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Abstract
These lectures introduce the basic ideas and practices of statistical analysis for
particle physicists, using a real-world example to illustrate how the abstrac-
tions on which statistics is based are translated into practical application.

1 Introduction
The day-to-day task of particle physicists is to suggest, build, test, discard and, or, refine models of the
observed regularities in Nature with the ultimate goal of building a comprehensive model that answers
all the scientific questions we might think to ask. One goal of experimental particle physicists is to make
quantitative statements about the parameters θ of a model given a set of experimental observations X .
However, in order to make such statements, the the connection between the observations and the model
parameters must itself be modeled, and herein lies a difficulty. While there is general agreement about
how to connect model parameters to data, there is long history [1] of disagreement about the best way
to solve the inverse problem, that is, to go from observations to model parameters. The solution of this
inverse problem requires a theory of inference.

These lectures introduce to two broad classes of theories of inference, the frequentist and Bayesian
approaches. While our focus is on the practical, we do not shy away from brief discussions of founda-
tions. We do so in order to make two points. The first is that when it comes to statistics, there is no such
thing as “the" answer; rather there are answers based on assumptions, or proposals, on which reasonable
people may disagree for purely intellectual reasons. Second, none of the current theories of inference
is perfect. It is worth appreciating these points, even superficially, if only to avoid fruitless arguments
that cannot be resolved because they are ultimately about intellectual taste rather than mathematical
correctness.

For more in-depth expositions of the topics here covered, and different points of view, we highly
recommend the excellent textbooks on statistics written for physicists, by physicists [2–4].

2 Lecture 1: Descriptive Statistics, Probability and Likelihood
2.1 Descriptive Statistics
Suppose we have a sample of N data X = x1, x2, · · · , xN . It is often useful to summarize these data
with a few numbers called statistics. A statistic is any number that can be calculated from the data
and known parameters. For example, t = (x1 + xN )/2 is a statistic, but if the value of θ is unknown
t = (x1 − θ)2 is not. However, a word of caution is in order: we particle physicists are prone to misuse
the jargon of professional statisticians. For example, we tend to refer to any function of the data as a
statistic including those that contain unknown parameters.

The two most important statistics are

the sample mean (or average) x̄ =
1

N

N∑

i=1

xi, (1)

and the sample variance s2 =
1

N

N∑

i=1

(xi − x̄)2,
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=
1

N

N∑

i=1

x2
i − x̄2,

= x2 − x̄2. (2)

The sample average is a measure of the center of the distribution of the data, while the sample variance
is a measure of its spread. Statistics that merely characterize the data are called descriptive statistics,
of which the sample average and variance are the most important. If we order the data, say from the
smallest value to the largest, we can compute another interesting statistic tk ≡ x(k), where 1 ≤ k ≤ N

and x(k) denotes the datum at the kth position. The statistic tk is called the kth order statistic and is a
measure of the value of outlying data.

The average and variance, Eqs. (1) and (2), are numbers that can always be calculated given a data
sample X . But now we consider numbers that cannot be calculated from the data alone. Imagine the
repetition, infinitely many times, of whatever data generating system yielded our data sample X thereby
creating an infinite sequence of data sets. We shall refer to the data generating system as an experiment
and the infinite sequence as an infinite ensemble. The latter, together with all the mathematical operations
we may wish to apply to it, are abstractions. After all, it is not possible to realize an infinite ensemble.
The ensemble and all the operations on it exist in the same sense that the number π exists along with all
valid mathematical operations on π.

The most common operation to perform on an ensemble is to compute the average of the statistics.
This ensemble average suggests several potentially useful characteristics of the ensemble, which we list
below.

Ensemble average < x >

Mean µ

Error ε = x− µ
Bias b =< x > −µ
Variance V =< (x− < x >)2 >

Standard deviation σ =
√
V

Mean square error MSE =< (x− µ)2 >

Root MSE RMS =
√

MSE (3)

Notice that none of these numbers can be calculated in practice because the data required to do so do not
concretely exist. Even in an experiment simulated on a computer, there are very few of these numbers
we can calculate. If we know the mean µ, perhaps because we have chosen its value — for example, we
may have chosen the mass of the Higgs boson in our simulation, we can certainly calculate the error ε
for any simulated datum x. But, we can only approximate the ensemble average < x >, bias b, variance
V , and MSE, since our virtual ensemble is always finite. The point is this: the numbers that characterize
the infinite ensemble are also abstractions, albeit useful ones. For example, the MSE is the most widely
used measure of the closeness of an ensemble of numbers to some parameter µ. The square root of the
MSE is called the root mean square (RMS)1. The MSE can be written as

MSE = V + b2. (4)

Exercise 1: Show this

The MSE is the sum of the variance and the square of the bias, a very important result with practical
consequences. For example, suppose that µ represents the mass of the Higgs boson and x represents

1Sometimes, the RMS and standard deviation are using interchangeably. However, the RMS is computed with respect to µ,
while the standard deviation is computed with respect to the ensemble average < x >. The RMS and standard deviations are
identical only if the bias is zero.

2

H. B. PROSPER

302



some (typically very complicated) statistic that is considered an estimator of the mass. An estimator is
any function, which when data are entered into it, yields an estimate of the quantity of interest, which
we may take to be a measurement.

Words are important; “bias” is a case in point. It is an unfortunate choice for the difference
< x > −µ because the word “bias” biases attitudes towards bias! Something that, or someone who, is
biased is surely bad and needs to be corrected. Perhaps. But, it would be wasteful of data to make the
bias zero if the net effect is to make the MSE larger than an MSE in which the bias is non-zero. The
price for achieving b = 0 in our example would be not only throwing away expensive data — which is
bad enough — but also measuring a mass that is more likely to be further away from the Higgs boson
mass. This may, or may not, be what we want to achieve.

As noted, many of the numbers listed in Eq. (3) cannot be calculated because the information
needed is unknown. This is true, in particular, of the bias. However, sometimes it is possible to relate the
bias to another ensemble quantity. Consider the ensemble average of the sample variance, Eq. (2),

< s2 > =< x2 > − < x̄2 >,

= V − V

N
,

Exercise 2a: Show this

The sample variance has a bias of b = −V/N , which many argue should be corrected. Unfortunately, we
cannot calculate the bias because it depends on an unknown parameter, namely, the variance V . However,
if we replace the sample variance by s′2 = cs2,where the correction factor c = N/(N − 1), we find that
for the corrected variance estimator s′2 the bias is zero. Surely the world is now a better place? Well, not
necessarily. Consider the ratio of MSE′ to MSE, where MSE′ =< (s′2 − V )2 >, MSE =< δ2 > with
δ = s2 − V , and b = −V/N ,

MSE′/MSE =< (cs2 − V )2 > / < δ2 >,

= c2 < (s2 − V/c)2 > / < δ2 >,

= c2 < (δ − b)2 > / < δ2 >,

= c2(1− b2/ < δ2 >),

= c2
[
1− b2/(b2+ < s4 > −(V + b)2)

]
.

From this we deduce that if < s4 > /[(V + b)2 + b2/(c2 − 1)] > 1, the unbiased estimate will be
further away on average from V than the biased estimate. This is the case, for example, for a uniform
distribution.

Exercise 2b: Use the method Rndm() of the Root
class TRandom3 to verify that MSE′ > MSE.

2.2 Probability
When the weather forecast specifies that there is a 80% chance of rain tomorrow, most people have
an intuitive sense of what this means. Likewise, most people have an intuitive understanding of what
it means to say that there is a 50-50 chance for a tossed coin to land heads up. Probabilistic ideas are
thousands of years old, but, starting in the sixteenth century these ideas were formalized into increasingly
rigorous mathematical theories of probability. In the theory formulated by Kolmogorov in 1933, Ω is
some fixed mathematical space, E1, E2, · · · ⊂ Ω are subsets (called events) defined in some reasonable
way2, and P (Ej) is a number associated with subset Ej . These numbers satisfy the

Kolmogorov Axioms
2If E1, E2, · · · are meaningful subsets of Ω, so to is the complement E1, E2, · · · of each, as are countable unions and

intersections of these subsets.
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1. P (Ej) ≥ 0

2. P (E1 + E2 + · · · ) = P (E1) + P (E2) + · · · for disjoint subsets

3. P (Ω) = 1.

Consider two subsets A = E1 and B = E2. The quantity AB means A and B, while A + B means
A or B, with associated probabilities P (AB) and P (A + B), respectively. Kolmogorov assumed, not
unreasonably given the intuitive origins of probability, that probabilities sum to unity; hence the axiom
P (Ω) = 1. However, this assumption can be dropped so that probabilities remain meaningful even if
P (Ω) =∞ [5].

Figure 1 suggests another probability, namely, the number P (A|B) = P (AB)/P (B), called the
conditional probability of A given B. This permits statements such as: “the probability that this track
was created by an electron given the measured track parameters" or “the probability to observe 17 events
given that the mean background is 3.8 events". Conditional probability is a very powerful idea, but the
term itself is misleading. It implies that there are two kinds of probability: conditional and unconditional.
In fact, all probabilities are conditional in that they always depend on a specific set of conditions, namely,
those that define the space Ω. It is entirely possible to embed a family of subsets of Ω into another space
Ω′ which assigns to each family member a different probability P ′. A probability is defined only relative
to some space of possibilities Ω.

Fig. 1: Venn diagram of the sets A, B, and AB. P (A)

is the probability of A, while P (A|B) = P (AB)/P (B)

is the probability of AB relative to that of B, i.e., the
probability of A given the condition B.

A andB are said to be mutually exclusive if
P (AB) = 0, that is, if the truth of one denies the
truth of the other. They are said to be exhaustive if
P (A)+P (B) = 1. Figure 1 suggests the theorem

P (A+B) = P (A) + P (B)− P (AB), (5)

Exercise 3: Prove theorem

which can be deduced from the rules given
above. Another useful theorem is an immedi-
ate consequence of the commutativity of “anding"
P (AB) = P (BA) and the definition of P (A|B),
namely,

Bayes Theorem

P (B|A) =
P (A|B)P (B)

P (A)
, (6)

which provides a way to convert the probability
P (A|B) to the probability P (B|A). Using Bayes
theorem, we can, for example, deduce the probability P (e|x) that a particle is an electron, e, given a set
of measurements, x, from the probability P (x|e) of a set of measurements given that the particle is an
electron.

2.2.1 Probability Distributions
In this section, we illustrate the use of these rules to derive more complicated probabilities. First we start
with a definition:

A Bernoulli trial, named after the Swiss mathematician Jacob Bernoulli (1654 – 1705), is
an experiment with only two possible outcomes: S = success or F = failure.

4
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Example

Each collision between protons at the Large Hadron Collider (LHC) is a Bernoulli trial in
which something interesting happens (S) or does not (F ). Let p be the probability of a
success, which is assumed to be the same for each trial. Since S and F are exhaustive, the
probability of a failure is 1−p. For a given orderO of n proton-proton collisions and exactly
k successes, and therefore exactly n− k failures, the probability P (k,O, n, p) is given by

P (k,O, n, p) = pk(1− p)n−k. (7)

If the order O of successes and failures is judged to be irrelevant, we can eliminate the order
from the problem by summing over all possible orders,

P (k, n, p) =
∑

O

P (k,O, n, p) =
∑

O

pk(1− p)n−k. (8)

This procedure is called marginalization. It is one of the most important operations in
probability calculations. Every term in the sum in Eq. (8) is identical and there are

(
n
k

)
of

them. This yields the binomial distribution,

Binomial(k, n, p) ≡
(
n

k

)
pk(1− p)n−k. (9)

By definition, the mean number of successes a is given by

a =
n∑

k=0

kBinomial(k, n, p),

= pn. (10)

Exercise 4: Show this

At the LHC n is a number in the trillions, while for successes of interest such as the creation
of a Higgs boson the probability p << 1. In this case, it proves convenient to consider the
limit p→ 0, n→∞ in such a way that a remains constant. In this limit

Binomial(k, n, p)→ e−aak/k!,

≡ Poisson(k, a). (11)

Exercise 5: Show this

Below we list the most common probability distributions.

Discrete distributions

Binomial(k, n, p)
(
n

k

)
pk(1− pn−k

Poisson(k, a) ak exp(−a)/k!

Multinomial(k, n, p)
n!

k1! · · · kK !

K∏

i=1

pkii ,
K∑

i=1

pi = 1,
K∑

i=1

ki = n

Continuous densities
Uniform(x, a) 1/a

Gaussian(x, µ, σ) exp[−(x− µ)2/(2σ2)]/(σ
√

2π)
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(also known as the Normal density)

LogNormal(x, µ, σ) exp[−(lnx− µ)2/(2σ2)]/(xσ
√

2π)

Chisq(x, n) xn/2−1 exp(−x/2)/[2n/2Γ(n/2)]

Gamma(x, a, b) xa−1ab exp(−ax)/Γ(b)

Exp(x, a) a exp(−ax)

Beta(x, n,m)
Γ(n+m)

Γ(m) Γ(n)
xn−1 (1− x)m−1 (12)

Particle physicists tend to use the term probability distribution for both discrete and continuous func-
tions, such as the Poisson and Gaussian distributions, respectively. But, strictly speaking, the continuous
functions are probability densities, not probability distributions. In order to compute a probability from
a density we need to integrate the density over a finite set in x.

Discussion

Probability is the foundation for models of non-deterministic data generating mechanisms, such as par-
ticle collisions at the LHC. A probability model is the probability distribution together with all the
assumptions on which the distribution is based. For example, suppose we wish to count, during a given
period of time, the number of entriesN in a given transverse momentum (pT) bin due to particles created
in proton-proton collisions at the LHC; that is, suppose we wish to perform a counting experiment. If
we assume that the probability to obtain a count in this bin is very small and that the number of proton-
proton collisions is very large, then it is common practice to use a Poisson distribution to model the data
generating mechanism, which yields the bin count N . If we have multiple independent bins, we may
choose to model the data generating mechanism as a product of Poisson distributions. Or, perhaps, we
may prefer to model the possible counts conditional on a fixed total count in which case a multinomial
distribution would be appropriate.

So far, we have assumed the meaning of the word probability to be self-evident. However, the
meaning of probability [6] has been the subject of debate for more than two centuries and there is no sign
that the debate will end anytime soon. Probability, in spite of its intuitive beginnings, is an abstraction.
Therefore, for it to be of practical use it must be interpreted. The two most widely used interpretations
of probability are:

1. degree of belief in, or plausibility of, a proposition, for example, “It will snow at CERN on
December 18th", and the

2. relative frequency of outcomes in an infinite ensemble of trials, for example, the relative fre-
quency of Higgs boson creation in an infinite number of proton-proton collisions.

The first interpretation is the older, while the second was championed by influential mathematicians and
logicians starting in the mid-nineteenth century and became the dominant interpretation. Of the two
interpretations, however, the older is the more general in that it encompasses the latter and can be used
in contexts in which the latter makes no sense. The relative frequency, or frequentist, interpretation
is useful for situations in which one can contemplate counting the number of times k a given outcome
is realized in n trials, as in the example of a counting experiment. The relative frequency r = k/n is
expected to converge, in a subtle but well-defined sense, to some number p that satisfies the rules of
probability. It should noted, however, that the numbers k/n and p are conceptually distinct. The former
is something we can actually calculate, while there is no finite operational way to calculate the latter from
data. The probability p, even when interpreted as a relative frequency, remains an abstraction.

On the other hand, the degrees of belief, which is the basis of the Bayesian approach to statistics
(see Lecture 2), are just that: the degree to which a rational being ought to believe in the veracity of a
given statement. The word “ought" in the last sentence is important: probability theory, with probabilities
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interpreted as degrees of belief, is not a model of how human beings actually reason in situations of
uncertainty; rather probability theory when interpreted this way is a normative theory in that it specifies
how an idealized reasoning being, or system, ought to reason when faced with uncertainty.

There is a school of thought that argues that degrees of belief should be an individual’s own
assessment of her or his degree of belief in a statement, which are then to be updated using the probability
rules. The problem with this position is that it presupposes probability theory to be a model of human
reasoning, which we argue it is not — a position confirmed by numerous psychological experiments.
It is perhaps better to think of degrees of belief as numbers that inform one’s reasoning rather than as
numbers that describe it, and relative frequencies as numbers that characterize stochastic data generation
mechanisms. Both are probabilities and both are useful.

2.3 Likelihood
Let us assume that p(x|θ) is a probability density function (pdf) such that P (A|θ) =

∫
A p(x|θ) dx

is the probability of the statement A = x ∈ Rx, where x denotes possible data, θ the parameters that
characterize the probability model, and Rx is a finite set. If x is discrete, then both p(x|θ) and P (A|θ)
are probabilities. The likelihood function is simply the probability model p(x|θ) evaluated at the data
xO actually obtained, i.e., the function p(xO|θ). The following are examples of likelihoods.

Example 1

In 1995, CDF and DØ discovered the top quark [7, 8] at Fermilab. The DØ Collaboration
found x = D events (D = 17). For a counting experiment, the datum can be modeled using

p(x|d) = Poisson(x, d) probability to get x events

p(D|d) = Poisson(D, d) likelihood of observation D events

= dD exp(−d)/D!

We shall analyze this example in detail in Lectures 2 and 3.

Example 2

Figure 2 shows the transverse momentum spectrum of jets in pp→ jet+X events measured
by the CMS Collaboration [9]. The spectrum has K = 20 bins with total count N that was
modeled using the likelihood

p(D|p) = Multinomial(D,N, p), D = D1, · · · , DK , p = p1, · · · , pK
K∑

i=1

Di = N.

This is an example of a binned likelihood.

Exercise 6a: Show that a multi-Poisson likelihood can be written as the
product of a multinomial and a Poisson with count N

Example 3

Figure 3 shows a plot of the distance modulus versus redshift for N = 580 Type 1a super-
novae [10]. These heteroscedastic data3 {zi, xi ± σi} are modeled using the likelihood

p(D|ΩM ,ΩΛ, Q) =

N∏

i=1

Gaussian(xi, µi, σi),

3Data in which each item, xi, or group of items has a different uncertainty.
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Fig. 2: Transverse momentum spectrum of jets in pp → jet + X events measured by CMS compared with the
QCD prediction at next-to-leading order. This spectrum was used to search for evidence of contact interactions [9]
(Courtesy CMS Collaboration).
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Fig. 3: Plot of the data points (zi, xi ± σi) for 580 Type 1a supernovae [10] showing a fit of the standard cosmo-
logical model (with a cosmological constant) to these data (curve).

which is an example of an un-binned likelihood. The cosmological model is encoded in the
distance modulus function µi, which depends on the redshift zi and the matter density and
cosmological constant parameters ΩM and ΩΛ, respectively. (See Ref. [11] for an accessible
introduction to the analysis of these data.)
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Example 4

The discovery of a neutral Higgs boson in 2012 by ATLAS [12] and CMS [13] in the di-
photon final state (pp→ H → γγ) made use of an un-binned likelihood of the form,

p(x|s,m,w, b) = exp[−(s+ b)]

N∏

i=1

[sfs(xi|m,w) + bfb(xi)]

where x = di-photon masses

m = mass of boson

w = width of resonance

s = expected (i.e., mean) signal count

b = expected background count

fs = signal probability density

fb = background probability density

Exercise 6b: Show that a binned multi-Poisson
likelihood yields an un-binned likelihood of this
form as the bin widths go to zero

The likelihood function is arguably the most important quantity in a statistical analysis Because it
can be used to answer questions such as the following.

1. How do I estimate a parameter?
2. How do I quantify its accuracy?
3. How do I test an hypothesis?
4. How do I quantify the significance of a result?

Writing down the likelihood function requires:

1. identifying all that is known, e.g., the observations,
2. identifying all that is unknown, e.g., the parameters,
3. constructing a probability model for both.

Many analyses in particle physics do not use likelihood functions explicitly. However, it is worth spend-
ing time to think about them because doing so encourages a deeper reflection on what is being done, a
more systematic approach to the statistical analysis, and ultimately leads to better answers.

Being explicit about what is and is not known in an analysis problem may seem a pointless ex-
ercise; surely these things are obvious. Consider the DØ top quark discovery data [8], D = 17 events
observed with a background estimate of B = 3.8 ± 0.6 events. The uncertainty in 17 is invariably said
to be

√
17 = 4.1. Not so! The count 17 is perfectly known: it is 17. What we are uncertain about is the

mean count d, that is, the parameter of the probability model, which we take to be a Poisson distribution.
The ±4.1 must somehow be a statement not about 17 but rather about the unknown parameter d. We
shall explain what the ±4.1 means in Lecture 2.

3 Lecture 2: The Frequentist and Bayesian Approaches
In this lecture, we consider the two most important approaches to statistical inference, frequentist and
Bayesian. Both are needed to make sense of statistical inference, though this is not the dominant opinion
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in particle physics. Most particle physicists, if pressed, will say they are frequentist in their approach. The
typical reason given is that this approach is objective, whereas the Bayesian approach is not. Moreover,
they would argue, the frequentist approach is less arbitrary whereas the Bayesian approach is plagued
with arbitrariness that renders its results suspect. We wish, however, to focus on the practical, therefore,
we shall sidestep this debate and assume a pragmatic attitude to both approaches. We begin with a
description of salient features of the frequentist approach, followed by a description of the Bayesian
approach.

3.1 The Frequentist Approach
The most important principle in this approach is that enunciated by the Polish statistician Jerzy Neyman
in the 1930s, namely,

The Frequentist Principle

The goal of a frequentist analysis is to construct statements so that a fraction f ≥ p of them
are guaranteed to be true over an infinite ensemble of statements.

The fraction f is called the coverage probability, or coverage for short, and p is called the confidence
level (C.L.). A procedure which satisfies the frequentist principle is said to cover. The confidence level
as well as the coverage is a property of the ensemble of statements. Consequently, the confidence level
may change if the ensemble changes. Here is an example of the frequentist principle in action.

Example

Over the course of a long career, a doctor sees thousands of patients. For each patient he
issues one of two conclusions: “you are sick" or “you are well" depending on the results
of diagnostic measurements. Because he is a frequentist, he has devised an approach to
medicine in which although he does not know which of his conclusions were correct, he can
at least retire happy in the knowledge that he was correct at least 75% of the time!

In a seminal paper published in 1937, Neyman [14] invented the concept of the confidence interval,
a way to quantify uncertainty, that respects the frequentist principle. The confidence interval is such an
important idea, and its meaning so different from the superficially similar Bayesian concept of a credible
interval, that it is worth working through the concept in detail.

3.1.1 Confidence Intervals
The confidence interval is a concept best explained by example. Consider an experiment that observes
D events with expected (that is, mean) signal s and no background. Neyman devised a way to make
statements of the form

s ∈ [l(D), u(D)], (13)

with the a priori guarantee that at least a fraction p of them will be true, as required by the frequentist
principle. A procedure for constructing such intervals is called a Neyman construction. The frequentist
principle must hold for any ensemble of experiments, not necessarily all making the same kind of obser-
vations and statements. For simplicity, however, we shall presume the experiments to be of the same kind
and to be completely specified by a single unknown parameter s. The Neyman construction is illustrated
in Fig. 4.

The construction proceeds as follows. Choose a value of s and use some rule to find an interval
in the space of observations (or, more generally, a region), for example, the interval defined by the two
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Fig. 4: The Neyman construction. Plotted is the Cartesian product of the parameter space, with parameter s, and
the space of observations with potential observationsD. For a given value of s, the observation space is partitioned
into three disjoint intervals, such that the probability to observe a count D within the interval demarcated by the
two vertical lines is f ≥ p, where p = C.L. is the desired confidence level. The inequality is needed because, for
discrete data, it may not be possible to find an interval with f = p exactly.

vertical lines in the center of the figure, such that the probability to obtain a count in this interval is
f ≥ p, where p is the desired confidence level. We move to another value of s and repeat the procedure.
The procedure is repeated for a sufficiently dense set of points in the parameter space over a sufficiently
large range. When this is done, as illustrated in Fig. 4, the intervals of probability content f will form a
band in the Cartesian product of the parameter space and the observation space. The upper edge of this
band defines the curve u(D), while the lower edge defines the curve l(D). These curves are the product
of the Neyman construction.

For a given value of the parameter of interest s, the interval with probability content f in the space
of observations is not unique; different rules for choosing the interval will, in general, yield different
intervals. Neyman suggested choosing the interval so that the probability to obtain an observation below
or above the interval are the same. The Neyman rule yields the so-called central intervals. One virtue
of central intervals is that their boundaries can be more efficiently calculated by solving the equations,

P (x ≤ D|u) = αL,

P (x ≥ D|l) = αR, (14)

a mathematical fact that becomes clear after staring at Fig. 4 long enough.

Another rule was suggested by Feldman and Cousins [15]. For our example, the Feldman-Cousins
rule requires that the potential observations {D} be ordered in descending order, D(1), D(2), · · · , of the
likelihood ratio p(D|s)/p(D|ŝ), where ŝ is the maximum likelihood estimator (see Sec. 3.1.2) of the
parameter s. Once ordered, we compute the running sum f =

∑
j p(D(j)|s) until f equals or just

exceeds the desired confidence level p. This rules does not guarantee that the potential observations D
are contiguous, but this does not matter because we simply take the minimum element of the set {D(j)}
to be the lower bound of the interval and its maximum element to be the upper bound.

Another simple rule is the mode-centered rule: orderD in descending order of p(D|s) and proceed
as with the Feldman-Cousins rule. In principle, absent criteria for choosing a rule, there is nothing to
prevent the use of ordering rules randomly chosen for different values of s! Figure 5 compares the widths
of the intervals [l(D), u(D)] for three different ordering rules, central, Feldman-Cousins, and mode-
centered as a function of the count D. It is instructive to compare these widths with those provided

11

PRACTICAL STATISTICS FOR PARTICLE PHYSICISTS

311



by the well-known root(N) interval, l(D) = D −
√
D and u(D) = D +

√
D. Of the three sets of

intervals, the ones suggested by Neyman are the widest, the Feldman-Cousins and mode-centered ones
are of similar width, while the root(N) intervals are the shortest. So why are we going through all the
trouble of the Neyman construction? We shall return to this question shortly.

Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 

Fig. 5: Interval widths as a function of count D for four
sets of intervals.

Having completed the Neyman construc-
tion and found the curves u(D) and l(D) we
can use the latter to make statements of the form
s ∈ [l(D), u(D)]: for a given observation D,
we simply read off the interval [l(D), u(D)] from
the curves. For example, suppose in Fig. 4 that
the true value of s is represented by the horizon-
tal line that intersects the curves u(D) and l(D)
and which therefore defines the interval demar-
cated by the two vertical lines. If the observa-
tion D happens to fall in the interval to the left
of the left vertical line, or to the right of the right
vertical line, then the interval [l(D), u(D)] will
not bracket s. However, if D falls between the
two vertical lines, the interval [l(D), u(D)] will
bracket s. Moreover, by virtue of the Neyman
construction, a fraction f of the intervals [l(D), u(D)] will bracket the value of s whatever its value
happens to be, which brings us back to the question about the root(N) intervals. Figure 6 shows the
coverage probability over the parameter space of s. As expected, the three rules, Neyman’s, that of
Feldman-Cousins, and the mode-centered, satisfy the condition coverage probability ≥ confidence level
over all values of s that are possible a priori; that is, the intervals cover. However, the root(N) intervals
do not and indeed fail badly for s < 2.

Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 

Fig. 6: Interval widths as a function of count D for four
sets of intervals.

However, notice that the coverage proba-
bility of the root(N) intervals bounces around the
(68%) confidence level for vaues of s > 2. There-
fore, if we knew for sure that s > 2, it would seem
that using the root(N) intervals may not be that
bad after all. Whether it is or not depends entirely
on one’s attitude towards the frequentist principle.
Some will lift mountains and carry them to the
Moon in order to achieve exact coverage, while
others, including the author, is entirely happy with
coverage that bounces around a little.

Discussion

We may summarize the content of the Neyman
construction with a statement of the form: there is
a probability of at least p that s ∈ [l(D), u(D)].
But it would be a misreading of the statement to

presume it is about that particular interval. It is not because p, as noted, is a property of the ensem-
ble to which this statement belongs. The precise statement is this: s ∈ [l(D), u(D)] is a member of
an (infinite) ensemble of statements a fraction f ≥ p of which are true. This mathematical fact is the
principal reason why the frequentist approach is described as objective; the probability p is something
for which there seems, in principle, to be an operational definition: we just count how many statements
of the form s ∈ [l(D), u(D)] are true and divide by the total number of statements. Unfortunately, in
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the real world this procedure cannot be realized because in general we are not privy to which statements
are true and, even if we came down from a mountain with the requisite knowledge, we would need to
examine an infinite number of statements, which is impossible. Nevertheless, the Neyman construction
is a remarkable procedure that always yields exact coverage for any problem that depends on a single
unknown parameter.

Matters quickly become less tidy, however, when a probability model contains more than one
unknown parameter. In almost every particle physics experiment there is background that is usually not
known precisely. Consequently, even for the simplest experiment we must contend with at least two
parameters, the expected signal s and the expected background b, neither of which is known. Neyman
required a procedure to cover whatever the value of all the parameters be they known or unknown. This
is a very tall order, which cannot be met in general. In practice, we resort to approximations, the most
widely used of which is the profile likelihood to which we now turn.

3.1.2 The Profile Likelihood
As noted in Sec. 2.3, likelihood functions can be used to estimate the parameters on which they depend.
The method of choice to do so, in a frequentist analysis, is called maximum likelihood, a method first
used by Karl Frederick Gauss, The Prince of Mathematics, but developed into a formidable statistical
tool in the 1930s by Sir Ronald A. Fisher [16], perhaps the most influential statistician of the twentieth
century.

Fisher showed that a good way to estimate the parameters of a likelihood function is to pick the
value that maximizes it. Such estimates are called maximum likelihood estimates (MLE). In general, a
function into which data can be inserted to yield an MLE of a parameter is called a maximum likelihood
estimator. For simplicity, we shall use the same abbreviation MLE to mean both the estimate and the
estimator and we shall not be too picky about distinguishing the two. The DØ top quark discovery
example illustrates the method.

Example: Top Quark Discovery Revisited

We start by listing

the knowns
D = N,B where

N = 17 observed events

B = 3.8 estimated background events with uncertainty δB = 0.6

and the unknowns
b mean background count

s mean signal count.

Next, we construct a probability model for the data D = N,B assuming that N and B are
statistically independent. Since this is a counting experiment, we shall assume that p(x|s, b)
is a Poisson distribution with mean count s + b. In the absence of details about how the
background B was arrived at, the standard assumption is that data of the form y± δy can be
modeled with a Gaussian (or normal) density. However, we can do a bit better. Background
estimates are usually based on auxiliary experiments, either real or simulated, that define
control regions.

Suppose that the observed count in the control region is Q and the mean count is bk, where
k (ideally) is the known scale factor between the control and signal regions. We can model
these data with a Poisson distribution with count Q and mean bk. But, we are given B and
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δB rather thanQ and k, so we need a model to relate the two pairs of numbers. The simplest
model is B = Q/k and δB =

√
Q/k from which we can infer an effective count Q using

Q = (B/δB)2. What of the scale factor k? Well, since it is not given, it must be estimated.
The obvious estimate is Q/B = B/δB2. With these assumptions, our likelihood function
is

p(D|s, b) = Poisson(N, s+ b) Poisson(Q, bk), (15)

where

Q = (B/δB)2 = 41.11,

k = B/δB2 = 10.56.

The first term in Eq. (15) is the likelihood for the count N = 17, while the second term is
the likelihood for B = 3.8, or equivalently the count Q. The fact that Q is not an integer
causes no difficulty: we merely write the Poisson distribution as (bk)Q exp(−bk)/Γ(Q+1),
which permits continuation to non-integer counts Q.

The maximum likelihood estimators for s and b are found by maximizing Eq. (15), that is,
by solving the equations

∂ ln p(D|s, b)
∂s

= 0 leading to ŝ = N −B,
∂ ln p(D|s, b)

∂b
= 0 leading to b̂ = B,

as expected.

A more complete analysis would account for the uncertainty in k. One way is to intro-
duce two more control regions with observed counts V and W and mean counts v and wk,
respectively, and extend Eq. (15) with two more Poisson distributions.

The maximum likelihood method is the most widely used method for estimating parameters be-
cause it generally leads to reasonable estimates. But the method has features, or encourages practices,
which, somewhat uncharitably, we label the good, the bad, and the ugly!

– The Good

– Maximum likelihood estimators are consistent: the RMS goes to zero as more and more data
are included in the likelihood. This is an extremely important property, which basically says
it makes sense to take more data because we shall get more accurate results. One would not
knowingly use an inconsistent estimator!

– If an unbiased estimator for a parameter exists the maximum likelihood method will find it.
– Given the MLE for s, the MLE for any function y = g(s) of s is, very conveniently, just
ŷ = g(ŝ). This is a very nice practical feature which makes it possible to maximize the
likelihood using the most convenient parameterization of it and then transform back to the
parameter of interest at the end.

– The Bad (according to some!)

– In general, MLEs are biased.

Exercise 7: Show this
Hint: Taylor expand y = g(ŝ+h) about the MLE ŝ,
then consider its ensemble average.
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– The Ugly (according to some!)

– The fact that most MLEs are biased encourages the routine application of bias correction,
which can waste data and, sometimes, yield absurdities.

Here is an example of the seriously ugly.

Example

For a discrete probability distribution p(k), the moment generating function is the ensem-
ble average

G(x) =< exk >

=
∑

k

exk p(k).

For the binomial, with parameters p and n, this is

G(x) = (exp+ 1− p)n, Exercise 8a: Show this

which is useful for calculating moments

µr =
drG

dxr

∣∣∣∣
x=0

=
∑

k

kr p(k),

e.g., µ2 = (np)2 + np− np2 for the binomial distribution. Given that k events out n pass a
set of cuts, the MLE of the event selection efficiency is the obvious estimate p̂ = k/n. The
equally obvious estimate of p2 is (k/n)2. But,

< (k/n)2 > = p2 + V/n, Exercise 8b: Show this

so (k/n)2 is a biased estimate of p2 with positive bias V/n. The unbiased estimate of p2 is

k(k − 1)/[n(n− 1)], Exercise 8c: Show this

which, for a single success, i.e., k = 1, yields the sensible estimate p̂ = 1/n, but the less
than helpful one p̂2 = 0!

In order to infer a value for the parameter of interest, for example, the signal s in our 2-parameter
likelihood function in Eq. (15), the likelihood must be reduced to one involving the parameter of interest
only, here s, by somehow getting rid of all the nuisance parameters, here the background parameter b. A
nuisance parameter is simply a parameter that is not of current interest. In a strict frequentist calculation,
this reduction to the parameter of interest must be done in such a way as to respect the frequentist
principle: coverage probability ≥ confidence level. In general, this is very difficult to do exactly.

In practice, we replace all nuisance parameters by their conditional maximum likelihood esti-
mates (CMLE). The CMLE is the maximum likelihood estimate conditional on a given value of the
current parameter (or parameters) of interest. In the top discovery example, we construct an estimator of
b as a function of s, b̂(s), and replace b in the likelihood p(D|s, b) by b̂(s) to yield a function pPL(D|s)
called the profile likelihood.

Since the profile likelihood entails an approximation, namely, replacing unknown parame-
ters by their conditional estimates, it is not the likelihood but rather an approximation to it.
Consequently, the frequentist principle is not guaranteed to be satisfied exactly.
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Fig. 7: (a) Contours of the DØ top discovery likelihood and the graph of b̂(s). (b) Plot of − lnλ(17, s) versus the
expected signal s. The vertical lines show the boundaries of the approximate 68% interval.

This does not seem to be much progress. However, things are much better than they may appear because
of an important theorem proved by Wilks in 1938. If certain conditions are met, roughly that the MLEs
do not occur on the boundary of the parameter space and the likelihood becomes ever more Gaussian as
the data become more numerous — that is, in the so-called asymptotic limit, then if the true density of
x is p(x|s, b) the random number

t(x, s) = −2 lnλ(x, s), (16)

where λ(x, s) =
pPL(x|s)
pPL(x|ŝ) , (17)

has a probability density that converges to a χ2 density with one degree of freedom. More generally,
if the numerator of λ contains m free parameters the asymptotic density of t is a χ2 density with m
degrees of freedom. Therefore, we may take t(D, s) to be a χ2 variate, at least approximately, and solve
t(D, s) = n2 for s to get approximate n-standard deviation confidence intervals. In particular, if we
solve t(D, s) = 1, we obtain approximate 68% intervals. This calculation is what Minuit, and now
TMinuit, has done countless times since the 1970s! Wilks’ theorem provides the main justification for
using the profile likelihood. We again use the top discovery example to illustrate the procedure.

Example: Top Quark Discovery Revisited Again

The conditional MLE of b is found to be

b̂(s) =
g +

√
g2 + 4(1 + k)Qs

2(1 + k)
, (18)

where

g = N +Q− (1 + k)s.

The likelihood p(D|s, b) is shown in Fig. 7(a) together with the graph of b̂(s). The mode
(i.e. the peak) occurs at s = ŝ = N −B. By solving

−2 ln
pPL(17|s)

pPL(17|17− 3.8)
= 1
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Fig. 8: Plots of the cumulative distribution function (cdf), P (χ2 < t, 1), of the χ2 density for one degree of
freedom compared with the cdf P (t′ < t|s, b) for four different values of the mean signal and background, s and
b. The left plot shows that even for a mean signal or background count as low as 10, the density p(t|s, b) is already
close to p(χ2, 1) and therefore largely independent of s and b. This is true, however, only if most of the time the
maximum of the likelihood occurs away from the boundary of the parameter space. In the left plot, the signal
is estimated using ŝ = N − B, which can, in principle, be arbitrarily negative. But, if we choose to set ŝ = 0

whenever B > N in order to avoid negative signal estimates, we obtain the curves in the right plot. We see that
for small signals, p(t|s, b) still depends on the parameters.

for s we get two solutions s = 9.4 and s = 17.7. Therefore, we can make the statement
s ∈ [9.4, 17.7] at approximately 68% C.L. Figure 7(b) shows a plot of − lnλ(17, s) created
using the RooFit [17] and RooStats [18] packages.

Exercise 9: Verify this interval using the RooFit/RooStats package

Intervals constructed this way are not guaranteed to satisfy the frequentist principle. In
practice, however, their coverage is very good for the typical probability models used in
particle physics, even for modest amounts of data. This is illustrated in Fig. 8, which shows
how rapidly the density of t(x, s) converges to a χ2 density for the probability distribution
p(x, y|s, b) = Poisson(x|s + b)Poisson(y|b)4. The figure also shows what happens if we
impose the restriction ŝ ≥ 0, that is, we forbid negative signal estimates.

3.1.3 Hypothesis Tests
It is hardly possible in experimental particle physics to avoid the testing of hypotheses, testing that
invariably leads to decisions. For example, electron identification entails hypothesis testing; given data
D we ask: is this particle an isolated electron or is it not an isolated electron? Then we decide whether or
not it is and proceed on the basis of the decision that has been made. In the discovery of the Higgs boson,
we had to test whether, given the data available in early summer 2012, the Standard Model without
a Higgs boson, a somewhat ill-founded background-only model, or the Standard Model with a Higgs
boson, the background + signal model, was the preferred hypothesis. We decided that the latter model

4It was the difficulty of extracting information from this distribution that compelled the author (against his will) to repair
his parlous knowledge of statistics [19]!
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was preferred and announced the discovery of a new boson. Given the ubiquity of hypothesis testing, it
is important to have a grasp of the methods that have been invented to implement it.

One method was due to Fisher [16], another was invented by Neyman, and a third (Bayesian)
method was proposed by Sir Harold Jeffreys, all around the same time. Today, we tend to merge the
approaches of Fisher and Neyman, and we hardly ever use the method of Jeffreys even though in several
respects the method of Jeffreys and their modern variants are arguably more natural. In particle physics,
we regard our Fisher/Neyman hybrid as sacrosanct, witness the near-religious adherence to the 5σ dis-
covery rule. However, the pioneers disagreed strongly with each other about how to test hypotheses,
which suggests that the topic is considerably more subtle than it seems. We first describe the method
of Fisher, then follow with a description of the method of Neyman. For concreteness, we consider the
problem of deciding between a background-only model and a background + signal model.

3.1.3.1 Fisher’s Approach

p(x | H
0
)

x x
0

Fig. 9: The p-value is the tail-probability, P (x >

x0|H0), calculated from the probability density under
the null hypothesis, H0. Consequently, the probabil-
ity density of the p-value under the null hypothesis is
Uniform(x, 1).

In Fisher’s approach, we construct a null hypoth-
esis, often denoted by H0, and reject it should
some measure be judged small enough to cast
doubt on the validity of this hypothesis. In our
example, the null hypothesis is the background-
only model, for example, the SM without a Higgs
boson. The measure is called a p-value and is de-
fined by

p-value(x0) = P (x > x0|H0), (19)

where x is a statistic designed so that large values
indicate departure from the null hypothesis. This
is illustrated in Fig. 9, which shows the location
of the observed value x0 of x. The p-value is the probability that x could have been higher than the
x actually observed. It is argued that a small p-value implies that either the null hypothesis is false
or something rare has occurred. If the p-value is extremely small, say ∼ 3 × 10−7, then of the two
possibilities the most common response is to presume the null to be false. If we apply this method to the
DØ top quark discovery data, and neglect the uncertainty in null hypothesis, we find

p-value =

∞∑

D=17

Poisson(D, 3.8) = 5.7× 10−7.

In order to report a more intuitive number, the common practice is to map the p-value to the Z scale
defined by

Z =
√

2 erf−1(1− 2p-value). (20)

This is the number of Gaussian standard deviations away from the mean5. A p-value of 5.7 × 10−7

corresponds to a Z of 4.9σ. The Z-value can be calculated using the Root function

Z = -TMath::NormQuantile(p-value).

3.1.3.2 Neyman’s Approach

5erf(x) = 1√
π

∫ x
−x exp(−t2) dt is the error funtion.
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p(x | H1)
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x!

Alternative hypothesis 

Fig. 10: Distribution of a test statistic x for two hypothe-
ses, the null H0 and the alternative H1. In Neyman’s
approach to testing, α = P (x > xα|H0) is a fixed proba-
bility called the significance of the test, which for a given
class of experiments corresponds the threshold xα. The
hypothesis H0 is rejected if x > xα.

In Neyman’s approach two hypotheses are consid-
ered, the null hypothesisH0 and an alternative hy-
pothesis H1. This is illustrated in Fig. 10. In our
example, the null is the same as before but the al-
ternative hypothesis is the SM with a Higgs boson.
Again, one generally chooses x so that large val-
ues would cast doubt on the validity of H0. How-
ever, the Neyman test is specifically designed to
respect the frequentist principle, which is done as
follows. A fixed probability α is chosen, which
corresponds to some threshold value xα defined
by

α = P (x > xα|H0), (21)

called the significance (or size) of the test. Should the observed value x0 > xα, or equivalently, p-
value(x0) < α, the hypothesis H0 is rejected in favor of the alternative. In particle physics, in addition
to applying the Neyman hypothesis test, we also report the p-value. This is sensible because there is a
more information in the p-value than merely reporting the fact that a null hypothesis was rejected at a
significance level of α.

The Neyman method satisfies the frequentist principle by construction. Since the significance of
the test is fixed, α is the relative frequency with which true null hypotheses would be rejected and is
called the Type I error rate.

1 

x

 

x!

p(x | H0 ) p(x | H1)

Fig. 11: See Fig. 10 for details. Unlike the case in Fig. 10,
the two hypotheses H0 and H1 are not that different. It is
then not clear whether it makes practical sense to reject
H0 when x > xα only to replace it with an hypothesis
H1 that is not much better.

However, since we have specified an alter-
native hypothesis there is more that can be said.
Figure 10 shows that we can also calculate

β = P (x ≤ xα|H1), (22)

which is the relative frequency with which we
would reject the hypothesis H1 if it is true. This
mistake is called a Type II error. The quantity
1−β is called the power of the test and is the rel-
ative frequency with which we would accept the
hypothesis H1 if it is true. Obviously, for a given
α we want to maximize the power. Indeed, this is
the basis of the Neyman-Pearson lemma (see for
example Ref. [2]), which asserts that given two

simple hypotheses — that is, hypotheses in which all parameters have well-defined values — the optimal
statistic t to use in the hypothesis test is the likelihood ratio t = p(x|H1)/p(x|H0). Maximizing the
power seems sensible. Consider Fig. 11. The significance of the test in this figure is the same as that in
Fig. 10, so the Type I error rate is identical. However, the Type II error rate is much greater in Fig. 11
than in Fig. 10, that is, the power of the test is considerably weaker in the former. In that case, there may
be no compelling reason to reject the null since the alternative is not that much better. This insight was
one source of Neyman’s disagreement with Fisher. Neyman objected to possibility that one might reject a
null hypothesis regardless of whether it made sense to do so. Neyman insisted that the task is always one
of deciding between competing hypotheses. Fisher’s counter argument was that an alternative hypothesis
may not be available, but we may nonetheless wish to know whether the only hypothesis that is available
is worth keeping. As we shall see, the Bayesian approach also requires an alternative, in agreement with
Neyman, but in a way that neither he nor Fisher agreed with!
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We have assumed that the hypotheses H0 and H1 are simple, that is, fully specified. Unfortu-
nately, most of the hypotheses that arise in realistic particle physics analyses are not of this kind. In the
Higgs boson discovery analyses by ATLAS and CMS the probability models depend on many nuisance
parameters for which only estimates are available. Consequently, neither the background-only nor the
background + signal hypotheses are fully specified. Such hypotheses are called compound hypotheses.
In order to illustrate how hypothesis testing proceeds in this case, we again turn again to the top discovery
example.

Example

As we saw in Sec. 3.1.2, the standard way to handle nuisance parameters in the frequen-
tist approach is to replace them by their conditional MLEs and thereby reduce the likeli-
hood function to the profile likelihood. In the top discovery example, we obtain a function
pPL(D|s) that depends on the single parameter, s. We now treat this function as if it were
a likelihood and invoke both the Neyman-Pearson lemma, which suggests the use of likeli-
hood ratios, and Wilks’ theorem to motivate the use of the function t(x, s) given in Eq. (17)
to distinguish between two hypotheses: the hypothesis H1 in which s = ŝ = N − B and
the hypothesis H0 in which s 6= ŝ, for example, the background-only hypothesis s = 0. In
the context of testing, t(x, s) is called a test statistic, which, unlike a statistic as we have
defined it (see Sec. 2.1), usually depends on at least one unknown parameter.

In principle, the next step is the computationally arduous task of simulating the distribution
of the statistic t(x, s). The task is arduous because a priori the probability density p(t|s, b)
can depend on all the parameters that exist in the original likelihood. If this is really the
case, then after all this effort we seem to have achieved a pyrrhic victory! But, this is where
Wilks’ theorem saves the day, at least approximately. We can avoid the burden of simulating
t(x, s) because the latter is approximately a χ2 variate.

Using N = 17 and s = 0, we find t0 = t(N = 17, s = 0) = 4.6. According to the results
shown in Fig. (7)(a), N = 17 may can be considered “a lot of data"; therefore, we may use
t0 to implement a hypothesis test by comparing t0 with a fixed value tα corresponding to the
significance level α of the test.

4 Lecture 3: The Bayesian Approach
In this lecture, we introduce the Bayesian approach to inference starting with a description of its salient
features and ending with a detailed example, again using the top quark discovery data from DØ.

The main point to be understood about the Bayesian approach is that it is merely applied proba-
bility theory (see Sec. 2.2). A method is Bayesian if

– it is based on the degree of belief interpretation of probability and
– it uses Bayes theorem

p(θ, ω|D) =
p(D|θ, ω)π(θ, ω)

p(D)
, (23)

where

D = observed data,

θ = parameters of interest,

ω = nuisance parameters,

p(θ, ω|D) = posterior density,

π(θ, ω) = prior density (or prior for short).
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for all inferences. The result of a Bayesian inference is the posterior density p(θ, ω|D from which, if
desired, various summaries can be extracted. The parameters can be discrete or continuous and nuisance
parameters are eliminated by marginalization,

p(θ|D) =

∫
p(θ, ω|D) dω, (24)

∝
∫
p(D|θ, ω)π(θ, ω) dω.

The function π(θ, ω), called the prior, encodes whatever information we have about the parameters θ
and ω independently of the data D. A key feature of the Bayesian approach is recursion; the use of the
posterior density p(θ, ω|D) or one, or more, of its marginals as the prior in a subsequent analysis.

These simple rules yield an extremely powerful and general inference model. Why then is the
Bayesian approach not more widely used in particle physics? The answer is partly historical: the fre-
quentist approach was dominant at the dawn of particle physics. It is also partly the widespread per-
ception that the Bayesian approach is too subjective to be useful for scientific work. However, there is
published evidence that this view is mistaken, witness the success of Bayesian methods in high-profile
analyses in particle physics such as the discovery of single top quark production at the Tevatron [20,21].

4.1 Model Selection
Conceptually, hypothesis testing in the Bayesian approach (also called model selection) proceeds exactly
the same way as any other Bayesian calculation: we compute the posterior density,

p(θ, ω,H|D) =
p(D|θ, ω,H)π(θ, ω,H)

p(D)
, (25)

and marginalize it with respect to all parameters except the ones that label the hypotheses or models, H ,

p(H|D) =

∫
p(θ, ω,H|D) dθ dω. (26)

Equation (26) is the probability of hypothesis H given the observed data D. In principle, the parameters
ω could also depend on H . For example, suppose that H labels different parton distribution function
(PDF) models, say CT10, MSTW, and NNPDF, then ω would indeed depend on the PDF model and
should be written as ωH .

It is usually more convenient to arrive at the probability p(H|D) in stages.

1. Factorize the prior in the most convenient form,

π(θ, ωH , H) = π(θ, ωH |H)π(H),

= π(θ|ωH , H)π(ωH |H)π(H), (27)

or

= π(ωH |θ,H)π(θ|H)π(H). (28)

Often, we can assume that the parameters of interest θ are independent, a priori, of both the
nuisance parameters ωH and the model label H , in which case we can write, π(θ, ωH , H) =
π(θ)π(ωH |H)π(H).

2. Then, for each hypothesis, H , compute the function

p(D|H) =

∫
p(D|θ, ωH , H)π(θ, ω|H) dθ dω. (29)
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3. Then, compute the probability of each hypothesis,

p(H|D) =
p(D|H)π(H)∑
H p(D|H)π(H)

. (30)

Clearly, in order to compute p(H|D) it is necessary to specify the priors π(θ, ω|H) and π(H). With
some effort, it is possible to arrive at an acceptable form for π(θ, ω|H), however, it is highly unlikely
that consensus could ever be reached on the discrete prior π(H). At best, one may be able to adopt a
convention. For example, if by convention two hypotheses H0 and H1 are to be regarded as equally
likely, a priori, then it would make sense to assign π(H0) = π(H1) = 0.5.

One way to circumvent the specification of the prior π(H) is to compare the probabilities,

p(H1|D)

p(H0|D)
=

[
p(D|H1)

p(D|H0

]
π(H1)

π(H0)
. (31)

and use only the term in brackets, called the global Bayes factor, B10, as a way to compare hypotheses.
The Bayes factor specifies by how much the relative probabilities of two hypotheses changes as a result of
incorporating new data, D. The word global indicates that we have marginalized over all the parameters
of the two models. The local Bayes factor, B10(θ) is defined by

B10(θ) =
p(D|θ,H1)

p(D|H0)
, (32)

where,

p(D|θ,H1) ≡
∫
p(D|θ, ωH1 , H1)π(ωH1 |H1) dωH1 , (33)

are the marginal or integrated likelihoods in which we have assumed the a priori independence of θ
and ωH1 . We have further assumed that the marginal likelihood H0 is independent of θ, which is a very
common situation. For example, θ could be the expected signal count s, while ωH1 = ω could be the
expected background b. In this case, the hypothesis H0 is a special case of H1, namely, it is the same as
H1 with s = 0. An hypothesis that is a special case of another is said to be nested in the more general
hypothesis. The Bayesian example, discussed below, will make this clearer. There is a subtlety that may
be missed: because of the way we have defined p(D|θ,H), we need to multiply p(D|θ,H) by the prior
π(θ) and then integrate with respect to θ in order to calculate p(D|H).

4.1.1 A Word About Priors
Constructing a prior for nuisance parameters is generally neither controversial (for most parameters) nor
problematic. Such difficulties as do arise occur when the priors must, of necessity, depend on expert
judgement. For example, one theorist may insist that a uniform prior within a finite interval is a reason-
able prior for the factorization scale in a QCD calculation, while in the expert judgement of another the
interval should be twice as large. Clearly, in this case, there is no getting around the fact that the prior
for this parameter is unavoidably subjective. However, once a choice is made, a prior π(ωH |H) that
integrates to one can be constructed.

The Achilles heal of the Bayesian approach is the need to specify the prior π(θ), for the parame-
ters of interest, at the start of the inference chain when we know almost nothing about these parameters.
Careless specification of this prior can yield results that are unreliable or even nonsensical. The manda-
tory requirement is that the posterior density be proper, that is integrate to unity. Ideally, the same should
hold for priors. A very extensive literature exists on the topic of prior specification when the available in-
formation is extremely limited. However, a discussion of this topic is beyond the scope of these lectures;
but, we shall make a few remarks.
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For model selection, we need to proceed with caution because Bayes factor are sensitive to the
choice of priors and therefore less robust than posterior densities. Suppose that the prior π(θ) = Cf(θ),
where C is a normalization constant. The global Bayes factor for the two hypotheses H1 and H0 can be
written as

B10 = C

∫
p(D|θ,H1) f(θ) dθ

p(D|H0)
. (34)

Therefore, if the constant C is ill defined, typically because
∫
f(θ) dθ = ∞, the Bayes factor will

likewise be ill defined. For this reason, it is generally recommended that an improper prior not be used
for parameters θ that occur only in one hypothesis, here H1. However, for parameters that are common
to all hypotheses, it is permissible to use improper priors because the ill defined constant cancels in the
Bayes factor.

The discussion so far has been somewhat abstract. The next section therefore works through a
detailed example of a possible Bayesian analysis of the DØ top discovery data.

4.2 The Top Quark Discovery: A Bayesian Analysis

s
0 10 20 30

) 1
p(

s|
17

, H

0

0.01

0.02

0.03

0.04

Fig. 12: Posterior density computed for DØ top quark
discovery data. The shaded area is the 68% central cred-
ible interval.

In this section we shall perform the following cal-
culations as a way to illustrate a typical Bayesian
analysis,

1. compute the posterior density p(s|D),
2. compute a 68% credible interval [l(D), u(D)],

and
3. compute the global Bayes factor B10 =
p(D|H1)/p(D|H0).

Probability model
The first step in any serious statistical analysis
is to think deeply about what has been done in
the physics analysis; for example, to trace in de-
tail the steps that led to the background estimates,
determine the independent systematic effects and
identify explicitly what is known about them. Al-
though, by tradition, we tend to think of poten-
tial data x separately from the parameters s and b,
it should be recognized that this is done for con-
venience. The full probability model is the joint
probability

p(x, s, b|I),

which, as is true of all probability models, is conditional on the information and assumptions, I , that
define the abstract space Ω (see Sec. 2.2). In these lectures, we have omitted the conditioning data I , and
will continue to do so here, but it should not be forgotten that it is always present and may differ from
one probability model to another.

The full probability model p(x, s, b) can be factorized is several ways, all of which are mathemat-
ically valid. However, we find it convenient to factorize the model in the following way

p(x, s, b) = p(x|s, b)π(s, b), (35)
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where we have introduced the symbol π in order to highlight the distinction we choose to make between
this part of the model and the remainder. We are entirely free to decide how much of the model we
place in p(x|s, b) and how much in π(s, b); what matters is the form of the full model p(x, s, b). In
the frequentist analysis of the top quark discovery data, we took N and B to be the data D. We did
so because in the frequentist approach, the function π(s, b) does not exist and consequently we have no
choice but to include everything in the function p(x|s, b). One virtue of a Bayesian perspective is that
we are not bound by this stricture. To make the point explicitily, we take the probability distribution,
p(x|s, b), to be

p(x|s, b) = Poisson(x, s+ b). (36)

The interpretation of p(x|s, b) is clear: it is the probability to observe x events given that the mean event
count is s + b. What does π(s, b) represent? This function is the prior that encodes what we know, or
assume, about the mean background and signal independently of the potential observations x. The prior
π(s, b) can be factored in two ways,

π(s, b) = π(s|b)π(b),

= π(b|s)π(s), (37)

both of which accord with the probability rules. The factorizations remind us that the parameters s and
b may not be probabilistically independent. However, we shall assume that they are, at least at this stage
of the analysis, in which case it is permissible to write,

π(s, b) = π(s)π(b). (38)

We first consider the background prior π(b) and ask: what do we know about the background? We
know the count Q in the control region and we have an estimate of the control region to signal region
scale factor k. The likelihood for Q is taken to be

p(Q|k, b) = Poisson(Q, kb), (39)

from which, together with a prior π(k, b), we can compute the posterior density

p(b|Q, k) = p(Q|k, b)π(k, b)/p(Q). (40)

As usual, we factorize the prior, π(k, b) = π(k|b)π0(b), where we have introduced the subscript 0 to
distinguish π0(b) from the background prior associated with Eq. (36). Then, we consider the separate
factors π0(b) and π(k|b).

What do we know about b at this stage? Clearly, b ≥ 0. But, that is all we know apart from
the background likelihood, Eq. (39). Today, after a century of argument and discussion, the consensus
amongst statisticians is that there is no unique way to represent such vague information. However, well
founded ways to construct such priors are available, see for example Ref. [22] and references therein; but
for simplicity we take the prior π0(b) = 1, that is, the flat prior. If the uncertainty in k can be neglected,
the (proper!) prior for k is π(k|b) = δ(k − Q/B), which amounts to replacing k in Eq. (40) by Q/B.
When the dust settles, we find

p(b|Q, k) = Gamma(kb, 1, Q+ 1) =
e−kb(kb)Q

Γ(Q+ 1)
, (41)

for the posterior density of b, which can serve as the prior π(b) associated with Eq. (36).

By construction, p(x, s, b) is identical in form to the likelihood in Eq. (15); we have simply availed
ourselves of the freedom to factorize p(x, s, b) as we wish and therefore to reinterpret the factors. This
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freedom is useful because it makes it possible to keep the likelihood simple while relegating the com-
plexity to the prior. This may not seem, at first, to be terribly helpful; after all, we arrived at the same
mathematical form as Eq. (15). However, the complexity can be substantially mitigated through the nu-
merical treatment of the prior, as discussed at the end of the next section. The likelihood, as we have
conceptualized the problem, is given by

p(D|s, b) =
e−(s+b)(s+ b)D

D!
, (42)

where D = 17 events.

The final ingredient is the prior π(s). At this stage, all we know is that s ≥ 0. Again, there is no
unique way to specify π(s), though as noted there are well founded methods to construct it. We shall
variously assume either the improper prior π(s) = 1 or the proper prior π(s) = δ(s− 14).

Marginal likelihood
After this somewhat discursive discussion of the probability model, we have done the hard part: building
the full probability model. Hereafter, the rest of the Bayesian analysis is mere computation.

It is convenient to eliminate the nuisance parameter b,

p(D|s,H1) =

∫ ∞

0
p(D|s, b)π(b)d(kb),

=
1

Q
(1− x)2

N∑

r=0

Beta(x, r + 1, Q) Poisson(N − r|s), (43)

where x = 1/(1 + k),

Exercise 10: Show this

and thereby arrive at the marginal likelihood p(D|s,H1). This example, the Poisson-gamma model is
particularly simple and lends itself to exact calculation. However, the complexity rapidly increases as
the prior becomes more and more complicated. In the probability model that is used in the Higgs boson
analyses at the LHC, the part we would consider the prior, π(µ,mH , ω), is of enormous complexity.
However, the part that we would call the likelihood, p(D|µ,mH , ω), is relatively simple. The parame-
ter µ denotes one or more signal strengths — the ratio of the cross section times branching fraction to
that predicted by the Standard Model (SM), and mH is the Higgs boson mass. The parameter ω repre-
sent the expected (and therefore unknown) SM signal predictions and the expected backgrounds. When
faced with such complexity, it proves useful to use a hierarchical Bayesian model. Briefly, the prior
π(µ,mH , ω) is written as

π(µ,mH , ω) = π(ω|µ,mH)π(µ,mH),

where π(ω|µ,mH) =

∫
π(ω|φ, µ,mH)π(φ|µ,mH) dφ.

The prior π(φ|µ,mH) models the lowest level systematic parameters that define quantities such as the jet
energy scale, lepton efficiencies, trigger efficiencies, and the parton distribution functions. It is usually
straightforward to sample from this prior. Moreover, the function π(ω|φ, µ,mH) is nothing more than
prior for the expected signal and background parameters ω, which through estimates ω̂ depend implicitly
on the parameters φ. The prior π(ω|φ, µ,mH) is generally quite simple; for binned data it is just a
product of gamma (or gamma mixture) densities; more generally, it is a product of gamma, Gaussian, or
log-normal densities. Consequently, the marginalizations over ω can be done in two steps: first generate
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a point φi from π(φ|µ,mH), then generate a point ωi from π(ω|φi, µ,mH). In that way, the enormous
complexity of explicitly modeling the dependence of ω on φ is avoided, with the added benefit that all,
possibly very complicated, correlations (in principle, to all orders) are accounted for automatically. The
marginal likelihood can be approximated by

p(D|µ,mH) ≈ 1

M

M∑

m=1

p(D|µ,mH , ωm). (44)

What we have just described is merely integration via a Monte Carlo approximation. The point is that
the sampling required to compute pi(D|µ,mH) can be run in M parallel analysis jobs, each of which is
given a different random number seed in order to sample a single pair of points φm and ωm. The results
of such a Bayesian analysis would be the likelihood p(D|µ,mH , ω and an ensemble of points {ωm}.

Posterior density
Given the marginal likelihood p(D|s,H1) and a prior π(s) we can compute the posterior density,

p(s|D,H1) = p(D|s,H1)π(s)/p(D|H1), (45)

where,

p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Again, for simplicity, we assume a flat prior for the signal, π(s) = 1 and find

p(s|D,H1) =

∑N
r=0 Beta(x, r + 1, Q) Poisson(N − r|s)

∑N
r=0 Beta(x, r + 1, Q)

, (46)

Exercise 11: Derive an expression for p(s|D,H1) assuming
π(s) = Gamma(qs, 1,M + 1) where q and M are constants

from which we can compute the central credible interval [9.9, 18.4] for s at 68% C.L., which is shown
in Fig. 12.

4.2.1 Bayes factor
As noted, the number p(D|H1) can be used to perform a hypothesis test. But, as argued above, we need
to use a proper prior for the signal, that is, a prior that integrates to one. The simplest such prior is a
δ-function, e.g., π(s) = δ(s− 14). Using this prior, we find

p(D|H1) = p(D|14, H1) = 9.28× 10−2.

Since the background-only hypothesis H0 is nested in H1, and defined by s = 0, the number p(D|H0)
is given by p(D|0, H1), which yields

p(D|H0) = p(D|0, H1) = 3.86× 10−6.

We conclude that the hypothesis s = 14 is favored over s = 0 by a Bayes factor of 24,000. In order
to avoid large numbers, the Bayes factor can be mapped into a (signed) measure akin to the frequentist
“n-sigma" [23],

Z = sign(lnB10)
√

2| lnB10|, (47)

which gives Z = 4.5. Negative values of Z correspond to hypotheses that are excluded.
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Summary
These lectures gave an overview of the main ideas of statistical inference in a form directly applicable
to statistical analysis in particle physics. Two widely used approaches were covered, frequentist and
Bayesian. While we tried to focus on the practical, our hope is that we have given just enough commen-
tary about the topics to place them in some intellectual context. We hope that the take away message is
that is it worth learning a bit more about statistics if only to avoid fruitless arguments and discussions
with co-workers. Statistics is not physics. Nature is the ultimate arbiter of which physics ideas are “cor-
rect". Unfortunately, the ultimate arbiter of statistical ideas, apart from the mundanity of mathematical
correctness, is intellectual taste. Therefore, the other take home message is

“Have the courage to you use your own understanding"

Immanuel Kant
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