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Abstract
The Standard Model is one of the main intellectual achievements for about the
last 50 years, a result of many theoretical and experimental studies. In this
lecture a brief introduction to the electroweak part of the Standard Model is
given. Since the Standard Model is a quantum field theory, some aspects for
understanding of quantization of abelian and non-abelian gauge theories are
also briefly discussed. It is demonstrated how well the electroweak Standard
Model works in describing a large variety of precise experimental measure-
ments at lepton and hadron colliders.

1 Introduction
The Standard Model (SM) of strong and electroweak (EW) interactions is the basis for understanding
of nature at extremely small distances. In high-energy physics usually the relativistic system of units
is used in which the Planck constant ~ and the speed of light c are equal to unity, ~ = c = 1. Taking
into account well-known values for ~ = 1.055 · 1027 erg s, c = 3 · 1010 cm/s and the positron electric
charge e = 1.6 · 10−19 C and using the relation between the electronvolt and erg (1 eV = e· 1 V = 1 V
·1.6 · 10−19 C = 1.6 · 10−12 erg), one easily gets the following very useful relation between length and
energy units: 1/GeV = 2 · 10−14 cm. Due to the Heisenberg uncertainty principle, ∆x∆p ≥ 1/2, the
above relation allows us to understand which energies (momentum transfers) are needed approximately
to probe certain distances:
100 GeV→ 10−16 cm,
1 TeV→ 10−17 cm,
10 TeV→ 10−18 cm.
Therefore, at the LHC one can study the structure of matter at distances of 10−18–10−17 cm. For small
distances of the order of 10−16 cm or correspondingly 100 GeV energies the SM works very well, as
follows from many studies and measurements.

The SM is a quantum field theory; it is based on a few principles and requirements:

– gauge invariance with lowest dimension (dimension four) operators; SM gauge group: SU(3)C ×
SU(2)L × U(1)Y ;

– correct electromagnetic neutral currents and correct charge currents with (V–A) structure as fol-
lows from four fermion Fermi interations (1)

GF√
2

[ν̄µ · γα(1− γ5) · µ ] [ē · γα(1− γ5) · νe ] + h.c.; (1)

– three generations without chiral anomalies;
– Higgs mechanism of spontaneous symmetry breaking.

Fermions are combined into three generations forming left doublets and right singlets with respect to the
weak isospin (see Fig.1).

fL,R =
1

2
(1∓ γ5)f,
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Fig. 1: Fermion generation
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The SM Lagrangian written in accord with the mentioned requirements looks very simple:

L = −1
4W

i
µν(Wµν)i − 1

4BµνB
µν − 1

4G
a
µν(Gµν)a

+
∑

f=`,q Ψ̄f
L(iDL

µγ
µ)Ψ†L +

∑
f=`,q Ψ̄f

R(iDR
µ γ

µ)Ψ†R + LH,

LH = LΦ + LYukawa,

LΦ = DµΦ†DµΦ− µ2Φ†Φ− λ(Φ†Φ)4,

LYukawa = −Γijd Q̄
′
L
i
Φd′R

j
+ h.c.− Γiju Q̄

′
L
i
ΦCu′R

j
+ h.c.− Γije L̄

′
L
i
Φe′R

j
+ h.c.

The field strength tensors and covariant derivatives have very familiar forms:

W i
µν = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν ,

Bµν = ∂µBν − ∂νBµ,
Gaµν = ∂µA

a
ν − ∂νAaµ + gSf

abcAbµA
c
ν ,

DL
µ = ∂µ − ig2W

i
µτ

i − ig1Bµ

(
Y fL
2

)
− igSA

a
µt
a,

DR
µ = ∂µ − ig1Bµ

(
Y fR
2

)
− igSA

a
µt
a,

where i = 1, 2, 3, a = 1, . . . , 8; W i
µ are gauge fields for the weak isospin group, Bµ are gauge fields for

the weak hypercharge group and Aµ are gluon gauge fields for the strong SUC(3) colour group.

Yf = 2Qf − 2I3
f ⇒ YLi = −1, YeRi = −2, YQi =

1

3
, YuRi =

4

3
, YdRi = −2

3
.

The Lagrangian is so compact that its main part can be presented on the CERN T-shirt (see Fig. 2).

It is hard to imagine that such a simple Lagrangian allows one to describe basically all the phe-
nomena of the microworld. But the SM Lagrangian, being expressed in terms of physics components,
is not that simple, leading after quantization to many interaction vertices between particles or quanta of
corresponding quantum fields.

This lecture is organized as follows. In the next section some aspects of quantum field theory are
briefly discussed. After a motivation as to why do we need a quantum field theory, we consider scalar
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Fig. 2: CERN T-shirt with SM Lagrangian

fields and introduce the Feynman propagator and functional integral approach as a quantization method.
The functional integral given in the holomorphic representation allows us to clarify boundary conditions
and show the connection between the Green functions and S-matrix elements. Feynman diagrams are
introduced. The formalism is extended to the fermion and gauge fields stressing peculiarities in the
quantization procedure and Feynman rule derivation. In the next section a construction of the EW SM
Lagrangian is presented. We discuss experimental facts and theory principles based on which the EW part
of the SM Lagrangian for fermion and gauge fields is constructed. We show explicitly which conditions
on weak hypercharges allow us to get correctly electromagnetic and charge current (CC) interactions
and predict additional neutral currents (NCs). We demonstrate how potentially dangerous chiral anoma-
lies cancelled out. Then spontaneous symmetry breaking, the Goldstone theorem and the appearance
of Nambu–Goldstone bosons are briefly discussed. The Brout–Englert–Higgs–Hagen–Guralnik–Kibble
mechanism of spontaneous symmetry breaking is introduced leading to non-zero masses of the gauge
fields and appearance of the Higgs boson. Very briefly we discuss in addition to the unitary gauge the
covariant gauge, propagators of Goldstone bosons and ghosts. At the end of the section it is shown how
the spontaneous symmetry breaking mechanism leads to non-zero masses for the fermions in the SM
and how very naturally the Cabibbo–Kobayashi–Maskawa mixing matrix appears. In the next section we
concentrate on some phenomenological aspects of the EW SM such as connections between the Fermi
constant GF, the Higgs vacuum expectation value v, consistency of low-energy measurements and W,
Z mass measurements, W-, Z-boson decay widths and branching ratios, number of light neutrinos, two-
fermion processes in e+e− collisions, tests of the gauge boson self-interactions, top-quark decays and
the EW top production (single top). Briefly we discuss the EW SM beyond the leading order, renormal-
ization and running coupling in quantum electrodynamics (QED), as a simplest example, running masses
and running parameters in the SM, precision EW data and global parameter fits. Concluding remarks are
given in the next section. The quantum chromodynamics (QCD) part of the SM and the phenomenol-
ogy of the Higgs boson are not discussed in these lectures as they are addressed in other lectures of the
School.

For a deeper understanding of the topics discussed, one can recommend a number of very good
textbooks and reviews [1–9] and lectures given at previous schools and specialized reviews [10, 12–15],
which have been used in preparation of this lecture.

2 Introductory words to quantum theory
In classical mechanics a system evolution follows from the principle of least action:

δS = δ

tf∫

ti

dtL(q(t), q̇(t)) = 0;

tf∫

ti

[
∂L

∂q
δq +

∂L

∂q̇
δ(q̇)

]
= 0; δ(q̇) =

d

dt
δq.
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For an arbitrarily small variation δq, one gets the well-known Lagrange equation of motion

∂L

∂q
=

d

dt

(
∂L

∂q̇

)
. (2)

For a non-relativistic system described by the Lagrangian L = mq̇2

2 − V (q), the second Newton law
follows from Eq. (2),

mq̈ = −∂V
∂q

= F.

The Hamiltonian of the system is related to the Lagrangian in the following well-known way:

H(p, q) = pq̇ − L(q, q̇),

where q̇ is a solution of the equation p = ∂L
∂q̇ .

In quantum mechanics the coordinate and momentum are replaced by corresponding operators
p, q → p̂, q̂ with postulated commutator relation [p̂(0), q̂(0)] = −i~. In the Heisenberg picture the
system evolution is described by the Heisenberg equation with time-dependent operators; for example,
the equation for the coordinate operator has the following form:

∂q̂

∂t
=

i

~
[Ĥ, q̂] (3)

with a formal solution
q̂(t) = e

i
~ Ĥtq̂(0)e−

i
~ Ĥt.

This easily follows from the equalities

∂q̂

∂t
=

i

~
Ĥe

i
~ Ĥtq̂(0)e−

i
~ Ĥt + e

i
~ Ĥtq̂(0)e−

i
~ ĤtĤ =

i

~
Ĥq̂(t)− i

~
q̂(t)Ĥ =

i

~
[Ĥ, q̂].

For the coordinate and momentum operators, one can prove the following inequality:

4q · 4p ≥ 1/2,

which is called the Heisenberg uncertainty principle.

Let us recall a simple proof of the Heisenberg uncertainty principle. The mid value of any operator
Â and its dispersion are given by the relations

〈ψ|Â|ψ〉 = A, 〈ψ|(Â−A)2|ψ〉.

Let us take the following operator constructed from the momentum and coordinate operators
([p̂, q̂] = −i~) with arbitrary constant γ:

Â = p̂+ iγq̂ − (p+ iγq).

Then the conjugated operator has the form

Â† = p̂− iγq̂ − (p− iγq).

For any state |ψ〉 we have
〈ψ|Â†A|ψ〉 ≥ 0

,
〈ψ| [(p̂− p)− iγ(q̂ − q)] [(p̂− p) + iγ(q̂ − q)] |ψ〉

= (∆p)2 + γ2∆q2 − iγ(q̂p̂− p̂q̂) = (∆p)2 + γ2∆q2 + γ~ ≥ 0.
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This is true for any value of γ and therefore the determinant is not positive:

~2

4
−∆q2∆p2 ≤ 0.

Thus, we immediately arrive at the uncertainty principle:

∆q∆p ≥ 1

2
~.

Let us consider the simplest system, the harmonic oscillator, described by the Hamiltonian (we
put ~ = 1)

Ĥ =
1

2
(p̂2 + ω2q̂2),

and construct two operators â and â† which are called the annihilation and creation operators:

q̂ =
1√
2ω

(â+ â†); p̂ = −i

√
ω

2
(â− â†).

=⇒ â =

√
ω

2
q̂ + i

1√
2ω
p̂; â† =

√
ω

2
q̂ − i

1√
2ω
p̂. (4)

From the equation [p̂, q̂] = −i, one gets [â, â†] = 1 and the Hamiltonian takes the form

Ĥ =
ω

2
(ââ† + â†â).

It is easy to show the following commutation relations with the Hamiltonian:

[Ĥ, â] = −ωâ and [Ĥ, â†] = ωâ†.

From (3),
dâ

dt
= i[Ĥâ] = −iωâ =⇒ â(t) = â(0)e−iωt; â†(t) = â†(0)eiωt.

Let us consider states with definite energy:

Ĥ|E〉 = E|E〉.

Then the state â|E〉 (â†|E〉) corresponds to the energy (E − ω) ((E + ω)). Indeed,

Ĥâ|E〉 = âĤ|E〉 − ωâ|E〉 = (E − ω)â|E〉,

Ĥâ†|E〉 = (E + ω)â†|E〉.

Let us construct states (Hilbert space of states) starting from the ‘vacuum’ state |0〉:

â|0〉 = 0.

What is the energy of the vacuum state? This is

Ĥ|0〉 =
ω

2
(ââ† + â†â)|0〉 =

ω

2
|0〉.

The state |n〉 we introduce as |n〉 = (â†)n|0〉; its energy is given by

Ĥ(â†)n|0〉 = ω(n+ 1/2)|n〉.

As we know, such a construction is very successful in describing non-relativistic quantum phenomena
(spectra of atoms, molecules, nuclei etc).

But there are well-known problems:
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– In experiments we have not only particle creation and annihilation but also production of new
particles and antiparticles.

– Relativity and causality might be in conflict with quantum principles.
If in four-dimensional areas X and Y points are separated by the space-like interval (x− y)2 < 0,
events in the points x and y are causally independent. But in QM we have the uncertainty principle,
∆p∆x ≥ 1, and in some regions of the order of ∆x 1/m close to indistinct boundaries of the areas
X and Y the causality might be violated.

Quantum field theory allows us to resolve both of these problems simultaneously.

To describe a particle and an antiparticle with mass m, momentum ~k and energy ωk = k0 =√
~k2 +m2, let us consider two sets of creation and annihilation operators for each momentum point ~k

â, â† and b̂, b̂†. Vacuum is defined by the requirements â|0〉 = b̂|0〉 = 0. The Hamiltonian for every
momentum point ~k obviously has the following form:

Hk =
ωk
2

(â(~k)â†(~k) + â†(~k)â(~k) + b̂(~k)b̂†(~k) + b̂†(~k)b̂(~k)),

where ωk = k0 =
√
~k2 +m2. Please note that the mass parameter m is the same for all oscillators with

different ~k.

One can use a different normalization of an integral measure in order to get the commutation
relations: ∫

dk[â(~k)â†(~k)] = 1;

∫
dk[b̂(~k)b̂†(~k)] = 1.

We are using

dk =
d3~k

(2π)32ωk
⇒ [â(~k)â†(~k′)] = (2π)22ωkδ(~k − ~k′).

Total momentum and charge operators taken in so-called ‘normal ordering’ have the following
form:

P̂µ =

∫
dkkµ

[
â†(~k)â(~k) + b̂†(~k)b̂(~k)

]
,

Q̂ =

∫
dk
[
â†(~k)â(~k)− b̂†(~k)b̂(~k)

]
.

One can prove the following commutator relations, which clarify the meaning of the operators:
[
P̂µ, â†(~k)

]
= kµâ†(~k);

[
P̂µ, â(~k)

]
= −kµâ(~k),

[
Q̂, â†(~k)

]
= â†(~k);

[
Q̂, b̂†(~k)

]
= −b̂†(~k).

Now one can construct the field operator:

Φ̂(x) =

∫
dk
[
e−ikxâ(~k) + eikxb̂†(~k)

]
.

The momentum operator acts on the field operator leading to a coordinate translation:

eiP̂µyµΦ̂(x)e−iP̂µyµ = Φ̂(x+ y).

Indeed, one may prove this in a very simple way. Let us introduce an operator Â(α) depending on some
numerical parameter α:

eiαyµP̂µ â(k)e−iαyµP̂µ = Â(α).
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The operator obeys the following equation:

dA

dα
= iyµP̂µÂ− iyµP̂µÂ = −iyµ

[
P̂µÂ

]
.

One finds a solution in the form Â = â(~k)f(α), from which one can immediately see the needed
translation relation:

=⇒ â(k)
df

dα
= −iyµf(α)kµâ(k) =⇒ df

dα
= −iyµkµf(α) =⇒

eiαyµP̂µ â(k)e−iαyµP̂µ = â(k)e−ikµyµ =⇒ Φ̂(x) = Φ̂(x+ y).

It is very important to note that such a field operator obeys the Klein–Gordon equation:

[�2 +m2]Φ̂(x) =

∫
dk
[
e−ikx(−k2 +m2)â(k) + eikx(−k2 +m2)b̂(k)

]
= 0

because of
−k2 +m2 = −k2

0 + ~k2 +m2 = −ω2
k + ω2

k = 0

What charge has the state created by the operator Φ̂(x)? Let us act on the vacuum state by the
Φ̂(x) operator: Φ̂(x)|0〉. This state has the following charge:

Q̂Φ̂(x)|0〉 = −Φ̂(x)|0〉.
In the same way, one gets

Q̂Φ̂†(x)|0〉 = Φ̂†(x)|0〉.

This means that the field operator Φ̂(x) acting on vacuum produces the state with the negative
charge (–1) and the field operator Φ̂†(x) produces the state with the positive charge (+1).

Now let us consider two space–time points x1 and x2:

u u
t1, ~x1 t2, ~x2

and two-point correlation functions—products of field operators between vacuum states. If t1 < t2, the
operator Φ̂(x1)|0〉 in the correlator

〈0|Φ̂†(x2)Φ̂(x1)|0〉
creates the charge –1 at t1, and the operator Φ̂†(x2)Φ̂(x1)|0〉 annihilates this charge at t2. So, charge –1
propagates from the point x1 to x2 and t2 > t1. If t2 < t1, the operator Φ̂†(x2)|0〉 in the correlator

〈0|Φ̂(x1)Φ̂†(x2)|0〉

creates the charge +1 at t2, and Φ̂(x1)Φ̂†(x2)|0〉 annihilates this charge at t1. So, charge +1 propagates
from the point x2 to x1 and t2 < t1.

Since both these actions do not change the vacuum, we should take both correlators into account
to see the causal relation of events in points x1 and x2:

〈0|T{Φ̂†(x2)Φ̂(x1)}|0〉

7
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= 〈0|Φ̂†(x2)Φ̂(x1)|0〉Θ(t2 − t1) + 〈0|Φ̂(x1)Φ̂†(x2)|0〉Θ(t1 − t2)

= i

∫
d4k

(2π)4

e−ik(x2−x1)

k2 −m2 + i0
= Dc(x2 − x1).

The function

Dc(x) = i

∫
d4k

(2π)4

e−ikx

k2 −m2 + i0
(5)

is called the Feynman propagator. Obviously, the Feynman propagator is a Green function of the Klein–
Gordon equation. One can check that all the commutators between the field operators in the points x
and y separated by the space-like interval (x − y)2 < 0 are equal to zero. So, the causality takes place.
Also, one can construct multiparticle states by acting of the creation operators (operators have different
quantum numbers corresponding to different kinds of particles) on the vacuum state

∣∣∣~k1, . . . ,~kn

〉
=

∏n
i=1 â

†(~ki) |0〉. The energy and momentum of the states are then obtained by acting of the operators

P̂ 0
∣∣∣~k1, . . . ,~kn

〉
= Ĥ

∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

k0
i

)∣∣∣~k1, . . . ,~kn

〉
,

~̂P
∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

~ki

)∣∣∣~k1, . . . ,~kn

〉
.

Of course, one can get the same results using the usual canonical quantization with the correspon-
dence

q(t), q̇(t), L(q, q̇), S =

∫
dtL(q, q̇)⇐⇒

ϕ(x), ∂µϕ(x), L(ϕ, ∂µϕ), S =

∫
d4xL(ϕ, ∂µϕ).

The field momentum is then
π(x) =

∂L

∂(∂0ϕ(x))
; ∂0ϕ(x) = ϕ̇.

The Lagrangian of the complex scalar field has the form

L = ∂µϕ
†∂µϕ−m2ϕ†ϕ,

π(x) = ϕ̇†(x); π†(x) = ϕ̇(x).

In the same way, as in classical mechanics, the equation of motion comes from the principle of least
action:

∂L

∂ϕ
= ∂µ

∂L

∂µϕ
−→ (�−m2)ϕ = 0.

The Feynman propagator Dc introduced above is a Green function of the equation of motion. For the
field and momentum operators, one naturally assumes the equal-time commutation relation

[π̂(~x, t), ϕ̂(~x′, t′)]
∣∣
t=t′ = −iδ(~x− ~x′).

The Lagrangian is invariant under a global phase shift:

ϕ(x)→ eiαϕ(x), α ≡ Const.

Such a combination, called a current, is conserved (this is a simple example of the first Noether theorem):

jµ(x) = i∂µϕ†ϕ− iϕ†∂µϕ,
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∂µj
µ = i�ϕ†ϕ+ i∂µϕ†∂µϕ− i∂µϕ

†∂µϕ− iϕ†�ϕ = 0.

Conservation of the current leads to the conservation of the charge:

Q =

∫
d3~xj0 =

∫
d~x(iϕ̇†ϕ− iϕ†ϕ̇),

dQ

dt
=

∫
d~x∂0j

0 =

∫
d~x(∂ij

i) =

∫

Ω
d~n~j = 0

for falling-off fields.

3 Functional integral in quantum mechanics
However, for our further consideration, the functional integral approach to quantum field theory is more
useful. In particular, it allows us to quantize non-abelian gauge field theories, to clarify better boundary
conditions and renormalization procedure and to get a reduction formula (connection between S-matrix
elements and the Green functions).

Once more we begin with the quantum mechanics as a simple example.

L(qi, q̇i) → pi =
∂L

∂qi
, H(qi, pi) = q̇ipi − L(qi, q̇i)|q̇=f(t)

[
q̂i(t), p̂j(t)

]
= i~δij 1̂.

Let us consider a simple system described by the non-relativistic Hamiltonian

H(p̂, q̂) =
p̂2

2m
+ V (q̂).

In the Schrödinger picture, the evolution of a quantum system follows from the Schrödinger equation

i
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 .

The formal solution of the Schrödinger equation is

|Ψ(t)〉 = e−iĤt |Ψ(0)〉 .

One can define states:
|q, t〉 : q̂ |q, t〉 = q |q, t〉 .

Then the wave function coordinate representation is

Ψ(q, t) = 〈q|Ψ(t)〉 =
〈
q
∣∣∣e−iĤt

∣∣∣Ψ(0)
〉

and
〈
q|q′
〉

= δ(q − q′).

If we introduce a complete set of states |q0〉 such that

1̂ =

∫
dq0 |q0〉 〈q0| ,

we can write

Ψ(q, t) =

∫
dq0 〈q| e−iĤt |qo〉 〈q0|Ψ(0)〉 =

∫
dq0K(q, q0, t) 〈q0|Ψ(0)〉 ,

where K is the so-called kernel of the Schrödinger equation.

Obviously, [Ĥ, Ĥ] = 0 and therefore

e−iĤT = e−iĤ(tn+1−tn) · e−iĤ(tn−tn−1) ... e−iĤ(t1−t0).

9
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u u u u
t0 t1 t2 ... tn+1 = T

At each time moment ti we can introduce a unity operator

1̂ =

∫
dqi |qi〉 〈qi| .

Then, for the kernel K, we obtain the following formula:

K(q, q0, T − t0) =

∫
lim
n→inf

n∏

i=1

dqi |qn+1−i〉
〈
qi

∣∣∣e−iĤδt
∣∣∣ qn−i

〉
. . .
〈
q1

∣∣∣e−iĤδt
∣∣∣ q0

〉
,

eε(Â+B̂) = eεÂ + eεB̂(1 + o(ε2)),
〈
qi+1

∣∣∣e−iĤδt
∣∣∣ qi
〉

=

〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt · e−iV̂ (q)δt

∣∣∣∣ qi
〉
.

For very small (δt), e−iV̂ (q)δt could be factorized out, and therefore
〈
qi+1

∣∣∣e−iĤδt
∣∣∣ qi
〉
≈ e−iV̂ (qi)δt ·

〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt

∣∣∣∣ qi
〉
.

The last term can be expressed in the following way:
〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt

∣∣∣∣ qi
〉

=

∫
dp

2π

〈
qi+1

∣∣∣∣e−i p̂
2

2m
δt

∣∣∣∣ p
〉
〈p|qi〉 =

∫
dp

2π
e−ip(qi+1−qi)δte−i p̂

2

2m
δt,

where 〈q|p〉 = eipq, 〈p|q〉 = e−ipq and 1̂ =
∫ dp

2π |p〉 〈p|.
One could make the following substitution of the integration variable:

p′ =
[

p√
2m
−
√

2m(qi+1 − qi)
1

2

]
∼ eim

2
(qi+1−qi)2 1

δt
.

Then, for the kernel K, one gets

K(q, q0; t) = N

∫
dqi
∏

i

e
i

[
m
2

(
qi+1−qi
δt2

)2
−V (qi)

]
δt

= N

∫

Dq
ei
∫ t
o dt[mv

2

2
−V (q)] =

∫
eiSD(q).

For our consideration it is not needed, but if one takes the integral of dp, one gets the following repre-
sentation for the functional integral measure:

D(q) = lim
n→inf,δt= t

n
→0
·
√

m

2πiδt

n∏

T=1

(√
m

2πiδt
dqT

)
.

We do not discuss mathematical aspects of how well such a construction is determined.

The formula for the kernel, being written as

K(q, q0; t) =

∫
D(q)eiS =

∫
D(q)ei

∫ t
0 dtL(q,q̇,t), (6)

can be generalized to the case of quantum field theory. For that we need to recall a few simple but
important formulas for multidimensional Gaussian integrals.
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4 Gaussian integrals
Let us consider n coordinates y1, . . . , yn as a formal vector

y =




y1
...
yn


 .

Obviously, yT = (y1 . . . yn) with a formal definition of ‘scalar’ product

yT · x =
∑

i

yixi.

The well-known answer for the Gaussian integral has the form

Z =

∫
dx1 . . . dxn · e−

1
2
xTAx =

(2π)n/2√
detA

, (7)

where A is a positive-definite n× n matrix.

Problem. Take the integral and obtain the above formula.

Reminder: detA =
∏n
i=1 λi, where λi is the eigenvalue of the matrix A.

The integral (7) is an analogue of the integral in a field theory without external sources, as we shall
see in the next part. An analogue of the functional integral with a source is as follows:

Z[J ] =

∫
dx1 . . . dxn · e−

1
2
xTAx+JTx, (8)

where J is some vector JT = (J1 . . . Jn). If we make a substitution of integration variable

x′ = x− (A−1)J,

the integral (8) will take the form

Z[J ] = e
1
2
JTA−1J ·

∫
dx′1 . . . dx

′
n · e−

1
2
x′TAx′ .

So, the integral Z[J ] is given by

Z[J ] = e
1
2
JTA−1J · Z = e

1
2
JTA−1J · (2π)n/2√

detA
.

Generalization of the above formula for the case of complex variables of integration is straightforward.

Let z = x+ iy and z∗ = x− iy. We need to compute the integral

ZC =

∫ n∏

k=1

dz∗kdzke
−z†Bz,

where B is a Hermitian matrix and z† = (z∗)T. One can diagonalize the quadratic form z∗TBz by
applying a unitary transformation of variables z′ = U · z such that the matrix UBU † becomes diagonal:

UBU † =




λ1 0
. . .

0 λn


 .
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The integral ZC then takes the form

ZC =

∫ n∏

k=1

dz′∗k dz′ke
−λk|z′k|2 =

∫ n∏

k=1

dxkdyke
−λk(x2k+y2k) =

πn

detB
. (9)

If we add the external complex ‘source’ J ,

ZC [J ] =

∫ n∏

k=1

dz∗kdzke
−z†Bz+J†z+z†J ,

with the shift of variables of integration we get

ZC [J ] = eJ
†B−1J · ZC = eJ

†B−1J · πn

detB
. (10)

In the field theory we have to consider interacting fields. So, we need to consider more complicated
integrals involving source ‘interactions’:

Zint[J ] =
1

Zint

∫ ∏
dxe−

1
2
xAx+Jx−V (x),

where Zint = Zint[0].

If we expand the exponent e−V (x) in ‘perturbation’ theory we can easily get the following form
for the integral Zint[J ]:

Zint[J ] =
1

Z[0]
e−V [ ∂

∂J
] · Z[J ] = e−V [ ∂

∂J
] · e 1

2
JA−1J .

5 Functional integral in quantum field theory
As we have seen already, a transition from mechanics to a field theory could be done by means of a
formal correspondence between the coordinate and its derivative and the field ϕ(x) and its derivative:

q(t)→ ϕ(x); q̇(t)→ ∂µϕ(x).

With this analogy one can immediately write down the following formula for the evolution kernel in the
case of quantum field theory:

Z[J ] =

∫
D(ϕ)ei

∫
d4xL(ϕ,∂µϕ)+i

∫
d4xJ(x)ϕ(x), (11)

where the measure D(ϕ) =
∏
x dϕ(x) corresponds to the integration over all possible trajectories (field

configurations).

Now all the formulas we derived for Gaussian integrals in the previous section can be applied here
using the functional derivative instead of the usual one. For example,

δJ(y)

δJ(x)
= δ(4)(x− y).

If we consider the Lagrangian for the free scalar field

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 = −1

2
ϕ
(
�2 +m2

)
ϕ ≡ −1

2
ϕD−1

c ϕ, (12)

we can get for Z[J ],

Z[J ] = exp

(
1

2

∫
d4xd4yJ(x)Dc(x− y)J(y)

)
, (13)
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where the normalization of the measure is taken such that

Z[0] = 1.

Here the function Dc is the Green function of the equation of motion:

D−1
c ·Dc = 1,

which more accurately means that

i
(
�2 +m2

)
x
Dc(x− y) = δ(4)(x− y).

In the momentum representation, by taking the Fourier transform of both sides of this equation, one gets

i
(
−p2 +m2

)
D(p) = 1.

The formal solution of the equation is

D(p) =
i

p2 −m2
.

But we need to fix how to deal with the pole. The only possible choice is to add +iε. In this case the
function Dc(p) has the familiar form of the Feynman propagator:

Dc(p) =
i

p2 −m2 + iε
.

Indeed, such fixing of the denominator leads to the fact that in the expression for the functional integral

Z[J ] =

∫
D(ϕ) exp

(
i

∫
d4x

[
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + Jϕ

])
, (14)

m2 gets a shift m2 → m2 − iε and the term

∫
D(ϕ) exp

(
−ε
∫

dxϕ2(x)

)

ensures the convergence of the integral.

On the other hand, as we have discussed already, such a form of the Feynman propagator leads to
Feynman boundary conditions, namely if x0 < y0 the particle propagates from ~x to ~y, and if x0 > y0

the corresponding antiparticle propagates from ~x to ~y, as follows from the expression

Dc(x− y) = −
∫

d~p

(2π)32ωp
ei~p(~x−~y)

[
Θ(t)e−iωpt + Θ(−t)eiωpt

]
.

So, the Feynman propagator is a Green function and, in other words, the inverse quadratic form in the
action (12).

In the case of an interacting potential V (ϕ) we get from (13) the following general expression for
the generating functional:

ZV [J ] = exp

(
−i

∫
d4xV

(
δ

iδJ(x)

))
· exp

(
1

2

∫
dydzJ(y)Dc(y − z)J(z)

)
. (15)

As will be discussed, one can get the Green functions by taking the needed number of functional deriva-
tives with respect to the source. However, this is not enough, since we do not know how exactly the
functional integral, called the generalized functional integral, and the Green functions are related to the
S-matrix elements needed to compute physics observables.
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6 Functional integral in holomorphic representation
We start with the harmonic oscillator as we did before:

H(p, q) =
p̂2

2
+
ω2q̂2

2
.

The creation and annihilation operators have the form (4) with the commutator

[â, â†] = 1. (16)

The Hamiltonian of the system taken in a normal form (all creation operators are on the right-hand side)
is

H = ωâ†â.

The commutator relation (16) has a very nice representation in terms of holomorphic functions, which
are introduced by means of the following scalar product:

〈f1|f2〉 =

∫
(f1(a∗))∗ f2(a∗)e−a

∗ada∗da
2πi

.

With such a definition of the scalar product, the set of functions Ψn(a∗) = (a∗)n√
n!

, n ≥ 0, forms an
orthonormal basis

〈Ψn|Ψm〉 =
1√
n!m!

∫
an(a∗)me−a

∗ada∗da
2πi

= δnm. (17)

One can easily prove that
∑

n |Ψn 〉〈 |Ψn| = 1.

Problem. Prove the relation (17).

The operators â† and â act according to the following rules:

â† · f(a∗) = a∗f(a∗), âf(a∗) =
d

da∗
f(a∗). (18)

By direct substitution, one can prove the following relation:
〈
f1|â†f2

〉
= 〈âf1|f2〉 , (19)

which means that the operators â† and â are conjugate to each other.

Now we will show a few simple formulas for the holomorphic representation given above, which
are useful for a construction of the S-matrix.

Let us take some operator Â with matrix element in our basis

Anm =
〈

Ψn|Â|Ψm

〉
. (20)

The function

A(a∗, a) =
∑

nm

Anm
(a∗)n√
n!

am√
m!

=
∑

nm

|n 〉〈m| (21)

is called the kernel of the operator Â. The kernel of a product of two operators is given by the convolution
of kernels:

A1A2(a∗a) =

∫
A1(a∗α)A2(α∗a)e−α

∗αdα∗dα
2πi

.

The operator Â can be decomposed into a formal series of normal ordered creation and annihilation
operators:

Â =
∑

nm

Knm(â†)n(â)m. (22)
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The following function is called the normal symbol of the operator Â:

K(a∗, a) =
∑

nm

Knm(a∗)nam. (23)

Problem. Prove the relation between the kernel and the normal symbol of the operator Â:

A(a∗, a) = ea
∗aK(a∗, a). (24)

(Check the equality (24) for the particular case Â = â†nâl.)

Now we use the relations (22), (23) and (24) to construct the functional integral in the holomorphic
representation.

Let the Hamiltonian of some system be Ĥ(â†, a). The evolution operator has the form

Û = e−iĤ·4t.

From (22) and (24), one can get the following formula for the kernel of the evolution operator:

U(a∗, a) = e[a∗a−ih(a∗a)]4t (25)

for a small time interval4t.
In the case of a finite interval, we can split it into small pieces t′′ − t′ = N · 4t and using our

orthonormal bases (17) we get the following form for the normal symbol of the evolution operator, which
is a convolution of products of the evolution operators:

U(a∗, a; t′′, t′) =

∫
exp

(
[a∗αN−1 − α∗N−1αN−1 + · · · − α∗1α1 + α∗1α0]

− i4t[h(a∗, αN−1) + · · ·+ h(α∗, α0)]) ·
N−1∏

k=1

dα∗kdαk
2πi

.

In the limit4t→ 0, N →∞,4N = t′′ − t′, one gets

U(a∗, a; t′′, t′) =

∫
ea
∗α(t′′) · exp

(∫ t′′

t′
[−α∗α− ih(α∗, α)]dt

)
·
∏

t

dα∗dα
2πi

, (26)

where the boundary conditions are α∗(t′′) = a∗, α(t′) = a.

In our case for the harmonic oscillator h(a∗, a) = ωa∗a the integral (26) can be easily computed.
To do this, one should take a variation

δ

[
a∗α(t′′) +

∫ t′′

t′
[−α∗α− ih(α∗, α)]dt

]

= a∗δα(t′′) +

∫ t′′

t′
dt[−δα∗α̇− α∗δα̇− iωα∗δα− iωδα∗α]

= a∗δα(t′′)− α∗(t′′)δα(t′′) +

∫ t′′

t′
dt[−δα∗(α̇+ iωα) + δα(α∗ − iωα∗)].

The extremum condition gives us the answer. Note that the first two terms cancel each other because of
the boundary condition α∗(t′′) = a∗. Extremum conditions can be simply solved:

a(t) = e−iω(t−t′)a(t′), a∗(t) = e−iω(t′′−t)a∗(t). (27)
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Then, for the normal symbol of the evolution operator, we get

U(a∗, a; t′′, t′) = exp(a∗ae−iω(t−t′)), (28)

substituting the solution (27) into the exponent in (26) where a non-zero contribution comes only from
the first term in the exponent.

An important consequence of this is that for the operator Â with the kernel A(a∗, a) the kernel of
the operator eiĤ0t′′Âe−iĤ0t′ is given by the convolution of corresponding kernels and is equal to

A
(
a∗eiωt′′ , ae−iωt′

)
. (29)

This relation demonstrates the power of the holomorphic representation in which the evolution is simply
reduced to the substitution of arguments:

a→ ae−iωt.

Now we come back to the field theory. The field operator is given by

Φ̂(x) =

∫
d~k

(2π)32k0
[e−ikxâ+ eikxâ†(k)]

and the corresponding 4-momentum operator is

P̂µ =

∫
d~k

(2π)32k0
kµa†(k)a(k).

Vacuum |0〉 is the state â(k) |0〉 = 0 and the one-particle state is
∣∣∣~k
〉

= â†(k) |0〉. The operator P̂µ acts
on the one-particle state as

(
P̂ 0 = Ĥ

) ∣∣∣~k
〉

= k0
∣∣∣~k
〉
, ~̂P

∣∣∣~k
〉

= ~k
∣∣∣~k
〉
.

A multiparticle state is constructed as
∣∣∣~k1, . . . ,~kn

〉
=
∏n
i=1 â

†(~ki) |0〉. Obviously,

Ĥ
∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

k0
i

)∣∣∣~k1, . . . ,~kn

〉
,

~̂P
∣∣∣~k1, . . . ,~kn

〉
=

(
n∑

i=1

~ki

)∣∣∣~k1, . . . ,~kn

〉
.

If Ĥ is the Hamiltonian of a system and Ĥ0 is a free Hamiltonian, then the S-matrix is determined as the
following limit of the evolution operator:

Ŝ = lim
t′→−∞
t′′→+∞

eiĤ0t′′Û(t′′, t′)e−iĤ0t′ . (30)

With such a definition, it is clear that Ŝ = 1 if Ĥ = Ĥ0.

From the formulas (26) and (29), we can obtain the following representation for the kernel of the
S-matrix:

S(a∗, a) = lim
t′→−∞
t′′→+∞

e
∫

d~k
(2π)32k0

(
α∗(~k,t”)α(~k,t′′)−

∫ t′′
t′ [α∗(~k,t)α̇(~k,t)+h(α∗,α)]dt

)

·
∏

t,~k

dα∗dα
2πi

, (31)

16

E. BOOS

16



where α∗(~k, t′′) = a∗(~k)eiωt′′ , α(~k, t′) = a(~k)e−iωt′ .

Now we consider the system with an external source J(x):

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + J(x)ϕ.

The kernel of the interaction operator V = −J(x)ϕ̂(x) is given by

V (a∗, a) =

∫
d~k

(2π)32k0

[
γ(~k, t)a∗(~k) + γ∗(~k, t)a(~k)

]
,

where γ(~k, t) = −
∫
J(~x, t)e−ikxd~x. In order to take the integral (31) once more, we should solve the

extremum conditions
α̇(~k, t) + iω(~k)α(~k, t) + iγ(~k, t) = 0,

α̇∗(~k, t)− iω(~k)α∗(~k, t)− iγ∗(~k, t) = 0
(32)

with the boundary conditions

α∗(~k, t′′) = a∗(~k)eiωt′′ , α(~k, t′) = a(~k)e−iωt′ . (33)

The solution of these equations has the following form:

α(~k, t) = a(~k)e−iωt − ie−iωt

∫ t′′

t′
eiωsγ(~k, s)ds,

α∗(~k, t) = a∗(~k)eiωt + ieiωt

∫ t′′

t′
e−iωsγ∗(~k, s)ds.

If one substitutes the obtained solutions into the integral (31), one will get the following formula for the
kernel of the S-matrix:

SJ(a∗, a) = exp

(∫
d~k

(2π)32k0

[
a∗(~k)a(~k)

+

∫
dt

∫
d~xJ(~x, t)

(
a∗(~k)eiωt−i~k~x + a(~k)e−iωt+i~k~x

)
/(2ω) (34)

−1

2

∫ ∞

−∞
dt

∫ ∞

−∞
ds

∫
d~xd~yJ(~x, t)J(~x, t)/(2ω)e−iω|t−s|ei~k~x−i~k~y

])
.

A transition from the kernel to the normal symbol for the S-matrix corresponds to omitting the first term
in the exponent.

Now let us recall the solution of the free Klein–Gordon equation

ϕ0(x) =

∫
d~k

(2π)32k0

[
a(~k)eiωt + a∗(~k)e−iωt

]

and the Green function (the propagator)

Dc(x) = i

∫
d~k

(2π)32ω
ei~k~xe−iωk|t| = i

∫
d4ke−ikx

k2 −m2 + i0
.

In terms of ϕ0(x) and Dc(x), one can rewrite the normal symbol for the S-matrix in the following way:

SJ(ϕ0) = exp

(
i

∫
d4xJ(x)ϕo(x) +

1

2

∫
d4xd4yJ(x)Dc(x− y)J(y)

)
. (35)

17

QUANTUM FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

17



Generalization of (35) to the case of the integration potential V (ϕ) is rather straightforward. We can
explore the relation we already faced with

exp

(
−i

∫
d4xV (ϕ)

)
= exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)
exp

(
i

∫
ϕJd4y

)∣∣∣∣
J=0

. (36)

Then the expression for the normal symbol of the S-matrix takes a simple and elegant form:

SV (ϕ0) = exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)

· exp

(
i

∫
J(y)ϕ0(y)d4y +

1

2

∫
d4zd4yJ(y)Dc(y − z)J(z)

)∣∣∣∣
J=0

. (37)

If we do not put the source J → 0 after taking functional derivatives, we have the normal symbol of the
S-matrix in the presence of an external source:

SV (ϕ0, J) = exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)

· exp

(
i

∫
J(y)ϕ0(y)d4y +

1

2

∫
d4zd4yJ(y)Dc(y − z)J(z)

)
. (38)

One can see that if we put ϕ0 = 0 we get the same formula we as already derived for the generating
functional

ZV (J) = exp

(
−i

∫
V

(
δ

iδJ

)
d4x

)
· exp

(
1

2

∫
d4zd4yJ(y)Dc(y − z)J(z)

)
. (39)

This observation allows us to get a very important relation, which is called the Lehmann–Symanzik–
Zimmermann reduction formula. To do this, we introduce in (38) some arbitrary external field ϕ(x)
instead of ϕ0(x). Then, by direct computation of functional derivatives with respect to ϕ(x) and J(x),
one can check the following relation:

∫ ∏

i

dxiϕ0(xi)

[
1

i

δ

δϕ1
. . .

δ

δϕn
SV (ϕ0, J)|ϕ,J=0

−1

i

δ

δJ̃1(x1)
. . .

δ

δJ̃n(xn)
Z(J̃)

∣∣∣
J=0

]
= 0, (40)

where J̃(x) =
∫
Dc(x− y)J(y). If we keep in mind that the expression of the S-matrix

SV (ϕ0) =
∑

n

1

n

∫
dx1 . . . dxnϕ0(x1) . . . ϕ0(xn)Sn(x1 . . . xn)

gives us the coefficient functions Sn(x1, . . . , xn) of S-matrix scattering elements, and on the other hand
the expansion of the generating functional

ZV (J) =
∑

n

1

n!

∫
dx1 . . . dxnJ(x1) . . . J(xn)

δZ

iδJ(x1) . . . iδJ(xn)

gives us the Green functions

Gn(x1 . . . xn) =
δZ

iδJ(x1) . . . iδJ(xn)
,

we observe a simple correspondence. The reduction formula (40) tells us how to compute S-matrix
elements by computing corresponding Green functions:
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1. one should compute the Green function;
2. multiply all legs to the inverse propagator or, in other words, apply the operator

n∏

i=1

(
�i +m2

)

to each of the legs;
3. multiply the result by the product of the corresponding free fields:

1

n

∏

i

ϕ0(xi).

Schematically, the procedure is shown in Fig. 3.

Fig. 3: Transition from the Green functions to the S-matrix elements

This rule is very general and could be applied for all types of fields, not only for the scalar fields.

7 Generating functional for Green functions and perturbation theory
Now we return to the generating functional written in the form

Z[J ] =

∫
D(ϕ) · exp

(
i

∫
d4xL(ϕ, ∂µϕ) + i

∫
d4xJ(x)ϕ(x)

)
, (41)

where L = 1
2∂µϕ · ∂µϕ− 1

2m
2ϕ2 − V (ϕ). If we take the second derivative,

δ(2)Z

iδJ(x1)iδJ(x2)

∣∣∣∣∣
J=0

= 〈ϕ1(x1)ϕ2(x2)〉 ,

we obtain the Feynman propagator Dc(x1 − x2), as can be easily seen from the form for Z[J ]:

Z[J ] = exp

(
−i

∫
dxV

(
δ

δJ

))
· exp

(
1

2

∫
dydzJ(y)Dc(y − z)J(z)

)
. (42)

We obtain the same function as we have obtained from the time-ordered product of field operators (see
(5))

Dc(x1 − x2) = 〈0|T{Φ̂(x1)Φ̂(x2)} |0〉 = 〈ϕ1(x1)ϕ2(x2)〉 .
This is always the case. Derivatives of the generating functional automatically give T -products of the
corresponding field operators:

δ(2)Z

iδJ(x1) . . . iδJ(xn)
≡ 〈ϕ1(x1) . . . ϕn(xn)〉 = 〈0|T{Φ̂(x1) . . . Φ̂(xn)} |0〉 .
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At this point let us consider as an example a theory with V (ϕ) = λ
4!ϕ

4. In such a theory if we take two
derivatives and expand the exponent on λ, we get

〈ϕ1(x1)ϕ2(x2)〉 = Dc(x1 − x2) + λ
[
Dc(x1 − x2)D2

c(0) + · · ·
]

+1
2

(
λ
4!

)2 [
72D2

c(0)D2
c(x1 − x2) + 24D4

c(x1 − x2) + · · ·
]

+ · · · .

It is very useful to introduce the Feynman rules and Feynman diagrams. The closed line corre-
sponds to the propagator

1

i
Dc(x− y).

Each interaction vertex corresponds to

−iλ = −i
d4V (ϕ)

dϕ4

∣∣∣∣
ϕ=0

.

In terms of Feynman rules, the corrections to the two-point correlation function (43) are given by Feyn-
man diagrams shown in Fig. 4.

+ + +
x1 x2 x1 x2

x1 x2 x1 x2

Fig. 4: Illustration of (43)

One should add a symmetry factor, which corresponds to possible permutations of equivalent
lines. If one takes the Fourier transformation, one can formulate the rules in momentum space, which
are usually used in practical computations. In momentum space the integral

∫
dp

(2π)4

corresponds to each loop and in each vertex the momentum conservation law takes place.

We will be more specific and precise later in the formulation of Feynman rules for the case of the
SM.

But now we need to consider a few more properties of the generating functional. As we have
seen already from the two-point correlator the perturbative expansion contains disconnected diagrams,
which are not really needed in computations. The way out of this problem is to consider the logarithmic
function of the generating functional:

iW [J ] = lnZ[J ], Z[J ] = eiW [J ].

Then, for the functional derivatives, one gets

δW

δJ
=

1

Z

δZ

iδJ
,

δ2W

δJ1δJ2
= i

1

Z

δ2Z

iδJ1iδJ2
− 1

Z2

δZ

iδJ1

δZ

iδJ2
. . . ,

where additional terms exactly cancel out disconnected pieces in the Green functions. The property that
the logarithmic function leads to connected diagrams is a particular example of a more general theorem
in graph theory.

The functional
W [J ] =

1

i
lnZ[J ] (43)
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is called the generating functional for connected Green functions.

The next important observation is related to the functional Legendre transformation:

Γ[ϕcl] = W [J ]−
∫

d4xJ(x)ϕcl(x), (44)

where ϕcl = δW/δJ with a formal solution J = J(ϕcl). If we take functional derivatives of the
functional Γ[ϕcl], we get the so-called one-particle irreducible Green functions (Feynman diagrams cor-
responding to such functions cannot be split up into disconnected pieces by cutting only one internal
line):

δΓ

δϕcl
=
δW

δJ

δJ

δϕcl
− J(x)− ϕcl

δJ

δϕcl
. (45)

The functional Γ is called the effective action. Two terms in (45) are cancelled out and we get

δΓ

δϕcl(x)
= −J(x). (46)

Now one can take functional derivatives from both sides of (46) and get the following relations:

δ2Γ

δϕcl(x1)δϕcl(x2)
= − δJ(x1)

δϕcl(x2)
= −

[
δW

δJ(x1)δJ(x2)

]−1

. (47)

If we introduce notation for the connected Green function:

Gn(x1, . . . , xn) = −i
δW [J ]

iδJ(x1) . . . iδJ(x2)

∣∣∣∣
J=0

and for the one-particle irreducible Green function:

Γn(x1, . . . , xn) = −i
δ(n)Γ[ϕcl]

δϕcl(x1) . . . δϕcl(xn)

∣∣∣∣∣
ϕcl=0

,

then the formula (47) can be written in the following form:

Γ2 = G−1
2 ,

which means that the irreducible two-point Green function is nothing but the inverse propagator. If
we take more derivatives on both sides of (47) we obtain relations between connected and one-particle
irreducible Green functions. For the three-point Green function, it is presented schematically in Fig. 5.
If we restore the Planck constant ~, the generating functional has the form

=
x1 x2

x3

x1 x2

x3

G3
G2G2

G2

Г3

Fig. 5: Connected three-point Green function is equal to one-particle irreducible three-point function convoluted
with three propagators.

Z[J ] =

∫
D(ϕ) exp

(
i

~
S[ϕ] + i

∫
dxJ(x)ϕ(x)

)
,
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where S[ϕ] is the action. In the quasiclassical limit (~→ 0), the functional integral is dominated by the
stationary trajectory:

δS[ϕ]

δϕ(x)

∣∣∣∣
ϕ=ϕcl

+ J = 0

Therefore

Z[J ] ∼ exp

(
i

~
S[ϕcl] + i

∫
dxJ(x)ϕcl(x)

)

and one can see from (43) that

W [J ] = S[ϕcl] +

∫
dxJ(x)ϕcl

and, by comparing with (44), we obtain

Γ[ϕcl] = S[ϕcl].

So, we can conclude that the irreducible Green functions are Γn(x1, . . . , xn), the effective vertices of the
theory:

Γn(x1, . . . , xn) = (−i)
δ(n)S[ϕcl]

δϕcl(x1) . . . δϕcl(xn)
. (48)

We obtain this formula for the case of scalar fields as an example, but it remains true for any theory
with corresponding obvious changes. Note that the formula (48) is very useful to get Feynman rules
for complicated vertices in the interaction Lagrangian. For example, three- and four-gluon vertices are
obtained with all needed symmetry properties.

Up to now we have considered basic ingredients of the quantum field theory for the case of scalar
fields. However, there are many other fields and corresponding particles which have different spin prop-
erties. In the SM there are leptons and quarks, being fermions with the spin 1/2, and the boson fields
with the spin 1. We begin our brief consideration with spin-1/2 fermion fields.

8 Fermion fields
Spin-1/2 particles with mass m are described by the four-component field Ψ. The Lagrangian for the
field has the well-known form

L = Ψ̄i∂µγ
µΨ−mΨ̄Ψ. (49)

The least-action principle leads to the famous Dirac equation of motion:

(iγµ∂µ −m) Ψ = 0, (50)

where γµ (γ0, γ1, γ2, γ3) are the Dirac (4 × 4) matrices. The matrices γµ obey the anticommutation
relation

{γµγν} = 2ηµν . (51)

There are several representations for γ-matrices. In the SM chiral or Weyl spinors are of particular
importance. Therefore, we use the Weyl representation of γ-matrices

γµ =

(
0 σµ

σ̄µ 0

)
. (52)

where σ0 = I , σi = τ i, σ̄0 = I , σ̄i = −τ i and τ i are the (2× 2) Pauli matrices.

In this representation the γ5-matrix has the following form:

γ5 = iγ1γ2γ3γ4 =

(
−I 0
0 I

)
. (53)
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Chiral spinors

ΨL,R =
1∓ γ5

2
Ψ (54)

in this notation

ΨL =




Ψ1

Ψ2

0
0


 , ΨR =




0
0

Ψ3

Ψ4




are in fact two-component objects.

In momentum space the function Ψ(x) is decomposed into positive- and negative-energy parts

uλ(p)e−ipx and vλ(p)eipx (55)

and the spinors u(p) and v(p) obey the Dirac equation in the following form:

(pµγ
µ −m)uλ(p) = 0,

(pµγ
µ +m) vλ(p) = 0.

(56)

The concrete form of spinors is different in different parametrizations of γ-matrices, and in the Weyl
representation the spinors are

uλ =

( √
p0 + ~p~σξλ√
p0 − ~p~σξλ

)
, (57)

vλ =

( √
p0 + ~p~σηλ

−√p0 − ~p~σηλ

)
, (58)

where ξ and η are two-component spinors determined by fixing some quantization axis. Left and right
chiral spinors are then

uL,R =
1∓ γ5

2
uλ,

vL,R =
1∓ γ5

2
vλ.

Normalization conditions and summation over indices are as follows:

ūλuλ′ = 2mδλλ′ , v̄λvλ′ = −2mδλλ′ ,

∑

λ

uλūλ = pµγ
µ +m,

∑

λ

vλv̄λ = pµγµ −m.

Quantization of the Dirac field is similar to the scalar case considered above with a very impor-
tant difference. In order to have correct Fermi statistics and obey the Pauli principle, the commutation
relations in the scalar case should be replaced by corresponding anticommutation relations:

{
π̂α(t, ~x),Ψβ(t, ~x′)

}
= −iδαβδ(~x− ~x′), (59)

where α = 1, 2, 3, 4 and the field momentum is

πα(t, ~x) =
∂L

∂Ψ̇α

= iΨ†α.

The fermionic field operator may be constructed with the help of spinors obeying the Dirac equation

Ψ(x) =

∫
d~p

(2π)3p0

∑

λ=1,2

[
b̂λ(p)uλ(p)e−ipx + d̂†λ(p)vλ(p)eipx

]
,
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Ψ̄(x) = Ψ†γ0 =

∫
d~p

(2π)3p0

∑

λ=1,2

[
b̂†λ(p)ūλ(p)eipx + d̂λ(p)v̄λ(p)e−ipx

]
.

It is easy to check that from the anticommutators (59) the creation and annihilation operators satisfy the
anticommutation relations in the following form:

{
b̂λ(~p), b̂λ′(~p

′)
}

=
{
d̂λ(~p), d̂λ′(~p

′)
}

= (2π)32p0δ(~p− ~p′)δλλ′ . (60)

Then one-particle and one-antiparticle states are obtained from the vacuum state |0〉 by acting of the
creation operators:

b̂†λ(~p) |0〉 and d̂†λ(~p) |0〉 .
In the same way, by acting of creation operators for particle and antiparticle on the vacuum state, one
gets two-, three-, . . . particle states. Because of zero anticommutators, for any creation operator one gets
nicely the Pauli principle:

{
b̂†λ(~p), b̂†λ(~p)

}
= 0 ⇒ b̂†λ(~p), b̂†λ(~p) |X〉 ≡ 0 (61)

for any state |X〉 . From the field operators one can get the Feynman propagator (T-ordered correlator) in
a similar way as was done for the scalar case:

〈0|T
(
Ψ̄(x1)Ψ(x2)

)
|0〉 =

−1

i

∫
dp

(2π)4

pµγ
µ +m

p2 −m2 + i0
. (62)

Considering the path-integral method for the fermion field, one can construct the holomorphic
representation similar to the scalar case. However, now we have to deal with anticommuting numbers
called Grassmann numbers, which form the Grassmann algebra:

(aα)∗ = a∗α, (a∗α)∗ = aα,

{aαaβ} =
{
a∗αa

∗
β

}
=
{
aαa

∗
β

}
= 0,

caα = aαc; ca∗α = a∗αc,

where α = 1, . . . , n, c are the usual numbers.

A function of Grassmann variables has therefore the generic form

f(a, a∗) = f00 +
∑

α1
fα1|0aα1 +

∑
α1
f0|α1

a∗α1

+
∑

α1α2
fα1|α2

aα1a
∗
α2

+ · · · f1...n|n...1a1 . . . ana
∗
n . . . a

∗
1.

(63)

The expression (63) reminds us of the norm-ordering operator products we have used already. The
operations of differentiation and integration are defined as follows:

∂

∂aα
aβ =

∂

∂a∗α
a∗β = δαβ,

∂

∂aα
a∗β =

∂

∂a∗α
aβ = 0,

∂

∂aα
f = fα;

∂

∂a∗α
f = f̄α,

∫
daαf = fα;

∫
da∗αf = f̄α,

where fα does not depend on aα and f̄α does not depend on a∗α. One can check the anticommutation
relation for differentials:

{daαdaβ} =
{

da∗αda∗β
}

=
{

daαda∗β
}

= 0.

If we denote
da∗da = da∗1 . . . da

∗
ndan . . . da1
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and take into account that for the function defined in (63)
∫

da∗daf(a, a∗) = f1...n|n...1,

we can easily prove the following relation by expanding in series in a and a∗:
∫

da∗da exp
(∑

a∗αAαβaβ +
∑

η∗αaα + i
∑

ηαa
∗
α

)
= detA exp

(
η∗αA

−1
αβηβ

)
. (64)

One can see from (64) that in contrast to the integration with the usual complex numbers (see (9)) the
determinant appears in the numerator in the case of anticommuting Grassmann numbers (64).

Similar to the case of the scalar field, one can get a formula for the S-matrix normal symbol:

Sη(b
†, d†, b, d) =

1

N
exp

(
−i

∫
η̄SCη + i

∫
(η̄Ψ0 + Ψ0η)

)
,

where Ψ̄0 = Ψ†0γ
0, Ψ0 is a solution of the free Dirac equation

Ψ0(x) =

∫
d~k

(2π)32k0


∑

λ=1,2

bλ(~k)uλ(~k)e−ikx +
∑

λ=1,2

d∗λ(~k)vλ(~k)eikx


 ,

η(x) is the fermion source and

SC(x) =
i

(2π)4

∫
dke−ikx k̂ +m

k2 −m2 + i0

is the Feynman propagator for the fermion field.

Taking into account the following relation for the functional measure:
∏

t,k,λ

db∗λ(t,~k)dbλ(t,~k)dd∗λ(t,~k)ddλ(t,~k) = Const.
∏

x,α

dΨ̄α(x)dΨα(x),

one gets the answer for the generating functional for the fermion Green functions in compact form similar
to the scalar case:

Z(η̄, η) = N−1

∫
exp

(
i

∫
d4x(L(x) + η̄Ψ + Ψ̄η)

)∏

x

dΨ̄(x)dΨ(x).

9 Quantization of theories with the gauge fields
The gauge field was first introduced in QED when the Maxwell equations were rewritten in terms of the
4-vector potential Aµ(x).

The equation in terms of the field Aµ,

∂µF
µν = 0,

where Fµν = ∂µAν − ∂νAµ, is invariant under the local U(1) transformation:

A′µ = Aµ + ∂µα(x).

It is easy to check the U(1) invariance of the QED Lagrangian

L = −1

4
FµνF

µν + Ψ̄(iD̂ −m)Ψ, Ψ→ eieαΨ, Aµ → Aµ + ∂µα, (65)
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where Dµ = ∂µ − ieAµ is the covariant derivative.

In the SM we deal not only with the abelian U(1) group but also with non-abelian SU(N) groups,
SU(2) for the EW and SU(3) for the strong forces.

We are not discussing here generic structure and properties of Lie groups but introduce briefly
the SU(N) group. SU(N) is a group of unitary matrices U (U †U = 1) with determinant equal to 1
(detU = 1). Elements of the group U(x) may depend on the space–time point xµ.

If we want the theory to be invariant under SU(N) transformation the covariant derivative in the
Lagrangian

L = Ψ̄(iD̂ −m)Ψ (66)

should transform as
DµΨ→ (DµΨ)U = UDµΨ,

(
∂µ − igAUµ

)
UΨ = U (∂µ − igAµ) Ψ.

From this, one gets the following transformation form for the potential A:

AUµ = UAµU
−1 +

i

g
U∂µU

−1. (67)

The kinetic term for the non-abelian Aµ field is constructed as the gauge-invariant operator

LA = −1

2
Tr(FµνFµν). (68)

In the SM all gauge fields are taken in the adjoint representation:

Aµ(x) = Aaµ(x)ta,

where ta (a = 1, . . . , N − 1 for SU(N)) are so-called generators of the group. As do all generators for
the Lie group, the generator ta obeys the following commutation relation:

[ta, ta] = fabctc, Tr(ta) = 0.

One may choose normalization conditions as

Tr(tatb) =
1

2
δab. (69)

Then the Lagrangian for the gauge field takes the form

L = −1

4
F aµνF

aµν , (70)

where the field strength tensor is

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (71)

One can express the unitary matrix U(1) in the form U(x) = eigαa(x)ta . Then the transformation for the
gauge field Aaµ takes the form

Aaµ → (Aα)aµ = Aaµ + ∂µα
a + gfabcAbµα

c = Aaµ +Dac
µ α

c, (72)

where the covariant derivative in components is

Dac
µ = ∂µδ

ac + gfabcAbµ.
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Part of the SM describing strong interactions is based on the SUC(3) group. It is called QCD with
the Lagrangian

LQCD = −1

4
GaµνG

µνa + q̄i

(
i(Dµ)ijγ

µ
ij −mδij

)
qj , (73)

where q = 1, 2, 3, (Dµ)ij = ∂µδij − ig(ta)ijA
a
µ.

On the classical level abelian and non-abelian theories look very elegant. However, problems
appear when the theories are quantized. The reason can be seen already in QED, where we know that in
a theory described by the field Aµ we have four components but only two of them are physical degrees
of freedom corresponding to two polarizations of the physics photon. This problem is manifested in the
fact that the quadratic form of the Lagrangian

AµD−1
µνA

ν = Aµ (�gµν − ∂µ∂ν)Aν

or, in momentum space, (
k2gµν − kµkν

)

does not have an inverse form. As we have seen in cases of scalar and fermion fields the inverse of the
differential operator, the Green function, is the propagator. So, here one cannot get the propagator in
such a way.

The way out of this problem is a correct quantization procedure called the quantization of con-
strained systems. The reason that the functional integral

∫ ∏

µ,x

dAµ(x) exp

{
i

∫
dx

(
−1

4
F aµνF

aµν

)}
(74)

does not give a reasonable result is that there are an infinite number of gauge configurations (Aα)aµ,
which differ only by the gauge transformation, leading to identical physics results since the action is
gauge invariant. So, one should perform the functional integration taking only one representative from
such gauge configuration.

Without going into details, the final recipe is as follows:
∫
DAδ (F (A)) det

(
∆F
gh

)
eiS(A), (75)

where DA =
∏
µ,x dAµ(x) and the so-called Faddeev–Popov determinant det

(
∆F
gh

)
is introduced to

ensure the gauge invariance of the functional measure. The δ-function fixes the gauge condition of gauge
choice F (A) = 0.

We recall briefly the main ideas of the method proposed by Faddeev and Popov. Let us introduce
a functional integral that is equal to unity:

1 =

∫
Dα · δ (F (Aα)) det

(
δF

δα

)
, (76)

whereDα =
∏
x dα(x). Substituting (76) into the integral (16) and performing the gauge transformation

(Aα)aµ(x)→ Aaµ(x), one gets

∫
Dα

∫
DAeiS[A] · δ (F (A)) · det

(
δF

δα

)
. (77)

The factor det
(
δF
δα

)
does not depend on α and therefore the integration over the gauge group is factorized

out. This infinite factor is included into the normalization factor of the functional measure and therefore
could be dropped.
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The main idea of quantization and the Faddeev–Popov method could be illustrated in a very simple
example with the usual integrals. Let us consider an integral

I =

∫ ∫ ∞

−∞
dx1dx2e−x

2
1−x22+2x1x2 =

∫
dx1dx2e−xiAijxj , (78)

where

Aij =

(
1 −1
−1 1

)
and detA = 0.

We can obviously see that by making a substitution of variables we get

I = c

∫ ∞

−∞
dx

∫ ∞

−∞
dye−x

2
when x = x1 − x2, y = x1 + x2.

The ‘action’ in the integral I is invariant under translation:

x1 → x1 + a, x2 → x2 + a.

And, the integral
∫∞
−∞ dy gives simply the infinite volume of the algebra corresponding to the translation

group.

Now let us substitute 1̂ into the integral I:
∫ ∞

−∞
dωδ (F (xi + ω)) det

(
δF

δω

)
= 1,

∫
dω

∫
dx1dx2e−xiAijxjδ (F (xi + ω)) det

(
δF

δω

)
.

After the ‘gauge’ substitution xi → xi − ω, one can drop the infinite group integral
∫

dω and get the
final integral in a form symmetric with respect to integration variables:

IG =

∫
dx1

∫
dx2e−xiAijxjδ (F (xi))

∣∣∣∣
∂F

∂ω

∣∣∣∣ .

The determinant det
(
δF
δα

)
is the Faddeev–Popov determinant and ∆ch = δF

δα is the so-called ghost
operator.

Obviously, in the abelian case the Lorentz gauge condition, F = ∂µAµ, leads to the ghost operator
∆ch = ∂µ · ∂µ. Since the operator does not depend on the field, it is cancelled in the connected Green
functions and does not give any contribution.

However, this is not so in the non-abelian case where ∆ch is a non-trivial operator depending on
the gauge field. Technically it is convenient to express det(∆ch) also as a functional integral. As we
know, a determinant in the numerator appears when one integrates over anticommuting fields:

det(∆ch) =

∫ ∏
dc̄dcei

∫
c̄∆chc, (79)

where the anticommuting fields c are called Faddeev–Popov ghosts.

As an example, let us consider the gauge condition in the covariant form:

F (A) = ∂µA
µ − a(x) (80)

with an arbitrary function a(x). The functional integral (77) in this case takes the form

eiW [J ] =

∫ ∏

µ,x

dAaµ(x)dc̄a(x)dca(x) · δ (∂µA
aµ − aa(x)) ·
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exp

(
i

∫
d4x

[
−1

4
F aµνF

aµν + c̄a
(
�ca − fabc∂µ(Acµc

b)
)

+ JaµA
aµ

])
.

The Green function does not depend on a(x), so one can integrate (9) with the exponent
∫

da exp

(
−a

2

2ξ

)
δ (∂µA

µ − a) = exp

(
−(∂µA

µ)2

2ξ

)
.

As the result, we get the following quadratic part of the action in (9):

S =

∫
dx

[
−1

4
(∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)− 1

2ξ
∂µA

aµ∂νA
aν + c̄�c

]
,

where the numerical parameter ξ is the gauge parameter. Now there is the inverse form, and we get the
following propagators for non-abelian gauge and ghost fields, respectively:

Dab
µν(k) = −i

δab

k2 + i0

[
gµν − (1− ξ)kµkν

k2

]
, (81)

Dab
ch(k) = i

δab

k2 + i0
. (82)

There are a few famous choices of the parameter ξ used in concrete computations:
ξ = 1—the ’t Hooft–Feynman gauge,
ξ = 0—the Landau gauge,
ξ = 3—the Frautschi–Yenni gauge.
Of course, any computed physics observable such as cross-section or distribution does not depend on ξ.
As we see,

kµDab
µν = −ξkν i

δab

k2 + i0
= −ξkνDab

ch(k).

So, ghosts are acting in a way to cancel a dependence on ξ in physics quantities.

Now one can use our formula (48) in momentum space:

Γa1...anµ1...µn(p1 . . . pn) · (2π)4δ(p1 + · · ·+ pn) = i
δ(n)S

δAa1µ1(p1) . . . δAanµn(pn)
(83)

in order to get Feynman rules in momentum space for all the vertices in abelian and non-abelian theories.
Note that by taking functional derivatives in (83) one gets vertex functions with all needed symmetries.
In the formula (83), µ and a indicate proper Lorentz and other group indices identifying the field.

As an example, let us consider the QED Lagrangian

L = Ψ̄ (iDµγ
µ −m) Ψ, Dµ = ∂µ + ieQAµ. (84)

For the interaction vertex of the fermion field Ψ with the photon field Aµ, we obtain

Γµ(p1, p2; p3)(2π)4δ(p1 + p2 + p3)

= i
δ(3)

δΨ̄(p1)δΨ(p2)δAµ(p3)
·
∫

dxi · (ieQ)Ψ̄(x)γµAµ(x)Ψ(x)

= −ieQ
δ(3)

δΨ̄(p1)δΨ(p2)δAµ(p3)
·

·
∫

dxdq1dq2dq3 exp (−iq1x− iq2x− iq3x) Ψ̄(q1)γµΨ(q2)Aµ(p3)
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= −ieQ(2π)4δ(p1 + p2 + p3)γµ

and so Γµ(p1, p2; p3) = −ieQγµ, where Q = −1 for the fermion field (say, an electron) and +1 for the
antifermion field (say, a positron) etc.

In a similar way, one gets all other interaction vertices in the case of the SM Lagrangian, which will
be considered later. Also, similar to the scalar field theory, the reduction formula allows us to compute
S-matrix elements from the corresponding connected Green functions by cutting out propagators on all
legs and multiplying by corresponding free-particle wave functions.

A well-known visual way for presenting and computing S-matrix elements is given by Feynman
rules—lines for different types of propagators and external particles, and points for vertices:

−i
k2+i0

δab[gµν − (1− ξ)kµkν
k2

] for massless gauge field

i
k2+i0

δab for the ghost field

p
u(p) for an incoming fermion

p
v̄(p) for an incoming antifermion

p
u(p) for an outgoing fermion

p
v̄(p) for an outgoing antifermion

p
i

p̂+m
p2 −m2 + i0

for a fermion propagator

p

igγµ(ta) for a fermion–gauge boson vertex

p1 a1 μ1

p2 a2 μ2

p3 a3 μ3

gfa1a2a3 [gµ1µ2(p1 − p2)µ3

+gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 ]

We do not derive here formulas for cross-sections and decay widths; they are given in many
textbooks. We use notation of the Particle Data Group:

dσab =
|M |2

4
√

(papb)2 −m2
am

2
b

dΦn,

where

dΦn = (2π)4δ(pi − pf ) · d3~p1

(2π)32p0
1

. . .
d3~pn

(2π)32p0
n

,

dΓ =
|M |2
2ma

dΦn.
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Fig. 6: µ+µ− production in e+e− collisions

As we see, one needs to compute the matrix element squared in order to get a scattering cross-section
and a decay width.

Also, one can formulate the Feynman rules for the matrix element squared directly.

In Fig. 6, the square diagram is shown for µ+µ−-pair production in e+e− collisions in QED. The
crossed lines correspond to external particles summed over polarizations. Concrete expressions for the
sums over polarizations for particles and antiparticles with different spins are as follows:

1 for scalar particles

{ ∑
λ uλ(p)× ūλ(p) = pµγ

µ +m∑
λ vλ(p)× v̄λ(p) = −pµγµ +m

for spin-1/2 Dirac particles

∑
λ e

µ
λ(k)e∗νλ (k) = gµν − kµkν

k2
for massless gauge fields
in the Landau gauge

∑
λ e

µ
λ(k)e∗νλ (k) = gµν in the ’t Hooft–Feynman gauge

∑
λ e

µ
λ(k)e∗νλ (k) = gµν − kµkν

M2 for vector fields in the unitary gauge

The Feynman rules for propagators and vertices in the case of matrix elements squared are the same as
for the case of amplitudes. Note that the sums over polarizations represent the spin-density matrix and
coincide with numerators of the propagators of corresponding particles. Note also, in computations using
the Feynman rules for matrix elements squared, that the ghosts should be added into initial and final lines
together with corresponding gauge-boson lines. Each loop with crossed ghost lines should include extra
factor (–1) with respect to the corresponding gauge-boson loop. This –1 sign reflects the anticommuting
property of the ghost fields.

10 Electroweak interactions in the SM
As we know from school textbooks, the weak interactions are responsible for decay of elementary par-
ticles. As we shall see, there are also scattering processes due to weak interactions, as were predicted
by the SM and discovered in experiments. Studies of weak interactions started from decays, and have a
long history, which we do not describe here. From various experimental studies it was realized that (1)
electron and muon neutrinos are not the same, and the electron neutrino and antineutrino are different.
There are processes νen → e−p, ν̄ep → e+n, νµn → µ−p, ν̄µp → µ+n, but there are no processes
ν̄en→/ e−p, νep→/ e+n, ν̄µn→/ µ−p, νµp→/ µ+n;

(2) the decays µ→ eX have never been observed;

(3) only left-handed leptons and right-handed antileptons participate in the process with |∆Q| = 1
for leptons from the same generations;

(4) three generations have been observed.
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J

ℓ ℓ

The observations lead to the assumption that the lepton interactions with |Q| = 1 occur via charge
current in so-called V–A form:

J` ∼ ¯̀γµ(1− γ5)ν`. (85)

The corresponding four-fermion interaction Lagrangian for muon and electron currents is

L =
GF√

2
µ̄γσ(1− γ5)νµēγσ(1− γ5)νe + h.c., (86)

where the notation µ, e, ν stands for the corresponding fermion fields and GF is the well-known Fermi
constant with dimension [m]−2. With the help of the Lagrangian (86), one can easily compute the decay
width of µ− → e−ν̄eνµ, the Feynman diagram for which is shown in Fig. 7.

pμ

μ−

νμ

e−

νe
—

pν

Fig. 7: Feynman diagram for µ− decay due to four fermion interaction

From dimensional analysis, one can say without any computations that Γ ∼ G2
F ·m5

µ.

The formula for the width is

Γµ =
G2

Fm
5
µ

192π3
· f
(
m2
e

m2
µ

)
, (87)

where f = 1 + 0
(
m2
e

m2
µ

)
. Today’s GF is measured from the muon decay very precisely:

GF = (1.166371± 6 · 10−6) · 10−5 GeV−2.

As we know, any fermion field Ψ(x) may be presented as

Ψ =
1− γ5

2
Ψ +

1 + γ5

2
Ψ = ΨL + ΨR.

Therefore, the current (85) involves the left component of the fermion field only and has the form

J` = Ψ̄LγµΨL. (88)

We want to construct a quantum field theory (the SM) which obeys a few requirements:

– correct electromagnetic neutral currents and V–A charge currents (Fermi);
– three generations without chiral anomalies;
– gauge-invariant dimension-four operators.

Because there are two leptons (charge lepton and corresponding neutrino) in each generation and
the left components interact, a very natural assumption is to choose the gauge group for the EW part of
the SM to be

SUL(2)⊗ UY (1), (89)
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where SUL(2) is called the weak isospin group (the weak isospin is an analogue of the usual isospin
introduced by Heisenberg to describe the proton and the neutron) and UY (1) is the weak hypercharge
group. The hypercharge group is needed because we need to have somehow the U(1) group in order to
describe the electromagnetic interactions, as we already know. But if one includes simply the electro-
magnetic group Uem(1) instead of UY (1) the construction would not give us interactions correctly for all
the fermions. The EW part SUL(2)⊗UY (1) and the SUC(3) group for strong interactions are combined
into the gauge group of the SM.

The fermion fields are taken to be in three generations, and in each generation the left components
are combined into SU(2) doublets and the right components transform as SU(2) singlets:

(
νe

e

)

L

(
νµ
µ

)

L

(
ντ
τ

)

L
eR µR τR.

(90)

Right-handed neutrinos are present in the original version of the SM.

For the quarks, a similar structure of representations is assumed but with singlet right-handed
components for up and down types of quarks:

(
u

d

)

L

(
c

s

)

L

(
t

b

)

L
uR, dR cR, sR tR, bR.

(91)

We begin with the construction of the gauge and fermion parts. Now the requirements of the
gauge invariance and lowest possible dimension four of terms fix uniquely the form of the EW interaction
Lagrangian. The strong interactions are described by the SUC(3) gauge group:

L = −1
4W

i
µν(Wµν)i − 1

4BµνB
µν − 1

4G
a
µν(Gµν)a

+
∑

f=`,q Ψ̄f
L(iDL

µγ
µ)Ψ†L +

∑
f=`,q Ψ̄f

R(iDR
µ γ

µ)Ψ†R,
(92)

where the field strength tensors and covariant derivatives have forms very familiar to us:

W i
µν = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν

Bµν = ∂µBν − ∂νBµ, (93)

Gaµν = ∂µA
a
ν − ∂νAaµ + gSf

abcAbµA
c
ν ,

DL
µ = ∂µ − ig2W

i
µτ

i − ig1Bµ

(
Y f

L

2

)
− igSA

a
µt
a,

DR
µ = ∂µ − ig1Bµ

(
Y f

R

2

)
− igSA

a
µt
a, (94)

where i = 1, 2, 3, a = 1, . . . , 8; W i
µ are gauge fields for the weak isospin group, Bµ are gauge fields

for the weak hypercharge group and Aµ are gluon gauge fields for the strong SUC(3) colour group.
The gauge fields are taken in the adjoint representations and the lepton and the quark fields are in the
fundamental representation of SUL(2) and SUC(3) groups. The strongly interacting part of the SM
related to the SUC(3) colour group is called QCD, which is covered in a separate course of lectures.

Often when the SM is described the weak hypercharges Y f
L and Y f

R are chosen from the beginning
such that the Gell-Mann–Nishijima formula is satisfied for each of the left and right chiral fermions:

Qf = (T f3 )L +
Y f

L
2 ,

Qf = (T f3 )R +
Y f

R
2 ,

(95)
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where (T3)ν` = 1/2 and (T3)` = −1/2 are projections of weak isospin operators, +1/2 for the up-type
and −1/2 for the down-type fermions.

However, we do not know at this moment why the Gell-Mann–Nishijima formula should work in
our case for the EW part. So, we do not assume from the beginning the Gell-Mann–Nishijima relations
for weak hypercharges. Let us take weak hypercharges as free parameters for a moment, and try to fix
them from two physics requirements:

1. correct electromagnetic interactions;
2. V–A weak charge currents.

Let us consider for simplicity only fermions from the first generation. We will consider the case of three
generations later by introducing the quark mixing matrix.

From the covariant derivatives for the left and right chiral fields (94), one gets the following La-
grangian for leptons of the first generation:

L` = −i2 (ν̄eL ēL) γµ




1
2g2W

3
µ + g1

Y `
L
2 Bµ g2

W+
µ√
2

g2
W−µ√

2
−1

2g2W
3
µ + g1

Y `
L
2 Bµ



(
νeL
eL

)
(96)

+ēRγµg1
Y `

R

2
BµeR.

Here the relation following from the Pauli matrices is used:

τ iW i =
σi

2
W i =

1

2

(
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

)
, (97)

where W±µ =
(
W 1
µ ∓ iW 2

µ

)
/
√

2.

Products of non-diagonal elements give us the form of the charge current:

L`CC =
g2√

2
ν̄eLγµW

+
µ eL + h.c. =

g2

2
√

2
ν̄eγµ(1− γ5)W+

µ e+ h.c. (98)

The interaction Lagrangian (98) contains the lepton charge current with the needed V–A structure.

Products of diagonal elements in (96) lead to the neutral current interaction Lagrangian1:

L`NC = ν̄eLγµ

(
1
2g2W

3
µ + g1

Y `
L
2 Bµ

)
νeL

+ēLγµ

(
−1

2g2W
3
µ + g1

Y `
L
2 Bµ

)
eL

+ēRγµg1
Y `

R
2 BµeR.

(99)

Generically, the neutral component of theW field and theB field can mix with some mixing angle
θW:

W 3
µ = Zµ cos θW +Aµ sin θW, (100)

Bµ = −Zµ sin θW +Aµ cos θW.

The angle θW is called the Weinberg mixing angle.
1Question for students: why can arbitrary hypercharge not exist in the case of non-abelian gauge symmetry?
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One of these fields, say A, we try to identify with the photon—it should not interact with the
neutrino and should have the well-known Dirac interaction with the electron field as needed in QED.
These two physics requirements lead to three simple equations:

1

2

(
−g2

2
sin θW +

g1

2
Y `

L cos θW

)
+

1

2

g1

2
Y `

R cos θW = Qee (Qe = −1), (101)

1

2

(g2

2
sin θW −

g1

2
Y `

L cos θW

)
+

1

2

g1

2
Y `

R cos θW = 0, (102)

g2

2
sin θW +

g1

2
Y `

L cos θW = 0. (103)

The first equation (101) comes from the coefficient in front of the γµ structure in the interaction of the
electron with the Aµ field, the second equation (102) follows from the coefficient in front of the γµγ5

structure and the third one (103) comes from the absence of the interaction of the neutrino field with Aµ.

Therefore,
−g2

2
sin θW +

g1

2
Y `

L cos θW =
g1

2
Y `

R cos θW = Qee. (104)

From the equations (104), we get
g1Y

`
L cos θW = −e,
g2 sin θW = e

and
Y `

R = 2Y `
L . (105)

As we can see, the hypercharges of the left and right chiral leptons are proportional but not fully fixed.

In the quark sector there are both left and right chiral components for up and down quarks:
(
u

d

)

L

, uR, dR.

Then, from the Lagrangian (92), the interaction of the quarks with gauge fields is

(
ūd̄
)

L
γµ




1
2g2W

3
µ + g1

Y q
L
2 Bµ g2

W+
µ√
2

g2
W−µ√

2
−1

2g2W
3
µ + g1

Y q
L
2 Bµ







u

d




L

+ūRγµg1
Y u

R
2 BµuR + d̄Rγµg1

Y d
R
2 BµdR.

(106)

The charge current has, as expected, the needed V–A form:

LqCC =
g2

2
√

2
ūγµ(1− γ5)W+

µ d+
g2

2
√

2
d̄γµ(1− γ5)W−µ u. (107)

In the same way as was done for the lepton case, one should require correct electromagnetic interactions
for both u and d quarks. This means that one should have a QED electromagnetic Lagrangian with
electric charges 2

3 for up-quark and −1
3 for down-quark fields. Substituting W 3

µ and Bµ in terms of Aµ
and Zµ fields (99) into (106), we get the following equalities:

1

2
g2 sin θW +

1

2
g1Y

q
L cos θW =

1

2
Y u

R g1 cos θW =
2

3
e, (108)

−1

2
g2 sin θW +

1

2
g1Y

q
L cos θW =

1

2
Y d

Rg1 cos θW = −1

3
e.
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From these four equations one gets the following four equalities:




g2 sin θW = e,

g1Y
q

L cos θW = 1
3e,

Y u
R = −2Y d

R ,

Y u
R + Y d

R = 2Y q
L ,

(109)

which are consistent with equalities we obtained from the lepton sector:





g2 sin θW = e,

g1Y
`

L cos θW = −e,
Y `

R = 2Y `
L .

(110)

Note that, as follows from (109) and (110),

Y `
L = −3Y q

L ,

which means that there is only one independent hypercharge, say Y `
L , and all the others may be expressed

in terms of it.

Let us recall that up to now we did not assume any additional relations such as (Q = T3 + Y/2),
which are usually assumed from the very beginning.

Now we can write the generic Lagrangian for neutral current interactions with introduced bosons
Aµ and Zµ in the following form:

LNC = e
∑

f

QfJ
em
fµA

µ +
e

4 sin θW cos θW
·
∑

f

JZfµZ
µ, (111)

where Jem
fµ = f̄γµf , Qν = 0, Qe = −1, Qu = 2/3, Qd = −1/3,

JZfµ = f̄γµ[vf − afγ5]f,

vν = 1, aν = 1, ve = −1 + 4 sin2 θW, ae = −1;

vu = 1− 1

3

(
4 +

Y u
R

Y q
L

)
sin2 θW, au = 1− 1

3

(
4− Y u

R

Y q
L

)
sin2 θW,

vd = −1 +
1

3

(
2− Y d

R

Y q
L

)
sin2 θW, ad = −1 +

1

3

(
2 +

Y d
R

Y q
L

)
sin2 θW.

Since the structure of all three generations is the same, the equality (111) is the same for all
leptons and quarks. Vector and axial-vector couplings vf and af may be expressed for all the fermions in
a compact common form via the fermion charge Qf and a component of the fermion weak isospin T f3 :

vf = 2T f3 − 4Qf sin2 θW, af = 2T f3 .

Note that the hypercharge parameters Y `
L and Y `

R are not present in (111) while in the quark sector
one free parameter, which as we saw may be expressed in terms of Y `

L , remains taking into account (109),

Y u
R

Y q
L

+
Y d

R

Y q
L

= 2.
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We have obtained the Lagrangian, the sum of (98), (107), (111) and the gauge boson kinetic terms
from (92), which contains QED with massless fermions, an additional vector particle Zµ interacting with
new neutral currents, two charge massless vector particles W±µ interacting with V–A charge currents and
self-interactions of the gauge particles.

Since our Lagrangian has a rather non-trivial chiral structure, an important question arises as to
whether or not our construction is free of chiral anomalies, which is absolutely needed for a theory to be
self-consistent.

11 Anomalies
Detailed discussion of anomalies is not a subject of our brief notes and can be found in a number of
textbooks (see for example [6, 8]).

Generically, anomalies correspond to a situation in the field theory when some symmetry takes
place at the level of a classical Lagrangian but it is violated at quantum loop level. For us an important
anomaly is the chiral anomaly. In short, it means that, for example, the Lagrangian

L = Ψ̄Liγµ
(
∂µ − igAaµt

a
)

ΨL = Ψ̄iγµ
(
∂µ − igAaµt

a
) 1− γ5

2
Ψ (112)

is invariant under the transformation

Ψ→ exp

(
iαata

1− γ5

2

)
Ψ, Aµ → Aaµ +

1

g
∂µα

a + fabcAbµα
c. (113)

This invariance according to the Noether theorem leads to conserving of the current:

jaµ = Ψ̄γµ
1− γ5

2
taΨ. (114)

However, after quantization one finds that the current (114) cannot be conserved due to the triangle loop
contributions shown in Fig. 8.

k

q

p = k + q

ta

tс

tb

+

Fig. 8: Loop corrections

The diagrams in Fig. 8, after a convolution with the momentum pµ instead of being equal to zero,
are proportional to the factor

g2

8π2
εµναβkαqβ · Tr

[
ta{tbtc}

]
. (115)

If the anomaly is not vanishing the theory loses its gauge invariance and therefore cannot be
acceptable. (However, in cases of some currents external with respect to the theory, which have nothing
to do with symmetries of the theory and the Noether theorem, anomalies or such currents may take
place. This does not lead to any problems. Moreover, such type of anomalies may have very important
physics consequences, as in the case of π0 decay to two photons.) In the SM there are simultaneously
contributions from left and right chiral fermions which contribute to the anomaly with opposite signs.
The anomaly is then proportional to the differences between traces of group generators coming from
fermions with left and right chiralities:

Anom ∼ Tr
[
ta{tbtc}

]
L
− Tr

[
ta{tbtc}

]
R
. (116)
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In the theories like QED or QCD there are no γ5 matrices involved in the Lagrangians. Therefore, the
left and right chiral contributions exactly compensate each other, the anomaly is equal to zero and the
theories perfectly make sense.

In the EW part of the SM left and right states couple to UY (1) gauge bosons with different hyper-
charges, and only the left components couple to the SU2(2) gauge bosons. So, it is not obvious a priori
that chiral anomalies vanish. In fact, zero anomalies is a request to the SM to be a reasonable quantum
theory.

Since the generators of the SUL(2) group are the matrices ti = σi/2, then any combination of
three SUC(2) generators gives zero traces in (116) and therefore zero anomalies. The only potentially
dangerous ones are

(SUL(2))2 · UY (1) and UY (1)3

anomalies. For the first type we have to take into account {ti, tj} = 1
2δ
ij and then the only non-zero

contribution is

Anom ∼ Tr
[
Y {ti, tj}

]
L

=
1

2
δijTrYL =

1

2
δij
[
NC · 2Y q

L + 2Y `
L

]
. (117)

From the relations (108) and (109), as already was mentioned, we have the following relation
between hypercharges:

Y `
L = −3Y q

L . (118)

After substitution of (118) into (117), we get

Anom ∼ 1

2
δij2Y q

L (NC − 3). (119)

It is very interesting that the anomaly vanishes only for the number of colours equal to three, as it
does in QCD. However, the value of the hypercharge Y q

L is not fixed.

The second type ((UY (2))3) of anomaly for the fermions for each generation is proportional to

Anom ∼ Tr
(
Y 3

L

)
− Tr

(
Y 3

R

)

= NC(Y q
L )3 · 2 + (Y `

L)3 · 2−NC

[
(Y u

R )3 + (Y d
R)3
]
− (Y `

R)3,
(120)

where the factor (2) in the left-hand contribution comes from two (u and d) quarks and two (e and νe)
leptons. Taking into account from (118) and (108) that Y u

R + Y d
R = 2Y q

L , one gets from (120) the
following:

Anom ∼ Y `
L

[
2NC(1

3Y
`

L + Y u
R )2 − 6(Y `

L)2
]

= Y `
L · 6(1

3Y
`

L + Y u
R − Y `

L)(1
3Y

`
L + Y u

R + Y `
L).

(121)

In order to get zero for the anomaly,

Y u
R =

2

3
Y `

L or Y u
R = −4

3
Y `

L . (122)

At this point one cannot prefer one of the relations in (122). This value will be finally fixed only after
SUL(2)× UY (1) symmetry breaking.

So, we note once more that we have constructed a theory with the Lagrangian for massless
fermions and gauge bosons, which gives us:

1. correct V–A charge currents;
2. correct electromagnetic interactions;
3. no chiral anomalies;
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4. predictions of additional neutral currents observed experimentally.

However, obviously such a theory cannot describe nature correctly. We do not observe massless
EW vector particles, except for the photon, and we do not observe massless fermions, except for, maybe,
the neutrinos (or one of the neutrinos). Massive W and Z bosons, massive leptons and quarks are observed
experimentally.

So, we have to introduce masses in the theory. But we cannot do it directly without violation
of the basic principle of gauge invariance. Indeed, the mass term for the vector field m2

V V
µVµ is not

invariant under the gauge transformation Vµ → Vµ + ∂µα, and the mass term for fermions mΨΨ̄Ψ, the
Dirac mass, is equal to m

(
Ψ̄LΨR + Ψ̄RΨL

)
, and it is also not gauge invariant. Indeed, the left field

ΨL is the doublet and the right field ΨR is the singlet with respect to the group SUL(2). How to make
massive particles without violation of the basic principle of gauge invariance? There is a way to resolve
this problem, which is related to spontaneous symmetry breaking, the Nambu–Goldstone theorem and
the Brout–Englert–Higgs–Hagen–Guralnik–Kibble mechanism.

12 Spontaneous symmetry breaking and the
Brout–Englert–Higgs–Hagen–Guralnik–Kibble mechanism

The situation when the Lagrangian is invariant under some symmetry while the spectrum of the system
is not invariant is very common for spontaneous symmetry breaking (for example, Ginzburg–Landau
theory). But a naive realization of ideas of spontaneous symmetry breaking leads to a problem manifested
in the appearance of so-called Nambu–Goldstone bosons with zero masses.

To illustrate this, let us consider a very simple scalar model with the Lagrangian

L = ∂µϕ
†∂µϕ− µ2ϕ†ϕ− λ(ϕ†ϕ)2. (123)

The Lagrangian (123) is invariant under the phase shift ϕ→ ϕeiω with ω = Const. The case with µ2 > 0
is trivial and not interesting for us. In the case µ2 = −|µ2| < 0, the potential shown in Fig.9

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (124)

has a non-trivial minimum:

dV

dϕ†

∣∣∣∣
ϕ0

= −|µ2|ϕ0 + 2λ(ϕ†0ϕ0)ϕ0 = 0 ⇒ |ϕ0| =
√
|µ2|
2λ

=
v√
2
> 0.

The system takes some concrete value for the vacuum solution, say ϕ0 = +v/
√

2, which violates the
phase-shift symmetry.

V(φ)

φ
v

Fig. 9: Higgs potential
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A complex scalar field can be parametrized by two real fields

ϕ =
1√
2

(v + h(x))e−iξ(x)/v. (125)

In terms of the new fields h(x) and ξ(x), the Lagrangian has the following form:

L = 1
2∂µh∂

µh− λv2h2 − λvh3 − λh4/4

+1
2∂µξ∂

µξ + 2
v∂µξ∂

µξh+ 1
v2∂µξ∂

µξh2 + λv4/4.
(126)

The Lagrangian (126) describes the system of a massive scalar field h with mass m2
h = 2λv2

interacting with a massless scalar field ξ(x). The field ξ(x) is called the Nambu–Goldstone boson field.

This is a particular case of the generic Goldstone theorem. If the theory is invariant under a
global group with m generators but the vacuum is invariant under transformations generated only by
`-generators, then in theory there exist m− ` massless Nambu–Goldstone bosons.

Consider the system described by the Lagrangian

L =
1

2
∂µϕ∂

µϕ− V (ϕ).

Let the Lagrangian be invariant under i = 1, . . . ,m transformations:

ϕ→ ϕ′ = ϕ+ δϕ, δϕi = iδΘAt
A
ijϕj .

The invariance of the potential means that

δV = (∂V/∂ϕi)δϕi = iδΘA(∂V/∂ϕi)t
A
ijϕj = 0. (127)

Let the potential have a minimum (vacuum) at some field value ϕi = ϕ0
i :

(∂V/∂ϕi)(ϕi = ϕ0
i ) = 0. (128)

We consider the case that the vacuum is invariant under transformations generated only by `-generators
from all m generators corresponding to the symmetry, which means that

tAijϕ
0
j = 0 (129)

only for i = 1, . . . , ` (` < m).

The second derivative from the invariance condition (127) at the minimum leads to

∂2V

∂ϕk∂ϕi
(ϕi = ϕ0

i )t
A
ijϕ

0
j +

∂V

∂ϕi
(ϕi = ϕ0

i )t
A
ij = 0.

The second term here is equal to zero due to (128) and therefore

∂2V

∂ϕk∂ϕi
(ϕi = ϕ0

i )t
A
ijϕ

0
j = 0.

For the first `, this equality takes place because of (129). However, for other fields with i = `+1, . . . ,m,
the following equality has to be valid:

∂2V

∂ϕk∂ϕi
(ϕi = ϕ0

i ) = 0. (130)
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But the second derivative of the potential in (130) is nothing but the mass term for these i = `+1, . . . ,m
fields. And, the equation (130) tells us that the masses of these fields are equal to zero. So, in such a
situation when the vacuum of a system is not invariant under all the symmetry transformations of the
Lagrangian there are m− ` massless fields (Nambu–Goldstone bosons) corresponding to the number of
generators violating the symmetry.

Let us return to the SM gauge group SUL(2) × UY (1) and add to the system one additional
complex scalar field Φ(x), being an SUL(2) doublet and a UY (1) singlet:

LΦ = DµΦ†DµΦ− µ2Φ†Φ− λ(Φ†Φ)4. (131)

The Lagrangian LΦ is gauge invariant; the covariant derivative has the form

Dµ = ∂µ − ig2W
i
µτ

i − ig1
YH

2
Bµ. (132)

As in our previous example, let the mass parameter squared be negative, µ2 = −|µ2|, and therefore the
field potential has a non-trivial minimum at Φ = v/

√
2.

One can parametrize the complex field doublet Φ(x) by four real fields in the following generic
way:

Φ(x) = exp

(
−i
ξi(x)ti

v

)(
0

(v + h)/
√

2

)
, (133)

where four scalar fields ξ1, ξ2, ξ3 and h are introduced.

The Lagrangian (131) in invariant under an SUL(2) transformation:

Φ(x)→ Φ′(x) = exp
(
ig2α

iti
)

Φ(x), (134)

where ti = σi/2 are the generators of the SUL(2) gauge group. If we compare (133) and (134), we can
choose a special gauge g2α

i(x) = ξi(x)/v such that the unitary factor exp
(
−iξi(x)ti/v

)
disappears

from all the formulas. This gauge is called the unitary gauge. The Higgs field Φ(x) in this gauge takes
therefore the following form:

Φ =
1√
2

(
0

v + h(x)

)
. (135)

The field Φ has a non-zero vacuum expectation value and as we know it leads to a violation of the
symmetry of the system.

After such spontaneous symmetry breaking, the substitution of (135) into the Lagrangian (131)
with the covariant derivative (132) yields the following Lagrangian in terms of fields W±µ , Aµ and Zµ
introduced before:

L =
1

2
(∂µh)2 − 1

2
(2λv2)h2 − λvh3 − λ

4
h4 (136)

+M2
WW

+
µ W

µ−(1 + h/v)2 +
1

2
M2
ZZµZ

µ(1 + h/v)2,

where
M2
h = 2λv2 (137)

is the mass of the scalar field h called the Higgs boson and

MW =
1

2
g2v and MZ =

1

2
(g2 cos θW + g1YH sin θW) v (138)

are masses of the vector fields W±µ and Zµ. The field Aµ is not present in the Lagrangian (136) and
therefore remains massless only in the case where the corresponding coefficient in front of it is equal to
zero:

−1

2
g2 sin θW + g1

Y H

2
cos θW = 0.

41

QUANTUM FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

41



The condition from the lepton sector (103)

g2 sin θW = −g1Y
`

L cos θW

tells us that the field A has the correct electromagnetic interactions and has zero mass simultaneously if
the charged lepton and Higgs field hypercharges have equal moduli and opposite signs:

YH = −Y l
L.

One should note that if the vacuum is invariant under some group transformation, then the gener-
ator of the group gives zero acting on the vacuum. Indeed, the invariance of the vacuum means that

eiTiΘiΦvac = Φvac;

therefore, the generator Ti is given by
TiΦvac = 0.

In our case

Φvac =
1√
2

(
0

v

)

and the generator of unbroken symmetry should have a generic form:

TΦvac =
1√
2

(
a11 a12

a21 a22

)(
0

v

)
= 0, ⇒ T =

(
a11 0
0 0

)

taking into account the fact that the generator should be Hermitian. For the group SUL(2)×UY (1), such
a generator is

T3 +
1

2
YH =

1

2

(
1 0
0 −1

)
+

1

2
YH

(
1 0
0 1

)
=

(
1 0
0 0

)
only if YH = +1.

This reflects the fact that the vacuum should be neutral, and the remaining group is naturally the unbroken
electromagnetic group Uem(1):

SUL(2)× UY (1)→ Uem(1),

T3 +
1

2
YH = QH = 0, YH = +1. (139)

Because YH = 1, one gets the following relation:

g2 sin θW = g1 cos θW. (140)

If one substitutes (140) into the equality for MZ (138), one gets the well-known relation between masses
of W and Z bosons:

MW = MZ cos θW. (141)

The value of the Higgs hypercharge YH = 1 fixes the lepton hypercharge Y `
L = −1. Now, from

the connection between hypercharges (109, 110) and following from them

Y `
L = −3Y q

L ,

all the values for hypercharges of leptons and quarks with left and right chiralities are fixed:

Y `
R = −2, Y q

L = Y u
L = Y d

l = 1/3, Y u
R = 4/3, Y d

R = −2/3.
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This confirms the Gell-Mann–Nishijima relation

I3 +
Y

2
= Q

for all three leptons and for all quarks with both chiralities. It should be so from the relation between
SUL(2) and UY (1) generators leading to an unbroken Uem(1) generator.

Coming back to the Lagrangian (136) and adding to it the kinetic terms and self-interactions of
the gauge fields W±µ , Aµ and Zµ, which come from the terms of the SM Lagrangian

−1

4
W i
µνW

iµν − 1

4
BµνB

µν ,

we get the Lagrangian describing the massive Higgs boson h, massive vector fields W i
µ and Zµ and

massless field Aµ. From the Goldstone theorem we expect 4 − 1 = 3 massless Nambu–Goldstone
bosons. But they are not present in the Lagrangian. Three would-be Nambu–Goldstone bosons ξ1, ξ2

and ξ3 are ‘eaten’ by three longitudinal components of the fields W−µ , W
+
µ and Zµ. One should stress

that while the symmetry is spontaneously broken, the gauge symmetry of the Lagrangian itself remains
unbroken.

This is the famous Brout–Englert–Higgs mechanism of spontaneous symmetry breaking (Nobel
prize for 2012) confirmed by the discovery of the Higgs-like boson in ATLAS and CMS experiments at
the LHC.

Now we consider the fermions, leptons and quarks, of the SM, and show how the mechanism
of spontaneous symmetry breaking allows us to get massive fermions without violation of the gauge
invariance.

As we know, in the SM the left fermions are the SU(2) doublets and the right fermions are the
singlets. There are only two gauge-invariant dimension-four operators of the Yukawa-type preserving
the SM gauge invariance:

Q̄LΦdR and Q̄LΦCuR, (142)

where

QL =

(
uL

dL

)

is the doublet of left fermions and

Φ =
1√
2

(
0

v + h

)
and ΦC = iσ2Φ† =

1√
2

(
v + h

0

)

are the Higgs and conjugated Higgs SUL(2) doublet fields in the unitary gauge. Corresponding to (142),
charge conjugated operators have the form

(
Q̄LΦdR

)†
= d†RΦ†

(
Q̄L

)†
= d†Rγ

0γ0Φ†γ0QL = d̄RΦ†QL

and (
Q̄LΦCuR

)†
= ūR

(
ΦC
)†
QL.

As one can easily see, the operators of (142) type lead after spontaneous symmetry breaking to the
needed terms for the fermion masses. Indeed,

(ūLd̄L)

(
0

v

)
dR + d̄R(0 v)

(
uL

dL

)
= d̄LdR + vd̄RdL = v

(
d̄LdR + d̄RdL

)
= vd̄d,

which is the Dirac mass term for the fermion. Similarly, the operator with the ΦC field leads to the
correct Dirac mass term for the up-type fermions:

vūu.
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However, most general operators preserving the SM gauge invariance may include mixing of the
fermion fields from various generations. The most general interaction Lagrangian including operators of
(142) type has the following form:

LYukawa = −Γijd Q̄
′
L
i
Φd′R

j
+ h.c.− Γiju Q̄

′
L
i
ΦCu′R

j
+ h.c.− Γije L̄

′
L
i
Φe′R

j
+ h.c., (143)

where there are no terms with a right-handed neutrino, and Γu,d,e are generically possible mixing coeffi-
cients. After spontaneous symmetry breaking, one can rewrite the Lagrangian (143) in the unitary gauge
as follows:

LYukawa = −
[
M ij
d d̄
′
L
i
d′R

j
+M ij

u ū
′
L
i
u′R

j
+M ij

e ē
′
L
i
e′R

j
+ h.c.

]
·
(

1 +
h

v

)
, (144)

where M ij = Γijv/
√

2.

The physics states are the states with definite mass. So, one should diagonalize the matrices in
order to get the physics states for quarks and leptons. This can be done by unitary transformations for all
left- and right-handed fermions:

d′Li = (UdL)ijdLj ; d′Ri = (UdR)ijdRj ; u′Li = (UuL )ijuLj ; u′Ri = (UuR)ijuRj

`′L = (U `L)`L; `′R = (U `R)`R

ULU
†
L = 1, URU

†
R = 1, U †LUL = 1.

The matrices U are chosen such that

(UuL )†MuU
u
R =




mu 0 0
0 mc 0
0 0 mt


 ; (UdL)†MdU

d
R =




md 0 0
0 ms 0
0 0 mb




(U `L)†M`U
`
R =




me 0 0
0 mµ 0
0 0 mτ


 .

Therefore, the Yukawa-type Lagrangian (144) is

LYukawa = −
[
mi
dd̄L

i
dR

i +m∗id d̄R
i
dL

i+

+mi
uūL

iuR
i +m∗iu ūR

iuL
i +mi

`
¯̀
L
i
`R

i +m∗i` ¯̀
R
i
`L
i
]
·
(

1 +
h

v

)
.

We consider only real mass parameters m ≡ m∗. So, the Yukawa Lagrangian after diagonalization of
the mass matrices contains masses of fermions and their interactions with the Higgs boson:

=⇒ LYukawa = −
[
mi
dd̄
idi +mi

uū
iui +mi

`
¯̀i`i
]
·
(

1 +
h

v

)
. (145)

Now one can easily see what the fermion interactions with the gauge bosons look like in the basis
of the fermion physics state with definite masses.

Neutral currents have the same structure (110) with respect to flavours as the mass terms. And
they, after the unitary rotation Ψ′ → UΨ, become diagonal simultaneously with the mass terms:

Ψ̄′ÔNΨ′ → Ψ̄ÔΨ.

However, charge currents
JC ∼ ūLÔchdL + h.c.
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contain fermions rotated by different unitary matrices for the up- and down-type fermions:

u′ → (UuL )u, d′ → (UdL)d.

Therefore, after the rotation one gets for the charge current

JC ∼ (UuL )†UdLūLQ̂dL.

The unitary matrix
VCKM = (UuL )†UdL

is called the Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix:

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (146)

Concrete values for the elements of the CKM matrix are not predicted in the SM. One can show that an
arbitrary unitary matrix with N ×N complex elements may be parametrized by N(N −1)/2 real angles
and (N − 1)(N − 2)/2 complex phases. So, the CKM 3 × 3 matrix contains three real parameters and
one complex phase. The presence of this phase leads to parity and charge (CP) violation, which in this
sense is a prediction of the SM with three generations. In this lecture we do not discuss physics of the
CKM matrix. The flavour physics is covered in a special lecture course at the School.

Now we have all parts of the EW part of the SM Lagrangian expressed in terms of physics fields
in unitary gauge:

LSM = LGauge + LFG + LH. (147)

Here, as was mentioned, the self-interactions of the gauge fields W±µ , Aµ and Zµ come from the terms
of the SM Lagrangian −1

4W
i
µνW

iµν − 1
4BµνB

µν :

LGauge = −1
4FµνF

µν − 1
4ZµνZ

µν − 1
2W

+
µνW

−µν

+e
[
W+
µνW

−µAν + h.c.+W+
µ W

−
ν F

µν
]

+ecW
sW

[
W+
µνW

−µZν + h.c.+W+
µ W

−
ν Z

µν
]

−e2 1
4s2

W

[
(W−µ W

+
ν −W−ν W+

µ )W−µW+ν + h.c.
]

−e
2

4 (W+
µ Aν −W+

ν Aµ)(W−µAν −W−νAµ)

−e
2

4
c2

W

s2
W

(W+
µ Zν −W+

ν Zµ)(W−µZν −W−νZµ)

−e
2

2
cW
sW

(W+
µ Aν −W−ν Aµ)(W+µZν −W−νZµ) + h.c.,

(148)

where cW = cos θW, sW = sin θW; the gauge for a photon field may be taken differently, for example
(∂µA

µ) = 0. The Lagrangian for the interactions of fermions with the gauge bosons is

LFG =
∑

f

f̄(i∂̂)f + LNC + LCC, (149)

where LNC and LCC are given by (111), (99) and (107). The Lagrangian for the Higgs boson and its
interactions with the gauge and fermion fields is

LH = 1
2(∂µh)(∂µh) +

M2
h

2 h2 − M2
h

2v h
3 − M2

h

8v2 h
4

+
(
M2
WW

+
µ W

−µ + 1
2M

2
ZZµZ

µ
) (

1 + h
v

)2
−∑f mf f̄f

(
1 + h

v

)
.

(150)
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All Feynman rules following from the Lagrangian (147) can be obtained with the help of the formula
(83). The kinetic parts of the Lagrangians LGauge (148) and LFG (148) being taken together with the
gauge and fermion mass terms from LH (150) give the propagators for fermions, massless photons,
massive W± and Z bosons, and for the Higgs boson by inverting the corresponding quadratic forms, as
we know already2.

The propagator for the massive gauge bosons requires special care. The propagators for massive
vector fields follow directly from the Lagrangian by inverting the quadratic form:

V µ
(
�gµν − ∂µ∂ν + gµνM

2
V

)
V ν . (151)

Then the propagator for massive vector fields (V = W,Z) has the following structure in the unitary
gauge:

Dµν(p) =
−i

p2 −M2
V

[
gµν −

pµp
ν

M2
V

]
. (152)

However, the term pµp
ν/M2

V has a bad ultraviolet behaviour. This leads to the problem of proving renor-
malizability of the SM. To resolve the problem, one can use another gauge in which the bad ultraviolet
behaviour is absent. It is convenient to express the Higgs field as follows:

Φ(x) =

( −iw+
g

(v + h+ izg)/
√

2

)
(153)

and Φ† containsw−g , where the notationw±g and zg for the Goldstone bosons is introduced. The covariant
derivative, being expressed in terms of the fields W±µ , Zµ and Aµ, and constants e and sin θW = sW,
takes the form

DµΦ =




∂µ − i
e(1− 2s2

W)
2sWcW

Zµ − ieAµ −i e√
2sW

W+
µ

−i e√
2sW

W−µ ∂µ + i e
2sWcW

Zµ.


Φ (154)

Simple algebraic manipulation leads to the following Lagrangian for the Higgs-gauge part of the
SM:

L = (DµΦ)†(DµΦ)− λ
(
ΦΦ† − v2/2

)2

= 1
2(∂µh)(∂µh) +M2

WW
+
µ W

µ−(1 + h/v)2 + 1
2M

2
ZZµZ

µ(1 + h/v)2

−M2
hh

2 − λvh3 − λ
4h

4

−MW∂µw
+
g W

µ− −MW∂µw
−
g W

µ+ −MZ∂µzgZ
µ

+∂µw
+
g ∂

µw−g + 1
2∂µzg∂

µzg

−λh(h+ 2v)
(
w−g w

+
g + zg/2

)
− λ

(
w−g w

+
g + zg/2

)2

+more cubic and quadratic terms involving w±g and zg fields.

(155)

The first two lines in (155) are exactly the same as in the SM in the unitary gauge. The fourth line involves
massless scalar fields, the Goldstone bosons w±g and zg. There are many terms describing interactions of
the Goldstone fields. But we would like to draw attention to the third line in (155) describing the kinetic
mixing of the w±g and zg fields with W± and Z fields, respectively. Such a mixing should be removed
from the Lagrangian. This can be achieved by choosing proper gauge conditions.

2The complete list of the Feynman rules for interaction vertices can be found in many books and listed explicitly, for
example, in the model files for the SM used in computer codes like CompHEP, Grace, CalcHEP, MadGraph, Wizard, Sherpa
etc.
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Indeed, if we add to (155) the following gauge fixing terms:

LGF = −1

ξ

(
∂µW

+
µ − ξMWw

+
g

) (
∂νW

µ− − ξMWw
−
g

)
− 1

2ξ
(∂µZ

µ − ξMZzg)2 , (156)

the mixing terms are cancelled out. Then the quadratic part of the SM Lagrangian for W±µ and Zµ fields
which gives their propagators is

−1
4ZµνZ

µν + 1
2M

2
ZZνZ

ν − 1
2ξ

(∂µZ
µ)2

−1
2W

+
µνW

−µν +M2
WW

+
ν W

−ν − 1
ξ

(∂µW
+µ) (∂νW

−ν) ,
(157)

where terms with
Zµν = ∂µZν − ∂νZµ, W±µν = ∂µW

±
ν − ∂νW±µ

come from the kinetic part of the SM Lagrangian, as in the unitary case. Inverting the quadratic form
(157), one gets the propagator of the massive gauge field in the so-called Rξ gauge:

Dξ
µν =

−i

k2 −M2
V

[
gµν − (1− ξ) kµkν

k2 − ξM2
V

]
, (158)

where MV is MW or MZ and ξ is the gauge parameter.

The unitary gauge is restored by the formal limit ξ → ∞. In the Landau gauge ξ = 0, we get
the transverse structure

(
gµν − kµkν/k2

)
, while in the ’t Hooft–Feynman gauge ξ = 1 the propagator

contains only the part with the gµν tensor. However, one should stress that in both these gauges as well as
in the genericRξ gauge one should take into account the appearance of Faddeev–Popov ghost fields. This
is done with the help of the Faddeev–Popov method in the functional integral, which we have described
already. Without going into details, the following ghost fields appear: c±W , cZ and cA, corresponding to
the gauge fixing terms (156) and the gauge fixing −(∂µA

µ)2/2ξ term for the photon field. In contrast
to pure electrodynamics where the photon ghost fields do not interact and can be omitted, in the SM the
photon ghost field cA has non-trivial interactions with the ghost c±W and Goldstone w±g fields.

Propagators of all the ghost fields have the following form:

Dc =
i

p2 − ξM2
V

,

whereM2
V is equal toM2

Z for cZ ,M2
W for cW and 0 for cA ghost fields. (The complete set of all Feynman

rules for interaction vertices of Goldstone and ghost fields in the SM in the Rξ gauge is rather long and
can be found in the mentioned computer codes such as CompHEP.)

So, all the propagators for massive gauge, Goldstone and ghost fields have good ultraviolet be-
haviour, and therefore the SM is a renormalizable quantum field theory.

13 Phenomenology of the SM in lowest order
The Fermi constant GF is measured with high precision from the muon lifetime:

GF = 1.166 378 7(6)× 10−5 GeV−2. (159)

The decay is described in the SM by the Feynman diagram shown in Fig. 10.

Since the muon massmµ �MW , one can neglect the W-boson momentum in the propagator, and
one immediately gets the following relation:

g2
2

8M2
W

=
GF√

2
. (160)
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W

ν

e –µ

e

νµ
–

–

Fig. 10: µ→ e−ν̄eνµ decay diagram

As we have seen, the W-boson mass is obtained in the SM due to the Higgs mechanism and is propor-
tional to the Higgs field vacuum expectation value v:

M2
W =

1

4
g2

2v
2. (161)

From these two relations, we obtain

v =
1√√
2GF

= 246.22 GeV. (162)

The Higgs field expectation value v is determined by the Fermi constant GF introduced long before the
Higgs mechanism appeared. At this point one can see the power of the gauge invariance principle; g2 is
the same gauge coupling in the relations (160) and (161).

Now from (160) using the relation (140), g1cW = g2sW = e and keeping in mind MW = MZcW,
one gets

M2
W

(
1− M2

W

M2
Z

)
=

παem√
2GF

≡ A2
0, (163)

where αem = e2/4π is the usual electromagnetic fine structure constant. The low-energy

αem = (137.035 999 074(44))−1

follows mainly from the electron anomalous magnetic measurements. One gets A0 very precisely from
low-energy experimental results:

A0 = 37.2804 GeV. (164)

On the other hand, one gets A0 from measured values of the masses of W and Z bosons:

MW = 80.385 ±0.015 GeV,
MZ = 91.1876 ±0.0021 GeV

(165)

by substituting (165) into the left-hand side of (163):

A0 = 37.95 GeV. (166)

The values (163) and (166) are rather close. The difference is about 1.5%. If one takes into account
properly the higher-order corrections to the relation (163), the agreement between the two numbers will
be improved further.

CC and NC interactions of the SM fermions, as has been shown in the previous section, have the
following structure (see (111)):

LCC =
g2

2
√

2

∑
ij Vij ūiγµ(1− γ5)dj = e

2
√

2sW

∑
ij Vij ūiγµ(1− γ5)dj ,

LNC = e
∑

f Qf f̄γµfA
µ + e

4sWcW

∑
f f̄γµ(vf − afγ5)fZµ,

(167)
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where Vij are the CKM matrix elements, i, j = 1, 2, 3 the number of the SM fermion generations and

vui = 1− 8
3s

2
W, aui = 1; vdi = −1 + 4

3s
2
W, adi = −1;

v` = −1 + 4s2
W, a` = −1; vν = 1, aν = 1

are the vector and axial-vector coupling constants.

The Feynman rules following from (166) allow us to get tree level formulas for the W- and Z-boson
partial decay widths, as shown below at tree level:

W

u
f
 

d
f
 

_ Γ(W → uf d̄f ) = |Vij |2Nc
α

12s2
W

MW ,

(168)

Z

f 

f 

_ Γ(Z → ff̄) = Nc
αMZ

12 sin2(2θW)
[v2
f + a2

f ],

(169)

where the number of colours Nc = 3 for quarks and Nc = 1 for leptons.

The total W- and Z-boson widths are obtained by summing up all the partial widths (168) and
(169). Since CCs for all SM fermions have the same V–A structure, one can very easily obtain branching
fractions for W-decay modes:

∑
q Br(W → qq̄) = 2Nc · 1

9 = 2
3 ,∑

` Br(W → `ν) = 3 · 1
9 = 1

3 .
(170)

The measured Br(W → `ν) = (10.80 ± 0.09)% is in reasonable agreement with the simple tree level
result

Br(W → `ν) =
1

9
= (11.11)%. (171)

QCD corrections to the branching ratio Br(W → qq̄) improve the agreement.

The decay width of the Z boson to neutrinos, the invisible decay mode, allows us to measure the
number of light (mν < MZ/2) neutrinos by comparing

ΓZinv = ΓZtot − ΓZhad − ΓZ`+`− (172)

with the tree level formula obtained from (169):

ΓZinv = ΓZνν̄ = Nν ·
αMZ

12 sin2(2θW)
(1 + 1). (173)

Experimentally, Γtot is measured from the shape of the Z-boson resonance according to the well-known
Breit–Wigner formula

ΓZtot = 2.4952± 0.0023 GeV.

Decay widths to hadrons and charged leptons are measured directly in e+e− collisions (LEP1) to be

ΓZhad = 1744.4± 2.0 MeV,

ΓZ`+`− = 83.984± 0.086 MeV.
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As a result, ΓZinv obtained from (172) is

ΓZinv = 0.4990± 0.0015 GeV.

This gives for Nν

Nν = 2.984± 0.008,

which is close to the number of known neutrinos. The test is an important confirmation of three genera-
tions of fermions assumed in the SM and observed in experiments as shown in Fig. 11.
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Fig. 11: Nν from LEP measurements

One can make this test by looking at the ratio ΓZinv/Γ
Z
e+e− . In the SM, the ratio follows from (169)

and (173):
ΓZinv

ΓZ
e+e−

=
2Nν

1 + (1− 4s2
W)2

. (174)

The measured value (5.942 ± 0.016) is in agreement with 5.970 coming from the formula (174) for
Nν = 3 and s2

W = 0.2324.

An important part of information about the EW interactions and couplings of the SM fermions
comes from e+e− annihilation to fermion–antifermion pairs. The differential cross-section computed
from the diagrams shown in Fig. 12 has a well-known form neglecting fermion masses compared to the

e+

e–

e+

e–

f

f

f

f

––

γ Z
+

Fig. 12: e+e− diagram

centre of mass energy
√
s:

dσ
d cos θ

= 2πα2

4s NC

{
(1 + cos2 θ)·

·
[
Q2
f − 2χ1vevfQf + χ2(a2

e + v2
e)(a

2
f + v2

f )
]

+2 cos θ [−2χ1aeafQf + 4χ2aeafvevf ]} ,

(175)
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where

χ1 =
1

16s2
Wc

2
W

s(s−M2
Z)

(s−M2
Z)2 +M2

ZΓ2
Z

,

χ2 =
1

256s2
Wc

2
W

s2

(s−M2
Z)2 +M2

ZΓ2
Z

.

The cross-section obtained from the differential form (175) is in good agreement with the experimental
data, as shown in Fig. 13. In the region far below the Z-boson pole, one can neglect the Z-boson exchange
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Fig. 13: The cross section of hadron production in e+e− collisions showing a good agreement between the SM
computation and various experiments in the energy range up to 220 GeV including the contribution of the Z-boson
resonance.

diagram and restore the well-known QED formula

dσ

d cos θ
=
πα2

2s
Q2
fNC(1 + cos2 θ), σ =

4πα2

3
Q2NC . (176)

From the formula (175), one can get a number of asymmetries, which have been measured, in particular,
at LEP1 and SLC. In the region close to the Z-boson pole the photon exchange part is small and can be
neglected. Then the forward–backward asymmetry is

AFB ≡
NF −NB

NF +NB
,

where

NF =

∫ 1

0
d(cos θ)

dσ

d cos θ
, NB =

∫ 0

−1
d(cos θ)

dσ

d cos θ
.

Simple integration of (175) gives the following result:

AFB =
3

2
Ae ·Af , Ae,f =

2ae,fve,f
a2
e,f + v2

e,f

.
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Measurements of decay widths being proportional to (a2
f + v2

f ) and asymmetries for different
fermions f allow us to extract the coefficients af and vf . Then one can get a precise value for the
Weinberg mixing angle from the relation involving the lepton couplings:

sin2 θlept
eff =

1

4

(
1− vl

al

)
.

Results of the measurements are shown in Fig.14 as obtained by the EW working group [16].
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Fig. 14: Effective electroweak mixing angle from various observables [16]

In the SM there are no 1 → 2 decays of fermions to the real Z boson due to absence of FCNCs
(flavour-changing neutral currents). The top quark is heavy enough to decay to a W boson, as shown in
Fig. 15. The decay mode to the b-quark is dominant in the top decays due to the CKM mixing matrix

q

t

Fig. 15: Top-quark decay

structure, where
Vtb ∼ 1� Vts, Vtd.
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A direct tree level computation leads to

Γtop =
GFM

3
t

8π
√

2

(
1− M2

W

M2
t

)2(
1 + 2

M2
W

M2
t

)
, (177)

where one neglects the b-quark mass:

Γ(t→ bW )LO ' 1.53 GeV, Γ(t→ bW )corr = 1.42 GeV.

The top-quark lifetime τtop = 1/Γtop is about 5 · 10−25 s, which is much smaller than the typical time of
strong bound state formation τQCD ∼ 1/ΛQCD ∼ 3·10−24 s. The top quark decays before hadronization.
Therefore, there are no hadrons containing the top quark.

Since the top-quark mass is larger than the W-boson and b-quark masses, one can use the EW
equivalence theorem to get the leading top width up to the term m2

W /m
2
t . According to the EW equiva-

lence theorem, amplitudes with external W and Z bosons are dominated by the longitudinal polarization
of the bosons

(
eW,ZL ∼ p0/MW,Z

)
. But the longitudinal component in the SM appears by ‘eating’ the

Goldstone bosons wg, zg. So, one can compute simply the diagram

q

t

wg

with the Yukawa vertex Mt/(v
√

2). Then one immediately obtains for the top width the following
formula:

Γ =
2

32π

(
Mt

v

)2

·Mt =
GFM

3
t

8π
√

2
,

which is exactly equal to the first term in (177), as expected.

The EW single top quark production is another confirmation of the EW fermion structure of the
SM. There are three mechanisms of single top production at hadron colliders differing by the typical
virtuality (Q2

W ) of the W boson involved:

q

q' b

t

– –W
s-channel, Q2

W > 0,

q q'

b t

W t-channel, Q2
W < 0,

g

b

t

W

t

+W -associated, Q2
W ≈M2

W .

quart t-channel and s-channel production mechanisms have been observed at the Tevatron, while t-
channel and W -associated production was observed at the LHC. There are a number of important QCD
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next-to-leading-order (NLO) and next-to-next-to-leading-order (NNLO) corrections which are needed to
be taken into account in order to get SM predictions with needed accuracy to be compared to experimental
results. Up to now a good agreement with SM computations was observed.

A well-known example demonstrating correctness of the Yang–Mills interactions of the gauge
bosons is the gauge boson pair production. Triple gauge boson vertices WWγ and WWZ have been
tested at LEP2 (e+e− → W+W−) and at the Tevatron (qq̄ → W+W−, qq̄′ → Wγ, qq̄′ → WZ). The
diagrams for the process e+e− →W+W− form the so-called CC3 set of diagrams, as shown in Fig. 16.

e+

e–

e+

e–
γ Z

+

e+

e–

W+

W–

+

W+

W–

W+

W–

Fig. 16: e+e− →W+W−

The triple vertex of the Yang–Mills interaction:

ΓWWγ/Z
m1m2m3

(p1p2p3) = gγ,Z [(p1 − p2)m3gm1m2 + (p3 − p1)m2gm1m3 + (p2 − p3)m1gm2m3 ] ,

where gγ = e, gZ = g2cW = e cWsW , is confirmed perfectly experimentally, as shown in Fig. 17.
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Fig. 17: Measurements of the W-pair production cross-section, compared to the theoretical predictions. For expla-
nations, see [17].

The quartic gauge coupling WWγγ has been tested recently at the Tevatron and the LHC in W-
pair production in association with two protons or a proton and an antiproton. The quartic couplings
WWγZ, WWZZ have not been tested yet. This is a challenging task for the LHC and will require a
high-luminosity regime at a linear collider.

14 The electroweak SM beyond the leading order
All the above examples confirming the structure of the SM interactions are leading order processes.
However, in many cases a high accuracy of experimental measurements requires the SM computations
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beyond the leading order. In the SM, being a quantum field theory, computations of higher-order cor-
rections face divergences of ultraviolet and infrared/collinear nature. In general, the ultraviolet (hard)
divergences are treated with the help of the renormalization procedure while the infrared/collinear (soft)
divergences are cancelled out due to the Kinoshita–Lee–Nauenberg theorem in summing virtual and real
contributions to squared matrix elements.

The renormalization procedure is the usual way to deal with the ultraviolet divergences. We de-
scribe briefly only the main ideas of the procedure. In the SM the dimensions of all the coupling constants
are equal to zero. This property has important consequences making the theory renormalizable. In simple
words, the renormalizability means that all the UV divergences may be incorporated into a redefinition of
a few constants such as coupling constants, masses and field normalization constants. In renormalizable
theories only a few diagrams are UV divergent.

As an example, let us consider QED.

The divergency index of a diagram depends only on the number of external legs, and for QED can
be expressed in a well-known form

w = 4− Lγ − 3/2Le,

where Lγ is the number of external photon lines and Le is the number of external electron lines.

So, there are only three types of divergent diagrams with two external photon lines, the photon

self-energy , with two external electron lines, the electron self-energy and,

with one photon and two electron external lines, the electron–photon vertex .

It is convenient to consider the renormalization procedure in the functional integral approach al-
ready familiar to us. The generating functional integral in QED in the covariant gauge is given by

Z[J, η, η̄] =
∫
D(Ψ̄ΨA) exp

(
i
∫

d4xΨ̄(iD/−m)Ψ + ieA+ JµA
µ

+ η̄Ψ + Ψ̄η − 1
4FµνF

µν + 1
2ξ

∫
d4x(∂µA

µ)2
)
.

(178)

The photon propagator is obtained from (178) by taking two functional derivatives on J and setting the
sources J , η and η̄ to zero:

iDαβ(x1, x2) =
∫
D(Ψ̄ΨA)Aµ(x1)Aµ(x2)

· exp
(
i
∫

d4x[−1
4FµνF

µν + Ψ̄(i∂/−m)Ψ + eΨ̄A/Ψ]
)
.

(179)

The Dyson–Schwinger equation for the photon propagator is obtained as a consequence of the
invariance of the measure of the functional integral with respect to the shift Aµ(x)→ Aµ(x) + εµ(x).

The equation for the inverse propagator takes, after Fourier transformation, the form

D−1
αβ (k) = (D0)−1

αβ + Παβ (180)

or, graphically,

( ) ( )= +
–1 –1

,

where denotes the dressed fermion propagator and is the truncated one-particle irreducible
vertex function Γµ(p1, p2, k).

At one-loop level the function Παβ(k) is given by the following Feynman integral:

(−ie)2

∫
d4p

(2π)4
Tr
[

p/+m

p2 −m2 + i0
γα

(p/− k/) +m

(p− k)2 −m2 + i0
γβ

]
. (181)
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The integral (181) is quadratically divergent from formal power counting. In order to deal with divergent
integrals, we need to introduce some regularization. We use the dimensional regularization

d4p→ dDp(µ2)2−D/2.

One can see that (181) gives zero, being convoluted with the external moments kα or kβ . Indeed,

kαγ
α = (p/)− (p/− k/) = (p/−m)− [(p/− k/)−m]. (182)

If we substitute (182) into (181), we get

(µ2−D/2)(−ie)2

∫
dDp

(2π)D
Tr
[(

p/+m

p2 −m2 + i0
− (p/− k/) +m

(p− k)2 −m2 + i0

)
γβ

]
= 0. (183)

In fact, this result is valid to all perturbation orders due to the Ward identity

kµΓµ(p1, p2, k) = S−1(p1)− S−1(p2). (184)

The identity (183) can be easily derived from U(1) gauge invariance of (178).

The property means that Παβ has the following form:

Παβ(k) =
(
gαβk

2 − kαkβ
)

Π(k2). (185)

Therefore, the dressed photon propagator can be written as

Dαβ(k) = − i

k2

[
1

1 + Πγ(k2, ε, µ2)

(
gαβ −

kαkβ
k2

)
+ ξ

kαkβ
k2

]
. (186)

Of course, in the case where Πγ = 0, we obtain the free photon propagator.

The factor (1 + Πγ(k2, ε, µ2))−1, being taken at zero momentum, should be removed for the
correct normalization of the kinetic term. It can be done by rescaling the field Aµ(x) in the following
way:

Aµ(x)→ 1√
Z3
Aµ, where Z(a)

3 = (1 + Πγ(0, ε))−1. (187)

Direct computation of (181) with well-known Feynman techniques gives

Πγ(k2, ε, µ2) = α
3πε + Πfinite

and therefore Z−1
3 = 1 + α

3πε,
(188)

where ε = (4−D)/2.

Now let us consider the fermion propagator taking functional derivatives of (178) on the fermion
sources η̄ and η.

Now the expression for the dressed inverse fermion propagator is

S−1(p) = S−1
0 (p)− Σ(p). (189)

The formula (188) is also the Dyson–Schwinger equation for the dressed fermion propagator, graphically
presented as

( ) ( )= ––1 –1
k

p1 p

Γ

.
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The equation involves the same truncated vertex function Γµ(p1p2; k). In the second order of perturbation
theory, Σ(2)(p) is as follows:

−iΣ(2)(p) = (−ie)2

∫
dDk

(2π)D
(µ2)2−D/2 · γµDµν(k)

p/− k/+m

(p− k)2 −m2
γν . (190)

Direct computation gives the following answer:

Σ2 =
α

8π
(4m− p/)2

ε
+ Σfinite. (191)

The generic structure of Σ(p) is as follows:

Σ(p) = p/f1(p2)−mf2(p2).

Due to (189), this means that the fermion propagator has the form

S(p) =
1

p/(1− f1(p2))−m(1− f2(p2))
= − 1

1− f1(p2)

1

p/−m1− f2(p2)

1− f1(p2)

. (192)

Close to physics mass, one should have

mphys = m
1− f2(m2

phys)

1− f1(m2
phys)

.

So, the fermion propagator has the following form close to physics mass:

S(p) =
Z2(ε, µ)

p̂−mphys(ε, µ)
, (193)

where Z2 = (1 − f1)−1, mphys = m Z2
Zm

and Zm = (1 − f2)−1. From the one-loop result (191), we
obtain

Z−1
2 = 1 +

α

4πε
+O(α), (194)

Z−1
m = 1 +

α

πε
+O(α). (195)

The remaining divergent QED diagram is the vertex function correction given by the integral

μ

αβ

k

q

p

ieΓ
(2)
µ (p, q) = (−ie)3(µ2)2−D/2 ∫ dDk

(2π)D

·γα(i)
p/− q/− k/+m

(p− q − k)2 −m2 + i0

·γµ(i)
p/− q/+m

(p− q)2 −m2 + i0
· γβ −i

k2 + i0
gαβ

(196)

In order to compute the divergent part, one can simplify the problem and compute (196) in the limit
q → 0. The answer is

Γ(2)
µ (p, 0) = γµ

[
α

4π

1

ε
+O(α)

]
. (197)
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Therefore, the vertex function including one-loop correction may be written in the form

−ieΓµ = −ieZ1γµ, (198)

where
Z1 = 1− α

4π

1

ε
+O(α).

We can see from (194) and (198) that Z1 = Z2 including the one-loop part. The equality Z1 = Z2 takes
place to all orders of perturbation theory due to the Ward identity

Γµ(p, 0) = ∂µS
−1(p), (199)

as follows from (183) in the limit of the photon momentum k → 0.

Why did we do all the above computations of divergent graphs , and ?

Let us rewrite our initial (before renormalization) QED Lagrangian

L = −1

4
F 0
µνF

0µν + Ψ̄0(iD/ 0 −m0)Ψ0, (200)

where F 0
µν = ∂µA

0
ν − ∂νA0

µ, D0
µ = ∂µ − ie0A

0
µ (we use the symbol (0) to stress that all the objects are

not renormalized, or bare, as one usually says) in terms of physical fields and parameters labelled by the
symbol ph and additional terms ∆L:

L = −1

4
F ph
µν F

phµν + Ψ̄ph(iD/ph −mph)Ψph + ∆L, (201)

where Aph
µ = Z

−1/2
3 A0

µ, Ψph = Z
−1/2
2 Ψ, mph = (Z2/Zm)m0, e0 = Z1Z

−1
2 Z

−1/2
3 (µ)D/2−2eph,

Dph
µ = ∂µ − iephA

ph
µ and

∆L = −(Z3 − 1)1
4F

ph
µν F phµν + (Z2 − 1)Ψ̄ph(i∂/)Ψph

+(Zm − 1)mphΨ̄phΨph + (Z1 − 1)ephΨ̄ph(A/ph)Ψph.
(202)

The Lagrangian ∆L contains so-called counter-terms. In the leading order we computed all the coeffi-
cients in front of the counter-terms. Now when one computes some effect using the Lagrangian (201) all
UV divergences are cancelled out order by order in perturbation theory by contributions of the counter-
terms.

Let us look in more detail at the relation for the coupling constant

e0 = Z1Z
−1
2 Z

−1/2
3 (µ)D/2−2eph(µ),

where (µ)D/2−2 is the dimension of the charge. As we discussed above, Z1 = Z2 due to the Ward
identity, and

e0 = Z
−1/2
3 (µ)D/2−2eph(µ). (203)

Note that eph(µ) is a function of the dimension regularization parameter µ, while e0 does not depend on
µ. From (203), one gets the following equality for α = e2

4π (D = 4− 2ε):

α0 = Z−1
3 (µ2)−εαph(µ). (204)

Taking the derivative µ ∂
∂µ on both sides of (204), we get the following equation:

µ
∂α

∂µ
=

2α2

3π
≡ β(α). (205)
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The equation (205) is a particular example of the renormalization group equation, which we do not
discuss in this brief lecture course. The function on the right-hand side of (205) is called the β-function.
So, at the one-loop level the β-function in QED is given by the following formula:

β(α) =
b0
π
α2, b0 =

2

3
. (206)

One should stress that the coefficient b0 = 2
3 in QED is positive. The equation (205) can be easily solved:

α(µ) =
α(µ1)

1− α(µ1)
3π ln(µ/µ1)2

. (207)

This is the running coupling constant. If one measures the constant α at some scale µ1, one gets values
for the constant at other scales. The coupling constant α = 1/137 being measured at very small scale
(small momentum transfer or large distance) in Thompson scattering increases with the scale growing
and becomes α(M2

Z) ≈ 1
129 at the Z mass. This fact was confirmed nicely in LEP experiments. Note

that, in order to get 1/129, one should take into account the contribution of all SM charged particles
to the photon vacuum polarization function Πγ . This means that the charged particle–antiparticle pairs
screen the bare charge at small µ2 or at large distances. The QED running coupling constant is illustrated
in Fig.18 [18].
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Fig. 18: Running electromagnetic coupling as a function of collision energy measured at various energies, in
particular, at LEP by the OPAL collaboration [18].

Note that in QCD the β-function is negative, leading to an antiscreening effect; αS becomes
smaller with increasing of the momentum scale (momentum transfer) or decreasing distances. This is
a famous asymptotic freedom property in QCD. In QED the situation is the opposite. If the scale µ
increases to very large values the well-known Landau pole

b0
π

ln(µ/µ1)2 = 1
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is approached where the perturbation picture in QED breaks down.

One should note that in QED all terms in the four-dimensional Lagrangian (gauge-invariant oper-
ators) have dimension four. As a result, the coupling constant in QED is dimensionless. This is crucial
to have renormalizable theory, where all UV divergences are cancelled to all orders with the help of a
finite number of counter-terms. This is also the case in the SM. All terms of the SM Lagrangian have
dimension four and all the coupling constants are dimensionless. So, the SM is a renormalizable theory
in the same manner as QED.

Naively, one may think that the EW higher-order corrections are not that important. The perturba-
tion theory expansion parameters α/π with αem ∼ 1/129 and αweak ∼ 1/30 are very small. However,
the experimental accuracies are so high in various cases that even one-loop EW corrections might not be
sufficient. Indeed, selected lists of measured parameters by LEP1, LEP2, SLD and Tevatron are given
below:

MZ = 91.1875 ± 0.0021 GeV 0.002%
ΓZ = 2.4952 ± 0.0023 GeV 0.09%
MW = 80.385 ± 0.015 GeV 0.02%
Mtop = 173.2 ± 0.9 GeV 0.52%

The most important higher-order corrections come from resummation of the large logarithms, log
M2
t

m2
e
≈

24.2, as we have seen with running α (1/137→ 1/129). The second class of large corrections comes from
contributions of the order ofM2

top/M
2
W , which originate from EW Goldstone boson (or longitudinal W/Z

polarization state) couplings to the quarks of the third generation. The later corrections lead to the shifts
in W- and Z-boson masses coming from the diagram in Fig. 19.

t

b
W W

t

t
Z Z–

Fig. 19: Loop corrections

Loop corrections lead to the fact that SM parameters, coupling constants and masses, are running
parameters, and they are non-trivial functions of each other. A famous example is given in Fig.20 [17]
showing the dependence of the W-boson mass as a function of the top-quark mass at different values of
the Higgs boson mass.

One should recall that the top-quark mass has been determined indirectly from the analysis of loop
corrections, it being

mt = 178± 8
+17
−20

GeV,

which is remarkably close to today’s precise measured value 173.2± 0.9 GeV.

The low Higgs mass range was preferred by a similar analysis of the Tevatron and LEP data, as
one can clearly see in Fig.20.

A summary of comparisons of the EW precision measurements at LEP1, LEP2, SLD and the
Tevatron and a global parameter fit is given in the well-known plot shown in Fig.21 [16].

The only one discrepancy on the level of 3σ is observed for bb̄-pair forward–backward asymmetry.

15 Concluding remarks
1. The SM is a renormalizable anomaly-free gauge quantum field theory with spontaneously broken

EW symmetry. Remarkable agreement with many experimental measurements is observed.
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Fig. 20: W boson mass as a function of the top quark mass at varios masses of the Higgs bosos (see details in [17]).

2. All SM leptons, quarks, gauge bosons and, very probably, the Higgs boson have been discovered.

3. The SM predicts the structure of all interactions: fermion-gauge, gauge self-interactions, Higgs-
gauge, Higgs-fermion and Higgs self-interactions. As a result, the SM allows us to compute
various cross-sections, distributions and decay rates taking into account higher-order corrections.
However, not yet all of the interactions were tested experimentally. Parameters of the theory are
not predicted by the theory itself but extracted from the measurements.

4. The EW SM has 17 parameters and QCD has one more parameter fixed from experiments:

– the gauge-Higgs sector contains four parameters g1, g2, µ2, λ or in terms of best measured
αem, GF,MZ ,Mh;

– six quark masses, three lepton masses;
– three mixing angles and one phase of the CKM matrix (more parameters come from the

neutrino mixing matrix, which we do not consider here);
– the QCD coupling constant αs.

5. There are facts which cannot be explained in the SM:

– fermions have very much different masses (Mtop = 173 GeV, Me = 0.5 MeV) coming from
the same mechanism;

– dark matter exists in the Universe, and there are no dark-matter candidates in the SM;
– the CKM phase as a source of CP violation in the SM is too small to explain particle–

antiparticle asymmetry in the Universe;
– neutrino masses, mixing and oscillations cannot be understood in the framework of the SM

EW symmetry breaking mechanism;
– there is some tension in explaining the muon anomalous magnetic moment.

6. As is well known, the simplest Higgs mechanism in the SM is not stable with respect to quan-
tum corrections (naturalness problem). In the SM there is no symmetry which protects a strong
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

Fig. 21: Global fit of the EW precision measurements at LEP1, LEP2, SLD and the Teva-
tron by the SM computations including loop corrections [16] (the latest update version of the plot
http://lepewwg.web.cern.ch/LEPEWWG/plots/winter2012/)

(quadratic) dependence of the Higgs mass on a possible new scale. Something is needed in addi-
tion to the SM to stabilize the mass parameter.

7. In addition, the SM does not give answers to many questions, such as:

– What is a generation? Why are there only three generations?
– How are quarks and leptons related to each other?; what is the nature of the quark–lepton

analogy?
– What is responsible for gauge symmetries, why are charges quantized? Are there additional

gauge symmetries?
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– What is responsible for the formation of the Higgs potential?
– To which accuracy is the CPT (charge, parity, and time) symmetry exact?
– Why is gravity so weak compared to other interactions?

In our lecture we focused mainly on the EW part of the SM and aspects of the field theory needed
clarifying, and we did not discuss QCD physics, Higgs boson physics, neutrino physics, flavour physics,
problems of the SM models leading to BSM (beyond the Standard Model) scenarios and sequences for
cosmology. These are the subjects of the lectures by Z. Trócsányi, J. Ellis, B. Gavelo, Z. Ligetti, C. Csaki
and D. Gorbunov at the 2013 European School.
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