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Abstract
These lectures are intended to provide the theoretical basis of describing high-
energy particle collisions at a level appropriate to graduate students in exper-
imental high energy physics. They are supposed to be familiar with quantum
electrodynamics, the concept of Feynman rules, Feynman graphs and compu-
tation of the cross section in quantum field theory.

When you measure what you are speaking about and express it in numbers, you know something about
it, but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin

1 QCD as quantum field theory of the strong interaction
The Lagrangian of the quark-gluon field based on a non-abelian gauge symmetry was first proposed in
Ref. [1] forty years ago. The paper discussed the advantages of the colour-octet picture. Since then an
immense amount of research lead to a lot of interesting results and a deep understanding of the strong
interaction based on this quantum field theoretical description of chromo-dynamics, QCD. Today we are
convinced that QCD is the correct description of the strong interaction, yet we still lack a complete and
satisfactory solution. In such a situation one may set two goals: (i) either an ambitious one: solve QCD,
or (ii) a more pragmatic one: develop tools for modeling particle interactions in high energy collider
experiments. In these lectures we go for the second one.

Our aim is to understand high-energy particle collisions quantitatively from first principles. Ex-
amples of such events recorded by the CMS experiment at the LHC are shown in Fig. 1. In these events
kinematic characteristics of particles, such as energy and momentum, are collected. Analyzing many
such events, we can produce distributions of kinematic variables, for instance, differential distribution
of the inclusive jet cross section with respect to pseudorapidity, dσ/dη. There is a long way from the
QCD Lagrangian to making predictions for such distributions, full of difficulties. I clearly do not expect
students in high energy experimental physics to be able to solve those difficulties. Instead I would like
to explain the consequences of solving the difficulties, because an incomplete understanding of these
consequences can easily lead to false interpretation of correct measurements.

1.1 The QCD Lagrangian
The quantum field theory (QFT) of the strong interactions is a part of the Standard Model (SM) of
elementary particle interactions. The SM is based upon the principle of local gauge invariance. The
underlying gauge group is

SU(3)c × SU(2)L × U(1)Y ,

where c stands for “colour”, L for “left” (or “weak isospin”) and Y for “hypercharge”. As we concentrate
on QCD, which is based on SU(3)c gauge symmetry, we can write the Lagrangian as

LQCD = L(0)
QCD + Lsources , (1)
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Fig. 1: A violent proton-proton collision resulting in two hard jets. Left: tracks and energy deposits in the calorime-
ters, right: energy deposits represented by towers in the pseudorapidity–azimuthal angle plane.

where
L(0)

QCD = LC + LGF + LG , (2)

while the electroweak sector (based on the SU(2)L × U(1)Y symmetry) act as sources. In Eq. (2) LC

is the classical Lagrangian, while LGF is the gauge-fixing term. The last piece is the ghost Lagrangian,
absent if we use physical gauges, which will be our choice.

To find the classical Lagrangian, one starts with the Lagrangian of free Dirac fields,

L(0)
q (qf , mf ) =

Nc∑

k,l=1

q̄kf (iγµ∂
µ −mf )kl q

l
f , (3)

where the γµ matrices satisfy the Clifford algebra,

{γµ, γν} = 2gµν ,
{
γµ, γ5

}
= 0 . (4)

The matter field content is dictated by the electroweak sector. The fermion fields are called quark
fields: qkf with masses mf and f = 1, . . . , nf , where nf is the number of different flavours. The
quark fields also have an additional degree of freedom: colour, labelled by k, that can take Nc values,
k = 1, . . . , Nc. The precise matter content is shown in Table 1.

If we apply a transformation qk → q′k = Uklq
l, with

Ukl = exp



i

N2
c−1∑

a=1

ta θa




kl

≡ exp {it · θ}kl ,

where θa ∈ R, then the Lagrangian of free Dirac fields remains invariant, L(0)
q (q) = L(0)

q (q′). The
(ta)kl are Nc × Nc matrices that constitute the fundamental representation of the generators T a (called
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Table 1: The six quark flavours as dictated by the electroweak sector. Their baryon number is B = 1/3. Each
quark flavour comes in three colours, not shown. For light flavours (u, d and s) the mass values are not without
controversy and still under investigation. For flavours c and b the mass values are running MS quark masses at
2 MeV (see definition below), while for t it is the pole mass.

f 1 2 3 4 5 6
qf u d s c b t
mf ≈ 3 MeV ≈ 6 MeV ≈ 100 MeV 1.2 GeV 4.2 GeV 172.6 GeV

colour-charge operators), which satisfy the Lie algebra:
[
T a, T b

]
= i fabc T c , with normalizaiton TR(T aT b) = TRδ

ab . (5)

For SU(3) the matrices ta are the Gell-Mann matrices (see e.g., [2]).

Next we ask the question if we can make L(0)
q (q) invariant under local SU(Nc) transformations.

The answer is yes, we can through the following steps:

1. Introduce Aaµ coloured vector field with the following transformation property under SU(Nc)
transformations:

t ·Aµ −→ t ·A′µ = U (x) t ·AµU
−1 (x) +

i

gs
(∂µU (x))U−1 (x) ,

where U (x) = exp {it · θ(x)}.
2. Replace ∂µδkl with Dµ [A]kl = ∂µδkl + igs (t ·Aµ)kl. This covariant derivative Dµ [A]kl ql (x)

transforms the same way as the quark field qk (x).
3. Introduce a kinetic term

Lg(A) = −1

4
F aµν [A]F aµν [A] ,

with the non-abelian field strength F aµν given by

F aµν [A] = ∂[µA
a
ν] − gs fabcAbµAcν︸ ︷︷ ︸

“Aµ×Aν”

,

so the Lagrangian contains cubic and quartic terms of the gauge field.

The constants fabc are the structure constants of the Lie algebra. The structure constants are completely
antisymmetric and are related to the adjoint representation of the generators F abc by F abc = −ifabc.

Thus we find that the gauge boson field, called gluon field, is a consequence of the local SU(Nc)
(gauge) invariance. The classical Lagrangian of QCD is a sum of interacting Dirac Lagrangians for spin
1/2 fermion fields and a Lagrangian of a gauge field,

LC = Lf + Lg =

nf∑

f=1

Lq(qf , mf ) + Lg(A) , (6)

where

Lq(qf , mf ) =

Nc∑

k,l=1

q̄kf (iγµD
µ[A]−mf )kl q

l
f . (7)
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The gluon field is also coloured and self-interacting. In fact, these self-interactions are the sources of the
main difference between QED and QCD. We shall see that as a result, QCD is a ‘perfect theory’ in the
sense that it is asymptotically free. Furthermore, among quantum field theories in d = 4 dimensions only
non-Abelian gauge theories are asymptotically free (see discussion after Eq. (21)). It is also plausible
that the self-interactions are the sources of colour confinement, i.e., the colour neutrality of hadrons, but
we do not have a proof based on first principles.

It is clear that there is an unprecedented large number of degrees of freedom we have to sum over
when computing a cross section:

1. spin and space-time as in any field theory, not exhibited above,
2. flavour, which also appears in electroweak theory, and colour, which is specific to QCD only.

As a result computations in QCD are rather cumbersome. During the last two decades a lot of effort was
invested and great progress was made to find “simple” ways of computing QCD cross sections and to
automate the computations.

Exercise 1.1 Show that in QED the covariant derivative transforms the same way as the field itself, i.e.,
if f(x)→ U(x)f(x) then Dµf(x)→ U(x)Dµf(x), where Dµ = ∂µ + i eAµ.

Exercise 1.2 Show that in QED
[Dµ, Dν ] = i e Fµν ,

where Dµ = ∂µ + i eAµ.

Exercise 1.3 Show that the generators of a special unitary group are traceless and hermitian.

Exercise 1.4 The generators in the fundamental representation of SU(2) are the Pauli matrices divided
by two:

taf =
σa

2
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

The adjoint representation of a group is defined as

(tbA)ac = ifabc .

Compute the generators in the adjoint representation of SU(2).

We define the constant TR for a representation R by the condition

Tr[taRt
b
R] = δabTR .

Compute this constant from the explicit form of the fundamental (TF) and the adjoint (TA) representation.

The quadratic Casimir C2(R) of a representation R is defined by

C2(R)1 =
∑

a

taRt
a
R .

Compute the quadratic Casimir in the fundamental (CF) and the adjoint (CA) representation of SU(2)
using the explicit form of the representation matrices.

Exercise 1.5 Show that in SU(N) gauge theories

[Dµ, Dν ] = igF aµνT
a with F aµν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν .
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Exercise 1.6 Show that F aµν transforms according to the adjoint representation of SU(N):

F aµν → F aµν − fabcθbF cµν .

1.2 Feynman rules
The Feynman rules can be derived from the action,

S = i

∫
d4x(Lf + Lg) ≡ S0 + SI , where S0 = i

∫
d4xL0 , and SI = i

∫
d4xLI .

In this decomposition L0 contains the terms bilinear in the fields and LI does all other terms, called
interactions. The gluon propagator ∆g,µν(p) is the inverse of the bilinear term in Aµ. In momentum
space we have the condition (we suppress colour indices as these terms are diagonal in colour space)

∆g,µν (p) i
[
p2gνρ − pνpρ

]
= δρµ . (8)

However, [
p2gνρ − pνpρ

]
pρ = 0 , (9)

which means that the inverse does not exist, the matrix
[
p2gνρ − pνpρ

]
is not invertible. We can exploit

gauge invariance to rewrite the classical Lagrangian in a physically equivalent form (action remains the
same) such that ∆g,µν exists, which is called gauge fixing. This amounts to imposing a constraint on
Aµ by adding a term to the Lagrangian with a Lagrange multiplicator (like in classical mechanics). For
example, the covariant gauges are defined by requiring ∂µAµ (x) = 0 for any xµ. Adding

LGF = − 1

2λ
(∂µA

µ)2 , λ ∈ R,

to L, the action S remains the same. The bilinear term becomes in this case

i

(
p2gνρ −

(
1− 1

λ

)
pνpρ

)
,

with inverse

∆g,µν (p) = − i

p2

[
gµν − (1− λ)

pµpν
p2

]
.

Of course, physical results must be independent of λ. It is customary to choose λ = 1 (called covariant
Feynman gauge).

In covariant gauges unphysical degrees of freedom (longitudinal and time-like polarizations) also
propagate. The effect of these unwanted degrees of freedom is cancelled by the ghost fields (coloured
complex scalars with Fermi statistics). We do not elaborate the details of these fields as the unwanted
degrees of freedom and the ghost fields can be avoided by choosing axial (physical) gauges, which is our
choice. The axial gauge is defined with an arbitrary, but fixed vector nµ, different from pµ:

LGF = − 1

2λ
(nµAµ)2 ,

which leads to

∆g,µν (p, n) = − i

p2

(
gµν −

pµnν + nµpν
p · n +

(
n2 + λ p2

)
pµpν

(p · n)2

)
.
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Since p2 = 0, we have:

∆g,µν (p, n) pµ = 0 , ∆g,µν (p, n) nµ = 0 .

Thus, only 2 degrees of freedom propagate (transverse ones in the nµ+pµ rest-frame). A usual choice is
n2 = 0, λ = 0, called light-cone gauge. The price we pay by choosing this gauge instead of a covariant
one is that the propagator looks more complicated and it diverges when pµ becomes parallel to nµ. In
this gauge

∆g,µν(p, n) =
i

p2
dµν(p, n)

with
dµν (p, n) = −gµν +

pµnν + nµpν
p · n =

∑

λ=1,2

ε(λ)
µ (p)ε(λ)

ν (p)∗ , (10)

where ε(λ)
µ (p) is the polarization vector of the gauge field (photon in QED, gluon in QCD).

1.3 Feynman rules for QCD
Propagators (Feynman’s ‘+iε’-prescription is assumed, but not shown):

gluon propagator: ∆ab
g,µν (p) = δab ∆g,µν (p) −→ a, µ b, ν

p

quark propagator: ∆ij
q (p) = δij i /p+m

p2−m2 −→ i j
p

ghost propagator: ∆ab (p) = δab i
p2 −→ a b

p

(not needed in physical gauges)

Vertices:

quark-gluon: Γµ, agqq̄ = −igS (ta)ijγ
µ −→

j i

a , µ

three-gluon: Γabcαβγ (p, q, r) = −igs (F a)bc Vαβγ (p, q, r) −→
b, β c, γ

a, α

q

p

r

Vαβγ (p, q, r) = (p− q)γ gαβ + (q − r)α gβγ + (r − p)β gαγ , pα + qα + rα = 0

four-gluon: Γabcdαβγδ = −ig2
s




+fxac fxbd (gαβgγδ − gαδgβγ)
+fxad fxbc (gαβgγδ − gαγgβδ)
+fxad fxbc (gαγgβδ − gαδgβγ)


 −→

a, α

c, γ

b, β

d, δ

ghost-gluon: Γµ, agηη̄ = −igS (F a)ij p
µ −→ (not needed in physical gauges).j i

a , µ

The four-gluon vertex differs from the rest of the Feynman rules in the sense that it is not in
a factorized form of a colour and a tensor factor. This is an inconvenient feature because it prevents
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the separate summation over colour and Lorentz indices and complicates automation. We can however
circumvent this problem by introducing a fake field with propagator

a b
γ δ

α β
= i

2δ
ab(gαβgγδ − gαδgβγ) , that couples only to the gluon with vertex

a, α

c, γ

x
ξ

ζ
= i
√

2gs f
xacgαξgγζ .

We can check that a single four-gluon vertex can be written as a sum of three graphs. This way the
summations over colour and Lorentz indices factorize completely, which helps automation and makes
possible for us to concentrate on the colour algebra independently of the rest of the Feynman rules.

Finally, we have to supply the following factors for incoming and outgoing particles:

• outgoing fermion: ū (p) • outgoing antifermion: v (p)

• incoming fermion: u (p) • incoming antifermion: v̄ (p)

• outgoing photon, or gluon: ε(λ)
µ (p)∗ • incoming photon, or gluon: ε(λ)

µ (p) .

Exercise 1.7 Show that the four-gluon vertex can be written as a sum of three graphs, with the help of
the fake field such that in each graph the colour and Lorentz indices are factorized:

1.4 Basics of colour algebra
Examining the Feynman rules, we find that there are two essential changes as compared to QED. One is
that there is an additional degree of freedom: colour. The second is that there are new kind of couplings:
the self couplings of the gauge field. We now explore the effect of the first.

In order to see how to treat the colour degrees of freedom, we set to one all but the colour part of
the Feynman rules and try first to develop an efficient technique to compute the coefficients involving
the colour structure. This is possible because the colour degrees of freedom factorize from the other
degrees of freedom completely. We use the following graphical representation for the colour charges in
the fundamental representation:

j i

a
= (ta)ij .

The normalization of these matrices is given by Tr
(
tatb
)

= TRa ab b = TR δ
ab .

The usual choice is TR = 1
2 , but TR = 1 is also used often. We shall use both.

In the adjoint representation the colour charge T a is represented by the matrix (F a)bc that is related
to the structure constants by

(F a)bc =
(
F b
)
ca

= (F c)ab = −i fabc =

b c

a

7
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where F a with a = 1, . . . , (N2
c − 1) are

(
N2

c − 1
)
×
(
N2

c − 1
)

matrices which again satisfy the com-
mutation relation (5). The graphical notation in the adjoint representation is not unique. For the matrix
(F a)bc we assume an arrow pointing from index c to b, opposite to which we read the indices of (F a)bc
(similarly as for the matrices ta). On the structure constants the indices are not distinguished, there-
fore arrows do not appear. However, these are completely antisymmetric in their indices, therefore, the
ordering matters. By convention, in the graphical representation, the ordering of the indices is counter-
clockwise. The representation matrices are invariant under SU(N) transformations.

The sums
∑

a t
a
ijt

a
jk and Tr

(
F aF b

)
have two free indices in the fundamental and adjoint represen-

tation, respectively. These are invariant under SU(N) transformations, therefore, must be proportional
to the unit matrix, ∑

j,a

taijt
a
jk = CF δik , Tr

(
F aF b

)
= CA δ

ab ,

which is depicted graphically as

CF

CA

ijjk ik

b baa .

Here CF and CA are the eigenvalues of the quadratic Casimir operator in the fundamental and adjoint
representation, respectively. In the familiar case of angular momentum operator algebra (SU(2)), the
quadratic Casimir operator is the square of the angular momentum with eigenvalues j(j + 1). The
fundamental representation is two dimensional, realized by the (half of the) Pauli matrices acting on
two-component spinors, when j = 1/2 and CF = 1/2(1/2 + 1) = 3/4. In the adjoint representation
j = 1 and CA = 2. Below we derive the corresponding values for general SU(N).

The commutation relation (5) can be represented graphically by

a b ab a b

.

Multiplying this commutator first with another colour charge operator with summing over the fermion
index and then taking the trace over the fermion line (i.e., multiplying with δik) we obtain the resolution
of the three-gluon vertex as traces of products of colour charges:

TR

= Tr(tatbtc)− Tr(tctbta) = iTRf
abc .

We now show some examples of how one can compute the colour algebra structure of a QCD
amplitude, in particular we will also find an explicit value for CF and CA. Taking the trace of the
identity in the fundamental and in the adjoint representation we obtain

= Nc , = N2
c − 1 ,
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respectively. Then, using the expressions for the fermion and gluon propagator corrections, we immedi-
ately find

= CFNc , = CA

(
N2

c − 1
)

.

The generators are traceless,

= Tr (ta) = 0 , = Tr (F a) = 0 .

We can now find the value of CF as follows. On the one hand we know that

TR CFNc

while on the other, the left hand side is also equal to TR

(
N2

c − 1
)
. Thus

CF = TR
N2

c − 1

Nc
.

Analogously one can find
CA = 2TRNc .

As the colour factors CF and CA depend on Nc, their measurement gives information on the number
of colours. The experiments of the Large Electron Positron collider measured the values of the colour
factors based on fits of theoretical predictions [3] to four-jet angular distributions that are sensitive to both
CF and CA. The result of the simultaneous measurement of the colour factors and the strong coupling
by the OPAL collaboration is shown in Fig. 2 [4]. The values corresponding to Nc = 3 are marked with
the star, just in the middle of the confidence-ellipses.

Fig. 2: Measurement of the colour factors by
the LEP collaborations [4]

The expression
∑

a t
a
ijt

a
kl is invariant under SU(N)

transformations, therefore has to be expressible as a linear
combination of δilδkj and δijδkl (the third combination of
Kronecker δ’s is not possible, the direction of arrows do not
match). The two coefficients can be obtained by making con-
tractions with δilδjk and δijδkl. Thus we obtain the Fierz
identity,

∑

a

taijt
a
kl = TR

(
δilδkj −

1

Nc
δijδkl

)
,

or graphically:

TR
1

Nc

.

These graphical rules help in computing colour
sums easily. Nevertheless, nowadays computer alge-
bra codes make computation of colour sums an auto-
mated procedure. For instance, you may try In[1]:=
Import["http://www.feyncalc.org/install.m"] in your Mathematica session to see one solution.

9
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Exercise 1.8 Consider the process qq̄ → ggg. Compute the color structures that appear in the squared
matrix element.

Exercise 1.9 Try using the Fierz identity to obtain −TRCF

.

Exercise 1.10 Determine the color factors A,B,C in the following equations:

C

B

A

,

C

B

A

, C

B

A

.

1.5 Are we done?
We now have the Feynman rules with colour and the rest factorized, and we gained some insight how
to perform the colour algebra. Thus it seems that we are in the position to compute the cross section of
any process up to the desired accuracy in perturbation theory (PT), just as we can do in QED. So it may
appear that conceptually we are done. Well, we are going to see big surprises!

2013.06.09. Zoltán Trócsányi: QCD@CERN School 
of Physics 2013 33 

Fig. 3: Illustration of the approximation of hadronic final
states by partonic events in electron-positron annihilation: the
sprays of hadrons (called jets) are assumed to originate from
primary quarks and gluons, thus approximated by quarks and
gluons as shown by the magnification

The first conceptual challenge is due to
a phenomenological observation. In QED, PT
is applicable because the elementary excita-
tions of the quantum fields, the electrons and
photons, can be observed as stable, free par-
ticles. Thus asymptotic states are parts of the
physical reality. On the contrary, free quarks
and gluons (usually called simply partons)
have never been observed in nature. This ex-
perimental fact can be reformulated saying
that the probability of observing a final state
with any fixed number of on-shell partons is
zero. This negative result has been turned into
the principle of ‘quark confinement’. Thus it
is questionable whether a QFT of quark and
gluon fields can describe the observed world
of particles where in addition to leptons only
hadrons have been found. In fact, a main
research project at the LEP was to find an
answer to this question in a well controlled
quantitative manner. It turned out that the an-
swer is positive if we make an assumption that
we cannot prove from first principles:

The result of a low-order perturbative computation in QCD is an approximation to suffi-
ciently inclusive hadronic cross section if (i) the total centre-of-mass energy Q of partons is
much larger than the mass of quarks, Q >> mq, and (ii) Q is far from hadronic resonances
and thresholds.
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We shall define precisely what ‘sufficiently inclusive’ means later. Predictions made on the basis of this
assumption agree with measurements (e.g. made at LEP) within the expected accuracy of the prediction,
which we are to define also later.

Based on this assumption, it makes sense to make predictions with quark and gluon asymptotic
states. However, in QCD the complexity of the Feynman rules will make higher order computations
prohibitive. Indeed, the largest effort in QCD computations during the past 20 years went into devising
ever more efficient methods to decrease the algebraic complexity of the computations. This research is
driven by the observation that the QCD Lagrangian is highly symmetric, which has to be reflected in
the final results. Thus the complications somehow appear mainly because with our rules we artificially
introduce complications at intermediate steps of the computations, which cancels to large extent in the
final formulae. Learning about the symmetries of QCD is interesting and useful not only for technical
purposes, so let us make an inventory of those.

1.6 Symmetries of the classical Lagrangian
The symmetries can be grouped into two large categories: exact symmetries and approximate ones.
Space-time symmetries are exact. These consist of invariance against continuous transformations: trans-
lations and Lorentz-transformations (rotations and boosts). In addition Lcl is invariant under scale trans-
formation:

xµ → λxµ Aµ(x)→ λ−1Aµ(λx) q(x)→ λ−3/2q(λx) ,

and conformal transformations, which we do not detail here. The Lagrangian is also invariant under
charge conjugation (C), parity (P) and time-reversal (T), in agreement with observed properties of strong
interactions (C, P and T violating strong decays are not observed).

We already discussed exact symmetry in colour space: local gauge invariance. In addition to
the classical Lagrangian of Eq. (6), there exists additional gauge invariant dimension-four operator, the
Θ-term:

LΘ =
Θgs
32π2

∑

a

F aµνF̃
a,µν , with F̃ a,µν =

1

2
εµναβF aαβ ,

that violates P and T. As experimentally Θ < 10−9, we set Θ = 0 in perturbative QCD.

Another interesting feature of Lcl is that it is almost supersymmetric. For one massless flavour

Lcl = −1

4

∑

a

F aµνF
a,µν + q̄i /Dq ,

which is very similar to the Lagrangian of N = 1 supersymmetric gauge theory,

LSUSY
cl = −1

4

∑

a

F aµνF
a,µν + λ̄i /Dλ .

The only difference is that the quark q transforms under the fundamental, while the gluino λ under the
adjoint representation of the gauge group.

An important approximate symmetry of the classical Lagrangian is related to the quark mass-
matrix. Let us introduce the quark flavour triplet

ψ =




u
d
s


 =




q1

q2

q3


 ,

with each component being a four-component Dirac spinor, and the combinations

P± =
1

2

(
1± γ5

)
. (11)
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The latter are projections:

P+ P− = P− P+ = 0 , P 2
± = P± , P+ + P− = 1 .

It follows from Clifford-algebra that γµP± = P∓γµ. We define ψ± = P±ψ. Using γ2
5 = 1, we find that

ψ± are eigenvectors of γ5 with ±1 eigenvalues:

γ5ψ± = ±ψ± .

From the definition of the Dirac adjoint, ψ = ψ†γ0, we obtain ψ± = ψP∓. Thus the quark sector of the
Lagrangian can be rewritten in terms of the chiral fields ψ±:

Lcl = ψ i γµD
µ ψ = ψ(P+ + P−) i γµD

µ (P+ + P−)ψ = ψP+ i γµD
µ P−ψ + ψP− i γµD

µ P+ψ =

= ψ− i γµD
µ ψ− + ψ+ i γµD

µ ψ+ = L− + L+ ≡ LL + LR .

This decomposition would not work if the gluon field in the covariant derivative were not Lorentz-
vector. In this chiral form the left- and right-handed fields decouple, so the Lagrangian is invariant under
separate U(Nf) transformations for the left- and right-handed fields, i.e., under UL(Nf)×UR(Nf), hence
it is called chiral symmetry. Indeed, if (gL, gR) ∈ UL(Nf)× UR(Nf), then under the transformation

ψL → gLψL , ψL → ψLg
†
L , gR = 1

LL remains invariant. This symmetry is exact if the quarks are massless. The group elements can be
parametrized using 2N2

f real numbers {α, αa, β, βb} (a, b = 1 , . . . N2
f − 1),

(gL, gR) =

(
exp(iα) exp(iβ) exp

(
i
∑

a

αaT
a

)
exp

(
i
∑

b

βbT
b

)
,

exp(iα) exp(−iβ) exp

(
i
∑

a

αaT
a

)
exp

(
−i
∑

b

βbT
b

))

∈ UV(1)⊗ SUL(Nf)⊗ UA(1)⊗ SUR(Nf) ,

where the matrices T a represent the generators of the group (Nf × Nf matrices). The transforma-
tions (exp (i

∑
a αaT

a), exp (i
∑

a αaT
a)), acting as ψ → exp (i

∑
a αaT

aI)ψ, form a vector subgroup
SUV(Nf). The transformations (exp

(
i
∑

b βbT
b
)
, exp

(
−i
∑

b βbT
b
)
), acting asψ → exp

(
i
∑

b βbT
bγ5

)
ψ,

however, do not form an axial-vector subgroup because

[T aγ5, T
bγ5] = i

∑

c

fabcT cI (γ2
5 = I 6= γ5) .

This chiral symmetry is not observed in the hadron spectrum. Therefore, we assume that vacuum
has a non-zero VEV of the light-quark operator,

〈0|q̄q|0〉 =
〈
0|ūu + d̄d|0

〉
' (250 MeV)3 ,

a chiral condensate that connect left- and right-handed fields,

〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 .

The condensate breaks chiral symmetry spontaneously to SUV(Nf)⊗UV(1). This remaining symmetry
explains the existence of good quantum numbers of isospin and baryon number, as well as the appearance
of N2

f − 1 = 8 massless mesons, the Goldstone bosons. As non-zero quark masses violate the chiral
symmetry, which is broken spontaneously, the Goldstone bosons are not exactly massless. Thus we
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have natural candidates for the Goldstone bosons: we can identify those with the pseudoscalar meson
octet. In practice, we assume exact chiral symmetry and treat the quark masses as perturbation. This
procedure leads us to chiral perturbation theory (χPT) [5], which is capable to predict the (ratios of)
masses of light quarks [6, 7], scattering properties of pions [8] and many more. Although, χPT is a non-
renormalizable QFT, it can be made predictive order by order in PT if the measured values of sufficiently
many observables are used to fix the couplings of interaction terms at the given order.

The QCD Lagrangian was written forty years ago. Since then many attempts were tried to solve
it and mature fields emerged that aim at solving the theory in a limited range of physical phenomena.
For instance, χPT is a PT that uses low-energy information (in the MeV range) to explain the world
of hadrons and masses of light quarks. In the same energy range non-perturbative approaches, notably
lattice QCD and sum rules have been developed for the same purpose. By now it is possible to explain
the light hadron spectrum from first principles using lattice results [9]. The main goal at colliders, our
focus in these lectures, is different. We shall prove that PT can give reliable predictions for scattering
processes at high energies, which is the topic of jet physics.

We have seen that the classical QCD Lagrangian shows many interesting symmetry properties
that can be utilized for (i) easing computations, (ii) checking results, (iii) hinting on solving QCD. We
shall see that some of these symmetries are violated by quantum corrections, which leads to important
physical consequences. In QCD an important example is scaling violations. Another example is the axial
anomaly which provides strong constraints on possible QFT’s, but it is discussed within the electroweak
theory usually.

1.7 What is scaling?
Let us consider a dimensionless physical observable R that depends on a large energy scale R = R(Q2).
Large means that Q is much bigger than any other dimensionful parameter, for instance, masses of
quarks. Thus we assume that these other dimensionful parameters can be set zero.1 Classically, dimR =
0 and, since Q is dimensionful, it follows that dR

dQ = 0. So limQ2→∞R =constant, which is called
scaling.

In these lectures we do not have room for a complete description of ultraviolet (UV) renormal-
ization of QCD. We simply state that in a renormalized QFT R depends also on another scale, the
renormalization scale µR. So

R = lim
Q2→∞

R

(
Q2

µ2
R

, αs

(
µ2

R

))
6= constant,

R need not be a constant. This is called scaling violation. The first term in parenthesis is the only
dimensionless combination of Q and µR. However, µR is arbitrary. If R depended on µR, then its value
could not be predicted. For simplicity from now on we drop the subscript “R” from µR. As µ is an
arbitrary, un-physical parameter (the classical Lagrangian did not contain µ), we expect that measurable
(physical) quantities cannot depend on it, which is expressed by the renormalization group equation
(RGE):

0 = µ2 d

dµ2
R

(
Q2

µ2
, αs

(
µ2
))

=

(
µ2 ∂

∂µ2
+ µ2 ∂αs

∂µ2

∂

∂αs

)
R .

We can simplify this equation a bit by introducing the new variable t and the function β(αs),

t = ln
Q2

µ2
, β(αs) = µ2 ∂αs

∂µ2

∣∣∣∣
αs fixed

. (12)

Then the RGE becomes (
− ∂

∂ t
+ β(αs)

∂

∂αs

)
R
(
et, αs

)
= 0 . (13)

1We shall study the validity of this assumption in the next subsection.
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To present the solution of this partial differential equation, we introduce the running coupling
αs(Q

2), defined implicitly by

t =

∫ αs

(
Q2
)

αs

dx

β(x)
, with αs ≡ αs

(
µ2
)
, (14)

where αs ≡ αs

(
µ2
)

is an arbitrarily fixed number. The derivative of Eq. (14) with respect to the variable
t gives

1 =
1

β (αs (Q2))

∂αs

(
Q2
)

∂ t
, which implies β

(
αs

(
Q2
))

=
∂αs

(
Q2
)

∂ t
.

The derivative of Eq. (14) with respect to αs gives

0 =
1

β (αs (Q2))

∂αs

(
Q2
)

∂αs
− 1

β(αs)

∂αs

∂αs
,

from which it follows that
∂αs

(
Q2
)

∂αs
=
β
(
αs

(
Q2
))

β(αs)
.

It is now easy to prove that the value of R for µ2 = Q2, R
(
1, αs

(
Q2
))

solves Eq. (13):

− ∂

∂ t
R
(
1, αs

(
Q2
))

= − ∂ R

∂αs (Q2)

∂αs

(
Q2
)

∂ t
= −β

(
αs

(
Q2
)) ∂ R

∂αs (Q2)

and

β(αs)
∂

∂αs
R
(
1, αs

(
Q2
))

= β(αs)
∂αs

(
Q2
)

∂αs

∂ R

∂αs (Q2)
= β

(
αs

(
Q2
)) ∂ R

∂ αs (Q2)
.

It then follows that the scale-dependence in R enters only through αs

(
Q2
)
, and we can predict the

scale-dependence of R by solving Eq. (14), or equivalently,

∂αs

(
Q2
)

∂ t
= β

(
αs

(
Q2
))
. (15)

So far our analysis was non-perturbative. Assuming that PT is applicable, which we shall discuss
at the end of this subsection, we may try to solve Eq. (15) in PT where the β-function has the formal
expansion:

β(αs) = −αs

∞∑

n=0

βn

(αs

4π

)n+1
. (16)

The first four coefficients are known from cumbersome computations [10]

β0 =
11

3
CA −

4

3
TR nf > 0 , β1 =

34

3
C2
A −

20

3
CATR nf − 4CFTR nf ,

β2 =
2857

2
− 5033

18
nf +

325

54
n2

f , β3 = 29243− 6946.3nf + 405.9n2
f + 1.5n3

f .

(17)

The first two coefficients in the expansion of the β function are independent of the renormalization
scheme. The second two coefficients in Eq. (17) are valid in the MS renormalization scheme.2

Another often used convention is

β(αs) = −b0α2
s

[
1 +

∞∑

n=1

bn α
n
s

]
, (18)

2As we have not gone through the renormalization procedure, we cannot define precisely what we mean by ‘renormalization
scheme’. Various schemes differ by finite renormalization of the parameters and fields in the Lagrangian.
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where b0 =
β0
4π and b0b1 =

β1

(4π)2 , thus b1 =
β1

4πβ0
.

If αs

(
Q2
)

is small we can truncate the series. The solution at leading-order (LO) accuracy is

Q2 ∂αs

∂ Q2
=
∂αs

∂ t
= −b0α2

s ⇒ −
[

1

αs (Q2)
− 1

αs (µ2)

]
= −b0t ⇒ αs

(
Q2
)

=
αs

(
µ2
)

1 + b0t αs (µ2)
, (19)

which gives αs

(
Q2
)

as a function of αs

(
µ2
)

if both are small; αs

(
µ2
)

is a number to be measured. We
observe that:

αs

(
Q2
) Q2→∞−→ 1

b0t

Q2→∞−→ 0 . (20)

This behaviour is called asymptotic freedom. The sign of b0 (positive for QCD) plays a crucial role
in establishing whether or not a theory is asymptotically free. If it is, then the use of PT is justified:
the higher Q2, the smaller the coupling. The coefficient b0 is easiest to compute in background field
gauge [11] where only three graphs contribute, the quark and gluon loops:

�  justifies the use of PT  
�  sign of b0 is crucial 
�  in background field gauge 2 graphs 

contribute: 

�  quark loop negative: -4TRNf/3 
�  gluon loop positive: 11CA/3 

2013.06.09. Zoltán Trócsányi: QCD@CERN School 
of Physics 2013 8 

, (21)

and a similar ghost loop. The contribution of the quark loop is negative −4
3TRnf , while that of the

gluon+ghost loop is positive 11
3 CA. (We knew the colour factors immediately, only the coefficients have

to be computed!) The net result is positive up to nf < 17 in QCD. In 2004 D.J. Gross, H.D. Politzer and
F. Wilczek were awarded the Nobel prize for their discovery of asymptotic freedom in QCD [12, 13].

Clearly, it is the gluon self-interaction that makes QCD perfect in PT. In QED, in the absence of
photon self-interaction, b0 < 0, hence the coupling increases with energy, but remains perturbative up to
the Planck scale (' 1019 GeV) where we expect that any known physics breaks down.

Asymptotic freedom gives rationale to perturbative QCD, but we shall see that LO accuracy is not
enough. The analysis is also simple at next-to-leading order (NLO):

[
α2

s (1 + b1αs)
]−1 ∂αs

∂ t
= −b0.

αs

(
Q2
)

is then given implicitly by the equation

1

αs (Q2)
− 1

αs (µ2)
+ b1 ln

αs

(
Q2
)

αs (µ2)
− b1 ln

1 + b1αs

(
Q2
)

1 + b1αs (µ2)
= bt ,

which can be solved numerically.

Using the formula for the sum of the geometric series, (1 + x)−1 =
∑∞

j=0(−x)j and recalling
Eq. (19), we find that the running coupling sums logarithms,

R
(
1, αs

(
Q2
))

= R0 +R1αs

(
µ2
) ∞∑

j=0

[
− αs

(
µ2
)
b0t
]j
.

The NLO term R2α
2
s gives logarithms with one power less in each term.

1.8 Measuring αs(µ
2)
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Fig. 4: Results of measurements of the strong coupling at
different scales. The theoretical prediction with four-loop
running, fixed at µ = MZ is marked as ‘QCD’.

We know αs

(
Q2
)

if αs

(
µ2
)

is known. We there-
fore, have to measure αs at some scale µ. The
perturbative solution of the renormalization group
equation (RGE, Eq. (13)) is never unique. The dif-
ference between two solutions at O (αns ) is sup-
pressed by αs, i.e. at O

(
αn+1

s

)
. Nevertheless,

this difference can lead to significant difference
in αs

(
Q2
)

if µ2 and Q2 are far from each other,
which is important in present day precision mea-
surements. Therefore, the scale µ is chosen to be
µ = MZ becauseMZ = 91, 2 GeV is not far from
the scales where αs(Q

2) is used in current exper-
imental analyses. In Figs. 4 and 5 we show the
present status of αs measurements from Ref. [14].

Fig. 5: Results of different measurements of
the strong coupling run to µ = MZ

Another approach to solving the RGE is to introduce a refence scale Λ by

ln
Q2

Λ2
=

∫ ∞

αs

(
Q2
)

dx

β(x)
.

The scale Λ indicates where the coupling becomes strong. The following exercise is to explore the
characteristics of this choice.

Exercise 1.11 The running of the strong coupling constant is given by Eq. (12). The perturbative expan-
sion of the QCD beta function is given by Eq. (18) with b0, b1 ≥ 0. Determine (i) the expression for the
coupling constant in leading order (b0 6= 0, b1 = 0) and the corresponding scale Λ0 (see below) (ii) the
expression for the coupling constant in next-to-leading order (b0 6= 0, b1 6= 0) and the corresponding
scale Λ1 (see below).

Hints:

1. Solve the differential equation for α(µ); you’ll get an integration constant.
2. Express your result in the form

α(µ) =
1

K ln( µ
2

Λ2
0
)
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where K is a constant.
3. Solve the differential equation using b1 6= 0

∫
dα

1

−b0α2 − b1α3
=
b0 + b1α log(α)− b1α log(b0 + b1α)

b20α
+K

4. This time the solution cannot be solved for α analytically. One can nevertheless find an approxi-
mate solution by expanding α in log µ2

Λ2
1
. The constant K is not equal to the one in the first part of

this exercise.
5. Cast your equation for α into the form

α =
1

K ln µ2

Λ2
1

1

1 + c1
ln(c2+b0α)

ln µ2

Λ2
1

with a suitable choice of Λ1.
6. Expand the right hand side of your equation in t = 1

ln µ2

Λ2
1

and keep only the first order term. Use

the expansion
1

1 + C1 t ln(C3
1
t + C2)

= 1 + t C1 ln(
1

t
) +O(t) .

1.9 Quark masses and massless QCD
Quark masses mq are parameters of LQCD like the gauge coupling, which need to be renormalized. In
QED the electron mass is measured in the laboratories at µ2

R = 0 (classical limit). We cannot similarly
isolate a quark at µ2

R = 0 (at low scale quarks are confined). Instead, we can perform a similar RGE
analysis as with αs. For simplicity we assume one quark flavour with mass m, which is yet another
dimensionful parameter, so the RGE becomes:

[
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− γm(αs)m

∂

∂m

]
R

(
Q2

µ2
, αs,

m

Q

)
= 0 , (22)

where γm is called the mass anomalous dimension and the minus sign before γm is a convention. In PT
we can write the mass anomalous dimension as

γm(αs) = c0αs

(
1 + c1αs +O

(
α2

s

))
,

with known coefficient up to c3. At NLO accuracy we need only c0 = 1
π and c1 =

303−10nf
72π . As R is

dimensionless, the dependence on the dimensionful parameters has to cancel
(
Q2 ∂

∂ Q2
+ µ2 ∂

∂µ2
+m2 ∂

∂ m2

)
R

(
Q2

µ2
, αs,

m

Q

)
= 0 . (23)

The difference of Eqs. (22) and (23) gives the dependence of R on Q:
[
Q2 ∂

∂ Q2
− β (αs)

∂

∂αs
+

(
1

2
+ γ (αs)

)
m

∂

∂m

]
R

(
Q2

µ2
, αs,

m

Q

)
= 0 . (24)

This equation is solved by introducing the running mass (in addition to the running coupling) m
(
Q2
)

obeying

Q2 ∂ m

∂ Q2
= −γm (αs)m

(
Q2
)
, ⇒ ln

m
(
Q2
)

m (µ2)
= −

∫ Q2

µ2

dq2

q2
γm
(
αs

(
q2
))
. (25)
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Exponentiating, changing integration variable from q2 to αs and using the definition of the β function,
we obtain

m
(
Q2
)

= m
(
µ2
)

exp

[
−
∫ αs(Q2)

αs(µ2)
dαs

γm (αs)

β (αs)

]
Q2→∞−→ 0 , (26)

which means that asymptotically free QCD is a massless theory at asymptotically large energies. At LO
in PT theory the solution of (26) is given by

−γm (αs)

β (αs)
=

c0

b0αs
⇒ m

(
Q2
)

= m
[
αs

(
Q2
)] c0

b0 ,

where we introduced the abbreviation m = m
(
µ2
) [
αs

(
µ2
)]− c0

b0 . At NLO the solution becomes

m
(
Q2
)

= m
[
αs

(
Q2
)] c0

b0

(
1 +

c0

b0
(c1 − b1)

(
αs

(
Q2
)
− αs

(
µ2
))

+O
(
α2

s

))
.

In terms of the running coupling and mass, R
(

1, αs(Q
2), m(Q2)

Q

)
is a solution of Eq. (24), proven

similarly as R
(
1, αs(Q

2)
)

being the solution of Eq. (13). Expanding around m(Q2) = 0, we obtain

R

(
1, αs(Q

2),
m(Q2)

Q

)
= R

(
Q2

µ2
, αs, 0

)
+
∞∑

n=1

1

n!

(
m(Q2)

Q

)n
R(n)

(
Q2

µ2
, αs, 0

)
. (27)

We see from Eq. (27) that derivative terms are suppressed by factors of 1/Qn at large Q2. From the

dependence of R on
m(Q2)
Q we can conclude that the effect of mass is suppressed at high Q2 by its

physical dimension and also by its anomalous dimension, which justifies the assumption about negligible
quark masses. The expansion in Eq. (27) has a deeper consequence. The dimensionless observable R

may depend on ln
m(Q2)
Q that can become large when Q2 is large. If we want to avoid such large

logarithms, we should consider physical observables (that is physically measurable quantities) that have
a finite zero-mass limit.

2 Predictions in perturbative QCD

Fig. 6: An event with four hard muons in the CMS detector

In a typical collider experiment we col-
lect collision events with something in-
teresting in the final state. For in-
stance, in searching for the Higgs bo-
son, events with four hard muons such
as in Fig. 6 are interesting. Count-
ing the event rate of such events we
obtain measured cross sections, which
compare to theoretical predictions. Fol-
lowing our assumption about the use
of low-order perturbative predictions in
QCD, for such comparisons we need
predictions for cross sections with par-
tons. We start with the simplest pos-
sible case when partons appear only in
the final state: electron-positron annihilation into hadrons (and possibly other particles).

Let us consider a measurable quantityO, that has non-vanishing value for at least m partons in the
final state. At LO accuracy the basic formula for the differential cross section in O is

dσ

dO
= N

∫
dφm(p1, . . . , pm;Q)

1

S{m}
|Mm(p1, . . . , pm)|2 δ

(
O −O(m)

m (p1, . . . , pm)
)
, (28)
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whereN contains non-QCD factors (e.g., the flux factor), dφm is the phase space of m particles, Sm is a
symmetry factor, |Mm(p1, . . . , pm)|2 is the squared matrix element (SME), and O(m)

m is the value of O
computed from the m final state momenta. The integration is usually done by Monte Carlo integration
and the hard part of the computation is to obtain the SME. In these lectures we can compute hardly any
SME explicitly. Fortunately, there are freely available computer programs [15–19] that can be used to
check the formulae. Even more, these programs can often be used to obtain the cross sections at LO
accuracy, too.

We now use Eq. (28) to make predictions for the cross section of electron-positron annihilation
into hadrons.

2.1 R ratio at lowest order
The leading-order (LO) perturbative contribution to the cross section σ (e+e− → hadrons) is e+e− →
qq̄. The calculation is like in the case of e+e− → µ+µ−, supplemented with colour and fractional
electric charge of qj . The colour diagram is a loop in the fundamental representation which corresponds
to a factor Nc as we have seen in the previous chapter. While the annihilation into µ+µ− contains only
one flavour in the final state, quarks can have three, four or five flavours depending on the centre-of-mass
energy.3 We have, therefore, to sum over all possible flavours which can appear. The ratio of the two
cross sections is thus given by

R ≡ σ (e+e− → qq̄)

σ (e+e− → µ+µ−)
=

(∑

q

e2
q

)
Nc, (29)

where eu = ec = 2
3 and ed = es = eb = −1

3 . If we consider only the up, down, strange and charm
quarks

∑
q e

2
q = 24

9 + 21
9 = 10

9 . Considering also the bottom quark
∑

q e
2
q = 11

9 . This step-wise
increasing behavior of the R-ratio was observed (see Fig. 7), providing an experimental confirmation of
the existence of 3 families of quarks and of the SU(Nc) gauge-symmetry of QCD with Nc = 3.

According to our basic assumption, pQCD cannot give predictions for the resonances in Fig. 7.
However, there is one exception, the impressive Z peak. The LO prediction uses the cross section for
the e+e− → qq̄ process. A 2→ 2 process has only a single free kinematic variable, the scattering angle
ϑ. In the full SM the differential cross section for electron-positron annihilation into a massless and

colourless fermion pair ff̄ is obtained from the square of a single Feynman graph,
∣∣∣∣

∣∣∣∣
2

, as

dσ

d cosϑ
=
πα2

2s

{(
1 + cos2 ϑ

)[
e2
f +

(
A2
e + V 2

e

)(
A2
f + V 2

f

) κ2s2

(s−M2
Z)2 + Γ2

ZM
2
Z

+ . . .

]}
, (30)

where we neglected terms that vanish at centre-of-mass energy
√
s = MZ , or after integration. ef , Af

and Vf denote the fractional charge, axial-vector and vector electroweak couplings of the fermions and
κ =

√
2GFM

2
Z/(16παem) ' 0.374 is a number. Well below the Z peak the Z propagator becomes

negligible and the total cross section is obtained by integrating over the scattering angle and we find
the LO prediction σLO(s) = σ0(s)e2

f , where σ0(s) = 4πα2

3s . On the Z peak the same integration

results in σLO(M2
Z) = σ0(M2

Z)

[
e2
f +

(
A2
e + V 2

e

)(
A2
f + V 2

f

)
κ2M

2
Z

Γ2
Z

]
. Then we can make prediction

for the hadronic R ratio at LO accuracy by simply counting the contributing final states and relating
their total charge factors to that of the muon and find RLO = 3

∑
q e

2
q away from the Z peak and

RZ,LO = 3
∑

q(A
2
q+V

2
q )/(A2

µ+V 2
µ ) on theZ peak. The factor three is due to the three colours of quarks.

Considering five quark flavours, i.e., mb << s << mt, we find RLO = 11/3 and RZ,LO = 20.09. We
have seen on Fig. 7 that 11/3 is fairly close to the measured value away from the Z peak. The measured

3The sixth flavour, the top is so heavy that it cannot contribute at CM energies attained in e+e− experiments so far.
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Fig. 7: Experimental measurements of the R-ratio as a function of the total centre-of mass energy (taken from
Ref. [14]).

value of RZ at LEP is RZ = 20.79 ± 0.04 [20]. The LO prediction works amazingly well. The 3.5%
difference is mainly due to QCD radiation effects that we call NLO corrections. Our next goal is to
understand the origin of those corrections.

Exercise 2.1 Derive the result in Eq. (30) (at least below the Z peak, where you consider only photon
intermediate state) and integrate it over ϑ.

Exercise 2.2 Use Mathematica and the Package Tracer.m (or FORM) to compute the following traces:

Tr
(
/p2
γν(/p1

− /k1)γµ/p1
γµ(/p1

− /k1)γν

)

Tr (γµ1γµ2γµ3γµ4γµ5γµ6γµ7γµ8γµ9γµ10γµ1γµ2γµ3γµ4γµ5γµ6γµ7γµ8γµ9γµ10)

2.2 Ultraviolet renormalization of QCD
The strong coupling is rather large as compared to the other couplings in the SM, and as a result, the
QCD radiative corrections are also large. Therefore, it is always important to compute at least the NLO
accuracy, but if possible, even higher order corrections.4

The computation of QCD radiative corrections is technically quite involved and a good organi-
zation of the calculations is very important. Thus, first we introduce some notation. The tensor prod-
uct of the ket vectors |c1, . . . , cm〉 ⊗ |s1, . . . , sm〉 denotes a basis vector in colour and helicity space,

4There is even a more severe reason that we shall discuss later.
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|Am (p1, . . . , pm)〉 is a state vector of n = m − 2 final-state particles in colour and helicity space.
The amplitude for producing n final-state particles of colour (c1, . . . , cn), spin (s1, . . . , sn), momentum
(p1, . . . , pn) is

Ac1... cm,s1... smm (p1 . . . pm) ≡ 〈c1 . . . cm| ⊗ 〈s1 . . . sm|Am (p1, . . . , pm)〉 (31)

(m = n+ 2), so
∑

colour

∑

helicity

|Ac1... cm,s1... smm ({pi})|2 = 〈Am ({pi}) |Am ({pi})〉 . (32)

The loop expansion in terms of the bare coupling, i.e., the coupling that appears in the classical La-

grangian, g(0)
s ≡

√
4πα

(0)
s is:

|Am〉 =

(
α

(0)
s µ2ε

4π

) q
2
[∣∣∣A(0)

m

〉
+

(
α

(0)
s µ2ε

4π

)∣∣∣A(1)
m

〉
+O

(
(α(0)

s )
)2
]
, (33)

where q ∈ N, µ is the dimensional regularization scale, introduced to keep α(0)
s dimensionless in d =

4 − 2ε dimensions. The exponent q2 in the prefactor takes account of the power of αs at LO, the loop-
expansion is an expansion in the strong coupling αs. For instance, q = 0 for e+e− → qq̄, while q = 1

for e+e− → qq̄g. The tree amplitude
∣∣∣A(0)

m

〉
is finite, while the one-loop correction

∣∣∣A(1)
m

〉
is divergent

in d = 4 dimensions, which is manifest in terms of 1/ε2 and 1/ε poles if dimensional reglarization is
used. These poles have both ultraviolet (UV) and infrared (IR) origin.

The UV poles can be removed by multiplicative redefinition of the fields and parameters in the
Lagrangian, systematically order by order in PT. This is a hard task even at one loop, but presently known
up to four loops [21] – a truly remarkable computation! It turns out that when computing scattering
amplitudes in massless QCD at one-loop accuracy, the renormalization amounts to the simple substitution

α(0)
s µ2ε −→ αs

(
µ2

R

)
µ2ε

RS
−1
ε

[
1− αs

(
µ2

R

)

4π

β0

ε
+O

(
α2

s

)
]
, (34)

with Sε = (4π)ε

Γ(1−ε) . Note that on the left of this substitution µ is the dimensional regularization scale to

keep α(0)
s dimensionless, while on the right µR is the renormalization scale. We discussed in Sect. 1.8

when we extract αs from measurements, we have to define µR. The dimensional regularization scale
turns into the renormalization scale through the substitution (34).

Why does the substitution (34) work? Each Feynman graph consists of vertices with propagators
connecting those and external lines. Moreover,

• each vertex receives a factor Zg (or Z2
g for quartic vertex) and factors of

√
Zi, (i = q, A) for each

field connected to the vertex,
• each propagator of field i receives a factor of Z−1

i ,

• each external leg of field i receives a factor of Z
− 1

2
i .

Thus the renormalization field factors cancel from each graph and only the charge renormalization (Zg)
is needed in practice! This can be seen as a consequence of the fact that in massless QCD the only free
parameter besides the gauge-fixing parameter λ is αs. The scattering amplitudes are physical, and any
physical quantity has to be independent of λ, so the only remaining parameter, which the amplitudes may
depend on, is the coupling. The renormalization factor Zg is most easily computed in background field
gauge, defined by

LGF = − 1

2λ

∑

a

(
∂µAaµ + g fabcAbµAµ c

)2
, (35)
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where Abµ is a background field and Acµ describes the quantum fluctuations on this background. It can
be shown [11] that in this gauge the field and coupling renormalization factors are related by the Ward

identity Z
− 1

2
A = Zg, and ZA can be computed from loop insertions into the propagator shown in (21).

The simple substitution rule (34) for the coupling leads to a simple shift in the amplitude. As
[

1− αs

(
µ2

R

)

4π

β0

ε

] q
2

= 1− q

2

αs

(
µ2

R

)

4π

β0

ε
+O(α2

s )

we obtain for the renormalized amplitude
∣∣Mm

〉

∣∣Mm〉 =

(
αs

(
µ2

R

)
µ2ε

R

4π
S−1
ε

) q
2
(
∣∣M(0)

m 〉+
αs

(
µ2

R

)

4π
S−1
ε

∣∣M(1)
m 〉
)

q ∈ N,

∣∣M(0)
m

〉
=
∣∣A(0)

m

〉
,
∣∣M(1)

m

〉
= µ2ε

R

∣∣A(1)
m

〉
− q

2

β0

ε
Sε
∣∣A(0)

m

〉
.

(36)

The renormalized theory is UV finite, yet
∣∣∣M(1)

m

〉
is still infinite in d = 4 dimensions, as it is di-

vergent also in the infrared. After UV renormalization is achieved we can use dimensional regularization
to regulate the amplitudes in the IR by continuing into d > 4 (ε < 0). The integrals that are scaleless
in d = 4 have

(
q2
)−ε mass dimension in d = 4 − 2ε dimensions. Therefore, in the massless limit all

integrals can depend only on momentum invariants raised to a positive fractional power (ε < 0). We
conclude that when all external invariants vanish, the continued integral must also vanish (“scaleless
integrals vanish in dimensional regularization”).

For IR-safe observables these IR poles vanish and we can set d = 4 at the end of the computations,
and we obtain the UV finite, IR regularized SME that can be used to compute cross sections.

Exercise 2.3 Compute the contribution to the beta function from the fermion loop: TRa ab b

1. Write down carefully the amplitude and compute the trace.
2. The following types of integrals occur:

Iµ2 =

∫
dd`

(2π)d
`µ

`2 (`− p)2 , Iµν2 =

∫
dd`

(2π)d
`µ`ν

`2 (`− p)2 (37)

Express these as linear combination of

I2(p) =

∫
dd`

(2π)d
1

`2 (`− p)2 . (38)

3. Obtain I2 from

I2(p,m) =

∫
ddl

(2π)d
1[

(l − p)2 −m2
]
l2

=
i

(4π)2−εΓ (ε)
(
p2
)−ε ∫ 1

0
dx

(
x
m2

p2
− x (1− x)− iε

)−ε

(39)
and find the divergent pieces.

The contribution to β0 is the coefficient of the 1/ε pole without the coupling factor.
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2.3 R ratio at NLO accuracy
This is by far the simplest example of computing QCD radiative corrections. As we saw in Sect. 2.1
it requires the total hadronic cross section that depends only on a single kinematic invariant, the total
centre-of-mass energy

√
s. As a result, the emerging integrals in this computation can be evaluated

exactly. Nevertheless, the complete computation is still too lengthy, and we shall be able to present the
main step and filling the details is left to the student.

There are two kinds of corrections that contribute at NLO accuracy. One is the real correction,
with an additional gluon in the final state, so the SME is computed from Feynman graphs as

〈
M(0)

3

∣∣M(0)
3

〉
=

∣∣∣∣
∣∣∣∣
2

, which gives an O(αs) correction. The other kind

of contribution
is the virtual correction, with an additional gluon providing a loop in the final state,

〈
M(1)

2

∣∣M(0)
2

〉
+
〈
M(0)

2

∣∣M(1)
2

〉
= 2Re

〈 ∣∣∣∣
〉

.

The real correction has three particles in the final state. The three-particle phase space has five
independent variables: two energies and three angles. As we are looking for the total cross section,
we integrate over the angles and use yij = (pi + pj)

2/s = 2pi · pj/s scaled two-particle invariants to
write both the phase space and the SME. Momentum conservation implies 1 = (p1 + p2 + p3)2/s =
y12 + y13 + y23. The complete real contribution to the total cross section is

σR = σ0R0

∫ 1

0
dy13

∫ 1

0
dy23CF

αs

2π

(
y23

y13
+
y13

y23
+

2y12

y13y23

)
Θ(1− y13 − y23) . (40)Real%correc)ons:%the%phase%space%

2013.10.17.% Zoltán%Trócsányi:%QCD@CERN%School%of%
Physics%2013% 1%

%
%%%%%%%%%%%%%%%%%%%%%%y23%
%%%%%%%%%%%%%%%%%%%%%%%%1%
%
1&3%collinear%
%

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1%%%%%%%%%%%%%%y13%
%%%%%%%%%%%%%%%3%soF%%%%2&3%collinear%%

Fig. 8: Region of integration for
real correction

This integral is divergent along the boundaries at y13 = 0, y23 = 0 as
well as in the point y13y23 = 0, so the singularities are in the IR parts of
the phase space. As yi3s = 2EiE3(1− cosϑi3), the divergence occurs
either when E3 → 0, which is called soft-gluon singularity, or when
ϑi3 → 0, which is called collinear singularity (the gluon is collinear to
either of the quarks). The region of integration with the singular places
is shown in Fig. 8.

To make sense of the integral, we use dimensional regulariza-
tion, which amounts to the computation of the phase space and the
SME in d = 4− 2ε dimensions. The result is

σR(ε) = σ0R0H(ε)

∫ 1

0

dy13

yε13

∫ 1

0

dy23

yε23

Θ(1− y13 − y23) (41)

×CF
αs

2π

[
(1− ε)

(
y23

y13
+
y13

y23

)
+

2y12

y13y23
− 2ε

]
,

where H(ε) = 1 +O(ε) (the exact form of this function will turn out to be irrelevant). The integrals can
be evaluated exactly, but actually the Laurent-expansion around ε = 0 is sufficient,

σR(ε) = σ0R0H(ε)CF
αs

2π

[
2

ε2
+

3

ε
+

19

2
− π2 +O(ε)

]
. (42)

The computation of the virtual correction is even more cumbersome due to the loop integral. We
present only the result:

σV(ε) = σ0R0H(ε)CF
αs

2π

[
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

]
, (43)
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We now see that the sum of the real and virtual contribution is finite in d = 4, so for the sum we can set
ε → 0 and find the famous αs/π ' 0.037 correction: R = R0

(
1 + αs

π +O(α2
s )
)
. The correction is the

same for RZ .

Actually there is a much easier way of computing the radiative corrections to the total cross section
from the imaginary part of the hadronic vacuum polarization, using the optical theorem (σ ∝ Imf(γ →
γ))). The state of the art is R at O(α4

s ) [22]. The result of the computation at next-to-next-to-leading
order (NNLO) accuracy,

R

R0
= 1 + c1αs(µ) +

[
c2 + c1b0 ln

µ

Q2

]
αs(µ)2

+

[
c3 +

(
2c2b0 + c1b1 + c1b

2
0 ln

µ2

Q2

)
ln
µ2

Q2

]
αs(µ)3 +O(α4

s )

(44)

satisfies the RGE to order αs(µ)4. The coefficients c1 = 1/π, c2 = 1.409/π2, c3 = −12.85/π3 suggest
that the perturbation series is convergent. Our more complicated way of computing R is instructive for
our studies in the next section.

NLO

NNLO

NNNLO

0 20 40 60 80 100 120 140 160 180 200
(GeV)

20.6

20.7

20.8

20.9

21.0

21.1

21.2
R(
M
Z)

(5) = 230 MeV

Fig. 9: Dependence on the renormalization scale of the
hadronic ratio on the Z pole

The predictions at the first three fixed or-
ders in PT forRZ are shown in Fig. 9. TheR ratio
at LO accuracy does not depend on the strong cou-
pling, hence it is independent of the scale. The fig-
ure is meant to show the general pattern of QCD
predictions which, with the exception of the R ra-
tio, depend on the scale already at LO. The NLO
curve shows the typical feature of LO predictions:
it depends on the renormalization scale in a mono-
tonically decreasing way. As this scale is unphys-
ical, in principle, its value can be arbitrary. Thus
the prediction at LO is in general only an order of
magnitude indication of the cross section, but not
a precision result. (In the case of the hadronic ra-
tio the QCD corrections are actually quite small as
compared to many other QCD cross sections and
the precision is actually better than usual.) As a
result, if we want to make reliable predictions in
pQCD, the NLO accuracy (NNLO for R) is abso-
lutely necessary unless we have some way to fix
the scale.

However, there is no theorem that tells us the proper scale choice. The usual practice is to set the
scale at a characteristic physical scale of the process. A reasonable assumption that the strength of the
QCD interaction for a process involving a momentum transfer Q is given by αs(Q), so µ = Q is the
proper scale choice, to minimize logarithmic contributions ln(µ/Q) in higher-order terms. For instance,
in case of electron-positron annihilation the total centre-of-mass energy is the usual choice, while for a
jet cross section in proton-proton collisions the transverse momentum of the jet5 is used. The application
of this recipe appears clear as long as there is only one hard scale in the process. In the state of the art
computations there are complex processes with several scales and it is not obvious which one to choose.
For instance, in vector boson hadroproduction in association with m jets (m ≤ 5) [23], in addition to the
transverse momentum of the vector boson EV,⊥ =

√
p2
V,x + p2

V,y there are the transverse momenta of

the jets. In this example, the choice µ = EV⊥ was found to result in a badly behaving perturbation series

5We discuss jets in the next section.
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with corrections driving theE⊥ distribution of the second hardest jet at NLO accuracy even unphysically
negative for m = 3 and E⊥ > 475 GeV at the LHC. Choosing a dynamical scale, set event by event,
appears a better choice. For instance, half the total transverse energy of the final-state particles (both
QCD partons and leptons from the decay of the vector boson), µ = ĤT/2, leads to much milder scale
dependence and a similar shape of the distributions at LO and NLO accuracies.

There are suggestions on making educated guesses for the best scale. Among those are the
principle of fastest apparent convergence (FAC), that of minimal sensitivity (PMS), or the BLM scale
choice [24–26], beyond the scope of these lectures. The experience is that in hadron collisions there is
no choice that works well for any process and it is best to choose a dynamical scale chosen by examining
the process.

As there is no unique scale, the standard procedure is to choose a default scale µ0, related to the
typical momentum transfer in the process, and to assign a theoretical uncertainty by varying the scale
within a certain range around the default choice µ0. The usual range is between half and twice the default
choice. However, this is again an indication only of the scale uncertainties and there is no mathematical
theorem that states this procedure yields the true theoretical uncertainty due to neglected higher order
terms. In order to have a measure on the effect of neglected higher orders, i.e., to understand the reliability
of the assigned theoretical uncertainty one has to compute the NNLO corrections. The latter are very
demanding computations both technically and numerically and predictions at NNLO accuracy for some
fairly simple processes, with one or two final-state particles in the prediction at LO, constitute the state
of the art of pQCD.

Exercise 2.4 Show that the d-dimensional three-particle phase space for q → p1 + p2 + p3 can be
expressed in terms of the Lorentz-invariants sij = (pi + pj)

2

dφ3 = (2π)3−2d 2−1−d (q2)
2−d

2 dd−2Ωdd−3Ω (s12s13s23)
d−4

2 ds12 ds13 ds23 δ
(
q2 − s12 − s13 − s23

)
.

where ddΩ is the measure of the hypersurface element in d dimensions,
∫

dd−3Ω = Ωd = 2πd/2/Γ(d/2).
Hints:

1. The d-dimensional volume measure in spherical coordinates is recurisvely given by

dd+1p = E dE dd pE = E dE Ed−1ddΩ , ddΩ = (sin θ1)d−1dθ1dd−1Ω .

2. Show that
sin2 θ1 =

1

4

s12 s13 s23

q2E2
1 E

2
2

,

where θ1 is the angle between p1 and p2.

Exercise 2.5 Let yij =
sij
q2 . Using the previous exercise, compute the real correction to the process

e+ e− → qq̄ given in Eq. (42). Hint: Transform the triangular integration region into the unit square
and evaluate the B (Euler β) functions.
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3 Jet cross sections
In the first two sections we established our theoretical playground to make predictions for hadronic cross
sections. Based on RGE analysis we showed that PT can only be fully consistent in an asymptotically
free QFT, like QCD. We found that predictions can be made only for those quantities that remain finite
in the limit of vanishing masses of light quarks. We computed the radiative corrections for such a
quantity, the total hadronic cross section in electron-positron annihilation. We found that at intermediate
steps of the computations there are singular contributions of two types: of UV and IR origin. The
UV singularities can be removed by renormalization, and the remaining IR ones can be regularized in
dimensional regularization where IR singularities appear as 1/ε poles. When adding all contributions,
these poles cancel and we obtain the finite correction after setting ε = 0. Our question in this section is
whether there are more exclusive observables than the totally inclusive one for which this procedure can
be applied.

Fig. 10: Two events observed in the OPAL detector

It is clear from experiments that typical final states have structures. For instance, Fig. 10 shows
two events, one with two and the other with three sprays of hadrons, called hadron jets. If we count the
relative number of events with two, three, four jets, an interesting pattern emerges:

# of events with 2 jets : # of events with 3 jets : # of events with 4 jets ' O(α0
s ) : O(α1

s ) : O(α2
s ).

Recalling our basic assumption and Fig. 3 we find that jets reflect the partonic structure of the events.
We now use our pQCD formalism to describe these structures theoretically. For this purpose, we need a
function of the final state momenta Jm({pi}) that quantifies the structure of the final state in some ways
(we give examples below). This function is called jet function.

Let us consider again the process e+e− → hadrons. If we are not interested in the orientation of
the final state events, we can average over the orientation and find that the SME |M2|2 has no dependence
on the parton momenta. Then the two-particle phase space is dφ2 = dy12δ(1− y12), and contribution of
the process e+e− → qq̄ to the cross section is

σLO = |M2|2
∫ 1

0
dy12δ(1− y12)J2(p1, p2) , (45)
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which sets our normalization of |M2|2. The two kinds of NLO corrections are

dσR = |M2|2Sε
dy13

yε13

dy23

yε23

CF
αs

2π

[
(1− ε)

(
y23

y13
+
y13

y23

)
+

2y12

y13y23
− 2ε

]
J3(p1, p2, p3) ,

dσV = |M2|2SεCF
αs

2π

(
µ2

s

)ε [
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

]
dy12δ(1− y12)J2(p1, p2) .

(46)

Contrary to the case of the total cross section, where Jm = 1, we cannot simply perform the integration
analytically and combine the results, neither we can combine the integrands. The general method to deal
with this problem is to regularize both with a properly chosen subtraction,

dσNLO
3 = dσRJ3 − dσAJ2 , and dσNLO

2 =
(
dσV + dσA

)
J2 ,

such that both terms are separately integrable in d = 4 dimensions. This requires a special property of
the jet function Jn, called IR safety, expressed analytically as

lim
y13,y23→0

J3 = J2 . (47)

Qualitatively IR safety means that the jet function is insensitive to an additional soft particle, or to a
collinear splitting in the final state.

How can we construct such an approximate cross section? For this simple process we can follow
the steps:

y23

y13
+
y13

y23
+

2y12

y13y23
=
y23

y13
+

1

y13

2y12

y13 + y23
+ (1↔ 2)

=
1

y13

[
y23 +

(
2

=1︷ ︸︸ ︷
y12 + y13 + y23

y13 + y23
− 2

)]
+ (1↔ 2) .

(48)

Then introduce the new variable z1 ≡ z1,2 = y12

y12+y23
, so that y13 + y23 = 1− y12 = 1− z1(1− y13) and

y23

y13
− 1

y13
=
y23(1− y13)− y12 − y23

y13(y12 + y23)
=
−y23y13 − y12

y13(y12 + y23)
= − y23

y12 + y23
− z1

y13
,

and substitute these into Eq. (48):

y23

y13
+
y13

y23
+

2y12

y13y23
=

[
1

y13

(
2

1− z1(1− y13)
− 1− z1

)
− y23

y12 + y23

]
+ (1↔ 2) . (49)

The term y23/y12 + y23 never becomes infinite, thus the approximate cross section

dσA = |M2|2Sε
dy13

yε13

dy23

yε23

CF(V13,2 + V23,1) , with (50)

Vij,k =
αs

2π

[
1

yij

(
2

1− zi,k(1− yij)
− 1− zi,k

)
− ε(1− zi,k)

]
(51)

is a proper subtraction term that regularizes the real contribution in all of its singular limits in d dimen-
sions. Consequently, the difference dσNLO

3 = dσRJ3 − dσAJ2 can be integrated in any dimensions, in
particular, we can set ε = 0 and integrate in d = 4 numerically.

To obtain dσNLO
2 we integrate the two terms separately. For V13,2 we change variables in the phase

space to y13 and z1, and find

dσA = |M2|2Sε
(
µ2

s

)ε ∫ 1

0
dy13

∫ 1

0
dz1y

−ε
13 (1− y13)1−2εCFV13,2 + (1↔ 2) . (52)
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We shall see that this factorization of the singular terms is universal. We can now perform the integration
over the factorized one-particle phase space, independently of the jet function, and obtain the integrated
subtraction term in the form dσA = |M2|2I(ε) with insertion operator

I(ε) = CF
αs

2π

1

Γ(1− ε)

(
4πµ2

s

)ε [
2

ε2
+

3

ε
+ 10− π2

3
+O(ε)

]
. (53)

Comparing this integrated subtraction to Eq. (46), we see that the sum dσNLO
2 =

(
dσV + dσA

)
J2 is

finite if ε = 0,

σNLO
2 = |M2|2CF

αs

π

(
1 +

π2

3

)∫ 1

0
dy12δ(1− y12)J2(p1, p2) +O(ε) , (54)

and so can be integrated in d = 4 dimensions.

3.1 Infrared safety
A natural question is if we can construct the approximate cross section universally, i.e., independently of
the process and observable. Our presentation above suggests the affirmative answer. To understand how,
we have to study the origin of the singular behaviour in the SME. This singularity arises from propagator
factors that diverge

∝ 1
(pi+ps)2 = 1

2 pi·ps = 1
2EiEs(1−cos θ) ' 1

EiEsθ2
Mm

pi

ps, µ

In the collinear limit, θ → 0 andMm+1 ' Mm/θ+ less singular terms (a factor of θ appears
in the numerator factors). In the soft limit, Es → 0 andMm+1 ' Mm/Es+ less singular terms. The
gluon phase space is

d3ps
2Es

=
1

2
Es dEs dcos θ dφ ' 1

4
Es dEs dθ2 dφ ,

so in the cross section we find logarithmic singularities in both the soft and the collinear limits: dEs
Es

or
dθ2

θ2 . These are the IR singular limits. In dimensional regularization the logarithmic singularities appear
as poles: ∫

dyis y
−1−ε
is = −1

ε
.

Thus, the singular behaviour arises at kinematically degenerate phase space configurations, which at the
NLO accuracy means that one cannot distinguish the following configurations: (i) a single hard parton,
(ii) the single parton splitting into two nearly collinear partons, (iii) the single parton emitting a soft
gluon (on-shell gluon with very small energy). Then an answer to the question posed at the beginning of
Sect. 3 is given by the Kinoshita-Lee-Nauenberg (KLN) theorem [27, 28]:

In massless, renormalized field theory in four dimensions, transition rates are IR safe if
summation over kinematically degenerate initial and final states is carried out.

For the e+e− → hadrons process, the initial state is free of IR singularities. Typical IR-safe quantities
are (i) event shape variables and (ii) jet cross sections.

3.2 Event shapes
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Fig. 11: Distribution of thrust as measured at
LEP compared to pQCD predictions obtained
with vector and scalar gluon

Thrust, thrust major/minor, C- and D-parameters, oblate-
ness, sphericity, aplanarity, jet masses, jet-broadening,
energy-energy correlation, differential jet rates are exam-
ples of event shape variables. The value of an event shape
does not change if a final-state particle further splits into two
collinear particles, or emits a soft gluon, hence it is (quali-
tatively) IR safe. As as example we consider the thrust T ,
which is defined by

T = max
~n

∑m
i=1 |~pi · ~n|∑m
i=1 |~pi|

, (55)

where ~n is a three-vector (the direction of the thrust axis)
such that T is maximal. The particle three-momenta ~pi are
defined in the e+e− centre-of-mass frame. T is an example
of the jet function Jm. It is infrared safe because neither
pj → 0, nor replacing pi with zpi + (1 − z)pi change T . At LO accuracy it is possible to perform the
phase space integrations and

1

σ

dσ

dT
= CF

αs

2π

[
2
(
3T 2 − 3T + 2

)

T (1− T )
ln

(
2T − 1

1− T

)
− 3(3T − 2)

2− T
1− T

]
. (56)

We see that the perturbative prediction for the thrust distribution is singular at T = 1. In addition to the
linear divergence in 1−T there is logarithmic divergence, too. The latter is characteristic to events shape
distributions. In PT at nth order logarithms of 1 − T in the form αns lnm(1/(1 − T )) ,m ≤ 2n appear.
These spoil the convergence of the perturbation series and call for resummation if we want to make
reliable prediction near the edge of the phase space, for large values of T where the best experimental
statistics are available. Resummations of leading (m = 2n) and next-to-leading (m = 2n−1) logarithms
are available for many event shape variables, but the discussion of this technique is beyond the scope of
these lectures.

Exercise 3.1 Verify that T as defined in Eq. (55) is infrared und collinear safe. What is the range of
values that T can take if (i) there are only two particles in the final state, or (ii) m → ∞ and all ~pi are
distributed spherically?

3.3 Jet algorithms
Jets are sprays of energetic, on-shell, nearly collinear hadrons. The number of jets does not change if
a final-state particle further splits into two collinear particles, or emits a soft gluon, hence it is again
qualitatively IR safe. To quantify the jet-like structure of the final states jet algorithms have been in-
vented. These have a long history with rather slow convergence. The reason is that the experimental and
theoretical requirements posed to a jet algorithm are rather different. Experimentally we need cones that
include almost all hadron tracks at cheap computational price. Theoretically the important requirements
are IR safety, so that PT can be employed to make predictions and resummability, so that we can make
predictions in those region of the phase space where most of the data appear.

For many years experimenters preferred cone jet algorithms (according to the ‘Snowmass accord’)
[29]. These start from a cone seed (centre of the cone) in pseudorapidity (η) and azimuthal-angle (φ)
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plane: (ηc, φc). We define a distance of a hadron track i from the seed by dic =
√

(ηi − ηc)2 + (φi − φc)2.
A track belongs to the cone if dic < R, with a predefined value forR (usually 0.7). It turned out however,
that (i) this is an IR unsafe definition and (ii) there is a problem how to treat overlapping cones, so the
cone jet definition has been abandoned.

Theoreticians prefer iterative jet algorithms, consisting of the following steps. (i) First we define
a distance between two momenta (of partons or hadron tracks) and a rule to combine two momenta, pi
and pj into p(ij). (ii) Then we select a value for resolution dcut and consider all pairs of momenta. If the
minimum of {dij} is smaller than dcut, then we combine the momenta pi and pj and start the algorithm
again. If the minimum is larger than dcut, then the remaining momenta (after the combinations) are
considered the momenta of the jets, and the algorithm stops. The drawback of this algorithm is that it
becomes very expensive computationally for many particles in the final state. This is not an issue in
pQCD computations because according to our basic assumption there are only few partons, but a major
problem for the final states in the detectors where hundreds of hadrons may appear in a single event.

At LEP theory won and the Durham (or k⊥) algorithm was used. It was invented so that resumma-

tion of large logarithms could be achieved [30]. The distance measure is dij = 2
min(E2

i ,E
2
j )

s Rir, where
Rij = 1−cos θij and the recombination scheme is simple addition of the four momenta, pµ(ij) = pµi +pµj .
The resolution parameter ycut = dcut/s can take values in [0, 1]. The pQCD prediction contains loga-
rithmically enhanced terms of the form αns lnm(1/ycut), at any order, which has to be resummed if we
want to use small value of ycut, where we find the bulk of the data (see Figure 12). Predictions are
available with leading- (m = 2n) and next-to-leading (2n− 1) logarithms (LL and NLL) summed up to
all orders [30].

Figure 12 shows the fixed order LO and NLO predictions, as well as predictions where NLO
and NLL are matched. The curve at NLO accuracy gives a good description of the measure data by
the ALEPH collaboration [31], but only for ycut > 0.01. As αs ln2(100) = 2.5, for smaller values of
ycut resummation is indispensable. The resummed prediction however, is not expected to give a good
description at large ycut because in the resummation formula only the collinear approximation of the
matrix element is used. Matching the two predictions gives a remarkably good description of the data
over the whole phase space.

At hadron colliders the k⊥ algorithm needs modifications. First, instead of energy, the boost-
invariant measure of hardness, transverse momentum is used to define the distance between tracks, dij =

min(p2
⊥,i, p

2
⊥,j)

R2
ij

R2 whereR2
ij = (yi−yj)2+(φi−φj)2 (distance in rapidity–azimuthal-angle plane),R is

a small positive real number, and we need a distance from the beam diB = p2n
⊥,i, too. Also, the algorithm

needs modification because either dij or diB can be the smallest distance. If a dij is the smallest value,
then i and j are merged, while if the smallest is a diB , then momentum pi becomes a jet momentum
and is removed from the tracks to be clustered. We then call jet candidates with transverse momentum
p⊥,i > ER resolved jets. The merging rule may change as well. In the usual merging we add four-
momenta, but another option is to add transverse momenta, p⊥,(ij) = p⊥,i + p⊥,j , and add rapidities y
and azimuthal angles φweighted, y(ij) = (wiyi+wjyj)/(wi+wj) and φ(ij) = (wiφi+wjφj)/(wi+wj),
where the weight can bewi = p⊥,i, p2

⊥,i,E⊥,i, orE2
⊥,i. Such a merging is boost invariant along the beam.

The parameter R plays a similar role as dcut in electron-positron annihilation or the cone radius R in the
cone algorithms: the smaller R, the narrower the jet.

The iterative k⊥-algorithm is infrared safe and resummation of large logarithmic contributions of
the form αns ln2n and αns ln2n−1 is possible, which is a clear advantage from the theoretical point of view.
The logarithms are those of 1/R and/orQ/ER,Q being the hard process scale. By takingER sufficiently
large in hadron-hadron collisions, we avoid such leading contributions from initial-state showering and
the underlying event, so these terms are determined by the time-like showering of final-state partons
(when the virtuality of the parent parton is always positive). Particles within angular separation R tend
to combine and particles separated by larger distance than R from all other particles become jets. The
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Fig. 12: Comparison of pQCD predictions to data for three- and four-jet leptoproduction [32]. The data points
include corrections from hadrons to partons based on Monte Carlo simulations. The ’+K’ term indicates the
inclusion of a well-defined subleading (NNLL) term in the resummation formula.

algorithm assigns a clustering sequence to particles within jets, so we can look at jet substructure.

Nevertheless, at the TeVatron experiments the k⊥-algorithm did not become a standard for several
reasons. The jets have irregular, often weird shapes as seen on Fig. 13(a) because soft particles tend
to cluster first (even arbitrary soft particles can form jets). As a result there is a non-linear dependence
on soft particles, energy calibration and estimating acceptance corrections are more difficult. The un-
derlying event correction depends on the area of the jet (in η − φ plane). It was also very expensive
computationally, so experimenters had a clear preference of cone algorithms.

Fig. 13: Jets in a proton-proton scattering event obtained with the (a) k⊥, (b) anti-k⊥ clustering algorithms

The breakthrough occurred with Refs. [33, 34] where variants of the k⊥ algorithm and an improved,

fast implementation was introduced. The distance formula was modified to dij = min(p2n
⊥,i, p

2n
⊥,j)

R2
ij

R2
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(n = −1, 0, 1). IR-safety is independent of n, as well as NLL resummation of large logarithms. It was
found that with n = −1 (called anti-k⊥-alogrihtm) particles close in angle cluster first, which results
in regular cone-like shapes as seen on Fig. 13(b) without using stable cones. As a result it became the
standard jet algorithm at the LHC experiments. Yet, one should keep in mind that there is no ‘perfect’
jet algorithm. For instance, the anti-k⊥ one does not provide useful information on jet substructure. It is
important to remember that in pQCD theoretical prediction can be made only with IR-safe jet functions,
but among those the goal of the study may help decide which algorithms to use.

4 Towards a general method for computing QCD radiative corrections
We have seen that (i) in pQCD the computation of radiative corrections at NLO accuracy is indispensable,
(ii) the NLO corrections are of two kinds: real and virtual, that are separately divergent and contain
different number of particles in the final state, (iii) these singularities cancel for IR-safe cross sections.
To find the finite NLO corrections we have to develop a method for combining the real and virtual
corrections. In order to be able to automate the NLO computations such a method has to be general, i.e.,
independent of the measurable quantity and the process. To devise such a general method, we need to
study the origin of the singularities in a more precise way than we did in the previous section. We shall
find factorization formulae of the SME’s that find many important applications in QCD, and so belong
to the most important features of QCD.

4.1 Factorization of |Mn|2 in the soft limit
The soft limit is defined by pµs = λ qµ, with λ ∈ R+ and λ → 0 for qµ fixed. In this limit the emission
of the soft gluon from (internal) propagators is IR finite. If we consider the emission of a soft gluon off
an external quark we find

Mm

pi

ps, µ

∝MmT
s
i gs ū(pi, si)γ

µ /pi+/ps
sis

ps→0' MmT
s
i gs

pµi
pi·ps ū(pi, si).

In taking the limit, we used the anti-commutation relation (4) to write γµ/pi = −/piγ
µ+2pµi and the Dirac

equation of the massless bi-spinor, ū(pi)/pi = 0. The factor pµi
pi·ps is the “square root” of the eikonal factor

Sik (s) = 2sik
sissks

. In the same limit, we can derive after a bit more algebra the factorization formula for
soft-gluon emission off a gluon line. The emission of a soft gluon off an external gluon (in light-cone
gauge) is given by

Mm

pi

ps

µ, s

ν, a

λ, b ∝ Mmε
µ (ps, n) 1

sis
dλλ

′
(pi + ps, n) Γasbνµλ′ (−pi,−ps, pi + ps) ε

ν (pi, n),

where in the three-gluon vertex

Vνµλ(−pi,−ps, pi + ps) = − (pi + 2ps)ν gµλ + (2pi + ps)µ gνλ − (pi − ps)λ gµν
= 2piµ gλν + [− (pi + ps)λ gµν − piν gµλ] + [psµ gνλ + 2ps λ gµν − 2psν gµλ]
ps→ 0' 2piµ gνλ − [(pi + ps)λ gµν + piν gµλ] .

We use dλλ
′
(pi + ps, n) (pi + ps)λ = 0 and εν (pi, n) pi ν = 0, thus

1

sis
dλλ

′
(pi + ps, n) Γasbνµλ′ (−pi,−ps, pi + ps) ε

ν (pi, n)
ps→ 0' −T sb gs

piµ
pi ·ps

[
dλλ

′
(pi, n) gλ′νε

ν (pi, n)
]

︸ ︷︷ ︸
−ελ(pi,n)

.

These two results can be unified and formalized by

Ŝs 〈 cs| Mm+1 (ps, . . .)〉 = gsε
µ (ps) Jµ (s) |Mm (. . .)〉 ,
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where cs is the colour index of the soft gluon s, Ŝs is an operator which takes the soft limit and keeps the
leading 1

λ singular term, and the soft gluon current Jµ (s) is given by

Jµ (s) =

m∑

k=1

T sk
pk µ
pk · ps

.

The soft gluon can be emitted from any of the external legs, therefore the sum in the previous formula
runs over all external partons. A soft quark leads to an integrable singularity because the fermion prop-
agator is less singular than that of the gluon. Colour conservation implies that the current Jµ (s) is
conserved,

pµs Jµ (s) |Mm〉 =
m∑

k=1

T sk |Mm〉 = = 0 .
+ +

Then the soft limit of the SME
〈
M(0)

m

∣∣∣M(0)
m

〉
is as follows:

Ŝs |Mm+1 (ps, . . .)|2 = 4παsµ
2ε

m∑

i=1

m∑

k=1

εµ (s) ε∗ν (s)︸ ︷︷ ︸
dµν(ps,n)

pµi p
ν
k

pi · ps pk · ps
〈Mm|T i · T k |Mm〉 (57)

= −8παsµ
2ε

m∑

i,k=1

1

2
Sik (s)

∣∣∣M(0)
m (i,k)

∣∣∣
2

+ gauge terms = . . . .+ +

The gauge terms give zero contribution on on-shell matrix elements due to gauge invariance.

4.2 Factorization of |Mn|2 in the collinear limit
The collinear limit of momenta pi and pr is defined by Sudakov parametrization:

pµi = zip
µ + kµi⊥ −

k2
i⊥
zi

nµ

2 p · n , pµr = zrp
µ + kµr⊥ −

k2
r⊥
zr

nµ

2 p · n
where kµi⊥ + kµr⊥ = 0 and zi + zr = 1. The momentum pµ is the collinear direction and

p2 = p2
i = p2

r = n2 = 0 , ki⊥ · p = kr⊥ · n = 0 ,

In the collinear limit kµi⊥, k
µ
r⊥ → 0 and sir = − k2

r⊥
zizr

. We now state the following theorem

In a physical gauge, the leading collinear singularities are due to the collinear splitting of
an external parton.

This means that we need to compute in the collinear limit. There are three cases:

Factoriza)on+of+|Mm|2+in+the+collinear+
limit++

2013.10.21.+ Zoltán+Trócsányi:+QCD@CERN+School+of+
Physics+2013+ 1+

•                                    fj+
+++++++++++++++++++M         (ij)                            M*+

+++++++++++++++++++++++++++++++++fi 

++

f+

fir → fi + fr
q → q + g
g → q + q̄
g → g + g

We compute explicitly the first case and leave the second and the third as exercise.

For the case of a quark splitting into a quark and a gluon we have

= CF g
2
sµ

2ε /pi + /pr
sir

γµ/piγ
ν dµν (pr, n)

/pi + /pr
sir

= CF 4παsµ
2ε /pi + /pr

sir

(
−γµ/piγµ +

/pr/pi/n+ /n/pi/pr
pr · n

)
/pi + /pr
sir

.

(58)
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pi

pr

pi

pr

Using

−γµ/piγµ = (d− 2) /pi , /pi/pi = p2
i 1 , and /pi/pr/pi = sir/pi − p

2
i /pr = sir/pi ,

we find
(
/pi + /pr

)(
−γµ/piγµ

)(
/pi + /pr

)
= (d− 2) sir/pr ,

/pr/pi/n = −/pi/pr/n+ sir/n = /pi/n/pr − 2/pipr ·n+ sir/n == −/n/pi/pr + 2pi ·n/pr − 2/pipr ·n+ sir/n .

Then
(
/pi + /pr

)(
/pr/pi/n+ /n/pi/pr

)(
/pi + /pr

)
=

= 2
(
/pi + /pr

)(
pi ·n /pr − pr ·n /pi + pi ·pr /n

)(
/pi + /pr

)

= 2
[
pi ·n sir/pi − pr ·n sir/pr + pi · pr

(
2 (pi + pr)·n

(
/pi + /pr

)
− (pi + pr)

2 /n
)]

= sir

[
4pi ·n /pi + 2pi ·n /pr + 2pr ·n /pi − sir/n

]
.

Substituting these results and then the Sudakov parametrization of the momenta into Eq. (58) we obtain

pi‖pr' 1

sir
CF 4παsµ

2ε

[
2 (1− ε) zr + 4

z2
i

zr
+ 4zi +O (k⊥)

]
/p

=
1

sir
CF 8παsµ

2ε

[
2
zi
zr

+ (1− ε) zr
]
/p =

1

sir
CF 8παsµ

2ε

[
1 + z2

i

1− zi
− ε (1− zi)

]
/p

Similarly to the soft case we can define an operator Ĉir which takes the collinear limit and keeps the
leading singular (O(1/k2

⊥)) terms:

Ĉir

∣∣∣M(0)
m+1

∣∣∣
2

= 8παsµ
2ε 1

sir

〈
M(0)

m (p, . . .)
∣∣∣ P̂ (0)

qg (zi, zr, k⊥; ε)
∣∣∣M(0)

m (p, . . .)
〉
. (59)

The kernel P̂qg, called Altarelli-Parisi splitting function for the process q → q + g, is diagonal in the
spin-state of the parent (splitting) parton:

〈 s| P̂qg
∣∣s′
〉

= CF

[
2
zi
zr

+ (1− ε) zr
]
δss′ .

Similar calculations give the splitting kernels for the gluon splitting processes, which however, contain
azimuthal correlations of the parent parton

〈µ| P̂ (0)
qq̄ (zi, zr, k⊥; ε) |ν〉 = TR

[
−gµν + 4zizr

kµ⊥k
ν
⊥

k2
⊥

]
(60)

〈µ| P̂ (0)
gg (zi, zr, k⊥; ε) |ν〉 = 2CA

[
−gµν

(
zi
zr

+
zr
zi

)
− 2 (1− ε) zizr

kµ⊥k
ν
⊥

k2
⊥

]
. (61)

The soft and collinear limits overlap when the soft gluon is also collinear to its parent parton:

Ĉjr Ŝr

∣∣∣M(0)
m+1 (pr, . . .)

∣∣∣
2

= −8παsµ
2ε
∑

k 6=j

2zj
sjr zr

∣∣∣M(0)
m(j,k) (. . .)

∣∣∣
2

= 8παsµ
2ε T 2

j

2

sjr

zj
zr

∣∣∣M(0)
m

∣∣∣
2
.
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The notation for the splitting kernels in these lectures is different from the usual notation in the
literature. Usually, P̂ (0)

ij (z, k⊥; ε) denotes the splitting kernel for the process fi(p)→ fj(zp) + fk((1−
z)p), which does not lead to confusion for 1 → 2 splittings because the momentum fraction of parton
j determines that of parton k as their sum has to be one. For splittings involving more partons, it is
more appropriate to introduce as many momentum fractions zi as the number of offspring partons, with
the constraint

∑
i zi = 1, and use the flavour indices to denote the offspring partons in the order of the

momentum fractions in the argument. For 1 → 2 splittings this means the use of P̂ (0)
ir (zi, zr, k⊥; ε)

for the splitting process fk(p) → fi(zip) + fr(zrp). The flavour of the parent parton fk is determined
uniquely by the flavour summation rules, q + g = q, q + q̄ = g + g = g. These flavour summation rules
are unique also for 1→ 3 splittings.

Exercise 4.1 Compute the Altarelli-Parisi-splitting function P̂qg(z) for the process q → qg from the
collinear limit of the matrix element for the process e+e− → qq̄g:

∣∣M
(
e+e− → qq̄g

)∣∣2 ∝
(

(1− ε)
(
y23

y13
+
y13

y23

)
+ 2

(
y12

y13y23
− ε
))

.

Exercise 4.2 The Altarelli-Parisi splitting function P̂qq̄ (z) for the process g → qq̄ is defined by the
following collinear limit:

〈M(0)
n+1 (pi, pr, . . .)

∣∣M(0)
n+1 (pi, pr, . . .)〉

pi‖pr' 1

sir
8παsµ

2ε 〈M(0)
n (p, . . .)

∣∣P̂ (0)
qq̄ (z, k⊥)

∣∣M(0)
n (p, . . .)〉

=
1

sir
8παsµ

2ε 〈M(0)
n (p, . . .)

∣∣µ〉〈µ
∣∣∣P̂ (0)
qq̄ (z, k⊥)

∣∣∣ ν〉〈ν
∣∣M(0)

n (p, . . .)〉

=
1

sir
8παsµ

2ε 〈M(0)
n (p, . . .)

∣∣µ〉 dµρ
sir

Πρσ dσν
sir
〈ν
∣∣M(0)

n (p, . . .)〉 .

Compute 〈µ
∣∣∣P̂ (0)
qq̄ (z, k⊥)

∣∣∣ ν〉 in leading order in k⊥. Hint: In which sense does Πµν = dµρΠ
ρσdσν

hold?

Exercise 4.3 Derive the flavour summation rules for 1→ 3 splittings.

Exercise 4.4 Compute the soft limit of Eq. (59) and the collinear limit of Eq. (57).

4.3 Regularization of real corrections by subtraction
The cross section at NLO accuracy is a sum of two terms, the LO prediction and the corrections at one
order higher in the strong coupling,

σNLO = σLO + σNLO ,

where σLO is the integral of the fully differential Born cross section over the available phase space defined
by the jet function, while σNLO is the sum of the real and virtual corrections:

σLO =

∫

m
dσB Jm({p}m) , σNLO =

∫

m+1
dσR Jm({p}m+1) +

∫

m
dσV Jm({p}m) .
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Both contributions to σNLO are divergent in four dimensions, but their sum is finite for IR-safe jet func-
tions.

The factorization of the squared matrix elements in the soft and collinear limits allows for a process
and observable independent method to regularize the real corrections in their singular limits. The essence
of the method is to devise an approximate cross section dσA that matches the singular behaviour of
the real cross section dσR in all kinematically degenerate regions of the phase space when one parton
becomes soft or two partons become collinear. Then we subtract this approximate cross section from the
real one and the difference can be integrated in four dimensions. Next, we integrate dσA over the phase
space of the unresolved parton and we add it to dσV . The integrated subtraction term cancels the explicit
poles in the virtual correction and the sum can also be integrated in four dimentions. The key for this
procedure is a proper mapping of the (m + 1)-parton phase space to the m-parton one which respects
the limits, thus the approximate cross section is defined with the m-parton jet function. This way we can
rewrite the NLO correction as a sum of two finite terms,

σNLO =

∫

m+1

[
dσR Jm({p}m+1)− dσA Jm({p̃}m)

]
ε=0

+

∫

m

[
dσV +

∫

1
dσA

]

ε=0

Jm({p}m) . (62)

The definition of the approximate cross section is not unique and the best choice may depend on further
requirements that we do not discuss here. We also skip the precise definition of the momenta p̃µ which
are obtained by mapping the (m + 1)-particle phase space onto an m-particle phase space times a one-
particle phase space. A widely used general subtraction scheme that can be used also for processes
including massive partons with smooth massless limits is presented in Ref. [35], where these definitions
are given explicitly. This method uses the factorization of the SME in the soft and collinear limits.
The challange posed by the overlapping singularity in the soft-collinear limit is solved by a smooth
interpolation between these singular regions.

The factorization properties of Eqs. (57) and (59) play other very important roles in pQCD. The
numerical implementation of the SME is in general a process prone to errors. Testing the factorization
in the kinematically degenerate phase space regions serves a good check of the implementation. The
computation is even more difficult for the virtual corrections. Similar factorization holds for those. The
factorized form of the SME can be used in resumming logarithmically enhanced terms at all orders, or in
devising a parton shower algorithm for modelling events (see Sect. 6.3). The splitting kernels that appear
in the collinear factorization have a role in the evolution equations of the parton distribution functions
(see Sect. 5.6).

The state of the art in making precision predictions assaults on the one hand the full automation of
computations at NLO, and on the other the realm of next-to-next-to-leading order (NNLO) corrections.
The automation of computing jet cross sections at NLO accuracy has been accomplished and several
programs are available with the aim to facilitate automated solutions for computing jet cross sections at
NLO accuracy:

– aMC@NLO (http://amcatnlo.web.cern.ch)
– BlackHat/Sherpa (https://blackhat.hepforge.org)
– FeynArts/FormCalc/LoopTools (http://www.feynarts.de)
– GoSam (https://gosam.hepforge.org)
– HELAC-NLO (http://helac-phegas.web.cern.ch)
– MadGolem (http://www.thphys.uni-heidelberg.de/ lopez/madgolem-corner.html).

In the NNLO case the IR singularity structure is much more involved than in the case of NLO
computations due to complicated overlapping singly- and doubly-unresolved configurations. Several
subtraction methods have been proposed for the regularization of the IR divergences and there is intense
research to find a general one that can be automated. To provide an impression about the importance of
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NNLO corrections, we present QCD predictions at various accuracies for the three-jet rate computed with
αs = 0.118 and at a centre-of-mass energy of

√
s = 35 GeV in Fig. 14. Figure 14(a) shows comparison

of prediction at NLO with that at matched NLO and resummed next-to-leading logarithmic (denoted by
NLLA in the figure) accuracy, while Fig. 14(b) presents comparison of prediction at NNLO with that
at matched NNLO and resummed NLL accuracy. The inserts in both cases show the ratio between the
matched and the unmatched predictions. For all calculations the uncertainty band reflects the uncertainty
due to the variation of the renormalization scale around the default scale µ =

√
s by factors of 2 in both

directions.
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Fig. 14: QCD predictions for the three-jet rate in electron-positron annihilation [36]

5 Deeply inelastic lepton-proton scattering
Perturbative QCD stems from the parton model that was developed to understand deeply inelastic lepton-
hadron scattering (DIS). The purpose of those experiments was to study the structure of the proton by
measuring the kinematics of the scattered lepton. In Fig. 15(a) we show a real event in the H1 experiment
at the HERA collider. The value ofQ2, which is the modulus squared of the momentum transfer between
the lepton and the proton is 21475 GeV2 >> 1 GeV2, signifying that the scattering is well in the deeply
inelastic region. The parton model interpretation of the event is shown in Fig. 15(b): the lepton is
scattered by an angle θ due to the exchange of a virtual photon with one of the constituents of the proton
(a parton). The measurement is inclusive from the point of view of hadrons (X means any number of
hadrons that are not observed separately), thus the process can be described in pQCD.

The DIS kinematics is described by the following varibales

centre-of-mass energy2 = s = (P + k)2 ,

momentum transfer = qµ = kµ − k′µ ,
| momentum transfer|2 = Q2 = −q2 = 2MExy ,

scaling variable = x = Q2/(2P · q) ,
energy loss = ν = (P · q)/M = E − E′ ,

relative energy loss = y = (P · q)/(P · k) = 1− E′/E ,

recoil mass2 = W 2 = (P + q)2 = M2 +
1− x
x

Q2 ,

where we set the more important ones for these lectures in red.
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e−(k) θ

e−(k′)

p(P )
X

q

Fig. 15: Deeply inelastic lepton-proton scattering (a) in the H1 detector and (b) parton model interpretation of such
an event

5.1 Parametrization of the target structure
The cross section for e(k) + p(P )→ e(k′) +X reads

dσ =
∑

X

1

4ME

∫
dφ

1

4

∑

spin

|M|2 . (63)

We factorize the phase space and the SME into two parts, one for the lepton and one for the hadrons:

dφ =
d3k′

(2π)32E′
dφX ,

1

4

∑

spin

|M|2 =
e4

Q4
LµνHµν .

Then the hadron part of the cross section is the dimensionless Lorentz tensor Wµν = 1
8π

∑
X

∫
dφXHµν

(the factor of 1
8π is included here by convention). As it depends on two momenta Pµ and qµ, the most

general gauge invariant combination of the Lorentz tensor can be written as

Wµν(P, q) =

(
−gµν +

qµqν
q2

)
W1(x,Q2) +

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)
W2(x,Q2)

P · q ,

where the structure functions Wi(x,Q
2) are dimensionless functions of the scaling variable and the

momentum transfer.

For the lepton part we express the kinematical relations E′ = (1 − y)E, cosϑ = 1 − xyM
(1−y)E to

change variables to scaling variable and relative energy loss:

d3k′

(2π)32E′
=

dϕ

2π

E′

8π2
dE′ d cosϑ =

dϕ

2π

yME

8π2
dy dx ,

and compute the trace Lµν = 1
2Tr[/kγ

µ/k
′
γn] = kµk

′ν + kνk
′µ − gµνk · k′ . Then the differential cross

section in x and y is obtained from Eq. (63) as

d2σ

dx dy
=

4πα2

y Q2

[
y2W1(x,Q2) +

(
1− y
x
− xyM

2

Q2

)
W2(x,Q2)

]
,

which we rewrite in the scaling limit, defined by Q2 →∞ with x fixed, as

d2σ

dx dy
=

4πα2

y Q2

[(
1 + (1− y)2

)
F1 +

1− y
x

(
F2 − 2xF1

)]
. (64)
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Fig. 16: Measured value of the F2 structure function at several dif-
ferent values of Q2

The dimensionless functions F1

and F2 were first measured by the
SLAC-MIT experiment [37]. The re-
sult of that measurement supplemented
by some later ones is shown in Fig. 16.
The interesting feature is that in the
scaling limit F2 becomes independent
of Q2, F2(x,Q2)→ F2(x) (in fact, the
independence starts at quite low values
of Q2).

5.2 DIS in the parton model
Let us now describe the same scatter-
ing process by assuming the proton is
a bunch of free flying quarks and the
lepton exchanges a hard virtual photon
with one of those quarks as shown in
Fig. 15(b). The struck quark carries a
momentum pµ, which is a fraction of
the proton momentum, pµ = ξPµ, so
we consider the process e(k) + q(p)→
e(k′) + q(p′). The corresponding cross

section is
dσ̂ =

1

2ŝ

∫
dφ2

1

4

∑

spin

|M|2 ,

with ŝ = (p + k)2. The SME is proportional to the product of the lepton tensor Lµν and a similar
quark tensor Qµν = 1

2Tr[/qγ
µ/q′γn] = qµq

′ν + qνq
′µ − gµνq · q′, i.e., LµνQµν = 2(ŝ2 + û2), where

û = (p − k′)2 = −2p · k′. As y = P · q/P · k = 2p · q/2p · k = (ŝ + û)/ŝ, momentum conservation,
p′µ = pµ+qµ, implies for the on-shell condition of the scattered quark 0 = p

′2 = (p+q)2 = 2p ·q+q2 =
ŝ+ û−Q2. We have y = Q2/ŝ and û = (y − 1)ŝ, so

1

4

∑

spin

|M|2 =
e2
qe

4

Q4
LµνQµν = 2e2

qe
4 ŝ

2

Q4

(
1 + (1− y)2

)
.

Also Q2 = 2p · q = 2ξP · q, so p
′2 = Q2(ξ/x− 1). Then the two-particle phase space is

dφ2 =
d3k′

(2π)32Ek′

d4p′

(2π)4
2πδ+

(
p
′2) (2π)4 δ4(k + p− k′ − p′) =

dϕ

2π

E′

4π
dE′ d cosϑ

x

Q2
δ(ξ − x) ,

or using E′ =

√
ŝ

2 (1− y) and cosϑ = 1− 2yx
ξ(1− y)

, we obtain dφ2 =
dϕ

(4π)2
y ŝ
Q2 dy dx δ(ξ − x) . The

differential cross section in x and y

d2σ̂

dx dy
=

4πα2

Q2

[
1 + (1− y)2

] 1

2
e2
qδ(ξ − x) . (65)

Comparing Eqs. (64) and (65), we find the parton model predictions

F1(x) ∝ e2
qδ(ξ − x) , F2 − 2xF1 = 0 , called Callan-Gross relation. (66)

Thus F2 probes the quark constituent of the proton with ξ = x. However, this prediction for F2 cannot
be correct because F2(x) is not a δ function as seen from Fig. 16, which leads us to formulate the naïve
parton model in the following way:
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the virtual photon scatters incoherently off the constituents (partons) of the proton;
the probability that a quark q carries momentum fraction of the proton between ξ and ξ+δξ
is fq(ξ)dξ.

Exercise 5.1 Compute the contribution to the DIS cross section in Eq. (64) with the exchange of a trans-
versely polarized photon. Hint: Use Eq. (10) for the numerator in the propagator of the transversely
polarized photon and the Callan-Gross relation in Eq. (66). Can you identify the result with any of the
terms in Eq. (64)? What is the source of the remainder?

5.3 Measuring the proton structure
With the assumptions of the naïve parton model the Callan-Gross relation predicts

F2(x) = 2xF1(x) =
∑

q

∫ 1

0
dξ fq(ξ)x e

2
q δ(x− ξ) = x

∑

q

e2
q fq(x) . (67)

Taking into account four flavours and simplifying the notation by using fq(x) ≡ q(x), we obtain a
prediction for the structure function measured in scattering of charged-lepton off proton (neutral current
interaction):

F em
2 (x) = x

[
4

9

(
u(x) + ū(x) + c(x) + c̄(x)

)
+

1

9

(
d(x) + d̄(x) + s(x) + s̄(x)

)]
.

Similarly, in charged current interactions the prediction is

F ν̄2 (x) = 2x
[
u(x)+d̄(x)+c(x)+s̄(x)

]
(with W−) , F ν2 (x) = 2x

[
d(x)+ū(x)+s(x)+c̄(x)

]
(with W+) .

Further information can be obtained if we use different targets. Assuming two flavours and isospin
symmetry, the proton (with uud valence quarks) structure is

F proton
2 (x) = x

[
4

9

(
up(x) + ūp(x)

)
+

1

9

(
dp(x) + d̄p(x)

)]
, (68)

and that of the neutron (with udd valence quarks) is

F neutron
2 (x) = x

[
4

9

(
un(x)+ūn(x)

)
+

1

9

(
dn(x)+d̄n(x)

)]
= x

[
1

9

(
up(x)+ūp(x)

)
+

4

9

(
dp(x)+d̄p(x)

)]
.

(69)
The measurements are supplemented by sum rules. For instance, as the proton consists of uud valence
quarks, we have

∫ 1

0
dx
(
up(x)− ūp(x)

)
= 2 ,

∫ 1

0
dx
(
dp(x)− d̄p(x)

)
= 1 ,

∫ 1

0
dx
(
sp(x)− s̄p(x)

)
= 0 .

The combination of the measurements and sum rules gives separate information on the quark distribu-
tions in the proton fq(x). The result of such measurements performed by the NMC collaboration [38] is
shown in Fig. 17(a) together with a fit to the data by the CTEQ collaboration [39]. The parton distribu-
tions deduced from the fit are shown in Fig. 17(b).

We can infer the proton momentum from the measurements. The surprising result is that quarks
give only about half of the momentum of the proton,

∑
q

∫ 1
0 dxxfq/p(x) ' 0.5. By now we know that the

other half is carried by gluons, but clearly the naïve parton model is not sufficient to interpret the gluon
distribution in the proton. With our experience in pQCD we try to compute radiative corrections to the
quark process to see if that helps to find the role of the gluon distribution.
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Fig. 17: (a) Measurement of combination of F2 structure functions on proton and deuteron targets by the NMC
collaboration fit by CTEQ6D PDF set, (b) CTEQ6D valence and sea quark distributions

Exercise 5.2 It is not feasible to use a neutron target experimentally. Instead deuteron is used which
is the bound state of a proton and a neutron. The corresponding structure function is F deuteron

2 (x) =
1
2(F proton

2 (x)+F neutron
2 (x)), with F proton

2 and F neutron
2 given in Eqs. (68) and (69), respectively. Which

combination of the structure function on proton and deuteron targets gives the u- and d-quark distribu-
tions?

5.4 Improved parton model: pQCD

Using the relations dy = dQ2/ŝ and δ(ξ − x) = 1
ξ δ
(

1− x
ξ

)
, we rewrite the differential cross section

(65) in a more usual notation,

d2σ

dx dQ2
=

∫ 1

0

dξ

ξ

∑

i

fi(ξ)
d2σ̂

dx dQ2

(
x

ξ
,Q2

)
, (70)

which gives the cross section as a convolution of a long-distance component (the PDF) and a short-
distance component (the hard scattering cross section). This form of the cross section is the main content
of the factorization theorem, which we derived heuristically, but a rigorous proof, based on QFT exists.

The factorization formula (70) raises some questions. Knowing that the quarks do not give the
total momentum of the proton, it is natural to include the contribution of gluons in Eq. (70). However,
we do not yet know the corresponding hard scattering cross section. We also do not know how we can
apply PT. Furthermore, the scaling was exact in the parton model. Is it so in QCD? There is a common
answer to these questions: DIS in pQCD.

To develop pQCD for DIS, let us revisit the IR singularities once more. Let us denote the hard
scattering cross section for some final state by σh. Then the cross section in the collinear approxima-
tion for the same final state with an extra gluon of relative transverse momentum k⊥ = Eθ, carrying
momentum fraction (1− z) is
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σh

zp

(1 − z)p

p
θ : σh+g ' σh2CF

αs

π

dE

E

dθ

θ
= σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

Integrating over z up to one and over k⊥ we find soft and collinear divergence, respectively. In studying
pQCD we found that these IR singularities in the final state cancel against IR divergences in the virtual
correction for IR safe quantities:

σh
p: σh+V ' −σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

If there is a coloured parton in the initial state, then the splitting may occur before the hard scat-
tering and the momentum of the parton that enters the hard process is reduced to zpµ, so

zp

(1 − z)p

p

θ
σh

: σh+g(p) ' σh(zp)2CF
αs

π

dE

E

dθ

θ
= σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

Integrating over z up to one and over k⊥ we again find soft and collinear divergence, respectively. The
corresponding ε poles multiply σh(zp), while in the virtual correction the poles multiply σh(p), irrespec-
tive whether the IR divergence is in the initial or final state:

p σh
p : σh+V ' −σhCF

αs

π

dz

1− z
dk2
⊥

k2
⊥
.

The sum of the real and virtual corrections then contains an uncancelled singularity,

σh+g + σh+V ' CF
αs

π

∫ Q2

m2
g

dk2
⊥

k2
⊥︸ ︷︷ ︸

infinite if mg=0

∫ 1

0

dz

1− z [σh(zp)− σh(p)]

︸ ︷︷ ︸
finite

,

where we used a finite gluon mass to regulate the collinear divergence (instead of dimensional regular-
ization) to make manifest that the collinear singularity remains, while the soft one (at z → 1) vanishes
in the sum.

This uncancelled collinear singularity in the initial state is a general feature of pQCD computations
with incoming coloured partons and its form is universal, so we can find its precise form studying the
structure function at NLO accuracy. We know that in the parton model (QCD at LO) the prediction for
hard scattering cross section F̂2 is finite:

F̂2,q(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

= e2
qx δ(1− x) , F̂2,g(x) =

d2σ̂

dx dQ2

∣∣∣∣
F2

=
∑

q

e2
q x · 0

i.e., it is zero in the gluon channel because the virtual photon does not interact with the gluon directly.
At one order higher in αs we finds

F̂2,q(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

= e2
qx

[
δ(1− x) +

αs

4π

(
Pqg(x) ln

Q2

m2
g

+ Cq2(x)

)]
, (71)

and

F̂2,g(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

=
∑

q

e2
qx

[
0 +

αs

4π

(
Pqq̄(x) ln

Q2

m2
q

+ Cg2 (x)

)]
, (72)
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where Pij(x) is the Altarelli-Parisi splitting function (regularized at x = 1), obtained from the splitting
kernel P̂ij in four dimensions by (i) averaging over the spin states of the splitting parton and (ii) adding
the contribution from the loop graphs, while C2(x) is the remaining finite term, called coefficient func-
tion. We see that at NLO the prediction for F̂2 is finite in the UV and final state IR divergences cancel,
but un-cancelled singularity remains in the initial state IR, regularized with a small mass here.

The hard scattering function is not measurable, only the structure function is physical:

F2,q(x,Q
2) = x

∑

i

e2
qi

[
f (0)
qi (x) +

αs

2π

∫ 1

0

dξ

ξ
f (0)
qi (ξ)

(
Pqg

(
x

ξ

)
ln
Q2

m2
g

+ Cq2

(
x

ξ

))]
.

However, this function appears divergent if the regulator is removed, mg → 0. While C2(x) depends on
the process under investigation, the divergence does not because it is multiplied with universal splitting
functions.

Exercise 5.3 Compute the coefficient Cg2 (x) in Eq. (72).

5.5 Factorization in DIS
If the remaining divergences are universal (and they are because do not depend on the hard scattering),
we can absorb the singularity into the PDF’s. For instance, defining

fq(x, µF) = f (0)
q (x) +

αs

2π

∫ 1

0

dξ

ξ

{
f (0)
q (ξ)

[
Pqg

(
x

ξ

)
ln
µ2

F

m2
g

+ zqq

(
x

ξ

)]}
, (73)

the structure function becomes

F2,q(x,Q
2) = x

∑

i

e2
qi

{
fi(x, µF)+

αs(µR)

2π

∫ 1

0

dξ

ξ
fi(ξ, µF)

[
Pqg

(
x

ξ

)
ln
Q2

µ2
F

+
(
Cq2 − zqq

)(x
ξ

)]}
.

(74)
Defining the convolution in x-space, f ⊗x g ≡

∫ 1
0

dξ
ξ
f(ξ) g

(
x
ξ

)
, we see that the structure function is

‘factorized’ in the form of a convolution,

F2,q(x,Q
2) = x

∑

i

e2
qi fi(µF)⊗x F̂2,i(µR, t) , t = ln

Q2

µ2
F

.

The long distance physics is factored into the PDF’s that depend on the factorization scale µF. The short
distance physics is factored into the hard scattering cross section that depends on both the factorization
and the renormalization scales. Both scales are arbitrary, unphysical scales. The term z defines the
factorization scheme. It is not unique, finite terms can be shifted between the short and long distance
parts, but it is important that it must be chosen the same in all computations (the MS scheme is the
standard).

Exercise 5.4 The regularization of the splitting functions at z = 1 is achieved by the +-prescription
defined by ∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx
f(x)− f(1)

1− x
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for any smooth test function f(x). The contribution of the loop corrections has the same kinematics as
the LO one, so it has to be proportional to δ(1−x). Thus the complete regularized splitting function has
the form

Pqg(x) = CF

[
1 + x2

(1− x)+
+Kδ(1− x)

]
.

We can obtain the parton distribution for quark in quark from Eq. (73) by the substitution f (0)
q (x) →

δ(1− x)

fq(x, µF) = δ(1− x) +
αs

2π
Pqg(x) ln

µ2
F

m2
g

.

Integration over x gives the number of quarks in a quark that has to be one, independently of µF . Thus
we have the condition

∫ 1
0 dxPqg(x) = 0. Compute the regularized splitting function.

5.6 DGLAP equations
The short-distance component of the factorized structure function in Eq. (74) can be computed in pQCD.
It depends on the renormalization scale, but recall that it has to satisfy the RGE.

We cannot compute the PDF’s in PT, so it seems that this is the end of the story: pQCD appears
non-predictive for processes with hadrons in the initial state. However, the arguments that lead to the
RGE come to the rescue. While the right hand side of Eq. (74) depends on both renormalization and
factorization scales, the measurable quantity F2 does not, which can be expressed by RGE. Of course,
this statement has to be understood perturbatively, namely at any order in PT, the right hand side of
the RGE is not exactly zero, but may contain terms that are higher order in PT. Only infinite order is
expected to give exact independence of the scales. The RGE gives the missing piece of information
needed to make the theory predictive.

To write the RGE, we introduce Mellin transforms defined by f(N) ≡
∫ 1

0 dxxN−1f(x), which
turns a convolution into a real product:

∫ 1

0
dxxN−1

∫ 1

0

dξ

ξ
f(ξ) g

(
x

ξ

)
=

∫ 1

0
dxxN−1

∫ 1

0
dξ

∫ 1

0
dyδ(x− yξ)f(ξ) g(y)

=

∫ 1

0
dξ

∫ 1

0
dy (ξy)N−1f(ξ) g(y) = f(N)g(N) .

So F2,q(N,Q
2) = x

∑
i e

2
qi fi(N,µF)F̂2,i(N,µR, t) is independent of µF, expressed as

µF
dF2

dµF
= 0

(
= O

(
αn+1

s

)
in PT at O

(
αns
))

.

Let us explore the consequences of this RGE. For simplicity, let us assume one quark flavour,
F2,q(N,Q

2) = xe2
qi fq(N,µF )F̂2,i(N,µR, t). Then the RGE reads

F̂2,q(N, t)
dfq
dµF

(N,µF ) + fq(N,µF )
dF̂2,q

dµF
(N, t) = 0 .

Dividing with fq F̂2,q, it turns into

µF
d ln fq
dµF

(N,µF ) = −µF
d ln F̂2,q

dµF
(N, t) ≡ −γqg(N) , (75)
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where γqg(N) is called the anomalous dimension because it acts as a factor µ−γqg(N)
F in the dimensionless

function ln fq(N,µF). Taking the Mellin moment of Eq. (73) and then its derivative with respect to µF,
we obtain that the anomalous dimension is

γqg(N) = −µF
d ln fq
dµF

(N,µF ) = −αs(µR)

π
Pqg(N) +O

(
α2

s

)
, (76)

i.e., it is the Mellin transform of the splitting function, which can be computed in PT. Equation (75)
implies that the scale dependence of the PDF can be predicted in PT. This together with the universality
of PDF’s makes pQCD predictive: we can measure the PDF’s in one process at a certain scale and then
use it in another process at another scale to make predictions.

How shall we choose the renormalization and factorization scales? If we want to avoid large
logarithms that spoil the convergence of the perturbative series, the scales should be chosen near the
characteristic physical scale of the process Q, e.g., µ2

R = µ2
F = Q2. Then the RGE becomes

Q2 d ln fq
dQ2

(N,Q2) = −1

2
γqg

(
N,αs

(
Q2
))

, (77)

which is the Mellin transform of

Q2 dfq
dQ2

(x,Q2) =
αs

(
Q2
)

2π
Pqg ⊗x fq

(
Q2
)
. (78)

Our discussion was highly simplified by considering only one quark flavour and neglecting the mixing
of partons. If we make the full computation we obtain the gold-plated formula

Q2 df(ij)

dQ2
(x,Q2) =

αs

(
Q2
)

2π

∑

i

Pij ⊗x fi
(
Q2
)
, (79)

called DGLAP (for Dokshitzer [40], Gribov-Lipatov [41] and Altarelli-Parisi [42]) equation.

Let us now solve the (simplified) DGLAP equation in Mellin space, Eq. (77). It is a simple first
order differential equation whose solution is

fq(N,Q
2) = fq(N,Q

2
0) exp

[
−
∫ t

t0

dt γqg

(
N,αs

(
Λ2et

))]
.

Let us recall the one-loop formula in Eq. (20), αs

(
Q2
)

= 1
b0t
, t = ln Q2

Λ2 and introduce the abbreviation

dqg(N) = −γqg(N)
2πb0

≤ 0. Then

fq(N,Q
2) = fq(N,Q

2
0) exp

[
dqg(N)

∫ t

t0

dt

t

]
, or fq(N,Q

2) = fq(N,Q
2
0)

(
t

t0

)dqg(N)

, (80)

called scaling violation.

As γqg(1) = 0, the valence q-quark in the proton, given by the integral
∫ 1

0 dx fq(x,Q
2), is inde-

pendent ofQ2. Higher moments vanish more rapidly, therefore, the average x decreases asQ2 increases.
Thus we predict that fq(x,Q2) increases at small x and decreases at large x. This prediction is seen to
be valid from the measurements shown in Fig. 18(a).

Exercise 5.5 Compute the anomalous dimension γqg(x) using Eq. (76).
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Fig. 18: (a) Measurement of F2 structure function at differentQ2 as a function of x, (b) evolution of valence quark,
sea quark and gluon distributions

6 Hadron collisions
While electron-positron annihilation and DIS played very important role in establishing pQCD for un-
derstanding high-energy scattering experiments, presently and in the mid-term future the experiments at
the energy frontier can be found at the Large Hadron Collider (LHC). Thus we are most interested in the
theoretical tools needed to understand high-energy proton-proton collisions.

6.1 Factorization theorem
Fortunately, the tools we have developed so far can be generalized straightforwardly to hadron collisions.
The most general form of the factorization theorem includes convolution with two PDF’s, one for each
colliding parton, the hard scattering cross section, and possibly a convolution with a fragmentation func-
tion (FF) of a parton into an identified hadron in the final state. Thus, the differential cross section for a
hypothetical process pp→ Z + π +X has the form

dσpp→Z+π+X(s, x, αs, µR, µF) =
∑

i,j,k

∫ 1

0
dx1fi/p(x1, αs, µF)

∫ 1

0
dx2fj/p(x2, αs, µF)

×
∫ 1

x

dz

z
dσ̂ij→Z+k+X(ŝ, z, αs(µR), µR, µF)Dπ/k

(x
z
, ŝ
)

+O
(

Λ

Q

)p
.

(81)

In Eq. (81) s is the total centre-of-mass energy squared, x/z is the longitudinal momentum fraction
of the pion in the parton k, µR and µF are the renormalization and factorization scales, fi/p(x) is the
PDF for parton i in the proton with momentum fraction x, dσ̂ij→Z+k+X(ŝ) is the hard scattering cross
section for the partonic process, Dπ/k(x) is the FF for the process parton k → π. The last term shows
that contributions suppressed at high Q2 are neglected (p > 1). Substituting the PDF’s and FF’s with δ
functions (in momentum and flavour) we obtain the cross section formulae in DIS and electron-positron
annihilation.
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The PDF’s and FF’s constitute the non-perturbative, long-distance components of the cross section
that cannot be computed in pQCD, only extracted from measurements. Thus, it is a natural question
whether or not the factorization theorem is predictive. The answer is a clear yes for the following reasons.

We can compute the hard scattering cross section in PT, which involves (i) renormalization of UV
divergences (order by order in PT), (ii) cancellation of IR ones for IR safe observables using a subtraction
method, (iii) absorbing initial state collinear divergences into renormalization of PDF’s (and possibly
uncancelled final state ones into that of the FF). The non-perturbative components are universal, so can
be measured in one process and used to make prediction in another one. Furthermore, the evolution of
these with Q2 can be predicted in PT (DGLAP equations), shown in Fig. 18(b).

In summary, we are prepared to make predictions for any high-energy scattering process. The
theoretical framework for such predictions relies on pQCD and the factorization theorem. In PT we can
compute the hard scattering cross section and the evolution of the PDF’s. There are universal elements,
such as the PDF’s and FF’s, as well as the subtraction method for computing radiative corrections.

6.2 Are we happy?
At this point theorists can make precision predictions for distributions of IR safe observables. The
main bottleneck to make such predictions is the algebraic complexity of computing amplitudes and the
analytic complexity of evaluating loop integrals. The state of the art considers the computation of NLO
corrections a solved problem with automated implementations for processes up to about five partons in
the final state (at tree level). The exact number depends on the process being considered because the
numerical integrations become too expensive eventually. Nevertheless, all processes listed in the ‘Les
Houches wishlist (2011)’ are known by now. Furthermore, there is also a computer code to compute
seven-jet production in electron-positron annihilation [43].

For experimenters the situation is less satisfactory. While pQCD predictions are based on a solid
theoretical ground, those lack important features. On the one hand pQCD gives predictions for final
states with few partons, detectors detect hadrons. A tool that can simulate real events with hadrons at
correct rates would be much more handy. To finish these lectures we look into modeling events in a
qualitative way. A more detailed description can be found in Ref. [44].

6.3 Modelling events

Fig. 19: Artistic view of a proton-proton scattering
event at high energy (curtesy of F. Krauss)

Figure 19 shows our view of a proton-proton scatter-
ing event at high energy. The three parallel lines end-
ing in discs from both sides represent the two incoming
protons. At high energies these protons consist of (al-
most) free-flying partons, two of which (one from each)
collide at high centre-of-mass energy and produce the
hard scattering, with perturbatively computable cross
section. This is where signs of new physics may ap-
pear. The hard scattering cross section is process de-
pendent. We have discussed how it can be computed
from first principles, which can be improved systemat-
ically by computing the radiative corrections.

Before collision the colliding partons may emit
other partons collinear with the beam. These collinear
emissions in the initial state give rise to divergences
that can be factored into the renormalized parton dis-
tribution functions. After collision few energetic par-
tons appear that may emit less energetic partons and each develops showers of partons. Emissions into
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almost the same direction as the original parton occur with enhanced probability (due to the collinear
divergence) as well as emissions of soft gluon. This is represented in Figure 19 by red quark and gluon
lines. Both factorization and parton showering can be described from first principles based upon known
physics of QCD, and are universal, i.e., independent of the process and observable. We have seen how
factorization works, but have not discussed how parton showers are modelled with shower Monte Carlo
(SMC) programs [45,46]. We mentioned marginally how the large logarithms emerging in the final state
splittings can be resummed, which gives improved prediction for the cross section (as seen in Fig. 14),
but does not simulate events.

Parton showers still only give a description of events in terms of quarks and gluons, whereas
detectors detect only hadrons. We do not know how to compute hadronization, the transition from quarks
and gluon to hadrons, from first principles. Yet the idea of local parton-hadron duality (LPHD) provides
some sort of theoretical understanding (see, e.g., Ref. [47]). It states that after accounting for all gluon
and quark production down to scales' ΛQCD, the transition from partons to hadrons is essentially local
in phase space. Thus the hadron directions and momenta will be closely related to that of the partons,
and the hadron multiplicity will reflect the parton multiplicity, too. This is illustrated by the green lines
with dots.

In addition to the energetic partons in the initial state, there are also low-energy ones that may
collide, which is energy and process dependent. This low-energy physics is described in models of
underlying event, which are also part of modern SMC’s. The underlying event produces low-energy
partons. Also at the end of the shower low-energy partons emerge. As QCD confines partons, these
partons turn into hadrons before detection, a process called hadronization. We do not have a theory of
hadronization based on first principles. Instead, SMC’s include models that describe hadronization in a
process independent way. These models contain parameters that are fixed experimentally.

7 Conclusions
In these lectures we discussed the theoretical basis of interpreting the results of high-energy collider
experiments. We discussed how pQCD can be made predictive and also the main uncertainties in the
predictions. We used the following key ingredients in this tour: (i) gauge invariance that allows us to
write down the Lagrangian and which predicts many important features of the theory; (ii) renormalization
that cancels ultraviolet divergences systematically order-by-order in perturbation theory and introduces a
dimensionful scale into even the scaleless Lagrangian of massless QCD, leading to scaling violations of
one-scale observables that would be scale independent in the classical theory; (iii) asymptotic freedom at
high energies emerging from the quantum structure of the theory and the non-Abelian nature of the gauge
group; (iv) need for infrared safety, emerging from asymptotic freedom, to ensure that the IR divergences,
associated with unresolved parton emission, cancel between real and virtual contributions, allowing the
perturbative calculation of jet cross sections, without a detailed understanding of the mechanism by
which partons become jets; (v) factorization that makes possible to use perturbative QCD to calculate
the interactions of hadrons, since all the non-perturbative physics gets factorized, into parton distribution
functions; (vi) evolution and universality of PDF’s that allows us to extract those measuring cross sections
in one process, like DIS, and then used to predict the cross sections for any other process. Again, this
factorization introduces a scale dependence into the parton model so that the structure functions of DIS,
and other one-scale observables become scale dependent. These features make pQCD predictive, without
forcing us to solve the theory at all possible scales: unknown or uncalculable high- and low-energy effects
can be renormalized, factorized and cancelled away.

Of course, in four double lectures, it was impossible to give full treatment of any of the topics we
encountered. For that I refer to any of the classic textbooks about QCD at colliders [48–50].
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