a bulk
cosmological constant Λ so that the 5D bulk Einstein action is

S = −
∫
d5x
√
g
(
M3
∗R+ Λ

)
. (A.3)

The Einstein equation is GMN = (M∗)−3TMN . The MN = 55 component gives

3

2
A′2 =

1

2M3∗
Λe−A. (A.4)

This only has a solution for Λ < 0 so that we’re forced to consider AdS spaces. This equation is separable
with the general solution,

e−A(z) =
1

(kz + constant)2 k =
−Λ

12M3∗
. (A.5)

To recover (3.28) we identify R = 1/k and impose A = 0 at z = R, setting the constant to zero. The
latter choice simply sets the warp factor at the UV brane to be 1.

We must remember that the RS space is finite—and has branes at its endpoints—when we solve
the MN = µν Einstein equations. These equations depend on the second derivative of A(z) and one
should be concerned that this may be sensitive to the energy densities on the branes. This is analogous to
the Poisson equation in electrostatics where a second derivative picks up the δ-function of a point charge.
In general the branes carry tensions which appear as 4D cosmological constants, ΛIR,UV. Recalling the
form of the induced metric

√
ĝ =

√
g/g55, these appear in the action as

∫
d5x

√
g

g55
Λir,uvδ(z −R(′)) ⇒ Tµν =

1√
g

δS

δgµν
=

gµν
2
√
g55

(
ΛIRδ(z −R′) + ΛUVδ(z −R)

)
.

(A.6)
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A.2 RS as an orbifold
To better understand the physics of the brane cosmological constants, it is useful to represent the interval
with an orbifold S1/Z2. This is simply the circle y ∈ [−π, π] with the identification y = −y. While this
may sound somewhat exotic, such compactifications are common in string theory, and was the original
formulation of the RS scenario. Note that y can take any value due to the periodic identification of the
circle, while the fixed points at y = 0, π demarcate the physical RS space.

The orbifold identification forces us to modify (A.5) by replacing z → |z| to preserve the z ↔ −z
symmetry.This absolute value, in turn, leads to δ functions in A′′(z) at the fixed points,

A′′(z) = − 2k2

(k|z|+ const)2
+

4k

k|z|+ const
(
δ(z −R)− δ(z −R′)

)
. (A.7)

The µν Einstein equation then implies

−3

2
ηµν

[
−4k (δ(z −R)− δ(z −R′))

k|z|+ const

]
=

ηµν
2M3∗

[
ΛUVδ(z −R) + ΛIRδ(z −R′)

k|z|+ const

]
. (A.8)

From this we see that the brane cosmological constants must have opposite values,

ΛUV = −ΛIR = 12kM3
∗ . (A.9)

Recall, further, that k is related to the bulk cosmological constant by (A.5), so that this represents a tuning
of the bulk and brane cosmological constants. This is a necessary condition for a static, gravitational
solution. Physically, we see that the brane and the bulk cosmological constants are balanced against one
another to cause the brane to be flat.

A.3 Bulk Fermions in RS
The properties of fermions in a curved space can be subtle. In particular, it’s not clear how to generalize
the usual Dirac operator, Dirac operator iγµ∂µ. In this appendix we review properties of fermions in an
extra dimension and then derive the form of the fermion action in RS.

A.3.1 The fifth γ matrix
Firstly, unlike in 4D where the fundamental fermion representation is a Weyl spinor, 5D Lorentz invari-
ance requires that fermions appear as Dirac spinors. A simple heuristic way of seeing this is to note that
in 4D one can construct a γ5 ∼ γ0 · · · γ3 as a linearly independent chirality operator. In 5D, however, γ5,
is part of the 5D Clifford algebra and is just a normal γ matrix in the z-direction. Note that the normal-
ization of γ5 is fixed by {γ5, γ5} = 2η55 and has a factor of i compared to the usual definition in 4D. One
should immediately be concerned: if the 5D fermions are Dirac, then how does one generate the chiral
spectrum of the Standard Model matter? As we show below, this follows from a choice of boundary
conditions. An excellent reference for the properties of fermions in arbitrary dimension is [208].

A.3.2 Vielbeins
In order to write down the fermionic action, we first need to establish some differential geometry so that
we may write the appropriate covariant derivative for the spinor representation. We will be necessarily
brief here, but refer to [209–211] for the interested reader30.

The familiar γ matrices which obey the Clifford algebra are only defined for flat spaces. That is
to say that they live on the tangent space (locally inertial frame) of our spacetime manifold. In order

30Those with slightly less mathematical background can refer to [212] or their favorite ‘grown up’ general relativity textbook
as a starting point.
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to define curved-space generalizations of objects like the Dirac operator, we need a way to convert
spacetime indices M to tangent space indices a. Vielbeins, eaµ(x), are the geometric objects which
do this. The completeness relations associated with vielbeins allow them to be interpreted as a sort of
“square root” of the metric in the sense that

gMN (x) = eaM (x)ebM (x)ηab, (A.10)

where ηab = diag(+,−, · · · ,−) is the Minkowski metric on the tangent space. For our particular
purposes we need the inverse vielbein, eMa (x), defined such that

eMa (x)eaN (x) = δMN eMa (x)ebN (x) = δ b
a . (A.11)

Spacetime indices are raised and lowered using the spacetime metric gMN (x) while tangent space indices
are raised and lowered using the flat (tangent space) metric ηab(x).

Physically we may think of the vielbein in terms of reference frames. The equivalence principle
states that at any point one can always set up a coordinate system such that the metric is flat (Minkowski)
at that point. Thus for each point x in space there exists a family of coordinate systems that are flat at x.
For each point we may choose one such coordinate system, which we call a frame. By general covariance
one may define a map that transforms to this flat coordinate system at each point. This is the vielbein.
One can see that it is a kind of local gauge transformation, and indeed this is the basis for treating gravity
as a gauge theory built upon diffeomorphism invariance.

A.3.3 Spin covariant derivative
The covariant derivative is composed of a partial derivative term plus connection terms which depend on
the particular object being differentiated. For example, the covariant derivative on a spacetime vector V µ

is

DMV
N = ∂MV

N + ΓNMLV
L. (A.12)

The vielbein allows us to work with objects with a tangent space index, a, instead of just spacetime
indices, µ. The γ matrices allow us to further convert tangent space indices to spinor indices. We would
then define a covariant derivative acting on the tangent space vector V a,

DMV
a = ∂MV

a + ωaMbV
b, (A.13)

where the quantity ωaMb is called the spin covariant derivative. Consistency of the two equations implies

DMV
a = eaNDMV

N . (A.14)

This is sufficient to determine the spin connection. It is a fact from differential geometry that the spin
connection is expressed in terms of the veilbeins via [213]

ωabM =
1

2
gRP e

[a
R∂[Me

b]
P ] +

1

4
gRP gTSe

[a
Re

b]
T∂[Se

c
P ]e

d
Mηcd (A.15)

=
1

2
eNa

(
∂Me

b
N − ∂NebM

)
− 1

2
eNb (∂Me

a
N − ∂NeaM )− 1

2
ePaeRb (∂P eRc − ∂ReRc) ecM . (A.16)

When acting on spinors one needs the appropriate structure to convert the a, b tangent space indices
into spinor indices. This is provided by

σab =
1

4
[γa, γb] (A.17)

so that the appropriate spin covariant derivative is

DM = ∂M +
1

2
ωabMσab. (A.18)
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A.3.4 Antisymmetrization and Hermiticity
The fermionic action on a d-dimensional curved background is

S =

∫
ddx

√
|gd| Ψ

(
ieMa γ

a←→DM −m
)

Ψ, (A.19)

where the antisymmetrized covariant derivative is defined by a difference of right- and left-acting deriva-
tives

←→
DM =

1

2
DM −

1

2

←−−
DM . (A.20)

This is somewhat subtle. The canonical form of the fermionic action must be antisymmetric in this
derivative in order for the operator to be Hermitian and thus for the action to be real. In flat space we are
free to integrate by parts in order to write the action exclusively in terms of a right-acting Dirac operator.
Hermiticity is defined with respect to an inner product. The inner product in this case is given by

〈Ψ1|OΨ2〉 =

∫
d5x
√
g Ψ1OΨ2. (A.21)

A manifestly Hermitian operator is OH = 1
2

(
O +O†

)
, where we recall that

〈Ψ1|O†Ψ2〉 = 〈OΨ1|Ψ2〉 =

∫
d5x
√
g OΨ1Ψ2. (A.22)

The definition of an inner product on the phase space of a quantum field theory can be nontrivial on
curved spacetimes. However, since our spacetime is not warped in the time direction there is no ambigu-
ity in picking a canonical Cauchy surface to quantize our fields and we may follow the usual procedure
of Minkowski space quantization with the usual Minkowski spinor inner product.

As a sanity-check, consider the case of the partial derivative operator ∂µ on flat space time. The
Hermitian conjugate of the operator is the left-acting derivative,

←−
∂µ, by which we really mean

∫
ddxΨ1∂

†Ψ2 = 〈Ψ1|∂†µΨ2〉 = 〈∂µΨ1|Ψ2〉 =

∫
ddx ∂µΨ1Ψ2 =

∫
ddxΨ1

←−
∂µΨ2 =

∫
ddxΨ1 (−∂µ) Ψ2.

In the last step we’ve integrated by parts and dropped the boundary term. We see that the Hermitian
conjugate of the partial derivative is negative itself. Thus the partial derivative is not a Hermitian operator.
This is why the momentum operator is given by P̂µ = i∂µ, since the above analysis then yields P̂ †µ = P̂µ,
where we again drop the boundary term and recall that the i flips sign under the bar.

Now we can be explicit in what we mean by the left-acting derivative in (A.19). The operator
ieMa γ

aDM is not Hermitian and needs to be made Hermitian by writing it in the formOH = 1
2

(
O +O†

)
.

Thus we may write a manifestly Hermitian Dirac operator as,

Ψ (Dirac) Ψ = Ψ

[
1

2

(
ieMa γ

aDM

)
+

1

2

(
ieMa γ

aDM

)†
]

Ψ (A.23)

= Ψ
i

2
eMa γ

aDMΨ− i

2
eMa γ

aDMΨΨ, (A.24)

where we’ve used the fact that eMa is a real function with no spinor indices. The second term on the
right-hand side can be massaged further,

γaDMΨΨ = Ψ†
←−−
DM

†γa†γ0Ψ = Ψ†(
←−
∂M + ωbcMσ

bc†)γ0γaΨ = Ψ
←−−
DMγ

aΨ = Ψγa
←−−
DMΨ. (A.25)
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Note that we have used that γM† = γ0γMγ0 and, in the last line, that [σbc, γa] = 0. Putting this all
together, we can write down our manifestly real fermion action as in (A.19),

S =

∫
ddx

√
|g| Ψ

(
ieMa γ

a←→DM −m
)

Ψ (A.26)

=

∫
ddx

√
|g|
(
i

2
ΨeMa γ

aDMΨ− i

2
DMΨeMa γ

aΨ−mΨΨ

)
. (A.27)

All of this may seem overly pedantic since integration by parts allows one to go back and forth
between the ‘canonical’ form and the usual ‘right-acting only’ form of the fermion kinetic operator.
Our interest, however, is to apply this to the Randall-Sundrum background where integration by parts
introduces boundary terms and so it is crucial to take the canonical form of the Dirac operator as the
starting point.

A.3.5 Application to the RS background
We now apply this machinery to the RS background. The vielbein and inverse vielbein are

eaM (z) =
R

z
δaM eMa (z) =

z

R
δMa . (A.28)

We may write out the spin connection term of the covariant derivative as

ωabM =
1

2
gRP e

[a
R∂[Me

b]
P ]︸ ︷︷ ︸

ωabM (1)

+
1

4
gRP gTSe

[a
Re

b]
T∂[Se

a
P ]e

d
Mηcd

︸ ︷︷ ︸
ωabM (2)

. (A.29)

This can be simplified using the fact that the vielbein only depends on z. The first part is

ωabM (1) =
1

2z
δ

[a
Mδ

b]
5 , (A.30)

where we’ve used ∂MebP = −1
z e
b
P δ

5
M and the completeness relation gMNeaMe

b
M = ηab. Similarly, with

some effort the second part is given by

ωabM (2) =
1

2z
δ

[a
Mδ

b]
5 . (A.31)

These vanish identically for M = 5. We can now write out the spin-connection part of the covariant
derivative,

1

2
ωabMσab =

1

2

(
1

z
δ

[a
Mδ

b]
5

)

M 6=5

1

4
[γa, γb] =

1

4z

(
γMγ5 + δ5

M

)
, (A.32)

where we’ve inserted a factor of δ5
M to cancel the (γ5)2 when M = 5. Finally, the spin connection part

of the covariant derivative is

1

2
ωabMσab =

1

4z

(
γMγ5 + δ5

M

)
(A.33)

so that the spin covariant derivative is

DM =

{
∂µ + 1

4zγµγ5 if M = µ

∂5 if M = 5.
(A.34)
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For all of the geometric heavy lifting we’ve done, we are led to an anticlimactic result: the spin
connection drops out of the action,

S =

∫
d5x

i

2

(
R

z

)4 (
ΨγM

←→
∂MΨ +

1

4z
Ψγµγ5γ

µΨ− 1

4z
γµγ5γµΨΨ

)
, (A.35)

The two spin connection terms cancel since γµγ5γµΨΨ = Ψγµγ5γ
µΨ, so that upon including a bulk

mass term,

S =

∫
d5x

i

2

(
R

z

)4

ΨγM
←→
∂MΨ−

∫
d5x

i

2

(
R

z

)5

mΨΨ =

∫
d5x

i

2

(
R

z

)4

Ψ
(
γM
←→
∂M −

c

z

)
Ψ,

(A.36)

where c = mR = m/k is a dimensionless parameter that is the ratio of the bulk mass to the curvature
and

Before we can dimensionally reduce the action straightforwardly, we must write the Dirac operator
to be right-acting, i.e. acting on Ψ, so that we can vary with respect to Ψ to get an operator equation
for Ψ. Obtaining this is from (A.36) is now a straightforward matter of integration by parts of the
left-acting derivative term. Note that it is crucially important that we pick up a derivative acting on the
metric/vielbein factor (R/z)4. We would have missed this term if we had mistakenly written our original
‘canonical action,’ (A.19), as being right-acting only.

The integration by parts for the M = µ = 0, · · · , 4 terms proceeds trivially since these directions
have no boundary and the metric/vielbein factor is independent of xµ. Performing theM = 5 integration
by parts we find

S =

∫
d4x

∫ R

R′
dz

(
R

z

)4

Ψ

(
i/∂ + iγ5∂5 − i

2

z
γ5 − c

z

)
Ψ + (boundary term)|RR′ . (A.37)

The term in the parenthesis can be identified with the Dirac operator for the Randall-Sundrum model
with bulk fermions. The boundary term is

(boundary) = (R/z)4 (ψχ− χψ
)∣∣∣
R

R′
, (A.38)

where we’ve written out the Dirac spinor Ψ in terms of two-component Weyl spinors χ and ψ. This term
vanishes when we impose chiral boundary conditions, which we review in the next section. In terms of
Weyl spinors this gives

S =

∫
d4x

∫ R

R′
dz

(
R

z

)4 (
ψ χ

)(−∂5 + 2−c
z i/∂

i/∂ ∂5 − 2+c
z

)(
χ

ψ

)
, (A.39)

where we use the two-component slash convention /v = vµσ
µ, /v = vµσ

µ. From here one may perform a
straightforward dimensional reduction to obtain, among other things, the profile of a bulk fermion in RS,

Ψ(0)
c (x, z) =

1√
R′

( z
R

)2 ( z
R′

)−c
√

1− 2c

1− (R/R′)1−2c
PLΨ(0)

c (x), (A.40)

where Ψ
(0)
c (x) is a canonically normalized 4D field and PL is the usual left-chiral projector. The term in

the square root is a flavor factor that is often written as fc.
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A.3.6 Chiral boundary conditions
The vector-like (Dirac) nature of 5D spinors is an immediate problem for model-building since the Stan-
dard Model is manifestly chiral and there appears to be no way to write down a chiral fermion without
immediately introducing a partner fermion of opposite chirality and the same couplings. To get around
this problem, we can require that only the zero modes of the 5D fermions—those which are identified
with Standard Model states—to be chiral. We show that one chirality of zero modes can indeed be
projected out, while the heavier Kaluza-Klein excitations are vector-like but massive.

We can project out the zero modes of the wrong-chirality components of a bulk Dirac 5D fermion
by imposing chiral boundary conditions that these states vanish on the branes. Since zero modes have
trivial profiles, these boundary conditions force the mode to be identically zero everywhere. For left-
chiral boundary conditions, ψ = 0 on the branes, while for right-chiral boundary conditions χ = 0 on
the branes. Thus we are guaranteed that both terms in (A.38) vanish at z = R,R′ for either chirality.

Imposing these chiral boundary conditions is equivalent to the statement that the compactified
extra dimension is an orbifold. This treatment of boundary conditions for interval compact spaces was
first discussed from this viewpoint in [109].

A.4 Gauge fields in RS
We now move on to the case of bulk gauge fields. We follow the approach of [214], though we adapt it
to follow the same type of derivation espoused above for the fermion propagator. The bulk action is

S5 =

∫
d4xdz

√
g

[
−1

4
FMNF

MN + (brane) + (gauge fixing)

]
(A.41)

To derive the propagator, we would like to write the kinetic term in the form AMOMNAN so
that we may invert the quadratic differential operator OMN . This require judicious integration by parts
including the (R/z) factors from the metric and the measure,

√
g. The relevant integration is

R

4z
FMNFMN = −R

2
AN∂M

(
1

z
∂M

)
AN +

R

2
AN∂M

(
1

z
∂N

)
AN +

R

2
∂M

(
1

z
AN∂[MAN ]

)
,

(A.42)

where the last term integrates to a boundary term. Observe that this boundary term vanishes for both
Dirichlet and Neumann boundary conditions so that it vanishes for µ → ν and 5th component scalar
propagators. It does not vanish, however, for the case of vector–scalar mixing. For simplicity, we will
drop the term here in anticipation that it will be removed by gauge fixing. With this caveat, the above
integration becomes

R

4z
FMNFMN = Aµ

[
R

2z
∂2ηµν − R

2
∂z

(
1

z
∂z

)
ηµν − R

2z
∂µ∂ν

]
Aν +A5

R

z
∂z∂

µAµ −A5
R

2z
∂2A5.

(A.43)

This is now in the desired form: we can read off the quadratic differential operators which encode the
propagation of the 5D gauge bosons. Observe that we have a term that connects the 4D vector Aµ to the
4D scalar A5. In our mixed position-momentum space formalism, we prefer to leave these as separate
fields. This term is removed by a judicious choice of gauge fixing.

We must now gauge fix to remove the gauge redundancy which otherwise appears as unphysical
states in the propagator. Ideally we would like to pick a gauge where the scalar vanishes A5 = 0
and the vector has a convenient gauge, say, Lorenz gauge ∂µAµ = 0. Unfortunately, these gauges are
incompatible. Intuitively this is because we only have a single gauge fixing functional to work with in
the path integral so that we are allowed to set at most one expression to vanish. Instead, motivated by the
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potential for vector–scalar mixing from the boundary term of (A.43), we choose a gauge fixing functional
which cancels this mixing term,

Lgauge fix = −
(
R

z

)
1

2ξ

[
∂µA

µ − ξz∂z
(

1

z
A5

)]2

(A.44)

We have introduced a gauge fixing parameter ξ which will play the role of the ordinary Rξ gauge fixing
parameter in 4D. We can integrate by parts to convert this to the form AMOMN

gauge fixAN ,

Lgauge fix = Aµ
1

2ξ

R

z
∂µ∂νAν −A5

R

z
∂z∂

µAµ +A5
ξ

2

R

z
∂z

[
z∂z

(
1

z
A5

)]
. (A.45)

Observe that the second term here cancels the unwanted mixing term in (A.43). Summing this together
with the gauge kinetic term gives a clean separation for the kinetic terms for the gauge vector and scalar:

Lgauge + Lgauge fix = Aµ

[
R

2z
∂2ηµν − R

2
∂z

(
1

z
∂z

)
ηµν −

(
1− 1

ξ

)
R

2z
∂µ∂ν

]
Aν

+A5
R

2z

[
−∂2 + ξ

(
1

z2
− 1

z
∂z + ∂2

z

)]
A5 (A.46)

≡ AµOµνAν +A5O5A5. (A.47)

As above, now that we have the action written in terms of right-acting operators on the gauge fields, we
may proceed to do a KK reduction to determine the KK mode properties, A(n)

µ (x, z) = A
(n)
µ (x)h(n)(z).

The general solution for the nth KK mode profile of a bulk gauge field is

h(n) = aJ1(M (n)z) + bY1(M (n)z), (A.48)

where Jα and Yα are Bessel functions. A SM gauge field must have a zero mode (which is identified with
the SM state) so that it must have Neumann boundary conditions (BC). Using the formulae for derivatives
of Bessel functions, we find

Y0(M (n)R)J0(M (n)R′) = J0(M (n)R)Y0((n)R′), (A.49)

where M (n) is the mass of the nth KK mode. We know that M (n) ∼ n/R′ and that R � R′. Thus
M (n)R ≈ 0 for reasonable n. Now invoke two important properties of the J0 and Y0 Bessel functions:

1. J0(0) = 1 and J0(x > 0) is under control, i.e. |J0(x)| < 1.

2. Y0(0) = −∞ and Y0(x > y1) is similarly under control, where y1 is the first zero of Y0(x).

From this we see that the left-hand side of (A.49) is very large and negative due to the Y0(M (n)R)
term while the right-hand side is a product of ‘under control’ terms that are O(1) or less. This implies
that J0(M (n)R′) ≈ 0. In other words, the KK masses are given by the zeros of J0. The first zero is
x1 = 2.405 so that the first KK gauge boson excitation has mass M (n) ≈ 2.4/R′. The solution for the
the nth KK mode profile of a SM gauge field is thus [215]

h(n)(z) = N z
[
Y0(M (n)R)J1(M (n)z)− J0(M (n)R)Y1(M (n)z)

]
. (A.50)

The normalization is fixed by performing the dz integral and requiring canonical normalization of the
zero mode 4D kinetic term,

∫
d4x dz

√
gFMNFPQg

MP gNQ =

∫
d4x dz

R

z
F (0)(x)µνF

(0)(x)µν
[
h(0)(z)

]2
+ · · · . (A.51)
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This gives N−1/2 = R logR′/R.

Finally, we note that for theW andZ bosons, the Higgs VEV on the IR brane changes the boundary
conditions so that the zero mode profile is not flat. Heuristically it introduces a kink on the profile near
the IR brane. Since MZ � M (1), we may treat this as a perturbation to M (0) = 0 so that the Z boson
profile is

h
(0)
Z (z) =

1√
R logR′/R

[
1− M2

Z

4

(
z2 − 2z2 log

z

R

)]
, (A.52)

and similarly for the W .

A.5 Caution with finite loops
One should be careful when calculating loop diagrams in theories with extra dimensions. When one
calculates a finite loop, say a dipole operator, naïve application of effective field theory suggests taking
only the lowest KK mode and letting the 4D loop momentum go to k → ∞. This, however, can lead to
erroneous results since the loop integral runs over all momenta, including those in the fifth dimension.
Only integrating over the 4D directions removes terms that scale like k2/M2

KK which would otherwise
make an O(1) finite contribution. This can appear as a dependence on the order in which one does the
4D loop integral versus KK sum; this discrepancy has appeared in the RS gg → h production calculations
[216]. One way to avoid this problem is to work in mixed position-momentum space [214]. This was used
to calculate RS constraints from f → f ′γ [217, 218] and the muon magnetic moment in [219]. These
references include Feynman rules for performing mixed space calculations. For a recent explanation
of the subtleties of 5D dipoles and the resolution to puzzles in the previous literature, see [220]. In
particular, Section 3 of that paper shows how to quickly estimate the size of 4D couplings from overlap
integrals.

B Appendix: Compositeness; the CCWZ Construction
The general theory of Goldstone bosons is described in the papers by Callan, Coleman, Wess, and Zu-
mino (CCWZ) [110,111]. In this appendix we present relevant aspects for generalizations to the composite
Higgs models of interest, while making connections to the chiral Lagrangian above as an explicit exam-
ple of their abstract procedure. See §19.5 – 19.7 of [112] for a more pedagogical and explicit discussion,
the relevant sections of [113], or [?, 221] for more depth on how this procedure is applied to the chiral
Lagrangian.

B.1 Preliminaries
Suppose a Lagrangian is invariant under a global symmetry G, but that G is spontaneously broken to a
subgroup H ⊂ G by the VEV of a field 〈ψ〉 = ψ0 that is in a linear representation of G. This means that
for any h ∈ H , hψ0 = ψ0. The spontaneous symmetry breaking patternG→ H implies the existence of
dimG−dimH Goldstone bosons that take values on a vacuum manifold. This manifold can be identified
with the coset space G/H (‘G mod H’). In particular, the left coset space G/H is an equivalence class
of elements g ∈ G modulo elements h ∈ H , g ∼ gh. In other words, any element in g is equivalent to
another element g′ if there exists an h such that g′ = gh. Note that in general G/H is not a group.

B.2 Decomposition of the Algebra
The generators of G can be divided between two classes: T i which generate the unbroken group H ,
and Xa which do not. This is called the Cartan decomposition. The generators satisfy the following
commutation relations:

[
T i, T j

]
= if ijkT k (B.1)
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[
T i, Xα

]
= if iαβXβ (B.2)

[
Xα, Xβ

]
= ifαβkT k + ifαβγXγ , (B.3)

where the (B.2) comes from explicitly checking that 〈T i|[T j , Xα]〉 = 0, where the inner product is
〈A|B〉 = Tr(AB). Observe that this means that the Xs furnish a linear representation of H . If, addi-
tionally, there exists a parity transformation P such that P 2 = 1 and P ([g1, g2]) = [P (g1), P (g2)] and
further such that P (x) = −X and P (T ) = +T , then one can further restrict

[Xα, Xβ] = ifαβkT k. (B.4)

In this case, the coset G/H is a symmetric space.

B.3 Decomposition of the Group
Without loss of generality, we may write any g ∈ G as

g(ξ, u) = eiξ
αXα

eiu
iT i ≡ ĝ(ξ)h(u). (B.5)

Further, note that the distinct G elements gh1, gh2, gh3, . . . ∈ G are all identified with the same element
of G/H . For each element of G/H , it is useful to pick a representative element of G, which we can
choose to be ĝ(ξ). This is simply the decomposition (4.16) when applied to chiral perturbation theory.

B.4 Decomposition of the Linear Representation
We may further write the linearly represented field ψ(x) with respect to any non-trivial reference value
such as ψ0 by defining γ(x) ∈ G to be the transformation from ψ0 → ψ(x),

ψi(x) = γij(x) (ψ0)j . (B.6)

By the invariance of ψ0 under H transformations, γ(x) is only defined up to right multiplication by any
h ∈ H . In other words, we may identify γ(x) with the representative element γ̂(x) which is chosen to be
the exponentiation of only broken generators, analogously to ĝ above. (For the moment we are ignoring
radial excitations.) We may now drop the hat on γ̂ for notational clarity. Let us suggestively call the
transformation parameter π(x),

γ (π(x)) = eiπ
a(x)Xa

. (B.7)

The πa(x) are to be identified with the Goldstone bosons (pions). We leave it dimensionless, remember
that the pion field with canonical mass dimension can be restored with πa(x)→ πa(x)can/f .

Suppose the Lagrangian of the theory with respect to the linearly represented field ψ(x) is written
in terms of ψ(x) and ∂ψ(x). The former don’t contain the Goldstone fields, while the latter can be
written in terms of ψ0 and the Goldstone fields using (B.6) and (B.7),

∂µψ(x) = γ
[
∂µ + γ−1 (∂µγ)

]
ψ0, (B.8)

where we’ve suppressed the x dependence of γ. Without loss of generality, we can write γ−1∂µγ in
terms of the broken and unbroken generators,

γ−1∂µγ = iDα
µX

α + iEiµT
i (B.9)

Dα
µ = Dαβ(π)∂µπ

β (B.10)

Eiµ = Eiβ(π)∂µπ
β. (B.11)

The proof of this expression uses the trick

∂µe
iπ·X = i∂µπ

α

∫ 1

0
ds ei(1−s)π·XXαeisπ·X (B.12)

and then the Baker–Campbell–Hausdorff (BCH) relation to show that you end up with an expansion in
the Xs and T s.
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B.5 Transformation of the Goldstones
We would like to see how the πa transform under the global group G. We can derive this from the
transformation of the linear field ψ(X) using (B.6) and (B.7). Let us define π′ and u′ such that

gψ(x) = geiπ·Xψ0 ≡ eiπ
′·Xeiu

′·Tψ0, (B.13)

where the primed fields are nonlinear functions of g and π(x), that is π′ = π′(g, π). It is cleaner to write
this after peeling off the ψ0,

gγ(π) = γ(π′)h(u′). (B.14)

The element h(u′) ∈ H leaves ψ0 invariant. The non-linear dependence of π′(x) on π(x) for generic g
is the key result.

In the case when we transform ψ(x) by an element h ∈ H ,

hψ(x) = eiu
iT ieiπ(x)·Xψ0 ≡ eiπ

′·Xψ0, (B.15)

where we have used (B.2) and the BCH formula. In other words,

hγ(π) = γ(π′) πaXa → π′aXa. (B.16)

In this case, we see that π(x) has transformed linearly, in contrast to (B.14) or (B.13). The main differ-
ence is that due to the general decomposition (B.5), we simply observed that gγ (π(x)) ∈ G and so that
there must exist some π′ and u′ satisfies (B.13). The actual expression for π′ as a function of π is messy.
On the other hand, in (B.15) we used BCH to derive the π′ explicitly and one can see that this is a linear
transformation.

B.6 From Linear to Non-Linear
From our assumed linear UV theory, we have now identified the Goldstone fields and can integrate out
the massive ‘radial’ modes to obtain a low-energy Lagrangian. The radial modes can be identified with
excitations along the VEV direction ψ0. So let us define the radial field ψr(x) = r(x)ψ0 with a VEV

〈r(x)〉 = 1. From (B.13) with ψ0 → ψr(x), we see that the radial field transforms as

ψr → h
(
u′(π)

)
ψr. (B.17)

Thus in order to build G invariants out of the radial fields ψr, it is sufficient to construct H invariants.
Said differently, the decomposition ψ(x) = γ(π)ψr is a tool for converting G-linear representations ψ
into H-linear representations ψr.

Effective field theory tells us that this UV theory wasn’t necessary to construct the low energy
theory of Goldstone bosons. So we can now integrate out the radial modes and remain agnostic about
the UV completion of the theory. Prior to the discovery of the Higgs boson—a linear UV completion of
the theory of the Goldstone bosons eaten by W± and Z—the reason why experiments like LEP could
make precision measurements of the SM without knowing the details of the Higgs is that the precision
measurements asked precise questions about the non-linear sigma model (NLΣM) of Goldstones that were
insensitive to the particular UV completion, linear or otherwise.

B.7 A Low-Energy Lagrangian without the UV
Let us now return to (B.8) since we know from the Goldstone shift symmetry that the Goldstones only
appear in derivative interactions. The object g−1∂g, where g = γ in (B.8), is called the Mauer-Cartan
form, it takes an element of the group g ∈ G, differentiates it—pulling out the Lie algebra element based
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at g, and then pulls that generator back to the group identity so that one can compare elements of the
algebra on the same tangent space.

The expansion of the Maurer-Cartan form into broken and unbroken generators is given in (B.9).
Differntiate the transformation rule for γ, (B.14),

g∂µγ(π) =
[
∂µγ(π′)

]
h+ γ(π′)∂µh. (B.18)

Now multiply each side of this equation by the respective side in the inverse of (B.14),

γ−1(π)∂µγ(π) = h−1γ−1(π′)
([
∂µγ(π′)

]
h+ γ(π′)∂µh

)
. (B.19)

Comparing this to (B.9), we find

iDα
µ(π)Xα + iEiµ(π)T i = ih−1Dα

µ(π′)Xαh−1 + ih
[
Eiµ(π′)T i + i∂µ

]
h−1. (B.20)

In other words, the objects D and E definedin (B.9) transform under g ∈ G as

Dα
µ → hDα

µh
−1 (B.21)

Eiµ → hEiµh
−1 − ih∂µh−1, (B.22)

where here h = h (u′(π, g)) in (B.14). This should look very familiar: D transforms linearly and
E transforms like a gauge field. Both transform under G with respect to the subgroup H rather than
the whole group G. This realizes the observation in Section B.6: to write Lagrangians for nonlinear
realizations of G/H , we need to construct H invariants. The linear object D can indeed be used to
construct a simple lowest-order Lagrangian,

L =
f2

4
Tr(DµD

µ), (B.23)

where we’ve introduced the compositeness scale f to preserve dimensionality.

What about the curious object Eµ? This appears to transform as the gauge field of a local symme-
try. The locality of this symmetry is inherited from the x-dependence of the Goldstone fields π(x) and
is unsurprising since the coset identification g ∼ gh is local. Eµ is thus a ‘gauge potential’ with respect
to the unbroken symmetry H . Indeed, differentiating (B.17)—recalling that h(u′) depends on x through
its implicit dependence on π(x)—shows that derivatives of the non-Goldstone fields transform inhomo-
geneously under G. Promoting the partial derivative to a covariant derivative, Dµ = ∂µ → ∂µ + iEµ,
ensures that Dµψr(x) transforms homogeneously under H .

When did H become gauged? The appearance of a covariant derivative and a gauge symmetry may seem surprising in
a system where global symmetry G is was spontaneously broken to a subgroup H . The appearance of a local symmetry,
however, is not surprising since the resulting coset space G/H precisely describes a gauge redundancy. Mathematically,
the description of a ‘gauged’ symmetry is identical to that of a spontaneously broken global symmetry. For the mathemat-
ically inclined, details of the geometric structure of these theories are presented in [222] and [223].

The punchline is that one can construct a Goldstone boson Lagrangian which is invariant under
the full, nonlinearly realized group G, by constructing an H-invariant Lagrangian out of Dµ. One can
further introduce non-Goldstone fields ψr (not necessarily related to the linear field that gets a VEV)
so long as one uses the appropriate H covariant derivative. In this way one may include, for example,
‘nucleon’ excitations to the effective theory.

The description above is based on a ‘standard realization’ of the nonlinearly realized symmetry,
(B.13). One of the main results of the CCWZ papers was the observation that every non-linear realization
can be brought to this standard realization [110, 111]. Physically, this means that no matter how one im-
poses theG/H restriction, the S-matrix elements for the low-energy dynamics will be identical. Explicit
examples of this are presented in chapter IV of [?].
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Flavor Physics and CP Violation

Z. Ligeti
Ernest Orlando Lawrence Berkeley National Laboratory,
University of California, Berkeley, CA 94720

Abstract

These notes overlap with lectures given at the TASI summer schools in 2014
and 2011, as well as at the European School of High Energy Physics in 2013.
This is primarily an attempt at transcribing my hand-written notes, with em-
phasis on topics and ideas discussed in the lectures. It is not a comprehensive
introduction or review of the field, nor does it include a complete list of refer-
ences. I hope, however, that some may find it useful to better understand the
reasons for excitement about recent progress and future opportunities in flavor
physics.

Preface
There are many books and reviews on flavor physics (e.g., Refs. [1–9]). The main points I would like to
explain in these lectures are:

– CP violation and flavor-changing neutral currents (FCNC) are sensitive probes of short-distance
physics, both in the standard model (SM) and in beyond standard model (BSM) scenarios.

– The data taught us a lot about not directly seen physics in the past, and are likely crucial to under-
stand LHC new physics (NP) signals.

– In most FCNC processes BSM/SM ∼ O(20%) is still allowed today, the sensitivity will improve
to the few percent level in the future.

– Measurements are sensitive to very high scales, and might find unambiguous signals of BSM
physics, even outside the LHC reach.

– There is a healthy and fun interplay of theoretical and experimental progress, with many open
questions and important problems.

Flavor physics is interesting because there is a lot we do not understand yet. The “standard model flavor
puzzle" refers to our lack of understanding of why and how the 6 quark and 6 lepton flavors differ, why
masses and quark mixing are hierarchical, but lepton mixing is not. The “new physics flavor puzzle" is
the tension between the relatively low scale required to solve the fine tuning problem (also suggested by
the WIMP paradigm), and the high scale that is seemingly required to suppress the non-SM contributions
to flavor changing processes. If there is NP at the TeV scale, we need to understand why and in what
way its flavor structure is non-generic.

The key questions and prospects that make the future interesting are [7]
– What is the achievable experimental precision?

The LHCb, Belle II, NA62, KOTO, µ→ eγ, µ2e, etc., experiments will improve the sensitivity in
many modes by orders of magnitude.

– What are the theoretical uncertainties?
In many key measurements, the theory uncertainty is well below future experimental sensitivity;
while in some cases theoretical improvements are needed (so you can make an impact!).

– How large deviations from SM can we expect due to TeV-scale NP?
New physics with generic flavor structure is ruled out; observable effects near current bounds are
possible, many models predict some.

Published by CERN in the Proceedings of the 2013 European School of High-Energy Physics, Parádfürdő,
Hungary, 5 – 18 June 2013, edited by M. Mulders and G. Perez, CERN–2015–004 (CERN, Geneva, 2015)
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– What will the measurements teach us?
In all scenarios there is complementarity with high-pT measurements, and synergy in understand-
ing the structure of any NP seen.
Another simple way to get a sense of (a lower bound on) the next 10–15 years of B physics

progress is to consider the expected increase in data,

(LHCb upgrade)
(LHCb 1 fb−1)

∼ (Belle II data set)
(Belle data set)

∼ (2009 BaBar data set)
(1999 CLEO data set)

∼ 50 .

This will yield a 4
√

50 ∼ 2.5 increase in sensitivity to higher mass scales, even just by redoing existing
measurements. More data has always motivated new theory ideas, yielding even faster progress. This is
a comparable increase in reach as going from LHC7–8→ LHC13–14.

Outline
The topics these lectures will cover include a brief introduction to flavor physics in the SM, testing the
flavor structure in neutral meson mixing and CP violation, and examples of how to get theoretically
clean information on short-distance physics. After a glimpse at the ingredients of the SM CKM fit, we
discuss how sizable new physics contributions are still allowed in neutral meson mixing, and how this
will improve in the future. Then we explain some implications of the heavy quark limit, tidbits of heavy
quark symmetry, the operator product expansion and inclusive decays, to try to give an impression of
what makes some hadronic physics tractable. The last lecture discusses some topics in TeV-scale flavor
physics, top quark physics, Higgs flavor physics, bits of the interplay between searches for supersymme-
try and flavor, and comments on minimal flavor violation. Some questions one may enjoy thinking about
are in the footnotes.

1 Introduction to Flavor Physics and CP Violation
Most of the experimentally observed particle physics phenomena are consistent with the standard model
(SM). Evidence that the minimal SM is incomplete comes from the lack of a dark matter candidate, the
baryon asymmetry of the Universe, its accelerating expansion, and nonzero neutrino masses. The baryon
asymmetry and neutrino mixing are certainly connected to CP violation and flavor physics, and so may
be dark matter. The hierarchy problem and seeking to identify the particle nature of dark matter strongly
motivate TeV-scale new physics.

Studying flavor physics and CP violation provides a rich program to probe the SM and search for
NP, with sensitivity to the 1 – 105 TeV scales, depending on details of the models. As we shall see, the
sensitivity to BSM contributions to the dimension-6 four-quark operators mediating K, D, Bd, and Bs
mixing, when parametrized by coefficients 1/Λ2, corresponds to scales Λ ∼ 102− 105 TeV (see Table 1
and the related discussion below).

Understanding the origin of this sensitivity and how it can be improved, requires going into the
details of a variety of flavor physics measurements.

1.1 Baryon asymmetry requires CP violation beyond SM
The baryon asymmetry of the Universe is the measurement of

nB − nB̄
s

≈ 10−10 , (1)

where nB (nB̄) is the number density of (anti-)baryons and s is the entropy density. This means that 10−6

seconds after the Big Bang, when the temperature was T > 1 GeV, and quarks and antiquarks were in
thermal equilibrium, there was a corresponding asymmetry between quarks and antiquarks. Sakharov
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pointed out [10] that for a theory to generate such an asymmetry in the course of its evolution from a hot
Big Bang (assuming inflation washed out any possible prior asymmetry), it must contain:

1. baryon number violating interactions;
2. C and CP violation;
3. deviation from thermal equilibrium.

Interestingly, the SM contains 1–2–3, but (i) CP violation is too small, and (ii) the deviation from
thermal equilibrium is too small at the electroweak phase transition. The SM expectation is many orders
of magnitude below the observation, due to the suppression of CP violation by

[
Πui 6=uj (m

2
ui −m2

uj )
][

Πdi 6=dj (m
2
di
−m2

dj
)
]
/m12

W , (2)

and mW indicates a typical weak interaction scale here.1

Therefore, CP violation beyond the SM must exist. While this argument does not tell us the scale
of the corresponding new physics, it motivates searching for new sources of CP violation. (It may occur
only in flavor-diagonal processes, such as EDMs, or only in the lepton sector, as in leptogenesis.) In any
case, we want to understand the microscopic origin of CP violation, and how precisely we can test those
CP -violating processes that we can measure.

Equally important is that almost all TeV-scale new physics models contain new sources of CP vi-
olation. Baryogenesis at the electroweak scale may still be viable, and the LHC will probe the remaining
parameter space.

1.2 The SM and flavor
The SM is defined by the gauge interactions,

SU(3)c × SU(2)L × U(1)Y , (3)

the particle content, i.e., three generations of the fermion representations,

QL(3, 2)1/6, uR(3, 1)2/3, dR(3, 1)−1/3, LL(1, 2)−1/2, `R(1, 1)−1 , (4)

and electroweak symmetry breaking. A condensate 〈φ〉 =
( 0

v/
√

2

)
breaks SU(2)L × U(1)Y →

U(1)EM, the dynamics of which we now know is well approximated by a seemingly elementary SM-
like scalar Higgs field.

The kinetic terms in the SM Lagrangian are

Lkin = −1

4

∑

groups

(F aµν)2 +
∑

rep′s

ψ iD/ ψ . (5)

These are always CP conserving, as long as we neglect a possible FF̃ term. The “strong CP prob-
lem" [11] is the issue of why the coefficient of the FF̃ term for QCD is tiny. Its solution is an open
question; however, we know that it is negligible for flavor-changing processes. The Higgs terms,

LHiggs = |Dµφ|2 + µ2φ†φ− λ(φ†φ)2 , (6)

are CP conserving in the SM, but can be CP violating with an extended Higgs sector (already with two
Higgs doublets; three are needed if natural flavor conservation is imposed [12]). Finally, the Yukawa
couplings are,

LY = −Y d
ij Q

I
Li φd

I
Rj − Y u

ij Q
I
Li φ̃ u

I
Rj − Y `

ij L
I
Li φ `

I
Rj + h.c. (7)

1Why is this suppression a product of all up and down quark mass differences, while fewer factors of mass splittings suppress
CP violation in hadron decays and meson mixings?
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The Y ij
u,d are 3× 3 complex matrices, i, j are generation indices, φ̃ = iσ2φ

∗.

After electroweak symmetry breaking, Eq. (7) gives quark mass terms,

Lmass = − dILi (Md)ij d
I
Rj − uILi (Mu)ij u

I
Rj + h.c.

= −
(
dILV

†
dL

)(
VdLMdV

†
dR

)(
VdR d

I
R

)

−
(
uILV

†
uL

)(
VuLMuV

†
uR

)(
VuR u

I
R

)
+ h.c., (8)

where Mf = (v/
√

2)Y f . The last two lines show the diagonalization of the mass matrices necessary to
obtain the physical mass eigenstates,

Mdiag
f ≡ VfLMf V

†
fR , fLi ≡ V ij

fL f
I
Lj , fRi ≡ V ij

fR f
I
Rj , (9)

where f = u, d denote up- and down-type quarks. The diagonalization is different for uLi and dLi,
which are in the same SU(2)L doublet,

(
uILi
dILi

)
= (V †uL)ij

(
uLj

(VuLV
†
dL)jk dLk

)
. (10)

The “misalignment" between these two transformations,

VCKM ≡ VuLV †dL , (11)

is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. By virtue of Eq. (11), it is unitary.

Eq. (10) shows that the charged current weak interactions, which arise from the ψ iD/ ψ terms in
Eq. (5), become non-diagonal in the mass basis

− g

2
QILi γ

µW a
µτ

aQILi + h.c. ⇒ − g√
2

(
uL, cL, tL

)
γµW+

µ VCKM



dL
sL
bL


+ h.c., (12)

where W±µ = (W 1
µ ∓W 2

µ)/
√

2. Thus, charged-current weak interactions change flavor, and this is the
only flavor-changing interaction in the SM.

In the absence of Yukawa couplings, the SM has a global [U(3)]5 symmetry ([U(3)]3 in the quark
and [U(3)]2 in the lepton sector), rotating the 3 generations of the 5 fields in Eq. (4). This is broken by
the Yukawa interactions in Eq. (7). In the quark sector the breaking is

U(3)Q × U(3)u × U(3)d → U(1)B , (13)

In the lepton sector, we do not yet know if U(3)L × U(3)` is fully broken.

1.3 Flavor and CP violation in the SM
Since the Z couples flavor diagonally,2 there are no tree-level flavor-changing neutral currents, such as
KL → µ+µ−. This led GIM [13] to predict the existence of the charm quark. Similarly, K0 –K0

mixing vanishes at tree-level, which allowed the prediction of mc [14, 15] before the discovery of the
charm quark. In the previous examples, because of the unitarity of the CKM matrix,

Vud V
∗
us + Vcd V

∗
cs + Vtd V

∗
ts = 0 . (14)

Expanding the loop functions, e.g., in a FCNC kaon decay amplitude,

Vud V
∗
us f(mu) + Vcd V

∗
cs f(mc) + Vtd V

∗
ts f(mt) , (15)

2Show that there are no tree-level flavor-changingZ couplings in the SM. What if, besides doublets, there were a left-handed
SU(2) singlet quark field as well?
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the result is always proportional to the up-quark mass-squared differences,

m2
i −m2

j

m2
W

. (16)

So FCNCs probe directly the differences between the generations.

One can also see that CP violation is related to irremovable phases of Yukawa couplings. Starting
from a term in Eq. (7),

Yij ψLi φψRj + Y ∗ij ψRj φ
† ψLi

CP−→ Yij ψRj φ
† ψLi + Y ∗ij ψLi φψRj . (17)

The two expressions are identical if and only if a basis for the quark fields can be chosen such that
Yij = Y ∗ij , i.e., that Yij are real.

1.4 Counting flavor parameters
Most parameters of the SM (and also of many of its extensions) are related to flavor. In the CKM matrix,
due to unitarity, 9 complex elements depend on 9 real parameters. Of these 5 phases can be absorbed by
redefining the quark fields, leaving 4 physical parameters, 3 mixing angles and 1 CP violating phase.
This is the only source of CP violation in flavor-changing transitions in the SM.

A more general way to account for all flavor parameters is to consider that the two Yukawa ma-
trices, Y u,d

i,j in Eq. (7), contain 18 real and 18 imaginary parameters. They break the global [U(3)]3 →
U(1)B , see Eq. (13), so there are 26 broken generators (9 real and 17 imaginary). This leaves 10 phys-
ical quark flavor parameters: 9 real ones (the 6 quark masses and 3 mixing angles) and 1 complex CP
violating phase.3

1.5 Neutrino masses
How does lepton flavor differ? With the particle content in Eq. (4), it is not possible to write down a
renormalizable mass term for neutrinos. It would require introducing a νR(1, 1)0 field, a singlet under all
SM gauge groups, to be light, which is unexpected. Such a particle is sometimes called a sterile neutrino,
as it has no SM interactions. Whether there are such fields can only be decided experimentally.

Viewing the SM as a low energy effective theory, there is a single type of dimension-5 gauge
invariant term made of SM fields,

LY = − Y ij
ν

ΛNP
LILi L

I
Lj φφ . (18)

This term gives rise to neutrino masses and also violates lepton number. Its suppression cannot be the
electroweak scale, 1/v (instead of 1/ΛNP), because such a term in the Lagrangian cannot be generated
from SM fields at arbitrary loop level, or even nonperturbatively. [Eq. (18) violates B − L, which is
an accidental symmetry of the SM that is not anomalous.] The above mass term is called a Majorana
mass, as it couples νL to (νL)c instead of νR [the latter occurs for Dirac mass terms, see Eq. (8)]. The key
distinction is whether lepton number is violated or conserved. In the presence of Eq. (18) and the charged
lepton Yukawa coupling in the last term in Eq. (7), the global U(3)L × U(3)` symmetry is completely
broken, and the counting of lepton flavor parameters is4

(12 + 18 couplings)− (18 broken sym.) ⇒ 12 physical parameters . (19)

3Show that for N generations, the CKM matrix depends on N(N − 1)/2 mixing angles and (N − 1)(N − 2)/2 CP
violating phases. So the 2-generation SM conserves CP .

4Show that the Yukawa matrix in Eq. (18) is symmetric, Y ijν = Y jiν . Derive that for N such generations there are N(N −
1)/2 CP violating phases.
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Fig. 1: The unitarity triangle.

These are the 6 masses, 3 mixing angles, and 3 CP violating phases, of which one is the analog of
the CKM phase measurable in oscillation experiments, while two additional “Majorana phases" only
contribute to lepton number violating processes, such as neutrinoless double beta decay.5

1.6 The CKM matrix
Quark mixing is observed to be approximately flavor diagonal. The Wolfenstein parametrization conve-
niently exhibits this,

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 =




1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+ . . . , (20)

where λ ' 0.23 may be viewed as an “expansion parameter". It is a useful book-keeping of the mag-
nitudes of the CKM matrix elements, but it hides which combination of CKM elements are phase-
convention independent. Sometimes it can be useful to think of Vub and Vtd as the ones with O(1)
CP violating phases, but it is important that any CP violating observable in the SM must depend on at
least four CKM elements.6

In any case, the interesting question is not primarily measuring CKM elements, but testing how
precisely the SM description of flavor and CP violation holds. This can be done by “redundant" mea-
surements, which in the SM relate to some combination of flavor parameters, but are sensitive to different
BSM physics, thus testing for (in)consistency. Since there are many experimental constraints, a simple
way to compare different measurements can be very useful. Recall that CKM unitarity implies

∑

k

VikV
∗
jk =

∑

k

VkiV
∗
kj = δij , (21)

and the 6 vanishing relations can be represented as triangles in a complex plane. The most often used
such “unitarity triangle" (shown in Fig. 1) arises from the scalar product of the 1st and 3rd columns,

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0 . (22)

(Unitarity triangles constructed from neighboring columns or rows are “squashed".) We define the α, β,
γ angles of this triangle, and two more,

α ≡ arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

VcdV
∗
cb

)
,

βs ≡ arg

(
−VtsV

∗
tb

VcsV ∗cb

)
, βK ≡ arg

(
− VcsV

∗
cd

VusV ∗ud

)
. (23)

5Can you think of ways to get sensitivity to another linear combination of the two CP violating Majorana phases, besides
the one that enters neutrinoless double beta decay?

6Prove this statement. Are there constraints on which four?
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Fig. 2: The SM CKM fit, and individual constraints (colored regions show 95% CL).

On different continents the φ1 = β, φ2 = α, φ3 = γ, and/or the φs = −2βs notations are used. Here βs
(βK), of order λ2 (λ4), is the small angle of a “squashed" unitarity triangle obtained by multiplying the
2nd column of the CKM matrix with the 3rd (1st) column.

The magnitudes of CKM elements determine the sides of the unitarity triangle. They are mainly
extracted from semileptonic and leptonic K and B decays, and Bd,s mixing. Any constraint which
renders the area of the unitarity triangle nonzero, such as angles, has to measure CP violation. Some
of the most important constraints are shown in Fig. 2, together with the CKM fit in the SM. (Using
ρ̄, η̄ instead of ρ, η simply corresponds to a small modification of the parametrization, to keep unitarity
exact.)

1.7 The low energy effective field theory (EFT) viewpoint
At the few GeV scale, relevant for B, D, and some K decays, all flavor changing processes (both tree
and loop level) are mediated by dozens of higher dimension local operators. They arise from integrating
out heavy particles, W and Z bosons and the t quark in the SM, or not yet observed heavy states (see
Fig. 3). Since the coefficients of a large number of operators depend on just a few parameters in the SM,
there are many correlations between decays of hadrons containing s, c, b quarks, which NP may violate.
From this point of view there is no difference between flavor-changing neutral currents and ∆F = 1
processes, as all flavor-changing processes are due to heavy particles with masses� ms,c,b. Thus, one
can test the SM in many ways by asking (i) does NP modify the coefficients of dimension-6 operators?
(ii) does NP generate operators absent in the SM (e.g., right-handed couplings)?

7

FLAVOR PHYSICS AND CP VIOLATION

275



Fig. 3: Diagrams at the electroweak scale (left) and operators at the scale mb (right).

Table 1: Bounds on some ∆F = 2 operators, (C/Λ2)O, with O given in the first column. The bounds on Λ

assume C = 1, the bounds on C assume Λ = 1 TeV. (From Ref. [19].)

Operator
Bound on Λ [TeV] (C = 1) Bound on C (Λ = 1 TeV)

Observables
Re Im Re Im

(s̄Lγ
µdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; εK
(c̄Lγ

µuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|, φD
(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|, φD

(b̄Lγ
µdL)2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6 ∆mBd ; SψKS

(b̄R dL)(b̄LdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7 ∆mBd ; SψKS
(b̄Lγ

µsL)2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5 ∆mBs ; Sψφ
(b̄R sL)(b̄LsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6 ∆mBs ; Sψφ

1.8 Neutral meson mixing
Let us first sketch a back-of-an-envelope estimate of the mass difference in K0 –K0 mixing. In the SM,

∆mK ∼ α2
w |VcsVcd|2

m2
c −m2

u

m4
W

f2
K mK . (24)

The result is suppressed by CKM angles, a loop factor, the weak coupling, and the GIM mechanism. If
a heavy particle, X , contributes O(1) to ∆mK ,

∣∣∣∣
∆m

(X)
K

∆m
(exp)
K

∣∣∣∣ ∼
∣∣∣∣

g2 Λ3
QCD

M2
X ∆m

(exp)
K

∣∣∣∣ ⇒ MX

g
& 2× 103 TeV . (25)

So even TeV-scale particles with loop-suppressed couplings [g ∼ O(10−3)] can give observable effects.
This illustrates that flavor physics measurements indeed probe the TeV scale if NP has SM-like flavor
structure, and much higher scales if the NP flavor structure is generic.

A more careful evaluation of the bounds in all four neutral meson systems is shown in Table 1.
(See Sec. 2 for the definitions of the observables in the B meson systems.) If Λ = O(1 TeV) then
C � 1, and if C = O(1) then Λ � 1 TeV. The bounds are weakest for B(s) mesons, as mixing is the
least suppressed in the SM in that case. The bounds on many NP models are the strongest from ∆mK

and εK , since so are the SM suppressions. These are built into NP models since the 1970s, otherwise the
models are immediately excluded. In the SM, larger FCNCs andCP violating effects occur inB mesons,
which can be measured precisely. In many BSM models the 3rd generation is significantly different than
the first two, motivated by the large top Yukawa, and may give larger signals in the B sector.

1.9 A few more words on kaons
With recent lattice QCD progress on BK and fK [16], εK has become a fairly precise constraint on the
SM. However, ε′K is notoriously hard to calculate, involving cancellation between two comparable terms,
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each with sizable uncertainties. (Lattice QCD calculations of the hadronic matrix elements for ε′K may
be reliably computed in the future.) At present, we cannot prove nor rule out that a large part of the
observed value of ε′K is due to BSM. Thus, to test CP violation, one had to consider other systems; it
was realized in the 1980s that many precise measurements of CP violation are possible in B decays.

In the kaon sector, precise calculations of rare decays involving neutrinos (see Fig. 4) are possible,
and the SM predictions are [17]

B(K+→ π+νν̄) = (8.4± 1.0)× 10−11, B(K0
L → π0νν̄) = (3.4± 0.6)× 10−11. (26)

The K0
L decay is CP violating, and therefore it is under especially good theoretical control, since it

is determined by the top quark loop contribution, and the CP conserving charm quark contribution is
absent (which enters K+ → π+νν̄, and is subject to some hadronic uncertainty).

The E787/E949 measurement is B(K → π+νν̄) = (17.3+11.5
−10.5)× 10−11 [18], whereas in the KL

mode the experimental upper bound is still many times the SM rate. NA62 at CERN aims to measure
the K+ rate with 10% uncertainty, and will start to have dozens of events in 2015. The KL mode will
probably be first observed by the KOTO experiment at J-PARC.

2 Theory of Some ImportantB Decays
Studying FCNC and CP violation is particularly interesting inB meson decays, because many measure-
ments are possible with clean interpretations.

The main theoretical reasons are: (i) t quark loops are neither GIM nor CKM suppressed; (ii)
large CP violating effects are possible; (iii) some of the hadronic physics is understandable model
independently (mb � ΛQCD).

The main experimental reasons are: (i) the long B lifetime (small |Vcb|); (ii) the Υ(4S) is a clean
source of B mesons at e+e− colliders; (iii) for Bd, the ratio ∆m/Γ = O(1).

2.1 Neutral meson mixing formalism
Similar to neutral kaons, there are two neutral B0 meson flavor eigenstates,

|B0〉 = |b̄ d〉 , |B0〉 = |b d̄〉 . (27)

They mix in the SM due to weak interactions (see Fig. 5). The time evolutions of the two states are
described by the Schrödinger equation,

i
d

dt

(
|B0(t)〉
|B0(t)〉

)
=
(
M − i

2
Γ
)(|B0(t)〉
|B0(t)〉

)
, (28)

where the mass (M ) and the decay (Γ) mixing matrices are 2 × 2 Hermitian matrices. CPT invariance
implies M11 = M22 and Γ11 = Γ22. The heavier and lighter mass eigenstates are the eigenvectors of
M − iΓ/2,

|BH,L〉 = p |B0〉 ∓ q |B0〉 , (29)

� �� �

�����	��

����	���

� �

� � � �
� �

Fig. 4: Diagrams contributing to K → πνν̄ decay.
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Fig. 5: Left: box diagrams that give rise to the B0 − B0 mass difference; Right: operator in the effective theory
below mW whose B meson matrix element determines ∆mB .

and their time dependence is

|BH,L(t)〉 = e−(imH,L+ΓH,L/2)t |BH,L〉 . (30)

Here ∆m ≡ mH −mL and ∆Γ = ΓL − ΓH are the mass and width differences. This defines ∆m to be
positive, but the sign of ∆Γ is physical. Note that mH,L (ΓH,L) are not the eigenvalues of M (Γ).7 The
off-diagonal elements, M12 and Γ12, arise from virtual and on-shell intermediate states, respectively.
In the SM, M12 is dominated by the top-quark box diagrams in Fig. 5. Thus, M12 is determined by
short-distance physics, it is calculable with good accuracy, and is sensitive to high scales. (This is the
complication for D mixing: the W can always be shrunk to a point, but the d and s quarks in the box
diagrams cannot, so long-distance effects are important.) The width difference Γ12 is determined by
on-shell states to which bothB0 andB0 can decay, corresponding to c and u quarks in the box diagrams.

The solution of the eigenvalue equation is

(∆m)2 − (∆Γ)2

4
= 4 |M12|2 − |Γ12|2 , ∆m∆Γ = −4 Re(M12Γ∗12) ,

q

p
= −∆m+ i∆Γ/2

2M12 − iΓ12
= − 2M∗12 − iΓ∗12

∆m+ i∆Γ/2
. (33)

The physical observables that are measurable in neutral meson mixing are

x =
∆m

Γ
, y =

∆Γ

2Γ
,

∣∣∣∣
q

p

∣∣∣∣− 1 . (34)

The orders of magnitudes of the SM predictions are shown in Table 2. That x 6= 0 is established in the
K, B, and Bs mixing; y 6= 0 in the K, D, and Bs mixing; |q/p| 6= 1 in K mixing. The significance of
xD 6= 0 is ∼ 2σ, and in Bd,s mixing there is an unconfirmed DØ signal for |q/p| 6= 1; more below.

Simpler approximate solutions can be obtained expanding about the limit |Γ12| � |M12|. This is a
good approximation in bothBd andBs systems. |Γ12| < Γ always holds, because Γ12 arises from decays
to final states common toB0 andB0. ForBs mixing the world average is ∆Γs/Γs = 0.138±0.012 [20],
while ∆Γd is expected to be ∼ 20 times smaller and is not yet measured. Up to higher order terms in
|Γ12/M12|, Eqs. (33) become

∆m = 2 |M12| , ∆Γ = −2
Re(M12Γ∗12)

|M12|
,

7Derive that the time evolutions of mesons that are B0 and B0 at t = 0 are given by

|B0(t)〉 = g+(t) |B0〉+
q

p
g−(t) |B0〉 , |B0(t)〉 =

p

q
g−(t) |B0〉+ g+(t) |B0〉 , (31)

where, denoting m = (mH +mL)/2 and Γ = (ΓH + ΓL)/2,

g+(t) = e−it(m−iΓ/2)

(
cosh

∆Γ t

4
cos

∆mt

2
− i sinh

∆Γ t

4
sin

∆mt

2

)
,

g−(t) = e−it(m−iΓ/2)

(
− sinh

∆Γ t

4
cos

∆mt

2
+ i cosh

∆Γ t

4
sin

∆mt

2

)
. (32)
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Table 2: Orders of magnitudes of the SM predictions for mixing parameters. The uncertainty of (|q/p| − 1)D is
especially large.

meson x = ∆m/Γ y = ∆Γ/(2Γ) |q/p| − 1

K 1 1 10−3

D 10−2 10−2 10−3

Bd 1 10−2 10−4

Bs 101 10−1 10−5

q

p
= − M∗12

|M12|

(
1− 1

2
Im

Γ12

M12

)
, (35)

where we kept the second term in q/p, as it will be needed later.

2.2 CP violation in decay
This is any form of CP violation that cannot be absorbed in a neutral meson mixing amplitude (also
called direct CP violation). It can occur in any hadron decay, as opposed to those specific to neutral
mesons discussed below. For a given final state, f , the B → f and B → f decay amplitudes can, in
general, receive several contributions

Af = 〈f |H|B〉 =
∑

k

Ak e
iδk eiφk , Af = 〈f |H|B〉 =

∑

k

Ak e
iδk e−iφk . (36)

There are two types of complex phases. Complex parameters in the Lagrangian which enter a decay
amplitude also enter the CP conjugate amplitude but in complex conjugate form. In the SM such “weak
phases", φk, only occur in the CKM matrix. Another type of phase is due to absorptive parts of decay
amplitudes, and gives rise to CP conserving “strong phases", δk. These phases arise from on-shell
intermediate states rescattering into the desired final state, and they are the same for an amplitude and
its CP conjugate. The individual phases δk and φk are convention dependent, but the phase differences,
δi − δj and φi − φj , and therefore |Af | and |Af |, are physical. Clearly, if |Af | 6= |Af | then CP is
violated; this is called CP violation in decay, or direct CP violation.8

There are many measurements of direct CP violation. While some give strong constraints on
NP models which evade the SM suppressions (e.g., ε′K , the first direct CP violation measured with
high significance), at present no single direct CP violation measurement gives a precise test of the
SM, due to the lack of reliable calculations of relevant strong phases. For all observations of direct
CP violation in a single decay mode, viewed in isolation [see the caveat near Eq. (42)], it is possible
that, say, half of the measured value is from BSM. For ε′K , lattice QCD may yield progress in the
future. In certain B decays we may better understand the implications of the heavy quark limit; so far
AK+π0 −AK+π− = 0.12± 0.02 [20], the “Kπ puzzle", is poorly understood.

2.3 CP violation in mixing
If CP were conserved, the mass and CP eigenstates would coincide, and the mass eigenstates would be
proportional to |B0〉± |B0〉, up to phases; i.e., |q/p| = 1 and arg(M12/Γ12) = 0. If |q/p| 6= 1, then CP
is violated. This is called CP violation in mixing. It follows from Eq. (29) that 〈BH |BL〉 = |p|2 − |q|2,
so if CP is violated in mixing, the physical states are not orthogonal. (This illustrates again that CP
violation is a quantum mechanical effect, impossible in a classical system.) The simplest example is the

8Derive that direct CP violation requires interference of at least two contributing amplitudes with different strong and weak
phases, |A|2 − |A|2 = 4A1A2 sin(δ1 − δ2) sin(φ1 − φ2).
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Fig. 6: Status of ASL measurements (from M. Artuso, talk at FPCP 2014). The DØ result is in a 3.6σ tension with
the SM expectation.

CP asymmetry in semileptonic decay of neutral mesons to “wrong sign" leptons (Fig. 6 summarizes the
data),

ASL(t) =
Γ(B0(t)→ `+X)− Γ(B0(t)→ `−X)

Γ(B0(t)→ `+X) + Γ(B0(t)→ `−X)
=

1− |q/p|4
1 + |q/p|4 ' Im

Γ12

M12
. (37)

To obtain the right-hand side, use Eqs. (31) and (32) for the time evolution, and Eq. (35) for |q/p|. In
kaon decays this asymmetry is measured [21], in agreement with the SM prediction, 4 Re εK . In Bd and
Bs decays the asymmetry is expected to be [22]

AdSL ≈ −4× 10−4 , AsSL ≈ 2× 10−5 . (38)

The calculation of Im(Γ12/M12) requires calculating inclusive nonleptonic decay rates, which can be
addressed using an operator product expansion in the mb � ΛQCD limit. Such a calculation has sizable
hadronic uncertainties, the details of which would lead to a long discussion. The constraints on new
physics are significant nevertheless [23], as the m2

c/m
2
b suppression of ASL in the SM can be avoided in

the presence of new physics.

2.4 CP violation in the interference of decay with and without mixing
A third type of CP violation is possible when both B0 and B0 can decay to a final state, f . In the
simplest cases, when f is a CP eigenstate, define

λf =
q

p

Af
Af

. (39)

If there is no direct CP violation in a given mode, then Af = ηf Af , where ηf = ±1 is the CP
eigenvalue of f [+1 (−1) for CP -even (-odd) states]. This is useful, because Af and Af are related by
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Fig. 7: Time dependence of tagged B → ψK decays (top); CP asymmetry (below) [24].

a CP transformation. If CP were conserved, then not only |q/p| = 1 and |Af/Af | = 1, but the relative
phase between q/p and Af/Af also vanishes, hence λf = ±1.

The experimentally measurable CP violating observable is9

af =
Γ[B0(t)→ f ]− Γ[B0(t)→ f ]

Γ[B0(t)→ f ] + Γ[B0(t)→ f ]

= −(1− |λf |2) cos(∆mt)− 2 Imλf sin(∆mt)

1 + |λf |2
≡ Sf sin(∆mt)− Cf cos(∆mt) , (40)

where we have neglected ∆Γ (it is important in the Bs system). The last line defines the S and C
coefficients, which are fit to the experimental data (see Fig. 7). If Imλf 6= 0, then CP violation arises in
the interference between the decay B0 → f , and mixing followed by decay, B0 → B0 → f .

This asymmetry can be nonzero if any type of CP violation occurs. In particular, in both the Bd
and Bs systems

∣∣|q/p| − 1
∣∣ < O(10−2) model independently, and it is much smaller in the SM [see,

Eq. (38)]. If, in addition, amplitudes with a single weak phase dominate a decay, then |Af/Af | ' 1, and
arg (Af/Af ) is just (twice) the weak phase, determined by short-distance physics. It is then possible
that Imλf 6= 0, |λf | ' 1, and although we cannot compute the decay amplitude, we can extract the
weak phase difference between B0 → f and B0 → B0 → f in a theoretically clean way from the
measurement of

af = Imλf sin(∆mt) . (41)

There is an interesting subtlety. Consider two final states, f1,2. It is possible that direct CP
violation in each channel, |λf1 | − 1 and |λf2 | − 1, is unmeasurably small, but direct CP violation is
detectable nevertheless. If

ηf1Im(λf1) 6= ηf2Im(λf2) , (42)

then CP violation must occur outside the mixing amplitude, even though it may be invisible in the data
on any one final state.

2.5 sin 2β fromB → ψKS,L

This is one of the cleanest examples of CP violation in the interference between decay with and without
mixing, and one of the theoretically cleanest measurements of a CKM parameter.

9Derive the CP asymmetry in Eq. (40) using Eq. (31)). For extra credit, keep ∆Γ 6= 0.
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Fig. 8: “Tree" (left) and “penguin" (right) contributions to B → ψKS (from Ref. [25]).

There are “tree" and “penguin" contributions to B → ψKS,L, with different weak and strong
phases (see Fig. 8). The tree contribution is dominated by the b → cc̄s transition, while there are
penguin contributions with three different combinations of CKM elements,

AT = VcbV
∗
cs Tcc̄s , AP = VtbV

∗
ts Pt + VcbV

∗
cs Pc + VubV

∗
us Pu . (43)

(Pu can be defined to absorb the VubV ∗us Tuūs “tree" contribution.) We can rewrite the decay amplitude
using VtbV ∗ts + VcbV

∗
cs + VubV

∗
us = 0 to obtain

A = VcbV
∗
cs (Tcc̄s + Pc − Pt) + VubV

∗
us (Pu − Pt)

≡ VcbV
∗
cs T + VubV

∗
us P , (44)

where the second line defines T and P . Since |(VubV ∗us)/(VcbV ∗cs)| ≈ 0.02, the T amplitude with VcbV ∗cs
weak phase dominates. Thus,

λψKS,L = ∓
(
V ∗tbVtd
VtbV

∗
td

)(
VcbV

∗
cs

V ∗cbVcs

)(
VcsV

∗
cd

V ∗csVcd

)
= ∓e−2iβ , (45)

and so ImλψKS,L = ± sin 2β. The first term is the SM value of q/p in Bd mixing, the second is A/A,
the last one is p/q in the K0 system, and ηψKS,L = ∓1. Note that without K0−K0 mixing there would
be no interference between B0 → ψK0 and B0 → ψK0. The accuracy of the relation between λψKS,L
and sin 2β depends on model dependent estimates of |P/T |, which are below unity, so one expects it to
be of order ∣∣∣∣

VubV
∗
us

VcbV ∗cs

P

T

∣∣∣∣ <∼ 10−2 . (46)

The absence of detectable direct CP violation does not in itself bound this. To fully utilize future LHCb
and Belle II data, better estimates are needed.

The first evidence forCP violation outside the kaon sector was the BaBar and Belle measurements
of SψK . The current world average is [20]

sin 2β = 0.682± 0.019 . (47)

This is consistent with other constraints, and shows that CP violation in quark mixing is an O(1) effect,
which is simply suppressed in K decays by small flavor violation suppressing the third generation’s
contributions.

2.6 φs ≡ −2βs fromBs → ψφ

The analogous CP asymmetry in Bs decay, sensitive to BSM contributions to Bs –Bs mixing, is Bs →
ψφ. Since the final state consists of two vector mesons, it is a combination of CP -even (L = 0, 2)
and CP -odd (L = 1) partial waves. What is actually measured is the time-dependent CP asymmetry
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Fig. 9: Measurements of CP violation in Bs → ψφ and ∆Γs (from Ref. [20]).

for each CP component of the ψK+K− and ψπ+π− final states. The SM prediction is suppressed
compared to β by λ2, and is rather precise, βs = 0.0182+0.0007

−0.0006 [26]. The latest LHCb result using
3 fb−1 data is [27] (Fig. 9 shows all measurements)

φs ≡ −2βs = −0.010± 0.039 , (48)

which has an uncertainty approaching that of 2β, suggesting that the “room for new physics" in Bs
mixing is no longer larger than in Bd (more below).

2.7 “Penguin-dominated" measurements of β(s)

Time dependent CP violation in b → s dominated decays is a sensitive probe of new physics. Tree-
level contributions to b → ss̄s transitions are expected to be small, and the penguin contributions to
B → φKS (left diagram in Fig. 10) are

AP = VcbV
∗
cs (Pc − Pt) + VubV

∗
us (Pu − Pt) . (49)

Due to |(VubV ∗us)/(VcbV ∗cs)| ≈ 0.02 and expecting |Pc−Pt|/|Pu−Pt| = O(1), theB → φKS amplitude
is also dominated by a single weak phase, VcbV ∗cs. Therefore, the theory uncertainty relating SφKS to
sin 2β is small, although larger than in B → ψKS . There is also a “tree" contribution from b → uūs
followed by uū → ss̄ rescattering (right diagram in Fig. 10). This amplitude is proportional to the
suppressed CKM combination, VubV ∗us, and it is actually not separable from Pu − Pt. Unless its matrix
element is largely enhanced, it should not upset the ImλφKS = sin 2β + O(λ2) expectation in the SM.
Similar reasons make many other modes, such asB → η(′)KS ,Bs → φφ, etc., interesting and promising
to study.

2.8 The determinations of γ and α
By virtue of Eq. (23), γ does not depend on CKM elements involving the top quark, so it can be measured
in tree-level B decays. This is an important distinction from α and β, and implies that γ is less likely to
be affected by BSM physics.

Most measurements of γ utilize the fact that interference of B− → D0K− (b→ cūs) and B− →
D0K− (b → uc̄s) transitions can be studied in final states accessible in both D0 and D0 decays [28].
(A notable exception is the measurement from the four time-dependent Bs and Bs → D±s K

∓ rates,
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Fig. 10: “Penguin" (left) and “tree" (right) contributions to B → φKS (from Ref. [25]).

which is possible at LHCb.) It is possible to measure the B and D decay amplitudes, their relative
strong phases, and the weak phase γ from the data. There are many variants, based on different D decay
channels [29–34]. The best current measurement comes from D0, D0 → KS π

+π− [33, 34], in which
case both amplitudes are Cabibbo allowed, and the analysis can be optimized by studying the Dalitz plot
dependence of the interference. The world average of all γ measurements is [26]

γ =
(
73.2+6.3

−7.0

)◦
. (50)

Most importantly, the theory uncertainty in the SM measurement is smaller than the accuracy of any
planned or imaginable future experiment.

The measurements usually referred to as determining α, measure π − β − γ, the third angle of
the unitarity triangle in any model in which the unitarity of the 3× 3 CKM matrix is maintained. These
measurements are in time-dependent CP asymmetries in B → ππ, ρρ, and ρπ decays. In these decays
the b → uūd “tree" amplitudes are not much larger than the b → ∑

q qq̄d “penguin" contributions,
which have different weak phases.10 The tree contributions change isospin by ∆I = 3/2 or 1/2, while
the penguin contribution is ∆I = 1/2 only. It is possible to use isospin symmetry of the strong inter-
action to isolate CP violation in the ∆I = 3/2 channel, eliminating the penguin contributions [35–37],
yielding [26]

α =
(
87.7+3.5

−3.3

)◦
. (51)

Thus, the measurements of α are sensitive to new physics in B0 –B0 mixing and via possible ∆I = 3/2
(or ∆I = 5/2) contributions [38].

2.9 New physics inBd andBs mixing
Although the SM CKM fit in Fig. 2 shows impressive and nontrivial consistency, the implications of the
level of agreement are often overstated. Allowing new physics contributions, there are a larger number
of parameters related to CP and flavor violation, and the fits become less constraining. This is shown in
the left plot in Fig. 11 where the allowed region is indeed significantly larger than in Fig. 2 (the 95% CL
combined fit regions are indicated on both plots).

It has been known for decades that the mixing of neutral mesons is particularly sensitive to new
physics, and probes some of the highest scales. In a large class of models, NP has a negligible impact on
tree-level SM transitions, and the 3× 3 CKM matrix remains unitary. (In such models α+ β + γ = π is
maintained, and independent measurements of π − β − α and γ can be averaged.) We can parametrize
the NP contributions to neutral meson mixing as

M12 = MSM
12 (1 + hq e

2iσq) , q = d, s . (52)

The constraints on hq and σq in the B0
d and B0

s systems are shown in the top and bottom rows of Fig. 12,
respectively.

10Show that if the “tree" amplitudes dominated these decays then λ(tree)
ππ = e2iα.
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For example, if NP modifies the SM operator describing B mixing, by

C2
q

Λ2
(b̄Lγ

µqL)2 , (53)

then one finds

hq '
|Cq|2
|V ∗tb Vtq|2

(
4.5 TeV

Λ

)2

. (54)

We can then translate the plots in Fig. 12 to the scale of new physics probed. The summary of expected
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Table 3: The scale of the operator in Eq. (53) probed by B0
d and B0

s mixings with 50 ab−1 Belle II and 50 fb−1

LHCb data. The differences due to CKM-like hierarchy of couplings and/or loop suppression is indicated. (From
Ref. [39].)

Couplings
NP loop Scales (TeV) probed by

order Bd mixing Bs mixing
|Cq| = |VtbV ∗tq| tree level 17 19

(CKM-like) one loop 1.4 1.5
|Cq| = 1 tree level 2× 103 5× 102

(no hierarchy) one loop 2× 102 40

sensitivities are shown in Table 3. The sensitivities, even with SM-like loop- and CKM-suppressed
coefficients, are comparable to the scales probed by the LHC.

3 Some Implications of the Heavy Quark Limit
We have not directly discussed so far that most quark flavor physics processes (other than top quark
decays) involve strong interactions in a regime where perturbation theory is not (or not necessarily)
reliable. The running of the QCD coupling at lowest order is

αs(µ) =
αs(Λ)

1 +
αs
2π

β0 ln
µ

Λ

, (55)

where β0 = 11−2nf/3 and nf is the number of light quark flavors. Even inB decays, the typical energy
scale of certain processes can be a fraction ofmb, possibly around or below a GeV. The ways I know how
to deal with this in a tractable way are (i) symmetries of QCD, exact, or approximate in some limits (CP
invariance, heavy quark symmetry, chiral symmetry); (ii) the operator product expansion (for inclusive
decays); (iii) lattice QCD (for certain hadronic matrix elements). An example of (i) is the determination
of sin 2β from B → ψKS , see Eq. (46). So is the determination of |Vcb| from B → D∗`ν̄, see Eq. (73)
below. An example of (ii) is the analysis of inclusive B → Xsγ decay rates discussed below, which
provides some of the strongest constraints on many TeV-scale BSM scenarios.

The role of (strong interaction) model-independent measurements cannot be overstated. To es-
tablish that a discrepancy between experiment and theory is a sign of new physics, model-independent
predictions are crucial. Results that rely on modeling nonperturbative strong interaction effects will not
disprove the SM. Most model-independent predictions are of the form,

Observable = (calculable terms)×
{

1 +
∑

i,k

[
(small parameters)i

]k
}
, (56)

where the small parameters can be ΛQCD/mb, ms/ΛχSB, αs(mb), etc. For the purpose of these lectures,
strong-interaction model-independent means that the theoretical uncertainty is suppressed by small pa-
rameters, so that theorists argue about O(1)×(small numbers) instead of O(1) effects. There are always
theoretical uncertainties suppressed by some (small parameter)n, which cannot be calculated from first
principles. If the goal is to test the SM, one must assign O(1) uncertainties in such terms.

In addition, besides formal suppressions of certain corrections in some limits, experimental guid-
ance is always needed to establish how well an expansion works; for example, fπ, mρ, and m2

K/ms are
all of order ΛQCD, but their numerical values span an order of magnitude.

3.1 Heavy quark symmetry (HQS)
In hadrons composed of heavy quarks the dynamics of QCD simplifies. Mesons containing a heavy
quark – heavy antiquark pair, QQ, form positronium-type bound states, which become perturbative in
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Fig. 13: Spectroscopy of B and D mesons. For each doublet level, the spin-parity of the light degrees of freedom,
sπl

l , and the names of the physical states are indicated.

the limit mQ � ΛQCD [40]. In mesons composed of a heavy quark, Q, and a light antiquark, q̄ (and
gluons and qq̄ pairs), the heavy quark acts as a static color source with fixed four-velocity, vµ, and the
wave function of the light degrees of freedom (the “brown muck") become insensitive to the spin and
mass (flavor) of the heavy quark, resulting in heavy quark spin-flavor symmetries [41].

The physical picture is similar to atomic physics, where simplifications occur due to the fact that
the electron mass, me, is much smaller than the nucleon mass, mN . The analog of flavor symmetry is
that isotopes have similar chemistry, because the electrons’ wave functions become independent of mN

in the mN � me limit. The analog of spin symmetry is that hyperfine levels are almost degenerate,
because the interaction of the electron and nucleon spin diminishes in the mN � me limit.

3.2 Spectroscopy of heavy-light mesons
The spectroscopy of heavy hadrons simplifies due to heavy quark symmetry. We can write the angular
momentum of a heavy-light meson as J = ~sQ + ~sl, where ~sl is the total angular momentum of the
light degrees of freedom. Angular momentum conservation, [ ~J,H] = 0, and heavy quark symmetry,
[~sQ,H] = 0, imply [~sl,H] = 0. In the mQ � ΛQCD limit, the spin of the heavy quark and the total
angular momentum of light degrees of freedom are separately conserved, modified only by subleading
interactions suppressed by ΛQCD/mQ.

Thus, hadrons containing a single heavy quark can be labeled with sl, and for any value of sl there
are two (almost) degenerate states with total angular momentum J± = sl ± 1

2 . (An exception occurs for
the lightest baryons containing a heavy quark, when sl = 0, and there is a single state with J = 1

2 , the
Λb and Λc.) The ground state mesons with Qq̄ flavor quantum numbers contain light degrees of freedom
with spin-parity sπll = 1

2

−, giving a doublet containing a spin zero and spin one meson. For Q = c these
are the D and D∗, while Q = b gives the B and B∗ mesons.

The mass splittings between the doublets, ∆i, are of order ΛQCD, and are the same in theB andD
sectors at leading order in ΛQCD/mQ, as illustrated in Fig. 13. The mass splittings within each doublet
are of order Λ2

QCD/mQ. This is supported by experimental data; e.g., for the sπll = 1
2

− ground state
doublets mD∗ −mD ≈ 140 MeV while mB∗ −mB ≈ 45 MeV, and their ratio, 0.3, is consistent with
mc/mb.

Let us mention a puzzle. The mass splitting of the lightest vector and pseudoscalar mesons being
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O(Λ2
QCD/mQ) implies thatm2

V −m2
P is approximately constant. This argument relies onmQ � ΛQCD.

The data are
m2
B∗ −m2

B = 0.49 GeV2 , m2
B∗s
−m2

Bs
= 0.50 GeV2 ,

m2
D∗ −m2

D = 0.54 GeV2 , m2
D∗s
−m2

Ds
= 0.58 GeV2 ,

m2
ρ −m2

π = 0.57 GeV2 , m2
K∗ −m2

K = 0.55 GeV2 .

(57)

It is not understood why the light meson mass splittings in the last line are so close numerically. (It is
expected in the nonrelativistic constituent quark model, which fails to account for several properties of
these mesons.) There must be something more going on than heavy quark symmetry, and if this were
its only prediction, we could not say that there is strong evidence that it is useful. So in general, to
understand a theory, it is not only important how well it works, but also how it breaks down outside its
range of validity.

3.3 Heavy quark effective theory (HQET)
The consequences of heavy quark symmetry and the corrections to the symmetry limit can be studied
by constructing an effective theory which makes the consequences of heavy quark symmetry explicit.
The heavy quark in a heavy-light meson is almost on-shell, so we can expand its momentum as pµQ =

mQv
µ + kµ, where |k| = O(ΛQCD) and v2 = 1. Expanding the heavy quark propagator,

i

p/−mQ
=
i(p/+mQ)

p2 −m2
Q

=
i(mQv/+ k/+mQ)

2mQ v · k + k2
=

i

v · k
1 + v/

2
+ . . . . (58)

it becomes independent of the heavy quark mass, a manifestation of heavy quark flavor symmetry. Hence
the Feynamn rules simplify,

−→
i

p/−mQ

i

v · k P+(v) ,
(59)

where P± = (1± v/)/2 are projection operators, and the double line denotes the heavy quark propagator.
In the rest frame of the heavy quark, P+ = (1 + γ0)/2 projects onto the heavy quark (rather than
anti-quark) components. The coupling of a heavy quark to gluons simplifies due to

P+γ
µP+ = P+v

µP+ = vµP+ , (60)

hence we can replace

···························································································································································································································································································································· −→ ····························································································································································································································································································································

igγµ
λa

2
igvµ

λa

2
.

(61)

The lack of any γ matrix is a manifestation of heavy quark spin symmetry.

To derive the effective Lagrangian of HQET, it is convenient to decompose the four-component
Dirac spinor as

Q(x) = e−imQv·x
[
Qv(x) +Qv(x)

]
, (62)

where
Qv(x) = eimQv·x P+(v)Q(x) , Qv(x) = eimQv·x P−(v)Q(x) . (63)

The eimQv·x factor subtracts mQv from the heavy quark momentum. At leading order only Qv con-
tributes, and the effects ofQv are suppressed by powers of ΛQCD/mQ. The heavy quark velocity, v, acts
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as a label of the heavy quark fields [42], because v cannot be changed by soft interactions. In terms of
these fields the QCD Lagrangian simplifies,

L = Q̄(iD/ −mQ)Q = Q̄viD/Qv + . . . = Q̄v(iv ·D)Qv + . . . , (64)

where the ellipses denote terms suppressed by powers of ΛQCD/mQ. The absence of any Dirac matrix
is a consequence of heavy quark symmetry, which implies that the heavy quark’s propagator and its
coupling to gluons are independent of the heavy quark spin. This effective theory provides a framework
to calculate perturbative O(αs) corrections and to parametrize nonperturbative O(ΛQCD/mQ) terms.

3.4 SemileptonicB → D(∗)`ν̄ decays and |Vcb|
Heavy quark symmetry is particularly predictive for these decays. In the mb,c � ΛQCD limit, the
configuration of the brown muck only depends on the four-velocity of the heavy quark, but not on its
mass and spin. So when the weak current changes suddenly (on a time scale� Λ−1

QCD) the flavor b→ c,
the momentum ~pb → ~pc, and possibly flips the spin, ~sb → ~sc, the brown muck only feels that the four-
velocity of the static color source changed, vb → vc. Therefore, the matrix elements that describe the
transition probabilities from the initial to the final state are independent of the Dirac structure of weak
current, and can only depend on a scalar quantity, w ≡ vb · vc.

The ground-state pseudoscalar and vector mesons for each heavy quark flavor (the spin symmetry
doublets D(∗) and B(∗)) can be represented by a “superfield", combining fields with different spins, that
has the right transformation property under heavy quark and Lorentz symmetry,

M(Q)
v =

1 + v/

2

[
γµM∗(Q)

µ (v, ε)− iγ5M
(Q)(v)

]
. (65)

The B(∗) → D(∗) matrix element of any current can be parametrized as

〈M (c)(v′) | c̄v′ Γ bv |M (b)(v)〉 = Tr
[
F (v, v′)M̄(c)

v′ ΓM(b)
v

]
. (66)

Because of heavy quark symmetry, there cannot be other Dirac matrices between the M̄(c)
v′ and M(b)

v

fields. The most general form of F is

F (v, v′) = f1(w) + f2(w)v/+ f3(w)v/′ + f4(w)v/v/′. (67)

As stated above, w ≡ v · v′ is the only possible scalar, simply related to q2 = (pB − pD(∗))2 =

m2
B +m2

D(∗) − 2mBmD(∗)w. UsingM(Q)
v = P+(v)M(Q)

v P−(v), we can write

F ·= P−(v)FP−(v′) =
[
f1(w)− f2(w)− f3(w) + f4(w)

]
P−(v)P−(v′)

= ξ(w)P−(v)P−(v′) ·= ξ(w) . (68)

This defines the Isgur-Wise function, ξ(w), and ·= denotes relations valid when evaluated inside the trace
in Eq. (66).

Since only weak interactions change b-quark number, the matrix element of b̄γ0b, the b-quark
number current, is 〈B(v)|b̄γ0b|B(v)〉 = 2mBv0. Comparing it with the result obtained using Eq. (66),

〈B(v)|b̄γµb|B(v)〉 = 2mBvµ ξ(1) , (69)

implies that ξ(1) = 1. That is, at w = 1, the “zero recoil" point, when the D(∗) is at rest in the rest-frame
of the decaying B meson, the configuration of the brown muck does not change at all, and heavy quark
symmetry determines the hadronic matrix element (see Fig. 14). Moreover, the six form factors that
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Fig. 14: Illustration of strong interactions parametrized by the Isgur-Wise function.

describe semileptonic B → D(∗)`ν̄ decays are related to this universal function, which contains all the
low energy nonperturbative hadronic physics relevant for these decays.11

The determination of |Vcb| from B → D(∗)`ν̄ decays use fits to the decay distributions to measure
the rates near zero recoil, w = 1. The rates can be schematically written as

dΓ(B → D(∗)`ν̄)

dw
= (calculable) |Vcb|2

{
(w2 − 1)1/2F2

∗ (w), for B → D∗,

(w2 − 1)3/2F2(w), for B → D .
(72)

Both F(w) and F∗(w) are equal to the Isgur-Wise function in the mQ → ∞ limit, and F(∗)(1) = 1 is
the basis for a model-independent determination of |Vcb|. There are calculable corrections in powers of
αs(mc,b), as well as terms suppressed by ΛQCD/mc,b, which can only be parametrized, and that is where
hadronic uncertainties enter. Schematically,

F∗(1) = 1(Isgur-Wise) + cA(αs) +
0(Luke)
mc,b

+
(lattice or models)

m2
c,b

+ . . . ,

F(1) = 1(Isgur-Wise) + cV (αs) +
(lattice or models)

mc,b
+ . . . . (73)

The absence of the O(ΛQCD/mc,b) term for B → D∗`ν̄ at zero recoil is a consequence of Luke’s
theorem [43]. Calculating corrections to the heavy quark limit in these decays is a vast subject. Heavy
quark symmetry also makes model-independent predictions for B decays to excited D mesons [44].
It is due to heavy quark symmetry that the SM predictions for the recently observed anomalies in the
B → D(∗)τ ν̄ branching ratios [45] are under good theoretical control.

11Using only Lorentz invariance, six form factors parametrize B → D(∗)`ν̄ decay,

〈D(v′)|Vν |B(v)〉 =
√
mBmD

[
h+ (v + v′)ν + h− (v − v′)ν

]
,

〈D∗(v′)|Vν |B(v)〉 = i
√
mBmD∗ hV εναβγε

∗αv′βvγ ,

〈D(v′)|Aν |B(v)〉 = 0, (70)

〈D∗(v′)|Aν |B(v)〉 =
√
mBmD∗

[
hA1 (w + 1)ε∗ν − hA2 (ε∗ · v)vν − hA3 (ε∗ · v)v′ν

]
,

where Vν = c̄γνb, Aν = c̄γνγ5b, and hi are functions of w. Show that this is indeed the most general form of these matrix
elements, and that at leading order in ΛQCD/mQ,

h+(w) = hV (w) = hA1(w) = hA3(w) = ξ(w) , h−(w) = hA2(w) = 0 . (71)
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3.5 Inclusive semileptonic decays andB → Xsγ

Instead of identifying all final-state particles in a decay, sometimes it is useful to sum over final-state
hadrons that can be produced by the strong interaction, subject to constraints determined by short-
distance physics, e.g., the energy of a photon or a charged lepton. Although hadronization is nonper-
turbative, it occurs on much longer distance (and time) scales than the underlying weak decay. Typically
we are interested in a quark-level transition, such as b→ c`ν̄, b→ sγ, etc., and we would like to extract
from the data short distance parameters, |Vcb|, C7(mb), etc. To do this, we need to relate the quark-level
operators to the measurable decay rates.

For example, consider inclusive semileptonic b→ c decay mediated by

Osl = −4GF√
2
Vcb (Jbc)

α (J`ν)α , (74)

where Jαbc = c̄ γαPLb and Jβ`ν = ¯̀γβPLν. The decay rate is given by the square of the matrix element,
integrated over phase space, and summed over final states,

Γ(B → Xc`ν̄) ∼
∑

Xc

∫
d[PS]

∣∣〈Xc`ν̄|Osl|B〉
∣∣2. (75)

Since leptons have no strong interaction, the squared matrix element and phase space factorize into
B → XcW

∗ and a perturbatively calculable leptonic part, W ∗ → `ν̄. The nontrivial part is the hadronic
tensor,

Wµν =
∑

Xc

(2π)3 δ4(pB − q − pX) 〈B|Jµ†bc |Xc〉 〈Xc|Jνbc|B〉

=
1

π
Im

∫
d4x e−iq·x 〈B|T

{
Jµ†bc (x) Jνbc(0)

}
|B〉 , (76)

where the second line is obtained using the optical theorem, and T denotes here the time-ordered product
of the operators. It is this time-ordered product that can be expanded in an operator product expansion
(OPE) [46–49]. In the mb � ΛQCD limit, the time-ordered product is dominated by short distances,
x� Λ−1

QCD, and one can express the hadronic tensorWµν as a sum of matrix elements of local operators.
Schematically,
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+ . . . (77)

This is analogous to the multipole expansion. At leading order in ΛQCD/mb the lowest dimension
operator is b̄Γ b, where Γ is some (process-dependent) Dirac matrix. Its matrix element is determined
by the b quark content of the initial state using Eqs. (66) and (69); therefore, inclusive B decay rates
in the mb � ΛQCD limit are equal to the b quark decay rates. Subleading effects are parametrized by
matrix elements of operators with increasing number of derivatives, which are sensitive to the distribution
of chromomagnetic and chromoelectric fields. There are no O(ΛQCD/mb) corrections, because the
B meson matrix element of any dimension-4 operator vanishes, 〈B(v)| Q̄(b)

v iDαΓQ
(b)
v |B(v)〉 = 0.

The leading nonperturbative effects, suppressed by Λ2
QCD/m

2
b , are parametrized by two HQET matrix

elements, denoted by λ1,2. This is the basis of the model-independent determinations of mb and |Vcb|
from inclusive semileptonic B decays.

23

FLAVOR PHYSICS AND CP VIOLATION

291



Some important applications, such as B → Xsγ [50] or B → Xu`ν̄, are more complicated. Near
boundaries of phase space, the energy release to the hadronic final state may not be large. One can think
of the OPE as an expansion in the residual momentum of the b quark, k, shown in Eq. (77),

1

(mbv + k − q)2 −m2
q

=
1

[(mbv − q)2 −m2
q ] + [2k · (mbv − q)] + k2

. (78)

For the expansion in k to converge, the final state phase space can only be restricted in a way that allows
hadronic final states, X , to contribute with

m2
X −m2

q � EXΛQCD � Λ2
QCD . (79)

In B → Xsγ when an experimental lower cut is imposed on Eγ to reject backgrounds, the left-most
inequality can be violated. The same occurs in B → Xu`ν̄ when experimental cuts are used to suppress
B → Xc`ν̄ backgrounds. If the right-most inequality in Eq. (79) is satisfied, a more complicated OPE
in terms of nonlocal operators is still possible [51, 52].

4 Top, Higgs, and New Physics Flavor
4.1 The scale of new physics
In the absence of direct observation of BSM particles so far, viewing the standard model as a low energy
effective theory, the search for new physics amounts to seeking evidence for higher dimension operators
invariant under the SM gauge symmetries.

Possible dimension-6 operators include baryon and lepton number violating operators, such as
1

Λ2QQQL. Limits on the proton lifetime imply Λ >∼ 1016 GeV. Non-SM flavor and CP violation could
arise from 1

Λ2QQ̄QQ̄. The bounds on the scale of such operators are Λ >∼ 104...7 GeV, depending on
the generation index of the quark fields. Precision electroweak measurements constrain operators of the
form 1

Λ2 (φDµφ)2 to have Λ >∼ 103...4 GeV. These constraints are remarkable, because flavor, CP , and
custodial symmetry are broken by the SM itself, so it is unlikely for new physics to have a symmetry
reason to avoid introducing additional contributions.

As mentioned earlier, there is a single type of gauge invariant dimension-5 operators made of SM
fields, which give rise to neutrino masses, see Eq. (18). The observed neutrino mass square differences
hint at scales Λ > 1010 GeV for these 1

Λ(Lφ)2 type operators (in many models Λ ∼ 1015 GeV). Such
mass terms violate lepton number. It is an experimental question to determine the nature of neutrino
masses, which is what makes the search for neutrinoless double beta decay (and determining the neutrino
mass hierarchy) so important.

4.2 Charged lepton flavor violation (CLFV)
The SM with vanishing neutrino masses would have predicted lepton flavor conservation. We now know
that this is not the case, hence there is no reason to impose it on possible new physics scenarios. In
particular, if there are TeV-scale new particles that carry lepton number (e.g., sleptons), then they have
their own mixing matrices, which could give rise to CLFV signals. While the one-loop SM contributions
to processes such as µ → eγ are suppressed by the neutrino mass-squared differences12, the NP contri-
butions have a-priori no such suppressions, other than the somewhat heavier scales and being generated
at one-loop in most BSM scenarios.

Within the next decade, the CLFV sensitivity will improve by about 4 orders of magnitude, corre-
sponding to an increase in the new physics scale probed by an order of magnitude, possibly the largest
such gain in sensitivity achievable soon. If any CLFV signal is discovered, we would want to measure
many processes to map out the underlying patterns, including µ → eγ, µ → 3e, τ → eγ, τ → 3e,
τ → µγ, τ → 3µ, etc.

12Estimate the µ→ eγ rate in the SM.
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4.3 Electric dipole moments (EDM)
The experimental bound on the neutron EDM implies that a possible dimension-4 term in the SM
Lagrangian, θQCDFF̃/(16π2), has a coefficient θQCD

<∼ 10−10. While there are plausible explana-
tions [11], we do not yet know the resolution with certainty. Neglecting this term, CP violation in the
CKM matrix only gives rise to quark EDMs at three-loop order, and lepton EDMs at four-loop level,
resulting in EDMs below near future experimental sensitivities. On the other hand, new physics (e.g.,
supersymmetry) could generate both quark and lepton EDMs at the one-loop level, so even if the scale
of new physics is 10 – 100 TeV, observable effects could arise.

4.4 Top quark flavor physics
Well before the LHC turned on, it was already certain that it was going to be a top quark factory; the
HL-LHC is expected to produce a few times 109 tt̄ pairs. In the SM, top quarks almost exclusively decay
to Wb, as

∣∣|Vtb| − 1
∣∣ ≈ 10−3. The current bounds on FCNC top decays are at the 10−3 level, and the

ultimate LHC sensitivity is expected to reach the 10−5 to 10−6 level, depending on the decay mode. The
SM rates are much smaller13, so observation of any FCNC top decay signal would be clear evidence for
new physics.

There is obvious complementarity between FCNC searches in the top sector and low energy flavor
physics bounds. Since tL is in the same SU(2) doublet as bL, several operators have correlated effects
in t and b decays. For some operators, mainly those involving left-handed quark fields, the low energy
constraints already exclude a detectable LHC signal, whereas other operators may still have large enough
coefficients to yield detectable effects in top FCNCs at the LHC (see, e.g., Ref. [53]).

The tt̄ forward-backward asymmetry provided a clear example recently of the interplay between
flavor physics and anomalies in the high energy collider data (even those that may seem little to do with
flavor at first). The CDF measurement in 2011, AFB

tt̄ (mtt̄ > 450 GeV) = 0.475± 0.114 [54], was stated
to be 3.4σ above the NLO SM prediction. At the LHC, the same underlying physics would produce a
rapidity asymmetry.14 It became quickly apparent that models that could account for this signal faced
severe flavor constraints. This provides an example (with hundreds of papers in the literature) that flavor
physics will likely be crucial to understand what the explanation of a high-pT LHC anomaly can be, and
also what it cannot be. By now this excitement has subsided, because the significance of the Tevatron
anomaly decreased and because the LHC has not seen any anomalies in the top production data predicted
by most models (see, e.g., Ref. [55]) built to explain the Tevatron signal.

4.5 Higgs flavor physics
With the discovery of a SM-like Higgs boson at the LHC, it is now clear that the LHC is also a Higgs
factory. Understanding the properties of this particle entails both the precision measurements of its
observed (and not yet seen) couplings predicted by the SM, and the search for possible decays forbidden
in the SM.

The source of Higgs flavor physics, obviously, is the same set of Yukawa couplings whose structure
and consequences we also seek to understand in low energy flavor physics measurements. While in terms
of SUSY model building mh ≈ 125 GeV is challenging to understand, this mass allows experimentally
probing many Higgs production and decay channels. The fact that ultimately the LHC will be able to
probe Higgs production via (i) gluon fusion (gg → h), (ii) vector boson fusion (qq̄ → qq̄h), (iii) W/Z
associated production (qq̄ → hZ or hW ), (iv) b/t associated production (gg → hbb̄ or htt̄) sensitively
depend on the Yukawa couplings and mh.15

13Estimate the t→ cZ and t→ cγ branching ratios in the SM.
14Show that if in tt̄ production at the Tevatron more t goes in the p than in the p̄ direction, then at the LHC the mean

magnitude of the t quark rapidity is greater than that of the t̄.
15How would Higgs production and decay change if mt were, say, 50 GeV?
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If we allow new physics to contribute to Higgs-related processes, which is especially well moti-
vated for loop-induced production (e.g., the dominant gg → h) and decay (e.g., h→ γγ) channels, then
the first evidence for non-universal Higgs couplings to fermions was the bound on h → µ+µ− below
10×(SM prediction), combined with the observations of h→ τ+τ− at the SM level, implicitly bounding
B(h→ µ+µ−)/B(h→ τ+τ−) <∼ 0.03.

There is an obvious interplay between the search for flavor non-diagonal Higgs decays and indirect
bounds from flavor-changing quark transitions and bounds on CLFV in the lepton sector. For example,
yeµ 6= 0 would generate a one-loop contribution to µ → eγ, yuc 6= 0 would generate D0 –D0 mixing,
etc. [56]. In some cases the flavor physics constraints imply that there is no chance to detect a particular
flavor-violating Higgs decay, while signals in some modes may be above future direct search sensitivities.
The interplay between measurements and constraints on flavor-diagonal and flavor-changing Higgs decay
modes can provide additional insight on which flavor models are viable (see, e.g., Ref. [57]).

4.6 Supersymmetry and flavor
While I hope the LHC will discover something unexpected, of the known BSM scenarios, supersym-
metry is particularly interesting, and its signals have been worked out in great detail. The minimal
supersymmetric standard model (MSSM) contains 44 CP violating phases and 80 other CP conserv-
ing flavor parameters [58].16 It has long been known that flavor physics (neutral meson mixings, ε′K ,
µ → eγ, B → Xsγ, etc.) imposes strong constraints on the SUSY parameter space. The MSSM also
contains flavor-diagonal CP violation (in addition to θQCD), and the constraints from the bounds on
electric dipole moments are fairly strong on these phases if the mass scale is near 1 TeV.

As an example, consider the KL –KS mass difference. The squark–gluino box contribution com-
pared to the data contains terms, roughly,

∆m
(SUSY)
K

∆m
(exp)
K

∼ 104

(
1 TeV

m̃

)2(∆m̃2

m̃2

)2

Re
[
(Kd

L)12(Kd
R)12

]
, (80)

where Kd
L (Kd

R) are the mixing matrices in the gluino couplings to left-handed (right-handed) down
quarks and their scalar partners [3]. The constraint from εK corresponds to replacing 104 Re

[
(Kd

L)12(Kd
R)12

]

with 106 Im
[
(Kd

L)12(Kd
R)12

]
. The simplest supersymmetric frameworks with parameters in the ballpark

of m̃ = O(1 TeV), ∆m̃2/m̃2 = O(0.1), and (Kd
L,R)ij = O(1) are excluded by orders of magnitude.

There are several ways to address the supersymmetric flavor problems. There are classes of models
that suppress each of the terms in Eq. (80): (i) heavy squarks, when m̃� 1 TeV (e.g., split SUSY); (ii)
universality, when ∆m̃2

Q̃,D̃
� m̃2 (e.g., gauge mediation); (iii) alignment, when (Kd

L,R)12 � 1 (e.g.,
horizontal symmetry). All viable models incorporate some of these ingredients in order not to violate
the experimental bounds. Conversely, if SUSY is discovered, mapping out its flavor structure will help
to answer important questions about even higher scales, e.g., the mechanism of SUSY breaking, how it
is communicated to the MSSM, etc.

A special role in constraining SUSY models is played by D0 –D0 mixing, which was the first
observed FCNC process in the up-quark sector. It is a special probe of BSM physics, because it is the
only neutral meson system in which mixing is generated by intermediate down-type quarks in the SM,
or intermediate up-type squarks in SUSY. The constraints are thus complementary to FCNC processes
involvingK andB mesons. D0 –D0 mixing and FCNC in the up-quark sector are particularly important
in constraining scenarios utilizing quark-squark alignment [59, 60].

Another important implication for SUSY searches is that the LHC constraints on squark masses
are sensitive to the level of (non-)degeneracy of squarks required to satisfy flavor constraints. Most
SUSY searches assume that the first two generation squarks, ũL,R, d̃L,R, s̃L,R, c̃L,R, are all degenerate,

16Check this, using the counting of couplings and broken global symmetries.
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which increases signal cross sections. Relaxing this assumption consistent with flavor bounds [60, 61],
results in substantially weaker squark mass limits from Run 1, as low as around the 500 GeV scale [62].

It is apparent from the above discussion that there is a tight interplay between the implications of
the non-observation of new physics at the LHC so far, and the non-observation of deviations from the
SM in flavor physics. If there is new physics at the TeV scale, which we hope the LHC will discover
in its next run, then we know already that its flavor structure must be rather non-generic to suppress
FCNCs, and the combination of all data will contain plenty of additional information about the structure
of new physics. The higher the scale of new physics, the less severe the flavor constraints are. If NP is
beyond the reach of the LHC, flavor physics experiments may still observe robust deviations from the
SM predictions, which would point to an upper bound on the next scale to probe.

4.7 Minimal flavor violation (MFV)
The standard model without Yukawa couplings has a global [U(3)]5 symmetry ([U(3)]3 in the quark and
[U(3)]2 in the lepton sector), rotating the 3 generations of the 5 fields in Eq. (4). This is broken by the
Yukawa interactions in Eq. (7). One may view the Yukawa couplings as spurions, fields which transform
under [U(3)]5 in a way that makes the Lagrangian invariant, and then the global flavor symmetry is
broken by the background values of the Yukawas. BSM scenarios in which there are no new sources
of flavor violation beyond the Yukawa matrices are called minimal flavor violation [63–65]. Since
the SM breaks the [U(3)]5 flavor symmetry already, MFV gives a framework to characterize “minimal
reasonable" deviations from the SM predictions.

Let us focus on the quark sector. Under U(3)Q×U(3)u×U(3)d the transformation properties are

QL(3, 1, 1) , uR(1, 3, 1) , dR(1, 1, 3) , Yu(3, 3̄, 1) , Yd(3, 1, 3̄) . (81)

One can choose a basis in which

Yd = diag(yd , ys , yb) , Yu = V †CKM diag(yu , yc , yt) . (82)

To generate a flavor-changing transition, requires constructing [U(3)]3 singlet terms that connect the
required fields. For example, in the down-quark sector, the simplest terms are [65]

Q̄LYuY
†
uQL , d̄RY

†
d YuY

†
uQL , d̄RY

†
d YuY

†
uYddR . (83)

A useful feature of this approach is that it allows EFT-like analyses.

Consider B → Xsγ as an example. We are interested in the magnitude of a possible NP contri-
bution to the Wilson coefficient of the operator X

Λ (s̄LσµνF
µνbR). A term Q̄LbR is not invariant under

[U(3)]3. A term Q̄LYd dR is [U(3)]3 invariant, but it is diagonal, so it only connects same generation
fields. The first non-vanishing contribution comes from Q̄LYuY

†
uYd dR, which has a VtbV ∗ts y

2
t yb(s̄LbR)

component. We learn that in MFV models, in general, X ∝ ybVtbV ∗ts, as is the case in the SM.

Thus, in MFV models, most flavor-changing operators “automatically" have their SM-like sup-
pressions, proportional to the same CKM elements, quark masses from chirality flips, etc. Therefore, the
scale of MFV models can be O(1 TeV) without violating flavor physics bounds, thus solving the new
physics flavor puzzle. Originally introduced for technicolor models [63], gauge-mediated supersymmetry
breaking provides another well known scenario in which MFV is expected to be a good approximation.

MFV models have important implications for new particle searches, too. Since the only quark
flavor-changing parameters are the CKM elements, and the ones that couple the third generation to the
lighter ones are very small, in MFV models new particles that decay to a single final quark (and other
particles) decay to either a third generation quark or to quarks from the first two generations, but (to a
good approximation) not to both [66].

The MFV ansatz can be incorporated into models that do not contain explicitly flavor breaking
unrelated to Yukawa couplings. MFV is not expected to be an exact symmetry, but it may be a useful
organizing principle to understand details of the new physics we soon hope to get a glimpse of.
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5 Summary
An essential feature of flavor physics is its ability to probe very high scales, beyond the masses of
particles that can be produced on-shell in colliders. Flavor physics can also teach us about properties of
TeV-scale new physics, that cannot be learned from the direct production of new particles.

Some of the main points I tried to explain in these lectures were:

– Flavor-changing neutral currents and meson mixing probe scales well above the masses of particles
colliders can produce, and provide strong constraints on TeV-scale new physics.

– CP violation is always the result of interference phenomena, without a classical analog.
– The KM phase has been established as the dominant source of CP violation in flavor-changing

processes.
– Tremendous progress will continue: Until ∼ 10 years ago, more than O(1) deviations from the

SM were possible; at present O(20%) corrections to most FCNC processes are still allowed; in
the future, sensitivities of a few percent will be reached.

– The future goal is not measuring SM parameters better, but to search for corrections to the SM,
and to learn about NP as much as possible.

– Direct information on new particles and their influence on flavor-changing processes will both be
crucial to understand the underlying physics.

– The sensitivity of future experiments in a number of important processes is only limited by statis-
tics, not theory.

– The interesting (and fun) interplay between theoretical and experimental developments in flavor
physics will continue.

At present, both direct production and flavor physics experiments only give bounds on new physics.
The constraints imply that if new physics is accessible at the LHC, it is likely to have flavor suppression
factors similar to the SM. In many models (e.g., the MSSM), measurements or bounds on FCNC tran-
sitions constrain the product of certain mass splittings times mixing parameters divided by the square
of the new physics scale. If the LHC discovers new physics, then in principle the mass splittings and
mixing parameters can be measured separately. If flavor physics experiments establish a deviation from
the SM in a related process, the combination of LHC and flavor data can be very powerful to discriminate
between models. The consistency of measurements could ultimately tell us that we understand the flavor
structure of new physics and how the new physics flavor puzzle is solved. The present situation and an
(optimistic) future scenario for supersymmetry are shown in Fig. 15. Let’s hope that we shall have the
privilege to think about such questions, motivated by data, in the coming years.
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Practical Statistics for Particle Physicists

Harrison B. Prosper
Florida State University, Department of Physics, Tallahassee, USA

Abstract
These lectures introduce the basic ideas and practices of statistical analysis for
particle physicists, using a real-world example to illustrate how the abstrac-
tions on which statistics is based are translated into practical application.

1 Introduction
The day-to-day task of particle physicists is to suggest, build, test, discard and, or, refine models of the
observed regularities in Nature with the ultimate goal of building a comprehensive model that answers
all the scientific questions we might think to ask. One goal of experimental particle physicists is to make
quantitative statements about the parameters θ of a model given a set of experimental observations X .
However, in order to make such statements, the the connection between the observations and the model
parameters must itself be modeled, and herein lies a difficulty. While there is general agreement about
how to connect model parameters to data, there is long history [1] of disagreement about the best way
to solve the inverse problem, that is, to go from observations to model parameters. The solution of this
inverse problem requires a theory of inference.

These lectures introduce to two broad classes of theories of inference, the frequentist and Bayesian
approaches. While our focus is on the practical, we do not shy away from brief discussions of founda-
tions. We do so in order to make two points. The first is that when it comes to statistics, there is no such
thing as “the" answer; rather there are answers based on assumptions, or proposals, on which reasonable
people may disagree for purely intellectual reasons. Second, none of the current theories of inference
is perfect. It is worth appreciating these points, even superficially, if only to avoid fruitless arguments
that cannot be resolved because they are ultimately about intellectual taste rather than mathematical
correctness.

For more in-depth expositions of the topics here covered, and different points of view, we highly
recommend the excellent textbooks on statistics written for physicists, by physicists [2–4].

2 Lecture 1: Descriptive Statistics, Probability and Likelihood
2.1 Descriptive Statistics
Suppose we have a sample of N data X = x1, x2, · · · , xN . It is often useful to summarize these data
with a few numbers called statistics. A statistic is any number that can be calculated from the data
and known parameters. For example, t = (x1 + xN )/2 is a statistic, but if the value of θ is unknown
t = (x1 − θ)2 is not. However, a word of caution is in order: we particle physicists are prone to misuse
the jargon of professional statisticians. For example, we tend to refer to any function of the data as a
statistic including those that contain unknown parameters.

The two most important statistics are

the sample mean (or average) x̄ =
1

N

N∑

i=1

xi, (1)

and the sample variance s2 =
1

N

N∑

i=1

(xi − x̄)2,
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=
1

N

N∑

i=1

x2
i − x̄2,

= x2 − x̄2. (2)

The sample average is a measure of the center of the distribution of the data, while the sample variance
is a measure of its spread. Statistics that merely characterize the data are called descriptive statistics,
of which the sample average and variance are the most important. If we order the data, say from the
smallest value to the largest, we can compute another interesting statistic tk ≡ x(k), where 1 ≤ k ≤ N

and x(k) denotes the datum at the kth position. The statistic tk is called the kth order statistic and is a
measure of the value of outlying data.

The average and variance, Eqs. (1) and (2), are numbers that can always be calculated given a data
sample X . But now we consider numbers that cannot be calculated from the data alone. Imagine the
repetition, infinitely many times, of whatever data generating system yielded our data sample X thereby
creating an infinite sequence of data sets. We shall refer to the data generating system as an experiment
and the infinite sequence as an infinite ensemble. The latter, together with all the mathematical operations
we may wish to apply to it, are abstractions. After all, it is not possible to realize an infinite ensemble.
The ensemble and all the operations on it exist in the same sense that the number π exists along with all
valid mathematical operations on π.

The most common operation to perform on an ensemble is to compute the average of the statistics.
This ensemble average suggests several potentially useful characteristics of the ensemble, which we list
below.

Ensemble average < x >

Mean µ

Error ε = x− µ
Bias b =< x > −µ
Variance V =< (x− < x >)2 >

Standard deviation σ =
√
V

Mean square error MSE =< (x− µ)2 >

Root MSE RMS =
√

MSE (3)

Notice that none of these numbers can be calculated in practice because the data required to do so do not
concretely exist. Even in an experiment simulated on a computer, there are very few of these numbers
we can calculate. If we know the mean µ, perhaps because we have chosen its value — for example, we
may have chosen the mass of the Higgs boson in our simulation, we can certainly calculate the error ε
for any simulated datum x. But, we can only approximate the ensemble average < x >, bias b, variance
V , and MSE, since our virtual ensemble is always finite. The point is this: the numbers that characterize
the infinite ensemble are also abstractions, albeit useful ones. For example, the MSE is the most widely
used measure of the closeness of an ensemble of numbers to some parameter µ. The square root of the
MSE is called the root mean square (RMS)1. The MSE can be written as

MSE = V + b2. (4)

Exercise 1: Show this

The MSE is the sum of the variance and the square of the bias, a very important result with practical
consequences. For example, suppose that µ represents the mass of the Higgs boson and x represents

1Sometimes, the RMS and standard deviation are using interchangeably. However, the RMS is computed with respect to µ,
while the standard deviation is computed with respect to the ensemble average < x >. The RMS and standard deviations are
identical only if the bias is zero.
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some (typically very complicated) statistic that is considered an estimator of the mass. An estimator is
any function, which when data are entered into it, yields an estimate of the quantity of interest, which
we may take to be a measurement.

Words are important; “bias” is a case in point. It is an unfortunate choice for the difference
< x > −µ because the word “bias” biases attitudes towards bias! Something that, or someone who, is
biased is surely bad and needs to be corrected. Perhaps. But, it would be wasteful of data to make the
bias zero if the net effect is to make the MSE larger than an MSE in which the bias is non-zero. The
price for achieving b = 0 in our example would be not only throwing away expensive data — which is
bad enough — but also measuring a mass that is more likely to be further away from the Higgs boson
mass. This may, or may not, be what we want to achieve.

As noted, many of the numbers listed in Eq. (3) cannot be calculated because the information
needed is unknown. This is true, in particular, of the bias. However, sometimes it is possible to relate the
bias to another ensemble quantity. Consider the ensemble average of the sample variance, Eq. (2),

< s2 > =< x2 > − < x̄2 >,

= V − V

N
,

Exercise 2a: Show this

The sample variance has a bias of b = −V/N , which many argue should be corrected. Unfortunately, we
cannot calculate the bias because it depends on an unknown parameter, namely, the variance V . However,
if we replace the sample variance by s′2 = cs2,where the correction factor c = N/(N − 1), we find that
for the corrected variance estimator s′2 the bias is zero. Surely the world is now a better place? Well, not
necessarily. Consider the ratio of MSE′ to MSE, where MSE′ =< (s′2 − V )2 >, MSE =< δ2 > with
δ = s2 − V , and b = −V/N ,

MSE′/MSE =< (cs2 − V )2 > / < δ2 >,

= c2 < (s2 − V/c)2 > / < δ2 >,

= c2 < (δ − b)2 > / < δ2 >,

= c2(1− b2/ < δ2 >),

= c2
[
1− b2/(b2+ < s4 > −(V + b)2)

]
.

From this we deduce that if < s4 > /[(V + b)2 + b2/(c2 − 1)] > 1, the unbiased estimate will be
further away on average from V than the biased estimate. This is the case, for example, for a uniform
distribution.

Exercise 2b: Use the method Rndm() of the Root
class TRandom3 to verify that MSE′ > MSE.

2.2 Probability
When the weather forecast specifies that there is a 80% chance of rain tomorrow, most people have
an intuitive sense of what this means. Likewise, most people have an intuitive understanding of what
it means to say that there is a 50-50 chance for a tossed coin to land heads up. Probabilistic ideas are
thousands of years old, but, starting in the sixteenth century these ideas were formalized into increasingly
rigorous mathematical theories of probability. In the theory formulated by Kolmogorov in 1933, Ω is
some fixed mathematical space, E1, E2, · · · ⊂ Ω are subsets (called events) defined in some reasonable
way2, and P (Ej) is a number associated with subset Ej . These numbers satisfy the

Kolmogorov Axioms
2If E1, E2, · · · are meaningful subsets of Ω, so to is the complement E1, E2, · · · of each, as are countable unions and

intersections of these subsets.
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1. P (Ej) ≥ 0

2. P (E1 + E2 + · · · ) = P (E1) + P (E2) + · · · for disjoint subsets

3. P (Ω) = 1.

Consider two subsets A = E1 and B = E2. The quantity AB means A and B, while A + B means
A or B, with associated probabilities P (AB) and P (A + B), respectively. Kolmogorov assumed, not
unreasonably given the intuitive origins of probability, that probabilities sum to unity; hence the axiom
P (Ω) = 1. However, this assumption can be dropped so that probabilities remain meaningful even if
P (Ω) =∞ [5].

Figure 1 suggests another probability, namely, the number P (A|B) = P (AB)/P (B), called the
conditional probability of A given B. This permits statements such as: “the probability that this track
was created by an electron given the measured track parameters" or “the probability to observe 17 events
given that the mean background is 3.8 events". Conditional probability is a very powerful idea, but the
term itself is misleading. It implies that there are two kinds of probability: conditional and unconditional.
In fact, all probabilities are conditional in that they always depend on a specific set of conditions, namely,
those that define the space Ω. It is entirely possible to embed a family of subsets of Ω into another space
Ω′ which assigns to each family member a different probability P ′. A probability is defined only relative
to some space of possibilities Ω.

Fig. 1: Venn diagram of the sets A, B, and AB. P (A)

is the probability of A, while P (A|B) = P (AB)/P (B)

is the probability of AB relative to that of B, i.e., the
probability of A given the condition B.

A andB are said to be mutually exclusive if
P (AB) = 0, that is, if the truth of one denies the
truth of the other. They are said to be exhaustive if
P (A)+P (B) = 1. Figure 1 suggests the theorem

P (A+B) = P (A) + P (B)− P (AB), (5)

Exercise 3: Prove theorem

which can be deduced from the rules given
above. Another useful theorem is an immedi-
ate consequence of the commutativity of “anding"
P (AB) = P (BA) and the definition of P (A|B),
namely,

Bayes Theorem

P (B|A) =
P (A|B)P (B)

P (A)
, (6)

which provides a way to convert the probability
P (A|B) to the probability P (B|A). Using Bayes
theorem, we can, for example, deduce the probability P (e|x) that a particle is an electron, e, given a set
of measurements, x, from the probability P (x|e) of a set of measurements given that the particle is an
electron.

2.2.1 Probability Distributions
In this section, we illustrate the use of these rules to derive more complicated probabilities. First we start
with a definition:

A Bernoulli trial, named after the Swiss mathematician Jacob Bernoulli (1654 – 1705), is
an experiment with only two possible outcomes: S = success or F = failure.

4
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Example

Each collision between protons at the Large Hadron Collider (LHC) is a Bernoulli trial in
which something interesting happens (S) or does not (F ). Let p be the probability of a
success, which is assumed to be the same for each trial. Since S and F are exhaustive, the
probability of a failure is 1−p. For a given orderO of n proton-proton collisions and exactly
k successes, and therefore exactly n− k failures, the probability P (k,O, n, p) is given by

P (k,O, n, p) = pk(1− p)n−k. (7)

If the order O of successes and failures is judged to be irrelevant, we can eliminate the order
from the problem by summing over all possible orders,

P (k, n, p) =
∑

O

P (k,O, n, p) =
∑

O

pk(1− p)n−k. (8)

This procedure is called marginalization. It is one of the most important operations in
probability calculations. Every term in the sum in Eq. (8) is identical and there are

(
n
k

)
of

them. This yields the binomial distribution,

Binomial(k, n, p) ≡
(
n

k

)
pk(1− p)n−k. (9)

By definition, the mean number of successes a is given by

a =
n∑

k=0

kBinomial(k, n, p),

= pn. (10)

Exercise 4: Show this

At the LHC n is a number in the trillions, while for successes of interest such as the creation
of a Higgs boson the probability p << 1. In this case, it proves convenient to consider the
limit p→ 0, n→∞ in such a way that a remains constant. In this limit

Binomial(k, n, p)→ e−aak/k!,

≡ Poisson(k, a). (11)

Exercise 5: Show this

Below we list the most common probability distributions.

Discrete distributions

Binomial(k, n, p)
(
n

k

)
pk(1− pn−k

Poisson(k, a) ak exp(−a)/k!

Multinomial(k, n, p)
n!

k1! · · · kK !

K∏

i=1

pkii ,
K∑

i=1

pi = 1,
K∑

i=1

ki = n

Continuous densities
Uniform(x, a) 1/a

Gaussian(x, µ, σ) exp[−(x− µ)2/(2σ2)]/(σ
√

2π)
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(also known as the Normal density)

LogNormal(x, µ, σ) exp[−(lnx− µ)2/(2σ2)]/(xσ
√

2π)

Chisq(x, n) xn/2−1 exp(−x/2)/[2n/2Γ(n/2)]

Gamma(x, a, b) xa−1ab exp(−ax)/Γ(b)

Exp(x, a) a exp(−ax)

Beta(x, n,m)
Γ(n+m)

Γ(m) Γ(n)
xn−1 (1− x)m−1 (12)

Particle physicists tend to use the term probability distribution for both discrete and continuous func-
tions, such as the Poisson and Gaussian distributions, respectively. But, strictly speaking, the continuous
functions are probability densities, not probability distributions. In order to compute a probability from
a density we need to integrate the density over a finite set in x.

Discussion

Probability is the foundation for models of non-deterministic data generating mechanisms, such as par-
ticle collisions at the LHC. A probability model is the probability distribution together with all the
assumptions on which the distribution is based. For example, suppose we wish to count, during a given
period of time, the number of entriesN in a given transverse momentum (pT) bin due to particles created
in proton-proton collisions at the LHC; that is, suppose we wish to perform a counting experiment. If
we assume that the probability to obtain a count in this bin is very small and that the number of proton-
proton collisions is very large, then it is common practice to use a Poisson distribution to model the data
generating mechanism, which yields the bin count N . If we have multiple independent bins, we may
choose to model the data generating mechanism as a product of Poisson distributions. Or, perhaps, we
may prefer to model the possible counts conditional on a fixed total count in which case a multinomial
distribution would be appropriate.

So far, we have assumed the meaning of the word probability to be self-evident. However, the
meaning of probability [6] has been the subject of debate for more than two centuries and there is no sign
that the debate will end anytime soon. Probability, in spite of its intuitive beginnings, is an abstraction.
Therefore, for it to be of practical use it must be interpreted. The two most widely used interpretations
of probability are:

1. degree of belief in, or plausibility of, a proposition, for example, “It will snow at CERN on
December 18th", and the

2. relative frequency of outcomes in an infinite ensemble of trials, for example, the relative fre-
quency of Higgs boson creation in an infinite number of proton-proton collisions.

The first interpretation is the older, while the second was championed by influential mathematicians and
logicians starting in the mid-nineteenth century and became the dominant interpretation. Of the two
interpretations, however, the older is the more general in that it encompasses the latter and can be used
in contexts in which the latter makes no sense. The relative frequency, or frequentist, interpretation
is useful for situations in which one can contemplate counting the number of times k a given outcome
is realized in n trials, as in the example of a counting experiment. The relative frequency r = k/n is
expected to converge, in a subtle but well-defined sense, to some number p that satisfies the rules of
probability. It should noted, however, that the numbers k/n and p are conceptually distinct. The former
is something we can actually calculate, while there is no finite operational way to calculate the latter from
data. The probability p, even when interpreted as a relative frequency, remains an abstraction.

On the other hand, the degrees of belief, which is the basis of the Bayesian approach to statistics
(see Lecture 2), are just that: the degree to which a rational being ought to believe in the veracity of a
given statement. The word “ought" in the last sentence is important: probability theory, with probabilities

6

H. B. PROSPER

306



interpreted as degrees of belief, is not a model of how human beings actually reason in situations of
uncertainty; rather probability theory when interpreted this way is a normative theory in that it specifies
how an idealized reasoning being, or system, ought to reason when faced with uncertainty.

There is a school of thought that argues that degrees of belief should be an individual’s own
assessment of her or his degree of belief in a statement, which are then to be updated using the probability
rules. The problem with this position is that it presupposes probability theory to be a model of human
reasoning, which we argue it is not — a position confirmed by numerous psychological experiments.
It is perhaps better to think of degrees of belief as numbers that inform one’s reasoning rather than as
numbers that describe it, and relative frequencies as numbers that characterize stochastic data generation
mechanisms. Both are probabilities and both are useful.

2.3 Likelihood
Let us assume that p(x|θ) is a probability density function (pdf) such that P (A|θ) =

∫
A p(x|θ) dx

is the probability of the statement A = x ∈ Rx, where x denotes possible data, θ the parameters that
characterize the probability model, and Rx is a finite set. If x is discrete, then both p(x|θ) and P (A|θ)
are probabilities. The likelihood function is simply the probability model p(x|θ) evaluated at the data
xO actually obtained, i.e., the function p(xO|θ). The following are examples of likelihoods.

Example 1

In 1995, CDF and DØ discovered the top quark [7, 8] at Fermilab. The DØ Collaboration
found x = D events (D = 17). For a counting experiment, the datum can be modeled using

p(x|d) = Poisson(x, d) probability to get x events

p(D|d) = Poisson(D, d) likelihood of observation D events

= dD exp(−d)/D!

We shall analyze this example in detail in Lectures 2 and 3.

Example 2

Figure 2 shows the transverse momentum spectrum of jets in pp→ jet+X events measured
by the CMS Collaboration [9]. The spectrum has K = 20 bins with total count N that was
modeled using the likelihood

p(D|p) = Multinomial(D,N, p), D = D1, · · · , DK , p = p1, · · · , pK
K∑

i=1

Di = N.

This is an example of a binned likelihood.

Exercise 6a: Show that a multi-Poisson likelihood can be written as the
product of a multinomial and a Poisson with count N

Example 3

Figure 3 shows a plot of the distance modulus versus redshift for N = 580 Type 1a super-
novae [10]. These heteroscedastic data3 {zi, xi ± σi} are modeled using the likelihood

p(D|ΩM ,ΩΛ, Q) =

N∏

i=1

Gaussian(xi, µi, σi),

3Data in which each item, xi, or group of items has a different uncertainty.
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Fig. 2: Transverse momentum spectrum of jets in pp → jet + X events measured by CMS compared with the
QCD prediction at next-to-leading order. This spectrum was used to search for evidence of contact interactions [9]
(Courtesy CMS Collaboration).

redshift z

0 0.5 1 1.5

µ
d
is

ta
n
c
e
 m

o
d
u
lu

s
 

35

40

45

The Union2.1 Compilation

The Supernova Cosmology Project

http://supernova.lbl.gov/Union/figures/

SCPUnion2.1_mu_vs_z.txt

Fig. 3: Plot of the data points (zi, xi ± σi) for 580 Type 1a supernovae [10] showing a fit of the standard cosmo-
logical model (with a cosmological constant) to these data (curve).

which is an example of an un-binned likelihood. The cosmological model is encoded in the
distance modulus function µi, which depends on the redshift zi and the matter density and
cosmological constant parameters ΩM and ΩΛ, respectively. (See Ref. [11] for an accessible
introduction to the analysis of these data.)
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Example 4

The discovery of a neutral Higgs boson in 2012 by ATLAS [12] and CMS [13] in the di-
photon final state (pp→ H → γγ) made use of an un-binned likelihood of the form,

p(x|s,m,w, b) = exp[−(s+ b)]

N∏

i=1

[sfs(xi|m,w) + bfb(xi)]

where x = di-photon masses

m = mass of boson

w = width of resonance

s = expected (i.e., mean) signal count

b = expected background count

fs = signal probability density

fb = background probability density

Exercise 6b: Show that a binned multi-Poisson
likelihood yields an un-binned likelihood of this
form as the bin widths go to zero

The likelihood function is arguably the most important quantity in a statistical analysis Because it
can be used to answer questions such as the following.

1. How do I estimate a parameter?
2. How do I quantify its accuracy?
3. How do I test an hypothesis?
4. How do I quantify the significance of a result?

Writing down the likelihood function requires:

1. identifying all that is known, e.g., the observations,
2. identifying all that is unknown, e.g., the parameters,
3. constructing a probability model for both.

Many analyses in particle physics do not use likelihood functions explicitly. However, it is worth spend-
ing time to think about them because doing so encourages a deeper reflection on what is being done, a
more systematic approach to the statistical analysis, and ultimately leads to better answers.

Being explicit about what is and is not known in an analysis problem may seem a pointless ex-
ercise; surely these things are obvious. Consider the DØ top quark discovery data [8], D = 17 events
observed with a background estimate of B = 3.8 ± 0.6 events. The uncertainty in 17 is invariably said
to be

√
17 = 4.1. Not so! The count 17 is perfectly known: it is 17. What we are uncertain about is the

mean count d, that is, the parameter of the probability model, which we take to be a Poisson distribution.
The ±4.1 must somehow be a statement not about 17 but rather about the unknown parameter d. We
shall explain what the ±4.1 means in Lecture 2.

3 Lecture 2: The Frequentist and Bayesian Approaches
In this lecture, we consider the two most important approaches to statistical inference, frequentist and
Bayesian. Both are needed to make sense of statistical inference, though this is not the dominant opinion
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in particle physics. Most particle physicists, if pressed, will say they are frequentist in their approach. The
typical reason given is that this approach is objective, whereas the Bayesian approach is not. Moreover,
they would argue, the frequentist approach is less arbitrary whereas the Bayesian approach is plagued
with arbitrariness that renders its results suspect. We wish, however, to focus on the practical, therefore,
we shall sidestep this debate and assume a pragmatic attitude to both approaches. We begin with a
description of salient features of the frequentist approach, followed by a description of the Bayesian
approach.

3.1 The Frequentist Approach
The most important principle in this approach is that enunciated by the Polish statistician Jerzy Neyman
in the 1930s, namely,

The Frequentist Principle

The goal of a frequentist analysis is to construct statements so that a fraction f ≥ p of them
are guaranteed to be true over an infinite ensemble of statements.

The fraction f is called the coverage probability, or coverage for short, and p is called the confidence
level (C.L.). A procedure which satisfies the frequentist principle is said to cover. The confidence level
as well as the coverage is a property of the ensemble of statements. Consequently, the confidence level
may change if the ensemble changes. Here is an example of the frequentist principle in action.

Example

Over the course of a long career, a doctor sees thousands of patients. For each patient he
issues one of two conclusions: “you are sick" or “you are well" depending on the results
of diagnostic measurements. Because he is a frequentist, he has devised an approach to
medicine in which although he does not know which of his conclusions were correct, he can
at least retire happy in the knowledge that he was correct at least 75% of the time!

In a seminal paper published in 1937, Neyman [14] invented the concept of the confidence interval,
a way to quantify uncertainty, that respects the frequentist principle. The confidence interval is such an
important idea, and its meaning so different from the superficially similar Bayesian concept of a credible
interval, that it is worth working through the concept in detail.

3.1.1 Confidence Intervals
The confidence interval is a concept best explained by example. Consider an experiment that observes
D events with expected (that is, mean) signal s and no background. Neyman devised a way to make
statements of the form

s ∈ [l(D), u(D)], (13)

with the a priori guarantee that at least a fraction p of them will be true, as required by the frequentist
principle. A procedure for constructing such intervals is called a Neyman construction. The frequentist
principle must hold for any ensemble of experiments, not necessarily all making the same kind of obser-
vations and statements. For simplicity, however, we shall presume the experiments to be of the same kind
and to be completely specified by a single unknown parameter s. The Neyman construction is illustrated
in Fig. 4.

The construction proceeds as follows. Choose a value of s and use some rule to find an interval
in the space of observations (or, more generally, a region), for example, the interval defined by the two
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Fig. 4: The Neyman construction. Plotted is the Cartesian product of the parameter space, with parameter s, and
the space of observations with potential observationsD. For a given value of s, the observation space is partitioned
into three disjoint intervals, such that the probability to observe a count D within the interval demarcated by the
two vertical lines is f ≥ p, where p = C.L. is the desired confidence level. The inequality is needed because, for
discrete data, it may not be possible to find an interval with f = p exactly.

vertical lines in the center of the figure, such that the probability to obtain a count in this interval is
f ≥ p, where p is the desired confidence level. We move to another value of s and repeat the procedure.
The procedure is repeated for a sufficiently dense set of points in the parameter space over a sufficiently
large range. When this is done, as illustrated in Fig. 4, the intervals of probability content f will form a
band in the Cartesian product of the parameter space and the observation space. The upper edge of this
band defines the curve u(D), while the lower edge defines the curve l(D). These curves are the product
of the Neyman construction.

For a given value of the parameter of interest s, the interval with probability content f in the space
of observations is not unique; different rules for choosing the interval will, in general, yield different
intervals. Neyman suggested choosing the interval so that the probability to obtain an observation below
or above the interval are the same. The Neyman rule yields the so-called central intervals. One virtue
of central intervals is that their boundaries can be more efficiently calculated by solving the equations,

P (x ≤ D|u) = αL,

P (x ≥ D|l) = αR, (14)

a mathematical fact that becomes clear after staring at Fig. 4 long enough.

Another rule was suggested by Feldman and Cousins [15]. For our example, the Feldman-Cousins
rule requires that the potential observations {D} be ordered in descending order, D(1), D(2), · · · , of the
likelihood ratio p(D|s)/p(D|ŝ), where ŝ is the maximum likelihood estimator (see Sec. 3.1.2) of the
parameter s. Once ordered, we compute the running sum f =

∑
j p(D(j)|s) until f equals or just

exceeds the desired confidence level p. This rules does not guarantee that the potential observations D
are contiguous, but this does not matter because we simply take the minimum element of the set {D(j)}
to be the lower bound of the interval and its maximum element to be the upper bound.

Another simple rule is the mode-centered rule: orderD in descending order of p(D|s) and proceed
as with the Feldman-Cousins rule. In principle, absent criteria for choosing a rule, there is nothing to
prevent the use of ordering rules randomly chosen for different values of s! Figure 5 compares the widths
of the intervals [l(D), u(D)] for three different ordering rules, central, Feldman-Cousins, and mode-
centered as a function of the count D. It is instructive to compare these widths with those provided
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by the well-known root(N) interval, l(D) = D −
√
D and u(D) = D +

√
D. Of the three sets of

intervals, the ones suggested by Neyman are the widest, the Feldman-Cousins and mode-centered ones
are of similar width, while the root(N) intervals are the shortest. So why are we going through all the
trouble of the Neyman construction? We shall return to this question shortly.

Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 

Fig. 5: Interval widths as a function of count D for four
sets of intervals.

Having completed the Neyman construc-
tion and found the curves u(D) and l(D) we
can use the latter to make statements of the form
s ∈ [l(D), u(D)]: for a given observation D,
we simply read off the interval [l(D), u(D)] from
the curves. For example, suppose in Fig. 4 that
the true value of s is represented by the horizon-
tal line that intersects the curves u(D) and l(D)
and which therefore defines the interval demar-
cated by the two vertical lines. If the observa-
tion D happens to fall in the interval to the left
of the left vertical line, or to the right of the right
vertical line, then the interval [l(D), u(D)] will
not bracket s. However, if D falls between the
two vertical lines, the interval [l(D), u(D)] will
bracket s. Moreover, by virtue of the Neyman
construction, a fraction f of the intervals [l(D), u(D)] will bracket the value of s whatever its value
happens to be, which brings us back to the question about the root(N) intervals. Figure 6 shows the
coverage probability over the parameter space of s. As expected, the three rules, Neyman’s, that of
Feldman-Cousins, and the mode-centered, satisfy the condition coverage probability ≥ confidence level
over all values of s that are possible a priori; that is, the intervals cover. However, the root(N) intervals
do not and indeed fail badly for s < 2.

Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 

Fig. 6: Interval widths as a function of count D for four
sets of intervals.

However, notice that the coverage proba-
bility of the root(N) intervals bounces around the
(68%) confidence level for vaues of s > 2. There-
fore, if we knew for sure that s > 2, it would seem
that using the root(N) intervals may not be that
bad after all. Whether it is or not depends entirely
on one’s attitude towards the frequentist principle.
Some will lift mountains and carry them to the
Moon in order to achieve exact coverage, while
others, including the author, is entirely happy with
coverage that bounces around a little.

Discussion

We may summarize the content of the Neyman
construction with a statement of the form: there is
a probability of at least p that s ∈ [l(D), u(D)].
But it would be a misreading of the statement to

presume it is about that particular interval. It is not because p, as noted, is a property of the ensem-
ble to which this statement belongs. The precise statement is this: s ∈ [l(D), u(D)] is a member of
an (infinite) ensemble of statements a fraction f ≥ p of which are true. This mathematical fact is the
principal reason why the frequentist approach is described as objective; the probability p is something
for which there seems, in principle, to be an operational definition: we just count how many statements
of the form s ∈ [l(D), u(D)] are true and divide by the total number of statements. Unfortunately, in
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the real world this procedure cannot be realized because in general we are not privy to which statements
are true and, even if we came down from a mountain with the requisite knowledge, we would need to
examine an infinite number of statements, which is impossible. Nevertheless, the Neyman construction
is a remarkable procedure that always yields exact coverage for any problem that depends on a single
unknown parameter.

Matters quickly become less tidy, however, when a probability model contains more than one
unknown parameter. In almost every particle physics experiment there is background that is usually not
known precisely. Consequently, even for the simplest experiment we must contend with at least two
parameters, the expected signal s and the expected background b, neither of which is known. Neyman
required a procedure to cover whatever the value of all the parameters be they known or unknown. This
is a very tall order, which cannot be met in general. In practice, we resort to approximations, the most
widely used of which is the profile likelihood to which we now turn.

3.1.2 The Profile Likelihood
As noted in Sec. 2.3, likelihood functions can be used to estimate the parameters on which they depend.
The method of choice to do so, in a frequentist analysis, is called maximum likelihood, a method first
used by Karl Frederick Gauss, The Prince of Mathematics, but developed into a formidable statistical
tool in the 1930s by Sir Ronald A. Fisher [16], perhaps the most influential statistician of the twentieth
century.

Fisher showed that a good way to estimate the parameters of a likelihood function is to pick the
value that maximizes it. Such estimates are called maximum likelihood estimates (MLE). In general, a
function into which data can be inserted to yield an MLE of a parameter is called a maximum likelihood
estimator. For simplicity, we shall use the same abbreviation MLE to mean both the estimate and the
estimator and we shall not be too picky about distinguishing the two. The DØ top quark discovery
example illustrates the method.

Example: Top Quark Discovery Revisited

We start by listing

the knowns
D = N,B where

N = 17 observed events

B = 3.8 estimated background events with uncertainty δB = 0.6

and the unknowns
b mean background count

s mean signal count.

Next, we construct a probability model for the data D = N,B assuming that N and B are
statistically independent. Since this is a counting experiment, we shall assume that p(x|s, b)
is a Poisson distribution with mean count s + b. In the absence of details about how the
background B was arrived at, the standard assumption is that data of the form y± δy can be
modeled with a Gaussian (or normal) density. However, we can do a bit better. Background
estimates are usually based on auxiliary experiments, either real or simulated, that define
control regions.

Suppose that the observed count in the control region is Q and the mean count is bk, where
k (ideally) is the known scale factor between the control and signal regions. We can model
these data with a Poisson distribution with count Q and mean bk. But, we are given B and
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δB rather thanQ and k, so we need a model to relate the two pairs of numbers. The simplest
model is B = Q/k and δB =

√
Q/k from which we can infer an effective count Q using

Q = (B/δB)2. What of the scale factor k? Well, since it is not given, it must be estimated.
The obvious estimate is Q/B = B/δB2. With these assumptions, our likelihood function
is

p(D|s, b) = Poisson(N, s+ b) Poisson(Q, bk), (15)

where

Q = (B/δB)2 = 41.11,

k = B/δB2 = 10.56.

The first term in Eq. (15) is the likelihood for the count N = 17, while the second term is
the likelihood for B = 3.8, or equivalently the count Q. The fact that Q is not an integer
causes no difficulty: we merely write the Poisson distribution as (bk)Q exp(−bk)/Γ(Q+1),
which permits continuation to non-integer counts Q.

The maximum likelihood estimators for s and b are found by maximizing Eq. (15), that is,
by solving the equations

∂ ln p(D|s, b)
∂s

= 0 leading to ŝ = N −B,
∂ ln p(D|s, b)

∂b
= 0 leading to b̂ = B,

as expected.

A more complete analysis would account for the uncertainty in k. One way is to intro-
duce two more control regions with observed counts V and W and mean counts v and wk,
respectively, and extend Eq. (15) with two more Poisson distributions.

The maximum likelihood method is the most widely used method for estimating parameters be-
cause it generally leads to reasonable estimates. But the method has features, or encourages practices,
which, somewhat uncharitably, we label the good, the bad, and the ugly!

– The Good

– Maximum likelihood estimators are consistent: the RMS goes to zero as more and more data
are included in the likelihood. This is an extremely important property, which basically says
it makes sense to take more data because we shall get more accurate results. One would not
knowingly use an inconsistent estimator!

– If an unbiased estimator for a parameter exists the maximum likelihood method will find it.
– Given the MLE for s, the MLE for any function y = g(s) of s is, very conveniently, just
ŷ = g(ŝ). This is a very nice practical feature which makes it possible to maximize the
likelihood using the most convenient parameterization of it and then transform back to the
parameter of interest at the end.

– The Bad (according to some!)

– In general, MLEs are biased.

Exercise 7: Show this
Hint: Taylor expand y = g(ŝ+h) about the MLE ŝ,
then consider its ensemble average.
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– The Ugly (according to some!)

– The fact that most MLEs are biased encourages the routine application of bias correction,
which can waste data and, sometimes, yield absurdities.

Here is an example of the seriously ugly.

Example

For a discrete probability distribution p(k), the moment generating function is the ensem-
ble average

G(x) =< exk >

=
∑

k

exk p(k).

For the binomial, with parameters p and n, this is

G(x) = (exp+ 1− p)n, Exercise 8a: Show this

which is useful for calculating moments

µr =
drG

dxr

∣∣∣∣
x=0

=
∑

k

kr p(k),

e.g., µ2 = (np)2 + np− np2 for the binomial distribution. Given that k events out n pass a
set of cuts, the MLE of the event selection efficiency is the obvious estimate p̂ = k/n. The
equally obvious estimate of p2 is (k/n)2. But,

< (k/n)2 > = p2 + V/n, Exercise 8b: Show this

so (k/n)2 is a biased estimate of p2 with positive bias V/n. The unbiased estimate of p2 is

k(k − 1)/[n(n− 1)], Exercise 8c: Show this

which, for a single success, i.e., k = 1, yields the sensible estimate p̂ = 1/n, but the less
than helpful one p̂2 = 0!

In order to infer a value for the parameter of interest, for example, the signal s in our 2-parameter
likelihood function in Eq. (15), the likelihood must be reduced to one involving the parameter of interest
only, here s, by somehow getting rid of all the nuisance parameters, here the background parameter b. A
nuisance parameter is simply a parameter that is not of current interest. In a strict frequentist calculation,
this reduction to the parameter of interest must be done in such a way as to respect the frequentist
principle: coverage probability ≥ confidence level. In general, this is very difficult to do exactly.

In practice, we replace all nuisance parameters by their conditional maximum likelihood esti-
mates (CMLE). The CMLE is the maximum likelihood estimate conditional on a given value of the
current parameter (or parameters) of interest. In the top discovery example, we construct an estimator of
b as a function of s, b̂(s), and replace b in the likelihood p(D|s, b) by b̂(s) to yield a function pPL(D|s)
called the profile likelihood.

Since the profile likelihood entails an approximation, namely, replacing unknown parame-
ters by their conditional estimates, it is not the likelihood but rather an approximation to it.
Consequently, the frequentist principle is not guaranteed to be satisfied exactly.
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Fig. 7: (a) Contours of the DØ top discovery likelihood and the graph of b̂(s). (b) Plot of − lnλ(17, s) versus the
expected signal s. The vertical lines show the boundaries of the approximate 68% interval.

This does not seem to be much progress. However, things are much better than they may appear because
of an important theorem proved by Wilks in 1938. If certain conditions are met, roughly that the MLEs
do not occur on the boundary of the parameter space and the likelihood becomes ever more Gaussian as
the data become more numerous — that is, in the so-called asymptotic limit, then if the true density of
x is p(x|s, b) the random number

t(x, s) = −2 lnλ(x, s), (16)

where λ(x, s) =
pPL(x|s)
pPL(x|ŝ) , (17)

has a probability density that converges to a χ2 density with one degree of freedom. More generally,
if the numerator of λ contains m free parameters the asymptotic density of t is a χ2 density with m
degrees of freedom. Therefore, we may take t(D, s) to be a χ2 variate, at least approximately, and solve
t(D, s) = n2 for s to get approximate n-standard deviation confidence intervals. In particular, if we
solve t(D, s) = 1, we obtain approximate 68% intervals. This calculation is what Minuit, and now
TMinuit, has done countless times since the 1970s! Wilks’ theorem provides the main justification for
using the profile likelihood. We again use the top discovery example to illustrate the procedure.

Example: Top Quark Discovery Revisited Again

The conditional MLE of b is found to be

b̂(s) =
g +

√
g2 + 4(1 + k)Qs

2(1 + k)
, (18)

where

g = N +Q− (1 + k)s.

The likelihood p(D|s, b) is shown in Fig. 7(a) together with the graph of b̂(s). The mode
(i.e. the peak) occurs at s = ŝ = N −B. By solving

−2 ln
pPL(17|s)

pPL(17|17− 3.8)
= 1
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Fig. 8: Plots of the cumulative distribution function (cdf), P (χ2 < t, 1), of the χ2 density for one degree of
freedom compared with the cdf P (t′ < t|s, b) for four different values of the mean signal and background, s and
b. The left plot shows that even for a mean signal or background count as low as 10, the density p(t|s, b) is already
close to p(χ2, 1) and therefore largely independent of s and b. This is true, however, only if most of the time the
maximum of the likelihood occurs away from the boundary of the parameter space. In the left plot, the signal
is estimated using ŝ = N − B, which can, in principle, be arbitrarily negative. But, if we choose to set ŝ = 0

whenever B > N in order to avoid negative signal estimates, we obtain the curves in the right plot. We see that
for small signals, p(t|s, b) still depends on the parameters.

for s we get two solutions s = 9.4 and s = 17.7. Therefore, we can make the statement
s ∈ [9.4, 17.7] at approximately 68% C.L. Figure 7(b) shows a plot of − lnλ(17, s) created
using the RooFit [17] and RooStats [18] packages.

Exercise 9: Verify this interval using the RooFit/RooStats package

Intervals constructed this way are not guaranteed to satisfy the frequentist principle. In
practice, however, their coverage is very good for the typical probability models used in
particle physics, even for modest amounts of data. This is illustrated in Fig. 8, which shows
how rapidly the density of t(x, s) converges to a χ2 density for the probability distribution
p(x, y|s, b) = Poisson(x|s + b)Poisson(y|b)4. The figure also shows what happens if we
impose the restriction ŝ ≥ 0, that is, we forbid negative signal estimates.

3.1.3 Hypothesis Tests
It is hardly possible in experimental particle physics to avoid the testing of hypotheses, testing that
invariably leads to decisions. For example, electron identification entails hypothesis testing; given data
D we ask: is this particle an isolated electron or is it not an isolated electron? Then we decide whether or
not it is and proceed on the basis of the decision that has been made. In the discovery of the Higgs boson,
we had to test whether, given the data available in early summer 2012, the Standard Model without
a Higgs boson, a somewhat ill-founded background-only model, or the Standard Model with a Higgs
boson, the background + signal model, was the preferred hypothesis. We decided that the latter model

4It was the difficulty of extracting information from this distribution that compelled the author (against his will) to repair
his parlous knowledge of statistics [19]!
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was preferred and announced the discovery of a new boson. Given the ubiquity of hypothesis testing, it
is important to have a grasp of the methods that have been invented to implement it.

One method was due to Fisher [16], another was invented by Neyman, and a third (Bayesian)
method was proposed by Sir Harold Jeffreys, all around the same time. Today, we tend to merge the
approaches of Fisher and Neyman, and we hardly ever use the method of Jeffreys even though in several
respects the method of Jeffreys and their modern variants are arguably more natural. In particle physics,
we regard our Fisher/Neyman hybrid as sacrosanct, witness the near-religious adherence to the 5σ dis-
covery rule. However, the pioneers disagreed strongly with each other about how to test hypotheses,
which suggests that the topic is considerably more subtle than it seems. We first describe the method
of Fisher, then follow with a description of the method of Neyman. For concreteness, we consider the
problem of deciding between a background-only model and a background + signal model.

3.1.3.1 Fisher’s Approach

p(x | H
0
)

x x
0

Fig. 9: The p-value is the tail-probability, P (x >

x0|H0), calculated from the probability density under
the null hypothesis, H0. Consequently, the probabil-
ity density of the p-value under the null hypothesis is
Uniform(x, 1).

In Fisher’s approach, we construct a null hypoth-
esis, often denoted by H0, and reject it should
some measure be judged small enough to cast
doubt on the validity of this hypothesis. In our
example, the null hypothesis is the background-
only model, for example, the SM without a Higgs
boson. The measure is called a p-value and is de-
fined by

p-value(x0) = P (x > x0|H0), (19)

where x is a statistic designed so that large values
indicate departure from the null hypothesis. This
is illustrated in Fig. 9, which shows the location
of the observed value x0 of x. The p-value is the probability that x could have been higher than the
x actually observed. It is argued that a small p-value implies that either the null hypothesis is false
or something rare has occurred. If the p-value is extremely small, say ∼ 3 × 10−7, then of the two
possibilities the most common response is to presume the null to be false. If we apply this method to the
DØ top quark discovery data, and neglect the uncertainty in null hypothesis, we find

p-value =

∞∑

D=17

Poisson(D, 3.8) = 5.7× 10−7.

In order to report a more intuitive number, the common practice is to map the p-value to the Z scale
defined by

Z =
√

2 erf−1(1− 2p-value). (20)

This is the number of Gaussian standard deviations away from the mean5. A p-value of 5.7 × 10−7

corresponds to a Z of 4.9σ. The Z-value can be calculated using the Root function

Z = -TMath::NormQuantile(p-value).

3.1.3.2 Neyman’s Approach

5erf(x) = 1√
π

∫ x
−x exp(−t2) dt is the error funtion.

18

H. B. PROSPER

318



1 

p(x | H0 )
p(x | H1)

x

 

x!

Alternative hypothesis 

Fig. 10: Distribution of a test statistic x for two hypothe-
ses, the null H0 and the alternative H1. In Neyman’s
approach to testing, α = P (x > xα|H0) is a fixed proba-
bility called the significance of the test, which for a given
class of experiments corresponds the threshold xα. The
hypothesis H0 is rejected if x > xα.

In Neyman’s approach two hypotheses are consid-
ered, the null hypothesisH0 and an alternative hy-
pothesis H1. This is illustrated in Fig. 10. In our
example, the null is the same as before but the al-
ternative hypothesis is the SM with a Higgs boson.
Again, one generally chooses x so that large val-
ues would cast doubt on the validity of H0. How-
ever, the Neyman test is specifically designed to
respect the frequentist principle, which is done as
follows. A fixed probability α is chosen, which
corresponds to some threshold value xα defined
by

α = P (x > xα|H0), (21)

called the significance (or size) of the test. Should the observed value x0 > xα, or equivalently, p-
value(x0) < α, the hypothesis H0 is rejected in favor of the alternative. In particle physics, in addition
to applying the Neyman hypothesis test, we also report the p-value. This is sensible because there is a
more information in the p-value than merely reporting the fact that a null hypothesis was rejected at a
significance level of α.

The Neyman method satisfies the frequentist principle by construction. Since the significance of
the test is fixed, α is the relative frequency with which true null hypotheses would be rejected and is
called the Type I error rate.

1 

x

 

x!

p(x | H0 ) p(x | H1)

Fig. 11: See Fig. 10 for details. Unlike the case in Fig. 10,
the two hypotheses H0 and H1 are not that different. It is
then not clear whether it makes practical sense to reject
H0 when x > xα only to replace it with an hypothesis
H1 that is not much better.

However, since we have specified an alter-
native hypothesis there is more that can be said.
Figure 10 shows that we can also calculate

β = P (x ≤ xα|H1), (22)

which is the relative frequency with which we
would reject the hypothesis H1 if it is true. This
mistake is called a Type II error. The quantity
1−β is called the power of the test and is the rel-
ative frequency with which we would accept the
hypothesis H1 if it is true. Obviously, for a given
α we want to maximize the power. Indeed, this is
the basis of the Neyman-Pearson lemma (see for
example Ref. [2]), which asserts that given two

simple hypotheses — that is, hypotheses in which all parameters have well-defined values — the optimal
statistic t to use in the hypothesis test is the likelihood ratio t = p(x|H1)/p(x|H0). Maximizing the
power seems sensible. Consider Fig. 11. The significance of the test in this figure is the same as that in
Fig. 10, so the Type I error rate is identical. However, the Type II error rate is much greater in Fig. 11
than in Fig. 10, that is, the power of the test is considerably weaker in the former. In that case, there may
be no compelling reason to reject the null since the alternative is not that much better. This insight was
one source of Neyman’s disagreement with Fisher. Neyman objected to possibility that one might reject a
null hypothesis regardless of whether it made sense to do so. Neyman insisted that the task is always one
of deciding between competing hypotheses. Fisher’s counter argument was that an alternative hypothesis
may not be available, but we may nonetheless wish to know whether the only hypothesis that is available
is worth keeping. As we shall see, the Bayesian approach also requires an alternative, in agreement with
Neyman, but in a way that neither he nor Fisher agreed with!
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We have assumed that the hypotheses H0 and H1 are simple, that is, fully specified. Unfortu-
nately, most of the hypotheses that arise in realistic particle physics analyses are not of this kind. In the
Higgs boson discovery analyses by ATLAS and CMS the probability models depend on many nuisance
parameters for which only estimates are available. Consequently, neither the background-only nor the
background + signal hypotheses are fully specified. Such hypotheses are called compound hypotheses.
In order to illustrate how hypothesis testing proceeds in this case, we again turn again to the top discovery
example.

Example

As we saw in Sec. 3.1.2, the standard way to handle nuisance parameters in the frequen-
tist approach is to replace them by their conditional MLEs and thereby reduce the likeli-
hood function to the profile likelihood. In the top discovery example, we obtain a function
pPL(D|s) that depends on the single parameter, s. We now treat this function as if it were
a likelihood and invoke both the Neyman-Pearson lemma, which suggests the use of likeli-
hood ratios, and Wilks’ theorem to motivate the use of the function t(x, s) given in Eq. (17)
to distinguish between two hypotheses: the hypothesis H1 in which s = ŝ = N − B and
the hypothesis H0 in which s 6= ŝ, for example, the background-only hypothesis s = 0. In
the context of testing, t(x, s) is called a test statistic, which, unlike a statistic as we have
defined it (see Sec. 2.1), usually depends on at least one unknown parameter.

In principle, the next step is the computationally arduous task of simulating the distribution
of the statistic t(x, s). The task is arduous because a priori the probability density p(t|s, b)
can depend on all the parameters that exist in the original likelihood. If this is really the
case, then after all this effort we seem to have achieved a pyrrhic victory! But, this is where
Wilks’ theorem saves the day, at least approximately. We can avoid the burden of simulating
t(x, s) because the latter is approximately a χ2 variate.

Using N = 17 and s = 0, we find t0 = t(N = 17, s = 0) = 4.6. According to the results
shown in Fig. (7)(a), N = 17 may can be considered “a lot of data"; therefore, we may use
t0 to implement a hypothesis test by comparing t0 with a fixed value tα corresponding to the
significance level α of the test.

4 Lecture 3: The Bayesian Approach
In this lecture, we introduce the Bayesian approach to inference starting with a description of its salient
features and ending with a detailed example, again using the top quark discovery data from DØ.

The main point to be understood about the Bayesian approach is that it is merely applied proba-
bility theory (see Sec. 2.2). A method is Bayesian if

– it is based on the degree of belief interpretation of probability and
– it uses Bayes theorem

p(θ, ω|D) =
p(D|θ, ω)π(θ, ω)

p(D)
, (23)

where

D = observed data,

θ = parameters of interest,

ω = nuisance parameters,

p(θ, ω|D) = posterior density,

π(θ, ω) = prior density (or prior for short).
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for all inferences. The result of a Bayesian inference is the posterior density p(θ, ω|D from which, if
desired, various summaries can be extracted. The parameters can be discrete or continuous and nuisance
parameters are eliminated by marginalization,

p(θ|D) =

∫
p(θ, ω|D) dω, (24)

∝
∫
p(D|θ, ω)π(θ, ω) dω.

The function π(θ, ω), called the prior, encodes whatever information we have about the parameters θ
and ω independently of the data D. A key feature of the Bayesian approach is recursion; the use of the
posterior density p(θ, ω|D) or one, or more, of its marginals as the prior in a subsequent analysis.

These simple rules yield an extremely powerful and general inference model. Why then is the
Bayesian approach not more widely used in particle physics? The answer is partly historical: the fre-
quentist approach was dominant at the dawn of particle physics. It is also partly the widespread per-
ception that the Bayesian approach is too subjective to be useful for scientific work. However, there is
published evidence that this view is mistaken, witness the success of Bayesian methods in high-profile
analyses in particle physics such as the discovery of single top quark production at the Tevatron [20,21].

4.1 Model Selection
Conceptually, hypothesis testing in the Bayesian approach (also called model selection) proceeds exactly
the same way as any other Bayesian calculation: we compute the posterior density,

p(θ, ω,H|D) =
p(D|θ, ω,H)π(θ, ω,H)

p(D)
, (25)

and marginalize it with respect to all parameters except the ones that label the hypotheses or models, H ,

p(H|D) =

∫
p(θ, ω,H|D) dθ dω. (26)

Equation (26) is the probability of hypothesis H given the observed data D. In principle, the parameters
ω could also depend on H . For example, suppose that H labels different parton distribution function
(PDF) models, say CT10, MSTW, and NNPDF, then ω would indeed depend on the PDF model and
should be written as ωH .

It is usually more convenient to arrive at the probability p(H|D) in stages.

1. Factorize the prior in the most convenient form,

π(θ, ωH , H) = π(θ, ωH |H)π(H),

= π(θ|ωH , H)π(ωH |H)π(H), (27)

or

= π(ωH |θ,H)π(θ|H)π(H). (28)

Often, we can assume that the parameters of interest θ are independent, a priori, of both the
nuisance parameters ωH and the model label H , in which case we can write, π(θ, ωH , H) =
π(θ)π(ωH |H)π(H).

2. Then, for each hypothesis, H , compute the function

p(D|H) =

∫
p(D|θ, ωH , H)π(θ, ω|H) dθ dω. (29)
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3. Then, compute the probability of each hypothesis,

p(H|D) =
p(D|H)π(H)∑
H p(D|H)π(H)

. (30)

Clearly, in order to compute p(H|D) it is necessary to specify the priors π(θ, ω|H) and π(H). With
some effort, it is possible to arrive at an acceptable form for π(θ, ω|H), however, it is highly unlikely
that consensus could ever be reached on the discrete prior π(H). At best, one may be able to adopt a
convention. For example, if by convention two hypotheses H0 and H1 are to be regarded as equally
likely, a priori, then it would make sense to assign π(H0) = π(H1) = 0.5.

One way to circumvent the specification of the prior π(H) is to compare the probabilities,

p(H1|D)

p(H0|D)
=

[
p(D|H1)

p(D|H0

]
π(H1)

π(H0)
. (31)

and use only the term in brackets, called the global Bayes factor, B10, as a way to compare hypotheses.
The Bayes factor specifies by how much the relative probabilities of two hypotheses changes as a result of
incorporating new data, D. The word global indicates that we have marginalized over all the parameters
of the two models. The local Bayes factor, B10(θ) is defined by

B10(θ) =
p(D|θ,H1)

p(D|H0)
, (32)

where,

p(D|θ,H1) ≡
∫
p(D|θ, ωH1 , H1)π(ωH1 |H1) dωH1 , (33)

are the marginal or integrated likelihoods in which we have assumed the a priori independence of θ
and ωH1 . We have further assumed that the marginal likelihood H0 is independent of θ, which is a very
common situation. For example, θ could be the expected signal count s, while ωH1 = ω could be the
expected background b. In this case, the hypothesis H0 is a special case of H1, namely, it is the same as
H1 with s = 0. An hypothesis that is a special case of another is said to be nested in the more general
hypothesis. The Bayesian example, discussed below, will make this clearer. There is a subtlety that may
be missed: because of the way we have defined p(D|θ,H), we need to multiply p(D|θ,H) by the prior
π(θ) and then integrate with respect to θ in order to calculate p(D|H).

4.1.1 A Word About Priors
Constructing a prior for nuisance parameters is generally neither controversial (for most parameters) nor
problematic. Such difficulties as do arise occur when the priors must, of necessity, depend on expert
judgement. For example, one theorist may insist that a uniform prior within a finite interval is a reason-
able prior for the factorization scale in a QCD calculation, while in the expert judgement of another the
interval should be twice as large. Clearly, in this case, there is no getting around the fact that the prior
for this parameter is unavoidably subjective. However, once a choice is made, a prior π(ωH |H) that
integrates to one can be constructed.

The Achilles heal of the Bayesian approach is the need to specify the prior π(θ), for the parame-
ters of interest, at the start of the inference chain when we know almost nothing about these parameters.
Careless specification of this prior can yield results that are unreliable or even nonsensical. The manda-
tory requirement is that the posterior density be proper, that is integrate to unity. Ideally, the same should
hold for priors. A very extensive literature exists on the topic of prior specification when the available in-
formation is extremely limited. However, a discussion of this topic is beyond the scope of these lectures;
but, we shall make a few remarks.
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For model selection, we need to proceed with caution because Bayes factor are sensitive to the
choice of priors and therefore less robust than posterior densities. Suppose that the prior π(θ) = Cf(θ),
where C is a normalization constant. The global Bayes factor for the two hypotheses H1 and H0 can be
written as

B10 = C

∫
p(D|θ,H1) f(θ) dθ

p(D|H0)
. (34)

Therefore, if the constant C is ill defined, typically because
∫
f(θ) dθ = ∞, the Bayes factor will

likewise be ill defined. For this reason, it is generally recommended that an improper prior not be used
for parameters θ that occur only in one hypothesis, here H1. However, for parameters that are common
to all hypotheses, it is permissible to use improper priors because the ill defined constant cancels in the
Bayes factor.

The discussion so far has been somewhat abstract. The next section therefore works through a
detailed example of a possible Bayesian analysis of the DØ top discovery data.

4.2 The Top Quark Discovery: A Bayesian Analysis

s
0 10 20 30

) 1
p(

s|
17

, H

0

0.01

0.02

0.03

0.04

Fig. 12: Posterior density computed for DØ top quark
discovery data. The shaded area is the 68% central cred-
ible interval.

In this section we shall perform the following cal-
culations as a way to illustrate a typical Bayesian
analysis,

1. compute the posterior density p(s|D),
2. compute a 68% credible interval [l(D), u(D)],

and
3. compute the global Bayes factor B10 =
p(D|H1)/p(D|H0).

Probability model
The first step in any serious statistical analysis
is to think deeply about what has been done in
the physics analysis; for example, to trace in de-
tail the steps that led to the background estimates,
determine the independent systematic effects and
identify explicitly what is known about them. Al-
though, by tradition, we tend to think of poten-
tial data x separately from the parameters s and b,
it should be recognized that this is done for con-
venience. The full probability model is the joint
probability

p(x, s, b|I),

which, as is true of all probability models, is conditional on the information and assumptions, I , that
define the abstract space Ω (see Sec. 2.2). In these lectures, we have omitted the conditioning data I , and
will continue to do so here, but it should not be forgotten that it is always present and may differ from
one probability model to another.

The full probability model p(x, s, b) can be factorized is several ways, all of which are mathemat-
ically valid. However, we find it convenient to factorize the model in the following way

p(x, s, b) = p(x|s, b)π(s, b), (35)
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where we have introduced the symbol π in order to highlight the distinction we choose to make between
this part of the model and the remainder. We are entirely free to decide how much of the model we
place in p(x|s, b) and how much in π(s, b); what matters is the form of the full model p(x, s, b). In
the frequentist analysis of the top quark discovery data, we took N and B to be the data D. We did
so because in the frequentist approach, the function π(s, b) does not exist and consequently we have no
choice but to include everything in the function p(x|s, b). One virtue of a Bayesian perspective is that
we are not bound by this stricture. To make the point explicitily, we take the probability distribution,
p(x|s, b), to be

p(x|s, b) = Poisson(x, s+ b). (36)

The interpretation of p(x|s, b) is clear: it is the probability to observe x events given that the mean event
count is s + b. What does π(s, b) represent? This function is the prior that encodes what we know, or
assume, about the mean background and signal independently of the potential observations x. The prior
π(s, b) can be factored in two ways,

π(s, b) = π(s|b)π(b),

= π(b|s)π(s), (37)

both of which accord with the probability rules. The factorizations remind us that the parameters s and
b may not be probabilistically independent. However, we shall assume that they are, at least at this stage
of the analysis, in which case it is permissible to write,

π(s, b) = π(s)π(b). (38)

We first consider the background prior π(b) and ask: what do we know about the background? We
know the count Q in the control region and we have an estimate of the control region to signal region
scale factor k. The likelihood for Q is taken to be

p(Q|k, b) = Poisson(Q, kb), (39)

from which, together with a prior π(k, b), we can compute the posterior density

p(b|Q, k) = p(Q|k, b)π(k, b)/p(Q). (40)

As usual, we factorize the prior, π(k, b) = π(k|b)π0(b), where we have introduced the subscript 0 to
distinguish π0(b) from the background prior associated with Eq. (36). Then, we consider the separate
factors π0(b) and π(k|b).

What do we know about b at this stage? Clearly, b ≥ 0. But, that is all we know apart from
the background likelihood, Eq. (39). Today, after a century of argument and discussion, the consensus
amongst statisticians is that there is no unique way to represent such vague information. However, well
founded ways to construct such priors are available, see for example Ref. [22] and references therein; but
for simplicity we take the prior π0(b) = 1, that is, the flat prior. If the uncertainty in k can be neglected,
the (proper!) prior for k is π(k|b) = δ(k − Q/B), which amounts to replacing k in Eq. (40) by Q/B.
When the dust settles, we find

p(b|Q, k) = Gamma(kb, 1, Q+ 1) =
e−kb(kb)Q

Γ(Q+ 1)
, (41)

for the posterior density of b, which can serve as the prior π(b) associated with Eq. (36).

By construction, p(x, s, b) is identical in form to the likelihood in Eq. (15); we have simply availed
ourselves of the freedom to factorize p(x, s, b) as we wish and therefore to reinterpret the factors. This
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freedom is useful because it makes it possible to keep the likelihood simple while relegating the com-
plexity to the prior. This may not seem, at first, to be terribly helpful; after all, we arrived at the same
mathematical form as Eq. (15). However, the complexity can be substantially mitigated through the nu-
merical treatment of the prior, as discussed at the end of the next section. The likelihood, as we have
conceptualized the problem, is given by

p(D|s, b) =
e−(s+b)(s+ b)D

D!
, (42)

where D = 17 events.

The final ingredient is the prior π(s). At this stage, all we know is that s ≥ 0. Again, there is no
unique way to specify π(s), though as noted there are well founded methods to construct it. We shall
variously assume either the improper prior π(s) = 1 or the proper prior π(s) = δ(s− 14).

Marginal likelihood
After this somewhat discursive discussion of the probability model, we have done the hard part: building
the full probability model. Hereafter, the rest of the Bayesian analysis is mere computation.

It is convenient to eliminate the nuisance parameter b,

p(D|s,H1) =

∫ ∞

0
p(D|s, b)π(b)d(kb),

=
1

Q
(1− x)2

N∑

r=0

Beta(x, r + 1, Q) Poisson(N − r|s), (43)

where x = 1/(1 + k),

Exercise 10: Show this

and thereby arrive at the marginal likelihood p(D|s,H1). This example, the Poisson-gamma model is
particularly simple and lends itself to exact calculation. However, the complexity rapidly increases as
the prior becomes more and more complicated. In the probability model that is used in the Higgs boson
analyses at the LHC, the part we would consider the prior, π(µ,mH , ω), is of enormous complexity.
However, the part that we would call the likelihood, p(D|µ,mH , ω), is relatively simple. The parame-
ter µ denotes one or more signal strengths — the ratio of the cross section times branching fraction to
that predicted by the Standard Model (SM), and mH is the Higgs boson mass. The parameter ω repre-
sent the expected (and therefore unknown) SM signal predictions and the expected backgrounds. When
faced with such complexity, it proves useful to use a hierarchical Bayesian model. Briefly, the prior
π(µ,mH , ω) is written as

π(µ,mH , ω) = π(ω|µ,mH)π(µ,mH),

where π(ω|µ,mH) =

∫
π(ω|φ, µ,mH)π(φ|µ,mH) dφ.

The prior π(φ|µ,mH) models the lowest level systematic parameters that define quantities such as the jet
energy scale, lepton efficiencies, trigger efficiencies, and the parton distribution functions. It is usually
straightforward to sample from this prior. Moreover, the function π(ω|φ, µ,mH) is nothing more than
prior for the expected signal and background parameters ω, which through estimates ω̂ depend implicitly
on the parameters φ. The prior π(ω|φ, µ,mH) is generally quite simple; for binned data it is just a
product of gamma (or gamma mixture) densities; more generally, it is a product of gamma, Gaussian, or
log-normal densities. Consequently, the marginalizations over ω can be done in two steps: first generate
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a point φi from π(φ|µ,mH), then generate a point ωi from π(ω|φi, µ,mH). In that way, the enormous
complexity of explicitly modeling the dependence of ω on φ is avoided, with the added benefit that all,
possibly very complicated, correlations (in principle, to all orders) are accounted for automatically. The
marginal likelihood can be approximated by

p(D|µ,mH) ≈ 1

M

M∑

m=1

p(D|µ,mH , ωm). (44)

What we have just described is merely integration via a Monte Carlo approximation. The point is that
the sampling required to compute pi(D|µ,mH) can be run in M parallel analysis jobs, each of which is
given a different random number seed in order to sample a single pair of points φm and ωm. The results
of such a Bayesian analysis would be the likelihood p(D|µ,mH , ω and an ensemble of points {ωm}.

Posterior density
Given the marginal likelihood p(D|s,H1) and a prior π(s) we can compute the posterior density,

p(s|D,H1) = p(D|s,H1)π(s)/p(D|H1), (45)

where,

p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Again, for simplicity, we assume a flat prior for the signal, π(s) = 1 and find

p(s|D,H1) =

∑N
r=0 Beta(x, r + 1, Q) Poisson(N − r|s)

∑N
r=0 Beta(x, r + 1, Q)

, (46)

Exercise 11: Derive an expression for p(s|D,H1) assuming
π(s) = Gamma(qs, 1,M + 1) where q and M are constants

from which we can compute the central credible interval [9.9, 18.4] for s at 68% C.L., which is shown
in Fig. 12.

4.2.1 Bayes factor
As noted, the number p(D|H1) can be used to perform a hypothesis test. But, as argued above, we need
to use a proper prior for the signal, that is, a prior that integrates to one. The simplest such prior is a
δ-function, e.g., π(s) = δ(s− 14). Using this prior, we find

p(D|H1) = p(D|14, H1) = 9.28× 10−2.

Since the background-only hypothesis H0 is nested in H1, and defined by s = 0, the number p(D|H0)
is given by p(D|0, H1), which yields

p(D|H0) = p(D|0, H1) = 3.86× 10−6.

We conclude that the hypothesis s = 14 is favored over s = 0 by a Bayes factor of 24,000. In order
to avoid large numbers, the Bayes factor can be mapped into a (signed) measure akin to the frequentist
“n-sigma" [23],

Z = sign(lnB10)
√

2| lnB10|, (47)

which gives Z = 4.5. Negative values of Z correspond to hypotheses that are excluded.
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Summary
These lectures gave an overview of the main ideas of statistical inference in a form directly applicable
to statistical analysis in particle physics. Two widely used approaches were covered, frequentist and
Bayesian. While we tried to focus on the practical, our hope is that we have given just enough commen-
tary about the topics to place them in some intellectual context. We hope that the take away message is
that is it worth learning a bit more about statistics if only to avoid fruitless arguments and discussions
with co-workers. Statistics is not physics. Nature is the ultimate arbiter of which physics ideas are “cor-
rect". Unfortunately, the ultimate arbiter of statistical ideas, apart from the mundanity of mathematical
correctness, is intellectual taste. Therefore, the other take home message is

“Have the courage to you use your own understanding"

Immanuel Kant
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