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Abstract
We introduce aspects of physics beyond the Standard Model focusing on su-
persymmetry, extra dimensions, and a composite Higgs as solutions to the Hi-
erarchy problem. Lectures given at the 2013 European School of High Energy
Physics, Parádfürdő, Hungary, 5 – 18 June 2013.

This document is based on lectures by C.C. on physics beyond the Standard Model at the 2013
European School of High-Energy Physics. We present a pedagogical introduction to supersymmetry,
extra dimensions, and composite Higgs. We provide references to useful review literature and refer to
those for more complete citations to original papers on these topics. We apologize for any omissions in
our citations or choice of topics.

1 The Hierarchy Problem
At loop level, the Higgs mass receives corrections from self interactions, gauge loops, and fermion loops
(especially the top quark). Diagrammatically,

= + +

These loops are quadratically divergent and go like
∫
d4k (k2 −m2)−1 ∼ Λ2 for some cutoff scale Λ.

Explicitly,
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If Λ � 10 TeV (for example, Λ ∼ MPl), then the quantum correction to the Higgs mass is much larger
than the mass itself, δm2

H � m2
H . This is the Hierarchy problem: the Higgs mass is quadratically

sensitive to any mass scale of new physics. This problem is specific to elementary scalars.

Unlike scalars, the quantum corrections to fermion and gauge boson masses are proportional to the
particle masses themselves. In this way, small fermion and gauge boson masses are technically natural:
the loop corrections are suppressed by the smallness of the tree-level parameter. For fermions this is
because of the appearance of a new chiral symmetry in the massless limit. For gauge bosons this is
because gauge symmetry is restored in the massless limit. By dimensional analysis, the corrections to
these mass parameters cannot be quadratically sensitive to the cutoff, Λ,

∆me ∼ me ln

(
Λ

me

)
(1.2)

∆M2
W ∼M2

W ln

(
Λ

me

)
. (1.3)

The Hierarchy problem is independent of the renormalization scheme. It is sometimes argued
that in dimensional regularization there are no quadratic divergences since the 1/ε poles correspond
to logarithmic divergences. This is fallacious. The Hierarchy problem isn’t about the cancellation of
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Fig. 1: Heuristic two-loop contributions to the Higgs mass from heavy fermions, Ψ. Even though the Ψ
do not directly couple to the Higgs, they reintroduce a quadratic sensitivity to the new scale.

divergences, it is about the separation of the electroweak and UV scales. Any new physics coupled to
the Higgs will reintroduce the quadratic dependence on the scale at which the new physics appears. For
example, suppose new physics enters at the scale mS by a four-point interaction between the Higgs and
an additional complex scalar, ∆L ⊃ λS |H|2|S|2. The contribution to the Higgs mass from a loop of the
S particle is

δm2
H =

λS
16π2

[
Λ2

UV − 2m2
S ln

(
ΛUV

mS

)
+ (finite)

]
. (1.4)

Suppose one chose to ignore the term quadratic in the loop regulator, Λ2
UV—note that there’s no justi-

fication to do this—the logarithmically divergent piece (corresponding to the 1/ε) and the finite pieces
are proportional to the squared mass scale of the new physics, m2

S . The regulator ΛUV is not a physical
scale, but m2

S is the scale of new physics. The Higgs mass is quadratically sensitive to this scale, no
matter how one chooses to regulate the loop.

This quadratic sensitivity is true even if these new states are not directly coupled to the Higgs but
only interact with other Standard Model fields. For example, suppose there were a pair of heavy fermions
Ψ which are charged under the Standard Model gauge group but don’t directly interact with the Higgs.
One still expects two loop contributions to the Higgs mass from diagrams such as those in Fig. 1. These
contributions are of the form

δm2
H ∼

(
g2

16π2

)2 [
aΛ2

UV + 48m2
F ln

ΛUV

mF
+ (finite)

]
. (1.5)

This is indeed of the same form as (1.4). Note that in this case, the sensitivity to the new scale is softened
by a loop factor.

The Higgs mass operator |H|2 is a relevant and thus grows in the infrared. From the Wilsonian
perspective, the Hierarchy problem is the statement that is is difficult (finely tuned) to choose a renormal-
ization group trajectory that flows to the correct Higgs mass. In summary, the Hierarchy problem is the
issue that the Higgs massmH is sensitive to any high scale in the theory, even if it only indirectly couples
to the Standard Model. Thus naïvely one would expect that mH should be on the order of the scale of
new physics. In the Wilsonian picture, the Higgs mass is a relevant operator and so its importance grows
towards the IR. Indeed, mH is the only relevant operator in the Standard Model.

The implication of the Hierarchy problem is that there should to be new physics at the TeV scale
that eliminates the large loop contributions from above the TeV scale1. In these lectures we explore some
of options for the physics beyond the SM that enforce naturalness. Before going into further detail, here
is a brief overview of some of the possibilities for this to happen:

– Supersymmetry: relate the elementary scalar Higgs to fermions in such a way that the chiral
symmetry protecting the fermion mass is extended to also protect the scalar mass.

1See [1] for a recent discussion of naturalness and fine-tuning in the post-Higgs era.
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– Gauge-Higgs unification: relate the the elementary scalar Higgs to an elementary gauge field so
that gauge symmetry also protects the Higgs mass.

– Technicolor, Higgsless: there is no Higgs boson, just a dynamically generated condensate.

– Composite Higgs, warped extra dimensions: There is a Higgs, but it is not elementary. At
the TeV scale the Higgs “dissolves”: it becomes sensitive to large form factors that suppresses
corrections.

– Pseudo-Goldstone Higgs: The Higgs is a pseudo-Goldstone boson of a spontaneously broken
symmetry. This gives some protection against quadratic divergences, usually removing the one-
loop contribution. In practice one must still combine with additional mechanisms, such as in little
Higgs models.

– Large extra dimensions: The fundamental Planck scale is actually∼ TeV and only appears much
larger because gravity is diluted through its propagation in more directions.

2 Supersymmetry
Recall that under an infinitesimal transformation by an ‘ordinary’ internal symmetry, a quantum field φ
transforms as

ϕi → (1ij + iεaT aij)ϕj , (2.1)

where εa is an infinitesimal parameter, T a is the [bosonic] generator of the symmetry, and i, j label the
representation of φ with respect to this symmetry. These internal symmetries do not change the spin of
φ: bosons remain bosons and fermions remain fermions. Supersymmetry (SUSY) is a generalization
of this ‘ordinary’ symmetry where generator is now fermionic. Thus a SUSY transformation changes
fermions into bosons and vice versa.

Further reading: Wess and Bagger [?] is the canonical reference for the tools of supersymmetry. The text by Terning
has a broad overview of SUSY and its modern applications in particle physics. Additional reviews include [?, ?, 2]. Key
historical papers are collected in [3] and a more personal account is presented in [4]. More formal topics in SUSY that are
beyond the scope of these lectures, but are key tools for model builders, can be found in [5–7].

2.1 The SUSY algebra
The ’60s were very successful for classifying hadrons based on Gell-Mann’s SU(3) internal symmetry.
Physicists then tried to enlarge this group to SU(6) so that it would include

SU(3)Gell-Mann × SU(2)spin, (2.2)

but they were unable to construct a viable relativistic model. Later this was understood to be a result
of the Coleman-Mandula ‘no go’ theorem which states that one cannot construct a consistent quantum
field theory based on a nontrivial combination of internal symmetries with space-time symmetry [8].
The one exception came from Haag, Lopuszanski, and Sohnius: the only non-trivial combination of an
internal and spacetime symmetry is to use a graded Lie algebra whose generators are fermionic [9].
Recall that fermionic objects obey anti-commutation relations rather than commutation relations. The
main anti-commutation relation for SUSY is:

{
QAα , Qα̇B

}
= 2Pµσ

µ

αβ̇
δAB, (2.3)
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where the Q and Q are SUSY generators (supercharges) and Pµ is the momentum operator. Here the α
and α̇ are Lorentz indices while A,B index the number of supercharges. For completeness, the rest of
the algebra is

[Mµν ,Mρσ] = i(Mµνηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ) (2.4)

[Pµ, P ν ] = 0 (2.5)

[Mµν , P σ] = i(Pµηνσ − P νηµσ) (2.6)

[QAα ,M
µν ] = (σµν) β

α QAβ (2.7)

[QAα , P
µ] = 0 (2.8)

{QAα , QBβ } = εαβZ
AB. (2.9)

The ZAB may appear forN > 1 and are known as central charges. By the Coleman-Mandula theorem,
we know that internal symmetry generators commute with the Poincaré generators. For example, the
Standard Model gauge group commutes with the momentum, rotation, and boost operators. This carries
over to the SUSY algebra. For an internal symmetry generator Ta,

[Ta, Qα] = 0. (2.10)

This is true with one exception. The SUSY generators come equipped with their own internal symmetry,
called R-symmetry. For N = 1 there exists an automorphism of the supersymmetry algebra,

Qα → eitQα Qα̇ → e−itQα̇, (2.11)

for some transformation parameter t. This is a U(1) internal symmetry. Applying this symmetry pre-
serves the SUSY algebra. If R is the generator of this U(1), then its action on the SUSY operators is
given by

Qα → e−iRtQαeiRt. (2.12)

By comparing the transformation of Q under (2.12), we find the corresponding algebra,

[Qα, R] = Qα [Qα̇, R] = −Qα̇. (2.13)

Note that this means that different components of a SUSY multiplet have different R charge. For N > 1
the R-symmetry group enlarges to U(N ).

2.2 Properties of supersymmetric theories
Supersymmetric theories obey some key properties:

1. The number of fermionic degrees of freedom equals the number of bosonic degrees of freedom.
To see this, first introduce an operator (−)NF such that,

(−)NF |q〉 =

{
+ |q〉 boson
− |q〉 fermion

(2.14)

where NF is the fermion number operator. Note that

(−)NFQAα |q〉 = −QAα (−)NF |q〉 (2.15)

so that (−)NF and the supercharges anticommute,
{

(−)NF , QAα
}

= 0. Next consider the operator
in (2.3) weighted by (−)NF . When one sums over the states in a representation—which we write
as a trace over the operator—one finds:

Tr
[
(−)NF

{
QAα , Q

B
β̇

}]
= Tr

[
−QAα (−)NFQ

B
β̇ + (−)NFQ

B
β̇Q

A
α

]
= 0, (2.16)
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where in the last step we’ve used the cyclicity of the trace to convert the first term into the second
term up to a minus sign. By (2.3) the left-hand side of this equation is simply Tr

[
(−)NF 2σµ

αβ̇
Pµ

]
.

Note that since Poincaré symmetry is assumed to be unbroken, Pµ is identical for each state in a
representation. Thus we are left with the conclusion that

Tr(−)NF = 0, (2.17)

which implies that there is an equal number of fermions and bosons.

2. All states in a supersymmetry multiplet (‘supermultiplet’ or superfield) have the same mass. This
follows from the equivalence of Pµ acting on these states.

3. Energy for any state Ψ is positive semi-definite 〈Ψ|H|Ψ〉 ≥ 0 and the energy for any vacuum with
unbroken SUSY vanishes exactly, 〈0|H|0〉 = 0.

2.3 Classification of supersymmetry representations
For the basic case of N = 1 SUSY there is a single supercharge Q and its conjugate Q. The massless
representations of this class of theories are separated into two cases:

– (anti-)chiral superfield: contains a complex scalar and a 2-component (Weyl) spinor.

– vector superfield: contains a 2-component (Weyl) spinor and a gauge field.

These are the only N = 1 representations that do not involve fields with spin greater than 1.

Multiplets when there is more supersymmetry. If there are more SUSY charges, e.g.N = 2, then the smallest represen-
tation is the hypermultiplet which contains a 4-component (Dirac) fermion and two complex scalars. For supersymmetric
extensions of the SM it is sufficient to focus only on theN = 1 case since this is the only case which admits the observed
chiral fermions of the Standard Model.

One can compare the number of bosonic and fermionic degrees of freedom in these representa-
tions. In the chiral superfield, the complex scalar carries 2 degrees of freedom while the complex Weyl
spinor carries 4 degrees of freedom. Recall, however, that fermions only have two helicity states so that
in fact only 2 of these fermionic degrees of freedom propagate on-shell. Since one of the key points of
using fields to describe physical particles is that we can describe off-shell propagation, we would like to
also have supersymmetry hold off-shell. This requires adding two ‘dummy’ scalar degrees of freedom,
which we package in a non-propagating ‘auxiliary’ complex field F :

Field off-shell degrees of freedom on-shell degrees of freedom
scalar, φ 2 2
fermion, ψ 4 2
auxiliary, F 2 0

For the vector superfield the Weyl spinor has 4 (2) off-(on-)shell degrees of freedom while the
massless gauge boson has 3 (2) off(on-)shell degrees of freedom after identifying gauge equivalent states.
As in the chiral superfield, the number of on-shell degrees of freedom match automatically while the
number of off-shell degrees of freedom require an additional non-propagating auxiliary field. In this
case we introduce a real scalar, D:

Field off-shell degrees of freedom on-shell degrees of freedom
fermion, ψ 4 2
gauge boson, Aµ 3 2
auxiliary, D 1 0
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2.4 Superspace
The most convenient way to describeN = 1 supersymmetric field theories is to use the superspace for-
malism. Here we understand the supersymmetry transformation generated by Q and Q to be a spacetime
transformation in an additional fermionic dimension. To do this, we introduce Weyl spinor superspace
coordinates θα and θ̄α̇. Superfields are functions of x, θ, and θ̄ and encode all of the off-shell degrees of
freedom of a supermultiplet.

Weyl spinors and van der Waerden notation. We assume familiarity with two-component Weyl spinors. These are the
natural language for fermions in four-dimensions. We use the van der Waerden notation with dotted and undotted indices
to distinguish the indices of left- and right-chiral spinors. Readers unfamiliar with this notation may consult [?, ?]. The
encyclopedic ‘two component bible’ is a useful reference for full details and as a template for doing calculations [10].

The SUSY algebra tells us that the effect of a SUSY transformation with infinitesimal parameters ε
and ε̄ on a superspace coordinate (x, θ, θ̄) is

(xµ, θ, θ̄)→ (xµ + iθσµε̄− iεσµθ̄, θ + ε, θ̄ + ε̄). (2.18)

It is useful to define the superspace covariant derivatives,

Dα = +
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ Dα̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ. (2.19)

These are ‘covariant derivatives’ in that they anticommute with the SUSY generators2. They satisfy

{Dα, Dβ̇} = −2i(σµ)αβ̇∂µ and {Dα, Dβ} = {Dα̇, Dβ̇} = 0 (2.20)

By expanding in the fermionic coordinates, a generic superfield F (x, θ, θ̄) can be written in terms
of component fields of different spin that propagate on ordinary spacetime,

F (x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θ2M(x) + θ̄2N(x) + θσµθ̄vµ(x) + θ2θ̄λ̄(x) + θ̄2θξ + θ2θ̄2D(x).

This expansion is exact because higher powers of θ or θ̄ vanish identically because an anticommuting
number θ1 satisfies (θ1)2 = 0. As a sanity check, we are allowed quadratic terms in θ since it is a Weyl
spinor and θ2 = θαθα = εαβθβθα = 2θ1θ2.

With modest effort, one can work out the transformation of each component of this general super-
field by applying the transformation (2.18), expanding all fields in θ and θ̄, and matching the coefficients
of each term. Some of the terms require massaging by Fierz identities to get to the correct form. Fortu-
nately, the general superfield above is a reducible representation: some of these fields do not transform
into one another. We can restrict to irreducible representations by imposing one of the following condi-
tions:

chiral superfield DαΦ = 0 (2.21)

anti-chiral superfield Dα̇Φ = 0 (2.22)

vector (real) superfield V = V † (2.23)

linear superfield D
2
L = D2L = 0 (2.24)

The chiral and anti-chiral superfields carry Weyl fermions of left- and right-handed helicity respectively.
It is convenient to write all anti-chiral superfields into chiral superfields, for example by swapping the
right-handed electron chiral superfield with a left-handed positron superfield. The field content is identi-
cal, one is just swapping which is the ‘particle’ and which is the ‘anti-particle.’

2One may be used to thinking of covariant derivatives as coming from local symmetries with some gauge field. Here,
however, we consider only global SUSY. Geometrically, the covariant derivative comes from the fact that even rigid superspace
carries torsion [11].
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The linear superfield. The defining condition for this superfield includes a constraint that the vector component is
divergence free, ∂µV µ = 0. It is thus a natural supersymmetrization of a conserved current. We will not consider linear
superfields further in these lectures.

2.5 Supersymmetric Lagrangians for chiral superfields
One can check that because Dα̇(xµ + iθσµθ̄) = 0, any function of yµ = xµ + iθσµθ̄ is automatically a
chiral superfield (χSF). Indeed, the most compact way of writing the components of a χSF is

Φ(y, θ) = ϕ(y) +
√

2θψ(y) + θ2F (y). (2.25)

Again, we point out that this expansion is exact since higher powers of the Weyl spinor θ vanish by the
antisymmetry of its components. Under a SUSY transformation with parameter ε, the components of the
χSF each transform as

δεϕ(x) =
√

2εψ(x) (2.26)

δψ(x) = i
√

2σµε̄∂µϕ(x) +
√

2εF (x) (2.27)

δεF (x) = i
√

2ε̄σ̄µ∂µψ(x). (2.28)

Observe that the auxiliary field transforms into a total spacetime derivative. This is especially nice since
a total derivative vanishes in the action and so the highest component of a χSF is a candidate for a
SUSY-invariant term in the Lagrangian. Thus we arrive at our first way of constructing supersymmetric
Lagrangian terms: write the F -term of a chiral superfield.

To generate interesting interactions we don’t want to write the F -terms of our fundamental fields—
indeed, these are generally not even gauge invariant. Fortunately, one can check that a product of chiral
superfields is itself a chiral superfield. Indeed, a general way of writing a supersymmetry Lagrangian
term built out of chiral superfields is

L =

∫
d2θ W (Φ) + h.c., (2.29)

whereW is a holomorphic function of chiral superfields called the superpotential. Note that the integral
over d2θ is an ordinary fermionic integral that just picks out the highest component of W . Performing
the fermionic integral gives Lagrangian terms

L = −∂
2W (ϕ)

∂Φi∂Φj
ψiψj −

∑

i

∣∣∣∣
∂W (ϕ)

∂Φi

∣∣∣∣
2

. (2.30)

Observe that the superpotential is evaluated on the scalar components of the superfields, Φ = ϕ. One
can check that restricting to renormalizable terms in the Lagrangian limits the mass dimension of the
superpotential to [W ] ≤ 3.

Cancellation of quadratic divergences. One can check from explicit calculations that the SUSY formalism ensures the
existence of superpartner particles with just the right couplings to cancel quadratic divergences. A more elegant way to
see this, however, is to note that the symmetries of superspace itself prevent this. While it is beyond the scope of these
lectures, the superpotential is not renormalized perturbatively—see, e.g. [5,12] for details. The holomorphy of W plays a
key role in these arguments. The symmetries of the theory enforce the technical naturalness of parameters inW , including
scalar masses.

Superpotential terms, however, do not include the usual kinetic terms for propagating fields. In
fact, one can show that these terms appear in the θ2θ̄2 term of the combination

Φ†Φ
∣∣∣
θ2θ̄2

= FF ∗ +
1

4
ϕ∗∂2ϕ+

1

4
∂2ϕ∗ϕ− 1

2
∂µϕ

∗∂µϕ+
i

2
∂µψ̄σ̄

µψ − i

2
ψ̄σ̄∂µψ. (2.31)

Two immediate observations are in order:
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1. The complex scalar ϕ and Weyl fermion ψ each have their canonical kinetic term. The non-
propagating field, F , does not have any derivative terms: its equation of motion is algebraic and
can be solved explicitly. This is precisely what is meant that F is auxiliary.

2. Φ†Φ is not a chiral superfield. In fact, it’s a real superfield and the θ2θ̄2 component is the auxiliary
D field. Indeed, in the same way that the highest component of a χSF transforms into a total
derivative, the highest component of a real superfield also transforms into a total derivative and is
a candidate term for the Lagrangian.

We thus arrive at the second way to write supersymmetric Lagrangian terms: take the D-term of a real
superfield. We may write this term as an integral over superspace,

∫
d4θ Φ†Φ, where d4θ = d2θ d2θ̄.

More generally, we may write a generic real function K(Φ,Φ†) of chiral superfields, Φ and Φ†,
whose D term is supersymmetric contribution to the Lagrangian. This is called the Kähler potential.
The simplest Kähler potential built out of chiral superfields is precisely (2.31) and includes the necessary
kinetic terms for the chiral superfield. One can check that restricting to renormalizable terms in the
Lagrangian limits the mass dimension of the Kähler potential to [K] ≤ 2. Combined with the condition
that K is real and the observation that chiral superfields are typically not gauge invariant, this usually
restricts the Kähler potential to take the canonical form, K = Φ†iΦi.

The most general N = 1 supersymmetric Lagrangian for chiral superfields is thus

L =

∫
d4θ K(Φ,Φ†) +

(∫
d2θ W (Φ) + h.c.

)
. (2.32)

This expression is general, but renormalizability restricts the mass dimensions to be [K] ≤ 2 and [W ] ≤
3. For theories with more supersymmetry, e.g. N = 2, one must impose additional relations between
K and W . Assuming a renormalizable supersymmetric theory of chiral superfields Φi, we may plug in
K = Φ†iΦi and integrate out the auxiliary fields from (2.32). The result is

L = ∂µϕ
∗
i ∂

µϕi + iψ̄iσ̄
µ∂µψi −

∂2W

∂ϕi∂ϕj
ψiψj −

∑

i

∣∣∣∣
∂W

∂ϕi

∣∣∣∣
2

. (2.33)

Here the superpotential is assumed to be evaluated at its lowest component so that W [Φi(y, θ)] →
W [ϕi(x)]. Observe that dimension-2 terms in the superpotential link the mass terms of the Weyl fermion
and the complex scalar. Further, dimension-3 terms in the superpotential connect Yukawa interactions to
quartic scalar couplings.

2.6 Supersymmetric Lagrangians for vector superfields
Until now, however, we have only described supersymmetric theories of complex scalars and fermions
packaged as chiral superfields. In order to include the interactions of gauge fields we must write down
SUSY Lagrangians that include vector superfields.

Suppose a set of chiral superfields Φ carry a U(1) charge such that Φ(x) → exp(−iΛ)Φ(x). For
an ordinary global symmetry this is an overall phase on each component of the chiral superfield. For a
gauge symmetry, the transformation parameter is spacetime dependent, Λ = Λ(x). Note, however, that
this is now problematic because our definition of a chiral superfield, DαΦ = 0, contains a spacetime
derivative. It would appear that the naïve gauge transformation is not consistent with the irreducible
SUSY representations we’ve written because it does not preserve the chiral superfield condition.

This inconsistency is a relic of keeping Λ(x) a function of spacetime rather than a function of the
full superspace. We noted above that a function of yµ = xµ + iθσµθ̄ is a chiral superfield and, further,
that a product of chiral superfields is also a chiral superfield. Thus a consistent way to include gauge
transformations is to promote Λ(x) to a chiral superfield Λ(y) so that exp(−iΛ(y))Φ(y) is indeed chiral.
In this way we see that supersymmetry has ‘complexified’ the gauge group.
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Under this complexified gauge transformation, the canonical Kähler potential term that contains
the kinetic terms transforms to

Φ†Φ→ Φ†e−i(Λ−Λ†)Φ. (2.34)

For gauge theories one must modify the Kähler potential to accommodate this factor. This is unsurprising
since gauging an ordinary quantum field theory requires one to modify the kinetic terms by promoting
derivatives to covariant derivatives which include the gauge field. To correctly gauge a symmetry, we
introduce a vector (real) superfield (VSF) V which transforms according to

V → V + i(Λ− Λ†) (2.35)

and promote the Kähler potential to

K(Φ,Φ†) = Φ†eV Φ. (2.36)

A generic VSF has many components, but many can be eliminated by partially gauge fixing to the
Wess-Zumino gauge where

V =− θσµθ̄Vµ(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ2θ̄2D(x). (2.37)

here Vµ(x) is the gauge field of the local symmetry, λ(x) and λ̄(x) = λ†(x) are gauginos, and D(x) is
the auxiliary field needed to match off-shell fermionic and bosonic degrees of freedom. The two gauginos
are the pair of two-component spinors that make up a Majorana four-component spinor. This gauge
choice fixes the complex part of the ‘complexified’ gauge symmetry, leaving the ordinary spacetime
(rather than superspace) gauge redundancy that we are familiar with in quantum field theory.

We have not yet written a kinetic term for the vector superfield. A useful first step is to construct
the chiral superfield,

Wα =− 1

4
D
α̇
Dα̇DαV (2.38)

=− iλα(y) + θβ

[
δβαD(y)− i

2
(σµσ̄ν)βα Fµν(y)

]
+ θ2σµαα̇∂µλ̄

α̇(y). (2.39)

One can see thatWα is a chiral superfield becauseDβ̇Wα = 0 from the antisymmetry of the components
of D̄, (2.20). Observe that unlike Φ, the lowest component is a spin-1/2 field. Further, W contains the
usual gauge field strength. Indeed, one can write the supersymmetric Yang Mills kinetic terms for the
vector superfield as

LSYM =
1

4
WαWα|2θ + h.c. =

1

4

∫
d2θW2 + h.c.. (2.40)

One can check that this gives the usual kinetic terms for the gauge field and gauginos as well as an
auxiliary term. For completeness, the general form of the field strength superfield for a non-Abelian
supersymmetric gauge theory is

T aWa
α = −1

4
D
ȧ
Dȧe

−TaV aDαe
TaV a . (2.41)

Under a non-Abelian gauge transformation the chiral and vector superfields transform as

Φ→ e−gT
aΛaΦ (2.42)

eT
aV a → eT

aΛa†eT
aV aeT

aΛa . (2.43)
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The final form of the renormalizable, gauge-invariant, N = 1 supersymmetric Lagrangian is

L =

∫
d4θΦ†ie

gV Φi +

∫
d2θ

(
1

4
Wa
αWαa + h.c.

)
+

∫
d2θ (W (Φ) + h.c.) . (2.44)

Non-renormalization and the gauge kinetic term. Although W2 looks like it could be a superpotential term, it is
important to treat it separately since it is the kinetic term for the gauge fields. Further the arguments that the superpotential
is not renormalized in perturbation theory do not hold for theW2 term. Indeed, the prefactor ofW2 can be identified with
the [holomorphic] gauge coupling, which is only corrected perturbatively at one loop order. One way to see this is to note
that for non-Abelian theories, the gauge kinetic termW2 d2θ+ h.c. also includes a topological term, FF̃ , which we know
is related to anomalies. Another way to see this is the note that the simplest demonstration of non-renormalization of the
superpotential makes use of holomorphy and the global symmetries of W : the vector (real) superfield from whichWα is
built, however, is not holomorphic and its fields cannot carry have the U(1) global symmetries used in the proof.

2.7 Example: SUSY QED
As a simple example, consider the supersymmetric version of quantum electrodynamics, SQED. In ordi-
nary QED we start with a Dirac spinor representing the electron and positron. Since we’ve seen above
that a chiral superfield only contains a Weyl spinor, we require two chiral superfields, Φ±, which we
may interpret to be the electron and positron superfields. Our only two inputs are the electromagnetic
coupling e and the electron mass m. The latter suggests a superpotential

W (Φ+,Φ−) = mΦ+Φ−. (2.45)

Writing out the resulting Lagrangian in components:

LSQED =

[
1

2
D2 − 1

4
FµνF

µν − iλσµ∂µλ̄
]

+ F ∗+F+ + |Dµϕ+|2 + iψ̄+Dµσ̄
µψ+

+ F ∗−F− + |Dµϕ−|2 + iψ̄−Dµσ̄
µψ−

− ie√
2

(
ϕ+ψ̄+λ̄− ϕ−ψ̄−λ̄

)
+ h.c.

+
e

2
D
(
|ϕ+|2 − |ϕ−|2

)

+m (ϕ+F− + ϕ−F+ − ψ+ψ−) + h.c. (2.46)

We can write this out explicitly by solving for the auxiliary fields D, F±. The equations of motion are

D = −e
2

(
|ϕ+|2 − |ϕ−|2

)
F± =−mϕ∗∓. (2.47)

Plugging this back into the Lagrangian gives

LSQED =
∑

i=±

(
|Dµϕi|2 + iψ̄iDµσ̄

µψi
)
− 1

4
FµνF

µν − iλσµ∂µλ̄

−m2
(
|φ+|2 + |φ−|2

)
−mψ+ψ− −mψ̄+ψ̄−

− e2

8

(
|ϕ+|2 − |ϕ−|2

)2 −
[
ie√

2

(
ϕ+ψ̄+λ̄− ϕ−ψ̄−λ̄

)
+ h.c.

]
. (2.48)

The first line gives the kinetic terms for the electron ψ−, positron ψ−, selectron (φ−), spositron (φ+),
photon Aµ, and photino λ. The second line gives an equivalent mass to the chiral scalars and fermions.
The last line gives vertices that come from the supersymmetrization of the kinetic terms: four-point scalar
interactions from the D terms and a three-point Yukawa-like vertex with the ‘chiral’ scalars and photino.
The relation between the gauge group and the four-point scalar interaction plays a central role in how the
Higgs fits into SUSY, as we show below.
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χSF SU(3)c SU(2)L U(1)Y

Q 3 2 1/6

Ū 3 1 −2/3

D̄ 3 1 1/3

L 1 2 −1/2

Ē 1 1 −1
Hd 1 2 1/2

Hu 1 1 −1/2

Table 1: Matter content of the MSSM. Note that we have used 2 = 2 for SU(2)L.

2.8 The MSSM
We now focus on the minimal supersymmetric extension of the Standard Model, the MSSM. To go from
the SM to the MSSM, it is sufficient to promote each SM chiral fermion into a chiral superfield and each
SM gauge field into a vector superfield. Thus for each SM fermion there is a new propagating scalar
sfermion (squarks or sleptons) and for each SM gauge field there is also a propagating gaugino, a fermion
in the adjoint representation. As we showed above, off-shell SUSY also implies non-propagating auxiliary
fields.

The matter (χSF) content of the MSSM is shown in Table 1. It is the same as the SM except that we
require two Higgs doublet chiral superfields. This is necessary for the cancellation of the SU(2)2

L×U(1)Y
and SU(2)L Witten anomalies coming from the Higgs fermions, or Higgsinos. An additional hint that this
is necessary comes from the observation that the superpotential is a holomorphic function of the chiral
superfields while the Standard Model up-type Yukawa coupling requires the conjugate of the Higgs,
H̃ = iσ2H∗.

The most general renormalizable superpotential made with these fields can be split into two terms,
W = W (good) +W (bad),

W (good) =yiju Q
iHuŪ

j + yijd Q
iHdD̄ + yije L

iHdĒ
j + µHuHd (2.49)

W (bad) =λijk1 QiLjD̄k + λijk2 LiLjĒk + λi3L
iHu + λijk4 D̄iD̄jŪk. (2.50)

In W (good) one can straight forwardly identify the Standard Model Yukawa couplings which give the
SM fermions their masses. Since these are packaged into the superpotential these terms also encode the
additional scalar quartic interactions required by supersymmetry. The last term inW (good) is a supersym-
metric Higgs mass known as the µ-term. By supersymmetry this term also gives a mass to the Higgsinos,
which we require since we do not observe any very light chiral fermions with the quantum numbers of a
Higgs.

The W (bad) terms, on the other hand, are phenomenologically undesirable. These are renormal-
izable interactions which violate baryon (B) and/or lepton (L) number and are thus constrained to have
very small coefficients. Compare this to the SM where B and L are accidental symmetries: all renor-
malizable interactions of SM fields allowed by the SM gauge group preserve B and L. Violation of these
symmetries only occurs at the non-renormalizable level and are suppressed by what can be a very high
scale, e.g. MGUT.

We see that in the MSSM we must find ways to forbid, or otherwise strongly suppress, the terms
in W (bad). Otherwise one would be faced with dangerous rates for rare processes such as proton decay,
p+ → e+π0 or ν̄π+ (or alternately with π replaced with K) as shown in Fig. 2. Observe that this is a
tree level process and all of the couplings are completely unsuppressed.

A simple way to forbid W (bad) is to impose matter parity, which is a Z2 symmetry with assign-
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d̄

ū

˜̄d, ˜̄s, ˜̄b

λ4 λ1

Q

L

ū ū

Fig. 2: Proton decay mediated by squarks. Arrows indicate helicity and should not be confused with the
‘charge flow’ arrows of Dirac spinors [10]. Tildes indicate superpartners while bars are used to write
right-chiral antiparticles into left-chiral fields in the conjugate representation.

ments:

Superfield Matter parity
quark, lepton χSF PM = −1
Higgs χSF PM = +1
gauge VSF PM = +1.

Under these assignments, all terms in W (good) have PM = +1 while all terms in (bad) have PM = −1.
One can check that one may write matter parity in terms of baryon and lepton number as

PM = (−)3(B−L). (2.51)

A common variation of this is to impose the above constraint using R-parity,

PR = (−)3(B−L)+2s, (2.52)

where s is the spin of the field. Conservation of matter parity implies conservation of R-parity. This is
because the (−)2s factor always cancels in any interaction term since Lorentz invariance requires that
any such term has an even number of fermions. Observe that all SM fields have R-parity +1 while all
superpartner fields haveR-parity−1. (This is similar to T -parity for Little Higgs models.) The diagrams
assocaited with electroweak precision observables carry only SM external states. Since R-parity requires
pair-production of superpartners, this means that electroweak precision corrections cannot occur at tree-
level and must come from loop diagrams.

It is important to understand that R-parity (or matter parity) is an additional symmetry that we
impose on top of supersymmetry. R-parity has some important consequences:

1. The lightestR-parity odd particle is stable. This is known as the lightest supersymmetric particle
or LSP. If the LSP is an electrically neutral color singlet—as we shall assume—it is a candidate for
WIMP-like DM.

2. Each superpartner (sparticle) other than the LSP will decay. At the end of any such sequence of
decays one is left with an odd number (usually one) of LSPs.

3. In collider experiments, the initial state has PR = +1 so that only an even number of sparticles
can be produced at a time (e.g. via pair production). At the end of the decay these end up as LSPs
which manifest themselves as missing energy signals at colliders.

For most of this document we postulate that the MSSM has exact R-parity conservation—though this is
something of an ad-hoc assumption.
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2.9 Supersymmetry breaking
Any scalar partners to the SM leptons or quarks with exactly degenerate masses as their SM partner would
have been discovered long ago. Thus, the next piece required to construct a realistic MSSM is a way to
break supersymmetry and split the mass degeneracy between the SM particles and their superpartners.
Since we want to keep the desirable ultraviolet behavior of supersymmetry, we assume that SUSY is a
fundamental symmetry of nature which is spontaneously broken.

SUSY is unbroken when the supercharges annihilate the vacuum, Q|0〉 = Q|0〉 = 0. The SUSY

algebra, {Q,Q} = 2σµPµ allows us to write the four-momentum operator as Pµ = 1
4 σ̄

ν{Q,Q} so that
the Hamiltonian is

H = P 0 =
1

4

(
Q1Q1̇ +Q1̇Q1 +Q2Q2̇ +Q2̇Q2

)
. (2.53)

Observing that this expression is positive semi-definite, we see that

if SUSY is unbroken, 〈0|H|0〉 = 0
if SUSY is broken, 〈0|H|0〉 > 0

.

The vacuum energy can be read from the scalar potential,

V [φ] = VF [φ] + VD[φ] (2.54)

VF [φ] =
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

=
∑

i

|Fi|2 (2.55)

VD[φ] =
∑

a

1

2
g2

∣∣∣∣∣
∑

i

φ†iT
aφi

∣∣∣∣∣

2

=
∑

a

1

2
gDaDa. (2.56)

We see that SUSY breaking corresponds to one of the auxiliary fields, Fi or Di, picking up a vacuum
expectation value (VEV). We refer to the case 〈Fi〉 6= 0 as F -type SUSY breaking and the case 〈D〉 6= 0
as D-type SUSY breaking.

When an ordinary global symmetry is spontaneously broken due to a field picking up a VEV there
exists a massless boson in the spectrum of the theory known as the Goldstone boson. In the same way,
when SUSY is broken spontaneously due to a auxiliary field picking up a VEV, there exists a massless
fermion in the theory known as the Goldstino3. The spin of this field is inherited by the spin of the
SUSY generators. Heuristically, the massless Goldstone modes correspond to acting on the VEV with the
broken generators and promoting the transformation parameters to fields. Since the SUSY transformation
parameter is fermionic, the Goldstone field must also be fermionic.

For example, if 〈F 〉 6= 0, then the transformation of the fermion ψ under the broken (SUSY)
generator is

δεψ = 2ε〈F 〉. (2.57)

SUSY acts as a shift in the fermion, analogously to the shift symmetry of a Goldstone boson under a
spontaneously broken global internal symmetry. If there is more than one superfield with a non-zero F
term, then

δεψi = 2ε〈Fi〉 (2.58)

ψGoldstone =
∑

i

Fi√∑
i F

2
i

ψi. (2.59)

3This is somewhat unfortunate nomenclature. One would expect the massless mode coming from spontaneously broken
SUSY to be called a Goldstone fermion whereas the ‘Goldstino’ should refer to the supersymmetric partner of a Goldstone
boson coming from the spontaneous breaking of an ordinary symmetry.
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Note that we have used the convention that, when there is no ambiguity, F refers to the SUSY breaking
background value, dropping the brackets 〈· · · 〉 to avoid clutter. One can further generalize this to include
a linear combination of gauginos when there is also D-term SUSY breaking.

When ordinary spontaneously broken internal symmetries are promoted to gauge symmetries, their
Goldstone modes are ‘eaten’ and become the longitudinal polarization of the gauge fields. Similarly,
gauging supersymmetry corresponds to writing a theory of supergravity. The gravitino then becomes
massive by eating the Goldstino from spontaneous SUSY breaking.

2.10 Sum rule for broken SUSY
Even when it is spontaneously broken, SUSY is a strong constraint on the parameters of a theory. One
of the most important constraints is the SUSY sum rule, which relates the traces of the mass matrices of
particles of different spins.

First consider the mass terms for chiral fermions (ψ) and gauginos (λ):

i
√

2g (T a)ij
(
ϕiλ̄

aψ̄j − ϕ∗λψ
)
− ∂2W

∂ϕi∂ϕj
ψiψj + h.c. (2.60)

We may write this succinctly as a mass matrix,

(
ψi λa

)( Fij
√

2Dbi√
2Daj 0

)(
ψj
λb

)
, (2.61)

where we use the shorthand notation

Fij =
∂Fi
∂ϕj

=
∂2W

∂ϕi∂ϕj
Dai =

∂Da

∂ϕi
= gϕ∗iT

a. (2.62)

Call this fermion mass matrix m(j=1/2). Next, the scalar mass matrix
(
m2
)(j=0)

ij
is obtained by the

Hessian of the scalar potential,



∂2V
∂ϕi∂ϕ∗j

∂2V
∂ϕi∂ϕj

∂2V
∂ϕ∗i ∂ϕ

∗
j

∂2V
∂ϕ∗i ∂ϕj


 =

(
F̄ ijFkj +Di

aDaj +Di
ajDa F̄ ijkFk +Dj

aD
j
a

FijkF̄
k +DaiDaj FikF̄

jk +DaiD
j
a +Dj

aiDa

)
. (2.63)

Finally, the gauge boson matrix comes from the kinetic terms
∑

i

g2|AaµT aαβφiα|2 = |AaµDi
a|2, (2.64)

and may thus be written

(m2)
(j=1)
ab = Di

aDbi +DaiD
i
b. (2.65)

The traces of the squared mass matrices are, respectively,

Tr m(j=1/2)
(
m(j=1/2)

)†
=FijF̄

ij + 4|Dai|2 (2.66)

Tr
(
m(j=0)

)2
=2F ijF̄ij + 2Di

aDai + 2DaD
i
ai (2.67)

Tr
(
m(j=1)

)2
=2DaiD

i
a. (2.68)
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For convenience, we may define the supertrace, a sum of the squared mass matrices weighted by the
number of states,

STr
(
m(j)

)2
≡
∑

j

Tr (2j + 1)(−)2jm2 (2.69)

=− 2FF̄ − u|Dai|2 + 2FF̄ + 2Di
aDai + 2DaD

i
ai + 3 · 2DaiD

i
a (2.70)

=2Da(Da)
i
i (2.71)

=2Dã

∑

i

q
(ã)
i (2.72)

Note that 〈Da〉 6= 0 only for U(1) factors, so (Da)
i
i =

∑
qi, the sum of all U(1) charges. We have written

ã to index only the U(1) factors of the gauge group. Note, however, that usually
∑

i

q
(ã)
i = 0 (2.73)

due to anomaly cancellation. This leads to the very stringent constraint that

STr m2 = 0. (2.74)

Note that this is a tree-level result that assumes renormalizable interactions4.

2.11 Soft breaking and the MSSM
The sum rule (2.74) is a road block to SUSY model building. To see why, consider the scalar mass matrix
(2.63) applied to squarks. In order to preserve SU(3)c, the squarks should not obtain a VEV. This implies
that the D-terms vanish, Di

a = Dcolor = 0, for squarks. Thus further means that quarks only get their
masses from the superpotential.

Similarly preserving U(1)EM implies that the D-terms corresponding to the electrically charged
SU(2)L directions should also vanish: D± = D1,2 = 0. This means that the only D-terms which are al-
lowed to be non-trivial areD3 andDY , corresponding to the third generator of SU(2)L and hypercharge.
The scalar mass matrix for the up-type quarks is then

m2
2/3 =

(
m2/3m

†
2/3 +

(
1
2gD3 + 1

6g
′DY

)
1 ∆

∆† m2/3m
†
2/3 − 2

3g
′DY 1

)
(2.75)

m2
1/3 =

(
m1/3m

†
1/3 +

(
−1

2gD3 + 1
6g
′DY

)
1 ∆′

∆′† m1/3m
†
1/3 + 1

3g
′DY 1

)
, (2.76)

where the ∆ and ∆′ are the appropriate expressions from (2.63) andm2/3,1/3 correspond to the quadratic
terms in the superpotential that contribute to the quark masses.

Charge conservation requires the sum of D terms to vanish, so that at least one D term is less than
or equal to zero. For example, suppose that

1

2
gD3 +

1

6
g′DY ≤ 0. (2.77)

Let β be the direction in field space corresponding to the up quark. Then β is an eigenvector of the quark
mass matrix m2/3 with eigenvalue mu. Then (2.77) implies that

(
β† 0

)
m2

2/3

(
β
0

)
≤ m2

u. (2.78)

4Non-renormalizable terms in the Kähler potential, for example, modify how the superpotential terms contribute to the
scalar potential since one has to rescale fields for them to be canonically normalized.
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This implies that there exists a squark in the spectrum that has a tree-level mass less than the up quark.
Such an object would have been discovered long ago and is ruled out.

More generally, the observation that there is at least one negative D-term combined with the form
of the squark matrices (2.75) and (2.76) implies that there must exist a squark with mass less than or
equal to either mu or md. Thus even if SUSY is broken, it appears that any supersymmetric version of
the Standard Model is doomed to be ruled out at tree level.

In order to get around this restriction, one typically breaks SUSY in a separate supersymmetry
breaking sector (���SUSY) that is not charged under the Standard Model gauge group. This ���SUSY sector
still obeys a sum rule of the form (2.74) but the spectrum is no longer constrained by observed SM

particles. In order for the���SUSY sector to lend masses to the SM superpartners, one assumes the existence
of a messenger sector which interacts with both the SM and the ���SUSY sectors. The messenger sector
transmits the SUSY-breaking auxiliary field VEV to the SM sector and allows the SM superpartners to
become massive without violating the sum rule (2.74). Note that this also allows a large degree of
agnosticism about the details of the���SUSY sector—as far as the phenomenology of the MSSM is concerned,
we only need to know about the���SUSY scale and the properties of the messenger sector.

There are two standard types of assumptions for the messenger sector depending on how one
assumes it couples to the SM:

– Gravity mediation: here one assumes that the SM and ���SUSY breaking sectors only communicate
gravitationally. The details of these interactions fall under the theory of local supersymmetry, or
supergravity (SUGRA), but are typically not necessary for collider phenomenology.

– Gauge mediation: The messenger sector contains fields which are charged under the SM gauge
group.

An alternative way around the ���SUSY sum rule is to construct a ‘single sector’ model based on strong
coupling [13,14]. These turn out to be dual to 5D models of SUSY breaking using tools that we introduce
in Section 3.

Often we are only interested in the properties of the Standard Model particles and their superpart-
ners. We can ‘integrate out’ the details of the messenger sector and parameterize SUSY breaking into
non-renormalizable interactions. As an example, suppose that a superfield, X , breaks supersymmetry
by picking up an F -term VEV: 〈X〉 = · · · + 〈F 〉θ2. X may also have a scalar VEV, but this does not
break SUSY. We then parameterize the types of non-renormalizable couplings that are generated when
we integrate out the messenger sector. We have four types of terms:

1. Non-holomorphic scalar masses are generated by higher order Kähler potential terms such as
∫
d4θ

X†X
M2

Φ†Φ =

(
F

M

)2

ϕ∗ϕ+ (SUSY preserving terms). (2.79)
∫
d4θ

X +X†

M
Φ†Φ =

(
F ∗

M

)∫
d2θ Φ†Φ + h.c. + (SUSY preserving terms). (2.80)

We have written the SUSY-breaking part of (2.80) suggestively to appear as a non-holomorphic
superpotential term. Since Φ† only contains θ̄s and not θ,

∫
d2θΦ†Φ = ϕ∗Fϕ = ϕ∗W ′[ϕ∗]. For

renormalizable superpotentials, this can give an A-term of the form (2.82) or a b-term of the form
(2.81) below; the latter with a slightly different scaling with F .

The mass scale M is required by dimensional analysis and is naturally the scale of the mediator
sector that has been integrated out. For gravity mediation M ∼ MPl while for gauge mediation
M ∼ Mmess, the mass of the messenger fields. Doing the Grassmann integral and picking the
terms that depend on the SUSY breaking order parameter F gives a mass m2 = (F/M)2 to the
scalar ϕ. Note that F has dimension 2 so that this term has the correct mass dimension.
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2. Holomorphic scalar masses are generated by a similar higher order Kähler potential term,

∫
d4θ

X†X
M2

[
Φ2 +

(
Φ†
)2
]

=

(
F

M

)2 (
ϕ2 + ϕ∗2

)
+ (SUSY preserving terms). (2.81)

These are often called b-terms. One may want to instead write these masses at lower order in F by
writing a superpotential term W ⊃ XΦ2. This, however, is a renormalizable interaction that does
not separate the ���SUSY sector from the visible sector—as one can see the mediator mass does not
appear explicitly in such a term. Thus W ⊃ XΦ2 is subject to the SUSY sum rule and is not the
type of soft term we want for the MSSM.

3. Holomorphic cubic scalar interactions are generated from the superpotential,
∫
d2θ

X

M
Φ3 + h.c. =

F

M

(
ϕ3 + ϕ∗3

)
+ (SUSY preserving terms). (2.82)

These are called A-terms and are the same order as the scalar mass.

4. Gaugino masses are generated from corrections to the gauge kinetic term,
∫
d2θ

X

M
WαWα + h.c. =

F

M
λλ+ h.c. + (SUSY preserving terms). (2.83)

This is a gaugino mass on the same order as the scalar mass and the A-term.

In principle one could also generate tadpole terms for visible sector fields, but we shall ignore this case
and assume that all field are expanded about their minimum. These four types of terms are known as
soft supersymmetry breaking terms. The key point is that these do not reintroduce any quadratic UV

sensitivity in the masses of any scalars. This is clear since above the SUSY breaking mediation scale M ,
the theory is supersymmetric and these divergences cancel.

It is common to simply parameterize the soft breaking terms of the MSSM in the Lagrangian:

Lsoft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃

)
+ h.c. (2.84)

−
(
auQ̃Hu˜̄u+ adQ̃Hd

˜̄d+ aeL̃Hd˜̄e
)

+ h.c. (2.85)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ũ†m2
u
˜̄u− d̃†m2

d
˜̄d− ẽ†m2

e
˜̄e−m2

HuH
∗
uHu −m2

Hd
H∗dHd (2.86)

− (bHuHd + h.c.)) . (2.87)

This is simply a reparameterization of the types of soft terms described in (2.79 – 2.83), from which one
can read off the scaling of each coefficient with respect to F/M .

Note that the trilinear soft terms, au,d,e, and the soft masses m2
Q,L,u,d,e are 3× 3 matrices in flavor

space. The trilinear terms are in a one-to-one correspondence with the Yukawa matrices except that they
represent a coupling between three scalars. In general, the soft masses cause the squarks and sleptons to
have different mass eigenstates than the SM fermions.

Phenomenologically, we assume that

M1,2,3, au,d,e ∼ mSUSY (2.88)

m2
Q,u,d,L,e,Hu,Hd

, b ∼ m2
SUSY, (2.89)

where mSUSY is between a few hundreds of GeV to a TeV. This is the range in which generic MSSM-like
models provide a solution to the Hierarchy problem.
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R-symmetry, gauginos, supersymmetry breaking. Recall that when an R-symmetry exists, the different components
of a superfield carry different R charges. Because the O(θ) component ofWα, Fµν , is real, it cannot carry an R charge.
This means that the lowest component, the gaugino λ, must have non-zero R-charge. Further, the gaugino mass term
(2.83) breaks this symmetry. One will find that R-symmetry plays an important role in many non-perturbative results in
SUSY. Two important results related to SUSY breaking and gaugino masses are [15, 16].

2.12 Electroweak symmetry breaking in the MSSM
The most important feature of the Standard Model is electroweak symmetry breaking. Recall that this is
due to a tachyonic Higgs mass at the origin being balanced by a positive quartic coupling leading to a
non-zero vacuum expectation value. In the MSSM we have two Higgs doublets,

Hu =

(
H+
u

H0
u

)
Hd =

(
H0
d

H−d

)
. (2.90)

We have already seen that supersymmetry relates the scalar quartic coupling to the other couplings of the
theory. This then constrains the expected Higgs boson mass.

To preserve SU(3)c and U(1)EM we assume that no squarks or sleptons pick up VEVs. Then the
quartic terms in the Higgs potential come from D-terms, (2.56):

VD =
g2

4

(
H†uσ

aHu +H†dσ
aHd

)(
H†uσ

aHu +H†dσ
aHd

)
+
g′2

4

(
|Hu|2 − |Hd|2

)2

=
1

2
g2|H†uHd|2 +

1

8
(g2 + g′2)

(
|Hu|2 − |Hd|2

)2
, (2.91)

where we have simplified the SU(2)L terms using the relation σaijσ
a
k` = 2δi`δjk − δijδk`. We see imme-

diately that the Higgs quartic λ coupling goes like the squared electroweak couplings, g2 and g′2. This
connection between the Higgs sector and the gauge parameters does not exist in the Standard Model

In addition to the D-term contribution, there is also the supersymmetric F -term contribution com-
ing from the µ-term in the superpotential. The quadratic contributions to the Higgs potential are,

VF = |µ|2|Hu|2 + |µ|2|Hd|2 + · · · (2.92)

We have dropped terms proportional to the Yukawa couplings since we assume the scalar partners of
the SM fermions do not acquire VEVs. On top of this, there are the soft supersymmetry breaking terms.
These include soft masses for each Higgs doublet and a ‘holomorphic’ b-term which is called Bµ (or
sometimes Bµ),

Vsoft = m2
Hu |Hu|2 +m2

Hd
|Hd|2 + (BµHu ·Hd + h.c.) . (2.93)

Note that the contraction of Hu and Hd in the D-term (2.91) is different from that in the Bµ term (2.95).
Specifically, Hu ·Hd is contracted using the εab tensor and gives H+

u H
−
d −H0

uH
0
d . Further, the D-term

couplings are real since they are part of a real superfield. The F -term couplings are made real because
they are the modulus of a complex parameter. The couplings of the soft terms, on the other hand, carry
arbitrary sign and phase.

Combining all of these factors, the full Higgs potential is

VH = VD + VF + Vsoft (2.94)

=
1

2
g2|H†uHd|2 +

1

8
(g2 + g′2)

(
|Hu|2 − |Hd|2

)2

+
(
|µ|2 +m2

Hu

)
|Hu|2 +

(
|µ|2 +m2

Hu

)
|Hd|2 + (BµHu ·Hd + h.c.) . (2.95)
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To simplify this, we can assume that the charged components of the doublets pick up no VEV and write
everything in terms of only the neutral components (we address the validity of this assumption below):

VH =
1

8
(g2 + g′2)

(
|H0

u|2 − |H0
d |2
)2

+
∑

i=u,d

(
|µ|2 +m2

Hi

)
|H0

i |2 − 2BµRe(H0
uH

0
d). (2.96)

Observe that this potential has a direction in field space, |H0
u|2 = |H0

d |2 where the D-term quartic
vanishes. This is called a D-flat direction and requires caution. In order to break electroweak symmetry,
we must destabilize the origin of field space with a tachyonic mass term to force a linear combination
of the neutral Higgses to pick up a VEV. In the SM destabilization is balanced by the quartic coupling
which forces the VEV to take a finite value. We see now in the MSSM that one has to take special care
to make sure that the destabilized direction does not align with the D-flat direction or else the potential
isn’t bounded from below. In other words, we must impose a negative mass squared in one direction in
the Higgs moduli space while making sure that there is a positive definite mass squared along the D-flat
direction. This can be written as two conditions:

1. We require exactly one negative eigenvalue in the neutral Higgs mass matrix,
∣∣∣∣
|µ|2 +m2

Hu
−Bµ

−Bµ |µ|2 +m2
Hd

∣∣∣∣ =
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
−B2

µ < 0. (2.97)

2. The mass squared term is positive when |H0
u| = |H0

d |. For simplicity, suppose Bµ, 〈H0
u〉, and

〈H0
d〉 are all real (see below). Then this imposes

(
|µ|2 +m2

Hu

)
+
(
|µ|2 +m2

Hd

)
+ 2Bµ > 0. (2.98)

The conditions (2.97) and (2.98) are the requirements for electroweak symmetry breaking in the MSSM.

Note that a natural choice for the soft masses, m2
Hu

= m2
Hd

, does not obey the restrictions (2.97)
and (2.98). One way to nevertheless enforce this relation is to impose it as a boundary condition at
some high scale and allow the renormalization group flow to differentiate between them. This is actually
quite reasonable, since the β-function for these soft masses include terms that go like the squared Yukawa
coupling. The two soft masses flow differently due to the large difference in the top and bottom Yukawas.
In fact, the up-type Higgs mass parameter shrinks in the IR and it is natural to assume

m2
Hu < m2

Hd
. (2.99)

A convenient choice is m2
Hu

< 0 and m2
Hd

> 0. In this way the MSSM naturally admits radiative
electroweak symmetry breaking where the tachyonic direction at the origin is generated by quantum
effects.

Since there are many parameters floating around, it use useful to summarize that the following all
prefer electroweak symmetry breaking and no runaway directions:

– Relatively large Bµ

– Relatively small µ

– Negative m2
Hu

.

Be aware that these are only rough guidelines and are neither necessary nor sufficient.

It is standard to parameterize the VEVs of the two Higgses relative to the SM Higgs VEV by
introducing an angle, β,

〈H0
u〉 =

vu√
2

=
v√
2

sinβ 〈H0
d〉 =

vd√
2

=
v√
2

cosβ. (2.100)
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Minimizing the potential, ∂V/∂H0
u = ∂V/∂H0

d = 0, one obtains

sin 2β =
2Bµ

2|µ|2 +m2
Hu

+m2
Hd

(2.101)

M2
Z

2
= −|µ|2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
. (2.102)

The second relation is especially strange: it connects the supersymmetric µ term to the soft-breaking
masses, even though these come from totally different sectors of the theory. In other words, unlike the
quartic and gauge couplings which are tied together by supersymmetry, these parameters have no reason
to have any particular relation with each other. Further, M2

Z is experimentally measured and much
smaller than the typical expectation for either µ or m2

Hu,d
, so it appears that there’s some cancellation

going on.

The Higgs sector of the MSSM contains the usual CP-even Higgs h, a heavier CP-even Higgs, the
Goldstones of electroweak symmetry breaking, an additional pair of charged Higgses H±, and a CP-odd
Higgs A. With a little work, one can show that the CP-even Higgs masses are

m2
h =

1

2

[
M2
Z +m2

A ±
√(

M2
Z +m2

A

)2 − 4m2
AM

2
Z cos2 2β

]
, (2.103)

where m2
A = Bµ/(sinβ cosβ). One can further show that this is bounded from above,

mh ≤MZ |cos 2β| ≤MZ . (2.104)

Of course, we now know that mh ≈ 125 GeV. In fact, even before the LHC it was known from LEP that
mh & 114 GeV. While at first glance (2.104) appears to be ruled out experimentally, this is only a tree-
level bound. What this is really saying is that one requires large corrections to the quartic self-coupling
to pull up the Higgs mass from its tree level value. Due to the size of yt, the main effect comes from top
and stop loops.

To maximize the quartic coupling, we are pushed towards large values of tanβ since this would put
most of the Higgs VEV in Hu and would make the light Higgs be primarily composed of Hu. Examining
the H4

u coupling at loop level, consider diagrams of the form:

H0
u H0

u

H0
u H0

u

tR tL

tL

tR

H0
u H0

u

H0
u H0

u

t̃L,R t̃L,R

Assuming negligible A terms, the result is

λ(mt) = λSUSY +
2Ncy

4
t

16π2
ln

(
mt̃1

mt̃2

m2
t

)
, (2.105)

where λSUSY comes from theD-term potential andNc is the number of colors. This equation tells us that
in order to push the Higgs mass above the tree-level bound of MZ , one must increase mt̃. The correction
is

∆m2
h =

3

4π2
v2y4

t sin2 β ln

(
mt̃1

mt̃2

m2
t

)
. (2.106)

For further details, we refer to the treatment in [17] or the encyclopedic reference [18].
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2.13 The little hierarchy problem of the MSSM
It has been well known since LEP that in order to push mh > 114 GeV in the MSSM, one requires large
stop masses, mt̃ ∼ 1 − 1.4 TeV. Pushing the stop mass this heavy comes at a cost, unfortunately. The
stops contribute not only to the Higgs quartic—which we need to push the Higgs mass up—but also to
the soft mass m2

Hu
from loops of the form

+

The larger one sets mt̃, the larger the shift in m2
Hu

. Recall, however, the strange cancellation we noted
in (2.102). This equation seems to want m2

Hu
∼M2

Z/2. The loop corrections above contribute a shift of
the form

∆m2
Hu =

3y2
t

4π2
m2
t̃

ln

(
ΛUV

mt̃

)
. (2.107)

For mt̃ = 1.2 TeV and ΛUV = 1016 this balancing act between m2
Hu

and M2
Z/2 requires a fine tuning of

M2
Z/2

∆m2
Hu

∼ 0.1%.

Physically what’s happening is that the stop plays a key role in naturalness by canceling the sensitivity to
the UV scale. By pushing the stop to be heavier to increase the Higgs quartic, one reintroduces quadratic
sensitivity up to the scale of the stop mass. This is known as the little hierarchy problem of the MSSM.

2.14 SUSY breaking versus flavor
The soft breaking Lagrangian introduces many new masses, phases, and mixing angles on top of those
found in the Standard Model for a total of 124 parameters [19]. Most of this huge parameter space,
however, is already excluded from flavor and CP violating processes. Recall that in the SM, there are no
tree-level flavor-changing neutral currents (FCNC) and loop-level contributions are suppressed by the GIM

mechanism. Lepton number violation is similarly strongly suppressed. In the limit where the Yukawa
couplings vanish, y → 0, the Standard Model has a U(3)5 flavor symmetry where each of the five types
of matter particles are equivalent. This flavor symmetry is presumably broken at some scale ΛF in such
a way that the only imprint of this UV physics at scales well below ΛF are the Yukawa matrices. This
flavor scale can be very large so that effects of this flavor breaking go like 1/ΛF and are plausibly very
small.

In the MSSM, one must further check that the flavor breaking dynamics has already ‘frozen out’ at
the SUSY breaking scale so that the only non-trivial flavor structure in the SUSY breaking parameters are
the Yukawa matrices themselves. This means we would like the mediator scale M to be below the flavor
scale, M � ΛF . In gravity mediation, however, Λmed = MPl, and we can no longer guarantee that the
SUSY breaking mediators are insulated from flavor violating dynamics. This leads to strong constraints
on the flavor structure of the MSSM soft parameters.

For example, consider one of the most carefully studied FCNC processes, kaon anti-kaon (K-K̄)
mixing. The quark content of the mesons are K = ds̄ and K̄ = d̄s. In the SM this process is mediated
by diagrams such as

21

BEYOND THE STANDARD MODEL

189



d s

s d

W W

ui

uj

Each vertex picks up a factor of the CKM matrix. The GIM observation is the fact that the unitarity of
the CKM matrix imposes an additional suppression. In the MSSM, on the other hand, the squark soft
masses introduce an additional source of flavor violation so that the quark and squark mass matrices are
misaligned. This manifests itself as flavor-changing mass insertions, ∆m2

ds, on squark propagators when
written in terms of the Standard Model mass eigenstate combinations:

d s

s d

g̃ g̃

d̃

s̃

s̃

d̃

Note that rather thanW bosons, this diagram is mediated by gluinos which carry much stronger coupling
constants α3 � α2. Further, Since there are no factors of VCKM, there is no GIM suppression. The loop
integral goes like d4k/k10 ∼ 1/m6

SUSY. Thus we can estimate this contribution to kaon mixing to be

MMSSM
KK̄ ∼ α3

3

(
∆m2

ds

m2
SUSY

)2
1

m2
SUSY

. (2.108)

Comparing this to the experimental bound,

∆m2
ds

m2
SUSY

. 4 · 10−3
( mSUSY

500 GeV

)
. (2.109)

There are similar constraints on CP violating and lepton number violating processes (e.g. dipole moments
and µ→ eγ). This is the SUSY flavor problem: a generic flavor structure for the MSSM soft parameters
is phenomenologically ruled out. We are led to conclude that the off-diagonal flavor terms must be
strongly suppressed to avoid experimental bounds.

One way to do this is to suppose an organizing principle in the SUSY breaking parameters, soft-
breaking universality,

1. Soft breaking masses are all universal for all particles at some high scale. This means thatm2
Q ∝ 1

in flavor space, and similarly for each MSSM matter multiplet.

2. If a-terms are not flavor-universal, then the Higgs VEV induces similar problematic mixings,

La = auijQiŪjHu + adijQiD̄jHd + aeijLiĒjHd. (2.110)

To avoid this, assume that aIij is proportional to the Yukawa matrix,

aIij = AIyIij . (2.111)

This way, the rotation that diagonalizes the SM fermions also diagonalizes their scalar partners.
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3. To avoid CP violation, assume that all non-trivial phases beyond those in the Standard Model CKM

matrix vanish.

These are phenomenological principles. Ultimately, one would like to explain why these properties
should be true (or at least approximately so).

2.15 Gauge mediated SUSY breaking
One straightforward realization of soft-breaking universality is to have the messenger sector be flavor
universal. A natural way to do this is gauge mediation since the SM gauge fields are blind to flavor
[20–23]. See [24] for a review.

���SUSY messenger MSSM

〈FX〉 6= 0 Φi, Φ̄i

SM gauge

The main idea is that the SUSY breaking sector has some superfield (or collection of superfields)
X which pick up F -term VEVs, 〈FX〉 6= 0. This generates mass splittings in the messenger sector
superfields, Φi and Φ̄i. These messengers obey the tree-level SUSY sum rules discussed above but are
not problematic since all of the components can be made heavy. One then assumes that the messengers
are charged under the SM gauge group so that the MSSM superfields will feel the effects of SUSY breaking
through loops that include the messenger fields. Note that anomaly cancellation of the SM gauge group
typically requires the messenger superfields to appear in vector-like pairs, Φ and Φ̄ with opposite SM

quantum numbers.

The messenger fields generate non-renormalizable operators that connect the MSSM and the SUSY

breaking sector without introducing any flavor dependence for the soft masses. Further, because the
messenger scale is adjustable, one can always stay in regime where it is parametrically smaller than the
flavor scale M � ΛF . Recall the estimates in Section 2.11 for the size of the MSSM soft terms. For
gauge mediation, M is the mass of the messenger sector fields Φi and Φ̄i and F is the SUSY breaking
VEV, FX . Below M we integrate out the messengers to generate the MSSM soft parameters.

The simplest realization of this is minimal gauge mediation. Here one assumes only one SUSY

breaking fieldX andNm mediators, Φi and Φ̄i, in the fundamental representation of an SU(5) GUT. The
superpotential coupling between these sectors is

W = Φ̄XΦ. (2.112)

The contribution to the potential is
∣∣∣∣
∂W

∂Φ

∣∣∣∣
2

= |〈X〉|2 |ϕ|2 + |〈X〉|2 |ϕ̄|2 + ϕϕ̄〈FX〉 (2.113)

The messenger masses are

mψ = X (2.114)

m2
ϕ = X2 ± FX , (2.115)

using the notation where the angle brackets 〈· · · 〉 are dropped when it is clear that we are referring to
the VEV of a field. Observe that the messenger scale is set by the lowest component VEV of the SUSY
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breaking parameter, M = X . In what follows we make the typical assumption that F/M2 � 1. Note
that these masses satisfy the SUSY sum rule.

Now let’s consider the spectrum arising from this simple set up. The gauginos of the SM gauge
group pick up a mass contribution from diagrams of the form

〈FX〉

〈X〉
ψΦ̄ψΦ

ϕ̄ϕ

λ λ

The 〈X〉 insertion on the ψΦ line is required to flip the gaugino helicity (recall that arrows on fermion
indicate helicity). The F insertion on the ϕ line is required to connect to SUSY breaking so that this is
indeed a mass contribution that is not accessible to the gauge boson. The F VEV is also required to flip
from a ϕ to a ϕ̄ so that the scalar of the chiral superfield picks up a sense of chirality as well. Using
powerful methods based on holomporphy [25, 26], the gaugino mass for the ith gauge factor is

Mλi =
FM

M2

g2
i

16π2
Nm =

αi
4π
Nm

F

M
. (2.116)

This expression—which one could have guessed from a back-of-the-envelope estimate—turns out to
be exact to leading order in F/M2. This is a reflection of the powerful renormalization theorems in
supersymmetry, see e.g. [?]. One of the concrete predictions of minimal gauge mediation is the relation

Mλ1 : Mλ2 : Mλ3 = α1 : α2 : α3. (2.117)

The heaviest superpartners are those which couple to the largest rank gauge group.

The scalar partners of the SM matter particles do not directly couple to the messengers. Thus the
masses for the squarks and sleptons must be generated at two loop level. There are many diagrams that
include loops of both the messenger scalar and fermion:

ϕ ψ ϕ ϕ

ϕ ψ ϕ ϕ

The loops either include a gauge boson or otherwise use the scalar quartic D-term interaction between
messengers and sfermions. The result is that the soft scalar masses go like

m2
soft ∼

(
g2

16π2

)2

Nm
F 2

M2
Ci, (2.118)
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where Ci is the relevant quadratic casimir. Observe that m2
soft ∼ m2

λ so that the sfermions which couple
to the higher rank gauge factors pick up more mass. Including the various gauge charges and taking the
limit α3 � α2 � α1 gives a prediction for the sfermion spectrum in minimal gauge mediation,

m2
q̃ : m2

˜̀ : m2
Ẽ

=
4

3
α2

3 :
3

4
α2

2 :
3

5
α2

1. (2.119)

Note that (2.117) and (2.119) are only predictions of minimal gauge mediation. A parameterization of
the soft terms from a generic gauge mediation model is presented in [27,28] under the banner of general
gauge mediation. Requiring that the superpartner masses are around the electroweak scale sets

F

M
∼ 100 TeV. (2.120)

Note that since the messengers interact with the SM superfields only through gauge interactions, the
holomorphic soft terms (A and B terms) are typically very small in gauge mediation.

One important phenomenological consequence of gauge mediation is that the lightest supersym-
metric partner (LSP) is not one of the MSSM fields but rather the gravitino whose mass is [24],

m3/2 ∼
F√
3MPl

∼
( √

F

100 TeV

)2

2.4 eV. (2.121)

Thus the gravitino is much lighter than the electroweak scale, but is also similarly weakly coupled. The
relevant couplings at low energies are not gravitational, but rather through the Goldstino component of
the gravitino. This coupling is proportional to the SUSY breaking VEV F . Because of R-parity, any su-
persymmetric partner produced in the MSSM will eventually decay into the next-to-lightest superpartner
(NLSP). This NLSP must eventually decay into the gravitino LSP since it is the only decay mode available.
When

√
F & 106 GeV, the NLSP is so long lived that on collider scales it behaves effectively like the

LSP. On the other hand, if
√
F . 106 GeV, the NLSP decays within the detector. This gives a fairly

unique signal with displaced photons and missing energy if the NLSP is the bino, B̃.

2.16 The µ–Bµ problem of gauge mediation
Let’s return to an issue we addressed earlier when discussing electroweak symmetry breaking. We wrote
two relations (2.101 – 2.102) satisfied at the minimum of the Higgs potential. We noted the µ-problem
associated with (2.102): µ andm2

Hu,d
seem to come from different sectors of the theory but must conspire

to be roughly the same scale. In principle, since µ is a supersymmetric dimensionful parameter (the only
one in the MSSM), it could take a value on the order of the Planck mass. We now present a solution to the
µ-problem, but we shall see that this solution will cause problems in gauge mediation due to the second
relation, (2.101).

One way to address this µ-problem is to forbid it in the supersymmetric limit and then assume that
it is generated through the SUSY breaking sector. For example, a global Peccei-Quinn (PQ) symmetry,

Hu →eiαHu (2.122)

Hd →eiαHd, (2.123)

prohibits the µ term in the superpotential. Gravity, however, is believed to explicitly break global sym-
metries. Indeed, gravity mediation of SUSY breaking will produce a µ term. Consider, for example, the
higher order Kähler potential term that couples the SUSY breaking superfield X to the Higgses [29],

∫
d4θ

X†Hu ·Hd

MPl
+ h.c. (2.124)

25

BEYOND THE STANDARD MODEL

193



When 〈X〉 ∼ θ2F , one generates an effective µ term of order µ ∼ F/MPl. This neatly addresses the
µ-problem and ties the µ term to the SUSY breaking masses. The Bµ term that is generated comes from

∫
d4θ

X†XHu ·Hd

M2
Pl

(2.125)

and thus is of the same order as µ2. This is consistent with the observation in (2.101) that Bµ, µ, and the
soft breaking terms seem to want to be the same order. We remark that this is no longer true in gauge
mediation since F � 1011 GeV, the µ and Bµ terms generated from gravitational breaking are far too
small. This must be addressed separately in such theories.

2.17 Variations beyond the MSSM
The MSSM is under pressure from the LHC. For a review of the status after Run I of the LHC, see [30].
There are two main issues:

1. The Higgs mass mh = 125 GeV is hard to achieve in the MSSM since it requires a large radiative
correction to the tree level upper bound of mh = MZ .

2. There are no signs of superpartners. With the simplest assumption that mq̃ ∼ mg̃, the LHC pushes
the scale of colored superpartners to be over 1.2 TeV. This appears to no longer be natural.

In this section we present some model-building directions that the LHC data may be suggesting.

2.17.1 AdditionalD-term contributions
One simple direction to increase the tree-level Higgs mass is to add extra D-terms to increase the Higgs
quartic coupling [31–35]. This requires charging the Higgs under an additional U(1)X gauge group which
one must break above the weak scale. This technique is able to indeed push the tree-level Higgs mass
up to the observed value, but one is constrained by changes to Higgs decay branching ratios, particularly
h→ bb̄ [36, 37].

2.17.2 The NMSSM
At the cost of adding an additional singlet superfield S to the MSSM sector, one may solve the µ problem
and also raise the Higgs mass by enhancing its quartic coupling [38–42]. The Higgs sector superpotential
for this “next-to-minimal” supersymmetric SM (NMSSM, see [43, 44] for reviews) is

WNMSSM = yuHuQŪ + ydHdQD̄ + yeHdĒ + λSHuHd +
1

3
κS3. (2.126)

The κ term breaks the Peccei-Quinn symmetry, (2.122 – 2.123), to a Z3. Since S is a gauge singlet,
the D-term potential is unchanged from (2.91). Note, however, that there is no longer a µ term in the
superpotential, instead the SHuHd coupling has taken its place. Thus the F -term potential differs from
that of the MSSM, (2.92), and is instead

VF,NMSSM = λ2|S|2
(
|Hu|2 + |Hd|2

)
+ λ2 |HuHd|2 . (2.127)

We observe that the combination λ〈S〉 plays the role of an effective µ term and solves the µ-problem.
Finally, there are additional soft terms allowed which augment Vsoft in (2.93),

∆Vsoft,NMSSM = m2
S |S|2 + λAλ(SHuHd + h.c.) +

1

3
κAκ(S3 + h.c.). (2.128)
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The resulting expression for the Higgs mass is approximately

m2
h ≈M2

Z cos2 2β + λ2v2 sin2 2β − λ2v2

κ2
(λ− κ sin 2β)2 +

3m4
t

4π2v2

[
ln

(
mt̃

mt

)
+
A2
t

mt̃

(
1− A2

t

12mt̃

)]
.

(2.129)

This can be larger than the value in the MSSM depending on the value of λ. There are limits on the size
of λ coming from perturbativity, but lifting the Higgs mass to 125 GeV is fine. The singlet S contributes
an additional complex scalar to the Higgs sector and an additional neutralino.

2.17.3 Natural SUSY
The simplest choices for the MSSM parameters—those that treat all the flavors universally, as preferred by
the flavor problem—are tightly constrained by the non-observation of new physics at the LHC. Because
the LHC is a proton-proton collider, it is easy for it to produce colored superpartners such as squarks
and gluinos. These, in turn, are expected to show up as events with many jets and missing energy as the
heavy colored states decay into the LSP. The fact that no significant excesses have been found pushes
one to consider other parts of the large MSSM parameter space.

Instead of biasing our parameter preferences by simplicity, one may take a different approach and
ask what is the minimal sparticle content required for naturalness? In other words, which superpartners
are absolutely required to cancel quadratic divergences? Once these are identified, one may decouple the
remaining sparticles and check the experimental constraints on the resulting spectrum. The ingredients
of a ‘minimally’ natural MSSM spectrum are [45, 46] (see [47–50] for a re-examination from the early
LHC run)

1. Light stops. The largest SM contribution to the Higgs quadratic UV sensitivity is the top loop.
Naturalness thus requires that its superpartner, the stop, is also accessible to cancel these loops.
Since the stop lives in both the UR and QL superfields, this typically also suggests that the left-
handed sbottom is also light.

2. Light Higgsinos. In order to preserve natural electroweak symmetry breaking, µ should be on the
order of the electroweak scale. This is the same parameter that determines the Higgsino mass, so
the Higgsinos should also be light.

3. Not-too-heavy gluinos. The stop is a scalar particle which is, itself, quadratically UV sensitive at
face value. The main contribution to the stop mass comes from gluon loops so that naturalness
requires ‘not-too-heavy’ (∼ 1.5 TeV) gluinos to cancel these loops. In other words, the gluino
feeds into the Higgs mass at two-loop order since it keeps the light-stop light enough to cancel the
Higgs’ one-loop UV sensitivity.

4. Light-ish electroweak-inos (optional). Finally, if one insists on grand unification, the scale of
the gluinos imposes a mass spectrum on the electroweak gauginos with MEW-ino < Mgluino. As a
rough estimate, Majorana gluinos should have mass . 2mt while Dirac gluinos should have mass
. 4mt.

5. All other particles decoupled. All of the other squarks and sleptons are assumed to be well above
the TeV scale and effectively inaccessible at Run-I of the LHC.

These are shown in Fig. 3.

The simplest models have a light stop t̃L which decays either to a top and neutralino/gravitino,
t + Ñ , or a bottom and a chargino, b + C̃. Bounds on these decays depend on the Ñ (C̃) mass. The
‘stealthy’ region near m

Ñ
= 0 and the ‘compressed’ region near m

Ñ
≈ mt are especially difficult to

probe kinematically.
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H̃

t̃R, t̃L b̃L

g̃

W̃

B̃

Fig. 3: Heuristic picture of a natural SUSY spectrum. All other superpartners are assumed to have masses
well above the TeV scale and decouple.

2.17.4 R-parity violation
One of the main ways to search for ‘vanilla’ SUSY signatures is to trigger on the large amount of missing
energy (MET or��ET ) expected from the neutral LSP. Underlying this assumption isR-parity, which forces
the LSP to to be stable.

Recall that R-parity was something that we embraced because it killed the supersymmetric terms
in the superpotential (2.50) that would violate lepton and baryon number and would be severely con-
strained by experiments, most notably proton decay. If, however, there were another way to suppress
these dangerous operators, then perhaps we could avoid the experimental bounds while giving the LSP a
way to decay into non-supersymmetric particles. This would allow us to consider models with R-parity
violation (RPV) with no missing energy signal [51–55], see [56] for a review. Such models would be
immune to the usual MET-based SUSY search strategies.

The simplest way to do this is to turn on only the λ4ŪD̄D̄ term. This violates baryon number but
preserves lepton number so that protons remain stable. Motivated by naturalness, we may now allow the
stop to be the LSP since this is no longer a dark matter candidate. The RPV coupling would allow a decay
t̃→ b̄s̄, which would be hidden in the large QCD di-jet background.

One still has to worry about the effects of this RPV coupling on the partners of the light squarks.
Phenomenologically, the strictest bounds come from neutron–anti-neutron oscillation and dinucleon de-
cay. Indeed, most of the flavor bounds on the MSSM come from the first two generations of sparticles.
One interesting model-building tool is to invoke minimal flavor violation, which posits that the flavor
structure of the entire MSSM is carried by the Yukawa matrices [57]. This then implies that the coefficient
of the Ū iD̄jD̄k RPV coupling is proportional to a product of Yukawa elements depending on the gener-
ations i,j, and k. This gives a natural explanation for why the RPV couplings of the first two generation
squarks are much smaller than the stop.

3 Extra Dimensions
The original proposal for extra dimensions by Kaluza [58], Klein [59], and later Einstein [60] were
attempts to unify electromagnetism with gravitation. Several decades later the development of string
theory—originally as a dual theory to explain the Regge trajectories of hadronic physics—led physicists
to revisit the idea of compact extra dimensions [61–63]. In early models, the non-observation of an
additional spatial direction was explained by requiring the compactification radius to be too small for
macroscopic objects.

Further reading: Two of the authors’ favorite reviews on this subject are [64] and [65]. This lecture is meant to be largely
complementary. Additional references include [66–71], which focus on different aspects.
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3.1 Kaluza-Klein decomposition
The simplest example to begin with is a real scalar field in 5D where the fifth dimension is compactified
to a circle of radius R. The details of the compactification do not change the qualitative behavior of the
theory at low energies. The Lagrangian is

S =

∫
d5x

1

2
∂Mφ(x, y)∂Mφ(x, y) =

∫
d5x

1

2

[
∂µφ(x, y)∂µφ(x, y)− (∂yφ(x, y))2

]
, (3.1)

where M = 0, · · · , 5 and x5 = y. Since y is compact, we may identify energy eigenstates by doing a
Fourier decomposition in the extra dimension,

φ(x, y) =
1√
2πR

∞∑

n=−∞
φ(n)(x) ei

n
R
y. (3.2)

Since φ is real,
(
φ(n)

)†
= φ(−n). Plugging this expansion into the action allows us to use the orthogo-

nality of the Fourier terms to perform the dy integral. This leaves us with an expression for the action
that is an integral over only the non-compact dimensions, but written in terms of the KK modes φ(n)(x),

S =

∫
d4x

∑

mn

(∫
dy

1

2πR
ei

(m+n)
R

y

)
1

2

[
∂µφ

(m)(x)∂µφ(n)(x) +
mn

R2
φ(m)(x)φ(n)(x)

]
(3.3)

=
1

2

∫
d4x

∑

n

[
∂µφ

(−n)∂µφ(n) − n2

R2
φ(−n)φ(n)

]
(3.4)

=

∫
d4x

∑

n>0

[(
∂µφ

(n)
)†
∂µφ(n) − n2

R2

∣∣∣φ(n)
∣∣∣
2
]
. (3.5)

From the 4D point of view, a single 5D scalar becomes a ‘Kaluza-Klein (KK) tower’ of 4D particles,
each with mass n/R. If there were more than one extra dimension, for example if one compactified on
an k-dimensional torus with radii R5, R6, . . ., then the KK tower would have k indices and masses

m2
n5,n6,··· ,nk = m2

0 +
n2

5

R2
5

+
n2

6

R2
6

+ · · ·+ n2
k

R2
k

, (3.6)

where m2
0 is the higher dimensional mass of the field.

3.2 Gauge fields
A more complicated example is a gauge field. We know that gauge fields are associated with vector
particles, but in 5D the vector now carries five components,AM . We perform the same KK decomposition
for each component M ,

AM (x, y) =
1√
2πR

∑

n

A
(n)
M (x) ei

n
R
y. (3.7)

Note that this decomposes into a KK tower of 4D vectors, A(n)
µ , and a KK tower of 4D scalars, A(n)

5 .
Similarly, the field strengths are antisymmetric with respect to indices M and N so that the action is
decomposed according to

S =

∫
d4x dy

(
−1

4
FMNF

MN

)
(3.8)

=

∫
d4x dy − 1

4
FµνF

µν +
1

2
(∂µA5 − ∂5Aµ) (∂µA5 − ∂5A

µ) (3.9)
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=

∫
d4x

∑

n

−1

4
F (−n)
µν F (n)µν +

1

2

(
∂µA

(−n)
5 − ∂5A

(−n)
µ

)(
∂µA

(n)
5 − ∂5A

(n)µ
)
. (3.10)

This looks complicated because there is an odd mixing between the 4D vector, A(n)
µ , and the 4D scalar

A
(n)
5 . Fortunately, this mixing term can be removed by fixing to 5D axial gauge,

A(n)
µ → A(n)

µ −
i

n/R
∂µA

(n)
5 A

(n)
5 → 0, (3.11)

for n 6= 0. Note that for n = 0 there’s no scalar–vector mixing anyway. The resulting action takes a
much nicer form,

S =

∫
d4x − 1

4

(
F (0)
µν

)2
+

1

2

(
∂µA

(0)
5

)
+
∑

n≥1

2

(
−1

4
F (−n)
µν F (n)µν +

1

2

n2

R2
A(−n)
µ A(n)µ

)
. (3.12)

The spectrum includes a tower of massive vector particles as well as a massless (zero mode) gauge boson
and scalar.

Recall the usual expression for the number of degrees of freedom in a massless 4D gauge boson:

(4 components in Aµ)− (longitudinal mode)− (gauge redundancy). (3.13)

When the gauge boson becomes massive, it picks up a longitudinal mode from eating a scalar by the
Goldstone mechanism. This is precisely what has happened to our KK gauge bosons, A(n)

µ : they pick up
a mass by eating the scalar KK modes, A(n)

5 .

In a theory with (4+n) dimensions, the (4+n)-component vectorAM decomposes into a massless
gauge boson, n massless scalars, a tower of massive KK vectors Aµ, and a tower of (n− 1) massive KK

scalars.

One may similarly generalize to spin-2 particles such as the graviton. In (4 +n) dimensions these
are represented by an antisymmetric (4 + n)× (4 + n) tensor,

gMN =


 gµν Aµ

ϕ


 . (3.14)

The massless 4D zero modes include the usual 4D graviton, a vector, and a scalar. At the massive level,
there is a KK tower of gravitons with (n− 1) gauge fields and [1

2n(n+ 1)− n] scalars. Here we observe
the graviton and vector eating the required degrees of freedom to become massive.

3.3 Matching of couplings
It is important to notice that the mass dimension of couplings and fields depend on the number of space-
time dimensions. The action is dimensionless, [S] = 0, since it is exponentiated in the partition function.
Then, in (4 + n) dimensions, the kinetic term for a boson gives

[
d(4+n)x (∂φ)2

]
= −(4 + n) + 2 + 2[φ] = 0 ⇒ [φ] = 1 +

n

2
. (3.15)

Note that this is consistent with the dimensions in the KK expansion (3.2). The 5D scalar contains the
4D scalars with a prefactor∼ R−1/2 that has mass dimension 1/2. Similarly, for fermions, [ψ] = 3

2 + n
2 .

With this information, dimensions of the Lagrangian couplings can be read off straightforwardly. For
example, the 5D gauge field lives in the covariant derivative,

Dµ = ∂µ − ig5Aµ = ∂µ − i
g5√
2πR

A(0)
µ + · · · . (3.16)
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We see that [g5] = −1/2 since [∂] = 1 and [AM ] = 3/2. Further, we find an explicit relation between
the 5D parameter g5 and the observed 4D gauge coupling,

g4 =
g5√
2πR

. (3.17)

More generally, in (4 + n) dimensions the 4D coupling is related to the higher dimensional coupling by
the volume of the extra dimensional space,

g2
4 =

g2
(4+n)

Voln
. (3.18)

One can read off the matching of the gravitational coupling by looking at the prefactor of the Ricci term
in the action,

S(4+n) = −M2+n
(4+n)

∫
d4+nx

√
g R(4+n) = −M2+n

(4+n)Vn

∫
d4x

√
g(4)R(4) + · · · , (3.19)

where we’ve written g for the determinant of the metric. From this we identify 4D Planck massMPl from
the fundamental higher dimensional Planck mass, M(4+n),

M2
Pl = M2+n

(4+n)Vn. (3.20)

The higher dimensional Planck mass is a good choice for a fundamental mass scale for the theory,

M∗ = M(4+n). (3.21)

In a (4+n) dimensional theory where the characteristic mass scale isM∗ and a compactification radiusR.
Then dimensional analysis tells us that the higher dimensional gauge couplings, which are dimensionful,
characteristically scale like

g(4+n) ∼M−n/2∗ . (3.22)

Relating this to the 4D couplings with (3.18) and relating M∗ to the 4D Planck mass with (3.20) gives

R ∼ 1

MPl
g

(n+2)/N
4 . (3.23)

Plugging in the observed SM gauge couplings on the right hand side gives a compactification radius
which is far too small to be relevant at colliders—the first KK modes will be near the Planck scale.

3.4 Branes and Large Extra Dimensions
In the mid ’90s, developments in string theory led to a new ingredient that renewed interest in extra
dimensions that might be accessible at collider scales. The key idea is that branes, solitonic objects
which form lower dimensional subspaces, can trap fields. In other words, not all fields have to propagate
in all dimensions. This was introduced by Rubakov and Shaposhnikov [72], who showed that instead of
a very small radius of compactification, it may be that our observed universe is constrained to live in a
(3+1)-dimensional subspace of a higher dimensional spacetime.

Terminology. Models that make use of branes to localize fields are known as braneworld models and are distinguished
from models where all fields propagate in the extra dimensions, known as universal extra dimensions. In braneworld
models, fields which are allowed to propagate in the full space are said to live in the bulk.
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ity
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Fig. 4: Cartoon pictures of a (3+1) dimensional brane in a compact 5D space. (LEFT) The brane (red
line) as a subspace. Gravity propagates in the entire space ‘diluting’ its field lines relative to forces
localized on the brane. (RIGHT) SM processes localized on the brane, now with an additional dimension
drawn, emitting a graviton into the bulk.

Allowing the fields to be brane-localized buys us quite a lot. It allows us to separate particle
physics from gravity. One can, for example, force the SM fields to be truly four-dimensional objects
that are stuck to a (3+1)-dimensional brane. This avoids the bound on the size of the extra dimension in
(3.23), since that relied on the SM propagating in the bulk.

With this in mind, one could allow the volume of the extra dimensions to actually be quite large.
This idea was explored by Arkani-Hamed, Dimopoulos, and Dvali in the ADD or large extra dimension
scenario [73]. If this were feasible, then (3.20) gives a new way to address the Hierarchy problem. The
large volume factor allows the fundamental scale of nature to be much smaller than the observed Planck
mass, M∗ �MPl. If, for example, M∗ ∼ 1 TeV, then there is no Hierarchy problem. Gravity appears to
be weaker at short distances because its flux is diluted by the extra dimensions. As one accesses scales
smaller than R, however, one notices that gravity actually propagates in (4 + n) dimensions. A cartoon
of the braneworld scenario is shown in Fig. 4.

How large can this extra dimension be? Doing a rough matching and using Voln = rn in (3.20)
gives

R =
1

M∗

(
MPl

M∗

)2/n

. (3.24)

Pushing the fundamental scale to M∗ ∼ TeV requires

R = 1032/n TeV−1 = 2 · 10−17 1032/n cm, (3.25)

using GeV−1 = 2 ·10−14 cm. We make the important caveat that this is specifically for the ADD model.
Considering different numbers of extra dimensions,

– n = 1. For a single extra dimension we have R = 1015 cm, which is roughly the size of the solar
system and is quickly ruled out.

– n = 2. Two extra dimensions brings us down to R ≈ 0.1 cm, which is barely ruled out by
gravitational Cavendish experiments.

– n = 3. Three extra dimensions pushes us down to R < 10−6 cm.

How much do we know about gravity at short distances? Surprisingly little, actually. Cavendish exper-
iments (e.g. Eöt-Wash5) test the r−2 law down to 10−4 m. These set a direct bound on the n = 2 case
that R < 37 µm and M∗ > 1.4 TeV. For larger n one is allowed to have M∗ = TeV.

5The name is a play on the Eötvös experiment by University of Washington researchers.
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One might have objected that one cannot say that M∗ is the fundamental scale while allowing R,
itself a dimensionful quantity, float to take on any value. Indeed, in a completely natural theory, one
expects R ∼ 1/M∗ so that R ∼ TeV−1. This is quite different from what we wrote in (3.24). Indeed,
what we have done here is swapped the hierarchy in mass scales to a Hierarchy between R and M−1

∗ . In
other words, we have reformulated the Hierarchy problem to a problem of radius stabilization. This is
indeed very difficult to solve in ADD.

Nevertheless, we may explore the phenomenological consequences of an ADD type model at col-
liders and through astrophysical observations.

– The first thing to consider is the production of KK gravitons.

f

f
G

γ, g

The KK graviton couples too weakly to interact with the detector so it appears as missing energy.
By itself, however, missing energy is difficult to disentangle from, say, neutrino production. Thus
it’s useful to have a handle for the hardness of the event (more energetic than Z → νν̄) so one can
look for processes that emit a hard photon or gluon. Thus a reasonable search is a jet or photon
with missing energy. It is worth noting that this is the same search used for searching for dark
matter, which is also typically a massive particle which appears as missing energy.

– Alternately, one may search for s-channel virtual graviton exchange in processes like e+e− → ff̄ .
One expects a resonance at the KK graviton mass.

– Supernovae can cool due to the emission of gravitons. This is similar to the supernovae cooling
bounds on axions. The strongest bounds on n = 2 theories push M∗ & 100 TeV.

– An additional byproduct of lowering the fundamental gravitational scale is that one may form
microscopic black holes at energies kinematically accessible to the LHC and cosmic rays. For
ECM > M∗ black holes are formed with a radius

RS ∼
1

M∗

(
MBH

M∗

) 1
n+1

. (3.26)

the cross section is roughly the geometric value, σBH ∼ πR2
S and can be as large as 400 pb. These

microscopic black holes decay via Hawking radiation,

TH ∼
1

RS
(3.27)

with this energy distributed equally to all degrees of freedom, for example 10% going to leptons,
2% going to photons, and 75% going to many jets.

3.5 Warped extra dimensions
We’ve seen that the framework of large extra dimensions leads to interesting phenomenology, but the
ADD realization leaves the size of the radius unexplained and is therefore not a complete solution to the
Hierarchy problem. The Randall-Sundrum (RS) proposal for a warped extra dimension offers a more
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interesting possibility [74]. The set up differs from ADD in that the space between the two branes has a
non-factorizable metric that depends on the extra space coordinate, z,

ds2 =

(
R

z

)2 (
ηµνdx

µdxν − dz2
)
. (3.28)

This is the metric of anti-de Sitter space (AdS) with curvature k = 1/R. There are two branes located
at z = R (the UV brane) and z = R′ > R (the IR brane) that truncate the extra dimension; in this sense
the RS background is often described as a ‘slice of AdS.’ We see that 1/R is naturally a fundamental
UV scale of the theory. The metric (3.28) warps down the natural physical scale as a function of the
position along the extra dimension. In particular, when R′ � R one finds that near z = R′, the scales
are warped down to much smaller values. Note the different notation from the ADD case: the size of the
extra dimension is R′ −R ≈ R′, while R should be identified with the radius of curvature.

To see how this works, suppose that the Higgs is localized to live on the IR brane at z = R′. The
action on this brane depends on the 4D induced metric ĝµν (note that

√
ĝ =
√
g/
√
g55),

S =

∫
d4x
√
ĝ

[
∂µH∂νHĝ

µν −
(
|H|2 − v2

2

)2
]

(3.29)

We assume that the Higgs VEV is on the order of the UV scale, v = 1/R, since this is the fundamental
5D scale. Plugging in the metic gives

S =

∫
d4x

(
R

R′

)4
[
∂µH∂

µH

(
R′

R

)2

−
(
|H|2 − v2

2

)2
]

z=R′

, (3.30)

where indices are implicitly raised with respect to the Minkowski metric. Canonically normalizing the
kinetic term via

Ĥ =
R

R′
H, (3.31)

allows us to write the action in the form,

S =

∫
d4x

(
∂µĤ

)2
− λ

[
|Ĥ|2 − 1

2

(
v
R

R′

)2
]2

, (3.32)

where we see that the canonically normalized Higgs picks up a VEV that is warped down to the TeV

scale. One can further imagine that the cutoff for loops contributing to the Higgs mass are similarly
warped down to, say, the TeV scale. In this way, the warped extra dimension gives a new handle for
generating hierarchies. Readers should be skeptical that we’re not just hiding the Hierarchy problem in
some fine tuning of the IR scale R′ relative to the fundamental scale R. Indeed, the real solution to the
Hierarchy problem requires a mechanism for radius stabilization, which we present below. Note that
typically R ≈M−1

Pl and R′ ≈ TeV−1 so that R′ is roughly the size of the extra dimension. A cartoon of
this scenario is shown in Fig. 5.

In the remainder of this lecture we’ll focus on the RS background. In the appendices we present
some additional technical results that may be useful for building RS models. Further details of the RS

gravitational background are discussed in Appendices A.1 and A.2. Details of bulk matter fields are
discussed in Appendices A.3 and A.4

3.6 The Planck scale and hierarchy in RS
We have seen how the AdS curvature can warp mass scales to be much smaller than the fundamental 5D
scale 1/R. It is instructive to also check the observed Planck scale. With respect to the fundamental
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UV Brane IR Brane (has SM)

warp factor

graviton

z=R z=R’

Fig. 5: Cartoon of the RS scenario with a brane-localized SM. The warp factor, (R/z)2, causes energy
scales to be scaled down towards the IR brane.

Planck scale M∗ (ostensibly M∗ ∼ 1/R), the gravitational action is

Sg = M3
∗

∫ R′

R
dz

∫
d4x

√
g(5)R(5), (3.33)

where the quantities with subscripts are the determinant of the 5D metric and the 5D Ricci scalar, respec-
tively. By performing the dz integral one finds the effective 4D gravitational action,

Sg = M3
∗

∫ R′

R
dz

(
R

z

)3 ∫
d4x

√
g(4)R(4) = M3

∗

[
1−

(
R

R′

)2
]∫

d4x
√
g(4)R(4). (3.34)

We can thus identify the effective 4D Planck mass by reading off the coefficient,

M3
Pl = M3

∗

[
1−

(
R

R′

)2
]
≈M3

∗ , (3.35)

so that for a large extra dimension, R′ � R, the 4D Planck mass is insensitive to R′ and is fixed by the
5D Planck mass, M∗ ∼ 1/R. This is precisely what we have set out to construct: assuming there is a
dynamical reason for R′ � R, we are able to warp down masses to the TeV scale by forcing particles to
localize on the IR brane while simultaneously maintaining that 4D observers will measure a Planck mass
that is much heavier.

An alternate way of saying this is that the Hierarchy problem is solved because the SM Higgs is
peaked towards the IR brane while gravity is peaked towards the UV brane. What we mean by the latter
part of this statement is that the graviton zero mode has a bulk profile that is peaked towards the UV

brane. Recall that in flat space, zero modes have flat profiles since they carry no momentum in the extra
dimension. In RS, the warping of the space also warps the shape of the graviton zero mode towards the
UV brane; the weakness of gravity is explained by the smallness of the graviton zero mode profile where
the Standard Model particles live. This should be compared to the case of a flat interval where the zero
mode wave function decouples as the size of the extra dimension increases. In this case the coupling
with the IR brane indeed becomes weaker, but the graviton KK modes become accessible and can spoil
the appearance of 4D gravity. In RS the zero mode doesn’t decouple and one doesn’t need to appeal to
a dilution of the gravitational flux into the extra dimensions as in the ADD model. See [64] for more
explicit calculations in this picture.
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3.7 Bulk scalar profiles in RS
In the original RS model, only gravity propagates in the bulk and has KK modes. However, it is instructive
to derive the KK properties of a bulk scalar.

– This serves as a simple template for how to KK reduce more complicated fields, such as the gravi-
ton, in a warped background.

– We’re anticipating the ‘modern’ incarnations of the RS where gauge and matter fields are pulled
into the bulk.

– As mentioned above, the solution to the Hierarchy problem depends on stabilizing the position of
the IR brane, z = R′, relative to the UV brane, z = R. The standard technique for doing this
requires a bulk scalar.

Start with a bulk complex scalar Φ(x, z) with a bulk mass parameter m. The bulk action is

S =

∫ R′

R
dz

∫
d4x
√
g
[
(∂MΦ)∗ ∂MΦ−m2Φ∗Φ

]
. (3.36)

In principle one may have additional brane-localized interactions proportional to δ(z−R′) or δ(z−R).
We use M,N to index 5D coordinates while µ, ν only run over 4D coordinates. Varying with respect to
Φ∗ yields an equation of motion

∂M
(√
ggMN∂NΦ

)
−√gm2Φ = 0. (3.37)

In writing this we have dropped an overall surface term that we picked up when integrating by parts.
Specializing to the RS metric, this amounts to picking boundary conditions such that

Φ∗(z)∂zΦ(z)|R,R′ = 0, (3.38)

with the appropriate modifications if there are brane-localized terms. We see that we have a choice of
Dirichlet and Neumann boundary conditions. We now plug in the Kaluza-Klein decomposition in terms
of yet-unknown basis functions f (n)(z) which encode the profile of the nth mode in the extra dimension:

Φ(x, z)
∞∑

n

φ(n)(x)f (n)(z). (3.39)

By assumption the φ(n) are eigenstates of ηµν∂µ∂ν with eigenvalue −m2
(n), the KK mass. We are thus

left with a differential equation for f (n)(z),
[(

R

z

)3

m2
(n) −

3

z

(
R

z

)3

∂z +

(
R

z

)3

∂2
z −

(
R

z

)5

m2

]
f (n)(z) = 0. (3.40)

This is a Strum-Liouville equation with real eigenvalues and real, orthonormal eigenfunctions,

∫ R′

R
dz

(
R

z

)3

f (n)(z)f (m)(z) = δmn. (3.41)

Just as we saw in Section 3.1 for a flat extra dimension, this orthonormality relation diagonalizes the KK

kinetic terms. One may now solve (3.40) by observing that through suitable redefinitions this is simply a
Bessel equation. The result is a general solution for n > 0 of the form

f (n)(z) = c1z
2Jα(m(n)z) + c1z

2Yα(m(n)z), (3.42)
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where J, Y are the familiar Bessel functions and α =
√

4 +m2R2. The integration constants c1,2 and
the spectrum of KK massesm2

(n) can be found using boundary conditions on each brane and the orthonor-
mality relation (3.41). The states have a discrete spectrum with spacing of approximately R′−1 ∼ TeV

with profiles peaked towards the IR brane.

For n = 0 the zero mode profile is

f (0)(z) = c1z
2−
√

4+m2R2
+ c2z

2+
√

4+m2R2
. (3.43)

We use this result in the Goldberger-Wise mechanism discussed below, but let us remark that the zero
mode is neither consistent with Neumann nor Dirichlet boundary conditions and requires brane localized
terms to generate boundary conditions that permit a zero mode.

The same general procedure can be used to find the profiles of higher spin bulk fields. In Appen-
dices A.3 and A.4 we work through the additional subtleties coming from fermions and gauge bosons. A
Standard Model field is associated with the zero mode of a 5D field, where the SM mass is a correction
from electroweak symmetry breaking on the zero mass from the KK decomposition. Note that the mean-
ing of the 5D profile is that a 4D particle, even though it is localized and pointlike in the four Minkowski
dimensions, is an extended plane wave in the fifth dimension. The boundary conditions imposed by the
branes mean that this system is essentially identical to a waveguide in electrodynamics6.

3.8 Radius stabilization
We’ve now shifted the Hierarchy problem to a question of why the IR scale R′ is so much larger than the
UV scaleR. In fact, one should think aboutR′ as the expectation value of a dynamical degree of freedom,
R′ = 〈r(x, z)〉, called the radion. This is identified with the 4D scalar arising from the dimensional
decomposition of the 5D metric. This isn’t surprising since the metric is, of course, the quantity which
measures distances. Thus far in our description of the RS framework, the radion is a modulus—it has no
potential and could take any value. This is problematic since excitations of this field would be massless
and lead to long-range modifications to gravity. It is thus important to find a mechanism that dynamically
fixes R′ ∼ TeV−1 to (1) provide a complete solution to the Hierarchy problem and (2) avoid constraints
from modifications to gravity.

Don’t be fooled by coordinate choices. The original RS literature used variables such that the metric explicitly contained
an exponential warping ds2 = e−2kydx2−dy2 so that anO(10) value of kπR′ leads to large hierarchies. Do not confuse
this variable choice with a solution to the Hierarchy problem—it just shifts the fine tuning into a parameter to which the
theory is exponentially sensitive. The reason why the exponential hierarchy is actually physical in RS (with a dynamically
stabilized radius) is that fields propagating in the space are redshifted as they ‘fall’ towards the IR brane in the gravitational
well of the AdS background.

A standard solution in the RS model is the Goldberger-Wise mechanism7 [76, 77], where radion
kinetic and potential energy terms conspire against one another to select vacuum with finite R′. To do
this, we introduce a massive bulk scalar field Φ(x, z) of the type in Section 3.7. We introduce brane-
localized potentials for this field which force it to obtain a different VEV at each brane, ϕUV 6= ϕIR,

∆L = −λδ(z −R)
(
Φ2 − ϕ2

UV

)2 − λδ(z −R′)
(
Φ2 − ϕ2

IR

)2
λ→∞. (3.44)

This causes the scalar to pick up a z-dependent VEV that interpolates between ϕUV and ϕIR,

〈Φ(x, z)〉 = ϕ(z) ϕ(R) = ϕUV ϕ(R′) = ϕIR. (3.45)

6This should have been no surprise given the appearance of Bessel functions.
7While the Goldberger-Wise mechanism is just one simple option to stabilize the size of the extra dimension, it is close to

what actually happens in string compactifications that tacitly UV complete the RS scenario [75].
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The general form of ϕ(z) is precisely the zero mode profile in (3.43) since the VEV carries zero momen-
tum in the Minkowski directions. One may now consider the terms in the action of Φ(x, z) (evaluated
on the VEV ϕ(z)) as contributions to the potential for the radion via R′ = 〈r(x, z)〉. The kinetic term for
Φ(x, z) contributes a potential to r(x, z) that goes like ϕ′(z)2.

1. This gradient energy is minimized when ϕ(z) has a large distance to interpolate between ϕUV,IR

since larger R′ allows a smaller slope.

2. On the other hand, the bulk mass for Φ(x, z) gives an energy per unit length in the z-direction
when ϕ(z) 6= 0. Thus the energy from this term is minimized when R′ is small.

By balancing these two effects, one is able to dynamically fix a value for R′. A pedagogical derivation
of this presented in [66]. The main idea is that for small values of the bulk Φ(x, z) mass, m2 � R−2,
one may write the Φ(x, z) VEV as

ϕ = c1z
−ε + c2z

4+ε, (3.46)

where ε = α − 2 =
√

4 +m2R2 − 2 ≈ m2R2/4 is small. The coefficients c1,2 are determined by the
boundary conditions (3.45). The potential takes the form

V [R′] = ε
ϕ2

UV

R
+
R3

R′4

[
(4 + 2ε)

(
ϕIR − ϕUV

(
R

R′

)ε)2

− εϕIRR
′−4

]
+O

(
R4

R′8

)
, (3.47)

where judicious checkers of dimensions will recall that the dimension of the 5D scalar is [ϕ(x, z)] = 3
2 .

The minimum of this potential is

R′ = R

(
ϕUV

ϕIR

)1/ε

. (3.48)

We can generate the Planck-weak hierarchy with 1/ε ∼ 20 and ϕUV/ϕIR ∼ 10. A key point here is
that we may write the radius in terms of a characteristic energy scale, R′ ∼ 1/µ, and the potential for µ
carries terms that go like µ4 times a polynomial in µε. This is reminiscent of dimensional transmutation
and, indeed, we explain below that the RS scenario can be understood as a dual description of strongly
coupled 4D dynamics.

The above description of the Goldberger-Wise mechanism neglects the effect of the background
Φ field on the RS geometry. For example, one may wonder if the RS metric is even compatible with
the Φ VEV. In order to account for this gravitational backreaction, one must solve the Φ equation of
motion combined with the Einstein equation as a function of the metric (discussed in Appendix A.1)
in the presence of the Φ VEV. This set of coupled second order differential equations is generically
very difficult to solve. Fortunately, there exists a ‘superpotential8’ trick that one may apply to solve the
system exactly. This method is described and demonstrated pedagogically for the Goldberger-Wise field
in [64,67]. One finds that it is indeed possible to maintain the RS background in the presence of the bulk
field necessary to stabilize the radius.

3.9 Holographic interpretation

8The trick was inspired by similar calculations in supergravity but otherwise is only related to SUSY in the sense that the
‘superpotential’ here also allows one to write first order equations of motion [78].
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Fig. 6: Cartoon of the AdS/CFT correspondence. The isometries of the extra dimensional space enforce
the conformal symmetry of the 4D theory. Moving in the z direction corresponds to a renormalization
group transformation (rescaling) of the 4D theory.

Gauge/gravity duality is a way to understand the physics of a warped extra dimension as the dual to a strongly coupled
4D theory. Our goal here is to develop the intuition to use and understand the AdS/CFT dictionary as an interpretational
tool. The most rigorous explicit derivations of this duality are often presented in the language of string theory. This idea
is presented pedagogically in the language of 4D quantum field theory (rather than string theory) in [69,70,79–83]. Those
interested in presentations that connect to supergravity and string theory may explore [?,?,?,?,?,84], listed roughly in order
of increasing formal theory sophistication starting from very little assumed background. We also point out [85] which is
an excellent presentation of dualities between 4D supersymmetric gauge theories that are analogous to the gauge/gravity
correspondence.

We now introduce a way to re-interpret the observables of RS scenario in terms of the dynamics of a
purely four-dimensional theory in its non-perturbative regime. The idea is that the symmetries of the
bulk AdS space enforce the symmetries of a conformal theory in 4D—this latter theory approximates a
strongly coupled theory near a fixed point. Combined with the observation that a shift in z causes an
overall rescaling of the AdS metric (3.28), we can identify slices of constant z as scale transformations
of the 4D [approximately] conformal theory. In this way, the 5D AdS theory ‘geometrizes’ the renormal-
ization group flow of the 4D theory. One then interprets the physics on the UV brane as a 4D conformal
theory that sets the boundary conditions for the 5D fields. Slices of constant z describe the RG evolution
of this theory at lower energies, µ ∼ 1/z. Because the higher-dimensional theory encodes information
about the behavior of a lower-dimensional theory on its boundary, this identification is known as the
holographic interpretation of warped extra dimensions. This interpretation is sketched in Fig. 6.

3.9.1 Plausibility check from an experimentalist’s perspective
As a very rough check of why this would be plausible, consider the types of spectra one expects from
an extra dimensional theory versus a strongly coupled 4D theory. In other words, consider the first thing
that an experimentalists might want to check about either theory. The theory with an extra dimension
predicts a tower of Kaluza-Klein excitations for each particle. The strongly coupled gauge theory predicts
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a similar tower of bound states such as the various meson resonances in QCD. From the experimentalist’s
point of view, these two theories are qualitatively very similar.

3.9.2 Sketch of a more formal description
We can better motivate the holographic interpretation by appealing to more formal arguments. One
of the most powerful developments in theoretical physics over the past two decades is the AdS/CFT

correspondence—more generally, the holographic principle or the gauge/gravity correspondence [79,
86–88]. The conjecture states that type IIB string theory on AdS5 × S5 is equivalent to 4D N = 4
superconformal SU(N) theory on Minkowski space in the large N limit:

AdS5 × S5 ⇐⇒ N = 4 super Yang-Mills. (3.49)

The essence of this duality is the observation that a stack of N so-called D3-branes in string theory can
be interpreted at low energies in two ways:

1. A solitonic configuration of closed strings which manifests itself as an extended black hole-like
object for which AdS5 × S5 is a solution.

2. Dirichlet boundary conditions for open strings which admit a non-Abelian U(N) gauge symmetry
associated with the N coincident D3-branes.

These correspond to the left- and right-hand side of (3.49) and form the basis of the AdS/CFT correspon-
dence.

The key for us is that the AdS5×S5 extra dimension ‘geometrizes’ the renormalization group flow
of the strongly coupled theory by relating the position in the extra dimension z with the RG scale µ. An
operator Oi in the 4D theory has a source ji(x, µ) that satisfies an RG equation

µ
∂

∂µ
ji(x, µ) = βi(jj(x, µ), µ). (3.50)

The gauge/gravity correspondence identifies this source as the value of a bulk field ji(x, µ) ⇔ Φi(x, z)
at the UV boundary of the AdS5 extra dimension. The profile of Φi in the extra dimension is associated
with the RG flow of ji(x, µ). Each Minkowski slice of AdS5 represents a picture of the 4D theory probed
at a different energy scale µ ∼ 1/z.

More concretely, the duality gives a prescription by which the correlation functions of one theory
are identified with correlation functions of the other. The parameters of these two theories are related by

R4

`4
= 4πg2N, (3.51)

where R is the AdS curvature, ` is the string length, and g is the Yang Mills coupling. Here we see why
AdS/CFT is such a powerful tool. In the limit of small string coupling α′ ∼ `2 where string theory can
be described by classical supergravity, the dual gauge theory is strongly coupled and very ‘quantum’.
The correlation functions of that theory are non-perturbative and difficult to calculate, whereas the dual
description is weakly coupled. The duality gives a handle to calculate observables in theories outside the
regime where our usual tools are applicable.

3.9.3 What it means to geometrize the RG flow
For our purposes, it is only important that we understand the warped extra dimension as the renormal-
ization group flow of a strongly coupled 4D gauge theory. To see how this RG flow is ‘geometrized,’ we
consider the internal symmetries of the two theories.
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– The isometry of the S5 space is SO(6) ∼= SU(4). This is precisely the R-symmetry group of the
N = 4 gauge theory.

– The isometry of the AdS5 space is SO(4, 2), which exactly matches the spacetime symmetries of
a 4D conformal theory.

Since RS only has a slice of the AdS space without the S5, we expect it to be dual to a conformal theory
without supersymmetry. Steps towards formalizing the holographic interpretation of Randall-Sundrum
are reviewed in [85].

Armed with this background, we can develop a working understanding of how to interpret RS

models as a picture of a strong, four-dimensional dynamics. Observe that in the conformal coordinates
that we’ve chosen, the metric has a manifest scale symmetry

z → αz x→ αx. (3.52)

Consider 4D cross sections perpendicular to the z direction. Moving this cross section to another position
z → αz is equivalent to a rescaling of the 4D length scales. Increasing z thus corresponds to a decrease
in 4D energy scales. In this way, the AdS space gives us a holographic handle on the renormalization
group behavior of the strongly coupled theory.

3.9.4 What it means to take a slice of Anti-de Sitter
The RS scenario differs from AdS5 due to the presence of the UV and IR branes which truncate the
extra dimension. Since flows along the extra dimension correspond to scale transformations, the branes
represent scales at which conformal symmetry is broken. The UV brane corresponds to an explicit UV

cutoff for the 4D conformal theory. The IR brane sets the scale of the KK modes. We heuristically
identified these with bound states of the strongly coupled theory, and so we can identify the IR brane as a
scale where conformal symmetry is spontaneously broken, the theory confines, and one finds a spectrum
of bound states. Recall that the bound state profiles are localized toward the IR brane; this is an indication
that these bound states only exist as one approaches the confinement scale. The picture of the RS ‘slice
of AdS’ is thus of a theory which is nearly conformal in the UV that runs slowly under RG flow down to
the IR scale where it produces bound state resonances.

The SM, and in particular the Higgs, exist on the IR brane and are thus identified with composite
states of the strongly coupled theory. In the extra dimensional picture, we argued that the Higgs mass
is natural because the UV cutoff was warped down to the TeV scale. In the dual theory, the solution to
the Hierarchy problem is compositeness (much like in technicolor): the scalar mass is natural because
above the confinement scale the scalar disappears and one accesses its strongly coupled constituents. By
comparison, a state stuck on the UV brane is identified with an elementary (non-composite) field that
couples to the CFT.

3.9.5 The meaning of 5D calculations
At the level presented, it may seem like the AdS/CFT correspondence is a magic wand for describing
strong coupling perturbatively—and indeed, if you have started to believe this, it behooves you to always
know the limits of your favorite tools. A 5D calculation includes entire towers of 4D strongly coupled
bound states—in what sense are are we doing a perturbation expansion? First of all, we underscore
that the AdS/CFT correspondence assumes the ’t Hooft large N limit, where N is the rank of the gauge
group [?]. Further, whether in four or five dimensions, a scattering calculation assumes a gap in the
particle spectrum. This gap in the 5D mass is translated into a gap in the scaling dimension ∆ of the 4D
CFT operators. Thus one of the implicit assumptions of a holographic calculation is that the spectrum of
the CFT has a gap in scaling dimensions. More practically, a scattering process in 5D include 4D fields
with large KK masses. We can say definite things about these large KK mass states, but only as long as
these questions include a sum over the entire tower.
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3.10 The RS Radion is a Dilaton
We have already met the radion as the dynamical field whose VEV sets the distance between the UV

and IR brane. Excitations of the radion about this VEV correspond to fluctuations in the position of the
IR brane. From its origin as a part of the 5D dynamical metric, it couples to the trace of the energy-
momentum tensor,

r

ΛIR
Tµµ . (3.53)

Observe that this is very similar to the coupling of the SM Higgs except that it is scaled by a factor of v
ΛIR

and there are additional couplings due to the trace anomaly—for example, a coupling to gluons of the
form [77, 89]

[
r

ΛIR
− 1

2

r

ΛIR
F1/2(mt)

]
αs
8π

(Gaµν)2, (3.54)

where F1/2(mt) = −8m2
t /m

2
h + · · · is a triangle diagram function, see e.g. (2.17) of [90].

Why should the radion coupling be so similar to the Higgs? Before one stabilizes the radion VEV

(e.g. as in Section 3.8), the radion is a modulus and has a flat potential. In the holographic 4D dual, the
radion corresponds to the Goldstone boson from the spontaneous breaking of conformal symmetry by
the confining dynamics at the IR scale. In other words, in the 4D theory, the radion is a dilaton. This
is the reason why it is so similar to the SM Higgs: the Higgs is also a dilaton in a simple limit of the
Standard Model.

In the SM the only dimensionful parameter is that of the Higgs mass,

V (H) = λ

(
H†H − v2

2

)2

. (3.55)

In the limit when λ→ 0, the Standard Model thus enjoys an approximate scale invariance. If we maintain
v 6= 0 while taking λ→ 0, that is, we leave the Higgs VEV on, then:

– Electroweak breaking SU(2)×U(1) →U(1) gives the usual three Goldstone bosons eaten by the
W± and Z

– The breaking of scale invariance gives an additional Goldstone boson, which is precisely the Higgs.

Indeed, the Higgs couples to the sources of scale invariance breaking: the masses of the fundamental SM

particles,

h

v

(
mf Ψ̄Ψ +M2

WWµW
µ + · · ·

)
. (3.56)

This observation leads to an interesting possibility: could one construct a complete model with
no elementary scalar Higgs, but where a condensate breaks electroweak symmetry and scale invariance?
Then the dilaton of this theory may have the properties of the SM Higgs. If one can reproduce the
observed Higgs mass then it could be very difficult to tell the scenario apart from the SM [91].

3.11 Realistic Randall-Sundrum Models
While the original RS model is sometimes used as a template by LHC experiments to put bounds on KK

gravitons, most theorists usually refer to RS to mean a more modern variant than the model presented thus
far. In the so-called ‘realistic’ version of Randall-Sundrum, all of the Standard Model fields are allowed
to propagate in the bulk [92–94]. Doing this allows one to use other features of the RS framework to
address other model building issues. For example, pulling the gauge fields into the bulk can help for
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grand unification, but this typically leads to unacceptably large corrections to the Peskin-Takeuchi S-
parameter. One way to control this is to also allow the fermions to live in the bulk. We explain below
that the bulk fermions open up a powerful new way to use the RS background to generate the hierarchies
in the Yukawa matrix.

Solving the Hierarchy problem requires the Higgs to either be stuck on the IR brane or otherwise
have a bulk profile that is highly peaked towards it. Allowing the fermions and gauge fields to propagate
in the bulk introduces a tower of KK modes for each state. These tend to be peaked towards the IR brane
and, as we learned above, are identified with bound states of the strongly coupled holographic dual. The
Standard Model matter and gauge content are identified with the zero modes of the bulk fields. These
carry zero KK mass and pick up small non-zero masses from their interaction with the Higgs. When
boundary conditions permit them, zero mode profiles can have different types of behavior:

– Fermion zero modes9 are either exponentially peaked toward the IR brane or the UV brane. The
parameter controlling this behavior is the bulk mass10, see (A.40).

– Gauge boson zero modes are flat in the extra dimension, though electroweak symmetry breaking
on the IR brane distorts this a bit, see (3.61).

The holographic interpretation of a Standard Model field with a bulk profile is that the SM state is par-
tially composite. That is to say that it is an admixture of elementary and composite states. This is
analogous to the mixing between the ρ meson and the photon in QCD. States whose profiles are peaked
towards the UV brane are mostly elementary, states peaked toward the IR brane are mostly composite,
and states with flat profiles are an equal admixture.

The effective 4D coupling between states depends on the overlap integral of their extra dimensional
profiles. This gives a way to understand the hierarchies in the Yukawa matrices, since these are couplings
to the Higgs, which is mostly localized on the IR brane [93–99]. This is a realization of the split fermion
scenario11 [100–103]. The zero-mode fermions that couple to the Higgs, on the other hand, can be
peaked on either brane. We can see that even with O(1) 5D couplings, if the zero-mode fermions are
peaked away from the Higgs, the dz overlap integral of their profiles will produce an exponentially small
prefactor. We can thus identify heavier quarks as those whose bulk mass parameters cause them to lean
towards the Higgs, while the lighter quarks are those whose bulk mass parameters cause them to lean
away from the Higgs. Because the 5D couplings can be arbitrary O(1) numbers, this is often called
flavor anarchy. This scenario is sketched in Fig. 7.

This framework tells us how to search for ‘realistic’ RS models. Unlike the original RS model,
whose main experimental signature were KK gravitons decaying to SM states like leptons, the profiles of
our SM fields tell us what we expect realistic RS to produce. The most abundantly produced new states
are those with strong coupling, say the KK gluon. Like all of the RS KK states, this is peaked towards the
IR brane. The SM field which couples the most to this state are the right-handed tops. This is because we
want the tops to have a large Yukawa coupling, and the left-handed top cannot be too peaked on the IR

brane or else the bottom quark—part of the same electroweak doublet—would become heavy. These KK

gluons are expected to have a mass & 3 TeV, so we expect these tops to be very boosted. This suggests
experimental techniques like jet substructure (see [104–106] for reviews).

There are additional features that one may add to the RS scenario to make it even more realistic.
From the picture above, the electroweak gauge KK modes lean towards the IR brane where the Higgs
can cause large mixing with the SM W and Z. This causes large corrections to the Peskin-Takeuchi

9One immediate concern with bulk fermions is that in 5D the basic spinor representation is Dirac rather than Weyl. Thus
one does not automatically obtain a chiral spectrum of the type observed in the SM. While heavy KK states indeed appear as
Dirac fermions, one may pick boundary conditions for the bulk fermion field that project out the ‘wrong chirality’ zero-mode
state. See Appendix A.3.6.

10Observe that this is a manifestation of our identification of bulk masses and scaling dimension in Sec. 3.9.5.
11Note that the use of an extra dimension to explain flavor hierarchies does not require warping.
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Fig. 7: A cartoon of the zero mode profiles of various SM particles in the ‘realistic’ RS scenario.

T parameter which seems to push up the compactification scale, causing a reintroduction of tuning. A
second issue is that the third generation SM fermions also have a large overlap with the Higgs and can
induce a large Zb̄b coupling through the neutral Goldstone. This coupling is well measured and would
also require some tuning in the couplings. It turns out, however, that imposing custodial symmetry in the
bulk can address both of these problems [107, 108]. The symmetry is typically gauged and broken on
the IR brane so that it is holographically identified with a global symmetry of the 4D theory—just as in
the SM. This introduces several new states in the theory, many of which are required to have boundary
conditions that prevent zero modes.

3.12 A sketch of RS flavor
Let us assume that the Higgs is effectively IR brane-localized. The effective 4D Yukawa coupling be-
tween a left-handed quark doublet and a right-handed quark singlet is given by the O(1) anarchic (non
hierarchicial) 5D Yukawa coupling multiplied by the zero-mode fermion profiles evaluated on the IR

brane, ε,

yui j ∼ O(1)ij × εQi εuRj . (3.57)

Here we have implicitly treated the Higgs boson profile as a δ-function on the IR brane and integrated
over the profiles. In the 4D mass eigenstate basis, yt ∼ 1, we can write εuR3 ∼ εQ3 ∼ 1. For a choice of
these parameters, one may then use the bottom mass to determine the value of εdR3 . This, in turn, may be
used in conjunction with the CKM matrix,

VCKM≤ij ∼ O
(
εQi

εQj

)
, (3.58)

to determine the εs of lower generations and so forth. One automatically obtains a hierarchical pattern of
mixing.

Neutrino zero modes, on the other hand, must be highly peaked on the UV brane. In fact, these
are typically even more peaked on the UV brane than the Higgs is peaked on the IR brane. In other
words, one should no longer treat the Higgs as purely brane localized12 and rather as a profile which
is exponentially small on the UV brane. In this limit, one can treat the right-handed neutrinos as each
having a δ-function profile on the UV brane. Even with O(1) anarchic Yukawa couplings, the smallness

12This itself causes some conceptual issues since the interactions of a purely brane Higgs is incompatible with the boundary
conditions required to make the fermion zero modes chiral [109].
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of the Higgs profile then suppresses the neutrino mass to automatically be small. Further, since each
neutrino Yukawa coupling has the same Higgs mass, one finds larger mixing than in the quark sector, as
phenomenologically observed.

3.13 Example: the coupling of the Z in RS
As a sample calculation, consider the coupling of the Z boson in RS. We first derive the effective 4D (SM)
coupling of the Z in terms of the 5D parameters and then calculate the FCNC induced by the zero mode
Z. In the SM the Z is, of course, flavor universal and flavor-changing coupling. Indeed, at zeroth order,
RS also prevents such a FCNC since the gauge boson zero mode profile is flat and therefore universal. We
will see, however, that the correction to the Z profile induces a small FCNC term.

Let us first state some results that are derived in the appendix. The localization of the normalized
zero mode fermion profile is controlled by the dimensionless parameter c,

Ψ(0)
c (x, z) =

1√
R′

( z
R

)2 ( z
R′

)−c
fcPLΨ(0)

c (x), (3.59)

where c/R is the fermion bulk mass and PL is the left-chiral projection operator. Right chiral states
differ by PL → PR and c → −c. We have also used the RS flavor function characterizing the fermion
profile on the IR brane (larger f means larger overlap with the Higgs),

fc =

√
1− 2c

1− (R/R′)1−2c
. (3.60)

Each SM fermion has a different bulk mass c which according to the size of its SM Yukawa coupling.
For simplicity of notation, we will simultaneously use c as the bulk mass parameter and as a flavor index
rather than ci. Further, the profile for the zero mode Z boson is

h
(0)
Z (z) =

1√
R logR′/R

[
1− M2

Z

4

(
z2 − 2z2 log

z

R

)]
, (3.61)

Starting in the canonical 5D basis where the bulk masses (c parameters) are diagonal, the zero mode
fermion coupling to the zero mode Z is

g4DZ
(0)
µ (x)Ψ̄(0)

c (x)γµΨ(0)
c (x) + · · · =

∫
dz

(
R

z

)5

g5DZ
(0)
M (x, z)Ψ̄(0)

c (x, z)ΓMΨ(0)(x, z), (3.62)

where ΓM = z
Rγ

M , the prefactor coming from the vielbein. Plugging in the profiles gives

gcc4D = g5D

∫ R′

R
dz

1

R′

( z
R

)−2c
f2
c

1√
R logR′/R

[
1 +

MZ

4

(
z2 − 2z2 log

z

R

)]
, (3.63)

where the cc superscripts index fermion flavor. We write gcc4D = gSM + gccFCNC in anticipation that the term
in the bracket proportional to MZ is non-universal and will contribute a FCNC. The leading term, on the
other hand, gives the usual SM coupling. Performing the dz integral for that term gives

gSM =
g5f

2
c (R′)2c

R′
√
R logR′/R

R′

1− 2c

[
1−

(
R

R′

)1−2c
]

=
g5√

R logR′/R
. (3.64)

This is indeed flavor-universal since it is independent of c so that upon diagonalization of the zero mode
mass matrix with respect to the Yukawa matrices, this contribution remains unchanged.
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On the other hand, the term proportional to MZ gives a non-universal contribution. Performing a
change of variables to y = z/R and performing the dy integral gives

gccFCNC = −g5
(MZR

′)2 logR′/R
2(3− 2c)

f2
c , (3.65)

where we’ve dropped a subleading term that doesn’t have the logR′/R enhancement. Consider, for
example, the coupling between a muon and an electron through the zero mode Z. The unitary transfor-
mation that diagonalizes the Yukawa mass matrix goes like fi/fj so that

gZ0µe
FCNC =

(
U †geeU

)
µe
∼ − fe

fµ

(
f2
µ

3− 2cµ
− f2

e

3− 2ce

)
(MZR

′)2 1

2
log

R′

R
gSM. (3.66)

We can drop the second term since flavor anarchy requires f2
e � f2

µ. The result is

gZ0µe
FCNC = −gSM

(MZR
′)2

2(3− 2cµ
log

R′

R
fµfe. (3.67)

The observation that the coupling is suppressed by (MzR
′)2 is sometimes called the ‘RS GIM mecha-

nism.’ Note that in order to do a full calculation, one must also include the non-universal contribution
from KK Z bosons. These couplings do not have a (MzR

′)2 suppression, but FCNC diagrams with these
KK modes are suppressed by the Z(n) mass.

4 The Higgs from Strong Dynamics

Further reading: The original phenomenological Lagrangian papers lay the foundation for the general treatment of
Goldstone bosons [110, 111]. See §19.6 of [112] for a slightly more pedagogical treatment that maintains much of the
rigor of [110, 111], or Donoghue, et al. for a discussion tied closely to QCD [?]. Very readable discussions can be found
in [?,?]. For a rather comprehensive review that emphasizes the role of ‘gauge’ symmetries, see [113]. For the composite
Higgs see [114] or the 2012 ICTP “School on Strongly Coupled Physics Beyond the Standard Model” [115] for a modern
set of lectures and [116] for a phenomenological review. Finally, see [117, 118] for reviews of the little Higgs scenario.

For our last topic we explore models where strong dynamics at a scale Λ ∼ 10 TeV produces a light,
composite Higgs. The solution to the Hierarchy problem is that there is no elementary scalar—beyond
Λ one becomes sensitive to the underlying ‘partons’ that make up the Higgs. Through the holographic
principle, we have already discussed many broad features of this paradigm in the context of warped extra
dimensions above.

One key question to address is the lightness of the Higgs mass. If Λ ∼ 10 TeV, how is it that the
Higgs appears at 125 GeV? By comparison, the strong coupling scale for quantum chromodynamics is
ΛQCD ∼ O(300 MeV) while most QCD states, such as the ρ meson and proton are at least as heavy as
this13. Those who are sharp with their meson spectroscopy will quickly observe that there is a counter-
example in QCD: the pions are all lighter than ΛQCD, albeit by only an O(1) factor.

The reason that the pions can be appreciably lighter than the other QCD states is the well-known
story of chiral perturbation theory, a subset of the more general nonlinear Σ model (NLΣM) construc-
tion. The pions are the Goldstone bosons of the spontaneously broken SU(2)L×SU(2)R flavor symmetry
coming from chiral rotations of the up and down quarks. Small explicit breaking of this symmetry gen-
erates a mass for the pions so that they are pseudo-Goldstone modes. In the composite models that we
consider in this section, we assume a similar structure where the Higgs is a pseudo-Goldstone boson of

13A better comparison is Λ = 4πfπ ∼ O(GeV), where fπ is the pion decay constant. ‘Typical’ QCD states such as the ρ
meson have masses of at least this value, mρ ∼ Λ. We explain the distinction in Section 4.3.7.
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some symmetry for which Λ ≈ 4πf with breaking scale f ≈ 1 TeV. We show that the generic composite
Higgs set up still requires some tuning between the electroweak scale v and the symmetry breaking scale
f . One way to generate this ‘little hierarchy’ is through the mechanism of collective symmetry break-
ing.We close this section by drawing connections to models of an extra dimension and by providing a
phenomenological taxonomy of composite Higgs models to help clarify nomenclature.

4.1 Pions as Goldstone bosons
Before exploring composite Higgs models in earnest, it is useful to review strong electroweak symmetry
breaking in QCD since this gives a concrete example of the effective theory of Goldstone bosons. It
is also useful because electroweak symmetry breaking in QCD formed the motivation for technicolor
models that have since fallen out of favor—it is useful to see why this is, and how composite Higgs
models are different from a revival of technicolor.

First, consider the Lagrangian for pure QCD: a theory of vector-like quarks and gluons, where
‘vector-like’ mean the left- and right-handed quarks come in conjugate representations,

LQCD = −1

4
GaµνG

aµν q̄(i /D −m)q. (4.1)

This is a theory which becomes strongly coupled and confines at low energies, leading to a spectrum of
composite states. This makes it a good template for our own explorations into compositeness. We can
already guess that at low energies the effective theory is described by Goldstone bosons, the pions. In
anticipation, we examine the global symmetries of the theory.

We focus only on the three lightest quarks with masses mi � ΛQCD. In the chiral limit, m → 0,
the physical quarks are Weyl spinors and have an enhanced U(3)L×U(3)R global flavor symmetry acting
separately on the left- and right-handed quarks,

qiL → (UL)ijq
j
L (4.2)

qiR → (UR)ijq
j
R. (4.3)

One may write the currents for this global symmetry. For compactness we move back to Dirac spinors
and write in terms of the vector (UL = UR) and axial (UL = U †R) transformations:

(jaV )µ = q̄γµT aq (jaA)µ = q̄γµγ5T
aq (4.4)

(jV )µ = q̄γµq (jA)µ = q̄γµγ5q, (4.5)

where the T a are the generators of SU(3). We can identify jV with baryon number, which is conserved
in QCD, and we note that jA is anomalous so that it is not a good symmetry and we don’t expect to see
it at low energies14. The vectorial SU(3), with current jaV , is precisely the symmetry of Gell-Mann’s
eightfold way and can be used to classify the light hadrons. What do we make of the axial SU(3), jaA?

Phenomenologically we can observe that the axial SU(3) is not a symmetry of the low energy
spectrum, otherwise we would expect a parity doubling of all the ‘eightfold way’ multiplets. There is
one way out: this symmetry must be spontaneously broken. What could possibly enact this breaking in a
theory with no Higgs boson? It turns out that QCD itself can do the job! We assume that the axial SU(3)A
is broken spontaneously by a quark–anti-quark condensate,

〈q̄q〉 = 〈q̄iLqRi + h.c.〉 6= 0 (4.6)

14What happens to this symmetry at low energies is rather subtle and was known as the ‘U(1) problem.’ There is a lot more
to the story than simply saying that the axial U(1) is anomalous and so does not appear at low energies. One can construct a
current out of jA and a Chern-Simons (topological) current that is anomaly-free and spontaneously broken. This current indeed
has a Goldstone pole. However, Kogut and Susskind showed that this current is not gauge invariant. There are actually two
Goldstone bosons that cancel in any gauge invariant operator [119].
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in such a way that the vector SU(3)V is preserved. This is the unique combination that preserves
Lorentz invariance and breaks SU(3)A. By dimensional analysis, this ‘chiral condensate’ takes the form
〈q̄iqj〉 ∼ δijΛ

3
QCD. Given that QCD is strongly interacting in the IR, the existence of this non-trivial vac-

uum condensate should not be surprising and is indeed supported by lattice calculations. However, the
exact mechanism by which this condensate forms is non-perturbative and not fully understood. This
also gives a robust prediction: we should have eight pseudoscalar Goldstone bosons as light excitations.
These are precisely the pions, kaons, and η. Because SU(3)A is only a symmetry in the chiral m → 0
limit, these are not exactly Goldstone bosons as the symmetry is explicitly broken by the quark masses
and electromagnetism. However, because this explicit breaking is small relative to ΛQCD, these excita-
tions are still very light mπ � ΛQCD and are often referred to as pseudo-Goldstone bosons (sometimes
pseudo-Nambu–Goldstone bosons, pNGB, in the literature).

Note that the electroweak group sits inside the QCD flavor symmetry15,

SU(3)L × SU(3)R × U(1)B ⊃ SU(2)L × U(1)Y. (4.7)

We can see this since an SU(3)L fundamental contains (uL, dL, sL), where the first two components
form the usual SU(2)L first generation quark doublet. In this way, SU(2)L is simply the upper left 2× 2
component of the SU(3)L generators. Similarly, hypercharge is a combination of the diagonal generators,

Y = TR3 +
B

2
. (4.8)

We say that the electroweak group is weakly gauged with respect to low energy QCD. By this we mean
that the gauge couplings are perturbative in all energy scales of interest. This weak gauging is a small
explicit breaking of the QCD flavor symmetries and accounts for the mass splitting between the π0 and
π±.

4.2 A farewell to technicolor
Because of (4.7), the spontaneous breaking of SU(3)A by the chiral condensate 〈q̄q〉 also breaks elec-
troweak symmetry. This is an important observation: even if there were no Higgs boson, electroweak
symmetry would still be broken and W and Z bosons would still be massive, albeit with a much smaller
mass. This mass comes from ‘eating’ part of the appropriately charged pseudo-Goldstone bosons. We
will see this in slightly more detail below. Readers unfamiliar with this story are encouraged to follow
the treatment in [120].

The observation that strong dynamics can—and indeed, does in QCD—break electroweak sym-
metry led to the development of technicolor theories where the SM is extended by a confining sec-
tor [121–125]. Note that by the holographic interpretation of extra dimensions, this type of electroweak
symmetry breaking is analogous to the RS scenario where a brane-localized Higgs picks up a VEV. The
large hierarchy between the Planck and electroweak scales is then understood to be a result of dimen-
sional transmutation. The simplest constructions of these models, however, suffer from several issues.
These include the requirement for an additional mechanism to generate fermion masses [126, 127] and
generically large deviations in flavor and electroweak precision observables [127–129]. However, the
nail in the coffin for most of these models is observation of the Higgs boson at 125 GeV, much lighter
than the compositeness scale. Such a state—even if it is not the Standard Model Higgs—is very difficult
to explain in the context of these models.

As such, even though the models we consider here encode strong dynamics, they are distinct
from the pre-Higgs technicolor strong dynamics of the past. All of these models require a Higgs. We
will borrow from the above story, however, the importance of the effective theory of pseudo-Goldstone
bosons. By identifying the Higgs as one of these pion-like states, we can explain its lightness.

15It has to be true that the electroweak gauge group sits in the full QCD global symmetry group in order for some of the
quarks to have non-trivial electroweak charges.
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Fig. 8: Cartoon of the Goldstone excitation for a ‘Mexican hat’ potential. Image from [?].

4.3 Chiral perturbation theory
In this section we review the main framework for describing Goldstone bosons of chiral symmetry break-
ing, known as chiral perturbation theory. Many of the results highlight general principles that appear in
any theory of Goldstone bosons, known as nonlinear sigma models. A completely general treatment of
spontaneously broken global symmetries is captured in the the so-called Callan-Coleman-Wess-Zumino
(CCWZ) construction, which we present in Appendix B.

The importance of having a Lagrangian theory of Goldstone bosons is clear from the success of
SM predictions before the Higgs discovery. Naïvely, one might wonder how we knew so much about the
Standard Model before the Higgs discovery—isn’t the Higgs a very central piece to the theory? As we
saw above, the key feature is actually electroweak symmetry breaking: whether or not there is a Higgs,
one always has the Goldstone bosons which are eaten by the W± and Z to become massive. It is this
nonlinear sigma model that pre-Higgs experiments had studied so carefully. The discovery of the Higgs
is a statement that the nonlinear sigma model is UV completed into a linear sigma model.

4.3.1 Framework
We begin with the concrete example of low-energy QCD that we described above. Given that the chiral
condensate 〈q̄q〉 breaks SU(3)A, we proceed to write down the effective theory describing the interaction
of the resulting Goldstone bosons. Let us write U0 to refer to the direction in field space associated with
the chiral condensate, U0 ∼ 〈q̄q〉. This transforms as a bifundamental with respect to SU(3)L×SU(3)R,

U(x)→ ULU(x)U †R, (4.9)

where UL and UR are the transformation matrices under the SU(3)L and SU(3)R respectively. The ob-
servation that SU(3)A is broken corresponds to U0 = 1. Note that this indeed preserves the SU(3)V
transformations UL = UR.

We now consider the fluctuations U(x) about U0—these are what we identify with the Goldstone
bosons. Recall the picture of spontaneous symmetry breaking through the ‘Mexican hat’ potential in
Fig. 8. The action of an unbroken symmetry does not affect the VEV (represented by the ball), while
broken symmetries shift the VEV along the vacuum manifold. This gives an intuitive picture of how to
identify the Goldstone modes:

1. Identify a convenient VEV, U0
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2. Act on that VEV with the broken group elements

3. Promote the transformation parameter to a field, identify these with the Goldstones.

For the chiral Lagrangian, our broken symmetries are those for which UL = U †R. Writing UL =
exp(iεaT a), we act on U0 = 1,

eiε
aTa




1
1

1


 eiε

aTa = e2iεaTa . (4.10)

We now promote the transformation parameter εa to Goldstone fields, εa ∼ πa(x). Since εa is dimen-
sionless, in order for πa to have canonical scaling dimension we should rescale by the decay constant16

f . We may understand the physical meaning of f if we recall Fig. 8, since we want ε to be an angle
that parameterizes the position along the vacuum circle: the Goldstone is a periodic variable with period
2πf , so that f is identified with the value of the symmetry breaking VEV. The angle ε is then π(x)/f .
We thus promote εa → π(x)/f so that we may define the field U(x),

U(x) = e
i
πa(x)
f

Ta
U0 e

i
πa(x)
f

Ta
= e

2i
πa(x)
f

Ta
. (4.11)

We now have an object U(x) which packages the Goldstone fields, πa(x). Note that U(x) transforms
linearly under the full SU(3)L×SU(3)R group, U(x)→ ULU(x)U †R, but the fields that actually describe
the low energy spectrum are related in a non-trivial way to U(x).

4.3.2 How pions transform
We can determine the transformation of the pions πa by using the transformation of the linear field U(x).
Under the SU(3)V (unbroken) symmetry, UL = UR = UV, we have

U(x)→ UVU(x)U †V = UV

(
1 + 2i

πa(x)

f
T a + · · ·

)
U †V, (4.12)

where we can see from the first term that πa(x)T a → UV π
a(x)T aU †V . In other words, πa(x) transforms

linearly under the unbroken symmetry. Note that the higher order terms also obey this by trivially
inserting factors of U †V UV = 1. Indeed, we expected this result because we know that Gell-Mann’s
eightfold way is precisely a realization of SU(3)V, so our pions must transform as octets.

Things are not as simple for the broken symmetry, UL = U †R = UA. In this case the transformation
is

U(x)→ UAU(x)UA ≡ e2i
π′a(x)
f

Ta
. (4.13)

In this case the pion does not transform in a nice, linear way17. Unlike the above case, there is no sense in
which this looks like πa(x)T a → UAπ

a(x)T aU †A. The best we can do is say that we have moved U0 to a
new point on the vacuum manifold, which we parameterize by an angle 2π′a(x)/f . The transformation
πa(x)→ π′a(x) is nonlinear. To leading order,

1 + 2i
π′a(x)

f
T a = (1 + icaT a)

(
1 + 2i

πa(x)

f
T a
)

(1 + icaT a) (4.14)

16The name comes from identifying the appearance of this factor in the matrix element for pion decays, e.g.
〈0|ūγµγ5d|π−〉 ≡ ifpµ.

17This may seem confusing since U(x) transforms as a bifundamental under SU(3)L × SU(3)R. However, components of
U(x) are not independent due to the nonlinear constraints of being unitary and having unit determinant.
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so that

π′a(x)T a = πa(x)T a + fcaT a. (4.15)

In other words, to leading order the pion shifts πa → fca. This shift symmetry in the nonlinear re-
alization is precisely why the pion is massless; the only non-trivial pion Lagrangian terms must carry
derivatives.

Coset space description. In anticipation of the more general CCWZ construction, let us restate the above arguments in a
more compact way. The symmetry breaking pattern is the coset SU(3)L×SU(3)R/SU(3)V. Using the notation above, this
means that group elements of the full symmetry UL,R can be written as a product of elements of the unbroken group UV

and the [left] coset UA ∈ SU(3)L×SU(3)R/SU(3)V,

UL = UAUV UR = U†AUV. (4.16)

One can check that this matches the above cases when one sets UA = 1 or UV = 1. The general transformation of the
linear packaging of the pions, U(x) = exp (2iπa(x)T a/f), is

U(x)→ UA

(
UVU(x)U†V

)
UA. (4.17)

From here it is clear that SU(3)V is realized linearly while SU(3)A is realized non-linearly.

SU(3)A is not a subgroup of SU(3)L × SU(3)R. While one can divide the algebra of SU(3)L × SU(3)R into axial and
vector generators, one should note that there is no such thing as an ‘axial subgroup’ of SU(3)L × SU(3)R. One can check
that the commutation relations of axial generators include vector generators so that the SU(3)A algebra doesn’t close by
itself.

4.3.3 Lagrangian description
Thus far we have found a convenient way to package the Goldstone fields πa(x) into a linear real-
ization of the full SU(3)L×SU(3)R symmetry. We would like to write down a Lagrangian describing
the dynamics of the Goldstones. Our strategy will be to write the lowest order terms in U(x) that are
SU(3)L×SU(3)R invariant and then expand U(x) in Goldstone excitations about U0. One can see that
many invariants, such as U(x)†U(x), are independent of the Goldstones. In fact, only derivative terms
contain the Goldstone fields. This is consistent with our argument that Goldstones must have derivative
couplings. The lowest order non-trivial term is

L =
f2

4
Tr
[(
∂µU †(x)

)
∂µU(x)

]
(4.18)

The pre-factor is fixed by expanding U(x) = 1 + 2iπ
a(x)
f T a + · · · and ensuring that the kinetic term

for πa(x) is canonically normalized. We have used the normalization that TrT aT b = 1
2δ
ab. The higher

order terms in the expansion of U yield a series of non-renormalizable pion–pion interactions.

Next we weakly gauge the electroweak group. Recall that this sits in SU(3)L×SU(3)R×U(1)B.
The left- and right-chiral quarks are fundamentals under SU(3)L and SU(3)R respectively and have
baryon number 1/3. This information, combined with knowing how SU(2)L sits in SU(3)L and (4.8),
determines the quantum numbers of the linear field U(x), which transforms as a 3̄ × 3 × 0 under
SU(3)L×SU(3)R×U(1)B. To ‘turn on’ the electroweak gauge interactions, we simply promote derivatives
to covariant derivatives ∂µ → Dµ where

DµU(x)ij = ∂µU(x)ij − igW a
µ

1

2
(τa)ik U(x)kj + ig′Bµ

1

2

(
T 3
R

) k
i
U(x)ik. (4.19)
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We have written the SU(2)L generators as

1

2
τa =

1

2


 τa 0

0 0 0


 ⊂ SU(3)L. (4.20)

Promoting ∂µ → Dµ in (4.18) yields

L =
f2

4
Tr
∣∣∣∣
(
∂µ −

ig

2
W a
µ (x)τa

)
U(x)

∣∣∣∣
2

+ · · · , (4.21)

where we leave the similar term with Bµ(x) implicit.

4.3.4 Electroweak symmetry breaking
One may check that (4.21) has terms that are linear in W (x) such as g

2fW
+
µ (x)∂µπ−(x) + h.c. This

is precisely a mixing term between the π+(x) and the W+
µ (x). In other words, the W has eaten the

Goldstone boson to pick up a longitudinal polarization. This is precisely electroweak symmetry breaking
at work. Note that similar terms mixing the W 3

µ and Bµ with the π0. As usual, the masses of the heavy
gauge bosons come from the gauge fields acting on the U0 ‘VEV’ part of U(x), the resulting spectrum is

∆L =
g2f2

4
W+W− +

g2 + g′2

4
f2Z

2

2
. (4.22)

The characteristic mass scale is 100 MeV, much smaller than the actual W and Z since most of the mass
contribution to those fields comes from the Higgs VEV. Diagrammatically, we can imagine the mixing
as follows:

= + Π + Π Π + · · · (4.23)

We have parameterized the strong dynamics in terms of a momentum-dependent form factor Π(q2).
What the W boson is really coupling to is the SU(2)L current formed from the quarks,

Πµ ν = QCDµ ν (4.24)

where the W bosons are coupling to quarks which then interact strongly with one another. In other
words,

iΠµν(q) = 〈J+
µ (q)J−ν (−q)〉. (4.25)

The QCD corrected W propagator ∆µν(q) from resumming the diagrams in (4.23) is

∆µν(q) =
−i

q2 − g2Π(q2)/2
Πµν(q) =

(
ηµν −

qµqν
q2

)
Π(q2). (4.26)

The observation that a charged pion has been ‘eaten’ to make theW massive is the statement that Πµν(q2)
has a zero-momentum pole. Indeed, 〈0|J+

µ |π−(p)〉 = ifπpµ/
√

2. The QCD blobs in (4.23) also encode,
however, the effects of heavier resonances and has poles at the masses of these states. In the ‘large
N ’ limit (large number of colors) one may write the current-current correlation function as a sum of
resonances [?, ?, 130],

(
ηµν −

qµqν
q2

)
Π(q2) =

(
q2ηµν − qµqν

)∑

n

f2
n

q2 −m2
n

, (4.27)

where the Goldstone pole appears for m0 = 0.
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Fig. 9: ‘Cat diagram’ adapted from [131]. Despite the silly appearance, the key point is that the photon
couples to the electric current Jµ = eΨ̄γµΨ (‘ears’) formed from interactions with fundamental quarks
in the strongly coupled sector. The ‘whiskers’ are the pseudo-Goldstone external states when expanding
the U(x) field in (4.28). The contribution to the charged meson masses come from the ‘two whisker’
diagram.

4.3.5 Electromagnetic mass splitting
In addition to the spontaneous chiral symmetry breaking by strong dynamics, the SU(3)L×SU(3)R group
is also broken explicitly from the gauging of U(1)EM ⊂ SU(3)V. The neutral Goldstones (pions, kaons,
and the η) are unaffected by this. The charged Goldstones, on the other hand, pick up masses from
photon loop diagrams of the form in Fig. 9. These diagrams contribute to an operator that gives a shift
in the [pseudo-]Goldstone mass,

∆L ∼ e2Tr
[
QU(x)†QU(x)

]
, (4.28)

where Q = 1
3diag(2,−1,−1) is the matrix of quark electric charges. Since the electromagnetic force

does not distinguish between the down and strange quarks, this diagram gives an equal shift to both the
charged pions (e.g. ud̄) and kaons (e.g. us̄). Since the up and anti-down/strange quark have the same
charge, the bound state is more energetic than the neutral mesons and we expect the shift in the mass-
squared to be positive [131, 132]. Note that the contribution to the charged pion mass is quadratically
sensitive to the chiral symmetry breaking scale, though it is also suppressed by the smallness of αEM.

4.3.6 Explicit breaking from quark spectrum
One can add quark masses that constitute a small (mq � ΛQCD) explicit breaking of the global symmetry
and generate small masses to the pseudo-Goldstone bosons. One can write this as a spurion M =
diag(mu,md,ms) which has the same quantum numbers as U(x). One can add these terms to the
effective Lagrangian by forming the appropriate global symmetry group invariant. In particular, we add
to the Lagrangian

∆L ∼ Tr [MU(x)] ∼ Tr

[
M

(
πa(x)

f
T a
)2
]

+ · · · (4.29)

In the limit where mu = md and ignoring the electromagnetic splitting above, one may identify the
masses for the pions, kaons, and η (different components of πa) to derive the Gell-Mann–Okubo relation,

m2
η +m2

π = 4m2
K . (4.30)

4.3.7 NDA: When the theory breaks down
Finally, let us note that the effective Lagrangian for pions is non-renormalizable, so we should say some-
thing about the cutoff for this theory. At tree-level, the two-to-two scattering of pions with characteristic
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momentum p goes like p2/f2 from (4.18). Using naïve dimensional analysis (NDA) [133–135], we see
that the loop contributions go like

∼
∫
d̄ 4k

(
p2k2

f4

)
1

k4
∼ Λ2p2

16π2f4
. ∼ × Λ2

16π2f2
, (4.31)

where we have used the shift symmetry (the full SU(3)2 group structure) to tell us that at the numerator
of the integrand carries at least two powers of the external momenta. Validity of our loop expansion thus
requires that Λ ∼ 4πf ∼ GeV, and this is indeed the scale at which additional QCD states appear. Note
that this cutoff, based on perturbativity of the 1/f couplings in the chiral Lagrangian, is slightly different
from ΛQCD ∼ O(300 MeV), which is the scale where αs becomes non-perturbative.

Indeed, this UV behavior of the theory of Goldstones is one of the reasons why we expected either
the Higgs or something new to be manifest at the LHC: the SM without a Higgs is simply a nonlinear
sigma model. By the Goldstone equivalence theorem, the scattering cross section for longitudinal W
boson scattering grows linearly with the center of mass energy. In order to maintain unitarity, one requires
that either there is a Higgs boson (a linearization of the nonlinear sigma model) or that the theory becomes
strongly coupled so that higher order terms can cancel the unphysical behavior.

4.3.8 NDA: Characteristic couplings
To show the power of NDA, let’s consider the generic behavior of a strongly coupled theory beyond the
Goldstone modes. At the level of dimensional analysis, there is one relevant mass scale: the mass of
the lowest non-Goldstone resonances, mρ, where we use the ρ meson as an example. Let us identify the
separation between the mass of the ρ and the compositeness scale f with the parameter gρ = mρ/f that
describes the coupling of ρ to the strong sector.

For a strong sector field φ, define the dimensionless combinations

x = gρ
h

mρ
y =

∂

mρ
. (4.32)

We’d like to build an NDA Lagrangian to estimate the size of couplings. We start by writing some
dimensionless function f(x, y). In order to obtain the correct mass dimension of a Lagrangian, we
further define F (x, y) = m4

ρf(x, y). This function is assumed to contain a kinetic term,

F (x, y) ⊃ m4
ρx

2y2 = g2
ρO(∂2, φ2). (4.33)

We see that we have to rescale by g−2
ρ to obtain a canonically normalized Lagrangian,

L =
1

g2
ρ

F (x, y) =
m4
ρ

g2
ρ

f(x, y) = m2
ρf

2f(x, y). (4.34)

As an example that is useful below, let us use this to determine the expected size of a quartic
coupling of strong sector fields. This comes from the O(x4) term in the expansion of f(x, y) so that

L ⊃
m2
ρ

g2
ρ

g4
ρ

φ4

m4
ρ

= g2
ρφ

4. (4.35)

Thus we expect the quartic coupling of the φ to go like g2
ρ ∼ m2

ρ/f
2.

4.4 Composite, pseudo-Goldstone Higgs
The main idea for composite pseudo-Goldstone Higgs models is that the Higgs mass parameter is pro-
tected against quadratic quantum corrections up to the compositeness scale because it is a pseudo-
Goldstone boson. Above the scale of compositeness, it is simply not an elementary scalar. This should
be contrasted with the solutions to the Hierarchy problem already discussed:
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– SUPERSYMMETRY: due to the extended spacetime symmetry, thre is a cancellation of the quadratic
corrections through the introduction of different-spin partners.

– TECHNICOLOR/HIGGS-LESS: there is no elementary Higgs and electroweak symmetry breaking
proceeds through a Fermi condensate. This is now excluded.

– WARPED EXTRA DIMENSIONS: the Higgs itself is a composite state so that above the compos-
iteness scale it no longer behaves like a fundamental scalar. However, there is no explanation for
why the Higgs is lighter than the confinement scale.

Note, in particular, that the composite Higgs scenario that we’re interested in is distinct from technicolor:
the pseudo-Goldstone nature of the Higgs is an explanation for why the Higgs mass is so much lighter
than the other bound states in the strongly coupled sector.

Goldstone bosons, however, behave very differently from the Standard Model Higgs. We saw that
Goldstone bosons have derivative couplings owing to their shift symmetry. The Higgs, on the other hand,
has Yukawa couplings and the all important electroweak symmetry-breaking potential. Our goal in this
section is to see how to construct a theory of Goldstones which can produce a Higgs particle that has all
of the required couplings of the SM Higgs.

We shall closely follow the discussion in [114] and refer the reader there for further details and
references.

4.4.1 The framework
Start with a large global symmetry group G, analogous to the ‘large’ SU(3)L×SU(3)R global symmetry
of low energy QCD. We will break this symmetry in two ways:

1. We assume that the strong dynamics spontaneously breaks G to a subgroup Hglobal. This is analo-
gous to chiral symmetry breaking in QCD, SU(3)L × SU(3)R → SU(3)V.

2. In addition to this, we will explicitly breakG by weakly gauging a subgroupHgauge which contains
the SM electroweak group SU(2)L × U(1)Y. This is analogous to the gauging of U(1)EM.

We assume that the SM electroweak group is a subgroup of H = Hgauge ∪ Hglobal so that it is gauged
and preserved by the strong dynamics. This is shown on the left of Fig. 10. This results in dimHgauge
transverse gauge bosons and

(
dimG− dimHglobal

)
Goldstone bosons. The breaking G → Hglobal also

breaks some of the gauge group so that there are a total of
(
dimHgauge −H

)
massive gauge bosons and(

dimG− dimHglobal
)
−
(
dimHgauge − dimH

)
‘uneaten’ massless Goldstones.

Now we address the white elephant of the Higgs interactions—can we bequeath to our Goldstone
bosons the necessary non-derivative interactions to make one of them a realistic Higgs candidate? This is
indeed possible through vacuum misalignment, which we illustrate on the right of Fig. 10. The gauging
ofHgauge gives loop-level corrections to the dynamical symmetry breaking pattern since this is an explicit
breaking of the global symmetry. This is analogous to how the gauged U(1)EM splits the masses of the
charged and neutral pions through a photon loop. Loops of SM gauge bosons can generate an electroweak
symmetry breaking potential for the Higgs. We illustrate this below.

One key point here is that since the Higgs potential is generated dynamically through SM gauge
interactions, the electroweak scale v is distinct from theG→ H symmetry breaking scale f . The ‘angle’

ξ =

(
v

f

)2

(4.36)

parameterizes this separation of scales and quantifies the degree of vacuum misalignment. Note that this
is a separation of scales which does not exist in technicolor and is the key to parameterizing how the
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HglobalHgauge
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EW

EM
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Hgauge

Hoblique

H ′

ξ =

(
v

f

)2

Fig. 10: Pattern of symmetry breaking. (LEFT, tree level) Strong dynamics breaks G → Hglobal
spontaneously, while Hgauge ⊂ G is explicitly broken through gauging. The unbroken group H =
Hgauge ∩Hglobal contains the SM electroweak group, SU(2)L×U(1)Y. (RIGHT, loop level) Vacuum mis-
alignment from SM interactions shifts the unbroken group H → H ′ and breaks the electroweak group
to U(1)EM. The degree of misalignment is parametrized by ξ, the squared ratio of the EWSB VEV to the
G→ H VEV. Adapted from [?].

Higgs remains light relative to the heavier resonances despite not being a ‘true’ Goldstone boson. The
limits ξ → 0 and ξ → 1 correspond to the SM (heavy states completely decoupled) and technicolor,
respectively. We note that this parameter is also a source of tuning in realistic composite Higgs models.
Once the pseudo-Goldstone Higgs state is given non-derivative interactions, these interactions generi-
cally introduce quadratic divergences at loop level which would lead to an expected O(1%) tuning. To
avoid this, one needs to introduce a smart way of dealing with these explicit breaking terms called col-
lective symmetry breaking which we discuss below. First, however, we focus on the effects of gauge
bosons on the Higgs potential.

We have the following constraints for picking a symmetry breaking pattern:

1. The SM electroweak group is a subgroup of the unbroken group, SU(2)L × U(1)Y ⊂ H . In fact,
it is better to have the full custodial SU(2)L × SU(2)R ∼= SO(4) group embedded in H since this
will protect against large contributions to the ρ-parameter.

2. There is at least one pseudo-Goldstone boson with the quantum numbers of the SM Higgs. To
protect the ρ-parameter, it is better to have a (2,2) under the custodial group.

At this point we have said nothing about the SM fermions. These, too, will have to couple to the
strong sector to generate Yukawa couplings with the Higgs. We show below that a reasonable way to
do this is to allow the SM fermions to be partially composite, a scheme that we had already seen in the
holographic interpretation of the RS scenario. Indeed, extra dimensions provide a natural language to
construct composite Higgs models.

4.4.2 Minimal Composite Higgs: set up
We now consider an explicit example, the minimal composite Higgs model, which was explored in
[136, 137] using the intuition from the RS framework. Following the guidelines set above, we would
like to choose choose Hglobal = SO(4), the custodial group which is the minimal choice to protect the
ρ-parameter. However, the SO(4) = SU(2)L×SU(2)R charge assignments don’t give the correct U(1)Y
charges, as is well known in left-right symmetric models. Thus our ‘minimal’ choice for Hglobal requires
an additional U(1)X so that one may include hypercharge in the unbroken group, H ,

Y = (TR)3 +X. (4.37)
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We then choose G = SO(5) × U(1)X and introduce a linear field Σ that is an SO(5) fundamental
and uncharged under U(1)X. Note that we can ignore the U(1)X charge in our spontaneous symmetry
breaking analysis since it’s really just ‘coming along for the ride’ at this point. Σ acquires a VEV to break
SO(5)→ SO(4),

〈Σ〉 = (0, 0, 0, 0, 1)T . (4.38)

This is analogous to the QCD chiral condensate. We can now follow the intuition we developed with
chiral perturbation theory. The Goldstone bosons of this breaking are given by transforming this VEV by
the broken generators. A useful parameterization of the four broken generators is

T âij =
i√
2

(
δki δ

5
j − δkj δ5

i

)
, (4.39)

where â ∈ {1, · · · 4}. We refer to the unbroken generators with an undecorated index: T a. The SO(5)
group element that acts non-trivially on the VEV, exp(ihâT â/f), can be written in terms of sines and
cosines by separately summing the odd and even terms of the exponential. The linear field Σ can then be
decomposed into the Goldstone pieces hâ(x) and a radial component h(x) =

√
hâ(x)hâ(x),

Σ = eih
â(x)T â/f 〈Σ〉 =

sin(h/f)

h

(
h1, h2, h3, h4, h cot(h/f)

)
. (4.40)

With this parameterization, the SM Higgs doublet is

H =
1√
2

(
h1 + ih2

h3 + ih4

)
. (4.41)

4.4.3 Gauge couplings
We would like to write down a Lagrangian for this theory and parameterize the effects of the strong
sector on the SM couplings. A useful trick for this is to pretend that the global SO(5)×U(1)X symmetry
is gauged and then ‘demote’ the additional gauge fields to spurions—i.e. turn them off. We can then
parameterize the quadratic part of the Lagrangian for the full set of SO(5) [partially spurious] gauge
bosons, Vµ = AaµT

a + AâµT
â, and the U(1)X gauge boson, X , by writing down the leading SO(5) ×

U(1)X-invariant operators:

∆L =
1

2

(
ηµν +

qµqν

q2

)[
ΠX(q2)XµXν + Π0(q2)Tr(AµAν) + Π1(q2)Tr(ΣAµAνΣT )

]
. (4.42)

Where the form factors are completely analogous to (4.25) and (4.26). Contained in this expression are
the kinetic and mass terms of the SM electroweak gauge bosons. To extract them, we must expand the
form factors Π(q2) in momenta and identify the O(q0) terms as mass terms and the O(q2) terms as
kinetic terms. Since the ΠX and Π0 terms include gauge fields in the unbroken directions, they should
vanish at q2 = 0, otherewise masses would be generated for those directions. The Π1 term, however,
selects out the broken direction upon inserting the Σ→ Σ0 and thus contains the Goldstone pole, (4.27).
We thus find

Π0(0) = ΠX(0) = 0 Π1(0) = f2. (4.43)

Assuming that the Higgs obtains a VEV, one may rotate it into a convenient location (h1, · · · , h4) =
(0, 0, v/

√
2, 0) corresponding to the usual SM Higgs VEV parameterization. We now assume that Hgauge

is the SM electroweak group and drop all spurious gauge bosons. Using (4.40), the strong sector contri-
bution to the Lagrangian of these gauge bosons to O(q2) is

∆Lq0 =

(
ηµν +

qµqν

q2

)
1

2

(
f2

4
sin2 〈h〉

f

)(
BµBν +W 3

µW
3
ν − 2W 3

µBν + 2W+
µ W

−
ν

)
(4.44)
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∆Lq2 =
q2

2

[
Π′0(0)W a

µW
a
ν +

(
Π′0(0) + Π′X(0)

)
BµBν

]
, (4.45)

where we have used the choice of SO(5) generators in the appendix of [138]. ∆Lq2 gives contributions
to the kinetic terms of the gauge bosons. Observe that these are not canonically normalized, but instead
can be thought of as shifts in the gauge coupling,

∆

(
1

g2

)
= −Π′0(0) ∆

(
1

g′2

)
= −

(
Π′0(0) + Π′X(0)

)
. (4.46)

Thus if the SU(2)L gauge bosons have a ‘pure’ gauge coupling g0 when one turns off the strongly coupled
sector, the full observed SU(2)L gauge coupling is

1

g2
SM

=
1

g2
0

−Π′0(0), (4.47)

and similarly for g′SM.

∆Lq0 corresponds to contributions the masses of the heavy electroweak gauge bosons. Taking into
account the need to canonically normalize with respect to ∆Lq2 , we obtain the usual W± and Z masses
by identifying the SM Higgs VEV as v = f sin(〈h〉/f). We see the appearance of the misalignment
angle,

ξ = sin2 〈h〉
f
≡ v2

f2
. (4.48)

Finally, by restoring 〈h〉 → h(x) in (4.44) we may determine the composite Higgs couplings to the
gauge bosons18. The key is the expansion

f2 sin2 h(x)

f
= v2 + 2v

√
1− ξh(x) + (1 + 2ξ)h(x)2 + · · · . (4.49)

From this we can make a prediction for the SO(5)/SO(4) composite Higgs couplings to the heavy
electroweak gauge bosons V = W±, Z relative to their SM values,

gV V h =
√

1− ξgSM
V V h gV V hh = (1− 2ξ)gSM

V V hh. (4.50)

At this point, these couplings introduce gauge boson loops which are quadratically divergent. These
loops go like

∼ g2

16π2
Λ2 ∼ g2

SM(1− ξ)f2, (4.51)

where we have used the dimensional analysis limit Λ = 4πf . We see that having explained the lightness
of the Higgs by appealing to the Goldstone shift symmetry, reintroducing the Higgs couplings to the
gauge bosons breaks this shift symmetry and wants to push the Higgs mass back up towards the symmetry
breaking scale. In order to avoid this, one additional ingredient called collective breaking (along with
light gauge and top partners) is necessary. We present this in Section 4.5.

18This is a trivial use of the Higgs low-energy theorem: the low-momentum Higgs couplings are equivalent to promoting the
VEV to h(x) like [139, 140] This theorem can be used, for example, to calculate the Higgs coupling to photons by evaluating
the mass dependence of the running of the QED gauge coupling. The application of the theorem to composite Higgs models is
explored in [141].

58

C. CSÁKI AND P. TANEDO

226



(a) Mass from technicolor (b) Higgs and SM fermion (c) Yukawa coupling

Fig. 11: Fermion couplings to the composite sector, represented by shaded blobs. (a): Bilinear coupling
of fermions to the composite sector (4.52) lead to fermion masses from the condensate of techniquarks.
(b): Partial compositeness scenario. In addition to the Higgs being part of the strong sector, the elemen-
tary SM fermions mix linearly with strong sector operators with the same quantum numbers. (c): Yukawa
interactions are generated through the strong sector dynamics. Adapted from [138].

4.4.4 Partial compositeness
Having introduced the Higgs couplings to the gauge bosons, we can move on to finding a way to incor-
porate the Yukawa couplings into composite Higgs models. The way this is done in technicolor is to
introduce a four-Fermi interaction that is bilinear in SM fields, e.g.

∆L ∼ (Q̄LuR)(ψ̄TCψTC) (4.52)

where the (ψ̄TCψTC) are bilinears of the techni-quarks. The resulting fermion mass is shown in Fig. 11a.
This strategy typically runs afoul of constraints on CP violation and flavor-changing neutral currents
since one can imagine the composite sector similarly generating a four-fermion operator between SM

states unless elaborate flavor symmetry schemes are assumed.

Instead of connecting the strong sector to a SM fermion bilinear, we can consider a linear con-
nection. This is known as partial compositeness and is shown in Fig. 11b. We assume that instead of
(4.52), the elementary fermions mix with a fermionic composite operator,

∆L ∼ Q̄LOQL , (4.53)

where OQL is a strong sector operator that interpolates a composite quark doublet. We assume similar
mixing terms for each of the other SM fermions. In order to preserve the SM quantum numbers we must
assume that the the SM gauge group is a weakly gauged subgroup of the strongly coupled sector’s flavor
symmetries. Note that the gauge bosons are also partially composite19, as we saw in (4.23). The resulting
Yukawa interactions are shown in Fig. 11c.

The degree of mixing is now a freedom in our description. Let us parameterize the elementary–
composite mixing by ‘angles’ ε,

|observed particle〉 ∼ |elementary〉+ ε|composite〉. (4.54)

We can use this degree of compositeness to control flavor violation. Since the strongest flavor constraints
are for the first two generations, we assume that the first two generations have very small mixing with

19In this framework the longitudinal modes of the massive SM gauge bosons pick up this partial compositeness from the
Higgs. It is also possible to have a scenario where the transverse modes are partially composite, see [142, 143] for explicit
realizations.
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the composite sector. This suppresses dangerous flavor-violating four-fermion operators. On the other
hand, we may assume that the third particles are more composite than the first two generations,

ε3 � ε1,2. (4.55)

Since the degree of compositeness also controls the interaction with the Higgs, this means that the third
generation particles have a larger Yukawa coupling and, upon electroweak symmetry breaking, have
heavier masses. The astute reader will note that this is exactly the same as the flavor structure of the
‘realistic’ Randall-Sundrum models in Sec. 3.11-3.12. The observation that light fermions can automat-
ically avoid flavor bounds is precisely what we called the ‘RS GIM mechanism.’ This is no surprise since
the holographic interpretation of the RS model is indeed one where the Higgs is composite.

4.4.5 Breaking electroweak symmetry
Having addressed the Higgs couplings to both the SM gauge bosons and fermions, we move on to the
Higgs self-couplings. Until now we have simply assumed that the strong sector generates an electroweak-
symmetry breaking potential. We now check that this assumption is plausible by arguing that loops
involving the third generation quarks generate such a potential; this is similar to the Nambu–Jona-Lasinio
model [144, 145].

The SM fermions do not form complete representations of the global group G = SO(5)× U(1)X.
We thus follow the same strategy that we used for the gauge bosons in Sec. 4.4.3. Let us promote the SM

fermions to full SO(5) spinor representations,

ΨQ =

(
QL
χQ

)
Ψu =



ψu
uR
χu


 Ψd =



ψd
χd
dR


 , (4.56)

where the dashed line separates the SU(2)L × SU(2)R parts of SO(4) ⊂ SO(5). The ψ and χ fields are
spurions. Recall from Sec. A.3.1 that the fundamental spinor representation for SO(5) is a Dirac spinor
which decomposes into two Weyl spinors. Do not confuse these Weyl spinors (4.56) with Poincaré
representations—these are representations of the global SO(5) internal group. In other words, the entire
Ψ multiplet are Weyl spinors with respect to Poincaré symmetry but are Dirac spinors with respct to the
internal SO(5) symmetry. The upper half of the Dirac Ψ spinors are charged under SU(2)L while the
lower half is charged under SU(2)R. This imposes a U(1)X charge of 1/6 on the Ψ fields to give the
correct hypercharge assignments on the SM fields.

Now let us parameterize the strong sector dynamics in the couplings of the SO(5) fermions Ψ
and the linear field Σ in (4.40) that encodes the composite Higgs. Since the Σ is an SO(5) vector, it
can appear in a fermion bilinear as ΣiΓ

i, where the Γ are the 5D Euclidean space representation of the
Clifford algebra. The effective SM fermion bilinear terms are

L =
∑

r=Q,u,d

Ψ̄r/p [Πr0 + Πr1(Γ · Σ)] Ψr +
∑

r=u,d

Ψ̄Q/p [Mr0 +Mr1(Γ · Σ)] Ψr + h.c. (4.57)

where, as before, the form factors Π and M are momentum-dependent. We shall focus on only the QL
and tR pieces since they have the largest coupling to the strong sector.

Keeping track of conjugate fields. One should be careful with the conjugate fields in the above expression. For the
Lorentz group in four and five dimensions, SO(3,1) and SO(4,1), we use the Dirac conjugate Ψ̄ ≡ Ψ†γ0 to form Lorentz
invariants. Recall that this is because objects like Ψ†Ψ are not necessarily invariant because representations of the Lorentz
group are not unitary—boosts acting on the spinor representation do not satisfy U†U = 1. This is due to the relative sign
between the time-like and space-like directions in the Minkowski metric. The Dirac conjugate is a way around this. For
the case of the G = SO(5) internal symmetry, however, there is no issue of non-unitarity. Hence no additional Γ0 (acting

60

C. CSÁKI AND P. TANEDO

228



on the internal SO(5) space) is necessary in the Lagrangian. To be clear, we can write out the spacetime γ and internal Γ
matrices explicitly:

Ψ̄ = Ψ†γ0 6= Ψ†γ0Γ0. (4.58)

The matrix Γ · Σ takes the form

Γ · Σ =
1

h

(
h cos(h/f) /h sin(h/f)
/̄h sin(h/f) −h cos(h/f)

)
, (4.59)

where /h and /̄h are appropriate contractions with Pauli matrices. With the above caveat that there is no Γ0

acting on the SO(5) conjugate, we may write out the Lagrangian for QL and tR by dropping the spurious
components of the Ψ fields,

L = Q̄L/p

[
ΠQ0 + ΠQ1 cos

h

f

]
QL + t̄R/p

[
Πt0 + Πt1 cos

h

f

]
tR + Q̄LMu1

[
h sin

h

f
Hc

]
tR, (4.60)

where Hc = iσ2H is the usual conjugate Higgs doublet in the SM20. Observe that upon canonical
normalization, the top mass can be read off the Yukawa term,

m2
t =

(
v

f

)2 M2
t1

(ΠQ0 + ΠQ1) (Πt0 −Πt1)
, (4.61)

where the form factors are evaluated at zero momentum. One may write similar expressions for the other
fermions.

In order to determine whether electroweak symmetry is broken, we can now plug this information
into the Coleman-Weinberg potential for the Higgs, also known as the [quantum] effective potential. This
is the potential term in the effective action after taking into account quantum corrections from integrating
out the top quarks. In other words, it is the potential that determines the vacuum expectation value of
fields. The result is

VCW = −6

∫
d̄ 4p log

(
ΠQ0 + ΠQ1 cos

h

f

)

+ log

[
p2

(
ΠQ0 + ΠQ1 cos

h

f

)(
Πt0 −Πt1 cos

h

f

)
M2
t1 sin2 v

f

]
. (4.62)

Expanding this to first order and keeping the leading order terms in the Higgs gives

VCW(h) = α cos
h

f
− β sin2 h

f
, (4.63)

where α and β are integrals over functions of the form factors where β is typically of the order the top
Yukawa. If α ≤ 2β, then the Higgs acquires a VEV parameterized by

ξ ≡ sin2 〈h〉
f

= 1−
(
α

2β

)2

. (4.64)

This means that a small ξ typically requires a cancellation between α and β. Since these come from
different sources, this is generically a tuning in the theory.

One can also ask if it was necessary to rely on the top quark. For example, we know that the gauge
sector also breaks the Goldstone shift symmetry so that loops of gauge bosons can generate quadratic

20Here we have used the SO(5) basis in [114].
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and quartic terms in the Higgs potential. However, for a vector-like strong sector, gauge loops contribute
with the wrong sign to the β term and pushes to align—rather than misalign—the vacuum [146, 147].

There are, however, alternate mechanisms to enact electroweak symmetry breaking for a compos-
ite Higgs. For example,

– mixing the composite Higgs with an elementary state [131],

– making use of an explicitly broken global symmetry [148]

– enlarging the Hgauge so that it cannot be completely embedded into Hglobal [149–151].

4.5 Collective symmetry breaking
The general composite Higgs is a useful framework for working with the Higgs as a psuedo-Goldstone
boson. However, we saw in Section 4.4.1 and equation (4.51) that this is not enough to avoid tuning.
The source is clear: a pure Goldstone Higgs is protected from quadratic corrections to its mass because
of its shift symmetry. This very same shift symmetry prevents the required Higgs couplings to gauge
bosons, fermions, and itself. One must break this shift symmetry in order to endow the Higgs with these
couplings; this generically reintroduces a dependence on the cutoff, Λ = 4πf .

This may make it seem like a no-go theorem for any realistic model of a pseudo-Goldstone Higgs.
However, there is a nice way out of this apparent boondoggle called collective symmetry breaking
that was originally introduced in ‘little Higgs’ models [152–154] (see [117, 118] for reviews) and is
now an a key ingredient in composite Higgs models21. The idea is that one can separate the scales v
and f by introducing new particles which cancel the quadratic divergences at one-loop order. Unlike
supersymmetry, these partner particles carry the same spin as the Standard Model particles whose virtual
contributions are to be cancelled. Further, this cancellation only occurs for one-loop diagrams: higher
loop diagrams are expected to contribute quadratically at their naïve dimensional analysis size, but these
are suppressed relative to the leading term.

The general principle that allows this cancellation is that the shift symmetry is redundantly pro-
tected. A process is only sensitive to explicit symmetry breaking—as necessary for SM-like Higgs
couplings—if this explicit breaking is communicated by at least two different sectors of the theory.
More concretely, the symmetry is only explicitly broken if multiple couplings are non-zero in the theory
so that any diagram that encodes this explicit breaking must include insertions from at least two different
couplings. This softens the cutoff sensitivity of various operators by requiring additional field insertions
that decrease the degree of divergence of loop diagrams.

4.5.1 Collective breaking in action
We now demonstrate collective symmetry breaking in a model based on the ‘anatomy’ in Fig. 12. The
reader may find it useful to refer to the explicit example of a simple little Higgs model in Section 4.5.2
below. Instead of a simple global groupG, suppose thatG = G′×G′′. Each of these factors breaks spon-
taneously to subgroups H ′global and H ′′global, respectively. The spontaneous symmetry breaking pattern is
thus

G = G′ ×G′′ → H ′global ×H ′′global. (4.65)

This gives us two linear fields Σ′ and Σ′′ analogous to (4.40) so that there are two separate sets of
Goldstone bosons.

We explicitly breakG by gaugingHgauge ⊂ G. Suppose that bothH ′global andH ′′global are subgroups
of Hgauge in such a way that both Σ′ and Σ′′ are charged under Hgauge with nonzero charges q′ and q′′

21In Section 4.7.4 we present an alternate protection mechanism based on a Z2 symmetry.
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= Hglobal

Hgauge
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G′′

H ′global

H ′′
global

Fig. 12: Anatomy of collective symmetry breaking, following the conventions in Fig. 10.

(a) q′, q′′ 6= 0 (b) q′ = 0, q′′ 6= 0 (c) q′ 6= 0, q′′ = 0

Fig. 13: Collective symmetry breaking. Upper (blue) and lower (red) blobs represent H ′ and H ′′ in
Fig. 12. The thick black line represents the gauged symmetry Hgauge under which Σ′ has charge q′ and
Σ′′ has charge q′′. When either q′ or q′′ vanishes, the unbroken group is H ′global ×H ′′global.

respectively. A piece of each subgroup is gauged, as shown in Fig. 13a. H ′global×H ′′global is then explicitly
broken to a smaller subgroup, for example a vectorial subgroup identified by the gauging, H .

On the other hand, when either q′ or q′′ is set to zero, only one of the global subgroups is gauged,
as shown in Fig. 13b and 13c. In either of these cases, the resulting global symmetry group is still
H ′global×H ′′global. In other words, one requires both q′ and q′′ to explicitly breakHglobal = H ′global×H ′′global.

When one of the global subgroups is uncharged under the gauged subgroup, say H ′′global, those
Goldstone bosons pick up no mass from the gauge sector. For the other global subgroup which is charged
under the gauge group, say H ′global, there are two possibilities:

1. IfHgauge ⊆ H ′global, then loops of the gauge bosons will feed into the mass of the pseudo-Goldstone
bosons. In the absence of collective symmetry breaking, this gives a contribution that is quadratic
in the cutoff.

2. If, on the other hand22, G′ ⊂ Hgauge, then the would-be Goldstone bosons from G′ → H ′global are
eaten by the (G/H ′global) ∩Hgauge gauge bosons. There is no quadratic sensitivity to the cutoff.

In the second case, the Higgs mechanism removed the Λ2 contribution to the pseudo-Goldstone mass,
but it also got rid of the pseudo-Goldstones themselves.

22It is sufficient to consider some subgroup G̃′ ⊆ G′ that contains H ′global as a proper subgroup
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This leads us to consider the case when both G′ and G′′ (not just their Hglobal subgroups ) are
charged under the gauged symmetry. For simplicity, suppose G′ = G′′ = Hgauge so that one gauges the
vectorial combination. In this case, both the Σ′ and Σ′′ fields carrying our Goldstone bosons are charged
under the gauge group. The gauge fields become massive by the Higgs mechanism, but there are twice
as many Goldstone bosons than it can eat23. Indeed, the ‘axial’ combination of G′ and G′′ furnishes a
set of Goldstone bosons that remain uneaten and are sensitive to explicit breaking effects so that they
are formally pseudo-Goldstones. Any contribution to the pseudo-Goldstone mass, however, must be
proportional to (gq′)(gq′′), where g is the gauge coupling. In other words, it requires interactions from
both Σ′ and Σ′′. The resulting mass term is suppressed since this requires factors of the Σ′ and Σ′′ VEVs
to soak up additional boson legs. We now demonstrate this with an explicit example.

Why can’t you just rotate to a different basis? Based on Fig. 13, one might wonder if we can repartition G = G′×G′′
so that the H ′global and H ′′global subgroups are always both gauged. Alternately, perhaps one can repartition G so that only
one subgroup is ever gauged. This cannot be done, even when q′ = q′′. The reason is precisely what we pointed out above
Sec. 4.3.3: the axial combination of two groups is not itself a group since its algebra doesn’t close.

4.5.2 Explicit example: (SU(3) → SU(2))2

Let us see how this fits together in a simple little Higgs model—though we emphasize that collective
symmetry breaking is a generic feature of all realistic composite Higgs models, not just those of little
Higgs type. We classify composite Higgs models in Section 4.7 to clarify this disambiguation. Consider
the case where G′ = G′′ = SU(3) and H ′global = H ′′global = SU(2). We thus have two fields which are
linear representations of SU(3) and carry the Goldstone bosons,

Σ′ = exp


 i

f ′


 02×2 H ′

H ′† 0








0
0

f ′


 =




0
0

f ′


+ i


H

′

0


− 1

2f


 0

H ′†H ′


 , (4.66)

and similarly for Σ′′. For simplicity let us set f ′ = f ′′ ≡ f . The kinetic terms for the Σ fields are

L = |DµΣ′|2 + |DµΣ′′|2 = · · ·+ (gq′)2
∣∣V a
µ T
′aΣ′

∣∣2 + (gq′′)2
∣∣V a
µ T
′′aΣ′′

∣∣2 , (4.67)

where T ′a = T ′′a are the generators of the gauged group. To see the contribution to the Higgs mass, one
can Wick contract the two gauge bosons in these terms—this is precisely the analog of the ‘cat diagram’
in Fig. 9. This contraction ties together the gauge boson indices so that the resulting term goes like

[loop factor] (gq′)2Σ′†T ′aT ′aΣ′ = [loop factor]
(gq′)2

2
C2Σ′† 1gauge Σ′, (4.68)

and similarly for Σ′′. Here the loop factor contains the quadratic dependence on the cutoff, [loop factor] ∼
Λ2/16π2, and the factor 1gauge is the identity matrix in the appropriate gauged subgroup. Here we have
used T aT a = C21, where C2 is the quadratic Casimir operator of the representation24. Now let’s explic-
itly demonstrate how collective breaking works.

– If only the SU(2)= H ′global = H ′′global parts of G′ and G′′ were gauged, then there would be two
separate sets of pseudo-Goldstone bosons H ′ and H ′′. We plug in the expansion of Σ′ (4.66) into
(4.68) and note that in this case,

1gauge =




1 0 0
0 1 0
0 0 0


 . (4.69)

23This is a manifestation of general outdoors advice: if you (a Goldstone boson) are being chased by a hungry bear (a gauge
boson), it is not necessary for you survival that you can outrun it (have zero coupling). It is sufficient that you are with friends
whom you can outrun. Collective breaking is, in part, the requirement that you have more slow friends than hungry bears.

24C2(fundamental) = (N2 − 1)/2N for SU(N ).
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This picks up the Goldstones in the second term on the right-hand side of (4.66) so that there is
indeed a Goldstone mass term proportional to Λ2 = (4πf)2 for each set of Goldstones.

– On the other hand, in the case where G′ and G′′ are both gauged with q′ = q′′, the matrix 1gauge
becomes a true identity operator,

1gauge =




1 0 0
0 1 0
0 0 1


 . (4.70)

Now the global symmetry breaking VEVs 〈Σ′〉 and 〈Σ′′〉 break part of the gauge symmetry and the
Higgs mechanism tells us that there are gauge bosons that eat would-be Goldstones. Indeed, the
first term on the right-hand side of (4.66)—which is no longer projected out by 1gauge—encodes
the mass picked up by the gauge bosons. Observe, however, what has happened to the Λ2 mass
contribution in the previous scenario: it is now cancelled by the cross term between the first and
third terms on the right hand side of (4.66). In other words, the terms which gave the quadratic
sensitivity to the cutoff have vanished.

If we were only considering a single SU(3)→SU(2) global symmetry breaking, then we would still be out
of luck since the massive gauge bosons would have eaten all of our Goldstone bosons—so even though
we got rid of the Λ2 sensitivity of the pseudo-Goldstone masses, we also would have gotten rid of the
pseudo-Goldstones themselves. With foresight, however, we have followed the advice of footnote 23:
we have more Goldstones than our gauge bosons can possibly eat.

A useful way to parameterize our Goldstones is to follow the convention in (4.16):

Σ′ =exp


 i
f


 02×2 V

V † 0




 exp


 i
f


 02×2 H

H† 0








0
0

f


 (4.71)

Σ′′ =exp


 i
f


 02×2 V

V † 0




 exp


−i
f


 02×2 H

H† 0








0
0

f


 , (4.72)

where we have identified the Higgs as the axial combination of global shifts, while the vector combina-
tion of Goldstones, V , is eaten by the gauge bosons to become massive.

Now the H pseudo-Goldstones only pick up mass from diagrams that involve both the (gq′) and
the (gq′′) couplings. In other words, it requires a combination of the Σ′ and the Σ′′ fields. The leading
order contribution comes from diagrams of the form

Σ′ Σ′

Σ′′ Σ′′

∼ g4

16π2
log Λ2

∣∣∣Σ′†Σ′′
∣∣∣
2
. (4.73)

Since Σ′†Σ′′ = f2−2H†H+ · · · , we see that the leading term in the Higgs mass is only logarithmically
sensitive to Λ because it required one power each of the Σ′ and Σ′′ VEVs. The Higgs mass sets the
electroweak scale to be on the order of f/(4π). This is a factor of (4π) suppressed compared to the
global symmetry breaking scale f—generating the hierarchy in ξ that we wanted—and also a further
factor of (4π) from the cutoff Λ = 4πf . In this sense, collective symmetry breaking shows us what we
can buy for factors of (4π) and why those factors are important in naïve dimensional analysis.
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4.5.3 Top partners
As before, the largest contribution to the Higgs mass comes from the top quark. In the simple scenario
above, we have extended our gauge group25 from SU(2)L to Hgauge =SU(3) so we’ll need to also extend
the usual top doublet to include a partner TL

Q =

(
tL
bL

)
→ Q =



tL
bL
TL


 . (4.74)

We must also include a right-handed SU(3) singlet T ′R as a partner for the TL, in parallel to the usual
right-handed t′R partner of the SM tL. The prime on the t′R—what is normally called tR in the SM—is
for future convenience. The Yukawa terms for the top quarks are,

Ltop = λ′Σ′†Qt′†R + λ′′Σ′′†QT ′†R + h.c. (4.75)

where the fermions are written in terms of Weyl spinors. Other terms, such as Σ′†QT ′R
† or Σ′′†Qt′R

†,
can typically be prohibited by invoking chiral symmetries. Observe that the λ′ term is invariant under G′

if Q is a fundamental under G′. Similarly, the λ′′ term is invariant under G′′ if Q is a fundamental under
G′′. This is indeed consistent since Q is a fundamental under Hgauge which is the diagonal subgroup of
G′ × G′′. This shows us how collective symmetry breaking is embedded in the Yukawa sector. When
only one of the λ terms is nonzero, Ltop is G′ × G′′ invariant. However, when both are turned on, the
global symmetry is broken down to the diagonal subgroup.

This is collective breaking is similar to the breaking of the global U(3)Q ×U(3)U ×U(3)D flavor
symmetry to U(3) by the up- and down-type Yukawas in the Standard Model. If yu = 0 and yd 6= 0, then
the flavor symmetry would be enhanced to U(3)2 since the right-handed up-type quarks could be rotated
independently of the other fields.

We can now plug in the expansion (4.71 – 4.72) into the Yukawa terms (4.75), ignoring the V
terms since we now know those are eaten by the gauge bosons. Expanding the resulting product gives

Ltop =iH†Q(λ′′T †R − λ′t
′†
R) +

(
f − H†H

2f

)
TL

(
λ′t′†R + λ′′T †R

)
. (4.76)

From this we can write out the right-handed top eigenstates

TR =
λ′t′R + λ′′T ′R√
λ′2 + λ′′2

tR = i
λ′′T ′R − λ′T ′R√
λ′2 + λ′′2

(4.77)

and the resulting top Yukawa, top partner mass, and top partner coupling to H†H ,

Ltop = λtH
†Qt†R + λtfTLT

†
R −

λt
2f
H†HTLT

†
R, (4.78)

where we see that all of the couplings are simply related to the SM top Yukawa, λt =
√
λ′2 + λ′′2. These

relations ensure the cancellation between diagrams that give a Λ2 contribution to the Higgs mass,

h h
t

λt λt

+

h h

λtf

−λt/f

T
= O(log Λ). (4.79)

25For simplicity we ignore the U(1)Y factor, it is straightforward to assign charges appropriately.

66

C. CSÁKI AND P. TANEDO

234



Note the symmetry factor of 1/2 in the h2TLT
†
R Feynman rule. For simplicity we also drop an overall√

2 in the normalization of the h field which is irrelevant for the Λ2 cancellation. We see that indeed
collective symmetry breaking can protect against the reintroduction of quadratic sensitivity to the cutoff
by the Yukawa interactions.

Just as in the case of natural SUSY, an important signature of this class of models is to look for the
‘partner top’ particles which are responsible for the softening of the cutoff dependence of Higgs mass
from the top sector. One can search for these objects at the LHC through either pair production,

qq̄/gg → T T̄ , (4.80)

or through single production in association with a SM quark,

bq → Tq′ qq′ → Tb. (4.81)

The top partner decays are fixed by the Goldstone equivalence theorem. The partner top decays ap-
proximately 50% of the time to bW , with the remaining decay products split evenly between tZ and
th [155]. The lower bound on the top partner mass from vector-like heavy top (also referred to as fourth
generation) searches is & 700 GeV [156].

One can continue to calculate the Coleman-Weinberg potential in this scenario to check for elec-
troweak symmetry breaking and further study the phenomenology of these models. We refer the reader
to the excellent reviews [117, 118] for a pedagogical introduction in the context of the little Higgs.
See [157–159] for a more general discussion of experimental bounds on top partners.

4.6 Deconstruction and moose models
We now briefly mention some connections with extra dimensional models and introduce a diagrammati-
cal language that is sometimes used to describe the symmetry breaking pattern in composite models.

In Section 3.9 we introduced the holographic principle as a connection between strongly coupled
4D theories and weakly coupled theories on a curved spacetime with an extra spatial dimension. This
turns out to be a natural tool to get a handle for some of the strong dynamics encoded into the form factors.
Indeed, the minimal composite Higgs model described above was developed using these insights [136].

There is, however, another way to connect 5D models to 4D models. 5D models have dimensionful
couplings and are manifestly non-renormalizable. One proposal for a UV completion is to discretize
(‘latticize’) the extra dimension [154, 160, 161]. In this picture, the extra dimension is split into N
discrete sites which should no longer be thought of as discrete spacetimes, but rather as nodes in a ‘theory
space’ that describe a gauge symmetry structure on a single 4D spacetime. The bulk gauge symmetry G
latticized into a 4D gauged G on each of the N nodes,

G G G G

At this level the nodes are just N separate gauge groups; after all, this is precisely what we mean by a
local symmetry (see [162, 163] for a discussion in depth). We next introduce a set of (N − 1) scalar
link fields Φi which are in the bifundamental representation with respect to the N th and (N + 1)th gauge
groups: (Ni, N̄i+1). We may draw these link fields as lines between the nodes,

G G G G
Φ1 Φ2 Φ3 ΦN−1

The arrow on the link field keeps track of the representation with respect to a group:
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– Arrows leaving a node are fundamental with respect to that group.

– Arrows entering a node are anti-fundamental with respect to that group.

Now suppose each of these link fields acquires a VEV proportional to 1 in their respective Gi × Gi+1

internal spaces. Each link field would spontaneously break the symmetry Gi × Gi+1 → Gdiag. The
symmetries are broken down toG. One can diagonalize the mass matrix for the gauge boson—a problem
that is mathematically identical to solving the waves in a system ofN−1 springs in series [164]—to find
that the spectrum looks like a tower of Kaluza-Klein modes. In fact, the link fields can be identified with
the KK modes of the fifth component of the bulk gauge field A5. This construction also shows explicitly
that the Kaluza-Klein gauge fields in 5D acquire their masses from eating the KK modes of theA5, which
are here manifestly would-be Goldstone bosons. By coupling matter appropriately, one constructs a UV

complete 4D model of a product of gauge groups that gives the same ‘low’ energy physics as an extra
dimension. We refer the reader to the original literature for details [154, 160, 161] or [68] for a brief
summary.

Rather than just way to UV complete extra dimensions, deconstructions are also a useful tool for
motivating models of chiral symmetry breaking. In fact, they are a manifestation of a more general tool
for composite models called moose diagrams26 [166, 167]. One can use this diagrammatic language to
construct little Higgs models; indeed, this was the original inspiration for the development of collective
symmetry breaking paradigm in Section 4.5. The topology of these diagrams encodes information about
spectrum of Goldstone modes [168]. From the dimensional deconstruction of an extra dimension, it’s
clear that all of the Goldstones are eaten by the KK modes of gauge bosons. More general connections
between nodes, however, allow more Goldstones to survive hungry gauge bosons.

As an example, we present the ‘minimal moose’ little Higgs model from [169]. The basic building
block is the coset for chiral symmetry breaking, SU(3)L × SU(3)R/SU(3)V. We gauge the electroweak
subgroup GEW of SU(3)L and the entire SU(3)R, which we represent schematically with shaded blobs:

GEW

SU(3)L SU(3)R

SU(3)R

Σ

The minimal moose model actually requires four copies of this basic structure. As before, we only gauge
the vectorial GEW of each of the SU(3)L factors and similarly for the SU(3)R factors. In other words, the
theory only has two gauge couplings. This is shown schematically in Fig. 14. We note that typically one
only draws nodes for the gauge groups so that the usual moose diagram for this model is:

GEW SU(3)R

See §4.1 of [118] for a review of this particular model. A full discussion of these moose-based little Higgs
models is outside of the scope of these lectures. In addition to the reviews mentioned above [117, 118],
see [170] for the self-described ‘bestest’ little Higgs model and [157, 171] for a discussion of the status
of composite Higgs models after the first run of the LHC.

26These diagrams are also called quiver diagrams by string theorists [165].
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GEW SU(3)R

Fig. 14: Full symmetry structure of the minimal moose little Higgs model. Shaded blobs represent
gauged subgroups. We explicitly show that only the ‘diagonal’ subgroups are gauged.

4.7 A taxonomy of composite Higgs models
Having surveyed the main features of composite Higgs models, let us classify the landscape of such
theories. This section is meant to clarify the distinctions between what is colloquially called a ‘composite
Higgs’ versus a ‘little Higgs’ or a ‘holographic composite Higgs’ versus a ‘dilatonic Higgs.’ We closely
follow the discussion in Sections 2 – 3 of [116], to which we refer the reader for further details and
references.

As a warm up and review, recall the Standard Model Higgs potential

V (h) = −µ2|H|2 + λ|H|4 −→ −1

2
µ2h2 +

λ

4
h4. (4.82)

Minimizing the potential and matching to experiment yields

v = 〈h〉 =
µ2

λ
= 246 GeV m2

h = 2µ2 = (125 GeV)2 , (4.83)

where v has long been known from the masses and couplings of the electroweak gauge bosons, but m2
h

is new data from 2012. This new information tells us that µ = 89 GeV and, from the expression for v,
that λ = 0.13.

Let us now map this onto a convenient parameterization of the Higgs potential in composite Higgs
models.

V (h) =
g2

SMM
2

16π2

(
−ah2 +

b

2f2
h4

)
. (4.84)

One can compare this to (4.63). Here gSM is a characteristic Standard Model coupling, such as g2
SM =

Ncy
2
t . Implicit in this parameterization is the expectation that the Higgs potential is radiatively generated,

giving a g2
SM/16π2 prefactor. With this normalization, tree-level contributions appear as coefficients a, b
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MODEL O(a) O(b) O(g∗) COMMENTS

Bona-fide composite Higgs 1 1 4π Requires tuning of both a and b.
Little Higgs 1 16π2

g2∗
� 4π Tree level quartic, h too heavy.

Holographic Higgs 1 1 � 4π ∼ little Higgs with loop-level quartic.
Twin Higgs 1 1− 16π2

g2∗
gSM Z2 rather than collective breaking.

Dilatonic Higgs SEE TEXT Related to RS radion Higgs.

Table 2: Taxonomy of composite Higgs models according to the couplings in (4.84) and (4.85); based
on [116]. Models must be tuned when phenomenology requires values of the couplings that are very
different from the expected magnitudes shown here.

that go like 16π2/g2
SM. The mass scale M is typically that of the new states (e.g. top partners) that

cut off the quadratic divergence introduced by the explicit breaking of the Goldstone shift symmetry, as
discussed in Section 4.4.3. It is useful to parameterize this in terms of the coupling of these new states
to the strong sector g∗,

M = g∗f. (4.85)

These states are typically lighter than the cutoff, 4πf , to help with the little hierarchy problem. We
expect the lighter mass comes from a weaker coupling to the strong sector, g∗, motivating the definition
(4.85). The experimental information that the SM quartic is λ = 0.13 is strongly suggestive of a loop
induced coupling. Using the NDA scaling of a strong sector quartic (4.35) and a proportionality factor
from an explicit global symmetry breaking SM loop, g2

SM/16π2, we estimate

λloop ≈ 2
1

16π2
g2

SMg
2
∗ ≈ 0.15×

(
gSM√
Ncyt

)2 (g∗
2

)2
. (4.86)

Here the factor of 2 comes from two top partner polarizations and the scaling with respect to g∗ = M/f
comes from NDA [135]. Thus the coupling of the new state is g∗ � 4π and is expected to be weakly
coupled. This is a more quantitative version of the statement that the discovery of the 125 GeV Higgs
signaled the death of technicolor, as we explained qualitatively in Section 4.2. The other implication of
this weak coupling is that the new particles that cancel the quadratic sensitivity of the Higgs potential
have masses well below the strong coupling scale, M � Λ = 4πf ; where we recall the NDA cutoff from
Section 4.3.7.

Comparing (4.84) to (4.82 – 4.83) gives

v2 =
a

b
f2 = (246 GeV)2 m2

h = 2
g2

SM
16π2

M2a = 4v2 g
2
SMg

2
∗

16π2
b = (125 GeV)2 . (4.87)

In the remainder of this section we examine five classes of composite Higgs models and classify
them according to their natural expectations for a, b, and g∗. These are summarized in Table 2.

4.7.1 Bona-Fide Composite Higgs
The ‘bona-fide composite Higgs’ models in the first row of Table 2 are the simplest realizations of the
Higgs as pseudo-Nambu–Goldstone boson idea: a strongly coupled sector has a global symmetry which
is spontaneously broken and yields a Goldstone with the quantum numbers of the Higgs. The Higgs
potential is assumed to be radiatively generated by explicit breaking terms so that in the parameterization
(4.84), a ∼ b ∼ O(1). From the left-side equation of (4.87), a parametric separation between v and f
requires a to be tuned small by an amount ξ in (4.36).
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Even with this, however, this is a second tuning required on b since the new states are expected to
couple to the strong sector with strong couplings, g∗ ∼ 4π. Thus one finds that the quartic coupling is
too large in (4.86) compared to λ = 0.13. In other words, one predicts a Higgs mass that is heavier than
observed in (4.87). This is mapped onto a tuning of b.

4.7.2 Little Higgs
In little Higgs models, collective symmetry breaking naturally gives a hierarchy

ξ =
v2

f2
∼ g2

∗
16π2

� 1. (4.88)

The quartic coupling appears at tree-level, λ ∼ gSM. This is shown as b ∼ 16π2/g2
∗ in Table 2. Prior to

the Higgs discovery, this set up was seen to be a feature: one explains the separation between v and f .
However, (4.87) shows that this predicts a Higgs mass that is on the order of 500 GeV for gSM ∼ 1.

4.7.3 Holographic Higgs
These models are motivated by AdS/CFT duals of warped extra dimensional models, as we discussed in
Section 3.9. Like the ‘bona-fide composite Higgs,’ the entire potential for these models are radiatively
generated. This thus suffers the same O(ξ = v2/f2) to obtain the correct electroweak symmetry break-
ing scale. Unlike the ‘bona-fide composite Higgs,’ however, g∗ is still weak and thus no additional tuning
is required to keep the Higgs light.

The holographic Higgs also has a version of collective symmetry breaking that is a result of locality
in 5D [162]. Unlike the little Higgs models above, however, holographic Higgs models have radiative
quartics. These models have the minimal amount of tuning: just ξ, which is a tuning of a few percent.

4.7.4 Twin Higgs and neutral naturalness
Twin Higgs models [172, 173] have received a lot of interest after the non-discovery of any top-partners
at Run I of the LHC. Rather than protecting the pseudo-Goldstone Higgs from quadratic corrections with
collective symmetry breaking, these models impose aZ2 symmetry that protects the Higgs potential. The
key phenomenological feature of this framework is that the partner particles that enact this protection are
uncharged under the Standard Model. Since the top partners aren’t colored, one no longer expects a
large production cross section at the LHC and one avoids the Run 1 bounds. These models are thus often
referred to under the banner of ‘neutral naturalness’ and are considered a last bastion for naturalness
against collider bounds.

We illustrate the twin mechanism with the toy example presented in [172]; the interested reader is
encouraged to read the succinct paper in its entirety. Suppose a theory has a global G =SU(4) symmetry
and a field H in the fundamental representation with a symmetry-breaking potential,

V (H) = −µ2|H|2 + λ|H|4. (4.89)

The field develops a VEV 〈|H|〉 = m/
√

2λ ≡ f and breaks SU(4) → SU(3). Now let us gauge a
subgroup SU(2)A×SU(2)B of the global symmetry. We decompose H into a doublet under each gauge
group, HA and HB . We may identify A with the Standard Model SU(2)L. As we saw in Section 4.4.3,
this gauging generates mass terms for the would-be Goldstone bosons,

V ⊃ 9Λ2

64π2

(
g2
A|HA|2 + g2

B|HB|2
)
. (4.90)

Next impose a Z2 ‘twin’ symmetry which swaps A ↔ B. This imposes gA = gB so that the quadratic
potential becomes,

V ⊃ 9g2Λ2

64π2
|H|2 + · · · , (4.91)
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which respects the original SU(4) symmetry of the theory and thus does not contribute to the mass of the
Goldstone bosons. The higher order terms still introduce logarithmically divergent terms that break this
SU(4) symmetry.

We can see the ‘twin’ cancellation in the top couplings:

L ⊃ −ytHAt̄
(A)
L t

(A)
R − ytHB t̄

(B)
L t

(B)
R . (4.92)

The SU(4)→SU(3) breaking imposes 〈ha〉2 + 〈hb〉2 = f2. Expanding the SU(4) fundamental H analo-
gously to (4.40), one may expand to O(h2/f2),

HA → h, HB → f − h2

2f
. (4.93)

Inserting this into (4.92) yields a cancellation that is diagramatically identical to (4.79) with the important
difference that the t(B) and t̄(B) are charged under a ‘twin’ QCD, but not ordinary QCD.

Having demonstrated the basic principle, we refer the reader to the original literature for a demon-
stration of a complete model. In our phenomenological taxonomy of composite Higgs models, we have
written b ∼ O(1− 16π2/g2

∗) reflecting that the original twin Higgs models included a tree-level quartic
put in by hand to generate the v � f hierarchy. As we have discussed, the observed λ = 0.13 disfavors
the inclusion of this tree-level term.

4.7.5 Dilatonic Higgs
Rather than being a pseudo-Goldstone of an internal global symmetry, this scenario assumes that the
Higgs is a dilaton coming from the spontaneous breaking of scale invariance [91, 174–179]. We have
already explored this scenario in Section 3.10, where we identified the radion in a warped extra dimen-
sion as a state which is holographically dual to the dilaton. This is distinct from the ‘holographic Higgs’
scenario where the Higgs is the Goldstone of an internal global symmetry.

In this scenario the dilaton VEV, f , sets the scale of the potential and is unrelated to the electroweak
VEV. Thus the parameterization in (4.84) is not relevant for comparison with the other composite Higgs
models discussed: the dilaton is a completely different type of beast. The explicit breaking terms in
the dilaton potential come from the explicit breaking from the running of the couplings. The scale f is
naturally separated from the UV scale only when gSM ∼ 4π at the condensation scale, implying that the
symmetry-breaking potential is driven by either the top Yukawa or new physics.

Unlike the other composite Higgs scenarios where phenomenology prefers f � v, the dilaton
resembles the SM Higgs when f ≈ v. Calculations using AdS/CFT, however, imply that f � v in the
large N limit where these calculations are valid.

4.8 Parameterization of phenomenology
We see that the composite Higgs can be probed through its deviations from the SM Higgs couplings. A
phenomenological parameterization of the space of light, composite Higgs models is presented in [180]
as the ‘strongly interacting light Higgs’ (SILH, pronounced “silch”) effective Lagrangian and revised
in [181]. We briefly review the main results and refer to [180, 181] for a detailed discussion including
matching to specific composite Higgs models. We now examine a convenient parameterization of the
phenomenological Lagrangian,

LSILH =LSM
H +

c̄H
2v2

∂µ(H†H)∂µ(H†H) +
c̄T
2v2

(
H†
←→
DH

)2
− c̄6

v2
λ(H†H)3

+
( c̄u

2v2
yuH

†HQ̄LH̃uR + · · ·
)

+
ic̄W g

2M2
W

(
H†σi

←→
H
)

(DνWνµ)i + · · · , (4.94)
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where H†
←→
D µH = H†DµH −DµH

†H and the · · · represent similar terms for the other fermions and
gauge bosons. The expected sizes of these coefficients are

c̄H , c̄T , c̄6, c̄ψ ∼
v2

f2
c̄W,B ∼

M2
W

g2
ρf

2
. (4.95)

Here gρ parameterizes the size of the non-Goldstone composite states, for example in chiral perturbation
theory the first such state is the spin-1 ρ meson where gρ is defined to be

mρ = gρf. (4.96)

In this sense gρ is a ratio of mass scales, but when one includes this state in chiral perturbation theory
(using the CCWZ formalism introduced in Appendix B), this ratio is manifestly the value of the ρππ
coupling. Following [181], the operators in (4.94) are normalized with respect to the Higgs VEV v rather
than the scale f in [180]; this is why the expected values of the barred couplings c̄i differ by factors of
v/f from the couplings ci ∼ 1 in equation (15) of [180].

The phenomenological Lagrangian (4.94) can be constructed systematically from the non-linear
sigma model including symmetry breaking terms which we assume are parameterized by the SM cou-
plings that break those symmetries: the Higgs quartic coupling λ (breaking the pseudo-Goldstone Higgs
shift symmetry) and the Yukawas (breaking shift and flavor symmetries). See Appendix B of [182] for a
detailed discussion in terms of naïve dimensional analysis. The general strategy is to write

LSILH =
m4
ρ

g2
ρ

L̃
(
U,

∂

mρ

)
, (4.97)

where U is the dimensionless linear field containing the Goldstones, analogous to (4.11) and the partial
derivative carries a factor of m−1

ρ to make it dimensionless. Note that the expansion of U in Goldstones
π automatically comes with factors of f−1 to keep each term dimensionless. In this way the prefactor
m4
ρg
−2
ρ = m2

ρf
2 carries the dimension of the Lagrangian. Note that this is analogous to the prefactor

Λ2f2 in naïve dimensional analysis [133–135] except that we replace Λ with a scale which exists in
the effective theory, mρ < Λ. This inequality is equivalent to gρ < 4π and parameterizes the regime
in which the NLΣM is weakly coupled. We then take the dimensionless function L̃ to be a derivative
expansion analogous to (4.18); the SILH interactions appear at higher order from the term

LSILH =
m4
ρ

g2
ρ


· · ·+ 1

3

(
π(x)

f

←→
∂

mρ

π(x)

f

)2

+ · · ·


 (4.98)

where π(x) is identified with the Higgs doublet H(x) and the partial derivatives ∂µ are promoted to
SM gauge covariant derivatives. Gauge field strengths are included with factors of m−2

ρ since Fµν ∼
[Dµ, Dν ]. The c̄H and c̄T terms encode the O(H4, ∂2) interactions after shifting the Higgs by a factor
proportional to (H†H)H/f2 (see [180]). The c̄6, c̄u, c̄W (and analogous terms) break the shift symme-
tries of the NLΣM and carry explicit factors of the SM couplings that break those symmetries: the Higgs
quartic interaction, the Yukawas, or SM gauge couplings, respectively. Electroweak precision observ-
ables27 set bounds on composite Higgs models [181, 188]; at 2σ:

−1.5× 10−3 < c̄T < 2.2× 10−3 (4.99)

−1.4× 10−3 < c̄W + c̄B < 1.9× 10−3, (4.100)

coming from the T̂ and Ŝ parameters respectively. The former condition reflects the requirement of
custodial symmetry [189] (see [190] for an introduction) which is assumed in the latter bound. The

27See [183, 184] for pedagogical reviews and [185–187] for details.
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observation of the 125 GeV Higgs and the opportunity to measure its couplings offers additional data to
fit the phenomenological Lagrangian. For example, the c̄H and cf (f running over the SM fermions) are
related to each other via the couplings of the Higgs to W bosons [191]. The Higgs mass sets (at 3σ)

c̄H ≤ 0.16. (4.101)

This and other bounds on composite Higgs models coming from Higgs observables are reviewed in [192,
193] using a slightly different effective theory parameterization introduced in [138]. In that notation,
(4.101) comes from a2 ≥ 0.84. Further phenomenological bounds and their relations to specific models
can be found in [116, 180, 181, 194]. At 2σ, Higgs data constraints the minimal composite Higgs model
to satisfy [195]

v

f
. 0.5. (4.102)

The bounds on composite Higgs models coming from Higgs observables are reviewed in [181,192,193].
Further phenomenological bounds and their relations to specific models can be found in [116, 180, 194].

5 Closing Thoughts
We briefly review interconnections between some of the salient ideas in these lectures, acknowledge
topics omitted, and point to directions of further study. One of the themes in the latter part of these
lectures were weakly coupled descriptions of strong dynamics and we close by highlighting this common
thread.

5.1 Covariant Derivatives
Each of the scenarios that we explored carries its own sense of covariant derivative. The most ex-
plicit example is in a warped extra dimension, where spacetime is explicitly curved. The holographic
principle made use of this geometry: the isometries of AdS match the conformal symmetries of the
strongly coupled theory near a fixed point. The system is so constrained by these symmetries that the
behavior of 5D fields could be identified with the renormalization group flow of 4D operators. Even in
supersymmetry—where superspace can be thought of a ‘fermionic’ extra dimension—we introduced a
SUSY covariant derivative. Even though superspace is flat, there is a covariant derivative came from it
being torsion-free [?]. Finally, the nonlinear realizations we used for composite Higgs models also has a
geometric structure coming from the coset space. This is seen in the CCWZ formalism reviewed in Ap-
pendix B, where one identifies covariant derivative and gauge field for the coset space that are necessary
to construct invariant Lagrangians.

5.2 Nonlinear realizations
The simplest handle on strong dynamics is to work in an effective theory of pseudo-Goldstone bosons
given by the pattern of global symmetry breaking in the strong sector. In composite Higgs models, one
addresses the Hierarchy problem by assuming that the Higgs is a pseudo-Goldstone boson associated
with the dynamics of a strongly coupled sector that break global symmetries at a scale f . We saw that
generically the SM interactions required for a Higgs boson tend to push its mass back up towards the
compositeness scale, Λ ∼ 4πf . One way to push the Higgs mass back down is to invoke collective
symmetry breaking, which can often be described succinctly using ‘moose’ diagrams.

5.3 Holographic and deconstructed extra dimensions
We saw that the holographic principle is an alternative way to describe the dynamics of a strongly cou-
pled sector through the use of a higher dimensional theory with a non-trivial geometry. From the extra
dimensional perspective, the Higgs mass is natural because it is localized towards the IR brane where
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Light fermions 3rd gen, Higgs

Fig. 15: Schematic moose diagram for natural SUSY.

the Planck scale is warped down to TeV scale. Holographically, this is interpreted as the Higgs being a
composite state. Indeed, the minimal composite Higgs model [136] was constructed using holography
as a guiding principle.

Further, the little Higgs models that first highlighted collective symmetry breaking were motivated
by deconstructions of an extra dimension. This picture allowed us to clearly see that the Goldstone modes
of the spontaneously broken global symmetries can be identified with the scalar component of a 5D gauge
field. In the deconstruction, the gauge bosons from each copy of the gauge group eat these Goldstone
modes to become the spectrum of heavy KK modes. In this sense, little Higgs and holographic composite
Higgs constructions are similar to gauge-Higgs unification scenarios in 5D where the Higgs is the zero
mode of a bulk gauge field, see [196] and references therein. One way to interpret the lightness of the
Higgs mass is via locality in the deconstructed extra dimension: the symmetries are only broken on the
boundaries and one needs a loop that stretches between the boundaries to generate a Higgs potential.
This implies that the loop cannot be shrunk to zero and that the Higgs potential is finite since it can have
no short-distance divergences. The natural cutoff is set by the size of the extra dimension.

Deconstruction itself, however, is rooted in the idea of a hidden local symmetry in nonlinear
models. See [113] for a comprehensive review. A 5D version of the little Higgs in AdS was presented
in [197]. Shortly after, [162] connected the holographic composite Higgs to a little Higgs theory, relating
the CCWZ formalism of Appendix B to the hidden local symmetry construction.

5.4 Natural SUSY and partial compositeness
We began these lectures with what appeared to be a completely different subject: supersymmetry. We
saw that the natural setting for SUSY is superspace, which is superficially an ‘extra quantum dimension’
that is both Grassmannian and spinorial. One way to see how SUSY solves the Hierarchy problem is to
observe that it requires the existence of superpartners (differing by half integer spin) that cancel the loop
contributions of particles to superpotential parameters such as the Higgs mass. We saw a similar cancel-
lation when invoking collective symmetry breaking (or the twin Higgs mechanism) in composite Higgs
theories with the notable difference that the partner particles had the same spin as their SM counterparts.

SUSY, however, must be broken. These effects feed into the large parameter space of the minimal
supersymmetric Standard Model and are required (in the MSSM) for electroweak symmetry breaking.
The LHC puts tight bounds on the simplest MSSM spectra and leads us to consider ways to hide SUSY.
One of these solutions is ‘natural SUSY’ where one only maintains the minimal spectrum of superpart-
ners required for the naturalness of the Higgs mass. Among the predictions of natural SUSY is a light
stop and heavy first and second generation quarks. This type of spectrum, however, is automatic when
supersymmetrizing the RS model with anarchic flavor28. When SUSY is broken on the UV brane29, 5D
superfields which are localized near the UV brane are more sensitive to the splitting between the SM and

28One should note that because 5D spinors are Dirac, N = 1 SUSY in 5D corresponds to N = 2 SUSY in 4D. N = 2 was
used in [198] to generate Dirac gaugino masses, which can help soften the two-loop quadratic corrections to the Higgs mass.
See [199] for a recent analysis of prospects.

29This is of the ways to interpret anomaly mediation of SUSY breaking [200].
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FIELD 5D LOCALIZATION 4D INTERPRETATION SUPERPARTNER

Higgs IR localized Composite state ≈ degenerate, mixes with B̃, W̃
Top Peaked toward IR Mostly composite Slightly heavier than top
Light quarks Peaked toward UV Mostly elementary Large SUSY breaking masses

Table 3: Holographic picture of natural SUSY spectra. Superfields localized near the IR brane have a large
overlap with the Higgs so that the SM component of the superfield picks up a large mass. Superfields
localized near the UV brane have a large overlap with SUSY breaking so that the ‘superpartner’ component
of the superfield picks up a large mass. Thus light SM fermions have heavy superpartners and vice versa.

superpartner masses. Invoking what we know about the anarchic flavor 5D mass spectrum (i.e. localiza-
tion of the fermion profiles), we come to the conclusions in Table 3. Holographically this is interpreted
as supersymmetry being an accidental symmetry in the IR. That is, the strong sector flows to a fixed point
that is supersymmetric, even though the theory at the UV is not manifestly supersymmetric. As a par-
ticle becomes more composite, it becomes more degenerate in mass with its superpartner. A schematic
moose diagram is shown in Fig. 15; note that one of the sacrifices of this realization of natural SUSY is
conventional unification, see e.g. [201].

5.5 Naturalness and top partners
The three classes of physics beyond the Standard Model that we have explored all generically predict new
particles accessible at high energy colliders. For supersymmetry and extra dimensions, these particles
were a manifestation of the extended spacetime symmetry under which the SM particles must transform.
For a composite Higgs, this reflected a larger global symmetry breaking pattern and included additional
fermions that appear necessary to generate an SM-like Higgs potential. At a technical level, we needed
new particles to run in Higgs loops to soften the quadratic sensitivity to the cutoff. Since the top quark
has the largest coupling to the Higgs, a generic prediction for naturalness are light (i.e. accessible at the
LHC) states to cancel the top loop. While these particles may have different spin, the examples we’ve
explored focused on the case where they have the same SM quantum numbers as the top. The color charge
of these new particles make them easy to produce at the LHC so that their non-observation is particularly
disconcerting. One model building direction out of this puzzle is to consider models where the top
partner is not color charged. We saw this in the twin Higgs model in Section 4.7.4. A supersymmetric
cousin on these models go under the name of folded SUSY [202], where the top partners are uncolored
but still carry electroweak charges.

5.6 Seiberg duality
In the composite Higgs models, same-spin partners cancelled the leading SM particle contributions to
the quadratic cutoff contributions to the Higgs mass. We saw that this was not coincidental, but rather
imposed by the structure of collective symmetry breaking. In the same way, the protection of the Higgs
mass in SUSY is most clearly understood from the tremendous constraints put on the theory by supersym-
metry. Among other things, these constraints imposed that the holomorphy of the superpotential which,
in turn, prevents the perturbative renormalization of any of the superpotential terms—the Higgs mass
being just one example. A derivation of this important result is beyond the scope of these lectures, but is
explored—along with further implications of SUSY—in the reviews already mentioned.

Supersymmetry turns out to also be a powerful constraint on the behavior of gauge theories. In
fact, they allow one to map out the entire phase structure of the supersymmetric generalization of QCD,
SQCD. This, in itself, is a topic of depth and elegance which is covered very well in [?, 2, 5–7]. One
key outcome of this exploration in the 1990s was the observation that two distinct supersymmetric non-
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F FN

Q Q̄

(a) Supersymmetric QCD

F FF −NF F
Q Q̄

M

(b) SUSY QCD + meson

Fig. 16: Moose diagrams for a pair of Seiberg duals. Green nodes are gauged symmetries while white
notes are global symmetries. Note that the lines now represent superfields.

Abelian gauge theories, shown in Fig. 16, flow to the same IR fixed point. One theory, SQCD, is a standard
SU(N ) supersymmetric gauge theory with F flavors such that

F > N + 1. (5.1)

In the case where N + 1 < F < 3
2N , this theory is asymptotically free and confines in the IR. The other

theory is an SU(F −N ) gauge theory with F flavors and an additional color singlet ‘meson’ which is a
bifundamental under the SU(F )×SU(F ) flavor symmetry. This theory has a superpotential,

W ∼ Q̄MQ, (5.2)

which can be understood as a loop in the moose diagram since all indices are contracted. In the case
where N + 1 < F < 3

2N , the dual theory is IR free and is perturbative at the fixed point.

The fact that these two a priori unrelated theories flow to the same fixed point suggest a compelling
interpretation: the asymptotically free theory confines at low energies and is replaced by the effective
description of the IR free theory. This is an ‘electromagnetic’ duality in the sense of exchanging strongly
and weakly coupled descriptions of the same physics, similar to the AdS/CFT correspondence.

This Seiberg duality is a powerful handle on strongly coupled physics via a weakly coupled 4D
dual description. One popular application was to simplify the construction of models with dynamical
SUSY breaking, see [7, 203] for reviews. In some sense this is completely analogous to using chiral
perturbation theory to describe low-energy QCD. However, unlike QCD, the low energy (‘magnetic’)
theory is not composed of gauge singlets. In fact, there is an emergent SU(F − N ) gauge symmetry
that appears to have nothing to do with the original SU(N ) gauge symmetry of the ‘electric’ theory. One
recent interpretation, however, is that this magnetic gauge group can be identified with the ‘hidden local
symmetry’ in nonlinear models [204], which we previously mentioned in the context of deconstruction
and moose models. In this construction, the ρ meson in QCD (the lightest spin-1 meson) is identified as
the massive gauge boson of a spontaneously broken gauge symmetry present in the nonlinear Lagrangian.

One can also relate Seiberg duality to the AdS/CFT correspondence through explicit string realiza-
tions. Note that (5.1) is typically a different regime from the large N limit invoked in AdS/CFT. From a
purely field theoretical point of view, the AdS/CFT correspondence can be understood as a duality cas-
cade where a SUSY gauge theory has a renormalization trajectory that zig-zags between a series of fixed
points. This is reviewed pedagogically for a field theory audience in [85].
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5.7 Multiple guises of strong dynamics
In this final section we have touched on multiple ways in which we can address strong dynamics in field
theory: nonlinear realizations based on the symmetry breaking structure, holographic extra dimensions,
and Seiberg duality in SUSY. The lesson to take away from this overview is that one should be flexible to
think about strong dynamics in different languages. Often the intuition from one understanding of strong
dynamics can shed light on constructions based on a different description.

One example is the use of Seiberg duality to describe a [partially-]composite electroweak sector
based on the ‘fat Higgs’ model [205]. The idea is to take super-QCD with F = N + 2 flavors so that
the magnetic gauge group can be linked with SU(2)L. The realization of this idea in [142] described this
in terms of moose diagrams where the magnetic gauge group is ‘color-flavor locked’ with an externally
gauged SU(2)L. This mixes the magnetic gauge bosons with the external gauge bosons so that the
observedW and Z are partially composite. Independently, a similar model was presented in [143] where
the nature of this mixing was explained in terms of the intuition from a warped extra dimension. In
particular, one hope that one could directly identify the magnetic SU(2) with the electroweak SU(2)L.
This, however, is not possible since—as we know from composite model building—at the compositeness
scale the näive dimensional analysis expectation is that the composite vector boson couples strongly:
g ∼ 4π/

√
N . In other words, if the electroweak gauge bosons are strongly coupled bound states,

then one would expect a large residual interaction with other strongly coupled bound states. In the RS

language, a composite W and Z would have IR brane localized profiles and this would typically predict
very strong couplings. This would require a very large running to squeeze the profile on the IR brane.
In the Seiberg dual picture, this requires a very large number of flavors if one maintains that the W and
Z are purely composite but have the observed SM couplings, leading one to prefer partial compositeness
of these particles. This general framework was later used to construct a model of natural SUSY in which
follows the general deconstruction/moose in Fig. 15 [206].

5.8 Omissions
We have necessarily been limited in scope. Even among the topics discussed, we have omitted an explo-
ration of SUSY gauge theories (leading up to Seiberg duality), variants of the ‘realistic’ RS models (as
well as ‘universal extra dimension’ models), the virtues of different cosets for composite Higgs model
building, and an overview of product space (moose-y) little Higgs models. Many explicit calculations
were left out and are left to the dilligent reader as exercises, and we only made cursory nods to the
phenomenology of these models. In addition to the three major topics covered in these lectures, there
are various other extensions to the Standard Model that we have not discussed. Our preference fo-
cused on models that address the Higgs hierarchy problem, and as such we have omitted discussions of
many important topics such as grand unification, dark matter, flavor, strong CP, cosmology (of which the
cosmological constant is the most extreme fine tuning problem), or any of the phenomenology of inter-
preting possible experimental signals from colliders/telescopes/underground experiments/etc. We have
only presented very cursory comparisons to current data; we refer the reader to the appropriate experi-
ments’ results pages and conference proceedings for the latest bounds. See also [207] for an overview
of the Run I searches for new physics. All of these topics—and perhaps many others—are, in some
combination, key parts of a model builder’s toolbox in the LHC era.
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Appendices
A Appendix: Extra Dimensions
A.1 The RS gravitational background
We have assumed the metric (3.28). In this appendix we derive it from the assumption of a non-
factorizable metric of the form

ds2 = e−A(z)
(
ηµνdx

µdxν − dz2
)

(A.1)

and check the conditions for which a flat 4D background exists. This generic form of the metric is useful
since it is an overall rescaling of the flat metric, that is, it is conformally flat. We can thus use a convenient
relation between the Einstein tensors GMN = RMN − 1

2gMNR of two conformally equivalent metrics
gMN = e−A(x)g̃MN in d dimensions [?],

GMN = G̃MN +
d− 2

2

[
1

2
∇̃MA∇̃NA+ ∇̃M∇̃NA− g̃MN

(
∇̃K∇̃KA−

d− 3

4
∇̃KA∇̃KA

)]
.

(A.2)

When A = A(z) this is straightforward to calculate by hand for g̃MN = ηMN . Alternately, one may
use a computer algebra system to geometric quantities for general metrics, e.g. [?]. We assume a bulk
cosmological constant Λ so that the 5D bulk Einstein action is

S = −
∫
d5x
√
g
(
M3
∗R+ Λ

)
. (A.3)

The Einstein equation is GMN = (M∗)−3TMN . The MN = 55 component gives

3

2
A′2 =

1

2M3∗
Λe−A. (A.4)

This only has a solution for Λ < 0 so that we’re forced to consider AdS spaces. This equation is separable
with the general solution,

e−A(z) =
1

(kz + constant)2 k =
−Λ

12M3∗
. (A.5)

To recover (3.28) we identify R = 1/k and impose A = 0 at z = R, setting the constant to zero. The
latter choice simply sets the warp factor at the UV brane to be 1.

We must remember that the RS space is finite—and has branes at its endpoints—when we solve
the MN = µν Einstein equations. These equations depend on the second derivative of A(z) and one
should be concerned that this may be sensitive to the energy densities on the branes. This is analogous to
the Poisson equation in electrostatics where a second derivative picks up the δ-function of a point charge.
In general the branes carry tensions which appear as 4D cosmological constants, ΛIR,UV. Recalling the
form of the induced metric

√
ĝ =

√
g/g55, these appear in the action as

∫
d5x

√
g

g55
Λir,uvδ(z −R(′)) ⇒ Tµν =

1√
g

δS

δgµν
=

gµν
2
√
g55

(
ΛIRδ(z −R′) + ΛUVδ(z −R)

)
.

(A.6)
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A.2 RS as an orbifold
To better understand the physics of the brane cosmological constants, it is useful to represent the interval
with an orbifold S1/Z2. This is simply the circle y ∈ [−π, π] with the identification y = −y. While this
may sound somewhat exotic, such compactifications are common in string theory, and was the original
formulation of the RS scenario. Note that y can take any value due to the periodic identification of the
circle, while the fixed points at y = 0, π demarcate the physical RS space.

The orbifold identification forces us to modify (A.5) by replacing z → |z| to preserve the z ↔ −z
symmetry.This absolute value, in turn, leads to δ functions in A′′(z) at the fixed points,

A′′(z) = − 2k2

(k|z|+ const)2
+

4k

k|z|+ const
(
δ(z −R)− δ(z −R′)

)
. (A.7)

The µν Einstein equation then implies

−3

2
ηµν

[
−4k (δ(z −R)− δ(z −R′))

k|z|+ const

]
=

ηµν
2M3∗

[
ΛUVδ(z −R) + ΛIRδ(z −R′)

k|z|+ const

]
. (A.8)

From this we see that the brane cosmological constants must have opposite values,

ΛUV = −ΛIR = 12kM3
∗ . (A.9)

Recall, further, that k is related to the bulk cosmological constant by (A.5), so that this represents a tuning
of the bulk and brane cosmological constants. This is a necessary condition for a static, gravitational
solution. Physically, we see that the brane and the bulk cosmological constants are balanced against one
another to cause the brane to be flat.

A.3 Bulk Fermions in RS
The properties of fermions in a curved space can be subtle. In particular, it’s not clear how to generalize
the usual Dirac operator, Dirac operator iγµ∂µ. In this appendix we review properties of fermions in an
extra dimension and then derive the form of the fermion action in RS.

A.3.1 The fifth γ matrix
Firstly, unlike in 4D where the fundamental fermion representation is a Weyl spinor, 5D Lorentz invari-
ance requires that fermions appear as Dirac spinors. A simple heuristic way of seeing this is to note that
in 4D one can construct a γ5 ∼ γ0 · · · γ3 as a linearly independent chirality operator. In 5D, however, γ5,
is part of the 5D Clifford algebra and is just a normal γ matrix in the z-direction. Note that the normal-
ization of γ5 is fixed by {γ5, γ5} = 2η55 and has a factor of i compared to the usual definition in 4D. One
should immediately be concerned: if the 5D fermions are Dirac, then how does one generate the chiral
spectrum of the Standard Model matter? As we show below, this follows from a choice of boundary
conditions. An excellent reference for the properties of fermions in arbitrary dimension is [208].

A.3.2 Vielbeins
In order to write down the fermionic action, we first need to establish some differential geometry so that
we may write the appropriate covariant derivative for the spinor representation. We will be necessarily
brief here, but refer to [209–211] for the interested reader30.

The familiar γ matrices which obey the Clifford algebra are only defined for flat spaces. That is
to say that they live on the tangent space (locally inertial frame) of our spacetime manifold. In order

30Those with slightly less mathematical background can refer to [212] or their favorite ‘grown up’ general relativity textbook
as a starting point.
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to define curved-space generalizations of objects like the Dirac operator, we need a way to convert
spacetime indices M to tangent space indices a. Vielbeins, eaµ(x), are the geometric objects which
do this. The completeness relations associated with vielbeins allow them to be interpreted as a sort of
“square root” of the metric in the sense that

gMN (x) = eaM (x)ebM (x)ηab, (A.10)

where ηab = diag(+,−, · · · ,−) is the Minkowski metric on the tangent space. For our particular
purposes we need the inverse vielbein, eMa (x), defined such that

eMa (x)eaN (x) = δMN eMa (x)ebN (x) = δ b
a . (A.11)

Spacetime indices are raised and lowered using the spacetime metric gMN (x) while tangent space indices
are raised and lowered using the flat (tangent space) metric ηab(x).

Physically we may think of the vielbein in terms of reference frames. The equivalence principle
states that at any point one can always set up a coordinate system such that the metric is flat (Minkowski)
at that point. Thus for each point x in space there exists a family of coordinate systems that are flat at x.
For each point we may choose one such coordinate system, which we call a frame. By general covariance
one may define a map that transforms to this flat coordinate system at each point. This is the vielbein.
One can see that it is a kind of local gauge transformation, and indeed this is the basis for treating gravity
as a gauge theory built upon diffeomorphism invariance.

A.3.3 Spin covariant derivative
The covariant derivative is composed of a partial derivative term plus connection terms which depend on
the particular object being differentiated. For example, the covariant derivative on a spacetime vector V µ

is

DMV
N = ∂MV

N + ΓNMLV
L. (A.12)

The vielbein allows us to work with objects with a tangent space index, a, instead of just spacetime
indices, µ. The γ matrices allow us to further convert tangent space indices to spinor indices. We would
then define a covariant derivative acting on the tangent space vector V a,

DMV
a = ∂MV

a + ωaMbV
b, (A.13)

where the quantity ωaMb is called the spin covariant derivative. Consistency of the two equations implies

DMV
a = eaNDMV

N . (A.14)

This is sufficient to determine the spin connection. It is a fact from differential geometry that the spin
connection is expressed in terms of the veilbeins via [213]

ωabM =
1

2
gRP e

[a
R∂[Me

b]
P ] +

1

4
gRP gTSe

[a
Re

b]
T∂[Se

c
P ]e

d
Mηcd (A.15)

=
1

2
eNa

(
∂Me

b
N − ∂NebM

)
− 1

2
eNb (∂Me

a
N − ∂NeaM )− 1

2
ePaeRb (∂P eRc − ∂ReRc) ecM . (A.16)

When acting on spinors one needs the appropriate structure to convert the a, b tangent space indices
into spinor indices. This is provided by

σab =
1

4
[γa, γb] (A.17)

so that the appropriate spin covariant derivative is

DM = ∂M +
1

2
ωabMσab. (A.18)
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A.3.4 Antisymmetrization and Hermiticity
The fermionic action on a d-dimensional curved background is

S =

∫
ddx

√
|gd| Ψ

(
ieMa γ

a←→DM −m
)

Ψ, (A.19)

where the antisymmetrized covariant derivative is defined by a difference of right- and left-acting deriva-
tives

←→
DM =

1

2
DM −

1

2

←−−
DM . (A.20)

This is somewhat subtle. The canonical form of the fermionic action must be antisymmetric in this
derivative in order for the operator to be Hermitian and thus for the action to be real. In flat space we are
free to integrate by parts in order to write the action exclusively in terms of a right-acting Dirac operator.
Hermiticity is defined with respect to an inner product. The inner product in this case is given by

〈Ψ1|OΨ2〉 =

∫
d5x
√
g Ψ1OΨ2. (A.21)

A manifestly Hermitian operator is OH = 1
2

(
O +O†

)
, where we recall that

〈Ψ1|O†Ψ2〉 = 〈OΨ1|Ψ2〉 =

∫
d5x
√
g OΨ1Ψ2. (A.22)

The definition of an inner product on the phase space of a quantum field theory can be nontrivial on
curved spacetimes. However, since our spacetime is not warped in the time direction there is no ambigu-
ity in picking a canonical Cauchy surface to quantize our fields and we may follow the usual procedure
of Minkowski space quantization with the usual Minkowski spinor inner product.

As a sanity-check, consider the case of the partial derivative operator ∂µ on flat space time. The
Hermitian conjugate of the operator is the left-acting derivative,

←−
∂µ, by which we really mean

∫
ddxΨ1∂

†Ψ2 = 〈Ψ1|∂†µΨ2〉 = 〈∂µΨ1|Ψ2〉 =

∫
ddx ∂µΨ1Ψ2 =

∫
ddxΨ1

←−
∂µΨ2 =

∫
ddxΨ1 (−∂µ) Ψ2.

In the last step we’ve integrated by parts and dropped the boundary term. We see that the Hermitian
conjugate of the partial derivative is negative itself. Thus the partial derivative is not a Hermitian operator.
This is why the momentum operator is given by P̂µ = i∂µ, since the above analysis then yields P̂ †µ = P̂µ,
where we again drop the boundary term and recall that the i flips sign under the bar.

Now we can be explicit in what we mean by the left-acting derivative in (A.19). The operator
ieMa γ

aDM is not Hermitian and needs to be made Hermitian by writing it in the formOH = 1
2

(
O +O†

)
.

Thus we may write a manifestly Hermitian Dirac operator as,

Ψ (Dirac) Ψ = Ψ

[
1

2

(
ieMa γ

aDM

)
+

1

2

(
ieMa γ

aDM

)†
]

Ψ (A.23)

= Ψ
i

2
eMa γ

aDMΨ− i

2
eMa γ

aDMΨΨ, (A.24)

where we’ve used the fact that eMa is a real function with no spinor indices. The second term on the
right-hand side can be massaged further,

γaDMΨΨ = Ψ†
←−−
DM

†γa†γ0Ψ = Ψ†(
←−
∂M + ωbcMσ

bc†)γ0γaΨ = Ψ
←−−
DMγ

aΨ = Ψγa
←−−
DMΨ. (A.25)
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Note that we have used that γM† = γ0γMγ0 and, in the last line, that [σbc, γa] = 0. Putting this all
together, we can write down our manifestly real fermion action as in (A.19),

S =

∫
ddx

√
|g| Ψ

(
ieMa γ

a←→DM −m
)

Ψ (A.26)

=

∫
ddx

√
|g|
(
i

2
ΨeMa γ

aDMΨ− i

2
DMΨeMa γ

aΨ−mΨΨ

)
. (A.27)

All of this may seem overly pedantic since integration by parts allows one to go back and forth
between the ‘canonical’ form and the usual ‘right-acting only’ form of the fermion kinetic operator.
Our interest, however, is to apply this to the Randall-Sundrum background where integration by parts
introduces boundary terms and so it is crucial to take the canonical form of the Dirac operator as the
starting point.

A.3.5 Application to the RS background
We now apply this machinery to the RS background. The vielbein and inverse vielbein are

eaM (z) =
R

z
δaM eMa (z) =

z

R
δMa . (A.28)

We may write out the spin connection term of the covariant derivative as

ωabM =
1

2
gRP e

[a
R∂[Me

b]
P ]︸ ︷︷ ︸

ωabM (1)

+
1

4
gRP gTSe

[a
Re

b]
T∂[Se

a
P ]e

d
Mηcd

︸ ︷︷ ︸
ωabM (2)

. (A.29)

This can be simplified using the fact that the vielbein only depends on z. The first part is

ωabM (1) =
1

2z
δ

[a
Mδ

b]
5 , (A.30)

where we’ve used ∂MebP = −1
z e
b
P δ

5
M and the completeness relation gMNeaMe

b
M = ηab. Similarly, with

some effort the second part is given by

ωabM (2) =
1

2z
δ

[a
Mδ

b]
5 . (A.31)

These vanish identically for M = 5. We can now write out the spin-connection part of the covariant
derivative,

1

2
ωabMσab =

1

2

(
1

z
δ

[a
Mδ

b]
5

)

M 6=5

1

4
[γa, γb] =

1

4z

(
γMγ5 + δ5

M

)
, (A.32)

where we’ve inserted a factor of δ5
M to cancel the (γ5)2 when M = 5. Finally, the spin connection part

of the covariant derivative is

1

2
ωabMσab =

1

4z

(
γMγ5 + δ5

M

)
(A.33)

so that the spin covariant derivative is

DM =

{
∂µ + 1

4zγµγ5 if M = µ

∂5 if M = 5.
(A.34)
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For all of the geometric heavy lifting we’ve done, we are led to an anticlimactic result: the spin
connection drops out of the action,

S =

∫
d5x

i

2

(
R

z

)4 (
ΨγM

←→
∂MΨ +

1

4z
Ψγµγ5γ

µΨ− 1

4z
γµγ5γµΨΨ

)
, (A.35)

The two spin connection terms cancel since γµγ5γµΨΨ = Ψγµγ5γ
µΨ, so that upon including a bulk

mass term,

S =

∫
d5x

i

2

(
R

z

)4

ΨγM
←→
∂MΨ−

∫
d5x

i

2

(
R

z

)5

mΨΨ =

∫
d5x

i

2

(
R

z

)4

Ψ
(
γM
←→
∂M −

c

z

)
Ψ,

(A.36)

where c = mR = m/k is a dimensionless parameter that is the ratio of the bulk mass to the curvature
and

Before we can dimensionally reduce the action straightforwardly, we must write the Dirac operator
to be right-acting, i.e. acting on Ψ, so that we can vary with respect to Ψ to get an operator equation
for Ψ. Obtaining this is from (A.36) is now a straightforward matter of integration by parts of the
left-acting derivative term. Note that it is crucially important that we pick up a derivative acting on the
metric/vielbein factor (R/z)4. We would have missed this term if we had mistakenly written our original
‘canonical action,’ (A.19), as being right-acting only.

The integration by parts for the M = µ = 0, · · · , 4 terms proceeds trivially since these directions
have no boundary and the metric/vielbein factor is independent of xµ. Performing theM = 5 integration
by parts we find

S =

∫
d4x

∫ R

R′
dz

(
R

z

)4

Ψ

(
i/∂ + iγ5∂5 − i

2

z
γ5 − c

z

)
Ψ + (boundary term)|RR′ . (A.37)

The term in the parenthesis can be identified with the Dirac operator for the Randall-Sundrum model
with bulk fermions. The boundary term is

(boundary) = (R/z)4 (ψχ− χψ
)∣∣∣
R

R′
, (A.38)

where we’ve written out the Dirac spinor Ψ in terms of two-component Weyl spinors χ and ψ. This term
vanishes when we impose chiral boundary conditions, which we review in the next section. In terms of
Weyl spinors this gives

S =

∫
d4x

∫ R

R′
dz

(
R

z

)4 (
ψ χ

)(−∂5 + 2−c
z i/∂

i/∂ ∂5 − 2+c
z

)(
χ

ψ

)
, (A.39)

where we use the two-component slash convention /v = vµσ
µ, /v = vµσ

µ. From here one may perform a
straightforward dimensional reduction to obtain, among other things, the profile of a bulk fermion in RS,

Ψ(0)
c (x, z) =

1√
R′

( z
R

)2 ( z
R′

)−c
√

1− 2c

1− (R/R′)1−2c
PLΨ(0)

c (x), (A.40)

where Ψ
(0)
c (x) is a canonically normalized 4D field and PL is the usual left-chiral projector. The term in

the square root is a flavor factor that is often written as fc.
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A.3.6 Chiral boundary conditions
The vector-like (Dirac) nature of 5D spinors is an immediate problem for model-building since the Stan-
dard Model is manifestly chiral and there appears to be no way to write down a chiral fermion without
immediately introducing a partner fermion of opposite chirality and the same couplings. To get around
this problem, we can require that only the zero modes of the 5D fermions—those which are identified
with Standard Model states—to be chiral. We show that one chirality of zero modes can indeed be
projected out, while the heavier Kaluza-Klein excitations are vector-like but massive.

We can project out the zero modes of the wrong-chirality components of a bulk Dirac 5D fermion
by imposing chiral boundary conditions that these states vanish on the branes. Since zero modes have
trivial profiles, these boundary conditions force the mode to be identically zero everywhere. For left-
chiral boundary conditions, ψ = 0 on the branes, while for right-chiral boundary conditions χ = 0 on
the branes. Thus we are guaranteed that both terms in (A.38) vanish at z = R,R′ for either chirality.

Imposing these chiral boundary conditions is equivalent to the statement that the compactified
extra dimension is an orbifold. This treatment of boundary conditions for interval compact spaces was
first discussed from this viewpoint in [109].

A.4 Gauge fields in RS
We now move on to the case of bulk gauge fields. We follow the approach of [214], though we adapt it
to follow the same type of derivation espoused above for the fermion propagator. The bulk action is

S5 =

∫
d4xdz

√
g

[
−1

4
FMNF

MN + (brane) + (gauge fixing)

]
(A.41)

To derive the propagator, we would like to write the kinetic term in the form AMOMNAN so
that we may invert the quadratic differential operator OMN . This require judicious integration by parts
including the (R/z) factors from the metric and the measure,

√
g. The relevant integration is

R

4z
FMNFMN = −R

2
AN∂M

(
1

z
∂M

)
AN +

R

2
AN∂M

(
1

z
∂N

)
AN +

R

2
∂M

(
1

z
AN∂[MAN ]

)
,

(A.42)

where the last term integrates to a boundary term. Observe that this boundary term vanishes for both
Dirichlet and Neumann boundary conditions so that it vanishes for µ → ν and 5th component scalar
propagators. It does not vanish, however, for the case of vector–scalar mixing. For simplicity, we will
drop the term here in anticipation that it will be removed by gauge fixing. With this caveat, the above
integration becomes

R

4z
FMNFMN = Aµ

[
R

2z
∂2ηµν − R

2
∂z

(
1

z
∂z

)
ηµν − R

2z
∂µ∂ν

]
Aν +A5

R

z
∂z∂

µAµ −A5
R

2z
∂2A5.

(A.43)

This is now in the desired form: we can read off the quadratic differential operators which encode the
propagation of the 5D gauge bosons. Observe that we have a term that connects the 4D vector Aµ to the
4D scalar A5. In our mixed position-momentum space formalism, we prefer to leave these as separate
fields. This term is removed by a judicious choice of gauge fixing.

We must now gauge fix to remove the gauge redundancy which otherwise appears as unphysical
states in the propagator. Ideally we would like to pick a gauge where the scalar vanishes A5 = 0
and the vector has a convenient gauge, say, Lorenz gauge ∂µAµ = 0. Unfortunately, these gauges are
incompatible. Intuitively this is because we only have a single gauge fixing functional to work with in
the path integral so that we are allowed to set at most one expression to vanish. Instead, motivated by the
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potential for vector–scalar mixing from the boundary term of (A.43), we choose a gauge fixing functional
which cancels this mixing term,

Lgauge fix = −
(
R

z

)
1

2ξ

[
∂µA

µ − ξz∂z
(

1

z
A5

)]2

(A.44)

We have introduced a gauge fixing parameter ξ which will play the role of the ordinary Rξ gauge fixing
parameter in 4D. We can integrate by parts to convert this to the form AMOMN

gauge fixAN ,

Lgauge fix = Aµ
1

2ξ

R

z
∂µ∂νAν −A5

R

z
∂z∂

µAµ +A5
ξ

2

R

z
∂z

[
z∂z

(
1

z
A5

)]
. (A.45)

Observe that the second term here cancels the unwanted mixing term in (A.43). Summing this together
with the gauge kinetic term gives a clean separation for the kinetic terms for the gauge vector and scalar:

Lgauge + Lgauge fix = Aµ

[
R

2z
∂2ηµν − R

2
∂z

(
1

z
∂z

)
ηµν −

(
1− 1

ξ

)
R

2z
∂µ∂ν

]
Aν

+A5
R

2z

[
−∂2 + ξ

(
1

z2
− 1

z
∂z + ∂2

z

)]
A5 (A.46)

≡ AµOµνAν +A5O5A5. (A.47)

As above, now that we have the action written in terms of right-acting operators on the gauge fields, we
may proceed to do a KK reduction to determine the KK mode properties, A(n)

µ (x, z) = A
(n)
µ (x)h(n)(z).

The general solution for the nth KK mode profile of a bulk gauge field is

h(n) = aJ1(M (n)z) + bY1(M (n)z), (A.48)

where Jα and Yα are Bessel functions. A SM gauge field must have a zero mode (which is identified with
the SM state) so that it must have Neumann boundary conditions (BC). Using the formulae for derivatives
of Bessel functions, we find

Y0(M (n)R)J0(M (n)R′) = J0(M (n)R)Y0((n)R′), (A.49)

where M (n) is the mass of the nth KK mode. We know that M (n) ∼ n/R′ and that R � R′. Thus
M (n)R ≈ 0 for reasonable n. Now invoke two important properties of the J0 and Y0 Bessel functions:

1. J0(0) = 1 and J0(x > 0) is under control, i.e. |J0(x)| < 1.

2. Y0(0) = −∞ and Y0(x > y1) is similarly under control, where y1 is the first zero of Y0(x).

From this we see that the left-hand side of (A.49) is very large and negative due to the Y0(M (n)R)
term while the right-hand side is a product of ‘under control’ terms that are O(1) or less. This implies
that J0(M (n)R′) ≈ 0. In other words, the KK masses are given by the zeros of J0. The first zero is
x1 = 2.405 so that the first KK gauge boson excitation has mass M (n) ≈ 2.4/R′. The solution for the
the nth KK mode profile of a SM gauge field is thus [215]

h(n)(z) = N z
[
Y0(M (n)R)J1(M (n)z)− J0(M (n)R)Y1(M (n)z)

]
. (A.50)

The normalization is fixed by performing the dz integral and requiring canonical normalization of the
zero mode 4D kinetic term,

∫
d4x dz

√
gFMNFPQg

MP gNQ =

∫
d4x dz

R

z
F (0)(x)µνF

(0)(x)µν
[
h(0)(z)

]2
+ · · · . (A.51)
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This gives N−1/2 = R logR′/R.

Finally, we note that for theW andZ bosons, the Higgs VEV on the IR brane changes the boundary
conditions so that the zero mode profile is not flat. Heuristically it introduces a kink on the profile near
the IR brane. Since MZ � M (1), we may treat this as a perturbation to M (0) = 0 so that the Z boson
profile is

h
(0)
Z (z) =

1√
R logR′/R

[
1− M2

Z

4

(
z2 − 2z2 log

z

R

)]
, (A.52)

and similarly for the W .

A.5 Caution with finite loops
One should be careful when calculating loop diagrams in theories with extra dimensions. When one
calculates a finite loop, say a dipole operator, naïve application of effective field theory suggests taking
only the lowest KK mode and letting the 4D loop momentum go to k → ∞. This, however, can lead to
erroneous results since the loop integral runs over all momenta, including those in the fifth dimension.
Only integrating over the 4D directions removes terms that scale like k2/M2

KK which would otherwise
make an O(1) finite contribution. This can appear as a dependence on the order in which one does the
4D loop integral versus KK sum; this discrepancy has appeared in the RS gg → h production calculations
[216]. One way to avoid this problem is to work in mixed position-momentum space [214]. This was used
to calculate RS constraints from f → f ′γ [217, 218] and the muon magnetic moment in [219]. These
references include Feynman rules for performing mixed space calculations. For a recent explanation
of the subtleties of 5D dipoles and the resolution to puzzles in the previous literature, see [220]. In
particular, Section 3 of that paper shows how to quickly estimate the size of 4D couplings from overlap
integrals.

B Appendix: Compositeness; the CCWZ Construction
The general theory of Goldstone bosons is described in the papers by Callan, Coleman, Wess, and Zu-
mino (CCWZ) [110,111]. In this appendix we present relevant aspects for generalizations to the composite
Higgs models of interest, while making connections to the chiral Lagrangian above as an explicit exam-
ple of their abstract procedure. See §19.5 – 19.7 of [112] for a more pedagogical and explicit discussion,
the relevant sections of [113], or [?, 221] for more depth on how this procedure is applied to the chiral
Lagrangian.

B.1 Preliminaries
Suppose a Lagrangian is invariant under a global symmetry G, but that G is spontaneously broken to a
subgroup H ⊂ G by the VEV of a field 〈ψ〉 = ψ0 that is in a linear representation of G. This means that
for any h ∈ H , hψ0 = ψ0. The spontaneous symmetry breaking patternG→ H implies the existence of
dimG−dimH Goldstone bosons that take values on a vacuum manifold. This manifold can be identified
with the coset space G/H (‘G mod H’). In particular, the left coset space G/H is an equivalence class
of elements g ∈ G modulo elements h ∈ H , g ∼ gh. In other words, any element in g is equivalent to
another element g′ if there exists an h such that g′ = gh. Note that in general G/H is not a group.

B.2 Decomposition of the Algebra
The generators of G can be divided between two classes: T i which generate the unbroken group H ,
and Xa which do not. This is called the Cartan decomposition. The generators satisfy the following
commutation relations:

[
T i, T j

]
= if ijkT k (B.1)
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[
T i, Xα

]
= if iαβXβ (B.2)

[
Xα, Xβ

]
= ifαβkT k + ifαβγXγ , (B.3)

where the (B.2) comes from explicitly checking that 〈T i|[T j , Xα]〉 = 0, where the inner product is
〈A|B〉 = Tr(AB). Observe that this means that the Xs furnish a linear representation of H . If, addi-
tionally, there exists a parity transformation P such that P 2 = 1 and P ([g1, g2]) = [P (g1), P (g2)] and
further such that P (x) = −X and P (T ) = +T , then one can further restrict

[Xα, Xβ] = ifαβkT k. (B.4)

In this case, the coset G/H is a symmetric space.

B.3 Decomposition of the Group
Without loss of generality, we may write any g ∈ G as

g(ξ, u) = eiξ
αXα

eiu
iT i ≡ ĝ(ξ)h(u). (B.5)

Further, note that the distinct G elements gh1, gh2, gh3, . . . ∈ G are all identified with the same element
of G/H . For each element of G/H , it is useful to pick a representative element of G, which we can
choose to be ĝ(ξ). This is simply the decomposition (4.16) when applied to chiral perturbation theory.

B.4 Decomposition of the Linear Representation
We may further write the linearly represented field ψ(x) with respect to any non-trivial reference value
such as ψ0 by defining γ(x) ∈ G to be the transformation from ψ0 → ψ(x),

ψi(x) = γij(x) (ψ0)j . (B.6)

By the invariance of ψ0 under H transformations, γ(x) is only defined up to right multiplication by any
h ∈ H . In other words, we may identify γ(x) with the representative element γ̂(x) which is chosen to be
the exponentiation of only broken generators, analogously to ĝ above. (For the moment we are ignoring
radial excitations.) We may now drop the hat on γ̂ for notational clarity. Let us suggestively call the
transformation parameter π(x),

γ (π(x)) = eiπ
a(x)Xa

. (B.7)

The πa(x) are to be identified with the Goldstone bosons (pions). We leave it dimensionless, remember
that the pion field with canonical mass dimension can be restored with πa(x)→ πa(x)can/f .

Suppose the Lagrangian of the theory with respect to the linearly represented field ψ(x) is written
in terms of ψ(x) and ∂ψ(x). The former don’t contain the Goldstone fields, while the latter can be
written in terms of ψ0 and the Goldstone fields using (B.6) and (B.7),

∂µψ(x) = γ
[
∂µ + γ−1 (∂µγ)

]
ψ0, (B.8)

where we’ve suppressed the x dependence of γ. Without loss of generality, we can write γ−1∂µγ in
terms of the broken and unbroken generators,

γ−1∂µγ = iDα
µX

α + iEiµT
i (B.9)

Dα
µ = Dαβ(π)∂µπ

β (B.10)

Eiµ = Eiβ(π)∂µπ
β. (B.11)

The proof of this expression uses the trick

∂µe
iπ·X = i∂µπ

α

∫ 1

0
ds ei(1−s)π·XXαeisπ·X (B.12)

and then the Baker–Campbell–Hausdorff (BCH) relation to show that you end up with an expansion in
the Xs and T s.
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B.5 Transformation of the Goldstones
We would like to see how the πa transform under the global group G. We can derive this from the
transformation of the linear field ψ(X) using (B.6) and (B.7). Let us define π′ and u′ such that

gψ(x) = geiπ·Xψ0 ≡ eiπ
′·Xeiu

′·Tψ0, (B.13)

where the primed fields are nonlinear functions of g and π(x), that is π′ = π′(g, π). It is cleaner to write
this after peeling off the ψ0,

gγ(π) = γ(π′)h(u′). (B.14)

The element h(u′) ∈ H leaves ψ0 invariant. The non-linear dependence of π′(x) on π(x) for generic g
is the key result.

In the case when we transform ψ(x) by an element h ∈ H ,

hψ(x) = eiu
iT ieiπ(x)·Xψ0 ≡ eiπ

′·Xψ0, (B.15)

where we have used (B.2) and the BCH formula. In other words,

hγ(π) = γ(π′) πaXa → π′aXa. (B.16)

In this case, we see that π(x) has transformed linearly, in contrast to (B.14) or (B.13). The main differ-
ence is that due to the general decomposition (B.5), we simply observed that gγ (π(x)) ∈ G and so that
there must exist some π′ and u′ satisfies (B.13). The actual expression for π′ as a function of π is messy.
On the other hand, in (B.15) we used BCH to derive the π′ explicitly and one can see that this is a linear
transformation.

B.6 From Linear to Non-Linear
From our assumed linear UV theory, we have now identified the Goldstone fields and can integrate out
the massive ‘radial’ modes to obtain a low-energy Lagrangian. The radial modes can be identified with
excitations along the VEV direction ψ0. So let us define the radial field ψr(x) = r(x)ψ0 with a VEV

〈r(x)〉 = 1. From (B.13) with ψ0 → ψr(x), we see that the radial field transforms as

ψr → h
(
u′(π)

)
ψr. (B.17)

Thus in order to build G invariants out of the radial fields ψr, it is sufficient to construct H invariants.
Said differently, the decomposition ψ(x) = γ(π)ψr is a tool for converting G-linear representations ψ
into H-linear representations ψr.

Effective field theory tells us that this UV theory wasn’t necessary to construct the low energy
theory of Goldstone bosons. So we can now integrate out the radial modes and remain agnostic about
the UV completion of the theory. Prior to the discovery of the Higgs boson—a linear UV completion of
the theory of the Goldstone bosons eaten by W± and Z—the reason why experiments like LEP could
make precision measurements of the SM without knowing the details of the Higgs is that the precision
measurements asked precise questions about the non-linear sigma model (NLΣM) of Goldstones that were
insensitive to the particular UV completion, linear or otherwise.

B.7 A Low-Energy Lagrangian without the UV
Let us now return to (B.8) since we know from the Goldstone shift symmetry that the Goldstones only
appear in derivative interactions. The object g−1∂g, where g = γ in (B.8), is called the Mauer-Cartan
form, it takes an element of the group g ∈ G, differentiates it—pulling out the Lie algebra element based
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at g, and then pulls that generator back to the group identity so that one can compare elements of the
algebra on the same tangent space.

The expansion of the Maurer-Cartan form into broken and unbroken generators is given in (B.9).
Differntiate the transformation rule for γ, (B.14),

g∂µγ(π) =
[
∂µγ(π′)

]
h+ γ(π′)∂µh. (B.18)

Now multiply each side of this equation by the respective side in the inverse of (B.14),

γ−1(π)∂µγ(π) = h−1γ−1(π′)
([
∂µγ(π′)

]
h+ γ(π′)∂µh

)
. (B.19)

Comparing this to (B.9), we find

iDα
µ(π)Xα + iEiµ(π)T i = ih−1Dα

µ(π′)Xαh−1 + ih
[
Eiµ(π′)T i + i∂µ

]
h−1. (B.20)

In other words, the objects D and E definedin (B.9) transform under g ∈ G as

Dα
µ → hDα

µh
−1 (B.21)

Eiµ → hEiµh
−1 − ih∂µh−1, (B.22)

where here h = h (u′(π, g)) in (B.14). This should look very familiar: D transforms linearly and
E transforms like a gauge field. Both transform under G with respect to the subgroup H rather than
the whole group G. This realizes the observation in Section B.6: to write Lagrangians for nonlinear
realizations of G/H , we need to construct H invariants. The linear object D can indeed be used to
construct a simple lowest-order Lagrangian,

L =
f2

4
Tr(DµD

µ), (B.23)

where we’ve introduced the compositeness scale f to preserve dimensionality.

What about the curious object Eµ? This appears to transform as the gauge field of a local symme-
try. The locality of this symmetry is inherited from the x-dependence of the Goldstone fields π(x) and
is unsurprising since the coset identification g ∼ gh is local. Eµ is thus a ‘gauge potential’ with respect
to the unbroken symmetry H . Indeed, differentiating (B.17)—recalling that h(u′) depends on x through
its implicit dependence on π(x)—shows that derivatives of the non-Goldstone fields transform inhomo-
geneously under G. Promoting the partial derivative to a covariant derivative, Dµ = ∂µ → ∂µ + iEµ,
ensures that Dµψr(x) transforms homogeneously under H .

When did H become gauged? The appearance of a covariant derivative and a gauge symmetry may seem surprising in
a system where global symmetry G is was spontaneously broken to a subgroup H . The appearance of a local symmetry,
however, is not surprising since the resulting coset space G/H precisely describes a gauge redundancy. Mathematically,
the description of a ‘gauged’ symmetry is identical to that of a spontaneously broken global symmetry. For the mathemat-
ically inclined, details of the geometric structure of these theories are presented in [222] and [223].

The punchline is that one can construct a Goldstone boson Lagrangian which is invariant under
the full, nonlinearly realized group G, by constructing an H-invariant Lagrangian out of Dµ. One can
further introduce non-Goldstone fields ψr (not necessarily related to the linear field that gets a VEV)
so long as one uses the appropriate H covariant derivative. In this way one may include, for example,
‘nucleon’ excitations to the effective theory.

The description above is based on a ‘standard realization’ of the nonlinearly realized symmetry,
(B.13). One of the main results of the CCWZ papers was the observation that every non-linear realization
can be brought to this standard realization [110, 111]. Physically, this means that no matter how one im-
poses theG/H restriction, the S-matrix elements for the low-energy dynamics will be identical. Explicit
examples of this are presented in chapter IV of [?].
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