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Abstract

These proceedings are of interest to staff and students in accelerator laboratories, university departments and
companies working in or having an interest in the field of new acceleration techniques. Following introductory
lectures on plasma and laser physics, the course covers the different components of a plasma wake accelerator
and plasma beam systems. Topical seminars and an overview about alternative new techniques like dielectric
accelerators are included. Lectures on the experimental studies and their latest results, on diagnostic tools and
state of the art wake acceleration facilities, both present and planned, complement the theoretical part.
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Preface

The CERN Accelerator School – CAS – has the mission to preserve and disseminate the knowledge accumulated
at CERN and elsewhere on particle accelerators and storage rings. For topics on general accelerator physics this
is achieved by a series of lectures presented in the introductory and advanced level schools, which run in alternate
years. In addition certain topics, relevant for the field, are treated in special schools to follow the technological
developments and present details of advanced subjects.

Over the past decades, and in the true sense of the word since the invention of the very first particle accelerator
by Cockcroft and Walton, progress in high–energy physics has always been the driving force for the development
of particle accelerators. New scientific findings went hand in hand with the continuous effort to increase the per-
formance of the particle accelerators. We have learned to apply better and better these techniques and include
them in our accelerators and storage rings, and the harvest is impressive: the standard model that proves its solid-
ity more than ever, including the recent discovery of the Higgs particle at LHC in 2012.

Meanwhile many interesting questions of high–energy physics lie beyond the standard model. Keywords are
dark matter and dark energy and a big step forward in accelerator technology is needed to address these issues.
For this purpose at CERN and other places we are studying already now the next generation colliders and it is no
surprise that new methods to achieve an efficient and more compact way to gain the required acceleration gradient
are being studied in many places: plasma wake based concepts show gradients of GeV/m, an impressive step
forward by several orders of magnitude compared to our standard acceleration techniques.

Without doubt these new techniques deserve support and in several laboratories worldwide the plasma wake
field as a new acceleration concept is being studied and developed. With this in mind it was only natural to or-
ganise a lecture series, dedicated to the special topic of plasma wake acceleration, in order to bring the world
wide expertise in this rapidly developing field together and to train young people. In the present proceedings a
number of lectures on laser and plasma physics are introducing the field as well as an overview about conventional
accelerators and their limitations. They are followed by more advanced courses which cover a large number of
aspects in plasma wake acceleration schemes: the creation of the plasma by high–power lasers or particle beams,
the description of the plasma creation process in simulations and the characteristics of the accelerated particle
beams including results from latest achievements. Lectures about beam diagnostics, applications of plasma accel-
erated beams and topical seminars complete the program. We are convinced that the present status of the topic is
presented in an adequate manner and we hope that these proceedings will help newcomers as well as experienced
colleagues to find some useful and interesting information.

We would like to take the opportunity to thank all lecturers for the enormous task of preparing, presenting,
and writing up their topics, for the effort that they did, the time that they spent and the motivation to share their
knowledge with the younger colleagues.

Very special thanks must go to the enthusiasm and positive feedback of the participants, the students that
attended the school in an unexpectedly large number, for their motivation to get involved in this new topic.
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As always, the backing of the CERN management, the guidance of the CAS Advisory and Programme Com-
mittees, and the attention to detail of the CAS secretary, Barbara Strasser ensured that the school was held under
optimum conditions.

Finally, we thank the CERN E-Publishing Service for their dedication and commitment to the production of
this document.

Bernhard Holzer,
Organiser and Chair of the CERN Accelerator School on Plasma Wake Acceleration
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Plasma Wake Accelerators: Introduction and Historical Overview

V. Malka
Laboratoire d’Optique Appliquée, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université
Paris-Saclay, Palaiseau, France

Abstract
Fundamental questions on the nature of matter and energy have found answers
thanks to the use of particle accelerators. Societal applications, such as cancer
treatment or cancer imaging, illustrate the impact of accelerators in our current
life. Today, accelerators use metallic cavities that sustain electric fields with
values limited to about 100 MV/m. Because of their ability to support ex-
treme accelerating gradients, the plasma medium has recently been proposed
for future cavity-like accelerating structures. This contribution highlights the
tremendous evolution of plasma accelerators driven by either laser or particle
beams that allow the production of high quality particle beams with a degree
of tunability and a set of parameters that make them very pertinent for many
applications.

Keywords
Accelerator; laser; plasma; laser plasma accelerator; laser wakefield.

1 Introduction
This article corresponds to the introductory lecture given at the first CAS-CERN Accelerator School on
Plasma Wake Acceleration on 21–28 November, 2014. Having this school dedicated to Plasma Acceler-
ators at CERN, where an important part of the story of high energy physics has been written and where
the worlds larger accelerators and the brighter and more energetic particle beams are produced, repre-
sents in itself the realization of a dream that shows the maturity and the vitality of the field. Having an
unexpected level of participation shows also the dynamism of this field of research with an impressive
growth of groups in Europe and all over the world. Accelerator physics started almost 130 years ago with
the discovery of the cathodic tube. Since then, accelerators have gained in efficiency and in performance
delivering energetic particle beams with record energy and luminosity values. During the last century,
they have been developed for fundamental research, for example, for producing intense picosecond X-
ray pulses in synchrotron machines, or more recently even shorter, few femtosecond X-ray pulses in free
electron laser machines. Such short X-ray pulses are crucial for the study of ultra-fast phenomena, for
example in biology, to follow the DNA structure evolution, or in material science to follow the evolution
of crystals. Higher energy accelerators are crucial to answering important questions regarding the ori-
gins of the universe, of dark energy, of the number of space dimensions, etc. The largest one available,
the Large Hadron Collider, has for example confirmed two years ago the existence of the Higgs boson.
Figure 1 illustrates few of the many fundamental discoveries that have been made this last century and
have permitted matter from 10−10 to 10−20 m spatial resolution to be probed.

Moreover, as illustrated in Fig.2, with an annual market of more than a few US billions of dollars,
accelerators are used today in many fields such as cancer therapy, ion implantation, electron cutting and
melting, and non-destructive inspection, etc.

The accelerating field in superconducting radio-frequency cavities is, due to electrical breakdown
of the metallic cavity, limited to about 100 MV/m. It is for this reason that an increase of the particle
energy requires an increase of the acceleration length. In the 1950s, Budker and Veksler [1] proposed
using plasma collective fields to accelerate charged particles more compactly. In the pioneering theo-
retical work performed in 1979, Tajima and Dawson [2] showed how an intense laser pulse can excite

Published by CERN in the Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva,
Switzerland, 23–29 November 2014, edited by B. Holzer, CERN-2016-001 (CERN, Geneva, 2016)
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Fig. 1: Evolution of accelerators and their main related discoveries

a wake of plasma oscillations through the non-linear ponderomotive force associated to the laser pulse.
In their proposed scheme, relativistic electrons were injected externally and were accelerated in the very
high GV/m electric field sustained by relativistic plasma waves. In this early article [2], the authors
proposed two schemes: the laser beat wave and the laser wakefield. Several experiments were performed
at the beginning of the 1990s following on from their ideas, and injected few MV/m electrons have
gained energy in GV/m accelerating gradients using either the beat wave or the laser wakefield scheme.
In 1994, at the Rutherford Appleton Laboratory, using the 40 TW powerful Vulcan Laser, hundreds of
GV/m accelerating gradients have been generated and used to trap electrons from the plasma itself, and
to accelerate them [3] to few tens of MV/m over only 1 mm distance. TV/m accelerating gradients
have since been demonstrated in the non-linear regime in the forced laser wakefield scheme. Figure 3
illustrates the compactness of a plasma accelerating cavity.

Fig. 2: Market of industrial accelerators and their main societal applications

In 1985, Chen and Dawson [4] proposed to use a bunched electron beam to drive plasma wakes
with, again, GV/m accelerating gradients. Soon after, the first experiments on Particle WakeField
Acceleration (PWFA) were achieved using low energy electron beam drivers. In 1996, T. Katsouleas and
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C. Joshi proposed to use an ultra-relativistic electron beam delivered by the SLAC linac to drive GV/m
accelerating fields. In 2009, the possibility of driving plasma-wakefield acceleration with a proton bunch
was proposed [5], and the authors demonstrated through numerical simulations that TeV energy levels
could be reached in a single accelerating stage driven by a TeV proton bunch.

Fig. 3: Compactness of plasma ‘cavity’. Left: Radiofrequency cavity. Right: Non-linear laser plasma wakefield.
The laser pulse in yellow propagates from left to right, the iso-electronic density is shown in blue and the electron
bunch in red.

In both cases, the accelerating gradient results from the rapid electron plasma oscillation that fol-
lows the electronic perturbation. If, in an initially uniform and non-collisional plasma a slab of electrons
are displaced from their equilibrium position, the restoring force which is applied to this electron slab
drives them towards the equilibrium position. For the time scale corresponding to the electrons motion,
the motion of the ions can be neglected because of inertia. The typical frequency of electron oscillations
around the equilibrium position is called the electron plasma frequency ωpe:

ωpe =

√
nee2

meε0
, (1)

where ne is the unperturbed electron density.

If ωpe < ω0 (where ω0 is the laser frequency) then the characteristic time scale of the plasma is
longer than the optical period of the incoming radiation. The medium cannot stop the propagation of the
electromagnetic wave. The medium is then transparent and it is called ‘under-dense’. When ωpe > ω0

then the characteristic time scale of the electrons is fast enough to adapt to the incoming wave and to
reflect totally or partially the radiation, and the medium is called ‘over-dense’.

These two domains are separated at frequency ω0, which corresponds to the critical density,
nc = ω2

0meε0/e
2. For a wavelength λ0 = 1µm, one obtains nc = 1.1×1021 cm−3. The typical range of

electron densities of laser plasma accelerators with current laser technology, is [1017 cm−3−1020 cm−3].

In a uniform ion layer, the density change δn for a periodic sinusoidal perturbation of the electron
plasma density is written

δn = δne sin(kpz − ωpt), (2)

where ωp and kp are the angular frequency and the wave number of the plasma wave.

This density change leads to a perturbation of the electric field δ ~E via the Poisson equation:

~∇δ ~E = −δn e
ε0

. (3)

3
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This gives

δ ~E(z, t) =
δne e

kpε0
cos(kpz − ωpt)~ez. (4)

The electric field associated to the relativistic plasma wave, i.e. with a phase velocity close to the
speed of light vp = ωp/kp ∼ c can be described by

δ ~E(z, t) = E0
δne
ne

cos(kpz − ωpt)~ez, (5)

where E0 = mecωpe/e.

In the linear case, as shown in Fig. 4, the relative density perturbation is much smaller than one,
and the density perturbation with the electric field has a sinusoidal profile. Note that the electric field is
dephased by−π/4 with respect to the electron density. A 1% density perturbation at a plasma density of
1019 cm−3 corresponds to 3 GV/m. In the non-linear case, for a 100% density perturbation at a plasma
density of 1019 cm−3 the accelerating field reaches 300 GV/m.

Fig. 4: Density perturbation with the corresponding electric field

We now examine the electron motions in this oscillating electric field in the simplified case of a
one-dimensional plasma wave. Figure 5 represents an example of an electron trajectory in a plasma wave.
In this phase space, the closed orbits correspond to trapped particles. Open orbits represent untrapped
electrons, either because the initial velocity is too low or to high. The curve which separates these two
regions is called the separatrix. This separatrix gives the minimum and maximum energies for trapped
particles. This is comparable to the hydrodynamic case, where a surfer has to crawl to gain velocity and
to catch the wave.

For an electron density much lower than the critical density ne � nc, we find γp = ω0/ωp � 1
and

∆Wmax = 4γ2p
δne
ne

mc2. (6)

For an electron travelling along the separatrix, the time necessary to reach maximal energy is infi-
nite because there exists a stationary point at energy γp. for other closed orbits, the electron successively
gains and loses energy during its rotation in the phase space. In order to design an experiment, one needs
an estimation of the distance an electron travels before reaching maximal energy gain. This length, which
is called the dephasing length Ldeph, corresponds to a λp/2 rotation in the phase space. In order to have a
simple analytical estimation, one can assume that the energy gain is small compared to the initial energy
of the particle and that the plasma wave is relativistic γp � 1, then the dephasing length is written

Ldeph ∼ γ2pλp. (7)

4
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Fig. 5: Upper panel: Potential in phase space. Lower panel: Trajectory of an electron injected ion the potential of
the plasma wave in the frame of the wave with the fluid orbit (dashed line), the trapped orbit and in between in red
the separatrix.

In these formulas, we have considered a unique test electron, which has no influence on the plasma
wave. In reality, a massive trapping of particles modifies the electric fields and distorts the plasma wave.
This is called the space-charge or beam loading effect (which results from the Coulomb repulsion force).
Finally, this linear theory is difficult to apply to non-linear regimes which are explored experimentally.

2 Laser wakefield accceleration
2.1 Laser wakefield: the linear regime
The ponderomotive force of the laser excites a longitudinal electron plasma wave with a phase equal to
the group velocity of the laser close to the speed of light. Two regimes have been proposed to excite a
relativistic electron plasma wave.

In the standard laser wakefield acceleration (LWFA) approach, a single short laser pulse excites the
relativistic electron plasma wave. As the ponderomotive force associated with the longitudinal gradient
of the laser intensity exerts two successive pushes in opposite directions on the plasma electrons, the
excitation of the electron plasma wave is maximum when the laser pulse duration is of the order of 1/ωp.
For a linearly polarized laser pulse with full width at half maximum (FWHM)

√
2 ln 2L (in intensity),

the normalized vector potential, also called the force parameter of the laser beam, is written

a(z, t) = a0 exp


−

(
k0z − ω0t√

2kpL

)2

 . (8)

In the linear regime, a0 � 1, the electronic response obtained behind a Gaussian laser pulse can
be easily calculated [6]. In this case, the longitudinal electric field is given by

~E(z, t) = E0

√
πa20
4

kpL exp(−k2pL2/4) cos(k0z − ω0t)~ez. (9)

Equation (9) explicitly shows the dependence of the amplitude of the wave on the length of the
exciting pulse. In particular, the maximal value for the amplitude is obtained for a length L =

√
2/kp

as shown in Fig. 6 for a laser with a normalized vector potential a0 = 0.3. One can note that in the
linear regime, the electric field has a sinusoidal shape and reaches maximal values of a few GV/m.
For example, for an electron density ne = 1019 cm−3, the optimal pulse duration equals L = 2.4 µm

5
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Fig. 6: Amplitude of the electric field as function of the length of a Gaussian laser pulse for a normalized vector
potential a0 = 0.3.

(equivalent to a pulse duration τ = 8 fs). For a0 = 0.3, the maximal electric field is in the GV/m range.
Figure 7 illustrates the density perturbation and the corresponding longitudinal electric field produced at
resonance by a low intensity, Ilaser = 3× 1017 W/cm2, laser pulse of 30 s duration.

Fig. 7: Density perturbation (top) and electric field (bottom) produced in the linear regime

In experiments carried out at LULI, relativistic plasma waves with 1% amplitude have been
demonstrated. As indicated in Fig. 8, 3 MeV electrons have been injected into a relativistic plasma
wave driven by a 300 fs laser pulse, some of which were accelerated up to 4.6 MeV [7]. The electron
spectra has a broad energy distribution with a Maxwellian like shape, as expected when injecting an
electron beam with a duration much longer that the plasma period, and in this case with a duration much
longer than the plasma wave live-time.
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Fig. 8: Electrons spectra obtained at LULI in the laser wakefield scheme

2.2 Laser beatwave
Before the advent of short and intense laser pulses, relativistic plasma waves were driven by the beat-
wave of two long laser pulses of a few tens of picoseconds (i.e. with duration much greater than the
plasma period). In this case, the plasma frequency ωp has to satisfy exactly the matching condition,
ωp = ω1 − ω2, with ω1 and ω2 the frequencies of the two laser pulses. The first observation of rela-
tivistic plasma waves was performed using the Thomson scattering technique by the group of C. Joshi at
UCLA [8]. Acceleration of 2 MeV injected electrons up to 9 MeV [9] and later on, up to 30 MeV [10],
were demonstrated by the same group using a CO2 laser of about 10 µm wavelength. At LULI, 3 MeV
electrons were accelerated up to 3.7 MeV in beat wave experiments with Nd:Glass lasers of about 1 µm
wavelengths by a longitudinal electric field of 0.6 GV/m [11]. Similar works were also performed in
Japan at University of Osaka [12], in the UK at the Rutherford Appleton Laboratory [13], and in Canada
at the Chalk River Laboratory [14]. Electron spectra obtained at LULI in the laser beat wave scheme are
shown on Fig. 9.

In order to reduce the coupling between electron waves and ion waves which was a limiting factor
of previous experiments performed with 100 ps Nd lasers [15], experiments done at the Rutherford
Appleton Laboratory with a 3 ps laser pulse have shown excitations of higher amplitude relativistic
plasma waves [16].

2.3 Self-modulated laser wakefield
In all of these experiments, because of the duration of the injected electron bunch, which is much longer
than the plasma period and even longer than the life time of the plasma, only a very small fraction of
injected electrons were accelerated and the output beam had a very poor quality with a Maxwellian-like
energy distribution.

Thanks to the development of powerful laser systems with short pulse duration (500 fs), a new
regime that allows self-injection of electrons in very intense accelerating gradients with values exceeding
100 GV/m has been discovered. The cumulative effects of the self-focusing and the self-modulation of
the laser envelope by the initial perturbation of the electron plasma density generates a train of laser
pulses which become resonant with the plasma wave. These effects are described in Fig. 10. The self-
modulated laser wakefield regime occurs when the laser pulse duration exceeds the plasma period and
when the laser power exceeds the critical power for self-focusing [17–19]. The initial Gaussian laser
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Fig. 9: Electrons spectra obtained at LULI in the laser beat wave scheme

pulse becomes modulated at the plasma wavelength during its propagation. This mechanism, which
is close to a Forward Raman Scattering Instability [20], can be described as the decomposition of an
electromagnetic wave into a plasma wave at a frequency shifted by the plasma frequency.

In an experiment done at the Rutherford Appleton Laboratory, a relativistic plasma wave was
excited by an intense laser (>5× 1018 W/cm2), for a short duration (<1 ps), by a 1.054 µm wavelength
laser pulse in the self-modulated laser wakefield regime. This is the decay (induced by a noise level
plasma wave) of the strong electromagnetic pump wave (ω0, k0) into the plasma wave (ωp, kp) and two
forward propagating electromagnetic cascades at the Stokes (ω0 − nωp) and anti-Stokes (ω0 + nωp)
frequencies, n being a positive integer, and ω and k being the angular frequency and the wavenumber,
respectively, of the indicated waves. The spatial and temporal interference of these sidebands with the
laser produces an electromagnetic beat pattern propagating synchronously with the plasma wave. The
electromagnetic beat exerts a force on the plasma electrons, reinforcing the original noise level plasma
wave which scatters more sidebands, thus closing the feedback loop for the instability.

The solid curve in Fig. 11 shows the electromagnetic frequency spectrum emerging form the
plasma with a density of >5 × 1018 cm−3, where the abscissa is the shift in frequency of the forward
scattered light from the laser frequency in units of ωp. The upshifted anti-Stokes and downshifted Stokes
signals at ∆ω/ωp = ±1 are clearly visible as is the transmitted pump at ∆ω/ωp = 0 and the second
and third anti-Stokes sidebands. These signals are sharply peaked, and their widths indicate that the
plasma wave which generated these signals must have a coherence time of the order of the laser pulse.
The dashed curve shows the spectrum when the density is increased to 1.5 × 1019 cm−3. The most
startling feature is the tremendous broadening of the individual anti-Stokes peaks at this higher density.
This broadening corresponds to wave-breaking and is mainly caused by the loss of coherence due to
severe amplitude and phase modulation as the wave breaks. As wave-breaking evolves, the laser light no
longer scatters off a collective mode of the plasma but instead scatters off the trapped electrons which are
still periodically deployed in space but have a range of momenta producing, therefore, a range of scatter
frequencies.

During experiments carried out in the UK in 1994 [3], the amplitude of the plasma waves reached
the wave-breaking limit, where electrons initially belonging to the plasma wave are self-trapped and
accelerated to high energies. The fact that the external injection of electrons in the wave is no longer
necessary is a major improvement. Electron spectrums extending up to 44 MeV have been measured
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Fig. 10: Evolution of the laser pulse and plasma density in the self-modulated laser wakefield regime

during this first campaign, and up to 104 MeV in the second campaign. This regime has also been
reached for instance in the United States at CUOS [21], and at NRL [22]. However, because of the
heating of the plasma by these relatively ‘long’ pulses, the wave-breaking occurred well before reaching
the cold wave-breaking limit, which limited the maximum electric field to a few 100 GV/m. The
maximum amplitude of the plasma wave has also been measured to be in the range 20–60% [23].

Fig. 11: Frequency and electron spectrum the self-modulated laser wakefield regime for two different electron
plasma densities: 0.54× 1018 cm−3 (in red) and 1.5× 1019 cm−3 (in blue).

Experiments performed at LOA since 1999 have shown that an electron beam can also be produced
using a compact 10 Hz laser system [24]. Fig. 12 shows two typical electron spectra obtained at
5 × 1019 cm−3 and 1.5 × 1020 cm−3. The 0.6 J, 35 fs laser beam was focused tightly to a 6 µm focal
spot leading to a peak laser intensity of 2 × 1019 W/cm2. Electron distributions with electron energy
greater than 4 MeV are well fitted by an exponential function, characteristic of an effective temperature
for the electron beam. These effective temperatures are 8.1 MeV (2.6 MeV) for electron density of
5 × 1019 cm−3 (1.5 × 1020 cm−3), to which correspond typical values of 54 MeV (20 MeV) for the
maximum electron energy. This maximum energy is defined by the intersection between the exponential
fit and the detection threshold. One can observe an important decrease in the effective temperature and
in the maximum electron energy for increasing electron densities.

This point is summarized in Fig. 12 where we present the maximum electron energy as a function
of the electron density. It decreases from 70 MeV to 15 MeV when the electron density increases from
1.5× 1019 cm−3 to 5× 1020 cm−3. Also presented in Fig. 12 is the theoretical value [25]
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Wmax ≈ 4γ2p(Ez/E0)mc
2FNL. (10)

Fig. 12: Left: Typical electron spectra obtained at 5 × 1019 cm−3 (squares) and 1.5 × 1020 cm−3 (circles).
The corresponding effective temperatures are 8.1 MeV (2.6 MeV) for electron density of 5 × 1019 cm−3 (5 ×
1020 cm−3). Right: Maximum electron energy as a function of the plasma electron density. Experimental data:
squares. Theoretical data: line.

Here, the maximum electron energy is greater than the conventional one given by the simple
formula Wmax ≈ 2γ2p(Ez/E0)mc

2, where γp is the plasma wave Lorentz factor (which is equal to the
critical density to electron density ratio nc/ne) and Ez/E0 is the electrostatic field normalized to E0

(E0 = cmωp/e). The factor of two is due to self-channelling induced by the space-charge field which
focuses accelerated electrons for all phases. The correction factor FNL ≈ (γ⊥0n0/n)3/2 corresponds to a
non-linear correction due to the relativistic pump effect and to self-channelling. In this formula, n0 is the
initial electron density, n the effective one and γ⊥0 is the Lorentz factor associated to the laser intensity:
γ⊥0 = (1 + a20/2)1/2. The electron density depression is estimated by balancing the space-charge force
and laser ponderomotive force, and evaluated by δn/n = (a20/2π

2)(1 + a20/2)−1/2(λp/w0)
2.

In the lower electron density case, the depression correction will introduce an important increase
of the maximum energy gain which is multiplied by a factor of 2 at 1.5 × 1019 cm−3. For densities
greater than 1.0× 1020 cm−3, the main contribution is due to the relativistic pump effect, as outlined on
the plot in Fig. 12. It is also crucial to note that the fact that the electron maximum energy increases when
the electron density decreases demonstrates that electrons are mainly accelerated by relativistic plasma
waves. The maximum electron energy calculated at lower density overestimated the experimental ones,
indicating that the dephasing length becomes shorter than the Rayleigh length. In order to solve this
problem, experiments were performed at LOA using a longer off-axis parabola, more energetic electrons
have been measured, with a peak laser intensity ten times smaller than in this first experiment.

Electron beams with Maxwellian spectral distributions, generated by compact high repetition rate
ultra-short laser pulses, have been also at this time been produced in many laboratories around the world:
at LBNL [26], at NERL [27] and in Germany [28] for instance, and are now currently produced in more
than 20 laboratories worldwide.

2.3.1 Forced laser wakefield
The forced laser wakefield regime [29] is reached when the laser pulse duration is approximately equal
to the plasma period and when the laser waist is about the plasma wavelength. This regime allows a
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reduction in heating effects that are produced when the laser pulse interacts with trapped electrons. In
this regime, highly non-linear plasma waves can be reached as can be seen in Fig. 13.

Fig. 13: Density perturbation (top) and electric field (bottom) produced in the non-linear regime

The laser power needs also to be greater that the critical power for relativistic self-focusing in order
for the laser beam to shrink in time and in space. Due to self-focusing, pulse erosion can take place, which
can allow efficient wake generation. Since the very front of the pulse is not self-focused, the erosion will
be more severe. The wake then is mostly formed by this fast rising edge, and the back of the pulse has
little interaction with the relativistic longitudinal oscillation of the plasma wave electrons. Indeed, the
increase of plasma wavelength due to relativistic effects means that the breaking and accelerating peak
of the plasma wave sits behind most, if not all, of the laser pulse. Hence its interaction, and that of the
accelerated electrons with the laser pulse, is minimized, thus reducing emittance growth due to direct
laser acceleration. Thanks to short laser pulses, plasma heating in the forced laser wakefield regime is
significantly lower than in the self-modulated wakefield regime. This allows much higher plasma wave
amplitudes to be reached, as well as higher electron energies. Thanks to a limited interaction between
the laser and the accelerated electrons, the quality of the electron beam is also improved. Indeed, the
normalized transverse emittance measured using the pepper pot technique has given values comparable
to those obtained with conventional accelerators with an equivalent energy (normalized r.m.s. emittance
εn = 3π mm mrad for electrons at 55± 2 MeV) [30].

The three-dimensional simulations realized for this experiment showed that the radial plasma
wave oscillations interact coherently with the longitudinal field, so enhancing the peak amplitude of
the plasma wave. This, coupled with the aforementioned strong self-focusing, are ingredients absent
from one-dimensional treatments of this interaction. Even in two-dimensional simulations, it was not
possible to observe electrons beyond 200 MeV, as measured in this experiment, since except in three-
dimensional simulations, both the radial plasma wave enhancement and self-focusing effects are under-
estimated. Hence it is only in three-dimensional simulations that Emax ∼ Ewb can be reached. That
such large electric fields are generated demonstrates another important difference between FLW and
SMWF regimes, since in the latter, plasma heating by instabilities limits the accelerating electric field to
an order of magnitude below the cold wave-breaking limit. It should be noted that the peak electric field
inferred for these FLW experiments is in excess of 1 TV/m, considerably larger than any other coherent
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Fig. 14: Typical experimental (blue squares) and calculated (black curve) electron spectrum obtained at
ne = 2.5 × 1019 cm−3 with a 1 J, 30 fs laser pulse focused down to a waist of w0 = 18µm.

accelerating structure created in the laboratory.

2.3.2 Bubble regime
In 2002, theoretical work based on three-dimensional particle-in-cell (PIC) simulations have shown the
existence of a robust acceleration mechanism called the bubble regime [31]. In this regime, the dimen-
sions of the focused laser are shorter than the plasma wavelength in longitudinal and also transverse
directions, the laser shape appearing like a ball of light. If the laser energy contained in this spherical
volume is large enough, the ponderomotive force of the laser expels radially and efficiently electrons
from the plasma, which forms a cavity free from electrons behind the laser surrounded by a dense region
of electrons. Behind the bubble, electron trajectories intersect each other. Electrons are injected into the
cavity and accelerated along the laser axis, thus creating an electron beam with radial and longitudinal
dimensions smaller than those of the laser (see Fig. 15).

Fig. 15: Left: acceleration principle in the bubble regime. Right: typical quasi-monoenergetic electron spectra
measured at LOA.

The signature of this regime is a quasi-monoenergetic electron distribution that results from the
localization of injection at the back of the cavity, which gives similar initial properties in the phase space
to injected electrons. Since electrons are trapped behind the laser pulse, this reduces or even suppresses
interaction with the electric field of the laser. The trapping process stops when the charge contained in
the cavity compensates the ionic charge, and the rotation in the phase space also leads to a shortening of
the spectral width of the electron beam [32].
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Several laboratories have obtained quasi-monoenergetic spectra: in France [33] with a laser pulse
shorter than the plasma period, but also with pulses slightly longer than the plasma period in the U.K.
[34], in the United States [35], then in Japan [36] and in Germany [37]. The interest in such a beam is a
result of its importance for a number of applications: it is now possible to transport and to refocus this
beam by magnetic fields. With a Maxwellian-like spectrum, it would have been necessary to select an
energy range for the transport, which would have decreased significantly the electron flux. Electrons in
the GeV level were also observed in this regime using a uniform plasma [38] or in plasma discharge,
i.e. a plasma with a parabolic density profile [39] with a more powerful laser which propagates at high
intensity over a longer distance. With the development of PW class lasers, a few GeV electron beam has
been reported [40–42].

In all the experiments performed so far, the laser plasma parameters were not sufficient to fully en-
ter the bubble/blowout regimes. Yet, with the increase of laser system power, this regime will be reached,
and significant improvement of the reproducibility of the electron beam is expected. Nevertheless, since
self-injection occurs through transverse wave-breaking, it is hardly appropriate for a fine tuning and
control of the injected electron bunch. Figure 16 shows electron distributions obtained for different den-
sities. It illustrates the transition from a Maxwellian-like spectrum obtained in high density cases in the
self-modulated laser wakefield, to the forced laser wakefield regime with an emerging monoenergetic
component at moderate density, to a spectrum containing a very well defined monoenergetic component.
This transition occurs for densities around ne =1–3 ×1019 cm−3. The best coupling for obtaining a
high charge and a quasi-monoenergetic electron beam is at ne = 6 × 1018 cm−3. For this density, the
image shows a narrow peak around 170 MeV, indicating efficient monoenergetic acceleration with a
24% energy spread corresponding to the spectrometer resolution.

Fig. 16: Electron beam distribution for different plasma densities showing the transition from the self-modulated
laser wakefield and the forced laser wakefield to the bubble/blow-out regime. From top to bottom, the plasma
density values are 6× 1018 cm−3, 1× 1019 cm−3, 2× 1019 cm−3 and 5× 1019 cm−3.

2.4 Injection in a density gradient
One solution to control electron injection with current laser technology was proposed by S. Bulanov et al.
[43]. It involves a downward density ramp with a density gradient scale length Lgrad smaller than the
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Fig. 17: Top: target schematic representation with embedded supersonic gas jet into a capillary that is filled with
hydrogen gas. Bottom: the charge (squares), energy (circles) and energy spread (triangles) as a function of the
peak jet density. From A. J. Gonsalves et al. [50].

plasma wavelength λp. Injection in a downward density ramp relies on the slowing down of the plasma
wave velocity at the density ramp. This decrease of the plasma wave phase velocity lowers the threshold
for trapping the plasma background electrons and causes wave-breaking of the wakefield in the density
ramp. This method can therefore trigger wave-breaking in a localized spatial region of the plasma. Ged-
des et al. [44] showed the injection and acceleration of high charge (>300 pC) and stable quality beams
of '0.4 MeV in the downward density ramp at the exit of a gas jet (Lgrad ' 100µm � λp). These
results, although very promising, have the disadvantage that the low energy beam blows up very quickly
out of the plasma, due to the space-charge effect. To circumvent this issue, one should use a density
gradient located early enough along the laser pulse propagation so that electrons can be accelerated to
relativistic energies [45]. This can be achieved by using, for instance, a secondary laser pulse to gener-
ate a plasma channel transverse to the main pulse propagation axis [46]. In this case, the electron beam
energy could be tuned by changing the position of the density gradient. In this pioneering experiment,
the electron beam had a large divergence and a Maxwellian energy distribution because of a too low laser
energy. However, two-dimensional PIC simulations showed that this method can result in high quality
quasi-monoenergetic electron beams [47].

At LOA a density gradient across a laser created plasma channel was used to stabilize the injection
[48]. The experiment was performed at an electron density close to the resonant density for the laser
wakefield (cτ ∼ λp) to guaranty a post acceleration that delivered high quality electron beams with
narrow divergences (4 mrad) and quasi-monoenergetic electron distributions with 50 to 100 pC charge
and 10% relative energy spread.

The use of density gradients at the edges of a plasma channel showed an improvement of the beam
quality and of the reproducibility with respect to those produced in the bubble/blowout regime with the
same laser system and with similar laser parameters. However, the electron energy distribution was still
found to fluctuate from shot to shot. The performance of the experiments could be further improved and
could potentially lead to more stable and controllable high quality electron beams. In particular, sharper
gradients with Lgrad ' λp coupled with a long plasma can lead to better beam quality [49].

For example, at LBNL, as shown in Fig. 17, electrons at 30 MeV were produced in a density ramp
and accelerated up to 400 MeV in a second stage 4 cm parabolic plasma channel formed with a plasma
discharge [50]. Here also, the density gradient injection led to an improvement of the stability and of the
electron beam quality. The electron energy, divergence, charge and relative energy spread were found to
be respectively 400 MeV, 2 mrad, 10 pC and 11%. It was shown that steeper density transitions, with
Lgrad � λp, can also cause trapping [51]. Such injection was successfully demonstrated experimentally
using the shock-front created by a knife-edge inserted in a gas jet [52, 53].
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Fig. 18: A few representative shots of the 10% of all the shots with the lowest energy spread for self-injection
(top) and injection at a density transition (bottom). The horizontal axis in each image corresponds to the transverse
electron beam size; the vertical axis shows electron energy. From K. Schmid et al. [53].

Figure 18 illustrates the improvement of injection in a sharp density gradient, with a characteristic
length of the order of the plasma wavelength and a peak electron density of about 5 × 1019 cm−3. The
experiment was performed at the Max-Planck-Institut fur Quantenoptik using a multi-TW sub-10 fs
laser system that delivered for this experiment pulses with 65 mJ energy on target and with a duration of
8 fs FWHM. The laser pulse was focused down to a spot diameter of 12µm FWHM into the gas target
yielding a peak intensity of 2.5 × 1018 W/cm2. The comparison between the self-injection and density
transition injection shows a reduction of the relative energy spread and of the charge of a about a factor
of 2.

2.5 Injection with colliding laser pulses
In 2006, stable and tunable quasi-monoenergetic electron beams were measured by using two counter-
propagating laser beams in the colliding scheme. The use of two laser beams instead of one offers more
flexibility and enables one to separate the injection from the acceleration process [54]. The first laser
pulse, the pump pulse, is used to excite the wakefield while the second pulse, the injection pulse, is used
to heat electrons during the collision with the pump pulse. After the collision has occurred, electrons are
trapped and further accelerated in the wakefield, as shown in Fig. 19.

To trap electrons in a regime where self-trapping does not occur, one has either to inject electrons
with energies greater that the trapping energy or dephase electrons with respect to the plasma wave.
As mentioned earlier, electrons need to be injected in a very short time (�λp/c) in order to produce a
monoenergetic beam. This can be achieved using additional ultra-short laser pulses whose only purpose
is to trigger electron injection.

Umstadter et al. [21] first proposed to use a second laser pulse propagating perpendicular to
the pump laser pulse. The idea was to use the radial ponderomotive kick of the second pulse to inject
electrons. Esarey et al. [55] proposed a counter-propagating geometry based on the use of three laser
pulses. This idea was further developed by considering the use of two laser pulses [56]. In this scheme,
a main pulse (pump pulse) creates a high amplitude plasma wave and collides with a secondary pulse of
lower intensity. The interference of the two beams creates a beatwave pattern, with a zero phase velocity,
that heats some electrons from the plasma background. The force associated with this ponderomotive
beatwave is proportional to the laser frequency. It is therefore many times greater than the ponderomotive
force associated with the pump laser, that is inversely proportional to the pulse duration at resonance. As
a result, the mechanism is still efficient even for modest laser intensities. Upon interacting with this field
pattern, some background electrons gain enough momentum to be trapped in the main plasma wave and
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Fig. 19: Scheme of the principle of the injection with colliding laser pulses: (a) the two laser pulses propagate in
opposite direction; (b) during the collision, some electrons get enough longitudinal momentum to be trapped by
the relativistic plasma wave driven by the pump beam and (c) trapped electrons are then accelerated in the wake of
the pump laser pulse.

then accelerated to high energies. As the overlapping of the lasers is short in time, the electrons are
injected over a very short distance and can be accelerated to an almost monoenergetic beam.

This concept was validated in an experiment [54], using two counter-propagating pulses. Each
pulse had a duration of 30 fs FWHM, with a0 = 1.3 and a1 = 0.4. They were propagated in a plasma
with electron density ne = 7 × 1018 cm−3 corresponding to γp = k0/kp = 15. It was shown that the
collision of the two lasers could lead to the generation of stable quasi-monoenergetic electron beams.
The beam energy could be tuned by changing the collision position in the plasma.

PIC simulations in one dimension have been used to model electron injection in the plasma wave
at the collision of the two lasers, and their subsequent acceleration. In particular, the PIC simulations
were compared to existing fluid models [55] with prescribed electric field. They showed significant
differences, such as changes in the behaviour of plasma fields and in the amount of injected charge. The
fluid approach fails to describe qualitatively and quantitatively many of the physical mechanisms that
occur during and after the laser beams collision [57]. In this approach, the electron beam charge was
found to be one order of magnitude greater than in the PIC simulations. For a correct description of
injection, one has to describe properly (i) the heating process, e.g. kinetic effects and their consequences
on the dynamics of the plasma wave during the beating of the two laser pulses and (ii) the laser pulse
evolution which governs the dynamics of the relativistic plasma waves [58]. Unexpectedly, it was
shown that efficient stochastic heating can be achieved when the two laser pulses are crossed polarized.
The stochastic heating can be explained by the fact that for high laser intensities, the electron motion
becomes relativistic which introduces a longitudinal component through the v×B force. This relativistic
coupling makes it possible to heat electrons even in the case of crossed polarized laser pulses [59]. Thus
the two perpendicular laser fields couple through the relativistic longitudinal motion of electrons. The
heating level is modified by tuning the intensity of the injection laser beam or by changing the relative
polarization of the two laser pulses [60]. This consequently changes the volume in the phase space of
the injected electrons and therefore the charge and the energy spread of the electron beam.

Figure 20 shows, at a given time (42 fs), the longitudinal electric field during and after collision for
parallel and crossed polarization. The solid line corresponds to PIC simulation results whereas the dotted
line corresponds to fluid calculations. The laser fields are represented by the thin dotted line. When the
pulses have the same polarization, electrons are trapped spatially in the beatwave and cannot sustain the
collective plasma oscillation, inducing a strong inhibition of the plasma wave which persists after the
collision. When the polarizations are crossed, the electron motion is only slightly disturbed compared to
their fluid motion, and the plasma wave is almost unaffected during the collision, which tends to facilitate
trapping.

Importantly, it was shown that the colliding pulse approach allows control of the electron beam
energy which is done simply by changing the delay between the two laser pulses [54]. The robustness
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Fig. 20: Longitudinal electric field computed at t = 43 fs in one-dimensional PIC simulation (solid red line), and
in fluid simulations (dotted blue line). The transverse electric field is also represented (thin dotted line). The laser
pulse duration is 30 fs FWHM, the wavelength is 0.8 µm with a0 = 2 and a1 = 0.4. The laser pulses propagate in
a plasma with electron density ne = 7 × 1018 cm−3. In (a) the case of parallel polarization and in (b) the case of
crossed polarization.

Fig. 21: In red, normalized longitudinal electric field. (a) The laser (in pink) wakefield. (b) The electron bunch
(in blue) wakefield. (c) Field resulting from the superposition of the laser and electron beam wakefields. The
normalized vector potential is a0 = 1, the laser pulse duration is 30 fs, ne = 7× 1018 cm−3, nbeam = 0.11× ne,
the bunch duration is 10 fs and its diameter is 4 µm. From C. Rechatin, Ph.D. thesis.

of this scheme permitted also very accurate studies of the dynamics of the electric field in presence of a
high current electron beam to be carried out. Indeed, in addition to the wakefield produced by the laser
pulse, a high current electron beam can also drive its own wakefield as shown in Fig. 21.

The beam loading effect contributes to the reduction of the relative energy spread of the electron
beam. It was demonstrated that there is an optimal load which flattened the electric field, leading to the
acceleration of all the electrons with the same value of the field, and producing consequently an electron
beam with a very small, 1%, relative energy spread [61]. Thanks to the beam loading effect, the most
energetic electrons can be slightly slowed down and accelerated to the same energy as the slowest ones.
In cases of low charge beam, this effect does not play any role and the energy spread depends mainly on
the heated volume. For a very high current, the load is too high and the most energetic electrons slow
down so much that they eventually obtain energies smaller than the slowest electrons [61], increasing
the relative energy spread. The existence of an optimal load was observed experimentally and supported
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Fig. 22: (a) Schematic of the experimental set-up showing the laser beam, the two-stages gas cell, on the left the
injector part and on the right the accelerator part. (b) Magnetically dispersed electron beam images from a 4 mm
injector-only gas cell (top) and the 8 mm two-stages cell (bottom). From B. B. Pollock et al. [66].

by full three-dimensional PIC simulations. It corresponds to a peak current in the 20–40 kA range. The
decelerating electric field due to the electron beam was found to be in the GV/m/pC range.

2.6 Injection triggered by ionization
Another scheme was proposed recently to control the injection by using a high-Z gas and/or a high-
Z/low-Z gas mixture. Thanks to the large differences in ionization potentials between successive ioniza-
tion states of the atoms, a single laser pulse can ionize the low energy level electrons in its leading edge,
drive relativistic plasma waves, and inject in the wakefield the inner level electrons which are ionized
when the laser intensity is close to its maximum.

Such an ionization trapping mechanism was first demonstrated in electron beam driven plasma
wave experiments on the Stanford Linear Collider (SLAC) [62]. Electron trapping from ionization of
high-Z ions from capillary walls was also inferred in experiments on laser wakefield acceleration [63]. In
the case of a self-guided laser driven wakefield, a mixture of helium and trace amounts of different gases
was used [64,65]. In one of these experiments, electrons from the K shell of nitrogen were tunnel ionized
near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from
majority helium atoms and the L shell of nitrogen. Because of the relativistic self-focusing effect, the
laser propagates over a long distance with peak intensity variations that can trigger the injection over
a long distance and in an inhomogeneous way, which leads to the production of a high relative energy
spread electron beam. Importantly, the energy required to trap electrons is reduced, making this approach
of great interest to produce electron beams with a large charge at moderate laser energy. To reduce the
distance over which electrons are injected, experiments using two gas cells were performed at LLNL
[66], as shown in Fig. 22. By restricting electron injection to a small region, in a first short cell filled
with a gas mixture (the injector stage), energetic electron beams (of the order of 100 MeV) with a
relatively large energy spread were generated. Some of these electrons were then further accelerated in
a second, larger, accelerator stage, consisting of a long cell filled with low-Z gas, which increases their
energy up to 0.5 GeV while reducing the relative energy spread to <5% FWHM.

2.7 Longitudinal injection
As has been shown, electron trapping is generally achieved by the wave-breaking of the plasma wake,
a process that is by nature uncontrollable and leads generally to poor quality electrons. The presented
controlled injection techniques, such as colliding pulse injection, ionization-induced injection and den-
sity gradient injection, have been developed to overcome this shortcoming. These methods offer an
improved control on the acceleration and lead to better electron features, but they imply generally com-
plex set-ups. For this reason, self-injection remains the most common method for injecting electrons in
the plasma wake. Two distinct physical mechanisms can be distinguished: longitudinal and transverse
self-injection. In longitudinal self-injection, the trajectory of injected electrons is mainly longitudinal,

18

V. MALKA

18



Fig. 23: Schematic for longitudinal and transverse self-injections. (a) Typical trajectory of an injected electron
in the longitudinal self-injection mechanism. (b) Typical trajectory of an injected electron in the transverse self-
injection mechanism. The blue colour scale represents the electron density. The red to yellow colour scale indicates
the laser intensity. The trajectories are given by the green lines.

with a negligible transverse motion. As shown by the schematic in Fig. 23, the injected electrons pass
through the laser pulse and gain energy while crossing the plasma wave. When they reach the rear of
the first plasma period, their velocity exceeds the wake phase velocity and the electrons are eventually
injected. The only electrons that are trapped are those that were initially close to the axis where the
laser intensity and the wakefield amplitude are the highest and where the ponderomotive force is small.
The longitudinal self-injection mechanism is analogous to one-dimensional longitudinal wave-breaking.
In contrast, transverse self-injection occurs in the bubble regime, where the laser ponderomotive force
expels electrons from the propagation axis and forms an electron-free cavity in its wake. As shown in
Fig. 23 and in Fig. 15, the injected electrons are initially located at approximately one laser waist from
the axis. They circulate around the laser pulse and the bubble, and attain a velocity larger than the wake
phase velocity when reaching the axis at the rear of the bubble.

During its propagation, the laser pulse evolves, the self-phase-modulation modifies its duration
and the relativistic self-focusing modifies its initial transverse shape. As a consequence, the generated
wakefield is not uniform along the laser propagation axis and electrons can be self-injected at different
positions of the plasma accelerator. Electrons in the second bunch originate from positions close to the
laser waist, as expected in the case of trapping by transverse self-injection. In contrast, electrons in the
first bunch come from regions close to the axis. When these electrons are injected, the laser spot radius
is large and the normalized laser amplitude is still low; hence, the radial ponderomotive force close to
the axis is small.

Thus, on-axis electrons are only weakly deviated when crossing the laser pulse, and they remain in
the region of largest accelerating field Ez . Moreover, the laser amplitude increases steeply in the region
of first injection because of laser self-focusing (see Fig. 24). This reduces the wake phase velocity via
the relativistic shift of the plasma wavelength λp [67]. The strongly reduced wake phase velocity lowers
the threshold for trapping, such that electrons can catch up the plasma wave and be injected despite a low
a0, similarly to density gradient injection.
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Fig. 24: Left: Evolution of the normalized laser amplitude. The coloured areas indicate the injection regions.
Right: Electron spectra for a density of 1.1 × 1019 cm−3. Mean 5% cut-off energy as a function of the cell
length. The solid line is a parabolic fit, the dashed line is a visual guide. The peak accelerating electric field is
Ez

max = 340± 65 GV/m for the first bunch and Ez
max = 185±40 GV/m for the second bunch.

3 Particle beam wakefield accceleration
3.1 Electron driven plasma wakefield
Wakefields in a plasma can be also driven by an electron bunch that has, at resonance, a length of about
half the plasma wavelength. Whereas in the laser wakefield case the radiation pressure, known as the
ponderomotive force, pushes away the plasma electrons, here the force is due the space-charge of the
electron beam. The plasma electrons are strongly blown out radially, but because of the space-charge
attraction of the plasma ions, they are attracted back towards the rear of the beam where they overshoot
the beam axis and set up a wakefield oscillation. Here again, charged particles injected in an appropriately
phased trailing pulse can then extract energy from the wakefield. Because of the lack of accelerators that
deliver suitable electron beams, there are fewer particle-beam-driven plasma acceleration experiments
compared with laser accelerator experiments. The first beam-driven plasma wakefield experiments were
carried out at the Argonne Wakefield Accelerator Facility in the 1980s [68]. Since then, important
experiments done at SLAC by the UCLA/USC/SLAC collaboration have mapped the physics of electron
and positron beam-driven wakes and has shown acceleration gradients of 40 GV/m using electron beams
with metre-scale plasmas [69]. In the first important SLAC experiments only one electron bunch was
used to excite the wakefield. Since the energy of the drive pulse was 42 GeV, both the electrons and
the wake are moving at a velocity close to c, so there is no relative motion between the electrons and the
wakefield. Because the electron bunch was also longer that the plasma period, most of the electrons in
the drive bunch lose energy in exciting the wake, but some electrons in the back have gained energy from
the wakefield as the wakefield changes its sign. Thanks to the high quality, low emittance of the electron
bunch, its intensity was so high that the 42 GeV electron beam passed through a column of lithium
vapour 85 cm long, the head of the beam created a fully ionized plasma and the remainder of the beam
excited a strong wakefield. Figure 25 shows the energy spectrum of the beam measured after the plasma.
The electrons in the bulk of the pulse that lost energy in driving the wake are mostly dispersed out of the
field of view of the spectrometer camera and so are not seen in the spectrum. However, electrons in the
back of the same pulse are accelerated and reach energies up to 85 GeV. The measured spectrum of the
accelerated particles was in good agreement with the spectrum obtained from computer simulations of
the experiment, as Fig. 25 shows. As said Prof. C. Joshi, ‘This is a remarkable result when one realizes
that while it takes the full 3 km length of the SLAC linac to accelerate electrons to 42 GeV, some of
these electrons can be made to double their energy in less than a metre’.

In this former experiment, a small fraction of electrons of the beam was injected and accelerated.
As a consequence, the quality of the accelerated electrons was poor with a long Maxwellian-like tail
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Fig. 25: Energy spectrum of the electrons in the 35–100 GeV range. The dispersion (shown on the top axis) is
inversely proportional to the particle energy (shown on the bottom axis). The head of the pulse, which is unaffected
by the plasma, is at 43 GeV. The core of the pulse, which has lost energy driving the plasma wake, is dispersed
partly out of the field of view of the camera. Particles in the back of the bunch, which have reached energies up to
85 GeV, are visible to the right.

and therefore with also a poor energy transfer efficiency. For future high energy physics purposes, a
high efficiency is mandatory to achieve an affordable and compact high-energy collider. To improve
this, a second important experiment has been performed at SLAC. In this plasma wakefield acceleration
experiment, a charge-density wake with high accelerating fields has been driven by an ultra-relativistic
bunch of charged particles (the drive bunch) through a plasma followed by a second bunch of relativistic
electrons (the trailing bunch) in the wake of the drive bunch at an appropriate distance that has been effi-
ciently accelerated to higher energy. Whereas in the previous experiment, the total charge of accelerated
electrons was insufficient to extract a substantial amount of energy from the wake, here high efficiency
acceleration of the trailing bunch of electrons has been demonstrated. Accelerations of approximately
70–80 pC of the trailing bunch have been achieved in an accelerating gradient of about 4.4 GV/m. As
presented in Fig. 26, these particles have gained approximately 1.6 GeV of energy per particle, with
a final energy spread as low as 1% and an energy-transfer efficiency from the wake to the bunch that
exceeded 30%. This acceleration of a distinct bunch of electrons containing a substantial charge and
having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency
represents a milestone in the development of plasma wakefield acceleration into a compact and afford-
able accelerator technology. 6% of the initial electron beam energy (36 J) was transferred to the trailing
bunch. This value is comparable to the laser to electron beam energy transfer efficiency from LPAW. The
main advantage here being that the driver is more efficient that the laser driver. Accelerators have indeed
today a wall-plug efficiency more that 10 times larger than lasers.

3.2 Proton driven plasma wakefield
As it has been shown in all these former experiments, the energy gain was limited by the energy carried
by the driver (about 40 J for an e-beam driver and about 100 J for a laser driver) and by the propagation
length of the driver in the plasma (few tens of centimetres for the e-driver and few centimetres for the laser
driver). The laser pulse and electron bunch driver schemes therefore require the use of many acceleration
stages in the tens of GeV each in order to gain TeV energy levels. A 10 GeV stage that delivers an nC
of charge corresponds to an energy of 10 J, and it will correspond to 10 kJ for a 10 TeV stage. If one
assumes 10% energy transfer efficiency from the driver to the trail bunch, this indicates that the driver
energy must contain about 100 kJ. In 2009, for the first time, plasma-wake excitation by a relativistic
proton beam has been considered [5]. In this ideal case, the proton driver beam has to be resonant with
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Fig. 26: (a) The dispersed electron beam profile without plasma interaction, where the spectrometer is set to image
22.35 GeV. (b) and (c) The dispersed beam profile after the electron bunches have interacted with the plasma,
where the spectrometer is set to image 20.35 GeV and 22.35 GeV. (d) The spatially integrated spectrum (in x) or
the linear charge density of the bunches shown in (c) (solid blue line) along with the final spectrum obtained from
the simulation (solid green line in (d)). The core of the accelerated trailing beam is shown for the data (dashed red
line).

the plasma and it was predicted on the basis of numerical simulations that 10 GeV electrons injected
could be accelerated to 0.5 TeV in a 450 m proton wakefield. Unfortunately such a short proton bunch
does not exist, and therefore it has been proposed to use the CERN SPS 19 kJ, 400 GeV proton beam
that is produced routinely.

Because the length of the driver (about 10 cm) is much longer than the plasma wavelength (about
1 mm) at a density large enough (of 1014 cm−3) to reach a GV/m accelerating field, the interaction has to
occur in the self-modulated regime. In this regime, also called the self-modulation instability (SMI) [70],
the proton bunch is split during its propagation in several micro-bunches that excite resonantly a strong
plasma wave. A first experiment, called AWAKE [71], will be performed at CERN in the next two years
to demonstrate the possibility of accelerating injected electrons in proton driven plasma wakefield. For
this, an extremely uniform long plasma has been developed with a control precision for the density that
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Fig. 27: Design of the layout of the AWAKE experiment

must be within 0.5% over metres. To optimize the coupling efficiency, electrons will be injected at an
angle after the self-modulated instability has reached saturation. The conceptual design of the proposed
AWAKE experiment is shown in Fig. 27 where the laser and proton bunches are made co-linear. The laser
that will ionize the metal vapour is required to seed the self-modulation instability. The self-modulated
proton bunch (shown on the left hand side) enters a second plasma section where it drives the plasma
wakefield structure (shown on the right side). The electrons are injected in the wakefields and the 2 GeV
accelerated electrons will be measured with an electron spectrometer. The AWAKE experiment will
be installed in the CERN Neutrinos to Gran Sasso (CNGS) facility. Approximately 5% of electrons
are supposed to be trapped and accelerated to the end of the 10 m plasma with accelerating gradients
in the few GV/m. In addition to the electron spectrometer, several other diagnostics will be used to
characterize the proton beams to better understand the physics of self-modulation. Coherent Transition
Radiation (in the visible and in the infra-red) produced when the proton beam passes through a thin foil,
will be measured using a streak camera. Additionally, transverse coherent transition radiation will be
produced and detected using electro-optical sensors; this will be the first experimental use of this recent
concept [72]. First protons to the experiment are expected at the end of 2016 and this will be followed
by an initial 3–4 year experimental program of four periods of two weeks of data taking.

4 Future of the laser plasma accelerators
The tremendous progress that has been made in plasma acceleration [73–75], from the first accelera-
tion of externally injected electrons in a GV/m laser wakefield, self-injection in a 100 GV/m laser
wakefield with first a 100 MeV broad spectra to the series of experiments with the production of a quasi-
monoenergetic electron beam in a laser wakefield with a compact 10 Hz laser system have contributed to
boosting this field of research in which tens of laboratories/teams are playing important roles in a com-
petitive and friendly approach. The evolution of short-pulse laser technology with diode pump lasers
or fibre lasers, a field in rapid progress, will eventually contribute to the improvement of laser plasma
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acceleration and their societal applications, in material science for example for high resolution gamma
radiography [76, 77], in medicine for cancer treatment [78, 79], in chemistry [80, 81] and in radiobiol-
ogy [82–84]. In the near future, the development of compact free electron lasers could open the way to
the production of intense X-ray beams, in a compact way, by coupling the electron beam with undula-
tors. Thanks to the very high peak current of a few kiloamperes [85], comparable to the current used
at LCLS, the use of laser plasma accelerators for free electron lasers, the so-called fifth generation light
source, is clearly identified by the scientific community as a major development. Alternative schemes to
produce ultra-short X-ray beams, such as Compton, betatron or Bremsstrahlung X-ray sources, have also
been considered. Tremendous progress has been made regarding the study of betatron radiation in a laser
plasma accelerator. Since its first observation in 2004 [86] and the first monitoring of electron betatronic
motion in 2008 [87], a number of articles have reported in more detail this new source, including mea-
sures of a sub ps duration [88] and of a transverse size in the micrometre range [89]. Betatron radiation
was used recently to perform with high spatial resolution, of about 10 microns, X-ray contrast phase
images in a single shot mode operation [90,91]. In parallel, similar huge progress has been performed in
accelerating electrons and positrons using electron or positron bunches, with here, a gain of a few tens of
GeV in a few tens of centimetres accelerating gradient. Wakefields driven by electron beams are good
candidates to boost electron energy in a metre long plasma device. The requirement for the driver being
very close to the one for FEL purposes, shorter radiation wavelength could be produced by doubling,
for example, the electron energy delivered from SLAC or from DESY. Acceleration of electrons and
positrons with these drivers are also very relevant for a staging approach for high energy physics pur-
poses. The AWAKE experiment will certainly contribute to defining the roadmap for future larger-scale
R&D projects on laser, electron or proton driven plasma wakefield acceleration for future high energy
colliders for particle physics. The success of plasma wakefield accelerators will open a pathway towards
many exciting societal application, a compact FEL radiation source and a revolutionary plasma-based
TeV lepton collider. This revolution could then enable ground-breaking discoveries in many domains,
including particle physics.
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Introduction to Particle Accelerators and their Limitations

B.J. Holzer
CERN, Geneva, Switzerland

Abstract
The paper gives an overview of the principles of particle accelerators and
their historical development. After introducing the basic concepts, the main
emphasis is on sketching the layout of modern storage rings and discussing
their limitations in terms of energy and machine performance. Examples of
existing machines, among them the Large Hadron Collider (LHC) at CERN,
demonstrate the basic principles of and the technical and physical limits that
we face in the design and operation of particle colliders. The push for ever
higher beam energies motivates the design of future colliders as well as the
development of more efficient acceleration techniques.

Keywords
Particle accelerators; history; basic concepts; technologies; technical limits;
physical limits.

1 Introduction
The study of matter, from initial theories about the structure of the atom to the discovery of the nucleus
and, subsequently, of a variety of particles and their interactions, has been summarized in a scientific
picture often called the ‘standard model’; along its way it has driven the development of powerful tools
to create the particle beams that are needed to analyse the detailed structure of matter. The largest ac-
celerator to date, the proton–proton Large Hadron Collider (LHC) at CERN in Geneva, operates with an
energy per beam of 7 TeV, which corresponds to an available centre-of-mass energy of Ecm = 14 TeV.
The LHC is part of a long tradition of technical and physical progress in creating particle beams, accel-
erating them, and achieving successful collision with micrometre beam sizes. This article gives a basic
introduction to the physics of particle accelerators and discusses some of their limitations. The author has
arbitrarily selected ten limitations to focus on, although in fact there are many more that the reader may
find in other publications and which could be studied further (and some of them overcome, hopefully).

1.1 Limit I: The geography
For the fun of it, let us start at the end of the line: the largest accelerators and the fact that beyond phys-
ical and technical limits there is a serious boundary condition—the landscape. For a given technology,
pushing the particle energy of a storage ring to higher and higher values will necessitate larger and larger
machines, and we may suddenly encounter the problem that our device no longer fits in the garage at
our institute or, as shown in Fig. 1, not even in the entire region surrounding our facility. As regards
LHC [1], the largest storage ring at present, and the Geneva region, the space between Lake Geneva and
the Jura mountains defined the size of the tunnel for the present LHC. As a consequence, the maximum
feasible beam energy available for high-energy physics experiments is determined by the geographical
boundary conditions of the Geneva countryside. Certainly, there are extremely high particle energies in
cosmic rays, but you will agree that the accelerators driving these are also much much larger!

Before we discuss the high-energy frontier machines, let us take a brief look at the path paved by
the ingenious scientific developments dating back to the discovery of the nucleus by Ernest Rutherford.
Figure 2 (taken from [2]) shows a comparison of the scattering events, plotted as a function of the
scattering angle, predicted by the Thomson model of the atom and the experimental results obtained by
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Fig. 1: The proton–proton collider LHC at CERN, Geneva

Fig. 2: Comparison of the Thomson model of the atom and the results of Rutherford’s experiment; the number of
scattering events of alpha particles scattered at the gold foil is plotted as a function of the measured (or predicted)
scattering angle.

Rutherford: the discrepancy between the model, which assumes equally distributed charges in matter,
and the observed data is evident. As a consequence, the concept of the nucleus was born.

Using alpha particles on the level of MeV is not ideal for precise, triggerable and healthy experi-
ments. So Rutherford discussed with two colleagues, Cockcroft and Walton, the possibility of using ar-
tificially accelerated particles. Based on this idea, within only four years Cockcroft and Walton invented
the first particle accelerator ever built, and in 1932 they gave the first demonstration of the splitting of a
nucleus (lithium) by using a 400 keV proton beam.

Their acceleration mechanism was based on a rectifier or Greinacher circuit, consisting of a num-
ber of diodes and capacitors that transformed a relatively small AC voltage to a DC potential which
corresponds, depending on the number of diode/capacitor units used, to a multiple of the applied basic
potential. The particle source was a standard hydrogen discharge source connected to the high-voltage
part of the system, and the particle beam was accelerated to ground potential, hitting the lithium tar-
get [3]. A schematic view of the mechanism is shown in Fig. 3 (for details see, for instance, Ref. [4]),
and a photograph of such a device which has been used at CERN for many years is presented in Fig. 4.
Cockcroft and Walton were awarded the Nobel prize for their invention.

1.2 Limit II: Voltage breakdown in DC accelerators
In parallel to Cockcroft and Walton, but based on a completely different technique, another type of DC
accelerator had been invented: Van de Graaff designed a DC accelerator [5] that used a mechanical
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Fig. 3: Schematic layout of the rectifier circuit used by Cockcroft and Walton to generate the high DC voltage
needed for their accelerator.

transport system to carry charges, sprayed on a belt or chain, to a high-voltage terminal; see Fig. 5, taken
from Ref. [6].

In general these machines can reach higher voltages than the Cockcroft–Walton devices, but they
are more limited in terms of particle intensity. Common to all DC accelerators is the limitation on the
achievable beam energy due to high-voltage breakdown effects (discharges). Without using an insulating
gas (SF6 in most cases), electric fields will be limited to about 1 MV m−1, and even with the most sophis-
ticated devices, like the one in Fig. 6, acceleration voltages on the order of MV cannot be overcome. In
fact, the example in Fig. 6 shows an approach that has been applied in a number of situations: injecting
a negative ion beam (even H− is used) and stripping the ions in the middle of the high-voltage terminal
allows one to profit from the potential difference twice and thus to make another step of gain in beam
energy.

Given the obvious limitations of the DC machines described above, the next step forward is natural.
In 1928, Widerøe developed the concept of a AC accelerator. Instead of rectifying the AC voltage, he
connected a series of acceleration electrodes in an alternating manner to the output of an AC supply.
The schematic layout is shown in Fig. 7 where, for a instant in time, the direction of the electric field
is indicated. In principle, this device can produce step by step a multiple of the acceleration voltage, as
long as for the negative half-wave of the AC voltage the particles are shielded from the decelerating field.

Fig. 4: A Cockcroft–Walton generator that was used at CERN as a pre-accelerator for the proton beams; the device
has since been replaced by the more compact and efficient RFQ technique.
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Fig. 5: Schematic design of a Van de Graaff accelerator

Fig. 6: A typical example of a tandem Van de Graaff accelerator; these are very reliable machines for precise
measurements in atomic and nuclear physics. (Photo courtesy of the Max Planck Institute for Nuclear Physics,
Heidelberg.)

The energy gain after the nth step is therefore

En = n · q · U0 · sin(ψs), (1)

where n denotes the acceleration step, q the charge of the particle, U0 the applied voltage per gap, and
ψs the phase between the particle and the changing AC voltage.

1.3 Limit III: The size of the accelerating structure
A key quantity in such a Widerøe structure is the length of the drift tubes that will protect the particles
from the negative half-wave of the sinusoidal AC voltage. For a given frequency of the applied radio-
frequency (RF) voltage, the length of the drift tube is defined by the speed of the particle and the duration
of the negative half-wave of the sinusoidal voltage, as shown in Fig. 8.

The time-span of the negative half-wave is defined by the applied frequency, ∆t = τrf/2, so for
the length of the nth drift tube we get

ln = vn ·
τrf
2
. (2)

Given the kinetic energy of the particle,

Ekin =
1

2
mv2, (3)
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Fig. 7: Schematic view of the Widerøe principle as a fundamental concept for AC (or RF) acceleration

Fig. 8: The frequency (and hence the period) of the RF system and the particle speed determine the length of the
drift tubes in the Widerøe structure.

Fig. 9: Unilac at GSI, Darmstadt; clearly visible are the structure of the drift tubes and their increasing length as a
function of the particle energy.

we obtain directly that

ln =
1

νrf
·
√
nqU0 sinψs

2m
, (4)

which defines the design concept of the machine. Figure 9 shows a photograph of such a device, the
Unilac at the Institute for Heavy Ion Research (GSI) in Darmstadt, Germany.

Two remarks should be made in this context.

– The short derivation here is based on the classical approach, and in fact these accelerators are
usually optimum for ‘low-energetic’ proton or heavy-ion beams. Typical beam energies (referring
to protons) are on the order of 10 MeV; for example, the present Linac 2 at CERN delivers the
protons for LHC operation with an energy of 50 MeV, corresponding to a relativistic β of 0.31.

– For higher energies, even in the case of protons or ions, the speed will at some point approach the
speed of light, and the length of the drift tubes and hence the dimension of the whole accelerator
will reach a size that may no longer be feasible. More advanced ideas are needed in order to keep
the machine within reasonable dimensions, and the next natural step in the historical development
was to introduce magnetic fields and bend the particle beam into a circle.

5

INTRODUCTION TO PARTICLE ACCELERATORS AND THEIR LIMITATIONS

33



2 Pushing for the highest energies: synchrotrons and storage rings
A significant step forward in achieving high beam energies involves the use of circular structures. In
order to apply over and over again the accelerating fields, we try to bend the particles onto a circular path
and so bring them back to the RF structure where they will receive the next step-up in energy. To do this,
we introduce magnetic (or electric) fields that will deflect the particles and keep them on a well-defined
orbit during the complete acceleration process. The Lorentz force that acts on a particle will therefore
have to compensate exactly the centrifugal force due to the bent orbit. In general, we can write

F = q · (E + v ×B). (5)

For high-energy particle beams, the velocity v is close to the speed of light and so represents a nice
amplification factor whenever we apply a magnetic field. As a consequence, it is much more convenient
to use magnetic fields for bending and focusing the particles.

Therefore, neglecting electric fields for the moment, we write the Lorentz force and the centrifugal
force of the particle on its circular path as

FLorentz = e · v ·B, (6)

Fcentrifugal =
γm0v

2

ρ
. (7)

Assuming an idealized homogeneous dipole oriented along the particle orbit, we define the condition for
a perfect circular orbit as equality between these two forces; this yields the following condition for the
idealized ring:

p

e
= B · ρ, (8)

where we refer to protons and have accordingly set q = e. This condition relates the so-called beam
rigidity Bρ to the particle momentum that can be carried in the storage ring, and it will ultimately define,
for a given magnetic field of the dipoles, the size of the storage ring.

In reality, instead of a continuous dipole field the storage ring will be built out of several dipoles,
powered in series to define the geometry of the ring. For a single magnet, the particle trajectory is shown
schematically in Fig. 10. In the free space outside the dipole magnet, the particle trajectory follows a
straight line. As soon as the particle enters the magnet, it is bent onto a circular path until it leaves the
magnet at the other side.

Fig. 10: Dipole field of a storage ring and schematic path of the particles
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2.1 Limit IV: The magnetic guide field
The overall effect of the main bending (or ‘dipole’) magnets in the ring is to define a more or less circular
path, which we will call the ‘design orbit’. By definition, this design orbit has to be a closed loop, and
so the main dipole magnets in the ring have to define a bending angle of exactly 2π overall. If α denotes
the bending angle of a single magnet, then

α =
ds

ρ
=
B ds

B · ρ. (9)

We therefore require that ∫
B dl

B · ρ = 2π. (10)

Thus, a storage ring is not a ‘ring’ in the true sense of the word but more a polygon, where ‘poly’ means
the discrete number of dipole magnets installed in the ‘ring’.

In the case of the LHC, the dipole field has been pushed to the highest achievable values; 1232
superconducting dipole magnets, each of length 15 m, define the geometry of the ring and, via Eq. (10),
the maximum momentum for the stored proton beam. Using the equation given above, for a maximum
momentum of p = 7 TeV/c we obtain a required magnetic field of

B =
2π · 7000 · 109 eV

1232 · 15 m · 2.99792 · 108 m s−1
, (11)

or
B = 8.33T, (12)

to bend the beams. For convenience we have expressed the particle momentum in units of GeV/c. Fig-
ure 11 shows a photograph of the LHC dipole magnets, built out of superconducting NbTi filaments,
which are operated at a temperature of T = 1.9 K.

Fig. 11: Superconducting quadrupole of the LHC storage ring

2.2 Focusing properties
In addition to the main bending magnets that guide the beam onto a closed orbit, focusing fields are
needed to keep the particles close together. In modern storage rings and light sources, the particles are
kept in the machine for many hours, and a carefully designed focusing structure is needed to maintain
the necessary beam size at different locations in the ring.

Following classical mechanics, linear restoring forces are needed, just as in the case of a harmonic
pendulum. Quadrupole magnets provide the corresponding property: they create a magnetic field that
depends linearly on the particle amplitude, i.e. the distance of the particle from the design orbit:

Bx = g · y, By = g · x. (13)
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The constant g is called the gradient of the magnetic field and characterizes the focusing strength of the
magnetic lens in both transverse planes. For convenience it is (like the dipole field) normalized to the
particle momentum. The normalized gradient is denoted by k and defined as

k =
g

p/e
=

g

Bρ
. (14)

The technical layout of such a quadrupole is depicted in Fig. 11. As in the case of the LHC dipoles, the
quadrupole magnet is built in superconducting technology.

Now that we have defined the basic building blocks of a storage ring, we need to arrange them in
a so-called magnet lattice and optimize the field strengths in such a way as to obtain the required beam
parameters. An example of what such a magnet lattice looks like is given in Fig. 12. This photograph
shows the dipole (orange) and quadrupole (red) magnets in the TSR storage ring in Heidelberg. Eight
dipoles are used to bend the beam in a ‘circle’, and the quadrupole lenses between them provide the
focusing to keep the particles within the aperture limits of the vacuum chamber.

Fig. 12: TSR storage ring, Heidelberg, as a typical example of a separate-function strong focusing storage ring

A general design principle of modern synchrotrons or storage rings should be pointed out here.
In general, these machines are built following a so-called separate-function scheme: every magnet is
designed and optimized for a certain task, such as bending, focusing, chromatic correction, and so on.
We separate the magnets in the design according to the job they are supposed to do; only in rare cases
a combined-function scheme is chosen, where different magnet properties are combined in one piece of
hardware. To express this mathematically, we use the general Taylor expansion of the magnetic field,

B(x)

p/e
=

1

ρ
+ k · x+

1

2!
mx2 +

1

3!
nx3 + · · · . (15)

Following the arguments above, for the moment we take into account only constant (dipole) or linear
(quadrupole) terms. The higher-order field contributions will be treated later as (hopefully) small pertur-
bations.

The particles will now follow the ‘circular’ path defined by the dipole fields, and in addition will
undergo harmonic oscillations in both transverse planes. The situation is shown schematically in Fig. 13.
An ideal particle will follow the design orbit that is represented by the circle in the diagram. Any other
particle will perform transverse oscillations under the influence of the external focusing fields, and the
amplitude of these oscillations will ultimately define the beam size.

Unlike a classical harmonic oscillator, however, the equations of motion in the horizontal and
vertical planes differ somewhat. Assuming a horizontal focusing magnet, the equation of motion is

x′′ + x ·
(

1

ρ2
+ k

)
= 0, (16)
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Fig. 13: Coordinate system used in particle beam dynamics; the longitudinal coordinate s moves around the ring
with the particle considered.

where k is the normalized gradient introduced above and the 1/ρ2 term represents the so-called weak
focusing, which is a property of the bending magnets. In the vertical plane, on the other hand, due to
the orientation of the field lines and by Maxwell’s equations, the forces instead have a defocusing effect;
also, the weak focusing term disappears:

y′′ − y · k = 0. (17)

The principal problem arising from the different directions of the Lorentz force in the two transverse
planes of a quadrupole field is sketched in Fig. 14. It is the task of the machine designer to find an
adequate solution to this problem and to define a magnet pattern that will provide an overall focusing
effect in both transverse planes.

Fig. 14: Field configuration in a quadrupole magnet and the direction of the focusing and defocusing forces in the
horizontal and vertical planes.

Following closely the example of the classical harmonic oscillator, we can write down the solutions
of the above equations of motion. For simplicity, we focus on the horizontal plane; a ‘focusing’ magnet is
therefore focusing in this horizontal plane and at the same time defocusing in the vertical plane. Starting
with initial conditions for the particle amplitude x0 and angle x′0 in front of the magnet element, we
obtain the following relations for the trajectory inside the magnet:

x(s) = x0 · cos
(√
|K| s

)
+ x′0 ·

1√
|K|

sin
(√
|K| s

)
, (18)

x′(s) = −x0 ·
√
|K| sin

(√
|K| s

)
+ x′0 · cos

(√
|K| s

)
. (19)

Here the parameter K combines the quadrupole gradient and the weak focusing effect, K = k − 1
ρ2

.
Usually these two equations are combined into a more elegant and convenient matrix form:

(
x
x′

)

s

= Mfoc

(
x
x′

)

0

, (20)
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where the matrix Mfoc contains all the relevant information about the magnet element,

Mfoc =

(
cos(

√
|K| s) 1√

|K|
sin(

√
|K| s)

−
√
|K| sin(

√
|K| s) cos(

√
|K| s)

)
.

Schematically, the situation is visualized in Fig. 15.

Fig. 15: Schematic principle of the effect of a focusing quadrupole magnet

In the case of a defocusing magnet, we obtain analogously that
(
x
x′

)

s

= Mdefoc

(
x
x′

)

0

, (21)

with

Mdefoc =

(
cosh(

√
|K| s) 1√

|K|
sinh(

√
|K| s)

√
|K| sinh(

√
|K| s) cosh(

√
|K| s)

)
;

see Fig. 16.

Fig. 16: Schematic principle of the effect of a defocusing quadrupole magnet

For completeness, we also include the case of a field-free drift. With K = 0, we obtain

Mdrift =

(
1 s
0 1

)
.

This matrix formalism allows us to combine the elements of a storage ring in an elegant way and so it is
straightforward to calculate the particle trajectories. As an example, we consider the simple case of an
alternating focusing and defocusing lattice, a so-called FODO lattice [4]; see Fig. 17.

As we know the properties of each and every element in the accelerator, we can construct the
corresponding matrices and calculate step by step the amplitude and angle of a single particle’s trajectory
around the ring. Even more conveniently, we can multiply out the different matrices and, given initial
conditions x0 and x′0, obtain directly the trajectory at any location in the ring:

Mtotal = Mfoc ·Mdrift ·Mdipole ·Mdrift ·Mdefoc · · · . (22)
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Fig. 17: A simple periodic chain of bending magnets and focusing/defocusing quadrupoles forming the basic
structure of a storage ring.

Fig. 18: Calculated particle trajectory in a simple storage ring

The trajectory thus obtained is shown schematically in Fig. 18.

We emphasize the following facts in this context.

– At each moment, or in each lattice element, the trajectory is a part of a harmonic oscillation.
– However, due to the different restoring or defocusing forces, the solution will look different at each

location.
– In the linear approximation that we make use of in this context, all particles experience the same

external fields, and their trajectories will differ only because of their different initial conditions.
– There seems to be an overall oscillation in both transverse planes while the particle is travelling

around the ring. Its amplitude stays well within the boundaries set by the vacuum chamber, and
its frequency in the example of Fig. 18 is roughly 1.4 transverse oscillations per revolution, which
corresponds to the eigenfrequency of the particle under the influence of the external fields.

Coming closer to a real existing machine, we show in Fig. 19 the orbit measured during one of the
first injections into the LHC storage ring. The horizontal oscillations are plotted in the upper half of the
figure and the vertical oscillations in the lower half, on a scale of ±10 mm. Each histogram bar indicates
the value recorded by a beam position monitor at a certain location in the ring, and the orbit oscillations
are clearly visible. By counting (or, better, fitting) the number of oscillations in both transverse planes,
we obtain values of

Qx = 64.31, Qy = 59.32. (23)

These values, which describe the eigenfrequencies of the particles, are called the horizontal and vertical
tune, respectively. Knowing the revolution frequency, we can easily calculate the transverse oscillation
frequencies, which for this type of machine usually lie in the range of kHz.

As the tune characterizes the particle oscillations under the influence of all external fields, it is one
of the most important parameters of the storage ring. Therefore it is usually displayed and controlled at
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Fig. 19: Measured orbit in LHC during the commissioning of the machine

all times by the control system of such a machine. As an example, Fig. 20 shows the tune diagram of the
HERA proton ring [7]; it was obtained via a Fourier analysis of the spectrum measured from the signal
of the complete particle ensemble. The peaks indicate the two tunes in the horizontal and vertical planes
of the machine, and in a sufficiently linear machine a fairly narrow spectrum is obtained.

Fig. 20: Tune signal of a proton storage ring (HERA-p)

Briefly referring back to Fig. 18, the question is what the trajectory of the particle will look like for
the second turn, or the third, or after an arbitrary number of turns. Now, as we are dealing with a circular
machine, the amplitude and angle, x and x′, at the end of the first turn will be the initial conditions for
the second turn, and so on. After many turns the overlapping trajectories begin to form a pattern, such as
that in Fig. 21, which indeed looks like a beam having here and there a larger and smaller beam size but
still remaining well-defined in its amplitude by the external focusing forces.

Fig. 21: Many single-particle trajectories together form a pattern that corresponds to the beam size in the ring
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To make a long story short [8], a mathematical function, which we call β or amplitude function,
can be defined that describes the envelope of the single-particle trajectories. With this new variable, we
can rewrite the equation for the amplitude of a particle’s transverse oscillations as

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ), (24)

where ψ is the phase of the oscillation, φ is its initial condition, and ε is a characteristic parameter of
the single particle or, if we are considering a complete beam, of the ensemble of particles. Indeed, ε
describes the space occupied by the particle in the transverse (here simplified two-dimensional) (x, x′)
phase space. More specifically, the area in (x, x′) space that is covered by the particle is given by

A = π · ε, (25)

and, as long as we consider conservative forces acting on the particle, this area is constant according to
Liouville’s theorem. Here we take these facts as given, but we point out that, as a direct consequence,
the so-called emittance ε cannot be influenced by whatever external fields are applied; it is a property of
the beam, and we have to take it as given and handle it with care.

To be more precise, and following the usual textbook treatment of accelerators, we can draw in
phase space the ellipse of the particle’s transverse motion; see, for example, Fig. 22. While the shape
and orientation are determined by the optics function β and its derivative, α = −1

2β
′, the area covered is

constant.

Fig. 22: Ellipse in (x, x′) phase space

Let us talk a bit more about the beam as an ensemble of many (typically 1011) particles. Referring
to Eq. (24), at a given position in the ring the beam size is defined by the emittance ε and the function β.
Thus, at a certain moment in time the cosine term in (24) will be 1 and the trajectory amplitude will reach
its maximum value. Now, if we consider a particle at one standard deviation (sigma) of the transverse
density distribution, then using the emittance of this reference particle we can calculate the size of the
complete beam, in the sense that the complete area (within one sigma) of all particles in (x, x′) phase
space is surrounded (and thus defined) by our one-sigma candidate. Thus the value

√
ε · β(s) will define

the one-sigma beam size in the transverse plane. As an example, we use the values for the LHC proton
beam: in the periodic pattern of the arc, the beta function is β = 180 m and the emittance at flat-top
energy is roughly ε = 5×10−10 rad m. The resulting typical beam size is therefore 0.3 mm. Now, clearly
we would not design a vacuum aperture of the machine based on a one-sigma beam size; typically, an
aperture requirement corresponding to 12σ is a good rule to guarantee a sufficient aperture, allowing
for tolerances from magnet misalignments, optics errors and operational flexibility. In Fig. 23 the LHC
vacuum chamber is shown, including the beam screen used to protect the cold bore from synchrotron
radiation; it corresponds to a minimum beam size of 18σ.
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Fig. 23: The LHC vacuum chamber with the beam screen to shield the superconducting magnet bore from syn-
chrotron radiation.

3 Particle colliders
3.1 Limit V: Fixed-target collider
The easiest way to perform physics experiments with particle accelerators is to bang the accelerated
beam onto a target and analyse the resulting events. While nowadays in high-energy physics we do not
apply this technique any more, it still plays an essential role in the regime of atomic and nuclear physics
experiments. The advantage is that it is quite simple once the accelerator has been designed and built,
and the particles produced are easily separated due to the kinematics of the reaction. The situation is
illustrated in Fig. 24. The particle ‘a’ that is produced and accelerated in the machine is directed onto
the particle ‘b’, which is at rest in the laboratory frame. The particles produced from this collision are
labelled ‘c’ and ‘d’ in this example.

Fig. 24: Schematic diagram of fixed-target collider

While the set-up of such a scheme is quite simple, it is worth taking a closer look at the available
energy in the centre-of-mass system. The relativistic overall energy is given by

E2 = p2c2 +m2c4, (26)

which holds for a single particle but is equally valid for an ensemble of particles. Most important, the rest
energy of the particle ensemble is constant (and is sometimes called the ‘invariant mass of the system’).

Considering the system of two particles colliding, we can write

(Ecm
a + Ecm

b )2 − (pcma + pcmb )2c2 = (Elab
a + Elab

b )2 − (plaba + plabb )2c2. (27)

In the frame of the centre-of-mass system we get, by definition,

pcma + pcmb = 0, (28)

while in the laboratory frame where particle ‘b’ is at rest we have simply

plabb = 0. (29)

14

B. HOLZER

42



The equation for the invariant mass therefore simplifies to

W 2 = (Ecm
a + Ecm

b )2 = (Elab
a +mb · c2)2 − (plaba · c2). (30)

In other words, the energy that is available in the centre-of-mass system depends on the square root of
the energy of particle ‘a’, which is the energy provided by the particle accelerator:

W ≈
√

2Elab
a ·mb · c2 (31)

—a quite unsatisfactory situation!

To meet the demand for higher and higher energies in particle collisions, the design of modern
high-energy accelerators has naturally concentrated on the development of particle colliders, where two
counter-rotating beams are brought into collision at one or several interaction points (Fig. 25).

Fig. 25: Schematic diagram of the collision of two particles with equal energy

If we calculate the available energy in the centre-of-mass system for the case of two colliding
beams of identical particles, we get

(pcma + pcmb )2 = 0 (32)

and, by symmetry, also
(plaba + plabb )2 = 0. (33)

So the full energy delivered to the particles in the accelerator is available during the collision process:

W = Elab
a + Elab

b = 2Elab
a . (34)

A ‘typical’ example of a high-energy physics event in such a collider is shown in Fig. 26.

Fig. 26: ‘Typical’ event observed in a collider ring—a Higgs particle measured in the ATLAS detector

3.2 Limit VI: The unavoidable particle detectors
While it is quite clear that a particle collider ring is a magnificent machine in the quest for higher energies,
there is a small problem involved, namely the ‘particle detector’. In the arc of the storage ring we can
usually find a nice pattern of magnets providing us with a well-defined beam size, expressed as the beta
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function. However, special care has to be taken when our colleagues from high-energy physics wish to
install a particle detector. Especially when working at the energy frontier, just like for the accelerators,
these devices tend to expand considerably in size with the energies required. In Fig. 27, the largest
particle detector installed in a storage ring is shown as an impressive example: the ATLAS detector at
the LHC.

Fig. 27: ATLAS detector at the LHC, which is 46 m in length and has an overall weight of 7000 t

The storage ring has to be designed to provide the space needed for the detector hardware and at
the same time create the smallest achievable beam spots at the collision point, which is usually right in
the centre of the detector. Unfortunately these requirements are a bit contradictory. The equation for the
luminosity of a particle collider depends on the stored beam currents and the transverse spot size of the
colliding beams at the interaction point (IP):

L =
1

4πe2f0b
· I1I2
σ∗xσ∗y

. (35)

At the same time, however, the beta function in a symmetric drift grows quadratically as a function of
the distance between the beam waist and the first focusing element, i.e.

β(s) = β∗ +
s2

β∗
. (36)

The smaller the beam at the IP, the faster it will grow until we can apply—outside of the detector region—
the first quadrupole lenses. As a consequence, this trend sets critical limits on the achievable quadrupole
aperture or, for a given aperture, the achievable quadrupole gradient. The focusing lenses right before
and after the IP, being placed as closed as possible to the detector, are generally the most critical and most
expensive magnets in the machine, and their aperture requirement ultimately determines the luminosity
that can be delivered by the storage ring.

For the experts we would like to add that even if the bare aperture requirement can be fulfilled,
the resulting chromaticity that is created in the mini-beta insertion and the sextupole strengths that are
needed to correct for it usually pose the next limit that we will face.

3.3 Limit VII: The relative rareness of Nobel prize-winning reactions
The rate of events produced in a particle collision process depends not only on the performance of the
colliding beams but first and foremost on the probability of creating such an event, the so-called cross-
section of the process. In the case of the Higgs particle, which is without doubt the highlight of LHC
Run 1, the overall cross-section is displayed in Fig. 28.
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Fig. 28: Cross-section of the Higgs particle for different production processes, courtesy of the CMS collaboration

Without going into details, we can state that the cross-section for Higgs production is on the order
of

Σreact ' 1 pb. (37)

During the three years of LHC Run 1, i.e. the period 2011–2013, an overall luminosity of
∫
Ldt = 25 fb−1 (38)

was accumulated.

Combining these two numbers using the fact that the event rate of a reaction is R = L · Σreact,
we get a total number of ‘some thousand’ Higgs particles produced—for a Nobel prize-winning event
just at the edge of reliable statistics. Therefore, the particle colliders have to be optimized not only for
the highest achievable energies but also for maximum stored beam currents and small spot sizes at the
interaction points so as to optimize the luminosity of the machine.

3.4 Limit VIII: The luminosity of a collider ring
Following the arguments above, the design goal here is to prepare, accelerate and store two counter-
rotating particle beams in order to profit best from the energy of the two beams during the collision
process. Still, there is a price to pay: unlike in fixed-target experiments, where the ‘particle’ density
of the target material is extremely high, in the case of two colliding beams the event rate is basically
determined by the transverse particle density that can be achieved at the IP. Assuming Gaussian density
distributions in both transverse planes, the performance of such a collider is described by the luminosity

L =
1

4πe2f0b
· I1I2
σ∗xσ∗y

. (39)

While the revolution frequency f0 and the bunch number b are ultimately determined by the size of the
machine, the stored beam currents I1 and I2 and the beam sizes σ∗x and σ∗y at the IP have their own
limitations.

The most serious limitation comes from the beam–beam interaction itself. During the collision
process, individual particles of the counter-rotating bunches feel the space charge of the opposing bunch.
In the case of a proton–proton collider, this strong field acts like a defocusing lens, and has a strong
impact on the tune of the bunches [9].

In Fig. 29 the situation is shown schematically. Two bunch trains collide at the IP, and during the
collision process a direct beam–beam effect is observed. In addition to that, before and after the actual
collision, long-range forces exist between the bunches that have a nonlinear component; see Fig. 30.
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As a consequence [9], the tune of the beams is not only shifted with respect to the natural tune of the
machine but also spread out, as different particles inside the bunches see different contributions from the
beam–beam interaction.

Fig. 29: Schematic view of the beam–beam interaction during the crossing of bunch trains

Fig. 30: Beam–beam force as a function of the transverse distance of the particle to the centre of the opposing
bunch.

Therefore, in the tune diagram, we no longer obtain a single spot representing the ensemble of
particles, but rather a large array that depends in shape, size and orientation on the particle densities, the
distance of the bunches at the long-range encounters, and the single-bunch intensities. The effect has
been calculated for the LHC and is displayed in Fig. 31.

In a number of cases a useful approximation can be applied, as for distances of about 1–2σ, the
beam–beam force in Fig. 30 can be linearized and acts like a quadrupole lens. Accordingly, a tune shift
can be calculated to characterize the strength of the beam–beam effect in a collider. Given the parameters
described above, and introducing the classical particle radius rp, the amplitude function β∗ at the IP and
the Lorentz factor γ, we can express the tune shift due to the linearized beam–beam effect as

∆Qy =
β∗y · rp ·Np

2π γ(σx + σy)σy
. (40)

In the case of the LHC, the design value of the beam–beam tune shift is ∆Q = 0.0033, and in daily op-
eration the machine is optimized to run close to this value, which places the ultimate limit on achievable
bunch intensities in the collider.

4 Lepton colliders
4.1 Limit IX: Synchrotron light—the drawback of electron storage rings
In proton or heavy-ion storage rings, the design can more or less follow the rules discussed above. But
the situation changes drastically as the particles become more and more relativistic. Bent on a circular
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Fig. 31: Calculated tune shift due to beam–beam interaction in the LHC

path, electrons in particular will radiate an intense light, the so-called synchrotron radiation, which will
have a strong influence on the beam parameters as well as on the design of the machine.

Summarizing the situation briefly here, the power loss due to synchrotron radiation depends on
the bending radius and the energy of the particle beam:

Ps =
2

3
α~c2

γ4

ρ2
, (41)

where α represents the fine structure constant and ρ the bending radius in the dipole magnets of the ring.
As a consequence, the particles will lose energy turn by turn. To compensate for these losses, RF power
has to be supplied to the beam at any moment. An example that illustrates the problem nicely is shown in
Fig. 32. It plots the horizontal orbit of the former Large Electron–Positron Collider (LEP) storage ring.
The electrons, travelling from right to left in the plot, lose a considerable amount of energy in each arc
and hence deviate from the ideal orbit towards the inner side of the ring. The effect on the orbit is large:
up to 5 mm orbit deviation was observed in the example of Fig. 32. In order to compensate for these
losses, four RF stations were installed in the straight sections of the ring to supply the necessary power.

Fig. 32: Measured horizontal orbit of the LEP electron beam; due to synchrotron radiation losses, the particle orbit
is shifted towards the inner side of the ring in each arc.

The strong dependence of the synchrotron radiation losses on the relativistic γ factor sets severe
limits on the beam energy that can be carried in a storage ring of a given size. The push for ever higher
energies means either that storage rings even larger than LEP need to be designed or, to avoid synchrotron
radiation, linear accelerating structures should be developed.
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Currently, the next generation of particle colliders is being studied [10]. The ring design of the
future circular collider (FCC) foresees a 100 km ring to carry electrons (and positrons) of up to 175 GeV
energy. The size of this storage ring is far beyond the dimensions of anything that has been designed up
to now. A sketch of the machine layout is given in Fig. 33, where the yellow dashed circle delineates the
100 km ring and the white circle represents the little LHC machine.

Fig. 33: Schematic view of a possible 100 km FCC design in the Geneva region

For the maximum projected electron energy of E = 175 GeV, synchrotron radiation would cause
an energy loss of 8.6 GeV, or an overall power of 47 MW of the radiated light at full beam intensity.

4.2 Limit X: Acceleration gradients in linear structures
As far as lepton beams are concerned, ring colliders suffer from the severe limitation caused by syn-
chrotron radiation losses, and at a certain point the construction of such large facilities would not seem
reasonable any more. To avoid the problem of synchrotron radiation, linear structures that were discussed
earlier and used in the infancy of particle accelerators have become in vogue again. Still, the advantage
of circular colliders cannot be completely ignored: even with a modest acceleration gradient in the RF
structures, the particles will get turn by turn a certain boost in energy and will at some point reach the
desired flat-top energy in the ring.

In a linear accelerator, this kind of repetitive acceleration is by design not possible; within a single
pass through the machine, the particles will have to be accelerated to full energy. In order to keep the
structure compact, the highest acceleration gradients will therefore be needed. One of the most prominent
designs proposed for a possible future collider is the CLIC design [11]. Within one passage through the
25 km long accelerator, the electron beam will get up to 3 TeV, and the same is true for the opposing
positron beam. An artist’s rendering of this machine is shown in Fig. 34.

Fig. 34: Proposed location of the CLIC linear collider along the Jura mountains in the Geneva region

The main parameters of the CLIC design are listed in Table 1. The accelerating gradient, i.e.
the energy gain per meter, is especially to be emphasized; it has been pushed to the maximum value
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that is technically feasible, and the limit is ultimately due to the breakdown of the electric field in the
accelerating structure.

Table 1: Main parameters of the CLIC study

500 GeV 3 TeV
Site length 13 km 48 km
Loaded acceleration gradient (MV m−1) 12
Beam power per beam (MW) 4.9 14
Bunch charge (109 e+/e) 6.8 3.7
Horizontal/vertical normalized emittance (10−6/10−9 m) 2.4/25 0.66/20
Beta function (mm) 10/0.07
Beam size at IP: horizontal/vertical (nm) 45/1

Luminosity (cm−2 s−1) 2.3× 1034 5.9× 1034

A picture of such a CLIC-type structure is shown in Fig. 35. On the right-hand side is an electron
microscope photo of the surface after a voltage breakdown. At the spot of the sparking, a little crater can
be seen, indicating possible damage to the surface and, as a consequence, deterioration of the achievable
gradient which has to be avoided under all circumstances [12]. Although considerably higher than the
typical values in circular machines, the gradient Eacc = 100 MV m−1 in a linear machine still leads to
a design of overall length approximately 50 km for a maximum achievable energy of Emax = 3 TeV.

5 Conclusion
To summarize, for future lepton ring colliders (or, to be more precise, electron–positron colliders), syn-
chrotron radiation losses set a severe limit on the achievable beam energy; and very soon the size of the
machines will become uneconomical. For a given limit in synchrotron radiation power, the dimensions of
the machine would have to grow quadratically with the beam energy. Linear colliders are therefore pro-
posed as the preferred way to go. In this case, the maximum achievable acceleration gradient is the key
issue. New acceleration methods, namely plasma-based set-ups in which gradients have been observed
that are much higher than those seen with conventional techniques, are a most promising concept for the
design of future colliders. An impressive example is shown in Fig. 36: within a plasma cell of only a
few centimetres in length, electrons are accelerated to several GeV. The gradients achievable are orders
of magnitude higher than in any conventional machine (see, e.g., Ref. [13]). Still, there are problems to
overcome, such as issues with overall efficiency, beam quality (mainly the energy spread of the beam),
and the achievable repetition rate. Nevertheless, we are convinced that this is a promising field worthy
of much further study—and this is what the present school is about.

Fig. 35: Accelerating structure of the CLIC test facility CTF3; the electron microscope photo on the right shows
the damage to the surface due to discharges in the module.
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Fig. 36: Electron beam accelerated in the wake potential of a plasma cell; up to 4 GeV is obtained within only a
few centimetres of length [13].
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Introduction to Plasma Physics

P. Gibbon
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Abstract
These notes are intended to provide a brief primer in plasma physics, intro-
ducing common definitions, basic properties, and typical processes found in
plasmas. These concepts are inherent in contemporary plasma-based accelera-
tor schemes, and thus provide a foundation for the more advanced expositions
that follow in this volume. No prior knowledge of plasma physics is required,
but the reader is assumed to be familiar with basic electrodynamics and fluid
mechanics.

Keywords
Plasma properties; 2-fluid model; Langmuir waves; electromagnetic wave prop-
agation; dispersion relation; nonlinear waves.

1 Plasma types and definitions
Plasmas are often described as the fourth state of matter, alongside gases, liquids and solids, a definition
which does little to illuminate their main physical attributes. In fact, a plasma can exhibit behaviour
characteristic of all three of the more familiar states, depending on its density and temperature, so we
obviously need to look for other distinguishing features. A simple textbook definition of a plasma [1,
2] would be: a quasi-neutral gas of charged particles showing collective behaviour. This may seem
precise enough, but the rather fuzzy-sounding terms of ‘quasi-neutrality’ and ‘collectivity’ require further
explanation. The first of these, ‘quasi-neutrality’, is actually just a mathematical way of saying that even
though the particles making up a plasma consist of free electrons and ions, their overall charge densities
cancel each other in equilibrium. So if ne and ni are, respectively, the number densities of electrons and
ions with charge state Z, then these are locally balanced, i.e.

ne ' Zni. (1)

The second property, ‘collective’ behaviour, arises because of the long-range nature of the 1/r
Coulomb potential, which means that local disturbances in equilibrium can have a strong influence on
remote regions of the plasma. In other words, macroscopic fields usually dominate over short-lived
microscopic fluctuations, and a net charge imbalance ρ = e(Zni − ne) will immediately give rise to an
electrostatic field according to Gauss’s law,

∇ ·E = ρ/ε0.

Likewise, the same set of charges moving with velocities ve and vi will give rise to a current density
J = e(Znivi − neve). This in turn induces a magnetic field according to Ampères law,

∇×B = µ0J.

It is these internally driven electric and magnetic fields that largely determine the dynamics of the plasma,
including its response to externally applied fields through particle or laser beams—as, for example, in
the case of plasma-based accelerator schemes.

Now that we have established what plasmas are, it is natural to ask where we can find them. In fact
they are rather ubiquitous: in the cosmos, 99% of the visible universe—including stars, the interstellar
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medium and jets of material from various astrophysical objects—is in a plasma state. Closer to home,
the ionosphere, extending from around 50 km (equivalent to 10 Earth radii) to 1000 km, provides vital
protection from solar radiation to life on Earth. Terrestrial plasmas can be found in fusion devices
(machines designed to confine, ignite and ultimately extract energy from deuterium–tritium fuel), street
lighting, industrial plasma torches and etching processes, and lightning discharges. Needless to say,
plasmas play a central role in the topic of the present school, supplying the medium to support very large
travelling-wave field structures for the purpose of accelerating particles to high energies. Table 1 gives a
brief overview of these various plasma types and their properties.

Table 1: Densities and temperatures of various plasma types

Type Electron density Temperature
ne (cm−3) Te (eVa)

Stars 1026 2× 103

Laser fusion 1025 3× 103

Magnetic fusion 1015 103

Laser-produced 1018–1024 102–103

Discharges 1012 1–10
Ionosphere 106 0.1
Interstellar medium 1 10−2

a 1 eV ≡ 11 600 K.

1.1 Debye shielding
In most types of plasma, quasi-neutrality is not just an ideal equilibrium state; it is a state that the plasma
actively tries to achieve by readjusting the local charge distribution in response to a disturbance. Consider
a hypothetical experiment in which a positively charged ball is immersed in a plasma; see Fig. 1. After
some time, the ions in the ball’s vicinity will be repelled and the electrons will be attracted, leading to an
altered average charge density in this region. It turns out that we can calculate the potential φ(r) of this
ball after such a readjustment has taken place.

Fig. 1: Debye shielding of charged spheres immersed in a plasma

First of all, we need to know how fast the electrons and ions actually move. For equal ion and
electron temperatures (Te = Ti), we have

1

2
mev

2
e =

1

2
miv

2
i =

3

2
kBTe. (2)
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Therefore, for a hydrogen plasma, where Z = A = 1,

vi
ve

=

(
me

mi

)1/2

=

(
me

Amp

)1/2

=
1

43
.

In other words, the ions are almost stationary on the electron time-scale. To a good approximation, we
often write

ni ' n0, (3)

where n0 = NAρm/A is the material (e.g. gas) number density, with ρm being the usual mass density and
NA the Avogadro constant. In thermal equilibrium, the electron density follows a Boltzmann distribution
[1],

ne = ni exp(eφ/kBTe), (4)

where ni is the ion density, kB is the Boltzmann constant, and φ(r) is the potential created by the external
disturbance. From Gauss’s law (Poisson’s equation), we can also write

∇2φ = − ρ

ε0
= − e

ε0
(ni − ne). (5)

So now we can combine (5) with (4) and (3) in spherical geometry1 to eliminate ne and arrive at a
physically meaningful solution:

φD =
1

4πε0

exp(−r/λD)

r
. (6)

This condition supposes that φ→ 0 at r =∞. The characteristic length-scale λD inside the exponential
factor is known as the Debye length, and is given by

λD =

(
ε0kBTe
e2ne

)1/2

= 743

(
Te
eV

)1/2( ne

cm−3

)−1/2
cm. (7)

The Debye length is a fundamental property of nearly all plasmas of interest, and depends equally on the
plasma’s temperature and density. An ideal plasma has many particles per Debye sphere, i.e.

ND ≡ ne
4π

3
λ3D � 1, (8)

which is a prerequisite for the collective behaviour discussed earlier. An alternative way of expressing
this condition is via the so-called plasma parameter,

g ≡ 1

neλ3D
, (9)

which is essentially the reciprocal ofND. Classical plasma theory is based on the assumption that g � 1,
which implies dominance of collective effects over collisions between particles. Therefore, before we
refine our plasma classification, it is worth taking a quick look at the nature of collisions between plasma
particles.

1.2 Collisions in plasmas
Where ND ≤ 1, screening effects are reduced and collisions will dominate the particle dynamics. In
intermediate regimes, collisionality is usually measured via the electron–ion collision rate, given by

νei =
π3/2neZe

4 ln Λ

21/2(4πε0)2m2
ev

3
te

s−1, (10)

1 ∇2 → 1

r2
d

dr

(
r2

dφ

dr

)
.
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where vte ≡
√
kBTe/me is the electron thermal velocity and ln Λ is a slowly varying term, called the

Coulomb logarithm, which typically takes a numerical value of order 10–20. The numerical coefficient
in expression (10) may vary between different texts depending on the definition used. Our definition is
consistent with that in Refs. [5] and [3], which define the collision rate according to the average time
taken for a thermal electron to be deflected by 90◦ via multiple scatterings from fixed ions. The collision
frequency can also be written as

νei
ωp
' Z ln Λ

10ND
with ln Λ ' 9ND/Z,

where ωp is the electron plasma frequency defined below in Eq. (11).

1.3 Plasma classification
Armed with our definition of plasma ideality, Eq. (8), we can proceed to make a classification of plasma
types in density–temperature space. This is illustrated for a few examples in Fig. 2; the ‘accelerator’ plas-
mas of interest in the present school are found in the middle of this chart, having densities corresponding
to roughly atmospheric pressure and temperatures of a few eV (104 K) as a result of field ionization; see
Section 1.5.

Fig. 2: Examples of plasma types in the density–temperature plane

1.4 Plasma oscillations
So far we have considered characteristics, such as density and temperature, of a plasma in equilibrium.
We can also ask how fast the plasma will respond to an external disturbance, which could be due to
electromagnetic waves (e.g. a laser pulse) or particle beams. Consider a quasi-neutral plasma slab in
which an electron layer is displaced from its initial position by a distance δ, as illustrated in Fig. 3. This
creates two ‘capacitor’ plates with surface charge σ = ±eneδ, resulting in an electric field

E =
σ

ε0
=
eneδ

ε0
.

The electron layer is accelerated back towards the slab by this restoring force according to

me
dv

dt
= −me

d2δ

dt2
= −eE =

e2neδ

ε0
,
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Fig. 3: Slab or capacitor model of an oscillating electron layer

or
d2δ

dt2
+ ω2

p δ = 0

where

ωp ≡
(
e2ne
ε0me

)1/2

' 5.6× 104
(

ne

cm−3

)1/2

s−1 (11)

is the electron plasma frequency.

This quantity can be obtained via another route by returning to the Debye sheath problem of
Section 1.1 and asking how quickly it would take the plasma to adjust to the insertion of the foreign
charge. For a plasma of temperature Te, the response time to recover quasi-neutrality is just the ratio of
the Debye length to the thermal velocity vte ≡

√
kBTe/me; that is,

tD '
λD
vte

=

(
ε0kBTe
e2ne

· m

kBTe

)1/2

= ω−1p .

Fig. 4: Response time to form a Debye sheath

If the plasma response time is shorter than the period of a external electromagnetic field (such as
a laser), then this radiation will be shielded out. To make this statement more quantitative, consider the
ratio

ω2
p

ω2
=

e2ne
ε0me

· λ2

4π2c2
.
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Setting this to unity defines the wavelength λµ for which ne = nc, or

nc ' 1021λ−2µ cm−3. (12)

Radiation with wavelength λ > λµ will be reflected. In the pre-satellite/cable era, this property was
exploited to good effect in the transmission of long-wave radio signals, which utilizes reflection from the
ionosphere to extend the range of reception.

Typical gas jets have P ∼ 1 bar and ne = 1018–1019 cm−3, and the critical density for a glass laser
is nc(1µ) = 1021 cm−3. Gas-jet plasmas are therefore underdense, since ω2/ω2

p = ne/nc � 1. In this
case, collective effects are important if ωpτint > 1, where τint is some characteristic interaction time, such
as the duration of a laser pulse or particle beam entering the plasma. For example, if τint = 100 fs and
ne = 1017 cm−3, then ωpτint = 1.8 and we will need to consider the plasma response on the interaction
time-scale. Generally this is the situation we seek to exploit in all kinds of plasma applications, including
short-wavelength radiation, nonlinear refractive properties, generation of high electric/magnetic fields
and, of course, particle acceleration.

(a) (b)

Fig. 5: (a) Overdense plasma, with ω < ωp, showing mirror-like behaviour. (b) Underdense plasma, with ω > ωp,
which behaves like a nonlinear refractive medium.

1.5 Plasma creation
Plasmas are created via ionization, which can occur in several ways: through collisions of fast particles
with atoms; through photoionization by electromagnetic radiation; or via electrical breakdown in strong
electric fields. The latter two are examples of field ionization, which is the mechanism most relevant to
the plasma accelerator context. To get some idea of when field ionization occurs, we need to know the
typical field strength required to strip electrons away from an atom. At the Bohr radius

aB =
~2

me2
= 5.3× 10−9 cm,

the electric field strength is
Ea =

e

4πε0a2B
' 5.1× 109 V m−1. (13)

This threshold can be expressed as the so-called atomic intensity,

Ia =
ε0cE

2
a

2
' 3.51× 1016 W cm−2. (14)

A laser intensity of IL > Ia will therefore guarantee ionization for any target material, though in fact
ionization can occur well below this threshold (e.g. around 1014 W cm−2 for hydrogen) due to multipho-
ton effects. Simultaneous field ionization of many atoms produces a plasma with electron density ne and
temperature Te ∼ 1–10 eV.
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1.6 Relativistic threshold
Before we discuss wave propagation in plasmas, it is useful to have some idea of the strength of the
external fields used to excite them. To do this, we consider the classical equation of motion for an
electron exposed to a linearly polarized laser field E = ŷE0 sinωt:

dv

dt
' −eE0

me
sinωt.

This implies that the electron will acquire a velocity

v =
eE0

meω
cosωt = vosc cosωt, (15)

which is usually expressed in terms of a dimensionless oscillation amplitude

a0 ≡
vosc
c
≡ posc

mec
≡ eE0

meωc
. (16)

In many articles and books a0 is referred to as the ‘quiver’ velocity or momentum; it can exceed unity,
in which case the normalized momentum (third expression) is more appropriate, since the real particle
velocity is just pinned to the speed of light. The laser intensity IL and wavelength λL are related to E0

and ω through

IL =
1

2
ε0cE

2
0 , λL =

2πc

ω
.

By substituting these into (16) one can show that

a0 ' 0.85(I18λ
2
µ)1/2, (17)

where
I18 =

IL
1018 W cm−2

, λµ =
λL
µm

.

From this expression it can be seen that we will have relativistic electron velocities, or a0 ∼ 1, for
intensities IL ≥ 1018 W cm−2, at wavelengths λL ' 1 µm.

2 Wave propagation in plasmas
The theory of wave propagation is an important subject in its own right, and has inspired a vast body of
literature and a number of textbooks [4, 5, 8]. There are a great many possible ways in which plasmas
can support waves, depending on the local conditions, the presence of external electric and magnetic
fields, and so on. Here we will concentrate on two main wave forms: longitudinal oscillations of the
kind we have encountered already, and electromagnetic waves. To derive and analyse wave phenomena,
there are several possible theoretical approaches, with the suitability of each depending on the length-
and time-scales of interest, which in laboratory plasmas can range from nanometres to metres and from
femtoseconds to seconds. These approaches are:

(i) first-principles N -body molecular dynamics;
(ii) phase-space methods—the Vlasov–Boltzmann equation;

(iii) two-fluid equations;
(iv) magnetohydrodynamics (single magnetized fluid).

The first is rather costly and limited to much smaller regions of plasma than usually needed to describe
the common types of wave. Indeed, the number of particles needed for first-principles modelling of
a tokamak would be around 1021; a laser-heated gas requires 1020 particles, still way out of reach of
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even the most powerful computers available. Clearly a more tractable model is needed, and in fact
many plasma phenomena can be analysed by assuming that each charged particle component of density
ns and velocity us behaves in a fluid-like manner, interacting with other species (s) via the electric and
magnetic fields; this is the idea behind approach (iii). The rigorous way to derive the governing equations
in this approximation is via kinetic theory, starting from method (ii) [2, 5], which is beyond the scope
of this paper. Finally, slow wave phenomena on more macroscopic, ion time-scales can be handled with
approach (iv) [2].

For the present purposes, we therefore start from the two-fluid equations for a plasma with finite
temperature (Te > 0) that is assumed to be collisionless (νie ' 0) and non-relativistic, so that the fluid
velocities are such that u� c. The equations governing the plasma dynamics under these conditions are

∂ns
∂t

+∇ · (nsus) = 0, (18)

nsms
dus
dt

= nsqs(E + us ×B)−∇Ps, (19)

d

dt
(Psn

−γs
s ) = 0, (20)

where Ps is the thermal pressure of species s and γs the specific heat ratio, or (2 + N)/N with N the
number of degrees of freedom.

The continuity equation (18) tells us that (in the absence of ionization or recombination) the num-
ber of particles of each species is conserved. Noting that the charge and current densities can be written
as ρs = qsns and Js = qsnsus, respectively, Eq. (18) can be rewritten as

∂ρs
∂t

+∇ · Js = 0, (21)

which expresses the conservation of charge.

Equation (19) governs the motion of a fluid element of species s in the presence of electric and
magnetic fields E and B. In the absence of fields, and assuming strict quasi-neutrality (ne = Zni =
n; ue = ui = u), we recover the more familiar Navier–Stokes equations

∂ρ

∂t
+∇ · (ρu) = 0,

(22)
∂u

∂t
+ (u · ∇)u =

1

ρ
∇P.

By contrast, in the plasma accelerator context we usually deal with time-scales over which the ions can be
assumed to be motionless, i.e. ui = 0, and also unmagnetized plasmas, so that the momentum equation
reads

neme
due

dt
= −e neE−∇Pe. (23)

Note that E can include both external and internal field components (via charge separation).

2.1 Longitudinal (Langmuir) waves
A characteristic property of plasmas is their ability to transfer momentum and energy via collective
motion. One of the most important examples of this is the oscillation of electrons against a stationary ion
background, or Langmuir waves. Returning to the two-fluid model, we can simplify (18)–(20) by setting
ui = 0, restricting the electron motion to one dimension (x) and taking ∂

∂y = ∂
∂z = 0:

∂ne
∂t

+
∂

∂x
(neue) = 0,
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ne

(
∂ue
∂t

+ ue
∂ue
∂x

)
= − e

m
neE −

1

m

∂Pe

∂x
, (24)

d

dt

(
Pe

nγee

)
= 0.

The system (24) has three equations and four unknowns. To close it, we need an expression for the
electric field, which, since B = 0, can be found from Gauss’s law (Poisson’s equation) with Zni = n0:

∂E

∂x
=

e

ε0
(n0 − ne). (25)

The system of equations (24)–(25) is nonlinear and, apart from a few special cases, cannot be solved ex-
actly. A common technique for analysing waves in plasmas is to linearize the equations, which involves
assuming that the perturbed amplitudes are small compared to the equilibrium values, i.e.

ne = n0 + n1,

ue = u1,

Pe = P0 + P1,

E = E1,

where n1 � n0 and P1 � P0. Upon substituting these expressions into (24)–(25) and neglecting all
products of perturbations such as n1∂tu1 and u1∂xu1, we get a set of linear equations for the perturbed
quantities:

∂n1
∂t

+ n0
∂u1
∂x

= 0,

n0
∂u1
∂t

= − e

m
n0E1 −

1

m

∂P1

∂x
, (26)

∂E1

∂x
= − e

ε0
n1,

P1 = 3kBTe n1.

The expression for P1 results from the specific heat ratio γe = 3 and from assuming isothermal back-
ground electrons, P0 = kBTen0 (ideal gas); see Kruer’s book [5]. We can now eliminate E1, P1 and u1
from (26) to get (

∂2

∂t2
− 3v2te

∂2

∂x2
+ ω2

p

)
n1 = 0, (27)

with v2te = kBTe/me and ωp given by (11) as before. Finally, we look for plane-wave solutions of the
form A = A0 exp{i(ωt−kx)}, so that our derivative operators are transformed as follows: ∂

∂t → iω and
∂
∂x → −ik. Substitution into (27) yields the Bohm–Gross dispersion relation

ω2 = ω2
p + 3k2v2te. (28)

This and other dispersion relations are often depicted graphically on a chart such as that in Fig. 6, which
gives an overview of which propagation modes are permitted for low- and high-wavelength limits.

2.2 Transverse waves
To describe transverse electromagnetic (EM) waves, we need two additional Maxwell’s equations, Fara-
day’s law and Ampère’s law, which we will introduce properly later; see Eqs. (38) and (39). For the
time being, it is helpful to simplify things by making use of our previous analysis of small-amplitude
longitudinal waves. Therefore, we linearize and again apply the harmonic approximation ∂

∂t → iω to get

∇×E1 = −iωB1, (29)
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Fig. 6: Schematic illustration of dispersion relations for Langmuir, electromagnetic and ion-acoustic waves

∇×B1 = µ0J1 + iε0µ0ωE1, (30)

where the transverse current density is given by

J1 = −n0eu1. (31)

This time we look for pure EM plane-wave solutions with E1 ⊥ k (see Fig. 7) and also assume that
the group and phase velocities are large enough, vp, vg � vte, so that we have a cold plasma with
Pe = n0kBTe ' 0.

Fig. 7: Geometry for electromagnetic plane-wave analysis

The linearized electron fluid velocity and corresponding current are then

u1 = − e

iωme
E1,

(32)

J1 =
n0e

2

iωme
E1 ≡ σE1,

where σ is the AC electrical conductivity. By analogy with dielectric media (see, e.g., Ref. [7]), in which
Ampère’s law is usually written as∇×B1 = µ0∂tD1, by substituting (32) into (39) one can show that

D1 = ε0εE1,

with

ε = 1 +
σ

iωε0
= 1−

ω2
p

ω2
. (33)

From (33) it follows immediately that

η ≡ √ε =
ck

ω
=

(
1−

ω2
p

ω2

)1/2

, (34)
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with
ω2 = ω2

p + c2k2. (35)

The above expression can also be found directly by elimination of J1 and B1 from Eqs. (29)–(32).
From the dispersion relation (35), also depicted in Fig. 6, a number of important features of EM wave
propagation in plasmas can be deduced. For underdense plasmas (ne � nc),

phase velocity vp =
ω

k
' c

(
1 +

ω2
p

2ω2

)
> c ;

group velocity vg =
∂ω

∂k
' c

(
1−

ω2
p

2ω2

)
< c .

In the opposite case of an overdense plasma, where ne > nc, the refractive index η becomes imaginary
and the wave can no longer propagate, becoming evanescent instead, with a decay length determined by
the collisionless skin depth c/ωp; see Fig. 8.
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Fig. 8: Electromagnetic fields resulting from reflection of an incoming wave by an overdense plasma slab

2.3 Nonlinear wave propagation
So far we have considered purely longitudinal or transverse waves; linearizing the wave equations en-
sures that any nonlinearities or coupling between these two modes is excluded. While this is a reason-
able approximation for low-amplitude waves, it is inadequate for decscribing strongly driven waves in
the relativistic regime of interest in plasma accelerator schemes. The starting point of most analyses
of nonlinear wave propagation phenomena is the Lorentz equation of motion for the electrons in a cold
(Te = 0) unmagnetized plasma, together with Maxwell’s equations [5,6]. We make two further assump-
tions: (i) that the ions are initially singly charged (Z = 1) and are treated as an immobile (vi = 0),
homogeneous background with n0 = Zni; (ii) that thermal motion can be neglected, since the tempera-
ture remains low compared to the typical oscillation energy in the laser field (vosc � vte). The starting
equations (in SI units) are then as follows:

∂p

∂t
+ (v · ∇)p = −e(E + v ×B), (36)

∇ ·E =
e

ε0
(n0 − ne), (37)

∇×E = −∂B

∂t
, (38)

c2∇×B = − e

ε0
nev +

∂E

∂t
, (39)
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∇ ·B = 0, (40)

where p = γmev and γ = (1 + p2/m2
ec

2)1/2.

To simplify matters, we first assume a plane-wave geometry like that in Fig. 7, with the transverse
electromagnetic fields given by EL = (0, Ey, 0) and BL = (0, 0, Bz). From Eq. (36), the transverse
electron momentum is then simply

py = eAy, (41)

where Ey = ∂Ay/∂t. This relation expresses conservation of canonical momentum. Substituting
E = −∇φ− ∂A/∂t and B = ∇×A into Ampère’s equation (39) yields

c2∇× (∇×A) +
∂2A

∂t2
=

J

ε0
−∇∂φ

∂t
,

where the current is given by J = −enev. Now we use a bit of vectorial wizardry, splitting the current
into rotational (solenoidal) and irrotational (longitudinal) parts,

J = J⊥ + J‖ = ∇×Π +∇Ψ,

from which we can deduce (see Jackson’s book [7]) that

J‖ −
1

c2
∇∂φ
∂t

= 0.

Finally, by applying the Coulomb gauge∇ ·A = 0 and vy = eAy/γ from (41), we obtain

∂2Ay
∂t2

− c2∇2Ay = µ0Jy = − e2ne
ε0meγ

Ay. (42)

The nonlinear source term on the right-hand side contains two important bits of physics: ne = n0 + δn,
which couples the EM wave to plasma waves, and γ =

√
1 + p2/m2

ec
2, which introduces relativistic

effects through the increased electron inertia. Taking the longitudinal component of the momentum
equation (36) gives

d

dt
(γmevx) = −eEx −

e2

2meγ

∂A2
y

∂x
.

We can eliminate vx using the x component of Ampère’s law (39):

0 = − e

ε0
nevx +

∂Ex
∂t

.

And the electron density can be determined via Poisson’s equation (37):

ne = n0 −
ε0
e

∂Ex
∂x

.

The above (closed) set of equations can in principle be solved numerically for arbitrary pump
strengths. For the moment, we simplify things by linearizing the plasma fluid quantities. Let

ne ' n0 + n1 + · · · ,
vx ' v1 + v2 + · · · ,

and neglect products of perturbations such as n1v1. This leads to
(
∂2

∂t2
+
ω2
p

γ0

)
Ex = −

ω2
pe

2meγ20

∂

∂x
A2
y. (43)
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Fig. 9: Wakefield excitation by a short-pulse laser propagating in the positive x direction in the linear regime (left)
and nonlinear regime (right).

The driving term on the right-hand side is the relativistic ponderomotive force, with γ0 = (1 + a20/2)1/2.
Some solutions of Eq. (43) are shown in Fig. 9, for low- and high-intensity laser pulses. The properties
of the wakes will be discussed in detail in other lectures, but we can already see some obvious qualitative
differences between the linear and nonlinear wave forms; the latter are typically characterized by a spiked
density profile, a sawtooth electric field, and a longer wavelength.

The coupled fluid equations (42) and (43) and their fully nonlinear counterparts describe a wide
range of nonlinear laser–plasma interaction phenomena, many of which are treated in the later lectures
of this school, including plasma wake generation, blow-out regime laser self-focusing and channelling,
parametric instabilities, and harmonic generation. Plasma-accelerated particle beams, on the other hand,
cannot be treated using fluid theory and require a more sophisticated kinetic approach, usually assisted
by numerical models solved with the aid of powerful supercomputers.
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Appendices
A Useful constants and formulae

Table A.1: Commonly used physical constants

Name Symbol Value (SI) Value (cgs)
Boltzmann constant kB 1.38× 10−23 J K−1 1.38× 10−16 erg K−1

Electron charge e 1.6× 10−19 C 4.8× 10−10 statcoul
Electron mass me 9.1× 10−31 kg 9.1× 10−28 g
Proton mass mp 1.67× 10−27 kg 1.67× 10−24 g
Planck constant h 6.63× 10−34 J s 6.63× 10−27 erg-s
Speed of light c 3× 108 m s−1 3× 1010 cm s−1

Dielectric constant ε0 8.85× 10−12 F m−1 —
Permeability constant µ0 4π × 10−7 —
Proton/electron mass ratio mp/me 1836 1836
Temperature = 1eV e/kB 11 604 K 11 604 K
Avogadro number NA 6.02× 1023 mol−1 6.02× 1023 mol−1

Atmospheric pressure 1 atm 1.013× 105 Pa 1.013× 106 dyne cm−2

Table A.2: Formulae in SI and cgs units

Name Symbol Formula (SI) Formula (cgs)

Debye length λD

(
ε0kBTe
e2ne

)1/2

m
(
kBTe

4πe2ne

)1/2

cm

Particles in Debye sphere ND
4π

3
λ3D

4π

3
λ3D

Plasma frequency (electrons) ωpe

(
e2ne
ε0me

)1/2

s−1
(

4πe2ne
me

)1/2

s−1

Plasma frequency (ions) ωpi

(
Z2e2ni
ε0mi

)1/2

s−1
(

4πZ2e2ni
mi

)1/2

s−1

Thermal velocity vte = ωpeλD

(
kBTe
me

)1/2

m s−1
(
kBTe
me

)1/2

cm s−1

Electron gyrofrequency ωc eB/me s−1 eB/me s−1

Electron–ion collision frequency νei
π3/2neZe

4 ln Λ

21/2(4πε0)2m2
ev

3
te

s−1
4(2π)1/2neZe

4 ln Λ

3m2
ev

3
te

s−1

Coulomb logarithm ln Λ ln
9ND

Z
ln

9ND

Z

14

P. GIBBON

64



Table A.3: Useful formulae, with Te in eV, ne and ni in cm−3, and wavelength λL in µm

Plasma frequency ωpe = 5.64× 104n1/2e s−1

Critical density nc = 1021λ−2L cm−3

Debye length λD = 743 T 1/2
e n−1/2e cm

Skin depth δ = c/ωp = 5.31× 105n−1/2e cm

Electron–ion collision frequency νei = 2.9× 10−6neT−3/2e ln Λ s−1

Ion–ion collision frequency νii = 4.8× 10−8Z4

(
mp

mi

)1/2

niT
−3/2
i ln Λ s−1

Quiver amplitude a0 ≡
posc
mec

=

(
Iλ2L

1.37× 1018 W cm−2 µm2

)1/2

Relativistic focusing threshold Pc = 17

(
nc
ne

)
GW
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Introduction to Plasma Accelerators: the Basics
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Abstract
In this article, we concentrate on the basic physics of relativistic plasma wave
accelerators. The generation of relativistic plasma waves by intense lasers or
electron beams in low-density plasmas is important in the quest for producing
ultra-high acceleration gradients for accelerators. A number of methods are
being pursued vigorously to achieve ultra-high acceleration gradients using
various plasma wave drivers; these include wakefield accelerators driven by
photon, electron, and ion beams. We describe the basic equations and show
how intense beams can generate a large-amplitude relativistic plasma wave
capable of accelerating particles to high energies. We also demonstrate how
these same relativistic electron waves can accelerate photons in plasmas.

Keywords
Laser; accelerators; wakefields; nonlinear theory; photon acceleration.

1 Introduction
Particle accelerators have led to remarkable discoveries about the nature of fundamental particles, pro-
viding the information that enabled scientists to develop and test the Standard Model of particle physics.
The most recent milestone is the discovery of the Higgs boson using the Large Hadron Collider—the
27 km circumference 7 TeV proton accelerator at CERN. On a different scale, accelerators have many
applications in science and technology, material science, biology, medicine, including cancer therapy,
fusion research, and industry. These machines accelerate electrons or ions to energies in the range
of tens of megaelectronvolts to tens of gigaelectronvolts. Electron beams with energies from several
gigaelectronvolts to tens of gigaelectronvolts are used to generate intense X-rays in either synchrotrons
or free electron lasers, such as the Linear Collider Light Source at Stanford or the European XFEL in
Hamburg, for a range of applications. Particle accelerators developed in the last century are approaching
the energy frontier. Today, at the terascale, the machines needed are extremely large and costly; even
the smaller-scale lower energy accelerators are not small. The size of a conventional accelerator is set
by the technology used to accelerate the particle and the final energy required. In conventional acceler-
ators, radio-frequency microwave cavities support the electric fields responsible for accelerating charged
particles. In these accelerators, owing to electrical breakdown of the walls, the electric field is limited to
about 100 MV m−1. For more than 30 years, plasma-based particle accelerators driven by either lasers or
particle beams have shown great promise, primarily because of the extremely large accelerating electric
fields that they can support, about a thousand times greater than conventional accelerators, leading to the
possibility of compact structures. These fields are supported by the collective motion of plasma electrons,
forming a space charge disturbance moving at a speed slightly below c, the speed of light in a vacuum.
This method of particle acceleration is commonly known as plasma wakefield acceleration.

Plasma-based accelerators are the brainchild of the late John Dawson and his colleagues at the Uni-
versity of California, Los Angeles, and are being investigated worldwide with a great deal of success.
Will they be a serious competitor and displace the conventional ‘dinosaur’ variety? The impressive
results that have so far been achieved show considerable promise for future plasma accelerators at the
energy frontier, as well as providing much smaller ‘table-top’ ion and electron accelerators. Research on
plasma-based accelerators is based on the seminal work by the late John Dawson and his collaborator

Published by CERN in the Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva,
Switzerland, 23–29 November 2014, edited by B. Holzer, CERN-2016-001 (CERN, Geneva, 2016)

0007–8328 – c© CERN, 2016. Published under the Creative Common Attribution CC BY 4.0 Licence.
http://dx.doi.org/10.5170/CERN-2016-001.67

67

http://dx.doi.org/10.5170/CERN-2016-001.67


Toshi Tajima [1]. The main advantage of a plasma-based accelerator is that it can support accelerating
electric fields many orders of magnitude greater than conventional devices that suffer from breakdown
of the waveguide structure, since the plasma is already ‘broken down’. The collective electric field E
supported by the plasma is determined by the electron density E ∝ n1/2, where n is the electron density,
and is known as an electron plasma wave; the collective electric fields are created by a drive beam that
may be either a laser or a charged particle beam. These electron plasma waves travel with a phase
speed close to the speed of the drive beam. The electric field strength E of the electron plasma wave
is approximately determined by the electron density, E ∝ n1/2, where n is the density in cm−3; for
example, a plasma with density 1018 cm−3 can support a field of about 109 V cm−1, a thousand times
greater than a radio-frequency accelerator. This translates to a reduction in size of the accelerator and a
reduction in cost.

The original plasma accelerator schemes investigated in the 1980s and 1990s were based on a
long-pulse laser. Short-pulse lasers did not exist because chirped pulse amplification had not yet been
demonstrated in the optical regime, only in the microwave regime. Experiments used the beat-wave
mechanism of Tajima and Dawson [1], where two laser beams with a frequency difference equal to the
plasma frequency drive a large-amplitude plasma wave. This changed when the process of chirped pulse
amplification was ported from microwaves to laser beams by Strickland and Mourou [2, 3]. Suddenly,
laser pulses could be produced that were shorter than the plasma wavelength (or skin depth) c/ωp, where
ωp is the electron plasma frequency. This led to a dramatic change in the shape of the wakefield, from a
‘density ripple’ with many periods to a one- or two-period ‘bubble-shaped’ wakefield [4, 5]. The regime
where the pulse length of the driving laser or particle beam is of the order of the plasma wavelength
is commonly called the ‘bubble’ or ‘blowout’ regime. Most laser-driven and particle-driven particle
accelerator experiments today are in this regime, and are commonly known as laser wakefield or beam-
driven plasma wakefield accelerators. In the laser wakefield accelerator, the radiation pressure of a short,
intense laser beam pushes plasma electrons forward and aside, creating a positively charged ion column.
As the laser beam passes the displaced electrons snap back, owing to the restoring force of the ions, and
overshoot, setting up a plasma density modulation behind the laser pulse. Similar plasma wakefields are
set up by relativistic charged particle beams propagating through uniform plasma. A number of reviews
on electron acceleration by laser-driven or beam-driven plasma waves have been published [6–10].

Early experiments produced beams with large energy spread, but in 2004 three independent groups
in three different countries demonstrated laser wakefield acceleration producing mono-energetic electron
beams with good emittance using short-pulse lasers [11–13], a result predicted by Pukhov and Meyer-
ter-Vehn [14] and Tsung et al. [15]. Many groups worldwide now routinely produce electron beams at
gigaelectronvolt energies using this scheme [16–18]. Similar plasma wakefields are set up by relativistic
charged particle beams propagating through uniform plasma [19, 20]. In 2007, Joshi’s group at the
University of California demonstrated acceleration of electrons in metre-long plasma columns using a
SLAC charged particle beam as a driver. This resulted in particles near the back of the electron beam
doubling their energy from 42 GeV to 85 GeV in a 1 m long lithium plasma [21]. This is a remarkable
result, since it takes 3 km of the SLAC linac to accelerate electrons to 42 GeV. The plasma beam-
driven wakefield is incorporated into the latest round of experiments at SLAC by a consortium called the
Facility for Advanced Accelerator Experimental Tests (FACET) [8]. Both electron and positron beams
are accelerated in this facility [22, 23]. Beam-driven plasma wakefields also underpin the proton beam-
driven wakefield experiment, AWAKE, which will use the proton beam from CERN’s Super Proton
Synchrotron and a 10 m long plasma column to produce gigaelectronvolt electrons [20, 24].

Today most experiments are conducted in the bubble regime. This includes experiments at the
Berkeley Laboratory Laser Accelerator Center at Lawrence Berkeley Laboratory [18,25] and the Ruther-
ford Appleton Laboratory’s Central Laser Facility [17,26,27], as well as many other laser-plasma acceler-
ator experiments around the globe. These experiments have demonstrated mono-energetic electron
beams at the gigaelectronvolt scale and planned experiments using lasers will demonstrate acceleration
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of electrons to 10 GeV. Recently, FACET experiments demonstrated high efficiency in electron beam
production, where the energy transfer from the wakefield to the accelerated bunch exceeded 30% with a
low energy spread [22]. Similar impressive results using positrons have also been demonstrated [23].

Despite the successes of these experiments, it is still necessary to improve beam quality, in par-
ticular, to produce low energy spread and low emittance, and improve beam focusing. Most of the
experiments are guided by plasma simulations that involve high-performance computing clusters. Com-
monly used simulation codes include the particle-in-cell codes Osiris [28–30], VLPL [31], Vorpal [32],
and Epoch [33]. These simulations have already predicted that between 10 and 50 GeV electron beams
can be created in one stage of a plasma accelerator.

If plasma accelerators are to take over from conventional machines, a great deal of effort still
needs to be put into efficient drivers. Suitable laser efficiencies and pulse rates seem likely with diode-
pumped lasers or with fibre lasers, but effort has to be put into these schemes to meet the requirements
necessary to drive a wakefield. For beam-driven systems, electron beams at 100 GeV and proton beams
with teraelectronvolt energies are required. These exist at the Large Hadron Collider for protons and at
FACET for electrons. For an electron–positron system, a key challenge is positron acceleration; some
groups are investigating positron acceleration in wakefields. Alternatively, an electron-proton collider or
a photon–photon (γ–γ) collider could be built, doing away with the need for positrons, thus saving time
and effort.

In the next section, we will discuss the short-pulse laser wakefield accelerator scheme. We will
present basic analytical theory that lays the groundwork for all subsequent investigations into laser-
driven and beam-driven wakefield acceleration, and provide results from particle-in-cell simulations of
three-dimensional laser wakefield acceleration.

2 The laser wakefield accelerator (LWFA)
In the laser wakefield accelerator (LWFA), a short laser pulse, whose frequency is much greater than the
plasma frequency, excites a wake of plasma oscillations (at ωp), owing to the ponderomotive force, much
like the wake of a motorboat. Since the plasma wave is not resonantly driven, as in the beat-wave, the
plasma density does not have to be of a high uniformity to produce large-amplitude waves. We start from
an intense laser pulse with electric field amplitude E0 and frequency ω0, and define a0 ≡ eE0/(meω0c).
As this pulse propagates through an underdense plasma, ω0 � ωp, the relativistic ponderomotive force
associated with the laser envelope, Fpond ' −1

2mc
2(∇a20)/

√
1 + a20, expels electrons from the region

of the laser pulse and excites electron plasma waves. These waves are generated as a result of being
displaced by the leading edge of the laser pulse. If the laser pulse length, cτL, is long compared with
the electron plasma wavelength, the energy in the plasma wave is re-absorbed by the trailing part of the
laser pulse. However, if the pulse length is approximately equal to or shorter than the plasma wavelength
cτL ' λp, the ponderomotive force excites plasma waves or wakefields, with a phase velocity equal to the
laser group velocity, which are not re-absorbed. Thus, any pulse with a sharp rise or a sharp fall on a scale
of c/ωp will excite a wake. With the development of high-brightness lasers, the laser wakefield concept
first put forward by Tajima and Dawson [1] in 1979 has now become a reality. The focal intensities of
such lasers are ≥ 1019 W cm−2, with a0 ≥ 1, which is the strong non-linear relativistic regime. Any
analysis must, therefore, be in the strong non-linear relativistic regime and a perturbation procedure is
invalid.

The maximum wake electric field amplitude generated by a plane-polarized pulse has been given
by Sprangle et al. [34] in the one-dimensional limit as Emax = 0.38a20

(
1 + a20/2

)−1/2√
n0 V cm−1. For

a0 ≈ 4 and n0 = 1018 cm−1, then Emax ≈ 2 GV cm−1, and the time to reach this amplitude level is of
the order of the laser pulse length.
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2.1 Model equations describing laser wakefield excitation
To understand the laser wakefield excitation mechanism, it is sufficient to use a model based on one-fluid,
cold relativistic hydrodynamics, and Maxwell’s equations, together with a ‘quasi-static’ approximation,
a set of two coupled non-linear equations describing the self-consistent evolution in one dimension of
the laser pulse vector potential envelope, and the scalar potential of the excited wakefield. Starting from
the equation for electron momentum,

∂p

∂t
+ vz

∂p

∂z
= −

(
eE+

1

c
v ×B

)
, (1)

where
p = m0γv, γ =

(
1 + p2/m2

0c
2
)1/2

,

m0 and v being the electron rest mass and velocity.

In Eq. (1), we have assumed that all quantities only depend on z and t, z being the direction of
propagation of the (external) pump and

E = −1

c

∂A⊥
∂z
− ẑ ∂φ

∂z
; B = ∇×A⊥; A⊥ = x̂Ax + ŷAy , (2)

where A⊥ is the vector potential of the electromagnetic pulse and φ is the ambipolar potential due to
charge separation in the plasma.

Using Eqs. (1) and (2), the perpendicular component of the electron momentum is found to be
p⊥
m0c

=
e

m0c2
A⊥ ≡ a(z, t) , (3)

and we can write

γ =

[
1 +

(
p⊥
m0c

)2

+

(
pz
m0c

)2
]1/2

≡ γaγ‖ , (4)

where
γa =

(
1 + a2

)1/2
; γ‖ =

(
1− β2

)−1/2
, (5)

and β = vz/c.

The equations derived from this model are now the longitudinal component of Eq. (1), the equation
of continuity, Poisson’s equation, and the wave equation for a(z, t), which are given by

1

c

∂

∂t

(
γa
√
γ2‖ − 1

)
+

∂

∂z

(
γaγ‖

)
=
∂φ

∂z
; ϕ ≡ eφ

m0c2
, (6)

1

c

∂n

∂t
+

∂

∂z

(
n
√
1− 1/γ2‖

)
= 0 , (7)

∂2ϕ

∂z2
=
ω2

p0

c2

(
n

n0
− 1

)
, (8)

c2
∂2a

∂z2
− ∂2a

∂t2
= ω2

p0
n

n0

a

γaγ‖
. (9)

Assuming a driving pulse of the form

a(z, t) =
1

2
a0(ξ, τ)e−iθ + c.c., (10)

where θ = ω0t−k0z, ω0 and k0 being the central frequency and wavenumber, ξ = z−vgt, vg = ∂ω0/∂k0
is the group velocity and τ is a slow time-scale, such that

a−10

∂2a0
∂τ2

� ω2
0 .
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Accounting for changes in the pump due to the plasma reaction, the wave equation becomes

[
2
∂

∂τ

(
iω0a0 + vg

∂a0
∂ξ

)
+ c2

(
1− v2g/c2

) ∂2a0
∂ξ2

+ 2iω0

(
c2k0
ω0
− vg

)
∂a0
∂ξ

]
e−iθ + c.c.

=

[
c2k20 − ω2

0 +
n

n0
ω2

p0 > γaγ‖

]
a0e−iθ + c.c. , (11)

where ωp0 is the plasma frequency of the unperturbed plasma. Equations (6), (7), (8), and (11) form the
basic set for this problem in the ‘envelope approximation’.

In the weak-pump, weakly relativistic regime, the solution has the structure of a wakefield growing
inside the electromagnetic pulse and oscillating behind the pulse, with the maximum amplitude being
reached inside the pulse. Using the quasi-static approximation, the time derivative can be neglected in
the electron fluid equations, Eqs. (6) and (7), yielding the following constants:

γa

(
γ‖ − β0

√
γ2‖ − 1

)
− ϕ = 1 , (12)

n
(
β0γ‖ −

√
γ2‖ − 1

)
= n0β0γ‖ , (13)

where β0 = vg/c. The constants of integration have been chosen in such a way that

n = n0, γ‖ = 1, ϕ = 0 ,

for
γa = 1,

(
|a0|2 = 0

)
. (14)

Using Eqs. (10) and (13), the general system, Eqs. (6)–(9), can be written as two coupled equa-
tions, describing the evolution of the laser pulse envelope a0 and the scalar potential ϕ:

∂2ϕ

∂ξ2
=
ω2

p0

c2
G , (15)

2iω0
∂a0
∂τ

+ 2cβ0
∂2a0
∂τ∂ξ

+
c2ω2

p0

ω2
0

∂2a0
∂ξ2

= −ω2
p0Ha0 , (16)

where

G =

√
γ2‖ − 1

β0γ‖ −
√
γ2‖ − 1

, H = 1− β0

γa

(
β0γ‖ −

√
γ2‖ − 1

) .

This set of non-linear equations, Eqs. (15) and (16), is obtained using a quasi-static approxima-
tion, which yields two integrals of the motion, given by Eqs. (12) and (13). The model is valid for
electromagnetic pulses of arbitrary polarization and intensities |a0|2 ≥ 1.

Equations (15) and (16) can be solved numerically in the stationary frame of the pulse. Equation
(15), Poisson’s equation for the wakefield, is solved with the initial conditions ϕ = 0, ∂ϕ/∂ξ = 0 by a
simple predictor–corrector method. The envelope equation, Eq. (16), describing the evolution of the laser
pulse, is written as two coupled equations for the real and imaginary parts of a0 and solved implicitly.

Numerical solutions of Eqs. (15) and (16) show the evolution of the excited plasma wakefield
potential ϕ and electric field Ew, as well as the envelope of the laser pulse |a0| [35], all in one spatial di-
mension. Solutions for a typical laser and plasma configuration are shown in Fig. 1. There is significant
distortion of the trailing edge of the laser pulse, resulting in photon spikes. The distortion occurs where
the wake potential has a minimum and the density has a maximum. The spike arises as a result of the
photons interacting with the plasma density inhomogeneity, with some photons being accelerated (de-
celerated) as they propagate down (up) the density gradient. This effect was predicted by John Dawson
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Fig. 1: The values of the magnitude of the normalized vector potential |a0| (solid curves) and scalar potential ϕ or
wake electric field Ew (dashed curves) versus position ξ = z − vgt. Here, |ain0 = 2|, ωp0/ω0 = 1, Gaussian rise
σr = 0.25λp, Gaussian fall σf = 1.5λp. Curves (a) and (b) are at time t = 0.2Tp; (c) and (d) are at t = 10Tp.

and his group, and is called the photon accelerator [36]. The distortion of the trailing edge increases with
increasing ωp0/ω0. The longitudinal potential, eφ/(mc2) > 1 or eEz/(meωp0c) > 1, is significantly
greater than for fields obtained in the plasma beat-wave accelerator. The field amplitude for the beat-
wave accelerator is limited by relativistic detuning, while no such saturation exists in the laser wakefield
accelerator.

When studying wakefields in more than one spatial dimension, the transverse dimensions of the
driving laser pulse or particle beam become important, and the wakefield will assume a characteristic
‘bubble’ shape, provided the driver is sufficiently short. The bubble regime of plasma-based acceleration
has been studied extensively using both analytical theory and full-scale numerical simulations [37–42].
A typical example of a three-dimensional laser-driven bubble-shaped wakefield can be seen in Fig. 2.
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Fig. 2: An example of a three-dimensional wakefield generated by a short, intense laser pulse. Red and yel-
low, electromagnetic fields; green, electron density; blue, electrons trapped and accelerated by the wakefield.
© J. Vieira, IST Lisbon, Portugal.

The electromagnetic fields are coloured red and yellow and the background plasma electron density is
coloured green, while the population of electrons trapped and accelerated by the wakefield is coloured
blue.

3 Photon acceleration
Photon acceleration is the phenomenon whereby photons interacting with a co-propagating plasma wave
can increase or decrease their frequency, and thus their energy. The group speed of photons in plasma
is given by vg = c2k/ω = c

√
1− ω2

p/ω
2
0 < c. Thus, when the photon frequency increases, its group

speed in plasma also increases, hence the photon accelerates. Photon acceleration [36, 43] is intimately
related to short-pulse amplification of plasma waves and is described by a similar set of equations. It has
been demonstrated that a relativistic plasma wave can be generated by a series of short electromagnetic
pulses [44]. These pulses have to be spaced in a precise manner to give the plasma wave the optimum
‘kick’. Conversely, if the second or subsequent photon pulses are put in a different position, 1.5 plasma
wavelengths behind the first pulse, the second pulse will produce a wake that is 180◦ out of phase with
the wake produced by the first pulse. The superposition of the two wakes behind the second pulse results
in a lowering of the amplitude of the plasma wave. In fact, almost complete cancellation can take place.
The second laser pulse has absorbed some or all of the energy stored in the wake created by the first
pulse. From conservation of photon number density, the increase in energy of the second pulse implies
that its frequency has increased. The energy in the pulse is W = N~ω, where N is the total number of
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photons in the packet. Wilks et al. [36] have shown that the increase in frequency of the ‘accelerated’
wave packet exactly accounts for the loss in the energy of the accelerating plasma wave, given by

δω

δx
=
ω2

pekp

2ω

δn

n0
. (17)

Computer simulations by Wilks et al. [36] show that the laser pulse increased in frequency by 10% over
a distance 237c/ωp.

Photon acceleration also plays a role in laser modulational instability [45–47]. This instability
occurs when the energy of a long laser pulse is bunched longitudinally by a co-propagating plasma
wave. The underlying process is periodic acceleration and deceleration of the laser’s photons by the
density fluctuations of the plasma wave. In turn, the laser’s ponderomotive force helps to enhance the
plasma wave, creating a positive feedback loop (see also Ref. [48] for the relationship between the
ponderomotive force and the photon dispersion in plasma). The laser amplitude modulation due to this
instability can be seen in Fig. 1, frames (c) and (d).

Photon acceleration of laser light in laser wakefield interactions was first observed by Murphy et
al. [49]. The role of photon acceleration in the laser modulational instability was studied by Trines et
al. [50,51], while aspects of the numerical modelling of wave kinetics have been investigated by Reitsma
et al. [52, 53].

Photon acceleration can be used as a single-shot diagnostic tool to probe laser- or beam-driven
wakefields and determine their characteristics [36,49,50]. This is currently pursued within the framework
of the AWAKE project [24]. Promising developments have been reported by Kasim et al. [54, 55].

4 Relativistic self-focusing and optical guiding
In the absence of optical guiding, the interaction length L is limited by diffraction to L = πR, where R
is the Rayleigh lengthR = πσ2/λ0, and σ is the focal spot radius. This limits the overall electron energy
gain in a single stage toEmaxπR. To increase the maximum electron energy gain per stage, it is necessary
to increase the interaction length. Two approaches to keeping high-energy laser beams collimated over a
longer region of plasma are being developed. Relativistic self-focusing can overcome diffraction and the
laser pulse can be optically guided by tailoring the plasma density profile, forming a plasma channel.

Relativistic self-focusing uses the non-linear interaction of the laser pulse and plasma results in
an intensity-dependent refractive index to overcome diffraction. In regions where the laser intensity is
highest, the relativistic mass increase is greatest; this results in a reduction of the fundamental frequency
of the laser pulse. The reduction is proportional to the laser intensity. Correspondingly, the phase velocity
of the laser pulse will decrease in regions of higher intensity. This has the effect of focusing a laser beam
with a radial Gaussian profile. This results in the plane wavefront bending and focusing to a smaller spot
size. Relativistic self-focusing has a critical laser power threshold, Pcr, which must be exceeded; this is
given by [56]

P ≥ Pcr ∼ 17
ω2
0

ω2
p

GW . (18)

The laser must also have a pulse length (τ) that is shorter than both a collision period and an ion plasma
period, to avoid the competing effects of thermal and ponderomotive self-focusing; this condition is
τL ≤ 5× 109

√
Z/n0 ps. The shape of the self-focused pulse for intense short pulses is also interesting;

at the leading edge the non-linear response is not yet established, there is a finite time for the electrons
to respond, and the front of the pulse propagates unchanged. The trailing edge of the pulse compresses
radially, owing to the non-linear relativistic self-focusing. It is only the trailing edge of the pulse that is
channelled. Another way of forming a guided laser is to perform a density cavity with one short-pulse
laser forming a plasma density channel. Alternatively, the channel could be formed by a low-current
electron beam, which produces the same effect.
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One drawback of the short-pulse laser–plasma interaction is that, at the extreme intensities used, a
hole in electron density can be created. This would prevent a wake from being created, or it might result
in a very small wake, if the residual density were many orders of magnitude smaller than the original
density.

5 Discussion
Plasma acceleration processes continue to be an area of active research. Initial studies of particle acceler-
ation have proved fruitful for current drive schemes and laser accelerators. Particle acceleration in
strongly turbulent plasmas is still in its infancy and requires a great deal more research. This area of
research is important in astrophysical and space plasma.

Current and future experiments, however, are very far from the parameter range of interest to high-
energy physicists, who require something like 1011 particles per pulse accelerated to teraelectronvolt
energies (for electrons), with a luminosity of 10−34 cm−2 s−1 for acceptable event rates to be achieved.
The teraelectronvolt energy range is more than 100 times greater than a single accelerating stage could
provide at present; even if the interaction length could be extended by laser channelling, there would still
be the requirement of multiple staging, and the need for more energetic lasers.

Researchers, realizing that the next collider will almost certainly be a linear electron–positron
collider, are proposing a novel way of building such a device, known as the ‘plasma afterburner’ concept
[57, 58]. Several groups are also developing an entirely new type of electron lens, using focusing by a
plasma, to increase the luminosity of future linear colliders [59].

This plays on the fact that relativistic electron beams can be focused by a plasma if the collisionless
skin depth c/ωpe is larger than the beam radius. Generally, when a relativistic electron beam enters a
plasma, the plasma electrons move to neutralize the charge in the beam on a 1/ωpe time-scale. However,
if the collisionless skin depth is larger than the beam radius, the axial return current flows in the plasma
on the outside of the electron beam and the beam current is not fully neutralized, leading to the generation
of an azimuthal magnetic field. Consequently, this self-generated magnetic field pinches or focuses the
beam in the radial direction. This type of lens exceeds conventional lenses by several orders of magnitude
in focusing gradient.

At present, laser-plasma accelerators are being used to accelerate electrons from hundreds of
megaelectronvolts to gigaelectronvolts, and to create intense X-ray radiation via betatron motion of the
accelerating electrons [26]. A future milestone to be achieved will be the 10 GeV energy level with
good beam quality. Electrons in this energy range are ideal as a driver for free electron lasers; at the
higher energies predicted, several gigaelectronvolts, it is possible to produce an X-ray free electron laser
capable of biological investigations around the water window. Many other applications of plasma-based
acceleration are also already being discussed [60].
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Abstract
Plasma accelerators can sustain very high acceleration gradients. They are
promising candidates for future generations of particle accelerators for several
scientific, medical and technological applications. Current plasma-based
acceleration experiments operate in the relativistic regime, where the plasma
response is strongly non-linear. We outline some of the key properties
of wakefield excitation in these regimes. We outline a multidimensional
theory for the excitation of plasma wakefields in connection with current
experiments. We then use these results and provide design guidelines for
the choice of laser and plasma parameters ensuring a stable laser wakefield
accelerator that maximizes the quality of the accelerated electrons. We also
mention some of the future challenges associated with this technology.

Keywords
Plasma-based accelerators; Particle-In-Cell simulations; Laser-plasma
interactions.

1 Introduction
In their seminal work published more than 30 years ago [1], Toshiki Tajima and John Dawson proposed
the concept of the laser wakefield accelerator. Through theoretical calculations and computer simulations
they showed that the radiation pressure of an intense laser pulse could drive large-amplitude plasma
waves with a phase velocity identical to the group velocity of the laser driver, and characterized by large
accelerating electric fields. These electric fields could then accelerate electrons to high energies in very
short distances when compared with conventional accelerating devices. This work initiated research
efforts that have also motivated the construction of some of the most powerful lasers available today [2].

Laser wakefield accelerators can be thought as energy transformers, converting the energy from
the laser driver to the energy of plasma waves, and then converting the energy of the plasma waves to
the accelerated particles. The laser acts on the plasma through the ponderomotive force, which expels
particles from the regions where the laser fields are more intense to the regions of lower intensities. This
force can also be interpreted as the radiation pressure that an intense laser exerts on background plasma
electrons [3]. The displacement of background plasma electrons leads to large electrostatic fields due to
the space–charge separation between the background plasma electrons and ions, which remain immobile.
Typically, these plasma electrostatic fields scale with E0[Vcm−3] ' 0.96

√
n0 [cm−3], where n0 is the

background plasma density. Thus, typical plasmas densities of n0 ' 1018 cm−3 can lead to accelerating
electric fields in excess of 1 GV cm−1 [4].

In order to excite these very high accelerating fields, current experiments typically use tightly
focused, high-intensity and ultra-short laser pulses with transverse spot sizes smaller than 100 µm, in-
tensities above I ∼ 1018 W cm−2 and pulse durations shorter than 100 fs. Lasers with these properties
were not available when the laser wakefield accelerator was first proposed. Recently, however, with the
advances in laser technologies, these lasers started to become widely available for experiments. The first
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successful experiments capable of generating electron bunches with non-Maxwellian energy distribu-
tions were independently reported in 2004 by three experimental groups. These experiments [5–7] used
∼1 J lasers, focused to transverse spot sizes of ∼10 µm and compressed down to 30 fs. The lasers hit
∼1 mm long gas jets producing plasmas with densities on the order of 1019 cm−3. After the gas jet, the
experiments measured a ∼10% energy spread for 50–120 MeV electron bunches at distances ranging
between 1 and 3 mm.

These experimental progresses took place even without the advanced theoretical and conceptual
plasma-based acceleration framework that is currently available. The first theoretical and computational
results for plasma wave excitation and electron acceleration were obtained in the one-dimensional (1D)
limit, because the equations can be solved exactly in this limit. The 1D limit, however, presents fun-
damental limitations that are inherent to the reduced dimensionality. For instance, the motion of free
plasma electron oscillations in one dimension is well described by an harmonic oscillator. In multidi-
mensions, however, the plasma single electron trajectories are described by an anharmonic oscillator
even for low-amplitude plasma waves [8]. As a result, the period of the oscillations depends on their
amplitude of oscillation. Thus, in one dimension, if the background plasma electron flow is laminar dur-
ing the first plasma oscillation it will remain laminar. On the contrary, the electron flow will inevitably
become turbulent in multidimensions [8].

The electromagnetic structure of the plasma wakefield depends mainly on the amplitude of the
plasma electron oscillations. Current plasma-based acceleration experiments operate in strongly non-
linear regimes, for which the amplitude of the plasma electron radial displacement is much larger than
its initial radial position. In this regime, plasma electron trajectories become non-laminar before the end
of the first plasma oscillation leading to plasma wave-breaking [9, 10]. Although simplified analytical
models exist to describe the structure of the wakefield, the full electromagnetic field structure of the
plasma wave can only be captured through numerical simulations. Simulations have then been used to
plan and to predict the experimental results, which is also essential to develop and confirm the predictions
of the analytical models.

There are several numerical models that can describe plasma acceleration computationally, each
employing different approximations. One of the most successful techniques is the particle-in-cell (PIC)
method [11, 12]. In PIC codes, space is discretized into a grid that stores electric and magnetic fields.
Each grid cell contains simulation macro-particles, each representing an ensemble of real electrons. It
is then possible to advance the particles positions and momenta using the Lorentz force equation by
interpolating the fields at the particles positions. Current densities, which are defined at the edges of the
grid, are used to advance the fields through a set of discretized Maxwell’s equations. As a result, PIC
modelling retains the kinetic nature of the plasma dynamics, and can be employed to describe the plasma
even in turbulent regimes where the flow of the plasma electrons is non-laminar.

There are several categories of PIC codes depending on the physics they retain/neglect. Reduced
PIC codes use reduced versions of the Lorentz force (e.g., by neglecting relativistic effects), or reduced
sets of Maxwell’s equations (e.g., by neglecting magnetic fields). In spite of not retaining the full physics,
these codes are typically very computationally effective, and allow for fast turn around simulation times
when compared with full PIC codes. Full PIC codes employ almost no physical approximations. Particles
advance under the relativistic Lorentz force, and the fields are updated with the full set of Maxwell’s
equations. Full PIC simulations are well suited to describe plasma accelerators in strongly non-linear
regimes, but they are very computationally expensive, requiring the use of large super-computers. In
order to optimize available computational infrastructures, and in order to better assist experimental design
and interpretation, PIC algorithms have also seen significant advances. The most efficient PIC algorithms
can currently achieve very high computing efficiencies from a few thousands up to more than a million
cpu-cores [13]. One of the largest laser wakefield acceleration (LWFA) simulations sucessfuly ran in
more than 200,000 cores, and enabled the simulation of fine details regarding the acceleration process,
while reaching petascale sustainable performance in a production run [13].
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Here we will review some of the key advances regarding wake excitation in the linear and the non-
linear regimes, in one dimension and in multidimensions, complementing the analytical results with PIC
simulation results. In Section 2 we will describe a theory for linear and non-linear plasma wave excitation
in one-dimension, and also discuss the physics of beam loading in one dimension. In Section 3 we will
derive a phenomenological theory for multidimensional, non-linear plasma waves, capable of describing
current experiments. We will then derive an analytical theory for the blowout regime in Section 4 that
predicts the full electromagnetic structure of the plasma wave. In Section 5 we will use the theoretical
framework derived in Section 4 in order to explore the physics of beam loading in the blowout regime.
Some of the outstanding challenges for plasma-based accelerators are described in Section 6 and in
Section 7 we present the conclusions.

2 Non-linear plasma waves in the 1D limit
In order to introduce the key physical mechanisms of plasma acceleration, we will first explore the self-
consistent generation of plasma waves by a laser pulse in non-weakly relativistic or linear regimes and
in the 1D limit.

2.1 Relativistic fluid and Maxwell’s equations in weakly relativistic regimes
In order to explore the dynamics in one dimension we consider the limit of wide laser pulses, with trans-
verse spot-sizes much wider than the plasma wavelength. In addition, we will also consider the excitation
of linear plasma waves characterized by small density perturbations when compared to the background
plasma density. This excitation regime of the plasma waves, usually characterized by sinusoidal plasma
density and electric field oscillations, corresponds to the so-called weakly relativistic or linear regime.
Our starting point are Maxwell’s equations written in the Coulomb gauge for the laser vector potential
A, which read

1

c2

∂2A

∂t2
+∇×∇×A =

4π

c
J− 1

c

∂∇φ
∂t

, (1)

where t is the time, J = nv is the total electric current, φ is the scalar (electrostatic) potential and c the
speed of light. In addition, n is the local plasma density and v is the local plasma fluid velocity.

We can rewrite Eq. (1) in the direction of polarisation of a linearly polarized laser pulse. We then
assume that the laser is polarized in y and propagates in x. The source term for Eq. (1) is the transverse
plasma current driven by the laser fields, Jy. In order to determine Jy, we assume that the plasma
ions remain fixed during the interaction. This is a valid approximation because the mass of background
plasma ions (mi) is much higher than the electron mass me. Thus, plasma ions barely move during a
plasma electron oscillation. The plasma currents are then only due to the motion of plasma electrons.
Conservation of canonical momentum for the plasma electrons in the y direction, assumed to be initially
at rest, implies that py = eAy/(mec

2), where py is the electron momentum in the y direction, and where
e and me are the electron charge and mass, respectively. Since py = vyγ, the transverse plasma current
driven by the laser is simply given by Jy = nvy = npy/γ = nAy/(mecγ). In the former expression,
γ is the relativistic factor and vy is the electron velocity in the y direction. Using this expression for Jy,
Eq. (1) then becomes

1

c2

∂2Ay
∂t2

+
∂2Ay
∂x2

=
4π

c
Jy −

1

c

∂φ

∂t
= − 4πe2

mec2

n

γ
Ay, (2)

where we have used the fact that in one dimension ∂φ/∂y = 0. We note that the conservation of canoni-
cal momentum is strictly valid for the case of plane electromagnetic waves. Thus, although valid exactly
in 1D geometries, the conservation of canonical momentum does not hold exactly in multidimensions
when the laser pulse has a finite transverse spot-size.
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In order to further evaluate Eq. (2), we need to find an expression for the relativistic γ factor
involving only known quantities. The relativistic factor γ of plasma electrons is given by

γ =

√
1 +

p2
x

m2
ec

2
+

p2
y

m2
ec

2
+

p2
z

m2
ec

2
, (3)

where px is the longitudinal electron momentum (in the x direction) and where pz is the transverse
electron momentum in z. Although plasma electrons can have transverse velocities in y and in z (as long
as the laser has electric field components in y or in z), the motion of plasma electrons is only along x in
one-dimension. Since we have assumed that the laser is polarized in y, only vy 6= 0.

As with Eq. (2), we can rewrite the relativistic factor given by Eq. (3) using conservation of
canonical momentum in y. Hence, since the laser is polarized in y, py/(mec) = eAy/(mec

2) and
pz = 0. Here it is worth noting that py/(mec) = γvy is the proper electron velocity and that the quantity
eAy/(mec

2) = ay is the normalized vector potential. Thus, the conservation of canonical momentum
indicates that the normalized laser vector potential, ay, can be regarded as the momentum associated
with the fast quiver motion of electrons on the laser fields. Therefore, the motion of the plasma electrons
becomes relativistic when py/(mec) = ay & 1, and remains non- or weakly-relativistic for ay � 1.
Equation (3) can then be simplified by expanding the relativistic factor for small px/mec� 1 and small
ay � 1, yielding

γ =

√
1 +

p2
x

m2
ec

2
+
e2A2

y

m2
ec

4
' 1 +

1

2

p2
x

m2
ec

2
+

1

2

e2A2
y

m2
ec

4
. (4)

We can hence write the 1/γ factor appearing in the wave equation Eq. (2) as

1

γ
' 1− 1

2

e2A2
y

m2
ec

4
− 1

2

p2
x

m2
ec

2
, (5)

which after being inserted into the simplied wave Eq. (2) gives

1

c2

∂2Ay
∂t2

+
∂2Ay
∂x2

' − 4πe2

mec2
n

(
1− 1

2

p2
x

m2
ec

2
− 1

2

e2A2
y

m2
ec

4

)
Ay. (6)

We can further simplify Eq. (6) by using the following ordering to obtain the 1D laser wave equation
valid in non/weakly relativistic regimes, which we will confirm a posteriori:

O
(
px
mec

)
' O

(
e2A2

y

m2
ec

4

)
' O

(
1− δn

n0

)
� 1, (7)

where the plasma electron density perturbations are defined according to n = n0 + δn, where n0 is the
background plasma density and δn is a small perturbation. As a result, the wave equation Eq. (7) reduces
to

1

c2

∂2Ay
∂t2

+
∂2Ay
∂x2

' −
ω2
p0

c2

(
1 +

δn

n0
− 1

2

e2A2
y

m2
ec

4

)
Ay. (8)

Equation (8) has two unknowns, Ay and δn. In order to close the model we now need an equation
for δn. In order to determine an expression for δn, we consider the linearized continuity equation for the
plasma electrons and its time derivative, which read

∂δn

∂t
+ n0∇ · (δnv) = 0⇒ ∂2δn

∂t2
+ n0∇ ·

∂v

∂t
= 0, (9)

4

J. VIEIRA ET AL.

82



where v� c is given by the Lorentz force equation for non/weakly relativistic regimes

∂v

∂t
= − e

me
E− c2∇

(
1 +

1

2

e2A2
y

m2
ec

4

)
, (10)

where E is the electric field and where the second term on the right-hand side of Eq. (10) is the laser
ponderomotive force. Equation (10) neglects the magnetic field force component, a valid assumption
because v � c. Note that we have assumed that γ = 1 in Eq. (10). Inclusion of the higher order
terms of Eq. (4) for the relativistic factor of plasma electrons in Eq. (10) would also lead to higher order
relativistic corrections to the Lorentz force. Taking the divergence of Eq. (10), inserting the resulting
expression into the continuity equation and using Gauss’s law∇ · E ' δn then gives

(
∂2

∂t2
+ ω2

p

)
δn

n0
=

1

2

e2

m2
ec

2
∇A2

y. (11)

Equation (11) closes the 1D model for the self-consistent laser-plasma interaction valid in non/weakly
relativistic regimes and in one dimension. We note that Eq. (11) confirms the ordering given by Eq. (7)
in thatO (δn/n0) ' O

(
A2
y

)
. Equation (11) is a forced harmonic oscillator excited by the laser radiation

pressure (ponderomotive force). The laser expels electrons from regions of maximum laser intensity to
regions of lower laser intensity. Background plasma ions provide a restoring force that attracts plasma
electrons back to their initial positions. The generation of plasma waves in one dimension then occurs
as follows: the laser starts by pushing plasma electrons forward. Since the ions remain fixed, a space
charge electrostatic field develops, pushing the plasma electrons back to their original position. When
they return to their original longitudinal position, the plasma electrons have a longitudinal backward
velocity. They will then continue to move backwards with respect to their initial positions. A space
charge force due to the background plasma ions forms again, pulling the plasma electrons forwards. This
forms a plasma oscillation. The natural frequency of oscillation is the plasma frequency ωp.

2.2 1D wakefield excitation by ultra-short lasers in non-linear regimes
After having introduced the excitation of plasma waves in weakly relativistic regimes, we now generalize
the 1D model given by Eqs. (8) and (11) to the relativistic and strongly non-linear regimes in the limit of
short lasers compared with the plasma period.

It is useful to include dimensionless quantities. Plasma electric fields are then normalized to the
cold wave-breaking limit (Ewb). The cold wave-breaking limit corresponds to the maximum amplitude
that a plasma wave supports in 1D limit and in the non-relativistic regime. Magnetic fields are normalized
to the cold wave-breaking limit multiplied by the speed of light c (B0), scalar and vector potentials
normalized to the electron rest energy divided by the elementary charge (φ0), and space and time are
normalized to the plasma skin depth (d0) and inverse plasma frequency t0, respectively. In addition,
momentum is normalized to mec and energy to mec

2. In practical units, dimensionless quantities are
then expressed as

Ewb =
mecωp

e
' 5.64× 104

√
n0[cm−2] V/cm, (12)

B0 =
mec

2ωp

e
' 32

√
n0[×1016 cm−3] T, (13)

φ0 ' A0 =
mec

2

e
' 0.511 [MeV]

e
, (14)

d0 =
1

kp
' 5.32 µm√

n0[1018 cm−3]
, (15)

t0 =
1

ωp
' 17 fs√

n0[1018 cm−3]
. (16)
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Our starting point is the master equation for the momenta of plasma electrons [14, 15]:

∂2p

∂t2
+ c2∇×∇× p = −

[
ω2
p +

1

me
∇ ·
(
∂p

∂t
+mec

2∇γ
)]

p

γ
−mec

2∂∇γ
∂t

. (17)

For a linearly polarized laser in y, and for plasma motion in x, the relevant components of Eq. (17) are
in (x,y) and read

∂2px
∂t2

+

(
1 +

∂2

∂t∂x
px +

∂2γ

∂x2

)
px
γ

+
∂2

∂t∂x
γ = 0, (18)

∂2py
∂t2

− ∂2py
∂x2

+

(
1 +

∂2

∂t∂x
px +

∂2γ

∂x2

)
py
γ

= 0. (19)

Since we are interested in the laser and plasma dynamics in the region that moves with the laser
pulse we will also adopt the speed of light variables. This is a Galilean coordinate transformation to a
frame that moves with the laser at c. We then transform time and space according to

ψ = ct− x, (20)

τ = x/c, (21)

where ψ is a measure of the distance to the front of the laser and τ the time (or distance if multiplied
by c) travelled by the laser pulse. The speed of light variables allow for the separation of the fast spatial
scales associated with the variations in ψ and that occur at the plasma wavelength λp, from the slow laser
temporal evolution associated with variations in τ and that scale with ω0/ωp � 1. The latter scaling
can be understood by noting that the Rayleigh length kpZr, which defines the typical time (distance) for
the laser to evolve, is proportional to ω0/ωp. In typical laser wakefield acceleration scenarios, where
the plasma is transparent to the laser, kpZr ∝ ω0/ωp � 1. Hence, ∂τ ' ωp/ω0 � ∂ψ ' 1/λp. We
can therefore neglect ∂τ in comparison to ∂ψ. This is also referred to as the Quasi-Static Approximation
(QSA) [16]. The QSA is valid as long as the laser pulse envelope does not evolve in the time it takes for
an electron to go across the laser pulse. Under the QSA, the master equation components in x and in y
given by Eqs. (18) and (19) become

∂2px
∂ψ2

+
px
γ

(
1− ∂2px

∂ψ2
+
∂2γ

∂ψ2

)
− ∂2γ

∂ψ2
' 0, (22)

2
∂2py
∂ψ∂τ

+
py
γ

(
1− ∂2px

∂ψ2
+
∂2γ

∂ψ2

)
' 0. (23)

Defining γ − px = χ, we then arrive at the following simplified set of equations describing the coupled
laser-plasma evolution and that can be used to describe wakefield excitation even in strongly non-linear
regimes in one dimension:

(
px
γ
− 1

)
∂2χ

∂ψ2
= −px

γ
, (24)

2
∂2py
∂τ∂ψ

+

(
1 +

∂2

∂ψ2

)
py
γ

= 0. (25)

Equation (24) describes the wakefield evolution and Eq. (25) the evolution of the laser (recall that py = ay
due to the conservation of canonical momentum).

Equations (24) and (25) have three unknowns, py, px and χ. In order to close the model we
therefore need an additional relation between these quantities. This relation can be found by integrating
Euler’s equation. Since plasma waves are electrostatic in one dimension, Euler’s equation becomes

dpx
dt

= −Ex −
∂γ

∂x
=
∂ (φ− γ)

∂x
, (26)
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where we have used Ex = −∂xφ in Eq. (26). Recasting Eq. (26) into the speed of light variables gives

− ∂

∂ψ
(γ − px − φ) =

∂

∂τ
(φ− γ) ' 0, (27)

where we have used ∂τ ' 0. As a result, for an electron initially at rest,

χ = γ − px = 1 + φ. (28)

Using the constant of motion given by Eq. (28), we can now relate px, py and χ according to the following
expressions:

px =
1 + p2

y − χ2

2χ
(29)

γ =
1 + p2

y + χ2

2χ
. (30)

Equations (29) and (30) can be used to close the non-linear model for the excitation of plasma waves
given by Eqs. (24) and (25) as in [16]:

∂2χ

∂ψ2
= −1

2

(
1−

1 + p2
y

χ2

)
, (31)

2
∂2py
∂τ∂ψ

+
py
χ

= 0, (32)

where py = ay is due to the conservation of the canonical momentum. Equations (31) and (32) are a
system of non-linear coupled equations that describe wake excitation by ultra-intense and ultra-short laser
pulses, valid in one dimension. They can also be referred to as 1D quasi-static equations. Equation (31)
describes wakefield excitation and Eq. (32) describes the laser evolution. The source term for the laser
evolution is 1/χ, and it is possible to show that χ is closely related to the plasma susceptibility. This can
be shown with the help of the constant of motion given by Eq. (28) and by considering the continuity
equation, which reads:

∂n

∂t
+
∂ (nvx)

∂z
= 0⇒ ∂ [n (1− vx)]

∂ψ
=
∂n

∂τ
. (33)

Under the QSA Eq. (33) can be integrated yielding n(1− vx) = n0. It is now possible to recover the 1D
linear wakefield excitation model given in the previous sub-section by assuming py � 1 and χ ∼ 1.

The quasi-static equations (31) and (32) may be integrated analytically for specific laser pulse
shapes assuming that the laser pulse remains unchanged. For a square shaped laser profile for instance, it
is possible to show that the maximum wake potential φmax and maximum longitudinal momentum pmax

of a plasma electron are respectively given by [17]

φmax ' γ2
⊥ − 1, (34)

pmax '
γ4
⊥ − 1

2γ2
⊥

, (35)

and that the maximum electric field of the plasma wave is

Emax '
γ2
⊥ − 1

γ⊥
, (36)

where γ⊥ =
√

1 + a2
y. Equations (34), (35) and (36) show that higher intensity lasers lead to higher

amplitude plasma waves with higher electron energy gain within the plasma wave. These equations
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cannot be used to explore particle trapping of background plasma electrons in the plasma wave (self-
injection) because the QSA would no longer be valid in this case. Particle trapping occurs when the
velocity of the plasma electrons matches the phase velocity of the plasma wave, which corresponds to
the laser group velocity. For lasers with sufficiently high intensity, the velocity of the plasma electrons
can be larger than the laser group velocity at the back of the first plasma wave. This leads to plasma
wave-breaking. In the fluid approach that we have taken, wave-breaking leads to a singularity in the
plasma density. For very high electron velocities, γ ' px, thus according to Eq. (28), φ → −1. Since
1/(1+φ) = 1/ξ = n/γ, then, as φ→ −1, n→∞. In a kinetic description, wave-breaking corresponds
to the crossing of electron trajectories. In relativistic regimes, the wave-breaking electric field limit is
eEwb/(mecωp0) =

√
2
√
γφ − 1, where vφ is the wake phase velocity and γφ = 1/

√
1− v2

φ is the
corresponding relativistic factor.

Key properties of 1D plasma wakefields excited by a short laser pulse in strongly non-linear
regimes are shown in Fig. 1. Figure 1 illustrates numerical solutions to the 1D QSA equations given
by Eqs. (31) and (32). Figure 1(a) shows the envelope profile of the laser pulse. The electrostatic po-
tential, shown in Fig. 1(b) is strongly non-linear, i.e. φ is not well described by sinusoidal oscillations
at λp containing additional high-order harmonics. In addition, the minimum φ approaches φ → −1,
as predicted theoretically using the constant of motion. Another distinctive feature of non-linear wake
excitation is illustrated in Fig. 1, which shows a typical sawtooth shape for the accelerating electric field.
The plasma susceptibility, and thus the plasma density, also reach very high values at the end of the first
plasma wave, where the longitudinal electron momentum is at a maximum, which is also consistent with
the theoretical arguments provided in the previous paragraph.

Fig. 1: Wakefield generation by an intense laser beam driver in one dimension: (a) shows the envelope of the laser
vector potential; (b) shows the plasma electrostatic potential; (c) shows the longitudinal (accelerating) electric
field; and (d) shows the plasma susceptibility.

It is important to note that despite not being able to capture particle trapping in plasma waves,
the QSA can be used to explore wakefield excitation and the acceleration of externally injected particle
bunches in the plasma wave fields. The computational advantages of the QSA when compared to kinetic
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descriptions (such as the PIC method), have led to the development of reduced numerical models. These
reduced models are used to predict the output of plasma-based experiments. Examples of such codes are
QuickPIC [12], WAKE [18] and HiPACE [19].

2.3 Beam loading in the linear regime
In order to explore the acceleration of particle bunches to maximize the charge that can be accelerated and
to minimize the final energy spreads, it is important to investigate how external charged particle bunches
influence the wakefield structure. This research topic is typically called beam loading. The study of
beam loading in plasma waves is thus important to shape the current profile of the particle bunches for
maximizing the quality of the accelerated particles which is critical to potential applications. In this
section, we will outline important results on the beam loading of electron bunches in one dimension and
in the linear regime.

In Fig. 2 the optimal beam loading conditions in the linear regime and in one dimension are
illustrated. Figure 2(a) shows a portion of the initial accelerating field driven by a laser pulse driver in
the linear regime. Figure 2(b) shows the wakefield contribution driven by a witness electron bunch with
a triangular shape. The resulting wakefield (Fig. 2(c)) shows that the acceleration gradient is constant
throughout the entire witness bunch. The witness bunch then decreases the absolute value of the electric
field in the beam region, thereby reducing the acceleration gradient. As a result, all beam electrons will
accelerate with similar accelerating fields. This configuration then preserves the initial witness bunch
energy spread, yielding a scenario of ideal beam loading.

Although a more refined beam loading theory can be derived in the linear regime for witness
bunches with arbitrary shapes, we will adopt a simple model assuming a very short, uniform density
witness bunch in comparison to the plasma wavelength.

We assume that the bunch density is nb. An estimate for the maximum number of particles (N0)
that can be loaded into the wakefield in one dimension and in the linear regime can be found by assuming
that the total electric field vanishes at the location of the beam. This condition leads to [20]

N0 = 5× 105

(
nb

n0

)√
n0A, (37)

where A is the area of the transverse bunch section and nb is the trailing bunch density. The efficiency is
100% if the total number of particles loaded into the wakefield matches Eq. (37). However, this comes at
the expense of obtaining 100% energy spread because the front of the beam accelerates at the maximum
gradient, while the back of the beam does not accelerate. Since the energy gain ∆γ ∝ Eaccel (where
Eaccel is the accelerating gradient) the final energy spread when the number of particles (N ) in the bunch
is lower than N0 at:

∆γmax −∆γmin

∆γmax
=
Ei − Ef

Ei
=

N

N0
, (38)

where ∆γmax/min are the maximum/minimum energy gains by the bunch particles andEi/f are the accel-
erating electric fields at the front/behind of the accelerating bunch. Equation (38) illustrates the trade-off
between number of accelerated particles and final energy spread. Hence, maximizing the accelerated
charge also maximizes the energy spread and vice versa.

Another key feature related with beam loading is the fraction of the energy absorbed by the trailing
particle bunch in the wakefield. Since the energy of the wakefield scales with ∝ E2

accel, the fraction of
energy absorbed by the witness particle bunch is 1 − E2

f /E
2
i . Using Eq. (38), Ef = Ei(1 − N/N0).

Thus, the energy conversion efficiency from the wakefield to a trailing bunch of particles is

ηb =
N

N0

(
2− N

N0

)
. (39)
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Equations (38) and (39) also illustrate the trade-off between the beam loading efficiency and the final
bunch energy spread. Small energy spreads require smaller total beam charges which leads to lower
energy conversion efficiencies. Higher energy conversion efficiencies however lead to higher energy
spreads. Although these conclusions are generally valid, it is possible to derive conditions for optimal
beam loading using shaped current density profiles, as Fig. 2 shows.

Fig. 2: Illustration of optimal beam loading conditions to minimize the energy spread of an energetic electron
beam (dark triangle): (a) shows the accelerating gradient of a plasma wave driven by a laser pulse in the linear
regime; (b) shows the accelerating wakefield driven by a witness electron bunch; and (c) shows the accelerating
wakefield resulting from the combination (sum) of wakefield in (a) and in (b).

3 Strongly non-linear plasma waves in multidimensions: the blowout regime
The wakefield excitation models derived in the previous Section, valid in one dimension, are useful
in describing laser wakefield accelerators qualitatively. However, because in typical experiments the
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driver has transverse dimensions smaller or comparable to the plasma wavelength, the 1D theory cannot
be employed to describe and predict the experimental outputs quantitatively. In typical experiments, the
structure of the wakefields is inherently multidimensional. An accurate understanding of the experiments
therefore requires the inclusion of multidimensional effects in both the theory and simulations.

Multidimensional plasma oscillations are intrinsically non-linear and anharmonic even for low-
amplitude plasma waves [8]. The period of plasma electron oscillations then depends on their amplitude
of oscillation. Although for low-amplitude plasma waves anharmonic effects can be neglected for the
first few plasma waves, the cumulative phase shift between close electrons becomes substantial when the
number of plasma oscillations increases. As a result, the trajectory of adjacent electrons will always cross
in multidimensional plasma waves when close electrons become π/2 out of phase. Trajectory crossing
inevitably leads to wave-breaking, where the initial laminar electron flow becomes turbulent. This is in
stark contrast with the 1D theory developed in the previous sections where the flow remains laminar as
long as it is laminar during the first plasma oscillations. When trajectory crossing occurs and the electron
flow becomes turbulent, the plasma fluid equations used in the previous Section cease to be valid. The
properties of the wakefield in these scenarios can only be captured by kinetic descriptions.

When the wakefield amplitude is large, sheath crossing can occur during the first plasma wave.
Current experiments operate in this strongly non-linear regime. In this section, we will outline the deriva-
tion of a non-linear model for the wakefield excitation in strongly non-linear regimes and in multidimen-
sions which is capable of describing and predicting experimental outputs.

Although we will focus the analysis on laser wakefield acceleration, general conclusions from
this section are also valid for non-linear wakefields driven by electron beam drivers because the main
properties of the wakefield in strongly non-linear regimes are nearly independent of the nature of the
driver. Positron beams can also be used to drive strongly non-linear plasma waves and many of the
findings outlined in this section may also be applicable to this case. However, we note that the wakefield
generation process can differ significantly from that of lasers or electron bunches. While electron beams
or laser pulses repel plasma electrons from the region of the driver, positrons attract plasma electrons
towards the axis [24].

Figure 3 shows a particle-in-cell OSIRIS [11,13] simulation results of a strongly non-linear wake-
field excitation in multidimensions driven by an intense electron bunch (Fig. 3(a)), laser pulse (Fig. 3(b))
and positron bunch (Fig. 3(c)). A distinctive signature corresponding to the excitation of strongly non-
linear plasma waves in multidimensions is electron cavitation, i.e. the generation of a region void of
plasma electrons. This regime is called the blowout [21] or bubble regime [23] when electrons (Fig. 3(a))
or laser pulse (Fig. 3(b)) drivers are employed, and suck-in regime when positron bunch drivers (Fig. 3(c))
are used [24]. Although the wakefields share many similarities, and the main properties of the wakefield
are driver independent, Fig. 3 shows that finer details of the blowout region depends on the nature of the
driver. Figures 3 also show electron bunches [in the second bucket in Fig. 3(a) and Fig. 3(c) and in the
first and second buckets in Fig. 3(b)] in conditions to be accelerated by the plasma.

For the remainder of this report, we define the transverse size of the laser as the laser spot-size
W0. The laser duration is τL. The peak vector potential a0 is related to the laser intensity through
a0 ' 0.8 (λ0/1[µm])

[
I/
(
1018W cm−2

)]1/2, where λ0 = 2πc/ω0 is the central laser wavelength and
ω0 is the central laser frequency.

When an intense laser or electron bunch driver propagates through a plasma it radially expels
plasma electrons away at its passage (see Fig. 3). If the laser intensity (electron driver density) is suf-
ficiently high, the driver expels nearly all plasma electrons away from the region in which the driver
propagates. Electron trajectories cross and accumulate in a thin, high-density electron layer that sur-
rounds an electron void. Ions remain stationary and push plasma electrons back to the axis after the
driver has propagated a distance close to ∼ λp. At the back of the plasma wave, the shape of the thin
electron layer resembles a sphere or a bubble.
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Fig. 3: OSIRIS simulation results illustrating the generation of strongly non-linear plasma waves. The colours are
proportional to the electron plasma density. The driver moves from left to right: (a) shows the wakefield driven by
an ultra-relativistic particle beam driver; (b) shows the generation of wakefields driven by intense laser beams; and
(c) shows the plasma density perturbation associated with a positron bunch driver.

At the back of the sphere, there are strong electron accelerating fields which can be sufficiently
strong to capture a fraction of the background plasma electrons into the bubble (self-injection). These
electrons can then be focused and accelerate to high energies in the focusing and accelerating fields of the
bubble. In the laser wakefield accelerator, reaching these strongly non-linear regimes requires normalized
laser vector potentials close to a0 & 2 for spot-sizes (W0) of a few skin-depths. In the plasma (beam
driven) wakefield accelerator, the blowout regime requires that particle bunch densities are larger than
the background plasma density.

3.1 Phenomenological model for the blowout regime
In order to describe electron acceleration in non-linear laser driven wakefields we first focus on a phe-
nomenological model for the blowout regime driven by laser pulses [25]. Our first goal is first to derive a
set of scaling laws for stable laser wakefield acceleration and which are capable of predicting key output
beam properties such as energy and charge.

Important wakefield properties are defined by the focusing and accelerating fields. Focusing fields
are absent from 1D descriptions but are crucial to the prediction of the outputs of the experiments. The
focusing field for a relativistic charged particle traveling at c accelerating in the blowout region is then
given by

W⊥ = Er −Bθ =
r

2
, (40)

where r is the distance to the axis, Er is the radial electric field and Bθ the azimuthal magnetic field.
Equation (40) shows that the field is always focusing for electrons. Linear focusing fields are a feature
of strongly non-linear regimes which are absent from wakefield excitation in the linear regime. As the
electrons accelerate, they perform transverse harmonic oscillations (also called betatron oscillations).
This is important to preserve beam emittance as the acceleration progresses. Achieving small (as small
as possible) beam emittances is crucial for high-energy physics and radiation applications. Hence linear
focusing fields are crucial for potential applications of plasma accelerators. In the linear regime, the
focusing fields are non-linear with high-order contributions in powers of r. Thus, unless the electron
bunches are much narrower than the driver spot-size so that they are subject to linear focusing fields near
the axis, they will perform anharmonic oscillations, which will lead to higher final bunch emittances.

The accelerating field determines the maximum energy of a witness electron bunch. The acceler-
ating electric field felt by the bunch electrons in the bubble is given by

Eaccel =
ξ

2
, (41)
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where ξ measures the distance to the centre of the bubble which moves nearly at the laser group velocity.
The field accelerates electrons for ξ < 0 and decelerates them for ξ > 0. The linear focusing and
accelerating fields are well reproduced in simulations of the laser wakefield accelerator, as shown in
Fig. 4.
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Fig. 4: Three-dimensional (3D) Osiris simulation showing focusing (a) and accelerating fields (b) for a laser
wakefield accelerator in the blowout regime. The plasma density is shown in grey colours and fields in blue-red
colours. The red dashed lines shown a transverse lineout of the focusing (a) and accelerating (b) fields. Focusing
fields are linear within the entire blowout region. Accelerating fields are close to linear except at the back of the
bubble.

Equation (41) is valid as long as the witness beam wakefields are negligible. In this case, Eq. (41)
shows that the acceleration depends on the initial ξ position of each beam electron. This can increase
the final energy spread of the bunch. As with the 1D case, however, it is possible to compensate for this
effect by tailoring the shape of the witness bunch current profile in order to preserve the initial energy
spread of the witness bunch.

In order to find the average accelerating field in the bubble, which when multiplied by the total
acceleration distance determines the final energy energy gain, Eq. (41) needs to be supplemented with an
additional expression defining the radius of the bubble. The radius of the bubble, rb, can be retrieved by
equating the laser ponderomotive (repulsive) force to the ion channel (attractive) force:

Fp ' Er ⇔
a0

w0
= Er ' rb → rb = α

√
a0, (42)

where α = 2 has been determined through PIC simulations [21, 25] and where we have assumed that
w0 ' rb. Combining Eq. (41) with Eq. (42) yields an estimate for the average accelerating field given
by

〈Eaccel〉 '
√
a0

2
. (43)

The maximum acceleration distance corresponds to the smallest distance between pump depletion
or dephasing. The pump depletion length, Lpd, is the length it takes for the laser to exhaust its energy
to the plasma through wakefield excitation. For propagation distances larger than Lpd, the amplitudes of
the plasma waves are negligible. Thus, we can assume that the acceleration stops at Lpd. The dephasing
length, Ld, is the length it takes for a particle to outrun the accelerating phase of the wave, i.e. to go from
regions with ξ < 0, where Eaccel < 0, to regions with ξ = 0 where Eaccel = 0.

Pump depletion in the blowout regime is determined by the rate at which the laser leading edge
gives its energy to the plasma. This localized pump depletion process is also called etching. Since
the back propagates mostly in vacuum, it does not give energy to the plasma. As the laser propagates,
the front of the laser is then locally pump depleted. The pump depletion length is then given by the
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product between the laser duration and the velocity at which the laser leading edge etches back, given by
vetch = cω2

p/ω
2
0 [26]

Lpd =
ω2

0

ω2
p

(cτL) . (44)

The maximum dephasing length is given by the length it takes for a particle travelling at c to outrun
the accelerating phase of the wakefield traveling with a phase velocity vφ. For an electron initially at
ξ = rb, Ld = crb/(c − vφ). Since the wake phase velocity is vφ = vg − vetch, where vg is the laser
linear group velocity given by

vg =
∂ω

∂k
= 1− 1

2

ω2
0

ω2
p

, (45)

the dephasing length is
(c− vφ)

c
Ld = rb ⇔ Ld =

2

3

ω2
0

ω2
p

rb. (46)

Combining Eqs. (44) and (45) yields a criteria for choosing the laser duration for optimal acceler-
ation such that no laser energy is left after the electrons outrun the wave at Lpd = Ld:

τL =
2

3
rb. (47)

We can now estimate the maximum energy ∆E = q〈Eaccel〉Laccel gained by an electron in the
blowout regime. Denoting the acceleration distance by Laccel = Ld = Lpd then

∆E =
2

3
mec

2ω
2
0

ω2
p

a0. (48)

So far, we have neglected the influence of the transverse laser dynamics on wakefield excitation
and electron acceleration. This approximation is valid as long as the laser propagation and wakefields
remain stable during Laccel. In order to stabilize the transverse laser dynamics, we need to explore how
to prevent laser Rayleigh diffraction, one of the key processes that can degrade wakefield excitation and
electron acceleration. Theory, simulations and experiments have shown that plasmas can act as optical
fibers, guiding the propagation of intense lasers over distances that largely exceed the Rayleigh length.
In strongly non-linear regimes, the blowout region refractive index gradients are sufficient to self-guide
the body of the driver. Through simulations, it has been found that the optimal condition for stable,
self-guided laser propagation occurs when W0 = rb = 2

√
a0 as long as a0 > 2 [21,25]. The laser front,

which propagates in a region of nearly undisturbed plasma, may still diffract. This can be avoided if the
etching rate exceeds the diffraction rate. This condition is met when

a0 &
(
nc

np

)1/5

. (49)

Equation (49) is generally valid for a0 & 4. For a0 & 2, an external parabolic plasma channel needs to
be present to externally guide the laser pulse.

In addition to determining maximum accelerating gradients and final energies in the blowout
regime, the accelerating and focusing wakefields given by Eqs. (40) and (41) also define important
beam loading properties such as the maximum charge that can be accelerated. To estimate the max-
imum amount of accelerated charge, we assume that a witness electron bunch absorbs all the energy
contained in the longitudinal and focusing bubble fields. The electromagnetic energy of the wakefield in
the blowout regime is

ε‖ ' ε⊥ '
1

120
(kprb)5

(
m2

ec
5

ωpe2

)
, (50)
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and the energy absorbed by N particles, assuming an average accelerating field gradient Eaccel ' rb/2,
is

εe− ' mec
2N

(
kprb

2

)2

. (51)

Matching Eq. (50) to Eq. (51) then gives

N ' 1

30
(kprb)3 1

kpre
, (52)

where N is the maximum number of electrons that can be loaded into the wakefield. The acceleration
efficiency is the fraction of laser energy that goes into the accelerated electrons. Since the laser energy
scales with r3

ba
2
0 (assuming W0 ' cτL ' rb), then the efficiency goes as

Γ ' 1

a0
. (53)

Equations (48), (52) and (53) illustrate the trade-off between energy gain, maximum number of
accelerated particles and efficiency. For a constant laser energy, lower laser a0s leads to higher efficien-
cies at the expense of lower accelerated charge and longer accelerating distances that result in final higher
energies. Higher laser a0s lead to lower efficiencies, lower final bunch energies, but to higher charge. In
addition, the acceleration distance is also smaller for higher a0.

The scaling laws derived above can also be rewritten in practical units as

τ [fs] = 53.22

(
λ0 [µm]

0.8

)2/3(ε[J]

a2
0

)1/3

, (54)

w0 =
3

2
cτL, (55)

n0

[
cm−3

]
' 3.71

a3
0

P [TW]

(
λ0[µm]

0.8

)−2

. (56)

The total acceleration distance, final energy and maximum accelerated charge are:

Laccel[cm] ' 14.09
ε[J]

a3
0

, (57)

∆E[GeV] ' 3

(
ε[J]

a2
0

0.8

λ0[µm]

)2/3

, (58)

q[nC] ' 0.17

(
λ0[µm]

0.8

)2/3

(ε[J]a0)1/3 . (59)

These scalings have been used to guide and predict the output of current laser wakefield accelera-
tion experiments, and to guide the design of future experiments using some of the most powerful lasers
soon to become available. They have also been confirmed through numerous 3D PIC simulations per-
formed with different algorithms. For example, PIC simulations performed in relativistic boosted frames
have illustrated the acceleration of 12–14 GeV electron bunches with 1–2 nC each (∼4.8 nC in total)
using lasers that will soon become available at the Extreme Light Infrastructure (ELI) [27]. Simulations
showed that the acceleration could take place over distances smaller than 10 cm. These simulations were
performed for strongly non-linear regimes using a0 = 4, where a fraction of the background plasma
electrons were trapped and accelerated to these high energies. These results are illustrated in Fig. 5.

Simulations have also been performed at lower laser intensities with a0 = 2, where self-injection
is absent, and using laser energies close to 250 J. The acceleration of an externally injected electron bunch
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using a 250 J laser pulse in self-injection, self-guiding scenarios: (a) shows the laser pulse in orange, the accelerated
beam in dark blue and plasma density isosurfaces in green and yellow. Blue projections represent the background
electron plasma density and orange projections the focusing and laser pulse electric fields; (b) shows a central slice
of the simulation box illustrating the plasma electron density (blue) and self-injected electrons coloured according
to their energy. The line-out (black) represents the longitudinal electric field (Eaccel). The dashed line (black)
represents the theoretical prediction (Eq. (41)); and (c) represents the phase-space of self-injected electrons. The
red line represents the integrated energy spectrum.

was then investigated. Simulations showed the acceleration of a 40 GeV electron beam with 0.3 nC in a
preformed parabolic plasma channel 5 m long. These results are shown in Fig. 6.

The scalings presented here are strictly valid for 2 . a0 . 2 (ω0/ωp)1/4. However, electron
acceleration can also occur at much higher laser intensities. For instance, using a0 = 53, 3 GeV electron
bunches with high charges of around 25 nC could be achieved [28], although at the expense of higher
energy spreads. These results are illustrated in Fig. 7.

4 Theory for the blowout regime
In this section, we will outline an analytical derivation for the electromagnetic field structure of the
wakefield in the blowout regime [21]. The theory assumes cylindrical symmetry and employs the quasi-
static approximation. Thus, as with to the 1D scenario (cf. Section 2), the motion of plasma electrons in
multidimensions is also characterized by a constant of motion relating the particle velocity to the wake
potential (cf. Eq. (28)). This constant of motion plays a very important role in understanding the trapping
process in multidimensions and also in defining the shape of the blowout region. In order to generalize
Eq. (28) for the multidimensional scenario, we then start by considering the Hamiltonian of a charged
particle in an electromagnetic field:

H =

√
m2

ec
4 +

(
P +

eA

c

)2

− eφ, (60)

where P = p − eA/c is the canonical momentum and where φ is the scalar potential. It is useful to
employ the co-moving frame variables that move at the wake phase velocity. In the co-moving frame,
variables ξ = vφt− x and τ = x, the Hamiltonian Eq. (60) becomes

H = H − vφP‖, (61)

where P‖ corresponds to the canonical momentum in the longitudinal x direction.
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parabolid plasma channel used to guide the laser pulse (blue). The laser pulse is also shown. An externally
injected electron bunch accelerates at the back of the plasma wave; and (b) shows the evolution of the maximum
energy as a function of the acceleration distance. The vertical line segments correspond to the energy spread of the
bunch. The inset shows the relative position of the externally injected bunch and longitudinal accelerating field.
The bunch current profile was designed in order to lead to a flat accelerating field in the region of the bunch to
minimize the growth of the energy spread.
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In order to determine the constant of motion in multidimensions, we integrate Hamilton’s equa-
tions written in the co-moving frame. Using the chain rule for the co-moving frame variables

∂

∂x
= − ∂

∂ξ
, (62)

∂

∂t
= vφ

∂

∂ξ
+

∂

∂τ
, (63)
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dξ

dt
= vφ − v‖, (64)

where v‖ = dx/dt is the longitudinal velocity of an electron. Hamilton’s equations can then be written
as

vφ
dP‖
dt

= −vφ
∂H

∂x
= vφ

∂H

∂ξ
, (65)

dH

dt
=

∂H

∂t
= vφ

∂H

∂ξ
+
∂H

∂τ
. (66)

Thus, the temporal evolution forH becomes

(
vφ − v‖

) dH
dξ

=
∂H

∂τ
=

[
v · ∂A

∂τ
− ∂φ

∂τ

]
. (67)

We note that ∆H depends on the initial and final positions only. Thus [29–32]

∆H =

∫
dH
dt

dt =

∫
dξ

vφ − v‖
dH
dξ

, (68)

where the integral on the left-hand side is performed over the particles trajectory [29–32]. For a non-
evolving wakefield, the right-hand side of Eq. (68) vanishes because ∂/∂τ = 0. This corresponds to the
QSA, where the wakefield does not change during the transit time of a plasma electron. Thus, under the
QSA, ∆H = 0, and hence

∆H = ∆γ − vφ∆p‖ −
(
∆φ− vφ∆A‖

)
(69)

= ∆γ − vφ∆p‖ −∆ψ, (70)

where ψ = φ − vφA‖ is called the wake pseudo-potential. Equation (69) generalizes the 1D constant
of motion given by Eq. (28) in the presence of magnetic fields (through the presence of the longitudinal
vector potential ∆A‖) for particles born with arbitrary initial velocity in regions with arbitrary electric
and magnetic fields.

For a particle initially at rest, and initially in a region of vanishing fields, Eq. (69) reduces to

γ
(
1− β‖

)
= 1 + ψ. (71)

As with the 1D case, we can relate the particle velocity to the wake potential ψ and determine the onset
of self-injection as a function of ψ. When β‖ → −1, i.e. when particles move backwards at c, ψ → ∞.
When β‖ → 1, i.e. when particles move forward at c and are trapped, ψ → −1. We can then state that
the limit ψ → −1 is a sufficient, but not necessary, condition for trapping under the QSA.

We will use the constant of motion given by Eq. (71) to derive the equation of motion for plasma
electrons that move within the boundary defining the blowout region. The equation of motion is given
by the Lorentz force, which can be simplified using Eq. (71). Our calculations now assume vφ = c = 1.
Thus, the required time derivative of the equation of motion is

d

dt
= (1− vφ)

d

dξ
=

1 + ψ

γ

d

dξ
, (72)

where we recall that the longitudinal component of the electron velocity v‖ is normalized to c. As a
result, p⊥ = γv⊥ = (1 + ψ) dr⊥

dξ and

dp⊥
dt

=
1 + ψ

γ

d

dξ

[
(1 + ψ)

d

dξ

]
r⊥, (73)
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where r⊥ and p⊥ are the transverse radius and momentum, respectively. Equation (73) depends on three
quantities, namely p⊥, γ and ψ. It is possible to reduce the number of unknowns by using Eq. (71) to
write γ as a function of p⊥ and ψ as

γ =
1 + p2

⊥ + (1 + ψ)2

2 (1 + ψ)
. (74)

Thus, the Lorentz force equation for the radial motion of a plasma electron becomes

2 (1 + ψ)2

1 + (1 + ψ)2
(

dr⊥
dξ

)2
+ (1 + ψ)2

d

dξ

[
(1 + ψ)

dr⊥
dξ

]
= F⊥, (75)

where F⊥ = −
(
Er − v‖Bθ

)
is the radial force acting on a plasma electron assuming cylindrical symme-

try, withEr being the radial electric field andBθ the azimuthal magnetic field. We note that the left-hand
side of Eq. (75) depends on p⊥, which defines the shape of the bubble, and on ψ, which is related to the
field structure of the blowout. In order to solve Eq. (75) we need to relate ψ with p⊥. This relation can
be established through the field structure of the bubble.

The bubble fields can be written as a function of the scalar and vector potentials in the Coulomb
Gauge as

Ez =
∂ψ

∂ξ
, (76)

Bθ = −∂Az
∂r
− ∂Ar

∂ξ
, (77)

Er = −∂φ
∂r
− ∂Ar

∂ξ
, (78)

where scalar and vector potentials can be fully specified once the plasma electron density and currents
are known, according to [22]

1

r

∂

∂r

(
r
∂Ar
∂r

)
− Ar
r2

= nev⊥ ⇔ Ar = Ar0 (ξ) r, (79)

1

r

∂

∂r

(
r
∂A‖
∂r

)
= nb + nev‖ ⇔ A‖ = A‖0 (ξ) + λ (ξ) log (r) , (80)

1

r

∂

∂r

(
r
∂φ

∂r

)
= nb + ne − 1 ⇔ φ = φ0 −

r2

2
+ λ (ξ) log (r) , (81)

1

r

∂

∂r

(
r
∂ψ

∂r

)
= ne + nev‖ − 1 ⇔ ψ = ψ0 (ξ)− r2

4
, (82)

1

r

∂

∂r
rAr = −∂ψ

∂ξ ⇒ Ar0 = −1

2

dψ0

dξ
, (83)

where we have included the possibility of describing the effect of a particle beam driver, with
λ (ξ) =

∫∞
0 rnbdr its current profile. Using Eqs. (79)–(83), the right-hand side of Eq. (75) can

be rewritten as

F⊥ = −r
2

+
(
1− v‖

) λ (ξ)

r
+
(
1− v‖

) dAr0
dξ

r − 1

γ
∇⊥|

aL
2
|2, (84)

where the first term (on right-hand side of Eq. (84)) represents the electrostatic field due to the back-
ground plasma ions, the second term is the force exerted on the plasma electrons by a charged particle
bunch driver, the third term is due to the radial plasma currents, and the last term is the laser pondero-
motive force. By expressing 1 − v‖ = (1 + ψ)/γ and replacing γ by Eq. (74), we can rewrite Eq. (84)
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as

d

dξ

[
(1 + ψ)

drb

dξ

]
= rb

{
−1

4

[
1 +

1

(1 + ψ)2 −
(

drb

dξ

)2
]}
− 1

2

d2ψ0

dξ2
+
λ (ξ)

r2
b

− 1(
ψ0 − r2b

4

)∇|aL
2
|2,

(85)
which shows that the trajectory of plasma electrons are fully specified by the pseudo-potential ψ. Inver-
sion of Eq. (82) reveals that ψ depends on the radial ne(1− v‖) profile:

ψ (r, ξ) = ln r

∫ r

0
r′
[
ne

(
r′, ξ

) (
1− v‖

(
r′, ξ

))
− 1
]

dr′ (86)

+

∫ ∞

r
r′ ln r′

[
ne

(
r′, ξ

) (
1− v‖

(
r′, ξ

))
− 1
]

dr′. (87)

In order to ensure that the fields vanish away from the blowout region, the profile of ne(1− v‖) is
also subject to the following boundary condition:

∫ r

0
r′
[
ne

(
r′, ξ

) (
1− v‖

(
r′, ξ

))
− 1
]

dr′ = 0, (88)

which states that the source term for ψ ne(1− v‖) is conserved for each transverse slice.

Equations (85), (86) and (88) are general and valid as long as the QSA holds. In order to close
our model and to derive the equations that determine the main properties of the blowout regime, we now
look for an expression of ψ valid in the blowout regime. In order to determine ψ we then need to find an
appropriate model for ne(1 − v‖) which can describe and reproduce the most important features of the
blowout regime.

Figure 8 shows the result of a PIC simulation that illustrates the main properties of the blowout
regime that need to be included in a model for ne(1 − v‖) that can accurately describe the blowout
regime. Figure 8 shows that the blowout is characterized by a region empty of plasma electrons, which
instead accumulate at the boundary that defines the blowout region. These features are well captured
by the simplified model shown by the red line in Fig. 8(b), which depends on the blowout radius rb, on
the value of ne(1 − v‖) = n∆ at r = rb and on the thickness ∆ of the electron sheath that defines the
blowout.

The boundary condition given by Eq. (88) yields

n∆ (ξ) =
r2

b

(rb + ∆)2 − r2
b

. (89)

Using Eq. (86) and Eq. (89) then yields the following expression for ψ as a function of rb and
α = ∆/rb:

ψ [rb (ξ)] =
r2

b

4

(
(1 + α)2 ln (1 + α)2

(1 + α)2 − 1

)
≡ r2

b

4
β. (90)

Equation (90) is a general expression that specifies ψ for given a rb and α. The plasma response in the
blowout regime is always non-linear, but, depending on the maximum value of rb, it may be relativistic
or non-relativistic. When kprb � 1, the plasma response is non-relativistic. In this limit, the ratio of the
blowout radius to the width of the thin electron sheath is much smaller than unity, or α = ∆/rb � 1. In
the ultra-relativistic blowout regime, kprb � 1 and α = ∆/rb � 1, i.e. the width of the electron layer
that defines the blowout is much smaller than the blowout radius. We can use Eq. (90) to find ψ in these
two limiting scenarios. Hence, in the non-relativistic blowout regime, Eq. (90) reduces to

ψ (r, ξ) ' r2
b(ξ)

4
log

(
1

rb

)
− r2

4
, (91)
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Fig. 8: PIC simulation result illustrating the blowout regime and the model for the ne(1−v‖) profile in the blowout:
(a) shows ne(1 − v‖) for a slice of the simulation box. The laser driver moves to the bottom of the page; and (b)
shows a lineout (solid black line) of ne(1− v‖) taken at the position of the horizontal dashed line in (a). The solid
red line shows the simplified model used to describe the blowout regime.

and in the ultra-relativistic blowout regime, Eq. (90) becomes

ψ (r, ξ) ' (1 + α)
r2

b(ξ)

4
− r2

4
. (92)

In order to obtain a general description of the blowout regime, valid in the relativistic and non-
relativistic regimes, we insert the expression for ψ given by Eq. (90) into the Lorentz force equation given
by Eq. (85). This results in a non-linear differential equation for the motion of the inner most electron in
the blowout rb(ξ) [21]

A(rb)
d2rb

dξ2
+B(rb)rb

(
drb

dξ

)2

+ C(rb)rb =
λ(ξ)

rb
− 1

4

d|a|2
dr

1
(
1 + βr2

b/4
)2 , (93)

where we have assumed that ∆ does not depend on ξ, and where

A(rb) = 1 +

(
1

4
+
β

2
+

1

8
rb

dβ

drb

)
r2

b, (94)

B(rb) =
1

2
+

3

4
β +

3

4
rb

dβ

drb
+

1

8
r2

b

d2β

dr2
b

, (95)

C(rb) =
1

4

(
1 +

1 + |a|2/2
1 + βr2

b/4

)
. (96)

In the ultra-relativistic blowout regime (kprb � 1), the assumption that ∂ξ∆ ' 0 breaks at the back
of the bubble where ∆ � rb. Numerical solutions to Eqs. (93) and (94) are in very good agreement
with full PIC simulations for a wide range of conditions from weakly- to ultra-relativistic blowouts. The
agreement is nearly perfect except for the region at the back of the bubble where ∆ ' rb. Figure 9(a),
which compares Eq. (93) with PIC simulations, shows excellent agreement for almost the entire blowout
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region, except at the back of the bubble. Figure 9 considered an electron beam driver to excite the
blowout. In the laser driven case, the blowout region is not as well defined. Still, comparisons between
theory and simulations are very good when W0 ' rm, where rm is the maximum blowout radius.

Fig. 9: (Picture taken from Ref. [21]) Comparison between the blowout theory (blue lines) and PIC simulations
(red lines): (a) trajectory of the blowout radius rb(ξ) for different maximum blowout radius rm, from the non-
relativistic blowout regime (kprm = 0.18) and strongly relativistic blowout regime (kprm = 4); and (b) shows the
corresponding on-axis accelerating fields for all the cases in (a). The driver propagates from right to left, in the
direction of negating ξ.

It is possible to simplify Eq. (93) in order to predict key wakefield properties in current plasma
acceleration experiments, which operate in the ultra-relativistic regime. The shape of the blowout region
can be predicted in this extreme regime by assuming α� 1, for which Eq. (93) simplifies to

rb
d2rb

dξ2
+ 2

(
drb

dξ

)2

+ 1 =
4λ(ξ)

rb
− d|a|2

dr

1
(
1 + βr2

b/4
)2 . (97)

At the back of the driver where the right-hand side of Eq. (97) vanishes, Eq. (97) becomes very similar
to the equation of a sphere, which is given by

rb
d2rb

dξ2
+

(
drb

dξ

)2

+ 1 = 0. (98)

The main difference between Eqs. (97) and (98) is the multiplication factor in the second term on the
left-hand side of both equations. The additional factor of two in Eq. (97) leads to a stronger bending of
the blowout radius at the back of the bubble when compared with a sphere. However, for most of the
wakefield, the blowout resembles a sphere.

Having determined rb, and hence ψ, it is now possible to derive the full field structure of the
blowout region. The accelerating field is given by Eq. (76), which reads Ez = ∂ψ/∂ξ, and the focusing
field acting on a relativistic particle traveling at c is W⊥ = Er − Bθ = −∂ψ/∂r. In ultra-relativistic
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regimes, Ez can be evaluated by integrating Eq. (97) near the region where the blowout radius is maxi-
mum, and then inserting the resulting expression for rb into Eq. (92). Using Eq. (76) gives

Ez =
1

2

drb

dξ
' ξ

2
. (99)

The maximum accelerating gradient is thus given by Ez ' rb/2, and we recover the result from the
phenomenological theory for the blowout regime. Figure 9(b) compares the theoretical predictions for
Ez with simulation results from the non-relativistic to the ultra-relativistic blowout regime, showing very
good agreement, except at the back of the bubble where the blowout approaches the axis. We note that,
unlike in the linear regime, the accelerating electric field in the bubble is independent of r.

The focusing force can be determined in a similar manner yielding:

Er −Bθ =
r

2
, (100)

which is also in excellent agreement with simulation results.

5 Beam loading
In the previous section we demonstrated that the blowout regime provides linear focusing and accelerat-
ing fields. Linear focusing fields are critical to preserve the emittance of accelerated beams during their
acceleration. Matching conditions, relating the initial beam emittance to the linear focusing force in a
plasma are well known (see, for instance, [33] and references therein). Linear accelerating fields suggest
a way to tailor the currents of accelerated particle bunches ensuring constant accelerating fields for all
bunch particles. This is critical for the acceleration of particles with no energy spread growth [34].

In order to investigate beam loading in the strongly non-linear blowout regime we integrate
Eq. (97):

Ez =
1

2
rb

drb

dξ
= − rb

2
√

2

√
16
∫
l(ξ)ξdξ + C

r4
b

− 1, (101)

where l is the current density of the electron beam injected into the plasma wave. Equation (101) gives
the accelerating electric field in the blowout regime as a function of the position in the bubble ξ and for
an arbitrary beam loading current profile. It is interesting to note that the beam loading depends on the
integrated current profile of the beam, but not on the particular transverse shape of the bunch. Thus, the
accelerating field remains unchanged even if the bunch evolves transversely.

The integral in Eq. (101) can be calculated analytically for the case of a trapezoidal bunch. The
optimal beam loading current for a trapezoidal bunch, ensuring constant accelerating electric fields along
the bunch is

l(ξ) =

√

E4
s +

R4
b

16
− Es (ξ − ξs) , (102)

where the meaning of Es and ξs is shown in Fig. 10. If the beam current profile satisfies Eq. (102), as in
the case of Fig. 10, then all bunch particles accelerate with similar acceleration gradients, hence minimiz-
ing energy spread variations throughout the propagation. The trailing electron bunch will inevitably be
subject to different accelerating fields as it dephases in the plasma wave in laser wakefield accelerators.
Thus, growth of energy spread is expected in laser wakefield accelerators. This may be compensated by
phase-space rotation near dephasing [35].

The maximum charge that can be loaded into the wakefield can be determined by assuming that
the back of the bunch coincides with rb = 0. Using Eq. (102), the maximum charge is thus given by

Qs =
π

16

R4
b

Es
, (103)
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Fig. 10: (Picture taken from Ref. [34]) Top plot shows plasma electron density in the blowout, superimposed with
a particle beam driver and a witness beam at the back of the bubble. The driver propagates from left to right. The
blowout radius rb and maximum blowout radius Rb are also indicated. The dashed line in the top plot shows the
shape of the bubble in an unloaded scenario where the witness bunch is absent. The initial location of the witness
bunch (ξs) and corresponding accelerating field Es is also indicated in the bottom plot. The red (black) lines in the
bottom plot show the accelerating fields with (without) the witness electron bunch.

where Rb = rb(ξ = 0) (ξ = 0 is at the centre of the bubble, cf. Fig. 10). Equation (103) shows that
smallerEs leads to higher charges because the beam can be made longer. However, the maximum energy
per particle is also lower for smaller Es. This illustrates the trade-off between the maximum energy gain
and the maximum number of accelerated particles. The accelerator efficiency is the ratio between the
absorbed energy and the total wakefield energy. This can be expressed as

η =
Q̃s
Qs

, (104)

where Q̃s is the charge of a trapezoidal bunch described by Eq. (102).

6 Challenges
Positron acceleration in plasmas is a major challenge for a future plasma-based linear collider. Although
the blowout is ideal for electron acceleration because it has linear focusing and accelerating fields, it
cannot be employed to accelerate positrons to high energies because the transverse fields in the blowout
regime defocus positrons. Thus, although positrons could accelerate at the front of the bubble, where
Ez > 0, the acceleration time would be limited to the time it would take for positrons to be defocused
away from the blowout region. There are several schemes for positron acceleration in plasmas to over-
come this challenge [24, 36, 38, 39, 41]. Positron acceleration could occur in wakes driven by a positron
beam driver, for instance. Instead of repelling plasma electrons radially, the positively charged driver
sucks plasma electrons inwards. As plasma electrons flow towards the centre of the beam, they provide
a positron focusing force. Some of the driver positrons could then accelerate to high energies. Scaling
for the onset of the suck-in regime is determined by the time (τcol) it takes for a plasma electron initially
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at r = r0 to cross the axis [24], which needs to be smaller than 1/ωp:

τcol '
√
π

(
r0

σr

√
mb

4πnbe2

)
� 1

ωp
, (105)

where mb is the positron mass, nb the positron beam density and σr the positron beam transverse size.

Other schemes for positron acceleration have also been explored using hollow plasma channels.
A hollow plasma channel contains no plasma for r < rc, where rc is the radius of the hollow channel.
At the centre of the channel, focusing forces are negligible. Thus positrons and electrons may propagate
for long distances. The accelerating fields, due to the currents formed at the edges, could then be used to
accelerate positrons (and electrons) to high energies [36].

Recently, a new scheme has been proposed for positron acceleration in strongly non-linear plasma
waves driven by exotic laser beams with orbital angular momentum and doughnut shaped intensity pro-
files. Lasers with orbital angular momentum are defined by Laguerre–Gaussian polynomials. These laser
beams are interesting from a fundamental point of view because they have spiralling wave fronts that cor-
respond to a well defined orbital angular momentum [37]. They have been used for several applications
including super-resolution microscopy, quantum computing and ultra-fast communications. Recently, it
has been suggested that these beams could also be used to drive doughnut shaped plasma waves in the
blowout regime [38]. The onset of positron focusing and acceleration occurs when the electron sheath
that defines the inner doughnut wall merges on-axis. The charge density of the electron sheath on axis
can be much larger than the background plasma ion density. Thus, when it merges near the axis, this
electron sheath provides a positron-focusing force. At the same time, longitudinal electric fields can
accelerate the positrons at the front of the bubble [38]. Similar physics can also be obtained when using
higher order Hermite–Gaussian modes [39]. In addition, the use of a ring-shaped electron beam driver
could provide similar structures for positron acceleration [40, 41].
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Fig. 11: PIC simulation results showing structures leading to positron acceleration in the strongly non-linear
blowout regime using a Laguerre–Gaussian beam driver with orbital angular momentum: (a) shows plasma density
isosurfaces (green) illustrating the generation of a doughnut bubble. Plasma density projections are in grey and
laser pulse electric field projections in orange. The laser propagates in the direction of the blue arrow. Blue spheres
represent a self-injected electron bunch ring; (b) shows the plasma density structures taken from a central slice
of the simulation box. The location for positron focusing and accelerating fields is shown by the red shape; and
(c)–(d) show the focusing and accelerating field structures taken from a central slice of the simulation box. The
blue line in (c) shows a lineout of the focusing wakefields.
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The use of proton bunch drivers for plasma accelerators has been recently proposed [42]. The field
structure of a proton driven plasma wakefield accelerator is analogous to that of the bubble regime driven
by lasers or electron bunch drivers with an additional phase shift associated with the crossing time given
by Eq. (105). The beam loading is also identical to the blowout regime driven by intense lasers or particle
bunches. Thus, proton driven wakefields can be used to accelerate high-charge electron bunches. It has
been proposed that the compressed proton bunches available at CERN could be used to drive intense
plasma waves capable of accelerating electrons to nearly 1 TeV in a plasma 600 m long [42].

Proton driven plasma wakefields require proton bunch drivers that are shorter than the plasma
skin-depth (cf. Eq. (105)). Proton bunches, such as those at CERN, are, however, much longer and
encompass hundreds of plasma wavelengths. The physics behind wakefield excitation, however, differs
significantly from the processes described in the previous sections [43–45], but could still be used to
drive large-amplitude plasma waves. When a long bunch propagates in a plasma, it may be subject to
the so called self-modulation instability. The self-modulation instability leads to the generation of a train
of beamlets, each separated by the plasma wavelength. The train of bunches can resonantly excite the
plasma wave that grows from the head to the tail of the bunch. Large acceleration gradients can then
be produced at the back of the bunch and be used to accelerate particles to high energies. This concept
has motivated experiments at CERN (the AWAKE collaboration experiment) [46] and at SLAC [47].
Figure 12 shows an example of a self-modulated long bunch after propagation into a plasma.

Fig. 12: OSIRIS PIC simulation result illustrating a self-modulated bunch consisting of several beamlets separated
by the plasma wavelength. Green and yellow regions show density isosurfaces of the self-modulated particle bunch
driver. The orange and grey mesh shows background plasma electron density iso-surfaces.

Another challenge related to higher energy physics applications is the acceleration of spin polar-
ized particle bunches. Neglecting Stern-Gerlach forces, the spin of an ultra-relativistic charged particle
propagating in a region with electric and magnetic fields proceeds according to the T-BMT equations:

ds

dt
= −

[
(a+

1

γ
) (B− v ×E)− v

aγ

γ + 1
v ·B

]
× s = Ω× s, (106)

where a is the anomalous magnetic momentum of an electron. A fully polarized beam has its spins
aligned in the same direction, while a fully un-polarized beam has no net spin. For high-energy physics
experiments, high spin polarizations above 80% are required. The conditions for keeping beam polarisa-
tion unchanged as a particle beam accelerates in plasma wakefields have already been determined [48].
In general, beam depolarisation depends on the elipticity of the particle trajectories as they accelerate.
Spin depolarisation will be smaller when the trajectories of the accelerated particles occur in a single
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plane and larger when the trajectories are helicoidal. Thus, beam spin polarisation can be maintained as
long as the beam emittance is sufficiently small [48].

7 Conclusions
In this report we have outlined wakefield excitation models using various approximations, valid in one-
and multidimensional scenarios. Using these models, we have shown how the field structure of plasma
waves in the linear and non-linear regimes can be determined, and we have derived a set of scaling laws
for the maximum energies and charges that can be achieved in plasma-based accelerators. We have shown
that the blowout regime has the potential to accelerate high-charge, high-quality electron bunches to high
energies. Laser wakefield acceleration experiments in the blowout regime have demonstrated multi-GeV
electron accelerations [9, 10], and future experiments in the field promise to take the technology even
closer to applications.
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Laser Wakefield Accelerators

Z. Najmudin
John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, UK

Abstract
The one-dimensional wakefield generation equations are solved for increasing
levels of non-linearity, to demonstrate how they contribute to the overall be-
haviour of a non-linear wakefield in a plasma. The effect of laser guiding is
also studied as a way to increase the interaction length of a laser wakefield
accelerator.

Keywords
Laser; wakefield; accelerator; guiding.

1 Introduction
Large amplitude relativistic plasma waves, driven in the wake of a relativistic driver passing through a
plasma, are a potential linear accelerator system [1]. This is commonly called a wakefield accelerator.
The plasma, being already ionized, can support accelerating fields many orders of magnitude greater
than in conventional accelerators. Indeed, at the time of writing, reports of energy gains of ∼1 GeV in
distances of centimetres are now becoming common [2–5].

Possible drivers of the relativistic plasma wave include light [1], electron [6], positron [7], or pro-
ton beams [8]. A generalized one-dimensional (1D) wakefield generation equation describing generation
by all of the mentioned drivers is [9]

1

kp
2

∂2φ

∂ζ2
= ±nb

n0
+ γp

2

{
βp

[
1− (1 + a2)

γp2(1 + φ)2

]−1/2
− 1

}
, (1)

where the potential φ is normalized to mc2/e and the variations are in the quasi-static frame with
ζ = z − vpt for a driver of velocity vp. The first term on the right describes the response to a par-
ticle beam driver and is + for an electron and − for a positively charged driver. In its absence (nb = 0),
and in the limit that the phase velocity of the wave γp � 1, then expanding the square brackets and also
expanding βp = (1− 1

γp2 )
1/2 gives a non-linear laser wakefield driver equation:

1

kp
2

∂2φ

∂ζ2
=

1

2

[
(1 + a2)

(1 + φ)2
− 1

]
. (2)

In the small amplitude limit, φ� 1, this can be further simplified to
(
∂2

∂ζ2
+ kp

2

)
φ =

1

2
kp

2a2, (3)

which reveals itself to be a driven oscillator. Below, we obtain Eq. (3) starting from the linear forms of the
fluid equations of motion, continuity and Gauss’s Law. The electric field and density can then be obtained
from E = −∇φ and Poisson’s equation. This allows us to obtain some of the common characteristics
of a laser driven wakefield accelerator. By adding further levels of non-linearity, we reveal some of the
behaviour of laser wakefield accelerators in the non-linear regime.
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2 Laser wakefield
2.1 Basic equations
Beginning with Gauss’s Law, and the continuity and fluid motion equations for electrons in a plasma in
one dimension (the ions are assumed to be heavy and thus fixed) subject to a laser of peak intensity I
and wavelength λ with a normalized vector potential a = eE/mωc ≈ 8.9× 10−6

(
Iλ2)

)0.5 [SI units]:

ε0
∂E

∂z
= −e(ne − ni),

∂ne
∂t

+
∂

∂z
(nev) = 0,

[
∂p

∂t
+ v

∂p

∂z

]
= −eE +

1

γ⊥
mc2

∂(a2)

∂z
,

where p = γmv is the momentum of the fluid element. Note that the last term on the right of the
equation of motion is the relativistic ponderomotive force, with the relativistic factor due to the quiver
motion usually given by γ⊥ =

√
1 + (a2/2) for linear polarization. It is this ponderomotive force which

mediates the interaction between laser and plasma.

For simplicity, we use normalized units: ε0, e,m, c = 1. We also move to the frame in which the
laser driver is stationary (the quasistatic approximation), i.e. ζ = z − vpt ≈ z − ct. So ∂

∂z = ∂
∂ζ and

∂
∂t = −c ∂∂ζ . Also using ne = n0 + n1, where n0 is the initial plasma density and n1 is therefore the
amplitude of the plasma wave, the above equations become

∂E

∂ζ
= −n1, n1 = (n0 + n1)β, (1− β)∂p

∂ζ
= E − 1

γ⊥

∂(a2)

∂ζ
. (4)

Here β = v/c and is given by
β =

p

(1 + p2 + a2)1/2
,

i.e. the relativistic factor of the electrons depends on not only their longitudinal motions but also their
transverse oscillations, which at the intensities used to drive laser wakefield accelerators are also rela-
tivistic.

Starting from these base equations, we can now consider different levels of non-linearity and assess
their effect on wakefield generation.

2.2 Linear wakes
For small amplitudes, we can assume, n1 � n0, β � 1, γ = 1 and p = mcβ:

∂E

∂ζ
= −n1, n1 = n0β,

∂β

∂ζ
= E − ∂(a2)

∂ζ
.
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Fig. 1: Linear wakefield generation: plots of E/E0, v/c, and ne/n0 (in blue) for laser pulse a = a0 sin(πζ/L)

with pulse length L = (a) 1
2 , (b) 1, (c) 2λp and a0 = 0.2 (in red).
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Combining these equations gives us essentially Eq. (2), with (in normalized units) kp2 = n0. For a
normalized laser intensity profile a2 = a0

2 sin2(πζ/L) for 0 < ζ < L, i.e. a half sinusoid, the wake
growth is optimized for L = λp ≡ 2π/kp, or alternatively, when the intensity full-width half-max
Lfwhm = λp/2. This can be seen in Fig. 1 where these equations have been solved numerically using the
scipy.integrate.odeint function in python. One can see that the plasma wave grows at the front end of the
laser pulse as the ponderomotive force pushes electrons ahead of it, which then relax to form a plasma
oscillation. When resonant, the back of the pulse gives an extra ponderomotive kick to the plasma wave
growing it to higher amplitude. At resonance, the wake trailing (behind) the laser pulse has solution

ne = n0

(
1 +

π

4
a0

2 sin kpζ
)
, Ez = E0

π

4
a0

2 cos kpζ, φ = −mc
2

e

π

4
a0

2 sin kpζ,

where E0 = (mcωp/e) is the electric field for sinusoidal oscillations of maximum amplitude, i.e. for
n1 = n0. For yet longer pulse lengths, the wakefield (the plasma wave amplitude following the laser
pulse) reduces again, to the point where for L = 2λp, there is no wakefield at all. There is however
a driven (or forced) oscillation of the plasma wave whilst the laser pulse is still active (see Fig. 1(c)),
which may be useful if only a single bunch needs to be accelerated, rather than a pulse train. There are
also smaller amplitude resonances for L ≈ (n+ 1

2)λp for integer n > 2.

Clearly there is a problem for linear solutions with a0 > 1, where ne can become negative. In fact,
in the fluid model, electron sheets would cross, so that instead of seeing a returning force, some electrons
end up being continually accelerated, a process called ‘wavebreaking’ [10]. Wavebreaking is interesting
because it suggests that plasma electrons can themselves be a source of particles to be accelerated in the
accelerator [11]. Thus, this cold linear wavebreaking limit for the electric field E0 = (mcωp/e) is useful
for giving an estimate of the energy output from the accelerator. In the laser driven case, the wakefield
travels at the group velocity of the driving pulse, as quantified by γph ≈ (ω0/ωp) for a laser of angular
frequency ω0. The maximum energy gain is then given by

Wmax ≈ 2γph
2mc2,

and so is dependent on the plasma density. Interestingly, lower density (smaller ωp, thus higher γph)
results in greater energy gain. This, however, comes at the expense of the greater laser energy that is
required to drive the larger sized wakefield that results from lower density.

2.3 Non-linear wakes
For n1 ∼ n0, the continuity equation gives n1 = n0(1− β)−1. Since in their fluid motion, the electrons
have −1 < β < 1, one can see that 1

2 < n1/n0 < ∞. Because of this non-linearity in the continuity
equation, the lowest density in a 1D wake cannot be less than 1

2n0. The plasma wave as a result becomes
non-linearly steepened, with sharp high-density spikes associated with longer areas of lower electron
density plasma. Of course this is only true in one dimension. In three dimensions, at high a0, transverse
motion can lead to ne → 0, or cavitation. Relativistic effects in the equation of motion add further non-
linearity, as in Eq. (4). The effect of these non-linearities can be seen in Fig. 2, for a half sinusoidal laser
pulse (as before) with L = λp, and increasing laser strength a0.

Even for a0 = 0.5 (Fig. 2(a)), the density profiles of the plasma wave have begun to be non-linearly
steepened. This is particularly clear for a0 = 1.0, 1.5 (Fig. 2(b,c)), where the plasma wave consists of
sharp density spikes either side of shallow long density troughs. As a result, the electric field becomes
sawtoothed in nature, with a long region of linearly increasing field followed by a sharp drop due to the
density spikes. In the non-linear case too, the fluid approximation breaks down for large amplitudes, as
particle sheets cross from neighbouring wave buckets, leading to wavebreaking. Due to the non-linear
steepening, the density spikes have much higher density than in the linear case, and the value at which
wavebreaking occurs (for a cold relativistic plasma) is given by [12]

EWB =
√
2(γph − 1)1/2E0.
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Fig. 2: Non-linear wakefield generation: plots ofE/E0, v/c, and ne/n0 (in blue) for laser pulse a = a0 sin(πζ/L)

with a0 = (a) 0.5, (b) 1.0 and (c) 1.5 (in red).

The non-linearities in density also causes lengthening of the plasma wave. This can be seen in Fig. 3(a),
where adding relativistic effects results in an increasing lengthening of the laser pulse length at which
resonance occurs. This is because the plasma wave wavelength increases as relativistic effects give
the plasma electrons greater inertia. Figure 3(b) shows the increase of the maximum electric field with
increasing laser strength a0. At low intensity, the field increases proportional to a02, whereas at high laser
strength the dependence becomes closer to a0. This dependence follows the ponderomotive potential
of the laser pulse. Because of the non-linear steepening, the electric field can easily exceed the cold
wavebreaking limit E0 at high a0. At resonance, the wake amplitude is given by

Emax ≈
a0

2

(1 + a02)1/2
E0.

(a) (b)

Fig. 3: Wake amplitude for (a) a0 = 1 with varying pulse length for a linear (blue) and non-linear (red) wake, and
(b) L = λp and varying a0.

3 Electromagnetic waves
3.1 The wave equation in vacuum
The wave equation in vacuum is

∇2E− 1

c2
∂2E
∂t2

= 0.

The paraxial ray approximation assumes that the phase of the electromagnetic wave varies primarily in
z, the direction of propagation, i.e. E = E(x, y, z) exp(i(kz − ωt))x̂, which is true for gentle focussing
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as in wakefield accelerators. So,

∇2E =

(
∂2

∂x2
+

∂2

∂y2

)
E +

∂2E

∂z2
ei(kz−ωt)x̂ + ikei(kz−ωt)

∂E

∂z
x̂− k2E.

The last term, k2E, cancels with
1

c2
∂2E
∂t2

=
ω2

c2
E since ω ≈ ck, and we can assume that the variation in

z is slow, so that
∂2E

∂z2
→ 0, leading to

(
∂2

∂x2
+

∂2

∂y2

)
E − 2ik

∂E

∂z
= 0. (cartesian paraxial ray wave equation)

In two dimensions, e.g., taking
∂2E

∂y2
= 0, the equation forms a time-dependent Schrödinger equation.

3.2 Gaussian optics
For a cylindrically symmetric beam, the paraxial ray equation can be rewritten:

∂2E

∂r2
+

1

r

∂E

∂r
− 2ik

∂E

∂z
= 0. (paraxial ray wave equation)

This equation has a solution of the form:

E(r, z) =
w0

w
exp

[−r2
w2
− iπr2

λR
+ iφ0

]
,

where

w = w0

√
1 +

(
z

zR

)2

, (beam waist)

R =
1

z

(
z2 + zR

2
)
, (radius of curvature)

tanφ0 =
λz

πw0
2
, (Gouy phase)

where zR =
πw0

2

λ
is the Rayleigh length, and w0 is the beam waist, and its variation in vacuum can

be seen in the Fig. 4. The beam has a minimum at z = 0 and like an unconstrained wave packet, will
disperse with increasing propagation. R is the curvature of the incoming phase fronts and φ0 is known
as the Gouy phase, which flips through zero as a beam passes through focus.

The intensity is then given by I(r, z)/I0 =
w2
0

w2
exp

[−2r2
w2

]
, so for z = ±zR, the intensity falls

by half. As can be seen in Fig. 4, this is also the distance over which the phase fronts are approximately
flat. For z � zR, the beam waist expands almost linearly with an angle given by

tan θ = lim
z�zR

[w
z

]
=
w0

zc
=

λ

πw0
.

Or θ ∼ 1

πF
, where the F -number, F =

w0

λ
=

f

d
, which is the ratio of focal length, f , to the beam

diameter at the final mirror, d.

For wakefield generation, it would seem advantageous to have as high an intensity as possible,
i.e. focusing to small focal spot size. This however implies a short Rayleigh range and so a short accel-
eration distance. To try to maintain a near constant intensity over the interaction distance (zR > Ldeph)
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Fig. 4: Evolution of beam waist (red line) of an ideal Gaussian beam, with curvature of phase fronts (blue lines)
and Rayleigh range, zR, (shaded grey) also shown.

would require gentle focussing. This has an implication though for the real size of a plasma accelera-
tor, since the beam diameter is typically constrained by damage thresholds on the final turning mirror
(Idam ∼ 1012 W cm−2), which then has to be further away from final focus for a longer focal length
interaction. Luckily, plasma effects can help guide an intense laser beam for distances much longer than
the Rayleigh range, alleviating this problem.

3.3 Propagation in plasma
The wave equation including the effect of plasma can be written

∇2E− η2

c2
∂2E
∂t2

= 0,

where η, the plasma refractive index, is given by

ηR ' 1− ωp
2

2ω2

n(r)

n0γ⊥
,

for the case of sufficiently underdense plasmas, i.e. ωp
2/ω2 � 1. Note that both the density profile n(r)

and the relativistic factor γ⊥(r) can now vary radially, in the latter case due to the dependence of γ⊥ on
intensity, i.e. γ⊥ =

√
1 + (a20/2) for linear polarization.

Either an intensity decrease away from the axis of propagation (∂a2/∂r2) < 0 or a density increase
(∂n2e/∂r

2 > 0) can lead to a higher refractive index on-axis and so, like an optical fibre, causes flow of
energy towards the axis or self-focusing. For small variations, the refractive index can be written

ηR ' 1− ωp
2

2ω2

(
1 +

δn

n0
− a2

2

)
,

where δn is the density depression, which can be due to a number of effects such as a preformed channel,
or ponderomotive expulsion of plasma electrons.

A Gaussian laser pulse with transverse variation a(r) = a0 exp(−r2/R2), where R is now the
beam waist, can be used as a trial solution to the paraxial ray equation. Keeping only dominant terms,
the evolution of the beam waist can be approximated by [9]

d2R

dz2
=

1

zR2R3

(
1− P

Pc

)
.

The spot size has been normalized to r0, the minimum vacuum focal spot size of the laser pulse and the
power unit Pc ' 17(ω2/ωp

2) GW, which is dependent on density. Figure 5 demonstrates the effect of
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Fig. 5: Behaviour of laser beam waist focussed on boundary of sharp density plasma transition for P/Pcr = (a) 0,
(b) 0.5, (c) 0.9, (d) 1.0 and (e) 1.1.

P/Pcr on the evolution of the beam waist. Increasing P/Pcr leads to a greater influence of the second
term, which is due to intensity effects, over the first term which causes diffraction. At P = Pcr, a balance
is formed between diffraction and self-focusing and the laser pulse can be guided. Hence this is a critical
power for self-focusing. For P > Pcr, the model predicts catastrophic self-focusing. In reality however,
including higher order diffraction terms prevents this as strong focussing invariably leads to generation
of higher modes and thus filamentation [13].

3.4 Guiding
For wakefield driving short pulses, the leading edge of the pulse interacts with the wrong curvature of
density due to the plasma wave (increasing on-axis) and this can cause increased diffraction of the laser
pulse. This is true even if the body of the laser pulse is being self-focused. To overcome this, guiding
channels are used, where the guiding of the pulse is now determined by

d2R

dz2
=

1

zR2R3

(
1− δn

δnc
R4

)
.

A Gaussian beam with R = 1, i.e. r = r0, can be guided, provided there is a density depression with
δn = δnc, where

δnc =
1

πrer02
, (5)

and re = e2/me
2c2 is the ‘classical radius of the electron’. Such channels can be formed, for example,

by thermal equilibration of a discharge with its cold walls, or by ponderomotive or thermal expulsion of a
plasma by a secondary laser pulse [14]. Channel guiding allows laser energy to be used more efficiently
in a laser wakefield and also allows potentially simpler operation in the linear regime.

There is a critical beam or ‘matched’ spot size at which the beam propagates with minimum
channel waist oscillations (see Fig. 6), as can be found by inverting Eq. (5). The goal for laser wakefield
operation is to match the Gaussian focussed laser spot to the matched spot of the accelerator, which
determines the required focussing parameter. However, as can be seen in the figure, not focussing at
the matched spot size will lead to channel oscillations which can lead to a loss of guided energy, as the
channels are invariably ‘leaky’.
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Fig. 6: Behaviour of the waist of the leading edge of a laser pulse focussed on boundary of sharp density transition
on a plasma with radial guiding channel with δn/δncr = (a) 0, (b) 0.1, (c) 0.5, (d) 1.0 and (e) 1.4.

3.5 Propagation effects
A laser pulse of course does not stay unchanged as it drives a wakefield, it must lose energy. However
this does not necessarily lead to a reduction in intensity, since the pulse can compress as it propagates.
In a linear wake, the rate of compression is given by the difference in the group velocity from the first
maximum to minimum of the plasma wave. This can be seen in Fig. 7 which shows that due to the
density rise, the front of the laser pulse has a slower group velocity than the rear of the pulse, causing the
back to ‘catch-up’ and the pulse to compress. For the case of a pulse with L ∼ λp, the variation of pulse
length as a function of propagation distance ` is [15]

τ = τ0 −
ne0l

2ncrc
.

The pulse compression has the beneficial effect that the power of the driving pulse can stay relatively
constant, even though the energy within the laser pulse is being progressively reduced. The laser pulse
also redshifts from the front as those photons that drive the wakefield lose energy. This almost complete
loss of energy of the driving photons leads to an etching of the laser pulse. By contrast the trailing
photons in the wake are ‘squeezed’ as they travel in the density depression and so become blue shifted.
This process is often called photon acceleration and the amount of blue shifting (energy gain) of the
photon is given by [16]

δω = ω0

(
1− zdβp

dζ

)
' ω0

(
1− z d

dζ

(
δn

n0

))
.

Photon acceleration can be a useful diagnostic of wakefields in cases where there are no charged particles
available to accelerate [17].

4 Conclusion
We have discussed a number of effects which are important for laser wakefield acceleration. We have
shown how non-linear effects increase the plasma wave wavelength and also allow larger wakefield
amplitudes at high intensities (a0 > 1). This is due to the characteristic peak and trough nature of the
non-linear wakes in this regime.
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(a) (b)

Fig. 7: Compression and photon acceleration of a wakefield driving laser pulse for a0 = 1, L = λp. (a) ne (top),
group velocity (middle) and pulse shape (bottom) showing regions of speeding and slowing of the pulse. (b) ne
(top), phase velocity (middle) and pulse shape (bottom) showing regions of stretching and compressing of phase.

We have also discussed simple models for the guiding of laser pulses which allow the length of a
laser wakefield well beyond the Rayleigh range of the laser pulse. This is important as it allows the full
energy gain to be extracted from the laser wakefield. We also discussed how preformed channels can
enhance the guiding effect for a laser pulse focussed to the matched spot size of the channel.
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Beam-driven, Plasma-based Particle Accelerators

P. Muggli
Max Planck Institute for Physics, München, Germany

Abstract
We briefly give some of the characteristics of the beam-driven, plasma-based
particle accelerator known as the plasma wakefield accelerator (PWFA). We
also mention some of the major results that have been obtained since the birth
of the concept. We focus on high-energy particle beams where possible.

Keywords
Plasma; particle accelerator; plasma-based accelerator; plasma wakefield;
beam-plasma interaction.

1 Introduction
In plasma-based particle accelerators (PBPAs), particles are accelerated by the wakefields sustained by
a periodic plasma density perturbation. It was first realized that wakefields can be driven in plasmas by
intense laser pulses [1]. In this case, it is the ponderomotive force associated with the gradient of the
laser pulse intensity and not the oscillating electric field itself that acts to displace the plasma electrons
and drive the wakefields. Such a PBPA is called a laser wakefield accelerator (LWFA).

Soon after this, it was realized that an intense, relativistic charged-particle bunch can also drive the
wakefields [2]. In this case, the (unipolar) space charge field of the bunch acts on the plasma electrons.
A PBPA driven by a charged-particle bunch is called a plasma wakefield accelerator (PWFA). This is a
particular type of a collinear wakefield accelerator.

The PWFA is one of the advanced accelerator schemes studied as a high-gradient alternative to
today’s RF technology.

It is, of course, hopeless to pretend to summarize PWFA research in a few pages. However, we
attempt to touch on some of the most relevant points, to give an introduction to the field. The many
details missing here can be found in the references provided and in other articles. It is left to the reader
to do the detailed work, which is the essence of the learning process.

The text is organized as follows. First, we outline a few characteristics of charged particles and
of charged-particle bunches relevant for the PWFA. Then we briefly describe how wakefields are driven
in the plasma. We next introduce the concept of the transformer ratio. After that, we summarize two-
dimensional PWFA linear theory and the relevance of the longitudinal and transverse dimensions of
the bunch to the driving process. We also introduce the concepts of the wave-breaking field and beam
loading. We then introduce the non-linear regime of the PWFA, including beam focusing, propagation
and acceleration, both for electron and positron bunches. The possibility of using a hollow plasma
channel for positron bunches is also briefly addressed. We mention the intermediate, quasi-linear or
weakly non-linear regime of the PWFA, as well as the self-modulation instability. We end with a few
remarks.

2 Charged particles, charged-particle bunches and the PWFA
Charged-particle bunches have a number of characteristics that make them particularly suitable for driv-
ing wakefields for PBPAs.

– The electric field of a relativistic charge or bunch is essentially transverse. This can be seen by
using the Lorentz transform for the purely radial electric field of a single particle in its rest frame:
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Er0 = q
4πε0

1
r2

. In the laboratory frame where the particle has relativistic factor γ, the fields are
E|| = Er0, E⊥ = γEr0, B|| = 0, B⊥ = (vb/c

2)Er0. Therefore, E⊥ = γE|| � E|| for γ � 1.
– A charged-particle bunch experiences a space charge force that makes it diverge (transversely)

and lengthen (longitudinally). However, when the particles are relativistic, their relative distance
does not change significantly over distances of interest (a few metres for PBPAs). For particles
with energies γ and γ + ∆γ, with ∆γ � γ, the dephasing ∆L over a propagation distance
L is ∆L/L ∼= (1/γ2)(∆γ/γ). This dephasing is usually small compared with the length of
interest, the plasma wavelength λpe = 2πc/ωpe over plasma lengths utilized in PBPAs. There
is, therefore, no lengthening of the relativistic bunch under the conditions of interest here. In the
transverse plane, the bunch is subject to the full Lorenz force, F⊥ = qb(E⊥ + vb × B⊥). Here,
vb =

(
1− 1/γ2

)1/2
c is the velocity of the bunch particles; in cylindrical coordinates, vb is along

the z-axis and E⊥ = Er, B⊥ = Bθ. To evaluate the fields, we need to assume a cylindrical
infinitely long bunch or beam, with uniform density nb. In this case, the radial electric field within
the bunch radius is simply given by Gauss’ law: Er = 1

2
qbnb
ε0
r . The magnetic field is given by

Faraday’s law, Bθ = 1
2(µ0qbnb)r, with qb = ±e the charge of a bunch particle. The total force

therefore reads, with c2 = 1/µ0ε0,

F⊥ = qb(Er + vb ×Bθ) = qb
1

2

qbnb
ε0

(
1− v2b

c2

)
r =

1

γ2
qbEr . (1)

That is, the total transverse force is reduced to 1/γ2 multiplied by the pure space charge force
Fsc = qbEr, i.e., as soon as the particles become relativistic (γ � 1), the transverse dynamics are
dominated by the emittance and the external focusing forces.

– A beam with geometric emittance εg has a beta-function at its waist, defined as β0 = σ20/εg, where
its transverse r.m.s. size is σ0. This parameter depends on the beam emittance, which can, in
principle, be made very small. The beta-function of a charged-particle beam is the equivalent of
the Rayleigh length of a photon beam focused to a transverse size w0: ZR = π

w2
0
λ0

, where λ0 is the
wavelength of the laser pulse. In both cases, the transverse size of the beam increases by a factor
of
√

2 over β0 or ZR. Since the vast majority of today’s laser pulses that are short and intense
enough to drive a PBPA have λ0 ∼= 800 nm, the Rayleigh length is determined only by the focal
size, w0. For example, choosing a typical value σ0 = w0 =10 µm, we obtain β0 = 0.8(0.08) m
(for a typical Stanford Linear Accelerator Center (SLAC) beam geometric emittance, εg = 1.26×
10−9(1.26 × 10−10) m rad) in the x-(y-)plane and ZR = 400 µm. The value of β0 and ZR

determines the distance over which the beam remains small and can thus drive wakefields (in the
absence of external forces or a guiding mechanism). A future linear collider beam is expected to
have an εg of the order of (1− 8)× 10−11 m rad from 200 and 500 GeV [3].

– The space charge field of the bunch is (at least) partially cancelled by the plasma (see P. Gibon’s
lecture). Its current is also cancelled by the plasma return current. Even an initially radially
uniform plasma, therefore, focuses the bunch and counters its natural divergence, resulting from
its non-zero incoming emittance. In addition to the beam having a relatively long beta-function,
plasma focusing can maintain a small beam transverse size and the wakefield driving and acceler-
ation over long distances.

– The velocity of the particle bunch in the plasma is independent of the plasma density. For a
bunch with particle energy E0 and relativistic factor γ = E0/mec

2 − 1 ∝ E0/mec
2 it is simply

given by the particle’s velocity: vb =
(
1− 1/γ2

)1/2
c. The laser pulse velocity is given by the

group velocity of the light in the plasma and around frequency ω0: vg =
(
1− ω2

pe/ω
2
0

)1/2
c ≤ c.

Here ωpe =
(
ne0e

2/ε0me

)1/2 is the plasma electron (angular) frequency in a plasma of (electron)
density ne0.

In the next section, we describe the principles of the PWFA.
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3 The PWFA
In the PWFA, the mostly transverse space charge field of the relativistic charged-particle bunch travelling
in a neutral plasma displaces the plasma electrons (Fig. 1). The positively or negatively charged bunch
driving the wakefields is called the drive bunch. The plasma ions experience the same force as the
electrons but, because of their larger mass or inertia, respond on a much longer time scale, of the order
of the inverse of the ion plasma frequency, ωpi =

(
ni0Z

2e2/ε0Mi

)1/2. In an initially neutral plasma, the
ion density is ni0 = ni0. Here, Z is the number of ionized electrons per atom (Z = 1 for the protons
of a hydrogen plasma or singly ionized atom with more electrons) and Mi is the ion mass. Ions are
thus usually considered as immobile over the typical ω−1pe time scale of a single wakefield period since
ωpe � ωpi. When the drive bunch density is much larger than the plasma density, the ions can move
over the same time scale as the electrons and ion motion must be considered [4–6].
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Fig. 1: Cartoon of the PWFA principle. The electron bunch displaces the plasma electrons and forms regions of the
plasma that are globally positively and negatively charged. This electron plasma density perturbation sustains the
wakefields. The main electric field components of the wakefields are shown and can be schematically determined
from the charge distribution. This is the case of a bunch with density larger than the plasma density (nb � ne0,
non-linear PWFA regime) and a pure ion column is formed. The arrows showing the backward motion of the
plasma electrons suggest this as seen in a window moving with the drive bunch.

In the case of a negatively charged drive bunch (e.g., an electron bunch), once displaced, the
plasma electrons feel the restoring force of the plasma ions, are attracted back to the axis, overshoot
and oscillate. This oscillation of the plasma electrons with period ∼= 2π/ωpe and phased by the drive
bunch moving at approximately the speed of light is the plasma wake. The direction of the fields can be
determined form the charge distribution in the second accelerator structure or bubble (see Fig. 1). On the
axis there is an alternation of positively and negatively charged regions. In the front of the structure, the
longitudinal Ez field is in the forward direction (for the bunch moving to the right), corresponding to a
decelerating field or force. The drive bunch particles lose energy to the plasma in expelling the plasma
electrons (for the case of the negatively charged drive bunch). In the back of the structure, the Ez field
direction is reversed, allowing for the possibility for particles in the back of the bunch, or in a trailing
witness bunch, to gain energy from the wakefields. In the middle of the structure, the transverse field
points outwards, corresponding to a focusing force for this drive bunch or for a witness bunch of the same
charge sign. Between the structures, regions of strongly compressed plasma electron density correspond
to defocusing regions.

The wakefield can be driven (energy loss) and sampled (energy gain) by the electrons of a single
bunch, approximately one plasma wavelength long, as suggested by Fig. 1 and as demonstrated next.
However, this leads to a large final energy spread, since all phases of the wakefields are sampled.

Wakefields can be driven by a shorter bunch and sampled by another short, trailing bunch, called
a witness bunch. This is shown in Fig. 2. This can lead to a narrow final energy spectrum for the witness
bunch, as demonstrated in Ref. [7] and recently in Ref. [8].
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The drive bunch can also be positively charged, as suggested in Fig. 2. In this case, the plasma
electrons are first attracted towards the beam axis, but then sustain the same kind of wakefield, with just
a phase shift with respect to the negatively charged drive bunch.
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Fig. 2: The left panel shows the wakefields driven by a negatively charged drive bunch. The witness bunch that is
accelerated is also negatively charged. The right panel shows a schematic of the wakefields driven by a positively
charged drive bunch. The witness bunch is negatively charged.

Driving wakefields with a charged particle bunch was first demonstrated in Ref. [9], interestingly,
with a drive-witness electron bunch train. Driving wakefields with a positively charged particle bunch
was first demonstrated with positrons in Ref. [10].

The witness bunch can also have a positive charge (e.g., positrons). In this case, it must be placed
in the corresponding accelerating and focusing phase (region) of the wakefields.

4 Transformer ratio
The transformer ratio is an important concept for the PWFA. It is the ratio of the accelerating field
amplitude behind the drive bunch(es) to the decelerating field amplitude within the drive bunch(es). It
can be defined from general wakefield characteristics (i.e., also in RF systems).

Consider the wakefield amplitude per unit charge W (ξ) at a position ξ at or behind a particle.
Following Ref. [11], the rate of energy change (loss in this case) by an infinitely short bunch with N1

charges e of energy E1 (per particle) located at ξ = 0 is

d(N1E1)

dz
= − (N1e)N1eW (0) = −N2

1 e
2W (0) . (2)

Similarly, the rate of energy change of the second bunch with charge N2e and energy E2 located at
ξ = ξ2 is

dN2E2)

dz
= −N2

2 e
2W (0) + (N2e)N1eW (ξ2) = −N2

2 e
2W (0) +N1N2e

2W (ξ2) . (3)

Note that N1 and N2 remain constant along the plasma and that the result is independent of the sign of
the charge e; it depends on the sign of W (ξ2), i.e., on the position (or phase) of the second bunch in the
wakefield of the first one. The sum of the energy change by the two bunches must be smaller or equal to
zero, thus

d(N1E1)

dz
+

d(N2E2)

dz
= −N2

1 e
2W (0)−N2

2 e
2W (0) +N1N2e

2W (ξ2) ≤ 0 , (4)

or (
N2

1 +N2
2

)
W (0) +N1N2W (ξ2) ≥ 0 . (5)
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Since this relation has to be true for all values of N1 and N2, we obtain

2W (0) ≤ −W (ξ2) . (6)

The accelerating gradient G is, from Eqs. (3) and (6),

G =
dE2

dz
= −N2e

2W (0)+N1e
2W (ξ2) ≤ −N2e

2W (0)+2N1e
2W (0) = e2W (0) (2N1 −N2) . (7)

The distance over which the first bunch loses all its energy is

N1E1 = N2
1 e

2W (0)L , (8)

or
L =

E1

N1e2W (0)
. (9)

Thus, the change in energy of the trailing particles is

∆E2 = GL ≤ e2W (0)

N1e2W (0)
E1 , (10)

and

∆E2 ≤ E1

(
2− N2

N1

)
. (11)

This expression is a maximum for N2 = 0, in which case ∆E2 ≤ 2E1, showing that the energy gain
per trailing particle is at most equal to twice the incoming energy of a drive particle. Since both drive
and witness bunches travel the same distance in the plasma, the transformer ratio can be defined from
the longitudinal wakefield amplitude: R = E+/E−. Here, E− is the maximum decelerating field within
the drive bunch and E+ is the maximum accelerating field behind the drive bunch, where the particles
of the witness bunch can be placed. Note that global energy conservation implies that N2∆E2 ≤ N1E1,
or, more generally, N2∆E2 ≤ N1∆E1 over a distance smaller than or equal to the full energy depletion
length defined in Eq. (9). It is also important to note that these expressions relate the energy change
(loss/gain) of the different particles. This means that, for example, a bunch of 20 GeV particles could lose
(almost, they must remain relativistic) all their energy (i.e., lose 20 GeV per particle) and transfer 40 GeV
to each particle of a witness bunch of 100 GeV. This is what would happen in a staged accelerator, where
each plasma section (stage) would be driven by a 20 GeV bunch, while a witness bunch would keep
gaining (up to) 40 GeV per stage.

This concept is similar to that for an electrical transformer, U2I2 ≤ U1I1 (index 1 for primary and
2 for secondary; this expression is written for power rather than energy), where the number of particles
per bunch divided by the bunch length is the current. The PWFA is a transformer in which the energy of
a high-charge, low-energy bunch is extracted and added to that of a lower-charge witness bunch, through
the plasma wakefields.

It is interesting to notice that the transformer ratio concept is valid for all collinear accelerators
and that the expressions were derived from very simple and general assumptions of energy conservation
and linear superposition of the wakefields. In real systems, the bunches can evolve in the wakefields
and other considerations that come into play (beam loading, etc.) that can reduce the transformer ratio
reached.

Transformer ratios much larger than two can be obtained by tailoring the bunch longitudinal den-
sity or current profile, or by using a sequence of bunches [12]. The transformer ratio has been measured
in PWFA experiments [13].
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5 PWFA linear regime
The linear regime is interesting because in this regime many fundamental aspects of the PWFA can be
calculated directly. It is, a priori, not interesting for a collider because (by definition) it does not use the
full potential of the plasma for sustaining large fields. These large fields are reached when the plasma
perturbation is also large, i.e., in the non-linear regime of the PWFA. In addition, in this regime the
wakefields have continuous longitudinal and radial variations and the beam and plasma characteristics are
directly proportional to each other (by definition). Therefore, the characteristics of the system generally
evolve along the propagation distance, and are not necessarily suitable for a long-lasting acceleration
process that aims to produce a high-quality bunch with a small final energy spread and emittance.

5.1 Linear theory
The linear theory of the PWFA can be derived using a cold, non-relativistic fluid model for the plasma.
A clear derivation can be found in Ref. [14]. This model uses Newton’s equation for a fluid element, the
continuity equation and Poisson’s equation. The equations are linearized (see examples in Ref. [15] for
the linearization process) and a wave equation for the plasma electron density perturbation n1 � ne0
can be derived. It is driven by the bunch density nb and reads

∂2n1
∂ξ2

+ k2pen1 =
qb
e
k2penb , (12)

where nb � ne0 is assumed. These equations are written in the coordinate system of the bunch, i.e.,
ξ = z − vbt, which is often written as ξ = z − ct for relativistic bunches. Equations are written as
a function of space coordinates (z and ξ) rather than the time coordinate, a more natural choice for a
linear accelerator. In these coordinates, d

dz = d
dξ and d

dt = −vb d
dξ
∼= −c d

dξ . Note the term related to
the bunch charge (e.g., qb/e = ∓1 for an electron or positron bunch), which is the source term driving
the (harmonic) oscillator. Note also that a similar equation can be obtained for the case of a laser pulse
driving the plasma density perturbation with the ponderomotive force as the source term. This equation
can be solved in 1D for a delta function bunch or charge to obtain the Green’s function for the wakefield
generation (n1 perturbation) and the longitudinal wakefields using Poisson’s equation. This longitudinal
component has a cos (kpeξ) dependency. The radial dependency can be obtained from 2D theory for
a given transverse density profile (Gaussian, parabolic, etc.) and involves Bessel functions [16] and a
sin (kpeξ) dependency. For a bunch with longitudinal and radial Gaussian profiles, the wakefields read

Wz(ξ, r) =
e

ε0

∫ ξ

−∞
nb‖(ξ′) cos

[
kpe(ξ − ξ′)

]
dξ′ ·R(r) , (13)

W⊥(ξ, r) =
e

ε0kpe

∫ ξ

−∞
nb‖(ξ′) sin

[
kpe(ξ − ξ′)

]
dξ′ · dR(r)

dr
, (14)

where R(r) is the transverse dependency given by

R(r) = kpe
2
∫ r
0 r
′ dr′nb⊥(r′)I0(kper′)K0(kper) + kpe

2
∫∞
r r′dr′nb⊥(r′)I0(kper)K0(kper

′) , (15)

where I0 andK0 are the zeroth-order modified Bessel functions of the first and second kind, respectively.
Note that the W notation is typical of wakefields in structures. It is important to understand the meaning
of these equations.

On the one hand, in linear theory, Wz is associated only with an Ez component, since vb is along
the z-axis and the Lorentz force has no magnetic contribution along z (to first, linear order). On the
other hand, W⊥ has two components and is often written as Er − vbBθ in cylindrical coordinates. The
terms have a ξ dependency that is a pure 1D, longitudinal dependency. This dependency is obtained
from the Green’s function for wakefield excitation. The R(r) and dR/dr terms express the deviation
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from 1D theory obtained in 2D. The longitudinal (accelerating) wakefield is a maximum on the axis with
R(r = 0) (see [17]). For kpeσr � 1, i.e., σr � c/ωpe, R(r = 0) → 1, i.e., one recovers the 1D result,
as expected. For kpeσr � 1, i.e., σr � c/ωpe, R(r = 0) → k2peσ

2
r (0.0597− ln(kpeσr)). This means

that when the plasma density is decreased for a fixed σr (or σr for a fixed ne0, and in both cases a fixed
bunch charge) the radial component contributes to a decrease in Wz , even if nb/ne0 increases. This is
because 1D theory applies to an infinite sheet bunch (in the perpendicular direction). In 2D, the plasma
responds with a natural transverse extent of (a few) c/ωpe. Therefore, when kpeσr � 1, the charge
contained in the (few) c/ωpe is less than in the 1D case and so is Wz (for a given charge density).

A few important remarks about these equations:

– They are symmetrical with respect to the bunch charge sign, which means that, in the linear regime,
the wakefields are the same for both charge signs, to within a phase factor of π/2.

– The wakefields are necessarily initially decelerating within the drive bunch because it displaces
the plasma electrons and has to lose energy in the process. The wakefields are necessarily initially
focusing within the drive bunch because the plasma electrons move to shield the bunch fields, i.e.,
to neutralize the bunch charge and decrease the space charge fields. The bunch is thus focused by
the vb ×Bθ term (see Section 1). This is true whatever the bunch charge sign.

– The fields have continuous longitudinal (sin, cos) and radial (R(r)) variations. This means that
different longitudinal and radial parts of the bunches are accelerated and focused differently by the
wakefields. This leads to a broad final energy spread and to emittance growth, respectively. It also
means that upon propagation the bunch and the wakefields will evolve self-consistently. This is, in
general, not desirable for an accelerator.

– Since the wakefields are driven by the (drive) bunch, they are also tied to the bunch, i.e., they travel
with the same velocity as the drive bunch (in the absence of evolution of the bunch or change in
plasma density). This (phase) velocity of the wakefields is therefore also close to the speed of light
(for γ � 1 and without significant evolution of the bunch). This is possible because in a cold
plasma the Langmuir electrostatic wave has zero group velocity [15].

5.2 Bunch size
The cold plasma responds collectively to perturbations, with the fastest time scale given by ∼1/ωpe and
the smallest spatial scale given by ∼c/ωpe. The bunch transverse and longitudinal sizes can be adjusted
to maximize the effect of the bunch on the plasma electrons and thus also on the wakefield’s amplitude.

5.2.1 Longitudinal size
For PBPAs, the plasma wave of interest is the Langmuir, electrostatic plasma wave with natural frequency
ωpe. It is natural to think that a perturbation (i.e., particle bunches with nb � ne0) in time and space
shorter rather than longer than the previously described scales is most effective at driving the wave. We
note here that a periodic perturbation with period at these time or spatial scales is also very effective
in driving the wake. However, most of today’s experiments use a single, short particle bunch (or laser
pulse). Interest in using periodic excitation was in vogue when sufficiently intense short laser pulses did
not exist [18] and is being re-examined, in particular, to take advantage the large amounts of energy stored
in long proton bunches (PWFA) [19] and to ease the power requirements on laser systems (LWFA) [20].

Solutions to Eq. (12) are well known (see, for example, Refs. [21, 22]). They indicate that for a
finite time or impulse excitation and for weak damping cases, it is the amplitude of the Fourier com-
ponent of the excitation at the system resonant frequency (here, ωpe) and the damping factor that de-
termine the oscillation amplitude. Most particle bunches have a density or current distribution that is
close to Gaussian: nb(t) ∼ nb0 exp(−t2/2σ2t ) or nb(ξ) ∼ nb0 exp(−ξ2/2σ2ξ ), where ξ is the position
along the bunch (sometimes z is also used). The Fourier transform of such a bunch profile is simply
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ñb(k) = ñb0 exp(−k2peσ2ξ/2). Therefore, when kpeσξ ≤
√

2, significant excitation occurs. For single-
bunch experiments, where particles in the front and core of the bunch drive the wakefields and lose
energy, while particles in the back gain energy from the wakefields, the bunch length kpeσξ ∼=

√
2 is

optimum [23].

Using linear theory, one can calculate the wakefields driven by bunches with various parameters for
a fixed plasma density. However, for a meaningful comparison, one needs to specify which parameters
are held constant. For example, as the r.m.s. bunch length is varied, is the number of particles in the
bunch or the bunch current kept constant? A way to get around this difficulty is to use the transformer
ratio as a figure of merit instead, since wakefield amplitudes can always be obtained by increasing the
charge (in linear theory). For example, one can use Eq. (13) to calculate the wakefield’s amplitude and
then calculate R = E+/E−. Figure 3 shows the transformer ratio obtained for various bunch lengths W
of a square bunch or the r.m.s. length σz of a Gaussian bunch, with all other parameters kept constant.
For the case of the square bunch, the maximumR = 2 is obtained forW = λpe/2. In this case, all bunch
particles reside in the decelerating phase of the wakefields. For the Gaussian bunch case, the maximum
R = 2 is reached for σz/λpe ∼= 0.2 or kpeσz ∼= 1.25. This is close to the predicted kpeσz ∼=

√
2.

This scaling of the wakefield with bunch length and its corresponding increase in amplitude [23]
with plasma density has been observed in experiments with electron bunches. A gradient of the order
of ∼100 MeV m−1 with bunches with σz ∼ 600 µm in a plasma with ne ∼ 2 × 1014 cm−3 was
measured [24]. A gradient in excess of ∼50 GeV m−1 with bunches with σz ∼ 20 µm in a plasma
with ne ∼ 2.3 × 1017 cm−3 has also been measured [25, 26]. The scaling has also been confirmed by
numerical simulations [27].
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Fig. 3: Transformer ratio R = E+/E− as a function of the width W of a square longitudinal profile electron
bunch or Gaussian r.m.s. width σz , both normalized to the plasma wavelength λpe.

5.2.2 Multiple drive bunches
We have seen that Eq. (12) has a natural periodic solution with period 2π/ωpe. We also saw that the
plasma, as an oscillator with natural frequency ωpe/2π selects the frequency content of the drive bunch
or train at that frequency. It is therefore also natural to use a (pre-formed) train of bunches with a
separation equal to the plasma period to resonantly drive the wakefield. In linear theory, the wakefields
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driven by a train are simply the algebraic sum of the wakefields driven by each bunch (with the proper
phase). Driving wakefields with multiple bunches has been demonstrated, for example, in Ref. [7].
Figure 4 shows the case of two drive bunches and a witness bunch. The plasma density is chosen so
that the plasma wavelength is equal to the bunch spacing (λpe(ne0) = ∆z), so that both bunches are in
the decelerating phase of the total wakefields. The witness bunch follows at a distance 1.5λpe from the
second drive bunch, is therefore in the energy gain phase of the wakefields and gains energy from the
plasma.

There is little advantage in using a train, unless it is easier to generate a train than a single bunch,
or the train is used either to increase the energy extraction efficiency [28] or to increase the transformer
ratio [12]. In the former case, the drive and witness bunch are interleaved with a new drive bunch, to
replenish the wakefields of the energy extracted by the previous witness bunch. The multi-bunch scheme,
relevant for a high-efficiency collider, is not discussed here. In the latter case, the train is a particular
form of shaped bunch.

A transformer ratio greater than two with two bunches has been demonstrated in a dielectric based
accelerating structure [29], showing the applicability of the wakefield principles to various acceleration
schemes.

The case of driving wakefields with a self-generated train of bunches using the self-modulation
instability is described in Section 7.

Fig. 4: Energy spectra obtained without (a) and with (b) plasma for the case of two drive bunches (labelled 1st and
2nd D) spaced longitudinally by ∆z = λpe (at this plasma density) and a witness bunch (labelled W) following
the second drive bunch at 1.5λpe = 1.5∆z (from Ref. [7], reproduced with permission from IEEE). In panel
(b), the two drive bunches lose energy to the plasma and the witness bunch gains energy from it. The two drive
bunches appear merged on panel (a), owing to coherent synchrotron radiation (CSR) effects [30] but are separated
in time [31, 32].

5.2.3 Transverse size
The bunch transverse size must be kept smaller than the (cold) plasma skin depth c/ωpe or, equivalently,
such that kpeσr0 < 1, where kpe = ωpe/c. In the opposite case, the bunch is subject to the current
filamentation instability (CFI) [33]. The occurrence of CFI results in the breaking up of the bunch
current density into filaments of larger current density at the c/ωpe scale in the transverse direction, as
observed experimentally [34].
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The ability to focus the beam to a small size often limits the maximum density, and thus the
maximum accelerating gradient, at which the PBPA can be operated without risk of filamentation. This
density is given by

ne ≤
1

4π

1

r0σ2r0
. (16)

Here, r0 = 1
4πε0

e2

m0c2
∼= 2.82−15 m is the classical radius of the electron.

5.3 Maximum accelerating field
The linear PWFA theory is valid for small perturbations of the equilibrium quantities (e.g., n1 � ne0).
In this case the perturbations are sinusoidal. Although not strictly correct, one can estimate the maximum
longitudinal electric field that can be expected by assuming a density perturbation with amplitude equal
to the initial density: n1 = ne0. Using the Fourier transform of Poisson’s equation with |∇| → kpe,

−→∇ · −→E =
ρ

ε0
→ kpeE =

ωpe

c
E =

−ene0
ε0

=
e2ne0
meε0

me

(−e) →
ωpe

c
|E| =

meω
2
pe

e
, (17)

and the corresponding field, known as the cold plasma wave-breaking field, EWB is given by

EWB =
mecωpe

e
. (18)

(The ions are assumed not to move; their density remains uniform and thus they do not contribute to
components at wave number kpe.) It is clear that non-linearities will appear long before the plasma
density perturbation reaches ne0 and the field reaches EWB. The wakefields become non-sinusoidal
(including higher harmonics) and particle trajectories cross [35], invalidating the assumption of fluid
behaviour for the plasma. However, this value is a good estimate of the field amplitudes that can be
reached in a PBPA, as shown for example by simulations for the PWFA [27]. Results in Ref. [27] show
that the wakefield amplitude and scaling generally follow those predicted by linear theory even into the
non-linear regime. The expression for EWB is often quoted in an engineering form,

EWB ∝ 0.96 GV m−1
√
ne[1014 cm−3], (19)

and is often used to show the potential of PBPAs for high-gradient acceleration. Plasma electron densities
of 1014 to 1019 cm−3 are routinely used in PBPAs with corresponding accelerating fields in the range of
a few GV m−1 to hundreds of GV m−1.

Crossing of the plasma electron trajectories associated with reaching EWB [35] leads to plasma
electron self-injection in the LWFA scheme. We note here that PWFAs usually operate at wakefield
phase velocities too large and longitudinal field amplitudes too small to trap plasma electrons. However,
ionization injection, now often used in the LWFA, was first observed in the PWFA [36].

5.4 Beam loading
Beam loading is used in many accelerators, in particular to decrease the energy spread resulting from
the finite length of bunch when compared with the accelerator wavelength and to maximize the energy
extraction or transfer efficiency [37]. It will naturally play an important role in PBPAs because they
operate at high frequencies (ωpe/2π > 100 GHz) and thus with very short wave periods (<1 mm) and
accelerator cavity size (<1 mm3).

Beam loading can be seen as the simple addition of the bunch wakefields to the fields of the
accelerating structure (RF structure or plasma wakefields of the drive bunch). The bunch cannot be
placed at the peak of the field, where the accelerating field is constant for a narrow phase range, since (in
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the linear regime and in a PBPA) the transverse field becomes defocusing at that point. This is not the
case in most RF structures that have no significant transverse field component (TM modes). It has to be
placed ahead of the peak for effective beam loading where the field derivative is opposite to its own.

One can illustrate beam loading by using the PWFA linear equations given earlier [17].
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Fig. 5: Linear beam loading example: (a) drive bunch density profile (red line) and longitudinal wakefield Ez
(green line), (b) same for the witness bunch, (c) same for the drive and witness bunches together. The field of the
drive bunch only is shown as the blue line in panel (c). A zoom around the witness bunch is shown in panel (d).
The bunches move to the left.

Figure 5(a) shows a Gaussian bunch and the longitudinal wakefields Ez it is driving in the plasma.
Note that this bunch drives wakefields with a transformer ratio very close to two. Figure 5(b) shows
the wakefields driven by a shorter, following, witness bunch. This bunch is made shorter than the drive
bunch, in order for it to sample a narrow phase range (�π/2), to minimize the energy spread expected
for the field variation along the bunch. The total field is shown in Fig. 5(c). The parameters of the
witness bunch (charge, length, relative position, etc.) were chosen to illustrate beam loading. The witness
bunch is located in a region of increasing field so that the addition of its own field flattens the total field
(Fig. 5(d)). This more constant or flat region of accelerating field within the witness bunch reduces
its final energy energy spread. However, this more uniform field (Eloaded) is also lower than the peak
field, more than 25% in this case (∆El), decreasing the effective transformer ratio by the same fraction.
The fraction of energy, proportional the field amplitudes squared, extracted from the wakefields by the
witness is on the order of 50%. The energy spread ∆E reduces from about 25% to less than 8% in this
non-optimized case.

Note that beam loading in the non-linear regime has also been studied [38, 39]. Narrow energy
spread and high-energy transfer efficiency can be reached, at the expense of tailoring the witness bunch
current profile. Beam-loading effects have been observed in recent PWFA experiments, leading to sig-
nificant wakefield to witness bunch energy transfer efficiency and to narrow final energy spread [8].
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6 Non-linear PWFA regime
In the linear PWFA regime, the wakefields vary along and across the bunch and field structure (see
Eqs. (13) and (14)). This leads to significant final energy spread and to emittance growth. In the non-
linear PWFA regime, the accelerating field in the pure ion column is independent of radius. It varies
longitudinally, but this can be mitigated by using beam loading. The focusing field varies linearly with
radius, which preserves the emittance of a bunch with Gaussian position and velocity distributions. It
is also independent of the longitudinal position. Therefore, the non-linear PWFA regime has significant
advantages over the linear regime, at least for electron beam (or negatively charged particle bunches).

While there is no strict theory for the PWFA in the non-linear regime, an interesting theory based
on the parameters of the electron bubble and of the plasma electron sheet that sustains it has been devel-
oped [40, 41]. It was used, for example, for the beam loading study in the non-linear regime mentioned
previously [38, 39]. However, it is beyond the scope of this manuscript.

6.1 Electron bunch propagation
In a vacuum, a (Gaussian) beam expands because of its emittance, with a characteristic increase in
transverse size of

√
2 per β0 propagation distance. This also means that the bunch density (∝1/σ2r )

decreases by a factor of two, as does the wakefield amplitude that it can drive (see Eq. (13) for the linear
regime case).

The plasma provides (transverse) focusing through the transverse wakefield W⊥ (see Eq. (14)
for the linear case), so that the beam can remain transversely small and keep driving large amplitude
wakefields.

In the linear regime, the beam continuously evolves in transverse size and distribution, since W⊥
is a function of (r, ξ) and its emittance grows. It can be shown that the r.m.s. transverse position and
velocity distributions are preserved by a transverse force that varies linearly with radius: F⊥ ∼ r. This is
the case in the non-linear regime, in which nb ≥ ne0 and the plasma structure sustaining the wakefields
consists of a ‘bubble’ that is void of plasma electrons. It thus consists of a pure ion column with uniform
density (if there is no ion motion). In the ion column, there is no magnetic field since there is no plasma
return current (it flows in a sheet around the bubble). Therefore, the transverse force experienced by the
electrons in the column is simply

−→
F ⊥ = −e(−→E r + −→v b ×

−→
B θ) = −e−→E r. The electric field of the ion

column can be estimated using Poisson’s equation, assuming that it is infinitely long and cylindrically
symmetrical, with ni0 = ne0:

−→∇ · −→E =
ρion
ε0
→ Er =

1

2

ne0e

me
r . (20)

Thus, F⊥ = eEr ∼ r.

Bunch particles have an equation of motion in the pure ion column given by

d2r(z)

dz2
+K2r(z) = 0 . (21)

For the case of the pure ion column, K2 = 1
γmec2

F⊥
r = 1

2γmec2
nee2

ε0
. This is a harmonic oscillator

equation with general solution r(z) = r0 exp (±ikβz), where kβ = 1√
2γ

(
nee2

ε0mec2

)1/2
=

kpe√
2γ

is the
betatron wave number.

The evolution of the bunch transverse r.m.s. size is then described by the envelope equation (see
Ferrario’s lecture), which, neglecting acceleration, reads

d2σr(z)

dz2
+K2σr(z) =

ε2g
σ3r (z)

→ σ′′r +K2σr =
ε2g
σ3r

. (22)

This equation is very similar to that for the individual particles (Eq. (21)), with r replaced by σr and the
addition of the emittance term. It shows that at locations where σr is large, the K2σr term dominates
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the εg/σ3r term, σ′′r < 0 and the beam is focused by the external force (assuming K2 > 0). As the beam
is focused, its size becomes smaller, the εg/σ3r term eventually dominates the K2σr term, and the bunch
diverges because of its emittance. Therefore, in general, the bunch transverse size oscillates between a
minimum and maximum (i.e., remains positive). The particles also oscillate but, of course, cross the axis.
There is a situation in which the bunch size does not oscillate. Envelope oscillation amplitudes can be
calculated if one considers the simple and practical case of a bunch focused at the entrance of the plasma
(i.e., σ′r(z = 0) = 0) with size σr0. In this case, Eq. (22) can be integrated to obtain the smallest and
largest bunch sizes as a function of the matched bunch size σrm. Rewriting Eq. (22) as

σ′′r =

(
ε2g
σ4r
−K2

)
σr , (23)

and first setting the term in parentheses to zero and with the initial conditions specified leads to

σ4rm =
2ε0γmec

2ε2g
ne0e2

, (24)

or the more general condition for the bunch and plasma parameters:

σ4rmne
γε2g

=
2ε0mec

2

e2
. (25)

When the conditions: σr = σr0, d2σr/dz
2 = dσr/dz = 0 are satisfied at the plasma entrance (z = 0),

the beam radius remains constant along the plasma and the beam is said to be matched to (the focusing
force of) the plasma.

Note that σrm ∼ γ1/4 is weakly dependent on particle energy, which may allow for adiabatic
matching of the bunch size to the plasma focusing upon acceleration. Note also that while the bunch
envelope size does not oscillate in the matched case, particles do.

In general, the (unmatched) beam envelope size oscillates in the ion column; it reaches the two
sizes σ1 = σ0 and σ2 = σrm

σ0
σrm. These sizes can be calculated by multiplying Eq. (23) by σ′r, integrating

it and setting σ′r = 0. Therefore, when σ0 > σrm, σ2 < σrm, and when σ0 < σrm, σ2 > σrm. This
means that the maximum beam size is always larger than or equal to the matched size.

The electrons oscillate with the betatron wavelength λβ =
√

2γλpe, and the bunch envelope with
a periodicity half of λβ. The beam envelope oscillations were clearly observed with an electron beam by
changing the plasma density [42]. Matching of the bunch to the plasma was also observed [24].

The bunch electrons oscillating in the ion column emit synchrotron radiation called betatron ra-
diation (see lecture by K. Ta Phuoc). This radiation was observed for the first time in a PBPA as X-
radiation [43]. It was later observed as γ-radiation at larger plasma densities [44]. This is now a main
feature of the LWFA, which is a very interesting source of (betatron) radiation. These considerations on
the bunch transverse size oscillation indicate that minimum betatron power is emitted when the bunch is
matched to the plasma, since the betatron radiation power scales as Pbetatron ∼ r20 ∼ σ2r,max ≥ σ2r,m.
This can be used experimentally to find the matching condition by minimizing the amount of betatron
radiation emitted by the bunch.

Matching the beam to the pure ion column focusing also has another advantage: it minimizes the
sensitivity of the beam angle at the plasma exit as a function of the beam and plasma parameters. When
matched, σ′′r = 0 or (σ′r)

′ = 0, i.e., the exit angle is minimum. Figure 6 shows the beam angle at the
plasma exit as a function of the relative variation of the beam size at the plasma entrance and of the
plasma density. This figure was obtained by integrating numerically the envelope Eq. (22) in a plasma
with constant density (i.e., K2 = constant). When the bunch is not matched, the angle of the beam
at the plasma exit is θ ∼= rβ/(λβ/8), where rβ is the radial oscillation amplitude of the beam envelope
around the matched radius size.
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Matching of the beam to the focusing field of non-linear wakefields has been demonstrated experi-
mentally. Figure 7, from Ref. [24], shows the SLAC electron bunch transverse size measured downstream
from the plasma, as a function of plasma density. Near the matched density, the variation in transverse
size decreases, compared with the unmatched cases (lower density in this case).

Matching was also demonstrated with lower bunch energy [45].

The very strong plasma focusing force implies that the matched beam size is quite small. For
example, for a typical SLAC electron beam with γ ∼= 56 000 (E0

∼= 28 GeV) and a normalized emittance
εN = 5× 10−5 mm mrad, Eq. (24) indicates that σrm ∼= 4 µm. This is a quite difficult size to produce at
the plasma entrance. However, a continuous ramp in the plasma density, typical of real plasmas, rather
than a step function, can be used to match the beam adiabatically to the plasma focusing force [46].
Adiabatic matching occurs when the variation of the bunch envelope size is small in one betatron period.
Numerical integration of Eq. (23) shows that this condition is easily satisfied. Plasma sources used for
PWFA experiments, such as metal vapour sources [47, 48], naturally provide a neutral density ramp,
which, once ionized by a laser pulse or by the bunch itself [49], becomes a continuous plasma ramp.
Figure 8 shows an example of a calculation in which the entrance plasma ramp is used to match the
beam to the plasma and the exit ramp, to increase the bunch size and decrease its divergence in vacuum.
Increasing the bunch size at the plasma exit decreases the emittance term, owing to the bunch energy
spread (see M. Ferarrio’s lecture).

Matching into and out of the plasma is a very interesting and important research topic. Indeed,
the larger focusing strength of the plasma, compared with that of conventional magnetic optics, leads to
much shorter beta-functions in the plasma than outside of it, where the beam is used or conditioned to be
injected into the next PBPA. Indeed with the definition of the beam beta, Eq. (23) can be rewritten as

βmatched =
σ2rm
εg

=
1

K
. (26)
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bunches when traversing ! 37 !m thick titanium foils
located approximately 1 m upstream and downstream
from the plasma [18,19]. After exiting the plasma the
beam travels through quadrupole and dipole (bending)
magnets arranged in an imaging spectrometer configura-
tion. The beam at the plasma entrance or at the plasma exit
is imaged onto a ! 1 mm thick piece of aerogel located
! 25 m downstream from the plasma, where it emits
Cherenkov radiation. The visible Cherenkov light is im-
aged onto the slit of a streak camera to disperse the energy
spectrum of the bunch in time with a resolution of ! 1 ps.
The spectrometer has an effective energy resolution
of ! 36 MeV for a beam size of 30 !m at the plasma exit.

The plasma is created through single photon ionization
of lithium vapor contained in a heat-pipe oven [20]. The
plasma column is ! 1:4 m long and has a typical trans-
verse area of ! 0:12 cm2. The plasma density ne is pro-
portional to the energy of the ionizing (" " 193 nm) laser
pulse and can be varied between 0 and ! 2# 1014 cm$3.
The value of ne is calculated from laser energy absorption
measurements and by fitting of an envelope model to the
variations of the beam size observed as a function of the
laser energy [21].

In the experiment reported here, the beam charge
density nb " N=%&2#'3=2$z$2

r0( ! 2:8# 1015 cm$3 is
much larger than the plasma density (nb > ne), the trans-
verse beam size is smaller than the plasma collisionless
skin depth [$r0 < c=!p;!p " &nee2=%0me'1=2 is the
electron plasma angular frequency], and the experiment
is thus performed in the nonlinear, blowout regime of the
PWFA [10,12]. In this regime, the particles in the head of
the bunch expel all the plasma electrons from the bunch
volume and create a pure ion column, which exerts a
strong focusing force on the remainder of the bunch as
it propagates through the plasma. The expelled plasma
electrons rush back on the beam axis, behind the bunch,
and create an on-axis electron density spike which results
in a highly nonlinear wakefield.

We have previously shown [21] that in this blowout
regime, the beam envelope dynamics are well described
by an envelope model for the transverse beam size $r&z':
$00

r &z' ) K$r&z' $ %2=$3
r&z' " 0. Here % is the beam

emittance and K " eEr=rme&c2 " !2
p=2&c2 is the

plasma focusing strength resulting from the radial field
of the pure ion column: Er " &ene=2%0'r. A favorable
situation is reached when the plasma and the beam are
matched, which is achieved when the plasma focusing
term K compensates for the beam divergence term arising
from the finite beam emittance %, i.e., when K " %2=$4

r0.
In this case, the beam focused at the plasma entrance
&$0

r0 " 0' propagates along the plasma with a constant
transverse size $r0, i.e., the beam size at the plasma
entrance.

In this experiment, the matching condition corresponds
to a beam spot size of 33* 3 !m for plasma densities in
the range &1:2–2:5' # 1014 cm$3. As shown in Fig. 2, the

beam size recorded on the downstream OTR screen os-
cillates as the plasma density increases from low densities
(K < %2=$4

r0) toward the matched density (K ! %2=$4
r0).

The size of these oscillations decreases as the matching
condition is approached. Indeed, the beam size remains
almost constant as the beam density is varied from
&1:3–1:9' # 1014 cm$3, indicating that the beam is close
to being matched to the plasma. Imaging the beam at the
plasma exit for ne > 7# 1013 cm$3 thus preserves the
overall energy resolution of the spectrometer and removes
any contribution to the energy spectrum that could arise
from a beam tail exiting the plasma with a transverse
momentum [22].

The continuous curve shown in Fig. 2 is the result of
the best fit of the envelope model to the experimental data
and is a sensitive function of $r0 and %, the beam pa-
rameters at the plasma entrance. In this experiment, the
incoming beam beta function, the equivalent parameter
to the Rayleigh length of a laser beam for a particle beam,
is '0 " $2

r0=% " 0:11 m. Therefore, Fig. 2 shows that, at
the highest densities, the matched beam is channeled over
more than 12 beam beta functions The agreement between
the fit and the experimental data points on Fig. 2 shows
that the transverse emittance of the beam is preserved for
ne " &0–1:8' # 1014 cm$3.

In expelling the plasma electrons, the bunch electrons
do work and therefore lose energy. However, as the plasma
wavelength "p " 2#c=!p approaches

!!!

2
p

#$z (here for
ne > 1:4# 1014 cm$3, hereafter called the optimum
density), the longitudinal component of the wakefield
reverses sign within the bunch itself and can thus
accelerate the electrons at the trailing end of the bunch.
Single event, streak camera images of the beam dis-
persed in energy and time after interacting with a low

FIG. 2 (color). Transverse size $x of the beam (red points) in
the x plane measured on the downstream OTR foil (see illus-
tration inset) as a function of plasma density. The green line is
the best fit to the data using a beam envelope model in which
$x0 " 30 !m, %x " 9# 10$9 m rad, and '0 " 0:11 m.

P H Y S I C A L R E V I E W L E T T E R S week ending
2 JULY 2004VOLUME 93, NUMBER 1

014802-2 014802-2

Fig. 7: Transverse bunch size measured as a function of plasma density a distance ≈1 m downstream from the
plasma exit. As the plasma density and the ion focusing column strength also increases (∼ne0), the beam ap-
proaches the matching condition observed in the range (1.25–2.5)×1014 cm−3. See Ref. [24] for experimental
parameters (Reproduced with permission from APS).

It is important to note that the pure ion column, so favourable for an electron bunch or more
generally for a negatively charged bunch, does not exist for a positively charged bunch (e+, p+, etc.).
The plasma is asymmetrical for the charge signs of the two bunches since, in any case, only the light
plasma electrons move (at the 1/ωpe time scale). This difference has been observed with a positron
bunch in conditions similar to those for an electron bunch [10, 50] (see Section 7.3). Focusing of a
positron bunch by a short plasma has also been demonstrated [51].

7 Plasma and magnetic focusing
It is interesting to compare the focusing strength of the plasma ion column with that of a conven-
tional quadrupole magnet. In a quadrupole magnet, focusing is achieved by imposing a magnetic field
perpendicular to the particles’ trajectories. The radius of curvature of the relativistic particle’s tra-
jectory in the magnetic field B⊥ is given by the Larmor radius; rL = βγmec/qB⊥ ∼= γmec/qB⊥
(β = (1− 1/γ2)1/2 ∼= 1). In a magnet (and magnetic field) of length L, this results in a deflection angle
θ � 1, such that rLθ ∼= L. Therefore, θ ∼= L/rL = qB⊥L/γmec. For the magnet to act as a lens,
free of geometric aberration, the deflection angle and thus the magnetic strength must increase linearly
with radius and reverse at the axis. This is the characteristic of the field with a quadrupole symmetry.
A quadrupole magnet with a larger field gradient B⊥/r corresponds to a stronger, shorter focal length,
focusing element. Quadrupoles usually use electromagnets to generate the field, but the largest field gra-
dients are achieved in permanent magnet quadrupoles (PMQs). For example, the field gradient reached
∼290 T m−1 over 10 cm, with an aperture of 7 mm in the PMQ of Ref. [52].

Using Eq. (20) for the ion column field, and dividing it by r to obtain the gradient and by c to
produce the proper units of magnetic field, we obtain Er/rc ∼= 3 kT/m for ne = 1014 cm−3, as in
Refs. [42, 43]. For the higher plasma densities of Refs. [25, 26, 44], ne = 1017 cm−3, one obtains
Er/rc ∼= 3MT/m. These values clearly show the potential for very strong focusing by plasmas in a
scheme known as the plasma lens [16, 53]. We note, however, that the transverse extent of the focusing
region is limited to ≈ c/ωpe < 1 mm.

Since plasma lenses have such strong focusing gradients they can be shorter (and smaller) than
magnetic ones. They could be of potential interest for replacing the km-long final focusing system of
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Fig. 8: (a) Beam transverse size in vacuum (dashed red line) and plasma (red line) with density ramps at the
entrance and exit (green line). In this case, the beam vacuum focus is σr0 = 8.6 µm at z = 8.18 cm, so that with
the initial ramp, the beam reaches the matched radius σrm = 3.8 µm in the constant density region (55.6 < z <

122 cm). The total plasma length is 1.77 m with a constant density of 1016 cm−3, the particle’s γ is 56 000, the
beam normalized emittance is 5 × 10−5 m rad−1 and the betatron wavelength in the constant density region is
λβ = 2π/K = 11.2 cm. The blue line represents the absolute value of the relative deviation between the beam

size (σr) and the matched beam size (see Eq. (24)):
∣∣∣σr−σrm

σrm

∣∣∣. (b) Transverse beam size over the first 45 cm of
plasma with the same density (and beam parameters) as panel (a) in the case where the beam is focused to the
same σr0 = 8.6 µm, but at the entrance of the plasma with a step-function density. The beam is mismatched and
the envelope oscillations are indeed between the incoming size and that predicted by σ2 ≤ σrm in the previous
paragraph, ∼= 1.8 µm, in this case.

a collider [14]. This is another area where plasmas could contribute to reducing the size and cost of a
future collider. We note however that plasma lenses have their own challenges, including the possible
need of a drive bunch to create the lens out of a neutral plasma.

Quadrupoles are, by definition, focusing in one plane and defocusing in the other. They must
therefore be used in pairs (a doublet) or in threes (a triplet) to build an element that focuses in both
planes. They are also usually short compared with their focal length and are thin lenses (though they
may be long magnets). A lens is said to be thin when its thickness or length is much shorter than its focal
length.

By contrast, the plasma ion column (or the plasma in general) is focusing (or defocusing) in
both planes at the same time. Because of their large focusing strength, plasma lenses can be thin or
thick lenses. Mismatched plasma accelerating sections are very thick focusing elements. The beam has
multiple foci along the plasma, since its length can be many betatron wavelengths long (first focus near
λβ/4). For example, in the experiments described in Refs. [24, 42], the beam has up to three foci along
the plasma with λβ = 81 cm, maximum density 1.9 × 1014 cm−3, and length ∼= 1.5 m ∼= 2λβ. In the
case of Ref. [13], the plasma length is about 46λβ.

7.1 Electron acceleration
The accelerating field amplitude is usually not directly measured. The accelerating gradient is obtained
by dividing the change in energy (loss or gain) by the (measured or assumed) plasma length. This is
a quantity that is integrated over the plasma length, including the density ramp, in experiments. The
measured energy gain and loss depend on the actual accelerating field along the plasma and on the fact
that there are (or are not) particles sampling the field. The dependency of the longitudinal wakefield along
the bunch was measured by time resolving, at the ps scale, the energy change of the electrons along a
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single bunch [24]. The general longitudinal shape of the field is as expected from simple consideration:
decelerating, switching to accelerating (Fig. 9). Acceleration by trailing particles has been observed at a
plasma density roughly satisfying kpeσz ∼=

√
2 (σz ∼= 700 µm in this case).

The transverse wakefield structure was also inferred [54] using the transverse and longitudinal
wakefields 90◦ out of the phase relation predicted by linear theory. Once again, the general agreement
between experiment and theory is very good.

The maximum accelerating field (averaged over the plasma length) has been measured by varying
the bunch length over a relatively wide range of plasma densities and lengths [55]. The results are shown
in Fig. 10 from Ref. [55]. In this case, σz ∼= 20 µm and the plasma density is much larger (∼1000 times
larger than in [24]) to approach kpeσz ∼=

√
2. The left-hand panel of Fig. 10 shows that, at the lower

density, the energy gains (and thus accelerating fields) are low because the bunch is too short kpeσz >
√

2
for this density. The bunch is also too short to sample the peak field. However, the energy gain increases
with decreasing bunch length and increasing plasma length, as expected. At what turned out to be the
optimum density (middle panel), the energy gain exhibits a (shallow) maximum for parameters close
to kpeσz ∼=

√
2 for the three plasma lengths. Wakefields are again probably larger with shorter bunch

lengths, but there may be no particles to sample them. At the highest density (right-hand panel), the
energy gain is lower than at the optimum density and increases with shorter bunches because more of the
bunch charge participates in driving the wakefields as kpeσz approaches

√
2 with decreasing σz . Since

the bunch is long when compared with σz , there are probably particles to sample the maximum field
amplitude.

In Ref. [24], the measured (average) accelerating gradient is∼200 MeV m−1, lower than expected
from EWB = 1.3 GV m−1 for ne0 = 1.9 × 1014 cm−3. In Ref. [26], it is ∼52 GeV m−1, comparable
to the expected value of EWB = 46 GV m−1 for ne0 = 2.3 × 1017 cm−3. Both experiments were
in the nb > ne0 non-linear regime and used a single electron bunch to drive and sample wakefields.
These results show the main features expected from the wakefield excitation. The results are in general
agreement with the predictions of linear theory.

energy at the higher density, consistent with approxi-
mately 290 MeV seen in 3D particle-in-cell code simula-
tions of this experiment using the code OSIRIS [24,25].
The peak gradient over the 1.4 m long plasma is thus
200 MeV=m.

Finally, according to theory, the accelerating gradient
in a PWFA scales approximately as N=!2

z , the number of
particles in the bunch divided by the square of the bunch
length [11,23]. Reducing the bunch length by a factor of
10 is thus expected to bring the accelerating gradient in
the 20 GeV=m range for the same beam charge and at an
appropriately optimized plasma density. Such large gra-
dients are necessary to realize the recently proposed
scheme to double the energy of a linear collider by
placing few meters long, ultrahigh gradient plasma
sections just before the interaction point-A Plasma
Afterburner [13].
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FIG. 4 (color). (a) Relative energy variations experienced by
the mean of 1 ps wide slices of the beam fitted with a Gaussian
distribution at ne ! 1:5" 1014 cm#3 (green squares) and ne !
1:9" 1014 cm#3 (blue circles). These curves are obtained
by averaging $ 10 individual streaks after lining up the first
slice ( # 5 ps) to remove any vertical pointing jitter of the
beam. The uncertainty on the slice timing (not shown) is
<0:5 ps. (b) Relative energy distribution of the picosecond
slice at %5:5 ps for ne ! 7" 1013 cm#3 (blue circles) and
ne ! 1:9" 1014 cm#3 (red squares, shifted vertically). The
horizontal arrows are the full widths at half maximum of the
distributions.
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Fig. 9: Energy change, measured along the electron bunch with ∼1 ps resolution. The energy change reflects the
shape of the wakefields along the bunch (the wakefield amplitude is the change in energy divided by the plasma
length). The wakefields have the expected shape, i.e., essentially zero ahead of the bunch (∼−6 ps), with maximum
energy loss in the core of the bunch (∼0 ps) and, eventually, energy gain in the back of the single bunch (>+4 ps).
The green line was obtained at a lower plasma density than the blue one. Energy gain in the back of the bunch
(right-hand panel) is observed at a density for which kpeσz ∼=

√
2. For parameters, see Ref. [24] (Reproduced with

permission from APS.)
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Figure 3. Maximum energy of the particles measured at three plasma densities

(ne = 1, 2.6 and 3 × 10
17

cm
−3

) and each at three plasma lengths (L p = 13 (red

symbols), 22 (green symbols) and 31 (blue symbols) cm) (see figure 2(a)) as the

bunch compression, and therefore the CTR energy, is varied. Higher CTR energy

corresponds to higher peak current, shorter bunches. The events are binned by

CTR energy, and the error bars represent the rms energy measurement variation

in each bin.

by changing the parameters that affect the bunch compression, in this case the phase at which

the bunch rides the rf wave in the linac (i.e. the chirp for the second compression stage). For a

fixed current profile (e.g. Gaussian) and charge, the CTR energy increases proportionally to the

bunch peak current (CTR ∼ Ipeak) or inversely proportionally to the bunch length (CTR ∼ 1/σz).

Simulations of the compression process [2] show that over the range covered here (σz ∼
50–15 µm rms width), the current profile is not exactly preserved. In particular, at the highest

compression (i.e. the shortest bunch with the highest CTR energy) charge is transferred from the

bunch high-current core to the head of the bunch where it forms a low-current (<2 kA) trunk that

only very weakly contributes either to the CTR energy or to the wake excitation. However, even

in this situation, the general scaling is preserved and the peak current increases and the bunch

length decreases with increasing CTR energy. Each data set for one length and one density

consists of 200–800 events. These events were binned by CTR energy. The error bars represent

the standard deviation of the peak energy measurement for the events in each bin. At all three

densities of figure 3 the energy gain increases with plasma length, as expected. The energy

gain is modest at the lowest plasma density (1.0 × 10
17

cm
−3

), peaks at 2.6 × 10
17

cm
−3

and is

lower at the highest density (3.0 × 10
17

cm
−3

). Note that non-systematic data were taken around

ne = 2.6 × 10
17

cm
−3

to verify that it is indeed the optimum density. Qualitatively, at the lowest

plasma density, the wakefield wavelength (λpe = 2πc/ωpe = 106 µm) is too long for the bunch

lengths of the experiments and therefore the wakefields are small. In addition, there are too few

trailing electrons at the peak accelerating field location to be measured (σz < λpe). These two

factors contribute to the low-energy gains of figure 3(a). At ne = 2.6 × 10
17

cm
−3

, the plasma

wavelength and bunch length combination leads to a maximum energy gain. This determines

experimentally the best match between the bunch length (available in these experiments) and

the plasma wavelength or density. For shorter bunches (higher CTR energy) the peak wakefield

should monotonically increase. However, it is likely that there are again too few to be measured

New Journal of Physics 12 (2010) 045022 (http://www.njp.org/)

Fig. 10: Maximum energy of the particles (in a single bunch) measured at three plasma densities (ne = 1, 2.6

and 3 × 1017 cm−3) and each at three plasma lengths (Lp = 13 (red symbols), 22 (green symbols) and 31 cm
(blue symbols) ) as the bunch is made shorter, and therefore the coherent transition radiation (CTR) energy emitted
by the bunch increases. Higher CTR energy corresponds to higher peak current, shorter bunches. The error bars
represent the r.m.s. energy measurement variation in each bin. For parameters, see Ref. [55] (Reproduced with
permission from IOP.)

Further experiments using two electron bunches showed a narrow energy spread of the witness
bunch as well as good transfer efficiency between the wakefields and the witness bunch, due to a signifi-
cant beam-loading effect [8].

Measured energy gains are usually in excellent agreement with numerical simulation results with
experimental parameters.

7.2 Positron bunch propagation
In the linear PWFA regime, the wakefields are similar for an electron and a positron bunch with a simple
phase change (see Figs. 1 and 2). Therefore, the accelerated bunch suffers from similar large final
energy spread and emittance growth. In the non-linear regime, the locations of the wakefields that are
focusing for a positron bunch are confined to the regions of return of the plasma electrons to the axis (see
Figs. 1 and 2). These regions are small and have no strong variations of the fields. The locations that
are accelerating are those immediately behind those pinch regions (regions that are decelerating for an
electron bunch!). There is, therefore (and a priori), no good regime for accelerating a positron bunch to
high energies while maintaining its incoming emittance.

The propagation of positron bunches in plasmas has been studied experimentally. In particular,
the focusing or plasma lens effect was observed in a short plasma [51].

Propagation in a long plasmas (L � λpe) was also studied [50, 56]. The difference for electron
bunch propagation and the formation of a beam halo due to the non-linear focusing force was observed
directly (Fig. 11). The associated emittance growth was inferred from numerical simulations that de-
scribed the experiment [50].

7.3 Positron acceleration
The acceleration of positrons in plasmas has been observed [10]. As expected, the measured energy
change was lower than with an electron bunch with comparable parameters. The inferred wakefield
along the bunch also has a more linear shape, i.e., a greater sinusoidal dependency than that of the
electron bunch [24].

Recent results obtained at SLAC suggest that in some cases a situation favourable for large accel-
eration without significant emittance growth might exist in a uniform plasma.
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In order to quantify both the beam size and the formation
of the halo as a function of ne, the transverse beam profiles
are fitted with two triangles, as shown in Figs. 1(c) and
1(d). While other methods have been used to describe
beam halo formation [21,22], the method chosen here
yields both the core beam size and the fractional charge
contained in the core and halo. The beam size is defined as
the full width at half maximum of the core triangle (ABB0).
The fractional charge in the focused core and halo are
defined as the area of the core triangle and two times the
area of the halo triangle (CDB), respectively, both divided
by the total area encompassed by the triangles (DCAC0D0).
Note that with this description a Gaussian beam has about
4% of its total charge in the halo. These profiles describe
well symmetric transverse profiles. Events with strong
asymmetries are ignored. The resulting transverse beam
sizes and charge fractions in the beam core and halo are
plotted versus ne in Figs. 2(a) and 2(b), respectively. The
important features of Fig. 2(a) are the following. First, the
beam size in the x plane with ne > 0 is reduced by a factor
! 3 when compared to the ne " 0 case, while in the y
plane the beam size only increases for all ne > 0. Second,
although the incoming beam has very different sizes for
ne " 0 (downstream of the plasma), for ne > 0 the sizes in
both planes are essentially equal and increase with ne.
Third, unlike the case of an e# beam [9,10,14], no modu-
lation of the beam size associated with beam envelope
betatron oscillation is observed with e$ in the ne range
covered here (ne % 0:1& 1014 cm#3).

Figure 2(b) shows the charge fraction contained in the
core of the focused beam and in the halo for low ne in
Fig. 2(a). In the low emittance y plane the amount of
charge transferred from the beam core to the halo increases
linearly for 0< ne < 0:4& 1014 cm#3, and it remains ap-
proximately constant at !40% of the total charge at higher
ne. In the high emittance x plane a smaller fraction of the
charge (!25%) is transferred to the halo as soon as ne > 0,
and the relative amounts of charge are essentially indepen-
dent of ne (<2& 1014 cm#3).

The propagation of the bunch in the plasma is modeled
using the numerical code QUICKPIC [23]. This code uses a

quasistatic approximation, which is well suited to describe
the transverse dynamics of particle beams in plasmas.
After the plasma the beam particles are propagated ballis-
tically to the equivalent of the downstream OTR location,
where beam transverse images and profiles can be gener-
ated and compared to the ones obtained experimentally.
The 2-triangle fitting procedure is also applied to these
images. The incoming e$ beam parameters are identical to
those of the experiment. Detailed simulation parameters
and results will be published elsewhere. Simulation results
corresponding to the experimental results of Fig. 1 are
displayed in Fig. 3(a) for ne " 0 and Fig. 3(b) for ne "
1:5& 1014 cm#3. These show remarkable similarities with
the experimental beam images of Figs. 1(a) and 1(b). Also,
both beam sizes and charge fractions in the core and halo of
the beam [Figs. 3(c) and 3(d)] show good agreement with
the experimental results of Figs. 2(a) and 2(b): similar
beam sizes and dependencies in both planes, initial linear
increase of the halo charge in the y plane, and no significant
halo formation in the x plane. While the halo is fully
formed at a higher density in the simulations than in the
experiment (factor 2–3), the asymptotic charge fractions in
the halo are similar. This allows us to use the simulation
results with confidence to study the effect of propagation
through a plasma on the e$ beam.

In addition to the beam images, simulation results give
access to the beam phase space and therefore to the beam
emittance. Figure 4 shows the total rms bunch emittance as
well as the emittance of five longitudinal or z slices of the
bunch, each containing 20% of the total charge, along the
plasma length for ne " 2& 1014 cm#3.
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FIG. 3 (color). Simulated images of the beam at the down-
stream OTR location for (a) ne " 0 and (b) ne " 1:5&
1014 cm#3; (c) beam transverse sizes (x plane, blue circles; y
plane, red squares); (d) fractions of the total beam charge in the
beam core (circles) and the beam halo (square) in the x (blue
symbols) and y plane (red symbols) as a function of ne. These
results are obtained from simulations with the experimental
parameters. The empty symbols correspond to ne " 0. The
dotted lines are plotted to suggest trends.
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Fig. 11: Images of the positron transverse size obtained (a) without and (b) with plasma, a distance ∼1 m down-
stream from the plasma exit. The images are obtained using optical transition radiation (OTR). The beam has an
elliptical transverse shape without plasma (a) because it is focused to a round spot at the plasma entrance and has
different emittances in the x- and y-planes (typical of linear colliders). The image with plasma (b) shows a focused
core surrounded by a halo of particles. The halo is the result of the evolving and non-linear character of the plasma
focusing force acting on the positron bunch. For parameters, see Ref. [50] (Reproduced with permission from
APS.)

7.4 Hollow plasma channel for positron bunches
One possible solution to the emittance preservation during the acceleration of a positron bunch in a
plasma is to use a hollow plasma channel. In such a channel, the plasma density is zero from the axis
to a radius rc and a constant density beyond rc. Simulation results show that rc of the order of c/ωpe

may be optimal in terms of accelerating gradient [57]. A drive bunch (electron or positron) displaces
the plasma electrons in much the same way as in a uniform plasma and the plasma electrons converge
towards the axis of the beam and channel. They sustain a longitudinal wakefield structure similar to that
formed in a uniform plasma that has accelerating and decelerating regions. However, since there are
no plasma ions in the channel, there are essentially no transverse forces to defocus a positron witness
bunch. In a hollow plasma channel, a positron witness bunch can therefore be accelerated without the
emittance growth associated with the unfavourable transverse wakefields. Since there are no focusing
fields, the length of the acceleration is limited by the beta-function of the beam, which increases in size
transversely and eventually reaches the channel radius. However, as previously noted, the emittance of
the beams foreseen for a future accelerator might be low enough to allow for acceleration in metre-long
plasma channels.

Hollow plasma channels could be produced, for example, by heating a plasma with a long (∼ ps)
laser pulse and letting it expand [58] or by using specially designed phase optics to ionize a gas only in
a hollow cylinder region [59].

8 Quasi-linear PWFA regime
An interesting regime, between the linear and non-linear regime can be reached and may prove ad-
vantagous for operation with multiple drive bunches. This regime is called the quasi-linear or weakly
non-linear regime.

This regime is reached when nb ∼= ne0. In this case, blow-out is reached essentially only over the
bunch volume, unlike in the non-linear regime, where it is obtained over a much large radius. This regime
therefore has the same focusing properties as in the non-linear regime (for an electron bunch). However,
the longitudinal wakefields do not attain non-linear values and can therefore be added linearly with
multiple bunches, possibly allowing for a large transformer ratio or large energy extraction efficiency.
The addition of the wakefields and the possibility of reaching a large transformer ratio, comparable with
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that predicted by simple linear PWFA theory has been demonstrated in numerical simulations [60–62].
However, the charge and position of each bunch must be studied using simulations, to produce optimum
results.

9 Self-modulation instability
Most PWFA experiments are performed with single electron bunches or short preformed trains of elec-
tron bunches.

Electron bunches can be compressed to extremely short lengths and focused to small transverse
sizes, so that PWFA experiments can be performed at high plasma densities (kpeσz ∼=

√
2, kpeσr < 1)

and operate at high gradients. However, electron bunches carry relatively small amounts of energy as
compared with proton bunches. For example a typical SLAC electron bunch with 25 GeV per particle
and 2 × 1010 particles per bunch carries about 80 J. A typical CERN SPS proton bunch with 400 GeV
per particle and 3× 1011 particles per bunch carries about 19 kJ. Once accelerated in the LHC to 7 TeV,
it carries 336 kJ.

A future electron/positron linear collider is expected to produce bunches with at least 250 GeV
per particle and 2 × 1010 particles per bunch, i.e., carrying 800 J. A PBPA-based collider using an
80 J SLAC-like drive bunch would therefore need to stage at least 10 plasma sections to produce an
800 J bunch. Staging has been envisaged since the beginning of the PWFA. However, staging implies
distances between the plasma sections that might be much longer than the plasma sections, leading to
gradient dilution: the average accelerating gradient (final energy divided by accelerator length or energy
gain per plasma stage divided by distance between stages) might be significantly lower than the peak
accelerating gradient (gradient in the plasma sections).

A possible alternative is to use a proton bunch as a drive bunch. This idea was explored numer-
ically [63]. While results showed the possibility of an energy gain as high as ∼600 GeV in a single
∼500 m plasma, the 1 TeV, σz = 100 µm, proton bunch used as a driver does not exist. CERN SPS
and LHC bunches are ∼12 cm long. It is interesting to note that while with electrons or more generally
negatively charged bunches, a bunch with σr ≤ σz ≤ c/ωpe is optimum, a shape with σz < σr seems
more effective for positively charged bunches.

It was recently proposed to use a transverse instability, the self-modulation instability (SMI) to
drive large amplitude wakefields with bunches much longer than the plasma wavelength [19]. The SMI
arises from the interplay between the transverse wakefields that can periodically focus (or defocus) the
particle bunches and increase (or decrease) the bunch density that drives the wakefields more strongly
(or weakly) (see Eq. (14)). The instability modulates the long bunch into a train of bunches with a period
approximately equal to the plasma wavelength. The train then resonantly drives wakefields to much
larger amplitudes than the long bunch would in a plasma with lower density, such that kpeσz ∼=

√
2.

One can estimate the gain in wakefield amplitude when using SMI by taking EWB as the measure of the
maximum possible accelerating field and assuming that the SMI produces micro-bunches of length such
that kpeσr ∼=

√
2 separated by λpe.

It is important to note that the modulation has a longitudinal period as a result of the transverse
(and not longitudinal) motion of the bunch particles (since dephasing caused by energy gain or loss is
negligible for relativistic particles).

Experiments with electron bunches of one to five λpe showed that periodic wakefields are indeed
driven by bunches with λpe > σz [64]. The observation was based on longitudinal wakefields; however,
those are always accompanied by transverse wakefields.

Experiments aimed at directly observing the effect of the transverse wakefields on the bunch radius
are ongoing at SLAC with electron and positron bunches [65]. Preliminary results show evidence of
radial modulation, formation of a beam halo and energy loss to wakefields. Experiments with low-energy
electron bunches are planned at DESY Zeuthen [66].
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A major experiment, known as AWAKE, is in the design and installation phase at CERN [67].
It will use the 400 GeV SPS proton bunch and a 10 m long plasma with a baseline density
ne0 = 7 × 1014 cm−3 [68].

The first goal of the experiment is to observe and characterize the SMI of the proton bunch. In
a second phase, an electron bunch with σz of the order of one to two λpe will be externally injected
to sample the wakefields. In a third phase, an electron bunch shorter than λpe, possibly produced by a
LWFA [69], will be injected to narrow the final energy spread through loading of the wakefields and to
preserve the accelerated bunch emittance [70]. Details of the AWAKE experiment can be found in the
lecture by E. Gschwendtner.

10 Final remarks
The PWFA is one of the advanced accelerator schemes studied as a high-gradient alternative to today’s
RF technology. The PWFA has its advantages and its limits, and only further research in the field will
help determine its relevance to a current or future electron or positron accelerator. The application of
the PWFA is to high-energy accelerators, such as those driving X-ray free electron lasers (FELs) or the
electron/positron collider that may be chosen to complement the LHC.

It is clear that many subjects have not been addressed in this manuscript: plasma sources, staging
of plasma sources, bunch head erosion, scattering on the plasma ions, etc. However, we hope that this
manuscript will foster further reading about and understanding of the growing body of theoretical, nu-
merical and experimental PWFA work. Moreover, we hope that curiosity, talent and enthusiasm of many
scientists, potentially captured by this CERN accelerator school, will take this concept to its limit.
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Plasma Injection Schemes for Laser–Plasma Accelerators

J. Faure
Laboratoire d’Optique Appliquée, ENSTA-CNRS École Polytechnique, Palaiseau, France

Abstract
Plasma injection schemes are crucial for producing high-quality electron beams
in laser–plasma accelerators. This article introduces the general concepts of
plasma injection. First, a Hamiltonian model for particle trapping and accel-
eration in plasma waves is introduced; ionization injection and colliding-pulse
injection are described in the framework of this Hamiltonian model. We then
proceed to consider injection in plasma density gradients.

Keywords
Laser-plasma accelerators; laser wakefield; electron injection; ionization in-
jection; colliding pulse injection; gradient injection.

1 Introduction
In accelerator physics, the starting point of a high-energy machine is always the injector. The injector
can be extremely important; it usually delivers a particle beam at the MeV level, and its characteristics—
such as emittance, bunch duration and energy spread—strongly impact the parameters of the final beam.
By analogy, it seems only natural that laser–plasma accelerators should also include an injection stage;
this would permit (i) decoupling of the injection and acceleration stages, (ii) more control over the beam
parameters and the possibility to tune them independently, and (iii) better stability of the beam. However,
injecting electrons into the plasma wakefield accelerating structure is not an easy task: the wavelength of
the accelerating structure is on the order of λp ' 10 µm; here, the plasma wavelength is λp = 2πc/ωp

(where c is the speed of light and ωp = (nee
2/ε0me)

1/2 is the plasma frequency), so that λp = 10–30µm
for electron plasma densities in the 1018–1019 cm−3 range. The production of monoenergetic electron
bunches in such a micrometre structure requires that the injected beam have a duration shorter than
λp/c = 30–100 fs and that it be focused to a few microns. In addition to these stringent requirements,
the injected particle beam should be synchronized at the femtosecond level with the laser pulse driving
the wakefield, which also poses a considerable experimental challenge. The production of such short and
well-synchronized bunches is at the edge of conventional radio-frequency (r.f.) accelerator technology,
and experiments using external injectors have not yet succeeded in providing high-quality electron beams
with narrow energy spreads [1, 2].

In many laser wakefield acceleration experiments, electrons are self-injected into the accelerat-
ing structure: when the plasma wave amplitude reaches very high levels (close to the wave-breaking
threshold), background plasma electrons can be injected into the plasma waves [3–7]. This is somewhat
analogous to dark current in a r.f. accelerator: at high field strengths, the cavities start to release electrons.
This self-injection mechanism can lead to the production of high charge and, on occasion, narrow energy
spreads in the range of a few percent to 10% can be achieved. However, it has proven difficult to obtain
high-quality, i.e. narrow, energy spreads in a stable manner using this method. In addition, electron in-
jection results from a succession of nonlinear effects, such as relativistic self-focusing [8, 9] of the laser
pulse, spectral broadening and self-steepening [10–13]. This is the reason that self-injection is rather
difficult to control precisely and does not allow tuning of the injected beam parameters. In this context,
many researchers in the field of laser–plasma accelerators have started to develop injection methods in
which the injected electrons originate from the plasma itself (as opposed to external injection requiring
an existing electron source).
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While several methods have been proposed for injecting plasma electrons into an existing plasma
wakefield, they can be summarized by the following general principles.

– Create electrons at the right phase in the wakefield. Even if an electron is created at rest, it can end
up being trapped provided that it is born at the appropriate phase. This is the idea behind ionization
injection.

– Give an initial kick to electrons so that their initial longitudinal velocity is high enough for trapping.
This is analogous to surfers paddling in order to gain momentum and catch the wave. Several
methods are based on this idea, including injection by colliding pulses.

– Slow down the wakefield to facilitate trapping. Decreasing the phase velocity of the wakefield
locally can be achieved by tailoring the plasma density, for example, and it leads to a controlled
injection mechanism. Injection in downward density ramps is based on this idea.

In this article we will review some of these injection mechanisms. In Section 2, a Hamiltonian for-
malism based on Refs. [14,15] is derived in order to find the trapping threshold for an electron interacting
with an intense laser pulse and a plasma wave. In Section 3, the findings from the Hamiltonian model
will be applied to the particular case of ionization injection where high-Z atoms provide the source of
injected electrons. In Section 4 we show how electrons can be injected using colliding and counter-
propagating laser pulses. Finally, in Section 5, we show how electrons can also be trapped in wakefields
with decreasing phase velocities.

2 One-dimensional Hamiltonian model
2.1 Assumptions of the model
The goal of this section is to derive analytically the trajectories of electrons in a laser field and a plasma
wave [15]. In particular, some electrons can be trapped and accelerated in the plasma wakefield. The
theoretical framework is the following.

– We start with a 1D model: we consider only the motion of electrons along the longitudinal coor-
dinate z, and neglect the role of the radial electric fields. In this case, the wakefield potential φ
depends only on z and t.

– For simplicity, we assume that the laser pulse does not change during its propagation. Conse-
quently, the plasma wakefield is also stationary along the propagation. This is important because
it will allow us to use a conservation-of-energy law.

– The plasma is modelled by an electron fluid. This fluid is described by macroscopic quantities
such as its density n(r, t) and velocity v(r, t). Let us note that in such a model, kinetic effects
(e.g. trapping, wave-breaking) are not taken into account.

– Plasma ions are assumed to be immobile. This is justified when the typical time for ion motion
(ω−1

pi ) is large compared to the driver pulse duration (i.e. τ � ω−1
pi ).

– The electron fluid is cold. In the case of a laser driver, this is justified when the quiver ve-
locity of electrons in the laser field is orders of magnitude greater than the thermal velocity:
vosc ' eElaser/(meω0)� vth = (kBTe/me)

1/2.

The laser pulse is represented by its normalized vector potential a = eA/mec, where A is the laser
vector potential. For a pulse propagating along the z-axis and polarized along the x-axis,

a = â(z, t) cos(k0z − ω0t) ex, (1)

where k0 and ω0 are the wavevector and frequency of the laser electromagnetic field, and â is an envelope
function that represents the longitudinal shape of the pulse. We assume a Gaussian shape for â so that
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â2(ζ) = a2
0 exp(−ζ2/L2

0), where ζ = z−vgt with vg being the laser group velocity, L0 is the laser pulse

length, and a0 is the laser peak amplitude, a0 = 8.6× 10−10
√
I [ W cm−2]λ2 [µm], with I and λ being

the laser intensity and the central wavelength, respectively. The plasma wakefield is represented by its
normalized potential φ = eΦ/mec

2, which is obtained by solving the equation

∂2φ

∂ζ2
= k2

pγ
2
p


βp

(
1− 1 + a2

γ2
p(1 + φ)2

)−1/2

− 1


 . (2)

Here, γp is the Lorentz factor corresponding to the plasma wave phase velocity vp: γp = (1−v2
p/c

2)−1/2.
It is also assumed that the plasma wave velocity is given by the group velocity of the excitation laser:
vp ' vg and γp ' γg. Finally, the plasma wavevector is kp = ωp/vp. Eq. (2) is the nonlinear plasma
wave equation, which is valid even for a > 1, i.e. for relativistic laser intensities with I > 1018 W cm−2.
Figure 1 shows the result for a 20 fs laser pulse with a0 = 2 and a plasma density of ne = 7× 1018 cm−3.
Note that the laser field was averaged over the fast time-scale at ω0 for clarity (keeping the fast frequency
does not affect our conclusions). Notice the characteristic nonlinear shape of the plasma density pertur-
bation, which in turn causes a nonlinear longitudinal electric field with a sawtooth shape.
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Fig. 1: The top panel plots the laser amplitude a (red) and the wakefield potential φ (blue); the middle panel
shows the corresponding normalized electric field Ez/E0 (where E0 = mec ωp/e is the wave-breaking field). The
bottom panel shows the electron density perturbation n(ζ)/n0 − 1.

2.2 Hamiltonian for an electron interacting with a laser and a plasma wave
Let us consider an electron with Lorentz factor γ in a 1D wakefield, represented by the normalized

potential φ. Its Hamiltonian reads H = γ − φ(z − vgt) =
√

1 + u2
⊥ + u2

z − φ(z − vgt), where
u⊥ = p⊥/(mec) and uz = pz/(mec) are the transverse and longitudinal normalized linear momenta,
respectively. The Hamiltonian depends on z and t in a particular manner: it depends only on the
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variable ζ = z − vgt. We can use this fact to change variables using a canonical transformation
(z, uz) → (ζ, uz). We use a second-type generating function F2(z, uz) = uz(z − vgt); the transfor-
mation satisfies ζ = ∂F2/∂uz = z − vgt and uz = ∂F2/∂z, and the new Hamiltonian is given by
H ′ = H + 1

c
∂F2
∂t . In this case, the new Hamiltonian (denoted simply by H from now on) is

H =
√

1 + u2
⊥ + u2

z − φ(ζ)− βpuz (3)

where βp = vp/c.

This Hamiltonian has several constants of motion. We now introduce the canonical momentum
P = p + qA. In normalized units, the canonical momentum is denoted by U and we see that Uz = uz
and U⊥ = u⊥− a (q = −e for electrons), because in 1D the laser field has only a transverse component.
Writing the Hamiltonian with just the transverse canonical momentum gives

H =
√

1 + (U⊥ + a)2 + u2
z − φ(ζ)− βpuz.

From Hamilton’s equations, one finds that in 1D, the transverse canonical momentum is conserved:

U̇⊥ = − ∂H
∂r⊥

= 0 =⇒ u⊥(ζ)− a(ζ) = const.

In the case of an electron initially at rest in front of the laser pulse, ζi = +∞, this gives the
important result that u⊥(ζ) = a(ζ). The other constant of motion is simply the energy: this Hamiltonian
does not depend on time but only on ζ; as a consequence, the energy of the system is conserved and H is
conserved along an electron trajectory. Hence, for an electron with initial energy H0, one can solve for
its longitudinal momentum uz to get

uz = βpγ
2
p(H0 + φ)± γp

√
γ2

p(H0 + φ)2 − γ2
⊥ (4)

with γ2
⊥ = 1 + u2

⊥. Once a(ζ) and φ(ζ) are known, this equation gives the electron trajectory in (ζ, uz)
phase space. Figure 2 shows various electron trajectories that were obtained for different initial condi-
tions. For electrons initially at rest in front of the laser pulse, i.e. ζi = +∞ and uz(ζi) = u⊥(ζi) = 0, the
Hamiltonian is H0 = 1. The trajectory of such electrons is referred to as the fluid orbit and corresponds
to the trajectory of plasma background electrons that contribute to the formation of the plasma wakefield
(black line in lower panel of Fig. 2). These electrons are not trapped and oscillate in the plasma wakefield
with low energies. The separatrix is the special trajectory which separates the trapped from the untrapped
orbits. It can be found by considering an electron moving along z with vz = vp (or uz(ζmin) = βpγp)
and located initially at a minimum of the potential φ(ζmin) = φmin < 0, i.e. at a node of the electric
field. Conservation of canonical momentum reads u⊥(ζmin) = a(ζmin), so that the Hamiltonian on the
separatrix is

Hsep =

√
1 + a2(ζmin)

γp
− φmin. (5)

This trajectory is represented by a red line in the lower panel of Fig. 2. The dashed blue lines represent
some typical trapped orbits for which electrons gain significant energy in the plasma wave. Trapped
orbits are obtained when the Hamiltonian satisfies Hi 6 Hsep. To prove this, let us consider a trapped
electron behind the laser pulse at phase ζi and moving with velocity vz(ζi) = vp. At this point in
phase space, the plasma wave potential is such that φ(ζi) = φi > φmin. In addition, following Eq. (3),
conservation of the Hamiltonian can be written as Hi = (1 + β2

pγ
2
p)1/2 − φi − β2

pγp = 1/γp − φi. Since
φi > φmin, we get Hi 6 Hsep, which is a necessary and sufficient condition for trapping.
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Fig. 2: The top panel plots the laser amplitude a2 (red), the wakefield potential (blue), and the longitudinal electric
field (black dashed); the bottom panel shows the associated electron trajectories in phase space. The black line in
the bottom panel represents the fluid orbit, the red line the separatrix, and the dashed blue lines various trapped
orbits. The y-axis is in log-scale and, to avoid negative values, we have plotted uz + 1 − min(ufluid), where
ufluid(ζ) is the fluid orbit. The horizontal black dashed line represents uz = 0, while the horizontal red dashed line
represents uz = βpγp. The parameters are a0 = 2, ne/nc = 0.44%, λ = 0.8 µm and τ = 20 fs.

2.3 Trapping thresholds
Now that the basic trajectories have been established, it is possible to determine the trapping threshold
of plasma electrons in a plasma wave. To do so, we consider that an electron located in front of the laser
pulse will be trapped in the wakefield if its longitudinal momentum satisfies uz(+∞) > usep

z (+∞),
which simply means that the initial momentum has to be larger than the initial momentum on the sep-
aratrix, usep

z (+∞). According to Eq. (4), this is simply usep
z (+∞) = βpγ

2
pHsep − γp

√
γ2

pH
2
sep − 1.

Therefore, an electron with initial energy E > Etrap will be trapped and accelerated in the wakefield,
where

Etrap = mec
2
(√

1 + {usep
z (+∞)}2 − 1

)
. (6)

Figure 3 shows the variation of the trapping threshold with the plasma wave amplitude φmin, as well
as its variation with the plasma wave Lorentz factor γp. Clearly, trapping is easier for high-amplitude
plasma waves and/or for small phase velocities (small values of γp). Note that as φmin → −1, the
trapping threshold Etrap tends toward zero. This is the onset of wave-breaking: the plasma wave
amplitude becomes so high that all plasma electrons that were initially at rest get injected into the
plasma wave. As φmin → −1, the longitudinal electric field reaches the cold wave-breaking limit,
EWB =

√
2(γp − 1)1/2E0, where E0 = mec ωp/e was defined earlier. Thus, this model is able to give

a 1D picture of self-injection, although one has to keep in mind that in experiments self-injection is a 3D
process. More complicated models are necessary to fully capture the physics of self-injection in 3D [16].
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Fig. 3: (a) Trapping thresholds plotted as a function of wake amplitude (where φmin represents the minimum of
the wake potential), for three different wake phase velocities. (b) Trapping thresholds plotted as a function of γp,
the Lorentz factor associated with the wakefield velocity, for three different wake amplitudes.

3 Ionization injection
As we have just seen, unless the wakefield reaches wave-breaking amplitudes, it is not possible for
plasma electrons to be injected unless a different method is used. Ionization injection is probably the
easiest method for injecting electrons in a wakefield [17, 18]. The idea is to use a high-Z gas so that
the first levels of ionization occur at low intensity (typically below 1016 W cm−2). These electrons are
born at rest in a region where the laser intensity is relatively low and provide the electrons which form
the plasma wave and follow fluid orbits. On the other hand, ionization from inner shells occurs at higher
intensities (typically for I > 1018 W cm−2), so these electrons are born at rest in regions of strong fields.
It follows that they are born inside the plasma wave, at a totally different phase from fluid electrons. The
whole challenge is to put these electrons on trapped orbits so that they will be injected and accelerated.
Figure 4 illustrates the different classes of trajectories of electrons born at the front of the pulse and in
the middle of the pulse. In this section, we follow the approach of Refs. [17, 19].
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Electrons from N6+ 
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Fig. 4: Principle of ionization injection. (a) Ionization of nitrogen by an intense laser pulse at 1019 W cm−2; the
first five electrons, from N+ to N5+, appear at the front of the laser pulse, while electrons from N6+ appear in the
middle of the laser pulse. (b) Schematic showing the different classes of trajectories for electrons born at the front
of the pulse (fluid trajectories) or in the middle of the pulse (trapped trajectories).
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We now determine the condition(s) under which these electrons will be trapped. We first make
a few assumptions concerning ionization. In our model, ionization is assumed to occur via barrier sup-
pression ionization [20]. Considering an ionization level with energy Ei, the threshold intensity required
to ionize the electron is given by

Ithresh [W cm−2] = 4× 109E4
i [eV]/Z∗2,

where Z∗ is the charge of the resulting ion. Furthermore, we assume that electrons are born at rest
(which is a good approximation when considering the energy that the electron will gain in the laser and
plasma field). Technically, if the electron is born at phase ζion, it should witness the corresponding laser
amplitude a(ζion). However, in linear polarization, ionization occurs mostly at the peak of the electric
field, i.e. a(ζion) ' 0. Therefore, in the case of an ionized electron born at rest, conservation of canonical
momentum reads u⊥(ζ) = a(ζ) − a(ζion) ' a(ζ). The initial Hamiltonian for such electrons can be
found from Eq. (3) as

Hion = 1− φion,

and the ionized electron trajectory can be computed by inserting Hion into Eq. (4). The conditions for
trapping are simply that the intensity should be high enough for ionizing a given electron level, i.e.
a(ζion) > athresh, and that the electron should be born on a trapped orbit, i.e. Hion < Hsep. These
conditions define the region of phase space where ionized electrons are trapped and further accelerated
in the wakefield. Typically, these conditions are fulfilled only in the setting of a high-intensity laser
pulse (a > 1) and a large-amplitude plasma wave. Figure 5 illustrates this discussion: the green area
in the upper panel defines the region of phase space where electrons can be injected; the corresponding
trajectories are plotted in green in the lower panel (note that the fast laser frequency was considered for
this case, as electrons are born at zeros of the vector potential). As discussed previously, electrons are
born at rest, oscillate in the laser field, and gain energy as they get on a trapped orbit.

The injection volume in phase space depends on the wakefield amplitude and the ionization thresh-
old, so in principle it can be controlled via the laser intensity. The injection volume is responsible for the
injected charge as well as the energy spread. Obviously, large injection volumes lead to large injected
charge and larger energy spreads. On the other hand, smaller energy spreads can be obtained by reducing
the injection volume at the expense of charge. Experiments have demonstrated the concept of ionization
injection using nitrogen and argon [17, 18]. In practice, it is quite difficult to control the injection vol-
ume experimentally: ionization injection occurs all along the propagation, as long as the laser intensity
exceeds the threshold intensity; as a result, electrons are injected continuously along the propagation and
the energy distributions are quite broad [17,18]. Narrower energy spreads have been obtained by using a
two-stage laser–plasma accelerator [21]: in the first stage, a short nitrogen gas jet is used to inject elec-
trons while a second gas jet is used to boost the acceleration. In Ref. [22], by restricting the first stage to
a 500µm jet, the injection was kept relatively local, resulting in energy spreads at the 10% level.

To summarize our discussion on ionization injection, this method is easy to implement experimen-
tally as it requires simply the use of a high-Z gas. It is a straightforward way to increase the injected
charge without reaching wave-breaking amplitudes. It usually results in increased injected beam loads,
but controlling the beam quality can be rather difficult, as (i) the injection volume is directly related to
the laser intensity, and (ii) injection tends to occur continuously along the propagation.

4 Colliding-pulse injection
We now present the colliding pulse injection scheme, where an auxiliary laser pulse is used to trigger a
very localized injection (' 10µm), resulting in beams with small energy spread. The idea of using an
additional laser pulse for injecting electrons was first proposed by Umstadter et al. [23]. It was further
developed by Esarey et al. [24], who proposed a scheme based on counter-propagating laser pulses.
In its simplest form, the scheme uses two counter-propagating ultra-short laser pulses with the same
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Fig. 5: Ionization injection—a phase space picture. The upper panel plots the laser amplitude a2 (red) and the
wakefield potential (blue); the dashed light-blue horizontal line indicates the ionization threshold athresh = 1.37,
corresponding here to Ithresh = 4 × 1018 W cm−2, and the region of phase space where the injection condi-
tions are satisfied is shown in green. The lower panel shows the fluid orbit (black), the separatrix (red), and
the trajectories followed by ionized electrons at the front and back of the injection region. The parameters are
a0 = 2, ne/nc = 0.44%, λ = 0.8 µm and τ = 20 fs.

central wavelength and polarization. The first laser pulse, the ‘pump’ pulse, creates a wakefield, whereas
the second laser, the ‘injection’ pulse, is used only for injecting electrons. The laser pulses collide in
the plasma, and their interference creates a laser beat-wave pattern which can pre-accelerate plasma
background electrons. If the laser intensities are high enough, this pre-acceleration permits the injection
and trapping of electrons in the wakefield and their further acceleration to relativistic energies. The
principle of the method is depicted in Fig. 6. Analytical work [25] and simulations [25, 26] have shown
that this two-stage acceleration mechanism can lead to the production of high-quality electron bunches
with narrow energy spread, small divergence and ultra-short duration, even when using relatively modest
lasers (e.g. with normalized vector potential a0 = 1 for the pump pulse and a1 = 0.3 for the injection
pulse).

A theoretical description of electron injection by colliding laser pulses was first given by Esarey
et al. in Ref. [24]. We will briefly review the principles of their fluid model. First, the pump laser,
with normalized vector potential a0, excites a plasma wave. Before the arrival of the laser pulse, the
plasma background electrons are initially at rest. In the absence of wave-breaking and self-trapping,
these electrons are not trapped in the plasma wave. As we have seen earlier, they simply oscillate back
and forth in the plasma wave potential along the fluid orbit, and their momenta oscillate between ufluid

z,min

and ufluid
z,max, where

ufluid
z,max,min = βpγ

2
p(1 + φmin,max)− γp

√
γ2

p(1 + φmin,max)2 − 1, (7)

with φmin and φmax representing the minimum and maximum of the potential, respectively. In order to
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Fig. 6: Principle of colliding-pulse injection

be accelerated in the wakefield, electrons need to move along trapped orbits, inside the separatrix. When
electrons move along the separatrix, their momenta oscillate between usep

z,min and usep
z,max, where

usep
z,max,min = βpγp(1 + γp∆φ)± γp

√
(1 + γp∆φ)2 − 1 (8)

with ∆φ = φmax − φmin.

Therefore, one needs to find a way to push plasma background electrons, which follow the fluid
trajectories, into trapped trajectories. The interference of two laser pulses generates a beat-wave which
is able to heat electrons and provide just such a mechanism. The laser pulses are represented by their
normalized vector potentials a0,1, where the subscripts 0 and 1 represent, respectively, the pump pulse
and the injection pulse. Assuming that the lasers are counter-propagating along the z direction, one can
write the normalized vector potential as

a0,1 =
a0,1(ζ0,1)√

1 + σ

[
cos(k0,1ζ0,1)ex + σ sin(k0,1ζ0,1)ey

]
, (9)

where σ = 0 for linear polarization and σ = 1 for circular polarization, k0 = −k1 are the wavevectors,
and ζ0,1 = z ± vgt. Although in general the two waves can have different frequencies, all experiments
to date have used identical frequencies, so here we assume that the two laser pulses have the same
frequency ω0.

When the two pulses overlap, they interfere, and the resulting squared electromagnetic field can
be written as a2 = (a2

0 + a2
1 + 2a0 · a1)/(1 + σ). The last term is the beat-wave term, and it cancels

out for crossed polarizations. In the case where the two polarizations are parallel, it generates a standing
wave (i.e. the beat-wave has zero phase velocity) with a spatial scale of λ0/2. The ponderomotive force
in the beat-wave is very large (because Fbeat ' 2k0a0a1), and it can pre-accelerate the plasma electrons.
Neglecting the plasma potential, electron trajectories in the beat-wave are governed by the Hamiltonian

Hb =
√

1 + u2
z + a2. (10)

In order to obtain an analytical estimate, we will assume circular polarization (σ = 1) for the pump and
injection beams, so that a2 = (a2

0 + a2
1)/2 + a0a1 cos(2k0z). The separatrix in this beat-wave pattern is

then given by
ubeat
z = ±

√
a0a1(1− cos 2k0z); (11)
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so on the beat-wave separatrix, electrons oscillate between ubeat
z,min and ubeat

z,max (see Fig. 7), where

ubeat
z,max,min = ±

√
2a0a1. (12)

For instance, an electron trapped in the beat-wave created by two laser pulses with a0 = 2 and a1 = 0.3
can gain about 200 keV, which is sufficient for getting trapped in the wakefield.

λ0/2  (2a0a1)1/2 
u z

 

Fig. 7: Trajectories of electrons following the beat-wave separatrix at the collision of the two circularly polarized
laser pulses.

One can define an approximate threshold for injection into the wakefield by applying a phase space
separatrix overlap condition [24, 25]. Specifically, island overlap requires the following conditions:

ubeat
z,max > usep

z,min,
(13)

ubeat
z,min < ufluid

z,min.

These conditions are illustrated in Fig. 8(a). Using criterion (13), we find that the injection thresh-
old can be reached with a0 ' 1 and a1 ' 0.1 (for this estimation, we have used pulse durations of
τ = 30 fs to calculate the plasma wave amplitude φ), for plasma density in the range of ne = 1018–
1019 cm−3; see the results in Fig. 8(b).

When the pulse polarizations are linear, the Hamiltonian in Eq. (10) is time-dependent and no
longer integrable. It has been shown that in this case, electron motion is stochastic [27–29] and the simple
calculations above do not hold. In fact, stochastic heating turns out to be an efficient mechanism for
heating and subsequently injecting electrons [28,30]. Other effects, such as plasma wave inhibition [31],
make the physics of colliding pulses more complicated than what this simple model tends to suggest.
Full 3D particle-in-cell simulations are necessary to fully capture all the physical ingredients [30], but
the concepts presented here still hold.

The colliding-pulse injection method requires some heavy experimental investment, as a second
intense laser pulse is needed. The two laser pulses need to be precisely synchronized at the femtosecond
level and spatially overlapped at the micron level. Despite its complexity, colliding-pulse injection has
intrinsic advantages, some of which are summarized as follows.

– The injection is very localized as it occurs only during the collision of the two laser pulses, i.e.
10µm for 30 fs pulses. This helps to reduce the energy spread and to inject very short electron
bunches. The injected electron beams were measured to be only a few femtoseconds in dura-
tion [32].
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Fig. 8: (a) Phase space representation of the injection conditions in (13) in the case of colliding pulses: the blue
lines represent the amplitude of the beat-wave separatrix, while the red lines are the wakefield separatrix and the
fluid orbit; the area shaded in green represents in injection volume. (b) Plots of the injection thresholds for various
laser and plasma parameters (a 30 fs and 800 nm laser pulse was assumed).

– The physics of injection is largely determined by the heating at the collision, so injection is less
sensitive to intensity fluctuations of the main laser pulse (though the intensity of the main pulse
still plays a role, as it determines the wakefield amplitude). First experiments have shown that
stable beams with narrow energy spreads can be achieved in this way [33, 34].

– The location of the collision and hence the injection can be easily controlled. Therefore it is pos-
sible to tune the acceleration length. Experiments have shown that by controlling this parameter,
the beam energy can be controlled over a wide range, typically 10–200 MeV [33].

– The injection volume can be controlled by tuning the intensity of the injection laser pulse. For high
a1, the electron heating at the collision is large and results in large injected beam loads as well as
larger energy spreads. The energy spread can be tuned and reduced at the 1% level by decreasing
the injection laser amplitude, as demonstrated experimentally in Ref. [35].

Finally, based on theoretical studies, a three-pulse scheme has been proposed where the main
beam is used only to generate the wakefield [24]; two auxiliary beams are used for injection only. Their
polarization is orthogonal to the main beam polarization so that the two injection pulses do not interfere
with the main beam. The advantage of this method is that it provides an additional tuning knob: the
injection phase can now be chosen by tuning the distance between the main pulse and the collision point.
More recently, several variations of the colliding-pulse scheme have been proposed; the basic concepts
remain similar but the analysis extends to the 3D case [36, 37].

5 Injection in density gradients
We now focus on another scheme, in which the plasma needs to be engineered: by tailoring the plasma
density, one can gain some control over the plasma wave phase velocity. As we have seen earlier, the
lower the phase velocity, the lower the trapping threshold. Therefore, by setting up a local decrease in
the phase velocity, one can trigger injection in a local manner as well [38–40]. This can be achieved by
sending the laser pulse through a downward density ramp, which causes the wakefield to slow down. A
full Hamiltonian description of this problem is beyond the scope of this article; in a density transition,
the wakefield potential also depends on z, as φ(z, ζ), and the constants of motion that we have derived
in Section 2 no longer hold in this case. Consequently, we will develop a simple fluid model that will
provide some physical intuition of this process.

We start with the fluid equation describing the excitation of the wakefield by an intense laser pulse,
restricting ourselves to the weakly relativistic case where a2 � 1. We consider a gentle density gradient,
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1
n0

∂n0
∂z � kp, or Lgkp � 1, where Lg is the gradient scale length. In this case, the plasma wave equation

reads (
∂2

∂t2
+ ω2

p(z)

)
φ = ω2

p(z)
〈a2〉

2
. (14)

Note the spatial dependence of the plasma frequency in the gradient, ωp(z) ∝
√
n0(z). We can now

perform the usual change of variables to solve the problem in the moving frame: ζ = z − vgt and τ = t.
By applying the quasi-static approximation, one can then neglect the ∂/∂τ terms. The previous equation,
written in the co-moving variables, becomes

(
∂2

∂ζ2
+ k2

p(z)

)
φ = k2

p(z)
〈a2〉

2
(15)

where kp(z) = ωp(z). This equation can be integrated, and the solution behind the laser pulse has the
form

φ(ζ, z) = φ0(z) sin[kp(z)(z − vgt)], (16)

where the wakefield amplitude is φ0(z) = −
√
π

4 a
2
0(z)kp(z)L0 exp{−kp(z)2L2

0/4} and its phase is ϕ =
kp(z)(z − vgt), so that one can compute the local oscillation frequency and wavevector:

ω = −∂ϕ/∂t = kp(z)/vg = ωp(z), (17)

k = ∂ϕ/∂z = kp(z) + ∂kp/∂z(z − vgt). (18)

It follows that in a downward density gradient (∂kp/∂z < 0 and z− vgt < 0 behind the laser pulse), the
wavevector increases with time (alternatively, the plasma wavelength decreases with time). In contrast,
the plasma frequency does not depend on time: ω = ωp(z). As a result of this time-varying wavevector,
the phase velocity vp(z, t) = ωp(z)/k(z, t) is

vp(z, t) =
vg

1 + (z − vgt)
1

kp

dkp

dz

. (19)

Consequently, as the wavevector increases with time, the phase velocity decreases. Injection occurs
behind the laser pulse when the wakefield becomes slow enough to trap plasma background electrons.

These effects are illustrated in Fig. 9. In panel (a), we display the wakefield potential in the
case where a laser pulse is tightly focused into a density gradient. The density gradient has a Gaussian
shape and kp0Lg = 50, where kp0 = ωp0/vg0 is defined using the maximum density at the top of the
downward ramp. One can see clearly that the plasma frequency decreases with z as the density decreases,
as expected. In addition, while the initial phase velocity is close to c, the bending of the wakefield in
the (t, z) plane indicates that the phase velocity decreases with time. In panel b), the phase velocity is
plotted for various density scale lengths Lg. It can be seen that the phase velocity decreases faster for
sharper gradients, indicating that trapping is likely to occur more rapidly in this case.

Numerous experiments have demonstrated that trapping in density gradients is an efficient method
for injecting electrons into wakefields [41–44]. This controlled injection scheme has resulted in more
stable beams [41,43] with energy spreads in the 10% range. Some experiments have utilized the density
down ramp at the exits of short gas jets, resulting in the production of low-energy beams of a few hundred
keV [41, 44]. Other research groups have engineered a sharp density gradient by creating a shock in the
gas flow [43, 45] or by using another laser pulse to create a density perturbation [42]. In this case, the
injection location can be controlled and the resulting beam energy can be tuned [45, 46].

6 Conclusion
In conclusion, plasma injection schemes are at the forefront of current research in laser–plasma accelera-
tors. Researchers continue to propose new injection schemes to test new ideas and to provide high-quality

12

J. FAURE

154



50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

tp0t

v p/c

 

 
kpLg=50
kpLg=10

tp0t

k p0
z

 

 

0 20 40 60 80 100 120
0

10

20

30

40

50

−0.2

−0.1

0

0.1

0.2

vp=c

b)a)

Fig. 9: (a) Wakefield potential map φ(z, t) in the case where a laser pulse is focused in a density gradient; Eq. (16)
was used to compute the potential; the dashed line represents the speed of light and one can see clearly the bending
of the wakefield in the (t, z) plane, indicating that the phase velocity is decreasing with time. (b) Illustration of the
decrease in the phase velocity with time for two different gradient scale lengths Lg (computed using Eq. (19)).

beams while maintaining a relatively simple experimental set-up [47,48]. The idea of combining several
methods might prove useful in the future; for example, performing colliding-pulse injection in a den-
sity gradient could increase the trapped charge while still preserving the beam quality [49]. Similarly,
combining ionization injection and density gradient injection has the potential to yield interesting results.
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Abstract 
In this lecture we introduce from basic principles the main concepts of beam 
focusing and transport in modern accelerators using the beam envelope 
equation as a convenient mathematical tool. Matching conditions suitable for 
preserving beam quality are derived from the model for significant beam 
dynamics regimes. An extension of the model to the case of plasma 
accelerators is introduced. The understanding of similarities and differences 
with respect to traditional accelerators is also emphasized. 

Keywords 
Beam matching; r.m.s. emittance; laminar beam; plasma acceleration; space 
charge effects; r.m.s. envelope equations. 

1 Introduction 
Light sources based on high-gain free electron lasers or future high-energy linear colliders require the 
production, acceleration and transport up to the interaction point of low divergence, high-charge density 
electron bunches [1]. Many effects contribute in general to the degradation of the final beam quality, 
including chromatic effects, wake fields, emission of coherent radiation, and accelerator misalignments. 
Space charge effects and mismatch with the focusing and accelerating devices typically contribute to 
emittance degradation of high-charge density beams [2], hence the control of beam transport and 
acceleration is the leading edge for high-quality beam production.  

In particular, further development of plasma-based accelerators requires careful phase space 
matching between plasma acceleration stages, and between plasma stages and traditional accelerator 
components. It represents a very critical issue and a fundamental challenge for high-quality beam 
production and its applications. Without proper matching, significant emittance growth may occur when 
the beam is propagating through different stages and components due to the large differences of 
transverse focusing strength. This unwanted effect is even more serious in the presence of finite energy 
spread. 

In this paper we introduce from basic principles the main concepts of beam focusing and transport 
in modern accelerators using the beam envelope equation as a convenient mathematical tool. Matching 
conditions suitable for preserving beam quality are derived from the model for significant beam 
dynamics regimes. An extension of the model to the case of plasma accelerators is introduced. The 
understanding of similarities and differences with respect to traditional accelerators is also emphasized. 
A more detailed discussion of the previous topics can be found in the many classical textbooks on this 
subject, as listed in Refs. [3–6]. 

2 Laminar and non-laminar beams 
An ideal high-charge particle beam has orbits that flow in layers that never intersect, as occurs in a 
laminar fluid. Such a beam is often called a laminar beam. More precisely, a laminar beam satisfies the 
following two conditions [6]. 
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1 All particles at a given position have identical transverse velocities. On the contrary, the orbits 
of two particles that start at the same position could separate and later cross each other. 

2 Assuming the beam propagates along the z axis, the magnitudes of the slopes of the trajectories 
in the transverse directions x and y, given by ( ) d / dx z x z′ =  and ( ) d / dy z y z′ = , are linearly 
proportional to the displacement from the z axis of beam propagation. 

Trajectories of interest in beam physics are always confined to the inside of small, near-axis regions, 
and the transverse momentum is much smaller than the longitudinal momentum, px,y << pz ≈ p. As a 
consequence, it is convenient in most cases to use the small angle, or paraxial, approximation, which 
allows us to write the useful approximate expressions x′ = px/pz ≈ px/p and y′ = py/pz ≈ px/p.  

To help understand the features and the advantages of a laminar beam propagation, the following 
figures compare the typical behaviour of a laminar and of a non-laminar (or thermal) beam. 

Figure 1 illustrates an example of orbit evolution of a laminar mono-energetic beam with half 
width x0 along a simple beam line with an ideal focusing element (solenoid, magnetic quadrupoles, or 
electrostatic transverse fields are usually adopted to this end), represented by a thin lens located at the 
longitudinal coordinate z = 0. In an ideal lens, focusing (defocusing) forces are linearly proportional to 
the displacement from the symmetry axis z so that the lens maintains the laminar flow of the beam.  

 
Fig. 1: Particle trajectories and phase space evolution of a laminar beam [7] 

The beam shown in Fig. 1 starts propagating completely parallel to the symmetry axis z; in this 
particular case the particles all have zero transverse velocity. There are no orbits that cross each other 
in such a beam. Ignoring collisions and inner forces, like coulomb forces, such a parallel beam could 
propagate an infinite distance with no change in its transverse width. When the beam crosses the ideal 
lens it is transformed in a converging laminar beam. Because the transverse velocities after the linear 
lens are proportional to the displacement off-axis, particle orbits define similar triangles that converge 
to a single point. After passing through the singularity at the focal point, the particles follow diverging 
orbits. We can always transform a diverging (or converging) beam to a parallel beam by using a lens of 
the proper focal length, as can be seen by reversing the propagation axis of Fig. 1. 

The small boxes in the lower part of the figure depict the particle distributions in the trace space 
(x,x′), equivalent to the canonical phase space (x,px ≈ x′p) when p is constant, i.e. without beam 
acceleration. The phase space area occupied by an ideal laminar beam is a straight segment of zero 
thickness. As can be easily verified, the condition that the particle distribution has zero thickness 
proceeds from condition 1; the segment straightness is a consequence of condition 2. The distribution 
of a laminar beam propagating through a transport system with ideal linear focusing elements is thus a 
straight segment with variable slope. 
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Particles in a non-laminar beam have a random distribution of transverse velocities at the same 
location and a spread in directions, as shown in Fig. 2. Because of the disorder of a non-laminar beam, 
it is impossible to focus all particles from a location in the beam toward a common point. Lenses can 
influence only the average motion of particles. Focal spot limitations are a major concern for a wide 
variety of applications, from electron microscopy to free electron lasers and linear colliders. The phase 
space plot of a non-laminar beam is no longer a straight line: the beam, as shown in the lower boxes of 
Fig. 2, occupies a wider area of the phase space. 

 
Fig. 2: Particle trajectories and phase space evolution of a non-laminar beam [7] 

3 The emittance concept 
The phase space surface A occupied by a beam is a convenient figure of merit for designating the quality 
of a beam. This quantity is the emittance εx and is usually represented by an ellipse that contains the 
whole particle distribution in the phase space (x,x′), such that A = πεx. An analogous definition holds for 
the (y,y′) and (z,z′) planes. The original choice of an elliptical shape comes from the fact that when linear 
focusing forces are applied to a beam, the trajectory of each particle in phase space lies on an ellipse, 
which may be called the trajectory ellipse. Being the area of the phase space, the emittance is measured 
in [mm mrad] or more often in [µm]. 

The ellipse equation is written as 
 2 22x x x xx xx xγ α β ε′ ′+ + =   (1) 

where x and x′ are the particle coordinates in the phase space and the coefficients αx(z), βx(z), γx(z) are 
called Twiss parameters, which are related by the geometrical condition: 
 2 1x x xβ γ α− =  . (2) 

As shown in Fig. 3 the beam envelope boundary Xmax, its derivative (Xmax)′ and the maximum beam 
divergency X′max, i.e. the projection on the axis x and x′ of the ellipse edges, can be expressed as a 
function of the ellipse parameters: 

 ( )

max

max

max

x x

x x

X

X

X

β ε

εα
β

γ ε

 =

 ′ = −

 ′ =

 

 . (3)
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Fig. 3: Phase space distribution in a skewed elliptical boundary showing the relationship of Twiss parameters to 
the ellipse geometry [6]. 

According to Liouville’s theorem the 6D (x,px,y,py,z,pz) phase space volume occupied by a beam 
is constant, provided that there are no dissipative forces, no particles lost or created, and no coulomb 
scattering among particles. Moreover, if the forces in the three orthogonal directions are uncoupled, 
Liouville’s theorem also holds for each reduced phase space (x,px), (y,py), (z,pz) surfaces and hence 
emittance also remains constant in each plane [3].  

Although the net phase space surface occupied by a beam is constant, nonlinear field components 
can stretch and distort the particle distribution in the phase space, and the beam will lose its laminar 
behaviour. A realistic phase space distribution is often very different from a regular ellipse, as shown in 
Fig. 4. 

 
Fig. 4: Typical evolution of phase space distribution (black dots) under the effects of non-linear forces with the 
equivalent ellipse superimposed (red line). 

M. FERRARIO

162



We introduce, therefore, a definition of emittance that measures the beam quality rather than the phase 
space area. It is often more convenient to associate to a generic distribution function f(x,x′,z) in the phase 
space a statistical definition of emittance, the so-called r.m.s. emittance:  
 2 2

,rms2x x x xx xx xγ α β ε′ ′+ + =   (4) 

such that the equivalent-ellipse projections on the x and x′ axes are equal to the r.m.s. values of the 
distribution, implying the following conditions: 

 
,rms

,rms

x x x

x x x

σ β ε

σ γ ε′

 =


=
  (5) 

where 

 
( ) ( )

( ) ( )

2 2 2

2 2 2

, , d d

, , d d

x

x

z x x f x x z x x

z x x f x x z x x

σ

σ

+∞ +∞

−∞ −∞

+∞ +∞

′
−∞ −∞


′ ′= =



 ′ ′ ′ ′= =

∫ ∫

∫ ∫
 (6) 

are the second moments of the distribution function f(x,x′,z). Another important quantity that accounts 
for the degree of (x,x′) correlations is defined as 

 ( ) ( ), , d dxx z xx xx f x x z x xσ
+∞ +∞

′
−∞ −∞

′ ′ ′ ′= = ∫ ∫ . (7) 

From Eq. (3) it holds also ,rmsxxx
x x

x x

εσσ α
σ β

′′ = = − , see also Eq. (16), which allows us to link the 

correlation moment Eq. (7) to the Twiss parameter as 
 ,rmsxx x xσ α ε′ = −  
.  (8) 

One can easily see from Eq. (3) and Eq. (5) that 1 d
2 d

x
x z

βα = −  also holds. 

By substituting the Twiss parameter defined by Eq. (5) and Eq. (8) into condition 2 we obtain [5] 

 
2 2

,rms ,rms ,rms

1x x xx

x x x

σ σ σ
ε ε ε

′ ′
 

− =  
   .

 (9) 

Reordering the terms in Eq. (8) we end up with the definition of r.m.s. emittance in terms of the second 
moments of the distribution: 

 ( )22 2 2 2 2
rms x x xx x x xxε σ σ σ′ ′ ′ ′= − = −   (10) 

where we omit, from now on, the subscribed x in the emittance notation: εrms = εx,rms. Root mean square 
emittance tells us some important information about phase space distributions under the effect of linear 
or non-linear forces acting on the beam. Consider, for example, an idealized particle distribution in 
phase space that lies on some line that passes through the origin as illustrated in Fig. 5. 
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 (a) (b) 

Fig. 5: Phase space distributions under the effect of (a) linear or (b) non-linear forces acting on the beam 

Assuming a generic correlation of the type x′ = Cxn and computing the r.m.s. emittance according to 
Eq. (10) we have 

 
2 rms2 2 2 1

rms
rms

1 0
.

1 0
n n n

C x x x
n

ε
ε

ε
+ = ⇒ =

= −  > ⇒ ≠  (11) 

When n = 1 the line is straight and the r.m.s. emittance is εrms = 0. When n > 1 the relationship is 
nonlinear, the line in phase space is curved, and the r.m.s. emittance is in general not zero. Both 
distributions have zero area. Therefore, we conclude that even when the phase space area is zero, if the 
distribution is lying on a curved line its r.m.s. emittance is not zero. The r.m.s. emittance depends not 
only on the area occupied by the beam in phase space, but also on distortions produced by non-linear 
forces.  

If the beam is subject to acceleration it is more convenient to use the r.m.s. normalized emittance, 
for which the transverse momentum x z op p x m c xβγ′ ′= =  is used instead of the divergence: 

( ) ( )( )22 22 2 2 2 2 2
,rms

0 0

1 1
x xn x p xp x xx p xp x x x x

m c m c
ε σ σ σ βγ βγ′ ′= − = − = − . (12) 

The reason for introducing a normalized emittance is that the divergences of the particles x′ = px/p are 
reduced during acceleration as p increases. Thus, acceleration reduces the un-normalized emittance, but 
does not affect the normalized emittance. Assuming a small energy spread within the beam, the 
normalized and un-normalized emittances can be related by the approximated relation 

 
rmsβγ ε . This 

approximation, which is often used in conventional accelerators, may be strongly misleading when 
adopted for describing beams with significant energy spread, like those presently produced by plasma 
accelerators. A more careful analysis is reported below [8]. 

When the correlations between the energy and transverse positions are negligible (as in a drift 
without collective effects), Eq. (12) can be written as 
 

2 22 2 2 2 2
,rmsn x x xxε β γ βγ′ ′= −  . (13) 

Consider now the definition of relative energy spread 2

222
2

βγ

βγγβ
σ γ

−
= , which can be inserted 

into Eq. (13) to give 

 ( )2 22 2 2 2 2 2 2 2
,rms .n x x x x xxγε β γ σ βγ′ ′ ′= + −

  (14) 
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Assuming relativistic particles (β = 1) we get 
 ( )2 2 2 2 2 2

,rms rms .n x xγε γ σ σ σ ε′= +
  (15) 

If the first term in the parentheses is negligible, we find the conventional approximation of normalized 
emittance, as rmsγ ε . For a conventional accelerator this might generally be the case. Considering, for 
example, beam parameters for the SPARC_LAB photoinjector [9], at 5 MeV the ratio between the first 
and the second term is ~10−3; while at 150 MeV it is ~10−5. On the other hand, using typical beam 
parameters at the plasma–vacuum interface, the first term is of the same order of magnitude as for 
conventional accelerators at low energies; however, due to the rapid increase of the bunch size outside 
the plasma (σx′ ~ mrad) and the large energy spread (σγ > 1%), it becomes predominant compared to the 
second term after a drift of a few millimetres. Therefore the use of approximated formulas when 
measuring the normalized emittance of plasma accelerated particle beams is very inappropriate [10]. 

4 The root mean square envelope equation 
We are now interested in following the evolution of particle distribution during beam transport and 
acceleration. One can take profit of the first collective variable defined in Eq. (6), the second moment 
of the distribution termed r.m.s. beam envelope, to derive a differential equation suitable for describing 
r.m.s. beam envelope dynamics [11]. To this end let us compute the first and second derivative of σx [4]: 

 

( )

2 2

22 2 2 2
2

2 3 3 3

d d 1 d 1 2
d d 2 d 2

d dd 1 1
d d d

x xx

x x x

xx xx xx xx xx xx

x x x x x x x

x x xx
z z z

xx
x xx

z z z

σ σ
σ σ σ

σσ σ σ σ σ σ
σ σ σ σ σ σ σ

′

′′ ′ ′ ′ ′

′= = = =

′′+
′ ′= = − = + − = −

 . (16) 

Rearranging the second derivative Eq. (16) we obtain a second-order nonlinear differential equation for 
the beam envelope evolution, 

 
2 2 2

3
x x xx

x
x x

xxσ σ σσ
σ σ

′ ′
′′−′′ = +  (17) 

or, in a more convenient form using the r.m.s. emittance definition Eq. (10), 

 
2
rms

3

1
x

x x

xx εσ
σ σ

′′ ′′− =  .
 
 (18) 

In Eq. (18) the emittance term can be interpreted physically as an outward pressure on the beam envelope 
produced by the r.m.s. spread in trajectory angle, which is parameterized by the r.m.s. emittance. 

Let’s now consider, for example, the simple case with 0xx′′ = , describing a beam drifting in 
free space. The envelope equation reduces to 

 3 2
rmsx xσ σ ε′′ =  .  (19) 

With initial conditions σ0, σ′0 at z0, depending on the upstream transport channel, Eq. (19) has a 
hyperbolic solution: 

 ( ) ( )( ) ( )
2

2 2rms
0 0 0 02

0

z z z z zεσ σ σ
σ

′= + − + − . 
 
 (20) 
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Considering the case of a beam at waist ( 0xx′ = ) with σ′0 = 0, using Eq. (5), the solution Eq. (20) is 
often written in terms of the β function as 

 ( )
2

0
0

w

1 z zzσ σ
β

 −
= +  

 
 
 
 (21) 

This relation indicates that without any external focusing element the beam envelope increases from the 
beam waist by a factor √2 with a characteristic length  𝛽𝛽𝑤𝑤 = 𝜎𝜎02

𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟
as shown in Fig. 6.  

 
Fig. 6: Schematic representation of the beam envelope behaviour near the beam waist 

At waist the relation ε2
rms = σ2

0,xσ2
0,x′ also holds, which can be inserted into Eq. (20) to get 

σ2
x(z) = σ2

0x′(z − z0)2. Under this condition Eq. (15) can be written as follows: 

 

 ( ) ( )( )22 2 2 4 2
,rms 0 rmsn xz z zγε γ σ σ ε′= − +  

showing that beams with large energy spread and divergence undergo a significant normalized 
emittance growth even in a drift of length (z − z0) [8, 12]. 

Notice also that the solution Eq. (21) is exactly analogous to that of a Gaussian light beam for 
which the beam width w = 2σph increases away from its minimum value at the waist w0 with 

characteristic length 
2
0π

R
wZ
λ

=  (Rayleigh length) [4]. This analogy suggests that we can identify an 

effective emittance of a photon beam as ph 4π
λε = . 

For the effective transport of a beam with finite emittance it is mandatory to make use of some 
external force providing beam confinement in the transport or accelerating line. The term xx′′  
accounts for external forces when we know x″ given by the single particle equation of motion: 

 
d .
d

x
x

p F
t

=
  (22) 

Under the paraxial approximation px << p = βγmc the transverse momentum px can be written as 
px = px′ = βγm0cx′, so that 
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 ( ) ( )d d d
d d d

x
x

p px c px F
t t z

β′ ′= = =   (23) 

and the transverse acceleration results to be: 

 .xFpx x
p cpβ
′

′′ ′= − +  
 
 (24) 

It follows that 

 .x x
xx

xF xFp pxx xx
p cp p cp

σ
β β′

′ ′
′′ ′= − + = +

 
 (25) 

Inserting Eq. (25) into Eq. (18) and recalling Eq. (16), xx
x

x

σσ
σ

′′ = , the complete r.m.s. envelope equation 

is 

 
2
,rms

2 3
1 nx

x x
x x

xFp
p cp

ε
σ σ

σ β γ σ
′

′′ ′+ − =   (26) 

where we have included the normalized emittance εn,rms = γεrms. Notice that the effect of longitudinal 
accelerations appears in the r.m.s. envelope equation as an oscillation damping term, called ‘adiabatic 
damping’, proportional to p′/p. The term xxF  represents the moment of any external transverse force 
acting on the beam, such as that produced by a focusing magnetic channel. 

5 External forces 

Let’s now consider the case of an external linear force acting on the beam in the form xF kx= ± . It can 
be focusing or defocusing according to the sign. The moment of the force results as 
 2 2

x xxF k x kσ= ± = ±  (27) 

and the envelope equation becomes 

  (28) 

where we have explicitly used the momentum definition p = γmc for a relativistic particle with β ≈ 1 and 

defined the wavenumber 2
ext 2

0

kk
m cγ

= . 

Typical focusing elements are quadrupoles and solenoids [3]. The magnetic quadrupole field is 
given in Cartesian coordinates by 

 
0 0

0 0

d

d

x

y

yB B B y

xB B B x

 ′= =

 ′= =


  (29) 
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where d is the pole distance and 0B′  the field gradient. The force acting on the beam is 

( )0
ˆ ˆ

zF qv B yj xi⊥ ′= −


 that, when B0 is positive, is focusing in the x direction and defocusing in y. The 

focusing strength is 20
quad ext

0

qBk k
m cγ

′
= = .  

In a solenoid the focusing strength is given by 
2

20
sol ext

02
qBk k

m cγ
 

= = 
 

. Notice that the solenoid 

is always focusing in both directions, an important properties when the cylindrical symmetry of the 
beam must be preserved. On the other hand, being a second-order quantity in γ it is more effective at 
low energy. 

It is interesting to consider the case of a uniform focusing channel without acceleration described 
by the r.m.s. envelope equation 

 
2

2 rms
ext 3x x

x

k εσ σ
σ

′′ + =
 .
 (30) 

By substituting rmsx xσ β ε=  in Eq. (30) one obtains an equation for the ‘betatron function’ βx(z) that 
is independent of the emittance term: 

 
2

2
ext

22 .
2

x
x x

x x

k ββ β
β β

′
′′+ = +

 
 (31) 

Equation (31) contains just the transport channel focusing strength and, being independent of the 
beam parameters, suggests that the meaning of the betatron function is to describe the transport line 
characteristic by itself. The betatron function reflects exterior forces from focusing magnets, and is 
highly dependent on the particular arrangement of the quadrupole magnets. The equilibrium, or 

matched, solution of Eq. (31) is given by eq
ext

1
2πk

βλ
β = = , as can be easily verified. This result shows 

that the matched βx function is simply the inverse of the focusing wave number, or equivalently is 
proportional to the ‘betatron wavelength’ λβ. 

6 Space charge forces 
Another important force acting on the beam is the one produced by the beam itself due to the internal 
coulomb forces. The net effect of the coulomb interaction in a multi-particle system can be classified 
into two regimes [3]: 

– collisional regime, dominated by binary collisions caused by close particle encounters; 

– collective regime or space charge regime, dominated by the self-field produced by the 
particles’ distribution that varies appreciably only over large distances compared to the 
average separation of the particles. 

A measure for the relative importance of collisional versus collective effects in a beam with particle 
density n is the relativistic Debye length, 

 
2

0 B b
D 2

k T
e n

ε γλ =   (32) 
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where the transverse beam temperature Tb is defined as 2
B b 0k T m vγ ⊥= , and kB is the Boltzmann 

constant. As long as the Debye length remains small compared to the particle bunch transverse size the 
beam is in the space-charge dominated regime and is not sensitive to binary collisions. Smooth functions 
for the charge and field distributions can be used in this case, and the space charge force can be treated 
like an external applied force. The space charge field can be separated into linear and nonlinear terms 
as a function of displacement from the beam axis. The linear space charge term defocuses the beam and 
leads to an increase in beam size. The nonlinear space charge terms also increase the r.m.s. emittance 
by distorting the phase-space distribution. Under the paraxial approximation of particle motion we can 
consider the linear component alone. We shall see below that the linear component of the space charge 
field can also induce emittance growth when correlation along the bunch are taken into account. 

For a bunched beam of uniform charge distribution in a cylinder of radius R and length L, carrying 
a current Ȋ and moving with longitudinal velocity vz = βc, the linear component of the longitudinal and 
transverse space charge field are given approximately by [13] 

 ( ) ( )2
0

ˆ
,

2πz
ILE h
R cε β

ζ ζ=
  (33) 

 ( ) ( )r 2
0

ˆ

2
,

π
r IrE g

R c
ζ

β
ζ

ε
=  .

  (34) 

The field form factor is described by the functions 

 ( ) ( ) ( )221 2 1h A Aζ ζ ζ ζ= + − − ++ − ,
  (35) 

 ( ) ( )
( )2 22

1

22 1
g

AA

ζ ζζ
ζζ

−
= +

++ −
  (36)

 

where ζ = z/L  is the normalized longitudinal coordinate along the bunch and A = R/γL is the beam aspect 
ratio. The field form factors account for the variation of the fields along the bunch. As γ increases, 

( ) 1g ζ →  and ( ) 0h ζ → , thus showing that space charge fields mainly affect transverse beam 
dynamics. It shows also that an energy increase corresponds to a bunch lengthening in the moving frame 
L′ = γL, leading to a vanishing longitudinal field component, as in the case of a continuous beam in the 
laboratory frame. 

To evaluate the force acting on the beam one must also account for the azimuthal magnetic field 

associated with the beam current that in cylindrical symmetry is given by rB E
cϑ
β

= . Thus, the Lorentz 

force acting on each single particle is given by 

 ( ) ( )2
21 r

r r r
eEF e E cB e Eϑβ β
γ

= − = − =  . (37) 

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the 
repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect and 
decreases as γ−2. 

In order to include space charge forces in the envelope equation let us start writing the space 
charge forces produced by the previous fields in Cartesian coordinates: 

 ( )2 2
0

ˆ

2πx
x

eIxF g
cγ ε σ

ζ
β

= .
 
 (38) 
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Then, computing the moment of the force we need 

 
( )

( )
sc

33 3 3 2 2
0 02π

x

x x

kF eIxx
cp m cβ ε

ζ
γ β σ βγ σ

′′ = = =  
 
 (39)

 

where we have introduced the generalized beam perveance  

 ( ) ( )sc
A

ˆ2Ik g
I

ζ ζ=   (40)
 

normalized to the Alfven current IA = 4πε0m0c3/e = 17 kA for electrons. Notice that in this case the 
perveance in Eq. (40) explicitly depends on the slice coordinate ζ. We can now calculate the term that 
enters in the envelope equation for a relativistic beam, 

 2sc sc
3 2 3

x

k kxx x
γ σ γ

′′ = = , (41) 

leading to the complete envelope equation 

 
2
,rms2 sc

ext 2 3 3 .n
x x x

x x

kk
εγσ σ σ

γ γ σ γ σ
′

′′ ′+ + = +
 
 (42)

 

From the envelope equation Eq. (42) we can identify two regimes of beam propagation: space-
charge dominated and emittance dominated. A beam is space-charge dominated as long as the space 
charge collective forces are largely dominant over the emittance pressure. In this regime the linear 
component of the space-charge force produces a quasi-laminar propagation of the beam, as one can see 
by integrating one time Eq. (39) under the paraxial ray approximation x′ << 1. A measure of the relative 
importance of space-charge effects versus emittance pressure is given by the laminarity parameter, 
defined as the ratio between the space-charge term and the emittance term: 

 
2

2
A

ˆ
.

2 n

I
I

σρ
γ ε

=
  (43) 

When ρ greatly exceeds unity, the beam behaves like a laminar flow (all beam particles move on 
trajectories that do not cross), and transport and acceleration require a careful tuning of focusing and 
accelerating elements in order to keep laminarity. Correlated emittance growth is typical in this regime, 
which can be made reversible if proper beam matching conditions are fulfilled, as discussed below. 
When ρ < 1 the beam is emittance dominated (thermal regime) and the space charge effects can be 
neglected. The transition to the thermal regime occurs when ρ ≈ 1 corresponding to the transition energy 

 
2

tr 2
A

ˆ
.

2 n

I
I

σγ
ε

=
  (44) 

For example a beam with Ȋ = 100 A εn = 1 μm and σ = 300 μm is leaving the space charge dominated 
regime and is entering the thermal regime at the transition energy of 131 MeV. From this example one 
may conclude that the space charge dominated regime is typical of low energy beams. Actually, for 
applications like linac-driven free electron lasers, peak current exceeding kilo amperes are required. 
Space charge effects may recur if bunch compressors are active at higher energies and a new energy 
threshold with higher Ȋ has to be considered. 

7 Correlated emittance oscillations 
When longitudinal correlations within the bunch are important, like that induced by space charge effects, 
beam envelope evolution is generally dependent also on the bunch coordinate ζ. In this case the bunch 
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should be considered as an ensemble of n longitudinal slices of envelope ( )s ,zσ ζ , whose evolution 
can be computed from n slice envelope equations equivalent to Eq. (42) provided that the bunch 
parameters refer to each single slice: γs, γ′s, ksc,s = kscg(ζ). Correlations within the bunch may cause 
emittance oscillations that can be evaluated, once an analytical or numerical solution [13] of the slice 
envelope equation is known, by using the following correlated emittance definition: 

 22 2
rms,cor s s s sε σ σ σ σ′ ′= −  (45) 

where the average is performed over the entire slice ensemble. In the simplest case of a two-slices model 
the previous definition reduces to 
 rms,cor 1 2 2 1ε σ σ σ σ′ ′= −  , (46) 

which represents a simple and useful formula for an estimation of the emittance scaling [14]. 

The total normalized r.m.s. emittance is the given by the superposition of the correlated and 
uncorrelated terms as  

 2 2
rms,cor rms rms,corε γ ε ε= + .   (47) 

An interesting example to consider here, showing the consequences of non-perfect beam 
matching, is the propagation of a beam in the space-charge dominated regime nearly matched to an 
external focusing channel (kext = ksol), as illustrated in Fig. 7. To simplify our computations we can 
neglect acceleration, as in the case of a simple beam transport line. The envelope equation for each slice, 
indicated as σs, reduces to 

 sc,s2
s ext s 3

s

k
kσ σ

γ σ
′′+ =  . (48) 

 
Fig. 7: Schematic representation of a nearly matched beam in a long solenoid. The dashed line represent the 
reference slice envelope fully matched to the Brillouin flow condition. The other slice envelopes are oscillating 
around the equilibrium solution. 

A stationary solution, called the Brillouin flow, is given by 

 
( )

s,B 2 3
ext A

ˆ1
2
Ig

k I
ζ

σ
γ

=  (49) 

where the local dependence of the current Ȋs = Ȋg(ζ) within the bunch has been explicitly indicated. This 
solution represent the matching conditions for which the external focusing completely balances the 
internal space-charge force. Unfortunately, since kext has a slice-independent constant value, the 
Brillouin matching condition cannot be achieved at the same time for all of the bunch slices. Assuming 
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that there is a reference slice perfectly matched with an envelope σr,B, the matching condition for the 
other slices can be written as 

 rB s
sB rB ˆ2

I
I

σ δσ σ  = +  
   (50) 

with respect to the reference slice. Considering a small perturbation δs from the equilibrium in the form  
 s s,B sσ σ δ= +   (51) 

and substituting into Eq. (48) we can obtain a linearized equation for the slice offset 
 2

s ext s2 0kδ δ′′+ =  (52) 

which has a solution given by 
 ( )s 0 extcos 2k zδ δ=  (53) 

where δ0 = σ − σsB is the amplitude of the initial slice mismatch, which we assume for convenience is 
the same for all slices. Inserting Eq. (53) into Eq. (51) we get the perturbed solution: 
 ( )s s,B 0 extcos 2k zσ σ δ= +  .

  (54) 

Equation (54) shows that slice envelopes oscillate together around the equilibrium solution with the 
same frequency for all slices (√2kext, often called the plasma frequency) dependent only on the external 
focusing forces. This solution represents a collective behaviour of the bunch similar to that of the 
electrons subject to the restoring force of ions in a plasma. Using the two-slices model and Eq. (54) the 
emittance evolution Eq. (46) results in 

 ( )rms,cor sol rB 0 ext
1 Δ sin 2ˆ4

Ik k z
I

ε σ δ=   (55)
 

where ΔI= Ȋ1 − Ȋ2. Notice that, in this simple case, envelope oscillations of the mismatched slices induce 
correlated emittance oscillations that periodically go back to zero, showing the reversible nature of the 
correlated emittance growth. It is, in fact, the coupling between transverse and longitudinal motion 
induced by the space-charge fields that allows reversibility. With a proper tuning of the transport line 
length or of the focusing field one can compensate for the transverse emittance growth at the expenses 
of the longitudinal emittance. 

At first it may seem surprising that a beam with a single charge species can exhibit plasma 
oscillations, which are characteristic of plasmas composed of two-charge species. But the effect of the 
external focusing force can play the role of the other charge species, providing the necessary restoring 
force that is the cause of such collective oscillations, as shown in Fig. 8. The beam can actually be 
considered as a single component, relativistic, cold plasma. 
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Fig. 8: The restoring force produced by the ions (green dots) in a plasma may cause electron (red dots) oscillations 
around the equilibrium distribution. In a similar way the restoring force produced by a magnetic field may cause 
beam envelope oscillations around the matched envelope equilibrium. 

It is important to bear in mind that beams in linacs are also different from plasmas in some 
important respects [5]. One is that beam transit time through a linac is too short for the beam to reach 
thermal equilibrium. Also, unlike a plasma, the Debye length of the beam may be larger than, or 
comparable to, the beam radius, so shielding effects may be incomplete. 

8 Matching conditions in a plasma accelerator 
The concepts developed for the beam transport in the previous sections can be now applied to the case 
of a plasma accelerator [15], giving important information about the critical topic of beam–plasma 
matching conditions. To this end we introduce a simplified model for the plasma and for the resulting 
fields acting on the beam in order to be able to write an envelope equation for the accelerated beam. 

In this section we are interested in the case of the external injection of particles in a plasma wave, 
in the so-called ‘bubble’ regime, that could be excited by a short, intense laser pulse [15, 16] or by a 
driving electron beam [17, 18] with beam density nb larger than the plasma density n0, nb > n0. A very 
simplified model for the plasma behind the driving pulse is illustrated in Fig. 9. We will consider a 
spherical, uniform ion distribution, as indicated by a dashed circle, with particle density n0. This model 
is justified by the fact that, in this regime, the fields are linear in longitudinal and transverse directions, 
at least in the region of interest for particle acceleration, as that produced by a uniform ion distribution 

within a sphere of radius sphere p / 2R λ≈  where 2
p 0 02πc /m n eλ ε=  is the plasma wavelength. A 

more detailed treatment [19] shows that the correct scaling is ( )sphere b 0 r2 /R n n σ= , where σr is the 

driving beam r.m.s. radius, that for a uniform cylindrical driving bunch gives p
sphere 3 3

0

4
π 2

eIR
mc

λ
ε

= . 
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Fig. 9: Schematic representation of the longitudinal wake field (black line) and ion distribution (red area) behind 
a driving laser or particle beam [16]. 

The field produced by the ions and experienced by a witness electron beam is purely electrostatic, 
being the ions at rest in the laboratory frame in the timescale of interest, and is simply given by 

 0
r

0

,
3
enE r
ε

=
 
 (56) 

i.e. it has a radial symmetry (other authors, see for example Ref. [17], consider a uniform charged 

cylindrical ion column producing a transverse field of the form 0
r

02
enE r
ε

= ). The ion sphere is 

‘virtually’ moving along z with the speed βd of the driving pulse due to the plasma electron collective 
oscillation, even if the source of the field remains at rest in the laboratory frame. There are also magnetic 
fields produced by the plasma electron displacement but, as shown in Ref. [20], the net effect on a 
relativistic beam is negligible. 

The accelerating component of the field is linearly increasing from the moving sphere centre 
zc = βdct: 

 ( ) 0

03z
enE ζ
ε

ζ =   (57) 

where ζ = z − zc, and has a maximum on the sphere edge at p / 2ζ λ= . The corresponding energy gained 
by a witness electron is given by γ = γ0 + αLact where Lacc is the accelerating length in the plasma and 

( ) ( )
2

2
p

1 2π
3

zeE c
mc

α ζ ζ
λ

ζ  
= =   

 
 is the normalized accelerating gradient. The energy spread 

accumulated by a bunch of finite r.m.s. length σz is given by acc

0 acc p

zL
L

δγ δα δα σ
γ γ α α λ

= ≈ =
+

, showing 

that ultra-short electron bunches are required to keep energy spread below 1%. In this simplified model, 
beam loading effects are not considered, nor beam slippage with respect to the driving pulse. 

The transverse (focusing) field 

 0

03x
enE x
ε

=  (58) 

at a distance x off the propagation axis is independent of ζ so that correlated emittance growth is not 
typically induced by the ion focusing field.  
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In Fig. 10 are shown the plasma wavelength and the longitudinal and transverse fields experienced 
by a test particle located at x = 1 μm and p / 4ζ λ=  versus typical plasma densities, according to 
Eqs. (54, 55). 

 
 (a) (b) (c) 
Fig. 10: (a) Plasma wavelength, (b) longitudinal and (c) transverse fields versus typical plasma densities 
experienced by a test particle located at x = 1 μm and p / 4ζ λ= . 

As discussed in the previous sections the transverse beam dynamics can be conveniently 
described by means of a proper envelope equation. To this end let us consider the single particle equation 
of motion:  

 
22
p0

2
03 3

x kF e nx x x
cp mcβ ε γ γ

′′ = = =   (59)
 

where 2 2
p 0/k ne mcε=  is the plasma wave number. The moment of the force acting on the beam 

particles is given by  

 
2
p p2 2

3 3 x

k k
xx x σ

γ γ
′′ = =  . (60) 

Inserting into the envelope equation we obtain 

 
2 2 0
p sc

2 3 3 .
3

n
x x x

x x

k kεγσ σ σ
γ γ γ σ γ σ
′

′′ ′+ + = +  
 
 (61)

 

An equilibrium solution of the previous equation has not yet been found, nevertheless some 
simplification is still possible and an approximated matching condition exists. As one can see, there are 
two focusing terms, the adiabatic damping and the ion focusing, and two defocusing terms, the emittance 
pressure and the space-charge effects. To compare the relative importance of the first two terms it is 
more convenient to rewrite the previous equation with the new variable x xσ γσ= leading to the 
equation 

 
2 2 2

3 22 3

sc
p n o

x x
x x

k kεγσ σ
γ γ σ γ σ

 ′ ′′  + + = +    
 

 

 . (62)
 

The beam is space charge dominated, as already discussed inSection 6, when 

 
2 2

2 2 2 1
sc sc
o x o x

n n

k kσ σρ
ε γ ε γ

= = >>


  (63) 

and ion focusing dominated when 
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2

2

4
1

3
pkγ

η
γ

= >>
′

 . (64) 

With the typical beam parameters of a plasma accelerator: 1 kA peak current, 2 μm normalized 
emittance, injection energy γ0 = 300 and spot size about 3 μm, we have ρ < 1 and η > 1. It follows that 
the envelope equation (61) can be well approximated by the following reduced expression: 

 
2 2

2 33
p n

x x
x

k εσ σ
γ γ σ

′′ + =   (65) 

with γ(z) = γ0 + αz. Looking for a particular solution in the form σx = γ−1/4σ0 we obtain 

 
2

2 2
p 0 3

0

5 1
16 3

nk γεγ γ σ
σ

 ′ + = 
 

  (66) 

that for η > 1 has a simple solution 0
p

3 n

k
εσ =  giving the matching condition of the beam with the 

plasma 

 1/4
40

p

3 n
x k

εσ γ σ
γ

−= =  . (67) 

In Fig. 11 are shown the matched beam envelope given by Eq. (67) with normalized emittance of 2 μm 
and injection energy γ = 300 versus the plasma density. The figure also shows the evolution of the beam 
envelope in a 10 cm long plasma with density 1016 cm−3, corresponding to an accelerating field of 5 
GV/m (extraction energy γ = 1300) and focusing field of 60 MV/m. 

 
 (a) (b) 
Fig. 11: (a) Matched beam envelope with normalized emittance of 2 μm and injection energy γ = 300 versus (b) 
the plasma density and the evolution of the beam envelope in a 10 cm long plasma with density 1016 cm−3, 
corresponding to an accelerating field of 5 GV/m and focusing field of 60 MV/m. 

Notice that the beam experiences focusing as γ increases and the beam density increases, leading 
to a significant perturbation of the plasma fields. A possible solution to overcoming this effect is to taper 
the plasma density along the channel in order to achieve beam transport with a constant envelope. 
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It is an interesting exercise to see the effect of a plasma density vanishing as ( ) ( )
0

0n z n
z

γ
γ

= , 

giving 
2

2 20 0 0
p 0,p2

0

e nk k
mc

γ γ
ε γ γ

= = . In this case the envelope equation Eq. (61) without space-charge 

effects becomes 

 
2 2

0 0,p
2 2 33

n
x x x

x

kγγ εσ σ σ
γ γ γ σ
′

′′ ′+ + =   (68) 

which admits a constant equilibrium solution 

 4

0 0,p

3 .n
x k

εσ
γ

=
 
 (69) 

Figure 12 shows the plasma density along the accelerating section and the resulting equilibrium beam 
envelope given by Eq. (69), with the same beam parameters as those in Fig. 11  

 
 (a) (b) 
Fig. 12: (a) Plasma density along the accelerating section; (b) the resulting equilibrium beam envelope given by 
Eq. (69). 

On the other hand before injection in the plasma accelerator, the beam has to be focused to the 
matching spot given by Eq. (67) to prevent envelope oscillations that may cause emittance growth and 
an enhancement of betatron radiation emission. It has been proposed [21] to shape the plasma density 
profile in order to gently capture the beam by means of the increasing ion focusing effect. For example, 

by varying the plasma density as ( ) ( )
0

0

z
n z n

γ
γ

=  at the entrance of the plasma column, the envelope 

equation Eq. (61) can be written as 

 
2 2
0,p

2 3
03

n
x x

x

k εσ σ
γ γ σ

′′ + =   (70) 

where 
2

2 20
p 0,p2

0 0 0

e nk k
mc

γ γ
ε γ γ

= = . This equation has a particular solution assuming that γ″ is negligible, 

 4
0

0,p

3 n
x k

εσ γ
γ

= , (71)
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showing that with a proper choice of the initial plasma density the beam envelope can be gently matched 
to the accelerating plasma channel. 

For additional discussions about injection and extraction beam matching conditions see also some 
recent papers, Refs. [22–25]. 
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Particle-In-Cell Codes for Plasma-based Particle Acceleration
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Abstract
In this report we discuss the basic principles of Particle-In-Cell (PIC) codes
and their application to plasma-based acceleration. The ab initio full electro-
magnetic relativistic PIC codes provide the most reliable description of plas-
mas, and their properties are described in detail. However, while they represent
the most fundamental model, full PIC codes are computationally expensive.
Plasma-based acceleration is a multi-scale problem with very disparate scales.
The smallest scale is the laser or plasma wavelength (on the order of one to
a hundred microns), and the largest scale is the acceleration distance (which
ranges from a few centimetres to metres or even kilometres). The Lorentz
boost technique allows the scale disparity to be reduced, at the cost of com-
plicating the simulations and causing unphysical numerical instabilities in the
code. Another possibility is to use the quasi-static approximation, whereby the
different scales are separated analytically.

Keywords
Particle-In-Cell method; plasma-based acceleration; bubble regime; AWAKE;
high-performance computing.

1 Introduction
Plasma-based particle acceleration involves a nonlinear medium, the relativistic plasmas [1]. Modelling
this type of medium requires proper numerical simulation tools. Over the past few decades, Particle-In-
Cell (PIC) codes have proven to be a very reliable and successful method for kinetic plasma simulations
[2–5]. The success of PIC codes relies to a large extent on their analogy with the actual plasma, as
suggested by their name. The plasma is in reality an ensemble of many individual particles, electrons
and ions, interacting with each other via self-consistently generated fields. PIC codes have a very similar
set-up, with the difference being that the number of numerical particles, or macroparticles, that we follow
in the code may be significantly smaller than the number of particles in an actual plasma. One could think
of one numerical ‘macroparticle’ as representing a clump, or cloud, of many real particles, which occupy
a finite volume in space and all move together with the same velocity. Thus we have a ‘numerical plasma’
consisting of heavy macroparticles that have the same charge-to-mass ratio as the real plasma electrons
and ions, but where each macroparticle substitutes for many real particles.

Depending on the application, different approximations can be used. The most fundamental ap-
proximation is provided by the full electromagnetic PIC codes, which solve the Maxwell equations to-
gether with the relativistic equations of motion for the numerical particles. These ab initio simulations
produce the most detailed results, but can be very expensive. In the case of long-scale acceleration, where
the driver propagates distances many times greater than its own length, the quasi-static approximation
can be exploited. In this case, it is assumed that the driver changes little as it propagates distances that
are comparable with its own length. The quasi-static approximation enables separation of fast and slow
variables and hence great acceleration of the simulation, but at the cost of omitting radiation: the laser
pulse or any emitted radiation cannot be described directly by such codes; rather, an additional module
for the laser pulse is required, usually in the envelope approximation.

In this report, we describe the basic principles of PIC methods—both the full electromagnetic
codes and the quasi-static approximation—as well as their application to plasma-based acceleration.
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2 The basic equations
First, let us formulate the problem we are going to solve. To conduct electromagnetic and kinetic simu-
lations, we have to solve the full set of Maxwell equations [6]:

∂E

∂t
= c∇×B− 4πj, (1)

∂B

∂t
= −c∇×E, (2)

∇ ·E = 4πρ, (3)

∇ ·B = 0, (4)

where we use metric cgs units and c is the speed of light in vacuum.

Let us pause for a moment at this very fundamental system of equations. The electric and magnetic
fields, E and B, evolve according to the time-dependent equations (1) and (2), where the source term is
in the form of the current density j. This current is produced by the self-consistent charge motion in our
system of particles. It is well known from texts on electrodynamics (see, e.g., Ref. [6]) that the Gauss
law (3) together with the curl-free part of Eq. (2) lead to the charge continuity equation

∂ρ

∂t
+∇ · j = 0. (5)

One can apply the operator ∇· to the Faraday law (2) and use the Gauss equation (3) for ∇ ·E to obtain
(5). The opposite is true as well: if the charge density always satisfies the continuity equation (5), then
the Gauss equation (3) is satisfied automatically during the evolution of the system, if it was satisfied
initially. By symmetry this is also valid for the magnetic field B. As there is no magnetic charge, Eq. (4)
remains valid always if it was valid initially.

This means that we may reduce our problem to solving the two evolution equations (1) and (2),
while considering Eqs. (3) and (4) as initial conditions only. This is a very important and fruitful ap-
proach; PIC codes using it have a ‘local’ algorithm, i.e. at each time step information is exchanged
between neighbouring grid cells only. No global information exchange is possible because the Maxwell
equations have ‘absolute future’ and ‘absolute past’ [7]. This property makes the corresponding PIC
codes perfectly suitable for parallelization, and in addition the influence of (always unphysical) bound-
ary conditions is strongly reduced.

3 Kinetics and hydrodynamics
Now we define our source term j. In general, to do this, we have to know the distribution function of the
plasma particles,

FN (x1,p1, . . . ,xN ,pN ), (6)

which defines the probability that an N -particle system takes a particular configuration in the 6N -
dimensional phase space. Here xn and pn are the coordinates and momentum of the nth particle. The
function (6) provides the exhaustive description of the system. However, as has been shown in statis-
tical physics (see, e.g., Ref. [8]), knowing the single-particle distribution function for each species of
particle may suffice to describe the full system. The sufficient condition is that the inter-particle corre-
lations should be small and can be treated perturbatively. The equation governing the evolution of the
single-particle distribution function f(x,p) is called the Boltzmann–Vlasov equation [9, 10]:

∂f

∂t
+

p

mγ
∇f +

F

m
∇pf = St, (7)

where m is the single-particle mass of the species, γ =
√

1 + (p/mc)2 is the relativistic factor, F is the
force, and St is the collisional term (inter-particle correlations).
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The kinetic equation (7) for the single-particle distribution function is six-dimensional and still
complicated. Solving it either analytically or numerically is a challenge.

However, under appropriate conditions one can make further simplifications. In statistics it has
been shown that inter-particle collisions lead to the Maxwellian distribution function (H-theorem; see,
e.g., Ref. [8]). In the non-relativistic case the Maxwellian distribution has the form

f(x,v) =
n(x)√
2πT

exp

(
−(v −V)2

2mT

)
, (8)

where n(x) is the local particle density, T is the temperature, and V is the local streaming velocity. The
characteristic time for establishment of the Maxwellian distribution is the inter-particle collision time.
Therefore, if the effective collision time in the system is short in comparison with other characteristic
times, the distribution function remains Maxwellian. It is sufficient, then, to write evolution equations
for the momenta of the distribution function, such as the local density

n(x) =

∫
f(x,v) d3v, (9)

the hydrodynamic velocity

V(x) =

∫
vf(x,v) dv, (10)

and the temperature

T (x) =

∫
(v −V)2

2m
f(x,v) d3v. (11)

These quantities are said to be fluid-like, or of hydrodynamic type.

4 Vlasov and PIC codes
If, however, the distribution function does deviate, or is expected to deviate, significantly from the
Maxwellian distribution, then we have to solve the Boltzmann–Vlasov equation, (7). What would be
the appropriate numerical approach here?

At the first glance, it might seem that the most straightforward approach is to solve the partial
differential equation (7) using finite differences on the Eulerian grid in phase space. Indeed, this direction
has been pursued by several groups [11], and has gained even more popularity with the rapid growth
of available computing power. One potential advantage of these ‘Vlasov’ codes is the possibility of
producing ‘smooth’ results. Indeed, Vlasov codes handle the distribution function, which outputs a
smoothly varying real number that gives the probability of finding plasma particles at a particular point
in phase space.

Vlasov codes, however, are very computationally expensive, and even one-dimensional problems
may require the use of parallel supercomputers. The reason these codes need so much computational
power can be seen from Fig. 1(a). It shows schematically a mesh that one would need for a 1d1v Vlasov
code. The notation ‘1d1v’ means that the code resolves one spatial coordinate and one coordinate in
the momentum (velocity) space. The shaded area represents the region of phase space that is occupied
by plasma particles, where the associated two-dimensional distribution function f(x, px) is essentially
non-zero. The unshaded region is void of particles, and nothing interesting happens there. Nevertheless,
one has to maintain such empty regions as parts of the numerical arrays, and process them when solving
Eq. (7) on the Eulerian grid. This processing of empty regions leads to an enormous waste of compu-
tational power. This drawback becomes even more severe with an increase in the dimensionality of the
problem under consideration. The efficiency of Vlasov codes drops exponentially with the number of
dimensions, and becomes minuscule in the real 3d3v case, where the computer has to retain in memory
and process a six-dimensional mesh, most of it empty of particles.
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Fig. 1: Kinetic plasma simulations: (a) Vlasov method, using an Eulerian grid in the phase space; (b) PIC method,
where numerical macroparticles mark the distribution function.

There is another, currently more computationally effective, method to solve the Boltzmann–Vlasov
equation (7), namely the finite element method. The principle of this method is illustrated in Fig. 1(b).
Again, imagine some distribution function in the phase space (the shaded region). Now, let us approxi-
mate, or sample, this distribution function by a set of Finite Phase-Fluid Elements (FPFEs):

f(x,p) =
∑

n

W ph
n Sph(x− xn,p− pn), (12)

where W ph
n is the ‘weight’ of the nth FPFE and Sph(x,p) is the ‘phase shape’, or the support function

in phase space. The centre of the nth FPFE is positioned at (xn,pn). We are free to make a choice of
the support function. For simplicity, we choose here a six-dimensional hypercube

Sph(x,p) = 1, |xα| <
∆xα

2
, |pα| <

∆pα
2

for α = x, y, z,

where ∆xα is the FPFE size along the j-axis in configuration space, and ∆pα is the FPFE size along the
pα-axis in momentum space.

The ‘phase fluid’ transports the distribution function along the characteristics of the Boltzmann–
Vlasov equation (see, e.g., Ref. [18]). So we have to advance the centres of the FPFEs along the charac-
teristics:

dxn
dt

=
p

mγ
, (13)

dpn
dt

= F + FSt, (14)

where FSt denotes the effective ‘collisional’ force due to the collision term in Eq. (7). The FPFEs follow
the evolution of the distribution function in phase space. Of course, Eqs. (13) and (14) are just the
relativistic equations of motion of particles! Thus, the FPFE method is equivalent to the PIC method.

A significant advantage of the finite element method over the Vlasov codes is that one does not
need to maintain a grid in the full phase space. Instead, the FPFEs sample (or mark) only the interesting
regions where particles are present and something important is going on. We still do maintain a grid in
the configuration space to solve the field equations (1) and (2), but this grid has only three dimensions
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(and not six as in the Vlasov case). Thus, PIC codes may be viewed as ‘packed’ or ‘Lagrangian’ Vlasov
codes. Moreover, the FPFE approach is even more fundamental than the Boltzmann–Vlasov equation
itself, because it can easily be generalized to the case where one macroparticle corresponds to just one
real particle, and where inter-particle correlations are not small. The corresponding codes are usually
called P3M (particle–particle–particle–mesh) codes [5].

As soon as we consider our macroparticles not simply as ‘large clumps of real particles’ but as
finite elements in the phase space, we find that there is no fundamental obstacle to simulation of a cold
plasma. Moreover, it is in this setting that the finite element approach really becomes effective computa-
tionally and superior to the Vlasov codes. The phase space of a cold plasma is degenerate: the particles
occupy a mere three-dimensional hypersurface in the full six-dimensional phase space. Evidently, this
hypersurface can be accurately sampled by even a relatively small number of macroparticles (FPFEs).
As the system evolves, this surface deforms, stretches and contracts, but it remains degenerate and three-
dimensional, unless any heating (i.e. diffusion in the phase space) is present. There is a full stock of
interesting physical phenomena associated with relativistic laser–plasma interactions where the physical
collisional heating is negligible. Unfortunately, the numerical heating that occurs in the ‘standard’ PIC
codes [4] leads to an unphysical numerical diffusion in the phase space, which spoils the picture. Any
code able to successfully simulate initially cold plasma must be energy-conserving.

5 Continuity equation
Historically, the first PIC codes were electrostatic [5], and they have to solve explicitly the Poisson
equation

∇2φ = −4πρ, (15)

giving the static electric field
E‖ = −∇φ. (16)

Generalization to the electromagnetic case seemed quite natural; one would simply add the vector poten-
tial A to get

E = E‖ + E⊥ = −∇φ− 1

c

∂A

∂t
. (17)

Yet, there is another way of treating the electromagnetic fields. We established in the previous
section that the simultaneous solution of Ampère’s law (1) and the continuity equation (5) satisfies the
Gauss law (3) automatically. Hence, one can work with the fields E and B directly, without introducing
the electrostatic potential φ and without solving the Poisson equation (15).

It is very advantageous to avoid solving the Poisson equation (15), as it is nonlocal. This is an
elliptic equation, and its solution essentially depends on the (usually unphysical) boundary conditions.
A small perturbation or numerical error at the boundary may give rise to a global perturbation in the full
simulation domain. In contrast, the Maxwell equations (1) and (2) are local. Any signal can propagate
no faster than the vacuum speed of light, and we refer here to the Minkovski diagram, Fig. 2. As the
central event (tn, xi, yj , zk) we choose some grid cell with indices (n, i, j, k) so that tn = nτ , xi = i∆x,
yj = j∆y and zk = k∆z. Here τ,∆x,∆y and ∆z denote the numerical steps along the time, X-, Y -
and Z-axes. The light cone separates the full four-dimensional space into the regions of ‘absolute past’,
‘absolute future’, and ‘absolutely distant’ events. Only the events taking place in the ‘absolute past’
may stay in a casual connection with the central event. Thus, fields at the grid position (tn, xi, yj , zk)
are influenced by the events happening at the instant tn−1 at the grid cells located within the circle cτ
around the original cell. If we use an explicit numerical scheme, then the time step is limited through the
Courant condition cτ < min(∆x,∆y,∆z), and only the immediate neighbouring cells are involved. A
numerical scheme that has this physical property is said to be local. In this sense, any numerical scheme
that involves the solution of an elliptic equation, like the Poisson equation (15), is nonlocal.
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Fig. 2: Minkovski space–time diagram illustrating the causality in special relativity theory

A key issue in developing a local numerical scheme is the method of current deposition on the
grid during particle motion. Let us consider a cubic FPFE (numerical particle) on a grid. We suppose
that the particle and the grid elementary volume (i.e. cell volume) Vc = ∆x∆y∆z are identical, so that
the particle length ∆xα is also the grid step along the α-axis, for α = x, y, z. We mark the grid cells
with the indices i, j and k along the x-, y- and z-axes

In discussing multi-dimensional PIC codes, we normally use a staggered or Yee lattice (grid), as il-
lustrated in Fig. 3. We define the charge density on the grid at the centres of the cells, ρi+1/2, j+1/2, k+1/2,
as

ρi+1/2, j+1/2, k+1/2 =
∑

n

W ρ
n S

ρ(xi+1/2, j+1/2, k+1/2 − xn). (18)

The weight and form of the charge density interpolation for the particle are

Sρ(x) = Sρx(x)Sρy (y)Sρz (z),
(19)

Sρj (xj) = 1− 2
|xj |
∆j

, |xj | < 0.5∆j .

The scheme (19) is the ‘volume’ (or ‘area’) weighting. It actually assigns the portion of the particle
residing in a cell to the cell’s centre.

Fig. 3: Yee lattice in (a) 2D and (b) 3D
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Now, if the particle moves, it generates current. How should one interpolate this current to the
grid cells? One could try to use a straightforward interpolation, say J =

∑
nVnS

ρ
n, or others like those

discussed in Birdsall and Langdon’s book [4]. Generally, such interpolations do not satisfy the continuity
equation, i.e. defined in this way the current flux through a cell’s boundaries does not represent the actual
charge change in the cell. A further consequence is revealed when we integrate in time the Ampère law
(1): the electric field obtained does not satisfy the Gauss law (3).

One possible way around this inconsistency is to correct the electric field obtained [4]. Suppose
that we have advanced the electric field E′ according to Eq. (1) and we run into difficulties with the
Gauss law: ∇ · E′ 6= 4πρ. We could try to correct the electric field by introducing a potential δφ such
that

∇2δφ = −4πρ+ E′, (20)

and then construct the corrected electric field as

E = E−∇δφ, (21)

which does satisfy the Gauss law:
∇E = 4πρ. (22)

Unfortunately, this correction requires us to solve the nonlocal elliptic problem (20).

It turns out, however, that the currents can be defined in a self-consistent way [2]. To do so,
one has to follow the particle trajectory in detail, and keep recording of how much charge has passed
through each of the cell’s boundaries. Fig. 4 illustrates the idea. Let us take a particle with centre located
inside the grid elementary volume Vc centred at the grid vertex (i, j, k). The particle’s initial position is
(x0, y0, z0), and after one time step the particle moves to the new position (x1, y1, z1). To begin with, we
suppose that the new position is still inside the elementary volume. We denote the particle displacement
by (δx, δy, δz). The particle generates the instantaneous current density j = VW ρSρ, and the current
fluency J, i.e. the charge that has crossed some surface Ω during the time step τ , is given by

J =

∫

Ω
dΩ

∫ τ

0
VW ρSρ dt =

∫

Ω
dΩ

∫ x1

x0

W ρSρ dx. (23)

Fig. 4: Tracing of a particle’s trajectory

Thus, we have to integrate along the particle trajectory. If, as usual [4], we are using the second-order
finite difference scheme to advance the particle position, then the particle moves along a straight line
during one time step. Assuming this, it is easy to calculate that if the particle remained within the
elementary volume, it has induced the following currents on the grid:

Jxi, j+1/2, k+1/2 = δxW ρ(ayaz + byz),
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Jyi+1/2, j, k+1/2 = δyW ρ(azax + bzx),

Jzi+1/2, j+1/2, k = δz W ρ(axay + bxy),

Jxi, j−1/2, k+1/2 = δxW ρ[(1− ay)az − byz],
Jxi, j+1/2, k−1/2 = δxW ρ[ay(1− az)− byz],
Jxi, j−1/2, k−1/2 = δxW ρ[(1− ay)(1− az) + byz],

(24)
Jyi+1/2, j, k−1/2 = δyW ρ[(1− az)ax − bzx],

Jyi−1/2, j, k+1/2 = δyW ρ[az(1− ax)− bzx],

Jyi−1/2, j, k−1/2 = δyW ρ[(1− az)(1− ax) + bzx],

Jzi−1/2, j+1/2, k = δz W ρ[(1− ax)ay − bxy],
Jzi+1/2, j−1/2, k = δz W ρ[ax(1− ay)− bxy],
Jzi−1/2, j−1/2, k = δz W ρ[(1− ax)(1− ay) + bxy],

where

aα = 1− 2
|xα + 0.5∆α|

∆α
,

bαβ =
1

12
δxαδxβ (25)

for α, β ∈ {x, y, z}.

If the particle leaves the elementary volume where it was residing initially, then the full displace-
ment must be split into several ‘elementary’ motions. During each elementary motion the particle must
remain inside an elementary volume surrounding the corresponding vertex of the grid. This ‘bookkeep-
ing’ of the particle motion does require some programming effort, but it appears to be very important to
implement it.

The electric field is then advanced in time according to

En+1 −En = cτ∇̂ ×Bn+1/2 − 4πJn+1/2, (26)

with the particular components of the electric field E defined at the same positions on the grid as the
current J; here ∇̂× denotes the finite difference version of the curl operator.

One may think of an alternative approach that is somewhat easier from the programming point of
view: why don’t we replace the actual, straight motion of the particle during one time step by the average
of all possible rectangular paths along the grid axes which connect the initial and final positions of the
particle? This approach was taken by Morse and Nielson [12]; however, this ‘fake’ integration led to an
unacceptably rapid growth of electromagnetic noise in their code. The author has also found that even
small deviations from the accurate current deposition (24) will immediately result in noise boosting, even
if the deviated scheme is still charge-conserving.

Therefore, scheme (24) is the method to use to avoid solving elliptic equations and yet still satisfy
the Gauss law numerically. In other words, we rigorously enforce the detailed—i.e. down to each grid
cell—charge conservation and correct continuity equation.

6 Energy conservation
In the previous section we discussed how to develop an electromagnetic PIC code that is rigorously
charge-conserving. Another important conservation law we would like to enforce is total energy con-
servation. Indeed, it is well known that one of the worst plagues of standard PIC codes is the effect of
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numerical heating. The numerical ‘temperature’ (or rather the chaotic energy per numerical particle) is
known to grow exponentially until the effective Debye length becomes comparable with the grid size;
thereafter the exponential growth transitions to a more moderate linear heating. This is an effect of
‘aliasing’—the inconsistent interpolation of the fields defined on the grid to the particle position.

As we hinted in the Introduction, there is no fundamental reason for numerical heating to occur
if we adhere to the FPFE paradigm. Now we proceed to design an energy-conserving electromagnetic
code. We start with the exact analytical equation for the full energy of the system,

H =
∑

n

mnc
2(γ − 1) +

1

8π

∫

V
(E2 +B2) dV, (27)

where mn is the particle’s mass, γ =
√

1 + (p/mnc)2 is the relativistic γ-factor, and the integration is
taken over the full volume V .

Next, we split the electric field into longitudinal E‖ and transverse E⊥ parts, so that

∇ ·E⊥ = 0,
(28)

∇×E‖ = 0.

Then, we introduce a potential φ such that E‖ = −∇φ. One can show easily that
∫

V
E⊥E‖ dV = −

∫

Ω
φE⊥ dΩ = 0 (29)

for an infinite or periodic volume. Here Ω is a surface surrounding the volume. As a consequence, we
can write the energy of our system as

H =
∑

n

mnc
2(γ − 1) +

1

8π

∫

V
(E2
‖ + E2

⊥ +B2) dV = Hkin +HS +HEM +HB, (30)

where
Hkin =

∑

p

mpc
2(γ − 1) (31)

is the kinetic energy of the particles,

HS =
1

8π

∫

V
E2
‖ dV (32)

is the electrostatic part of the electric field energy,

HEM =
1

8π

∫

V
E2
⊥ dV (33)

is the electromagnetic part of the electric field energy, and

HB =
1

8π

∫

V
B2 dV (34)

is the magnetic field energy.

The expression (30) for the energy is for continuous fields and individual particles; however, it is
straightforward to write an analogue for a finite difference numerical scheme.

We are using the staggered grid (Yee lattice) and have fixed the current interpolation to the grid
using the system (24). Now we have to define the force interpolation to the actual particle position in
such a way that the resulting numerical scheme conserves the Hamiltonian (30).
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Most dangerous in terms of numerical heating is the electrostatic part of the code. It is the elec-
trostatic plasma waves that are responsible for the Debye shielding. Also, the v ×B part of the Lorentz
force acting on the particle conserves energy automatically, as does the B-field advance according to the
Faraday law (2). Hence, for the time being, we neglect the magnetic field and the magnetic energy part,
and we enforce the conservation of HE = Hkin +HS +HEM. The numerical scheme will conserve the
energy if it is derived from equations in the canonical form

dpp
dt

= −∂xpHE, (35)

dxp
dt

= ∂ppHE, (36)

where the index p runs through all particles.

We rewrite Eqs. (35) and (36) more explicitly as

dpp
dt

= − 1

4π

∫

V
E · ∂xpE dV, (37)

dxp
dt

=
pp
γp

= Vp. (38)

To deal with Eq. (37), one has to refer to Eq. (26) for the advance in time of the electric field. To get
the correct expression for ∂xpE, let us displace the particle p by a small distance δx. This displacement
generates a current δJ on the adjacent grid positions according to (24). The resulting change δE in the
electric field is

δE = −4πδJ (39)

at the same grid positions. Hence, we may rewrite the first canonical equation (37) as

dpp
dt

=

∫

V
E · ∂xpδJ dV. (40)

The expression (40) has a very simple and clear meaning: to make the PIC code energy-conserving,
one has to employ the same scheme for the electric field interpolation to the particle position as for the
current deposition. Thus, the energy-conserving interpolation scheme for the E-field is

Epx = W ρ
[
Exi, j+1/2, k+1/2ayaz + Exi, j−1/2, k+1/2(1− ay)az
+ Exi, j+1/2, k−1/2ay(1− az) + Exi, j−1/2, k−1/2(1− ay)(1− az)

]
,

Epy = W ρ
[
Eyi+1/2, j, k+1/2axaz + Eyi−1/2, j, k+1/2(1− ax)az

(41)
+ Eyi+1/2, j, k−1/2ax(1− az) + Eyi−1/2, j, k−1/2(1− ax)(1− az)

]
,

Epz = W ρ
[
Ezi+1/2, j+1/2, kayax + Ezi+1/2, j−1/2, k(1− ay)ax
+ Ezi−1/2, j+1/2, kay(1− ax) + Ezi−1/2, j−1/2, k(1− ay)(1− ax)

]
,

It is important that the electric field is taken at the present particle position and not averaged along
the trajectory. Also, the higher-order corrections bα which we introduced for the current depositions
are absent here. This is because Eq. (40) gives the analytical expression for the infinitesimal particle
displacements, i.e. it has to be considered in the limit |δx| → 0.

6.1 Particle push
For advancing the particle in time one could then use the Boris scheme [4], with the electric field E
interpolated according to (41) and the magnetic field B interpolated using a different scheme, to be
discussed later. The Boris scheme is

p1 − p0

τ
= e

(
E +

1

c

p1 + p0

2γ1/2
×B

)
, (42)
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where p0 and p1 are the initial and the final particle momenta and γ1/2 is the γ-factor taken at the middle
of the time step. This scheme is time-reversible and semi-implicit. It can be analytically resolved for the
final momentum p1 (see Ref. [4]):

pn+1/2 = p− − eE
τ

2
, (43)

pn−1/2 = p+ + eE
τ

2
, (44)

p+ − p−

τ
=

q

2γmc
p+ + p− ×B, (45)

p′ = p− +
qτ

2γ
p− ×B, (46)

p+ = p− +
2

1 +

(
qτB

2γ

)2 p′ ×B. (47)

The γ-factor should be calculated after step (43). However, as the magnetic field rotates the
particle momentum, the Boris scheme is not exactly symmetric. An alternative scheme has been proposed
recently; see Ref. [13]. We derive this alternative scheme below.

The equation of motion is discretized as

p− p0

τ
= qE +

q

2

(
p

γ
+

p0

γ0

)
×B. (48)

Here, p0 is the initial particle momentum and p is the particle momentum after the push with the corre-
sponding γ-factors. We can rewrite this equation in the form

p = a +
p

γ
× b, (49)

where
a = p0 + qτE +

qτ

2

p0

γ0
×B (50)

and
b =

qτ

2
B. (51)

We rewrite (49) as
γp = γa + p× b. (52)

Taking the scalar product of (52) with p gives

p2 = a · p. (53)

Taking the scalar product of (52) with b gives

b · p = a · b. (54)

Taking the scalar product of (52) with a gives

γa · p− γa2 = a · (p× b) = p · (b× a) = b · (a× p) . (55)

Taking the vector product of a and (52) gives

γa× p = p (a · b)− b (a · p) . (56)
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Combining (53)–(56) gives

γ
(
p2 − a2

)
=

b

γ

[
p(a · b)− b(a · p)

]
=

[
(a · b)2 − b2p2

]

γ
(57)

or
γ2
(
γ2 − 1− a2

)
= (a · b)2 − b2

(
γ2 − 1

)
. (58)

This leads to the quadratic equation

γ4 + γ2
(
b2 − 1− a2

)
− b2 − (a · b)2 = 0, (59)

which has the solution

γ2 =
1 + a2 − b2

2
+

√(
1 + a2 − b2

2

)2

+ b2 + (a · b)2. (60)

Now we have to find the particle momentum after the push p. To do this, we take the vector product of
b and (52) to get

γ (b× p− b× a) = p · b− b (p · b) = p b2 − b (a · b) . (61)

Using (52), we find that
γ2a− γ2p− γb× a = pb2 − b (a · b) . (62)

Solving for p, we obtain

p =
γ2a + γa× b + b(a · b)

γ2 + b2
. (63)

This pusher is fully implicit and does not require splitting of the Lorentz operator into the electric field
push and the magnetic field rotation.

6.2 Energy conservation tests
The interpolation scheme consisting of (24) and (41) conserves the energy exactly for time steps which
are small enough that the particle does not leave the original grid cell. If, however, motion of the particle
becomes highly relativistic, the system will exhibit a slow energy growth. Notwithstanding this small
drawback, we have solved one of the major problems with PIC codes. We may now simulate cold plasma.
As ‘cold’ usually means non-relativistic ‘temperatures’, the energy is conserved and numerical heating is
absent. If we do have a hot plasma, with temperatures close to relativistic ones, the method of stochastic
sampling of the phase space becomes valid. Fortunately, the Debye length of such plasmas is many grid
cells anyway, and numerical heating is not an issue.

The scheme (41) for electric field interpolation to the particle position is identical to the energy-
conserving scheme used in electrostatic codes with the charge–potential (ρ–φ) formalism [4,5]. However,
as we shall see later, there is a significant difference between these electrostatic codes and the field–
current (E–J) formalism used in our electromagnetic simulations.

Figure 5 shows the evolution of total energy in an isolated system of particles for an energy-
conserving (EC) algorithm (solid lines) and a ‘momentum-conserving’ (MC) [4] algorithm (dashed lines)
in the following two cases: (a) warm plasma, with Debye length D = 0.5∆x; (b) cold plasma, with
D = 5 × 10−3∆x. Although energy conservation for the EC algorithm is not exact, it is much better
than in the MC case. The actual energy change is only 2% over 100 plasma oscillations for the EC
algorithm; this property makes it possible to simulate a cold plasma.
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Fig. 5: Energy conservation in Virtual Laser Plasma Lab (VLPL) code based on an energy-conserving (EC) algo-
rithm (solid lines) and numerical heating in a standard momentum-conserving (MC) algorithm (dashed lines), for
the cases of (a) warm plasma, with Debye length D = 0.5∆x, and (b) cold plasma, with D = 5 · 10−3∆x. The
energy change in the VLPL code is within 2% after 100 plasma periods.

7 Momentum and current conservation
It is known that the energy-conserving electrostatic PIC codes do not conserve momentum [4]. Indeed,
it is easy to show that, strictly speaking, electric field interpolation to the particle position in the form of
(41) does not conserve the total momentum:

dPtotal

dt
=
∑

p

qpEp 6= 0, (64)

if the particles cross cell boundaries during their motion.

Now, the question is: how detrimental is this lack of momentum conservation to the PIC code?

Momentum non-conservation in electrostatic PIC codes using the ρ–φ formalism leads to some
notable consequences [4]. If one starts the simulation with electrons drifting with respect to the resting
ions, the electrons will experience an average drag force from the grid. As a result, after a few plasma
periods, an initially regular electron drift becomes chaotic, and the simulation ends up with disordered
hot electrons without any net motion with respect to the ions. Although the final energy of the system
is preserved, and remains the same as the initial kinetic energy of the drifting electrons, the failure of
momentum conservation is spectacular.

However, this spectacular example of momentum non-conservation in the one-dimensional elec-
trostatic PIC code is rather an artefact of the ρ–φ formalism. Moreover, even the inital ‘equilibrium’ of
electrons drifting with respect to ions is an artefact itself. Indeed, the original Maxwell equations (1)
and (2) simply do not allow for freely drifting electrons in the one-dimensional geometry! This drift
would correspond to a constant current, which results in a fast build-up of the longitudinal electric field.
Consequently, electrons must oscillate around their initial positions at the local plasma frequency. This
contradiction with the Maxwell equations has apparently remained unmentioned in regard to the ρ–φ
formulation of the electrostatic code.

In the more realistic E–J formalism of electromagnetic codes, the ions have to drift together with
the electrons, unless the forward electron current is compensated for by some artificial ‘return’ current,
such as the longitudinal part of∇×B, which evidently does not exist in the one-dimensional geometry.
A code using the E–J formalism conserves the net current:

〈J〉 = J0 = constant, (65)
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where the averaging is done in time over the local plasma frequency. Indeed, the only possible deviations
in the current are those due to the longitudinal part of the electric field, i.e. the charge displacement
current.

The current conservation law (65) is a very important property, which may compensate for the
absence of a detailed momentum conservation. As an example, let us consider the total electron current
flowing in the simulation,

Je =
∑

p

eWpVp, (66)

where e is the electron charge and Wp is the ‘weight’ of the numerical particle p. When averaged over
the plasma period, the current (66) is conserved by our code. Now we may write the electron momentum
in the non-relativistic case as

Pe =
∑

p

meWpVp =
e

me
Je, (67)

where me is the electron mass.

It follows from (67) that the total momentum is simply proportional to the total current, and so it is
conserved on average. This is good news for the energy-conserving PIC code we have designed here: the
code does conserve momentum on average in the non-relativistic case. When the particles are moving
with relativistic energies, however, the identity (67) breaks down, and the momentum conservation is
no longer ideal. Fortunately, the current conservation (66) still imposes a strong enough symmetry to
prevent bad consequences such as those discussed in Ref. [4].

8 Maxwell solver: numerical dispersion-free scheme
Earlier, we discussed how to push particles and collect currents on the grid. Now we discuss the finite
difference solver for the time-dependent Maxwell equations (1) and (2).

The standard way to propagate the fields on the Yee lattice (Fig. 3) is to use the centred conser-
vative scheme [4]. Let us first consider the two-dimensional geometry for simplicity. In the 2D X–Y
geometry, one may distinguish two kinds of polarization: s-polarizations with Ez , Bx and By fields,
and p-polarizations with Ex, Ey and Bz fields. It can be shown that if the initial condition contains
p-polarized fields and Jx and Jy currents only, then the s-polarized fields are not excited at all [4]. Thus,
we may take the p-polarization as an example. The standard 2D scheme for the p-polarization is

Bz
n+1/2
i,j −Bzn−1/2

i,j =
cτ

∆y
(Ex

n
i, j+1/2 − Exni, j−1/2)− cτ

∆x
(Ey

n
i+1/2, j − Eyni−1/2, j), (68)

Ex
n+1
i, j+1/2 − Ex

n
i, j+1/2 =

cτ

∆y
(Bz

n+1/2
i, j+1 −Bz

n+1/2
i,j )− 4πτjx

n+1/2
i, j+1/2, (69)

Ey
n+1
i+1/2, j − Ey

n
i+1/2, j =

cτ

∆x
(Bz

n+1/2
i+1, j −Bz

n+1/2
i,j )− 4πτjy

n+1/2
i+1/2, j . (70)

The scheme (68)–(70) uses centred expressions for the finite difference∇× operators, such as

(∇×Bz)x =
1

∆y
(Bz

n+1/2
i,j+1 −Bz

n+1/2
i,j ). (71)

The Maxwell equations (1) and (2) and the corresponding scheme (68)–(70) are essentially linear
partial differential equations where the only nonlinear source terms are in the form of the currents j. In
this case, we decide on the quality of the finite difference scheme (68)–(70) by comparing its dispersion
properties with those of the Maxwell equations themselves.

According to the Maxwell equations, all electromagnetic waves in vacuum travel at the speed of
light c. There is no dispersion in vacuum; not so for the finite differences. We Fourier-analyse the scheme
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(68)–(70) by decomposing the fields in plane waves:

E =
∑

k

Ek exp(−iωkt+ ik·x),

B =
∑

k

Bk exp(−iωkt+ ik·x), (72)

where k is the wavevector, ωk is the corresponding frequency, and Ek and Bk are the amplitudes of the
Fourier harmonics. For the continuum Maxwell equations we have the simple dispersion relation

ωk = c|k|, (73)

while the discretization in the finite difference scheme (68)–(70) introduces the numerical dispersion

1

c2τ2
sin2 ωkτ

2
=

1

∆x2
sin2 kx∆x

2
+

1

∆y2
sin2 ky∆y

2
, (74)

where ∆x and ∆y are the spatial grid steps and τ is the time step. The time step is limited by the Courant
stability condition c2τ2 ≤ ∆x2∆y2/(∆x2 + ∆y2). If we run the code close to this limit of stability,
then only the waves propagating along the grid diagonals are dispersion-free. The largest numerical
dispersion is experienced by the waves running along the grid axes. This is illustrated in Fig. 6(a), where
we plot the phase velocity of the numerical modes, Vph = ωk/k, for this standard scheme. We mention
that we have chosen ∆y = 2∆x here, and this explains the apparent asymmetry of the plot.

Fig. 6: Plots of the numerical phase velocity vph/c corresponding to (a) the standard scheme (74) and (b) the NDF
scheme (80) used in the VLPL code. The grid cell aspect ratio is ∆x/∆y = 0.5. The scheme (74) is dispersionless
along the mesh diagonals kx = ky , while the NDF scheme (80) is dispersionless for waves travelling in the
X-direction when ky = 0.

Although numerical dispersion of the standard scheme may not be an issue when one is simulating
dense, nearly critical plasma, it can cause trouble in simulations of very underdense plasmas, as it is
important for particle acceleration [17]. In the dense plasma case, the plasma dispersion is usually
stronger than the numerical dispersion, and so the problem is masked. In low-density plasma, however,
the plasma dispersion is small; yet it has to be resolved accurately, as it influences the phase velocity
of the laser pulse. As a consequence, one needs to use many grid cells per laser wavelength to obtain
physically correct results. Of course, one could send the laser along one of the grid diagonals, but this is
extremely inconvenient from the programming point of view.

We now aim at designing a superior numerical scheme which does not have numerical dispersion
at all, or removes it to a large extent. Let us return to the finite difference expression for the curl operator,
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(71). This centred operator can be written in a different way, using averages from the adjacent cells:

(∇×Bz)x →
1

2∆y

(
Bz

n+1/2
i+1, j+1 +Bz

n+1/2
i−1, j+1 −Bz

n+1/2
i+1, j −Bz

n+1/2
i−1, j

)
. (75)

At first sight it is unclear what we have gained from averaging. It seems evident that the averaged scheme
(75) may have only worse dispersion than the simpler scheme (71), but this is only partially true.

It turns out that one can choose a linear combination of the two schemes (71) and (75) in such a
way that the dispersions of the two schemes compensate for each other! The resulting scheme for the
p-polarization in the 2D geometry is

Bz
n+1/2
i,j −Bzn−1/2

i,j =
cτ

∆y

[
bx
(
Ex

n
i, j+1/2 − Exni, j−1/2

)

+ ax
(
Ex

n
i+1, j+1/2 − Exni+1, j−1/2 + Ex

n
i−1, j+1/2 − Exni−1, j−1/2

)]

− cτ

∆x

[
by
(
Ey

n
i+1/2, j − Eyni−1/2, j

)

+ ay
(
Ey

n
i+1/2, j+1 − Eyni−1/2, j+1 + Ey

n
i−1/2, j−1 − Eyni−1/2, j−1

)]
, (76)

Ex
n+1
i, j+1/2 − Ex

n
i, j+1/2 =

cτ

∆y

(
Bz

n+1/2
i, j+1 −Bz

n+1/2
i, j

)
− 4πτjx

n+1/2
i, j+1/2, (77)

Ey
n+1
i+1/2, j − Ey

n
i+1/2, j =

cτ

∆x

(
Bz

n+1/2
i+1, j −Bz

n+1/2
i, j

)
− 4πτjy

n+1/2
i+1/2, j , (78)

where the coefficients of the linear combination of the two schemes are

ax = ay = 0.125
∆x

∆y
,

bx = 1− 2ax,

by = 1− 2ay, (79)

and we have assumed that ∆x ≤ ∆y.

The dispersion relation for numerical scheme (76)–(78) is immediately found to be

1

c2τ2
sin2 ωτ

2
=

1

∆x2
sin2 kx∆x

2
(by + 2ay cos ky∆y)

+
1

∆y2
sin2 ky∆y

2
(bx + 2ax cos kx∆x). (80)

It follows from (80) that the scheme is stable even at cτ = ∆x. This is quite a unique property for an
explicit multi-dimensional finite difference scheme. In addition, the scheme (80) goes over to the usual
Yee scheme in the limit ∆x/∆y → 0.

When used close to the stability limit, the scheme completely removes numerical dispersion along
the X-axis (the laser propagation direction). For this reason we call this the NDF scheme, which stands
for ‘Numerical Dispersion- Free’ [14]. The phase velocities of the numerical modes for the NDF scheme
are plotted in Fig. 6(b). We mention that the region in which the numerical phase velocities are close to
c becomes much wider than for the standard scheme; cf. Fig. 6(a).

The presence of the plasma changes the stability condition slightly, and the maximum τ is limited
by the condition

1− τ

∆x
>
ω2

pτ
2

4
, (81)

where ωp =
√

4πnee2/me is the maximum plasma frequency in the simulation domain. For an under-
dense plasma, however, this is an insignificant change.
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The scheme (76)–(78) was written for the p-polarization in the 2D planar geometry. It must be
slightly modified before it can be used in the full 3D space. The final version of the 3D NDF scheme is

Bx
n+1/2
i+1/2, j, k −Bx

n−1/2
i+1/2, j, k = − cτ

∆y

[
bz
(
Ez

n
i+1/2, j+1/2, k − Ezni+1/2, j−1/2, k

)

+ az
(
Ez

n
i+1/2, j+1/2, k+1 − Ezni+1/2, j−1/2, k+1

+ Ez
n
i+1/2, j+1/2, k−1 − Ezni+1/2, j−1/2, k−1

)]

+
cτ

∆z

[
by
(
Ey

n
i+1/2, j, k+1/2 − Eyni+1/2, j, k−1/2

)

+ ay
(
Ey

n
i+1/2, j+1, k+1/2 − Eyni+1/2, j+1, k−1/2

+ Ey
n
i+1/2, j−1, k+1/2 − Eyni+1/2, j−1, k−1/2

)]
, (82)

By
n+1/2
i, j+1/2, k −Bx

n−1/2
i+1/2, j, k =

cτ

∆x

[
bz
(
Ez

n
i+1/2, j+1/2, k − Ezni−1/2, j+1/2, k

)

+ az
(
Ez

n
i+1/2, j+1/2, k+1 − Ezni−1/2, j+1/2, k+1

+ Ez
n
i+1/2, j+1/2, k−1 − Ezni−1/2, j+1/2, k−1

)]

− cτ

∆z

[
bx
(
Ex

n
i, j+1/2, k+1/2 − Exni, j+1/2, k−1/2

)

+ ax
(
Ex

n
i+1, j+1/2, k+1/2 − Exni+1, j+1/2, k−1/2

+ Ex
n
i−1, j+1/2, k+1/2 − Exni−1, j+1/2, k−1/2

)]
, (83)

Bz
n+1/2
i, j, k+1/2 −Bz

n−1/2
i, j, k+1/2 =

cτ

∆y

[
bx
(
Ex

n
i, j+1/2, k+1/2 − Exni, j−1/2, k+1/2

)

+ ax
(
Ex

n
i+1, j+1/2, k+1/2 − Exni+1, j−1/2, k+1/2

+ Ex
n
i−1, j+1/2, k+1/2 − Exni−1, j−1/2, k+1/2

)]

− cτ

∆x

[
by
(
Ey

n
i+1/2, j, k+1/2 − Eyni−1/2, j, k+1/2

)

+ ay
(
Ey

n
i+1/2, j+1, k+1/2 − Eyni−1/2, j+1, k+1/2

+ Ey
n
i−1/2, j−1, k+1/2 − Eyni−1/2, j−1, k+1/2

)]
, (84)

Ex
n+1
i, j+1/2, k+1/2 − Ex

n
i, j+1/2, k+1/2 =

cτ

∆y

[
bz
(
Bz

n+1/2
i, j+1, k+1/2 −Bz

n+1/2
i, j, k+1/2

)

+ az
(
Bz

n+1/2
i, j+1, k+3/2 −Bz

n+1/2
i, j, k+3/2

+Bz
n+1/2
i, j+1, k−1/2 −Bz

n+1/2
i, j, k−1/2

)]

− cτ

∆z

[
by
(
By

n+1/2
i, j+1/2, k+1 −By

n+1/2
i, j+1/2, k

)

+ ay
(
By

n+1/2
i, j+3/2, k+1 −By

n+1/2
i, j+3/2, k

+By
n+1/2
i, j−1/2, k+1 −By

n+1/2
i, j−1/2, k

)]

− 4πτjx
n+1/2
i, j+1/2, k+1/2, (85)

Ey
n+1
i+1/2, j, k+1/2 − Ey

n
i+1/2, j, k+1/2 = − cτ

∆x

[
bz
(
Bz

n+1/2
i+1, j, k+1/2 −Bz

n+1/2
i, j, k+1/2

)

+ az
(
Bz

n+1/2
i+1, j, k+3/2 −Bz

n+1/2
i, j, k+3/2

+Bz
n+1/2
i+1, j, k−1/2 −Bz

n+1/2
i, j, k−1/2

)]
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+
cτ

∆z

[
bx
(
Bx

n+1/2
i+1/2, j, k+1 −Bx

n+1/2
i+1/2, j, k

)

+ ax
(
Bx

n+1/2
i+3/2, j, k+1 −Bx

n+1/2
i+3/2, j, k

+Bx
n+1/2
i−1/2, j, k+1 −Bx

n+1/2
i−1/2, j, k

)]

− 4πτjy
n+1/2
i+1/2, j, k+1/2, (86)

Ez
n+1
i+1/2, j+1/2, k − Ez

n
i+1/2, j+1/2, k =

cτ

∆x

[
by
(
By

n+1/2
i+1, j+1/2, k −By

n+1/2
i, j+1/2, k

)

+ ay
(
By

n+1/2
i+1, j+3/2, k −By

n+1/2
i, j+3/2, k

+By
n+1/2
i+1, j−1/2, k −By

n+1/2
i, j−1/2, k

)]

− cτ

∆y

[
bx
(
Bx

n+1/2
i+1/2, j+1, k −Bx

n+1/2
i+1/2, j, k

)

+ ax
(
Bx

n+1/2
i+3/2, j+1, k −Bx

n+1/2
i+3/2, j, k

+Bx
n+1/2
i−1/2, j+1, k −Bx

n+1/2
i−1/2, j, k

)]

− 4πτjz
n+1/2
i+1/2, j+1/2, k, (87)

where we are using the following expressions for the free parameters aα and bα:

ax = ay + az,

ay = 0.125
∆x

∆y
,

az = 0.125
∆x

∆z
, (88)

bx = 1− 2ax,

bx = 1− 2ay,

bx = 1− 2az.

Here we have chosen the coefficients (88) in such a way that the scheme is stable provided ∆x ≤ ∆y,∆z,
and numerical dispersion is removed for waves running along the X-axis.

9 Lorentz boost
Plasma-based particle acceleration is a multi-scale problem, and the scales are very disparate; see Fig. 7.
The smallest scale is the laser wavelength λ in the case of laser-driven acceleration, or the plasma wave-
length λp for beam-driven plasma wakefields. The laser wavelength is on the order of micrometres,
while the plasma wavelength can range from tens of micrometres to millimetres. The medium scale is
the driver length; it can be comparable to the plasma wavelength in the bubble [16] and blow-out [15]
regimes, or be much greater when we are relying on self-modulation in the plasma [19–22]. The largest
scale is the acceleration length, which can range from centimetres to hundreds of metres or even kilo-
metres [17]. It is the discrepancy between the driver scale and the acceleration distance that makes the
simulations rather expensive.

One possible way to bring the scales together is to change the reference frame from the laboratory
frame to a frame that is co-moving with the driver. This is called the Lorentz boost technique [23]. Let us
assume that we transform from the laboratory frameL into a frameRmoving in the propagation direction
of the driver. The relative velocity of theR-frame is V = βc, and its relativistic factor is γ = 1/

√
1− β2.

Then the driver is Lorentz-stretched in the R-frame with factor γ(1 + β), and the propagation length is
compressed by the same factor; see Fig. 7. Thus, potentially, the Lorentz transformation allows us to
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Fig. 7: Scale discrepancy in plasma-based acceleration; transformation to a co-moving frame reduces the discrep-
ancy in scales.

increase the longitudinal grid step and time step—provided it is the grid step that limits the time step—
and we have a smaller distance to propagate. The overall enhancement in performance could be huge.

Unfortunately, the background plasma becomes streaming in the R-frame with the same transfor-
mation velocity−V . The plasma density is higher in theR-frame than in the laboratory frame by a factor
of γ. This leads to a source of free energy that can be converted into numerical plasma heating as the
plasma particles interact with the numerical spatial grid. The associated numerical instability can have a
considerable effect on the simulation quality [24]. The numerical noise generated by the unstable modes
can completely mask the regular wake structure, as shown in the example in Fig. 8.

Fig. 8: Three-dimensional view of a numerical instability caused by plasma streaming in the co-moving frame

The main reason for the numerical instability is the Cerenkov resonance between the streaming
plasma particles and the numerical electromagnetic modes on the grid. The numerical electromagnetic
modes have subluminal phase velocities and can be in particle–wave resonance with the macroparticles
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of the background plasma that stream through the grid with the relativistic factor γ. The mechanism of
the numerical instability is illustrated in Fig. 9. Plasma fluctuations deflect particles from the straight-line
trajectory; this leads to transverse currents. The transverse currents give rise to electromagnetic fields,
and some of these electromagnetic modes propagate at exactly the particle velocity and can resonantly
exchange energy with the particles. This is the Cerenkov mechanism.

Fig. 9: The Cerenkov resonance mechanism underlying the numerical instability

One can solve the wave–particle dispersion relation for the standard Yee electromagnetic solver
and calculate the growth rate of the instability analytically. A comparison of the observed electromag-
netic modes in a PIC simulation and the analytical prediction is shown in Fig. 10. This tells us that,
indeed, the reason behind the numerical instability is the Cerenkov resonance between relativistically
moving plasma particles and numerical electromagnetic modes that have subluminal phase velocities on
the Yee grid.

Fig. 10: Comparison of observed growing modes in a PIC simulation (left) and the analytically calculated growth
rates of Cerenkov unstable modes (right).
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One might hope to remove the instability by choosing a different Maxwell solver. For example, one
could use a dispersion-free solver based on Fourier transformation. Indeed, a dispersion-free solver will
reduce the instability growth rate, but unfortunately it is not able to eliminate the instability completely.
The reason is the spatial and temporal aliasing on the grid; the relativistic particle starts to interact
with the numerical modes from the other Brillouin zones. The non-resolved aliased frequencies of the
numerical grid can be written as

ωeff = ±
(√

k2
x + k2

y −
1

∆t

)
, (89)

where ∆t is the time step. The resonance condition is then satisfied for electromagnetic waves with
wavenumbers

ky(kx) =
1

h

√
h2k2

x

(
v2

0 − 1
)
− 2hkxv2

0 + v2
0, (90)

where h is the grid step. The analytical resonance curve and the growing modes observed in a numerical
experiment are shown in Fig. 11.

Fig. 11: Observed growing modes in a PIC simulation (colour scale) and the analytical resonance condition due to
grid aliasing (dashed line).

The only viable way of taming the numerical instability in Lorentz-boosted simulations is to apply
low-pass filters to the deposited currents before the electromagnetic fields are updated at each time step.
The filtering reduces the instability to acceptable levels; yet a heavy filtering of the currents can in turn
influence the dispersion of numerical modes, so one has to be very careful with this approach [25].

10 Quasi-static codes
Another way to bridge the gap between disparate scales in plasma-based acceleration is by using the
quasi-static approximation. It separates explicitly the fast scale of the driver and the slow scale of accel-
eration [26]. To do so, we introduce new variables

τ = t, (91)

ζ = z − ct. (92)

We assume that the driver changes slowly as it passes a distance of its own length. Hence, as we are
calculating plasma response to the driver, we neglect all derivatives with respect the slow time τ and
advance from the front of the driver to the tail to calculate the wakefield configuration at a particular
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time τ . After obtaining the fields and the plasma particle distribution, we can advance the driver with
a large time step in τ . This procedure enhances the code’s performance by many orders of magnitude.
Simulations of large-scale plasma-based acceleration that require huge massively parallel computers
when using the explicit PIC can be done on a desktop workstation in the quasi-static approximation.
Of course, the quasi-static approximation is limited in that it does not describe radiation, only the static
electromagnetic fields.

The first quasi-static PIC code, WAKE, was written by Mora and Antonsen [26]. It is a 2D code
in cylindrical geometry and uses equations written in terms of the wake potential and the magnetic
field. Later, a full 3D code, Quick-PIC, was developed that used the same equations [27]. Another 2D
code in cylindrical geometry, called LCODE, has been developed by Lotov and uses equations on fields
directly [28]. Here we describe the formalism used by the quasi-static version of the VLPL code. It is a
full 3D code in Cartesian geometry. Like LCODE, it uses equations for the fields. Below we derive the
quasi-static field equations.

We start again with the Maxwell equations (1)–(4) and write them in terms of the new variables
(91) and (92), neglecting derivatives with respect to the slow time τ :

c∇×B = −c∂E

∂ζ
+ 4πj, (93)

c
∂B

∂ζ
= c∇×E, (94)

∇ ·E = 4πρ, (95)

∇ ·B = 0. (96)

First, we take the curl of the Ampère law (93) and the ζ-derivative of the Faraday law (94). Upon
combining these two equations, we arrive at the first quasi-static equation on the magnetic field,

∇2
⊥B = −4π

c
∇× j, (97)

where the∇⊥ operator acts on coordinates transverse to the propagation direction.

Next, we take the gradient of the Poisson law (95). We use a well-known identity from vector
analysis,∇(∇ ·E) = ∇2E +∇×∇×E, and obtain for the transverse components of the electric field
the equation

∇2
⊥E⊥ = 4π

(
∇⊥ρ−

1

c
∂ζj⊥

)
. (98)

For the longitudinal electric field component we obtain

∇2
⊥E‖ = 4π

∂

∂ζ

(
ρ− 1

c
j‖

)
=

4π

c
∇⊥ · j⊥, (99)

where we have also used the continuity equation

∂

∂ζ
ρ =

∂

∂ζ
j‖ +∇⊥ · j⊥. (100)

The continuity equation (100) can be used to remove the charge density ρ from the quasi-static equations
and so work with the currents only. This can help to reduce the noise in PIC codes.

A typical quasi-static PIC code works as follows (see illustration in Fig. 12). First, the charge
density and currents generated by the driver on the numerical grid are gathered. These are the sources
that contribute to the basic equations (97)–(99). Then, a layer of numerical macroparticles is seeded at
the front boundary (the head of the driver) of the simulation box. These numerical particles advance
in the negative ζ direction (towards the tail of the driver) according to Eqs. (97)–(99). As the plasma
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Fig. 12: Illustration of how the quasi-static PIC code is implemented

particles pass the whole simulation domain, the fields and density are defined on the grid and can be used
to advance the driver in time τ .

If the driver is a charged particle beam, then we solve the equations of motion for beam particles
in the calculated plasma fields. If the driver is a laser pulse, we have to solve an envelope equation on
the laser pulse amplitude; this is required because the quasi-static equations do not describe radiation.
Thus, an independent analytical model is required for the laser pulse. The laser pulse vector potential is
represented as A(τ, ζ, r) = Re[a(τ, ζ, r) exp(ikζ)]. The envelope equation for the complex amplitude
a(τ, ζ, r) reads [26] [

2

c

∂

∂τ

(
ik0 +

∂

∂ζ

)
+∇2

⊥

]
a = χ(ζ, r), (101)

where χ(ζ, r) = 〈4πq2n/(γmc2)〉 is the plasma refraction averaged over all the particles in the cell with
charge q, mass m and relativistic factor γ.

The laser pulse acts on the plasma particles via its ponderomotive force

Fp = − q2

γmc2
∇a2. (102)

The ponderomotive force (102) is added to the standard Lorentz force in the particle pusher.

A typical time step of a quasi-static code is shown in Fig. 13. First, there is a cycle that proceeds
along the fast variable ζ for the low-frequency (LF) fields. Then, the plasma refraction is calculated and
the envelope equation for the high-frequency (HF) fields is updated.

Fig. 13: Typical time step of a quasi-static code; the cycle for low-frequency (LF) plasma fields is followed by the
cycle for the envelope equation of the high-frequency (HF) laser driver.

Figure 14 shows a comparison of the quasi-static code (upper half of the simulation frame) and the
full PIC code VLPL3D (lower half). We have simulated a blow-out generated by an overdense electron
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bunch. The electron bunch density had the profile nb(z, r) = nb0 exp(−z2/2σ2
z) exp(−r2/2σ2

r ). The
maximum bunch density was two times higher than the background plasma density: nb0 = 2np. The
bunch was spherical with kpσz = kpσr = 1.

Fig. 14: Blow-out wakefield generated by an overdense electron bunch. The upper half of the frame is taken from a
quasi-static simulation, and the lower part from a simulation using a full PIC code, VLPL3D. The left panel shows
the plasma density, and the right panel shows the longitudinal electric field component of the wakefield. Cerenkov
radiation emitted from the wavebreaking point is seen in the full 3D PIC simulation; this radiation is absent from
the quasi-static code.

The two simulations are nearly identical. The only significant difference is the presence of Ceren-
kov radiation in the full 3D PIC simulation, emitted from the wavebreaking point at the tip of the tail of
the first bubble. In the full simulation, we initialized the electron bunch vacuum in front of the plasma
layer, so the plasma layer had to have a density ramp. The length of the bubble depends on the plasma
density: the higher the density, the shorter the bubble. Consequently, the wavebreaking point moved with
a superluminal velocity in the density ramp region and could emit Cerenkov radiation. In the quasi-static
code, the Cerenkov radiation cannot be simulated. In addition, no density ramp is needed there: the field
distribution is defined only by the local plasma density and by the instantaneous shape of the driver.

11 Computational costs of different codes
It is useful to estimate the number of operations required (called the computational cost) to simulate a
particular plasma-based acceleration problem with different codes. The most general code, the full 3D
PIC code, uses a 3D spatial grid of sizeN‖×N2

⊥ cells andNt time steps. The longitudinal step is limited
by the laser wavelength, h‖ � λ0, and the corresponding time step must be such that τ � λ0/c. The
transverse grid steps are usually limited by the plasma wavelength, h⊥ � λp. The number of time steps
is Nt = Lacc/cτ , where Lacc is the acceleration distance. Hence, the number of operations required by
the explicit PIC code scales as

NPIC
op ∝

Laccld
λ2

0

N2
⊥. (103)

Here we have assumed that the ‘moving window’ technique is used, so that the longitudinal size ld of the
simulation box scales with the plasma wavelength λp.

If one uses the Lorentz boost technique with the transformation relativistic factor γboost, the num-
ber of required operations reduces by a factor of γ2

boost ideally:

NPIC-LB
op ∝ γ−2

boost

Laccld
λ2

0

N2
⊥ = γ−2

boostN
PIC
op . (104)
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The quasi-static approximation relaxes the time step restriction via the Courant condition. In ad-
dition, the grid step is no longer limited by the laser wavelength λ0, but rather by the plasma wavelength
λp. The time step must resolve the betatron oscillation of the beam particles, τωβ � 1, where the be-
tatron frequency for a beam particle with mass M and relativistic factor γb is ωβ = ωp

√
me/2γbM .

If the driver is a laser pulse, then the time step must resolve the diffraction length, cτ/ZR � 1, where
the characteristic diffraction length of a laser pulse with focal spot R is defined by the Rayleigh length
ZR = πR2/λ0. The overall number of operations required by the quasi-static code scales as

NQS
op ∝

Laccωβ
c

ld
λp
N2
⊥ =

λ2
0

λpλβ
NPIC

op , (105)

where λβ = 2πc/ωβ is the betatron wavelength. The performance gain, λ2
0/λpλβ , of the quasi-static

code over the fully explicit PIC code can be huge and easily reach six orders of magnitude.

12 The future of PIC codes
Electromagnetic PIC codes provide a fundamental model for the dynamics of ideal plasma. Particularly
in the relativistic regime of short-pulse laser–plasma interactions, these codes are unique in their predic-
tive capabilities. In this regime, the binary collisions of plasma particles are either negligible or can be
considered a small perturbation, and thus the electromagnetic PIC codes are the most appropriate tools.

However, the explicit PIC codes do have their limits. As soon as one tries to simulate laser inter-
actions with highly overdense plasmas, these PIC codes become extremely expensive. Indeed, because
the scheme is explicit, the code must resolve the plasma frequency and the skin depth. Even for un-
compressed solid targets of high-Z materials, the plasma frequency can easily be 30 times higher than
the laser frequency. The time and grid steps must be chosen accordingly. For a 3D code, simultaneous
refinement of the grid and time steps in all dimensions by a factor of α leads to an increase in computa-
tional effort by a factor of α4. For this reason, the simulation of a highly overdense plasma still poses a
challenge for the explicit PIC codes.

A way around this difficulty might be to use implicit PIC codes, such the code LSP [29], or hybrid
codes, such as a combination of a hydrodynamic description of the high-density background plasma and
a PIC module for the hot electrons and ions [30]. Such codes alleviate the time step limitation, because
they suppose the background plasma to be quasi-neutral and thus eliminate the fastest plasma oscillations
at the Langmuir frequency. Very large plasma regions of high density can easily be simulated using such
codes. Yet, these codes sacrifice a lot of the physics, and for any particular problem it must be checked
whether the omitted physics is important or not. One possible way to perform this check is to benchmark
the results of implicit codes against the direct PIC simulation on model problems which can be handled
by both types of code.
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Laser-driven Plasma Wakefield: Propagation Effects

B. Cros
Laboratoire de Physique des Gaz et des Plasmas, CNRS-Université Paris Sud, Orsay, France

Abstract
In the frame of laser-driven wakefield acceleration, the main characteristics of
laser propagation and plasma wave excitation are described, with an emphasis
on the role of propagation distance for electron acceleration. To optimize inter-
action length and maximize energy gain, operation at low plasma density is
the most promising regime for achieving ultra-relativistic energies. Among
the possible methods of extending propagation length at low plasma density,
laser guiding by grazing incidence reflection at the wall of dielectric capillary
tubes has several assets. The properties of laser guiding and the measurement
of plasma waves over long distances are presented.

Keywords
Laser plasma acceleration; laser guiding; electron acceleration; plasma wave
diagnostic.

1 Introduction
Propagation effects play an important role in laser-driven plasma accelerators [1]. The mechanism of
plasma wave excitation relies on non-linear effects [2], linked to the presence of background electrons
in the medium, driven by short and intense laser pulses [3]. Plasma waves result from the action of the
ponderomotive force, which is proportional to the gradient of laser energy. This force expels electrons
from the regions of higher intensity. Depending on the laser intensity, the density perturbation, or wake-
field, remaining behind the laser pulse may be a periodic plasma wave, e.g., a sinusoidal oscillation [4],
or cavities void of electrons, also known as bubbles [5]. Laser and plasma parameters need to be carefully
selected to take advantage of non-linear effects.

The high intensity value, typically in the range 1017 to 1019 W/cm2, required to drive a wakefield
by laser is usually achieved by focusing the laser beam, within a small volume around the focus position,
over a length shorter than or of the order of 1 mm. The longitudinal fields associated with plasma waves
driven by laser can be as large as 100 GV/m, leading to accelerated electrons with energies of the order
of 100 MeV over a typical scale length of 1 mm [6–8]. Acceleration of electrons to ultra-high energies
requires that a high acceleration gradient be maintained over a longer distance [9].

Increasing the acceleration distance is one of the current challenges of laser plasma accelerators.
Ultra-intense laser beam interaction with matter gives rise to various kinds of non-linear effect [3], which
usually increase with propagation distance. Some intrinsic limitations of laser-driven wakefields, such
as dephasing of electrons during the acceleration process as they overrun the accelerating phase of the
field, or depletion of the laser beam over the propagation distance, can be less severe at low plasma
densities. Lowering the plasma density contributes to a reduction in non-linear effects and an increase
in acceleration distance, provided the laser intensity can be maintained at the required level over the
whole distance. This can be achieved by guiding the laser beam externally, by either a preformed plasma
structure or a capillary tube.

The first part of this paper outlines some of the main characteristics of laser-driven plasma wake-
fields, useful for describing laser propagation and plasma wave excitation. The main parameters gov-
erning electron acceleration are also described, with an emphasis on the role of propagation distance.
Among the different methods of optimizing interaction length to maximize energy gain, operation at low
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plasma density is the most promising regime towards achieving ultra-relativistic energies. Laser guiding
by grazing incidence reflection at the wall of dielectric capillary tubes is described in the second part of
this paper, from guiding properties to the measurement of plasma waves over long distances.

2 Laser plasma acceleration characteristics
2.1 Laser propagation in a vacuum
The electromagnetic field of a laser is described by Maxwell’s equations [10]. The laser pulse can be
modelled by Gaussian functions in space and time as a good approximation of experimental profiles. The
electric field E of a bi-Gaussian laser beam, propagating in vacuum along the z axis, is given by:

E(r, z, t) =EL
w0

w(z)
exp

[
− r2

w2(z)

]
exp

[
−2 ln(2)

(z − ct)2
c2τ20

]

×R

{
exp

[
iω0t− ik0z − ik0

r2

2R(z)
+ iψg(z)

]
e⊥

}
,

(1)

where EL is the amplitude of the electric field, w0 is the waist or smallest laser transverse size in the
focal plane (z = 0), c denotes the speed of light in a vacuum, τ0 is the full width at half maximum of
the pulse duration, and k0 = 2π/λ0 and ω0 = ck0 represent, respectively, the wavenumber and angular
frequency of a laser beam with wavelength λ0. The unit vector e⊥ indicates the polarization direction
of the laser electric field. For a laser field linearly polarized in the x direction, e⊥ = ex, while for a
circularly polarized one, e⊥ = 1/

√
2(ex ± iey).

The propagation of the Gaussian laser pulse is fully characterized by the beam waist w(z), the
radius of curvature of the wavefront R(z), and the Gouy phase shift ψg(z). As illustrated in Fig. 1, these
parameters evolve along the z axis as

w(z) = w0

√
1 +

(
z

zR

)2

,

R(z) = z

[
1 +

(
z

zR

)2
]
,

ψg(z) = arctan

(
z

zR

)
,

(2)

where zR = πw2
0/λ0 is the Rayleigh length, which represents the position at which the laser beam

transverse area is doubled, compared with the one in the focal plane, owing to diffraction. The beam
divergence far from the focal plane (z � zR) is given approximately by θL ' λ0/πw0.

The electromagnetic fields E and B can be expressed in terms of the scalar potential Φ and the
vector potential A,

E = −∇Φ− ∂A

∂t
,

B = ∇×A ,
(3)

with the Coulomb gauge ∇ ·A = 0. In a vacuum Φ = 0, and both fields, E and B, depend only on the
vector potential A. It is useful to define a normalized peak vector potential, also called the laser strength,
a0 = eA0/(mc) = eEL/(mcω0).

The quantities usually measured during experiments are the laser energy, EL, and its distribution
in space, and the pulse duration, τ0; they are used to evaluate the laser intensity, which is a key parameter
for laser plasma interaction. The laser intensity is defined as

IL = c2ε0〈E×B〉 =
cε0
2
|E|2 , (4)
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Fig. 1: Electric field of a Gaussian beam in the (y, z) plane; the focal plane is located at z = 0

where ε0 = 8.85× 10−12 F/m is the permittivity of free space. The laser power for a Gaussian pulse in
time is written as

P = 2

√
ln(2)

π

EL
τ0
' EL
τ0

, (5)

and the corresponding peak laser intensity in the focal plane is

I0 =
2P

πw2
0

' 2EL
πτ0w2

0

. (6)

Equation (6) shows that the peak intensity can be calculated from the measurements of energy, duration,
and spot size, provided the shape of the laser beam is known. Substituting Eq. (4) into the expression
a0 = eEL/(mcω0), a0 can be expressed as a function of the intensity in practical units,

a0 =

√
e2

2π2ε0m2
ec

5
λ20I0 ' 0.86λ0 [ µm]

√
I0 [1018 W/cm2] . (7)

An example of energy distribution in the focal plane, measured at the Lund Laser Centre during
an experiment [11], is shown in Fig. 2. As is often the case, before focusing, the energy delivered by
the laser system exhibits a nearly flat-top cylindrically symmetrical distribution in the transverse plane.
Therefore, in the focal plane, the corresponding energy distribution is not purely Gaussian, and it can
be seen from the right of Fig. 2 that it exhibits a profile close to an Airy pattern. The radial profile
is obtained by averaging the energy distribution from the left-hand image over the azimuthal angle.
The focal spot shown in Fig. 2 was achieved after optimization of the symmetry of the distribution,
by tuning a deformable mirror placed after the compressor, to compensate for aberrations in the laser
wavefront. The average radius of the focal spot at first minimum can be determined from the radial
profile; in this example, it was measured as (19.7 ± 0.8) µm, which yields an on-axis peak intensity
of (5.4 ± 0.1) × 1018 W/cm2 and a normalized laser vector potential a0 = 1.6. The energy fraction
contained within the grey shaded area in Fig. 2 is estimated to equal 84% of the energy in the focal plane.

2.2 Electron motion in a laser field
For currently used laser systems, the maximum intensity usually exceeds 1018 W/cm2, corresponding
to an electric field amplitude larger than 1012 V/m. As the laser field is transverse to the direction of
propagation, single electrons mainly wiggle in this field, and it cannot be used directly to accelerate
electrons in free space.
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Fig. 2: Left: energy distribution in the focal plane. Right: corresponding averaged radial profile of laser energy
in logarithmic scale; the grey shaded area, with a boundary at the first minimum of the focal spot, contains about
84% of laser energy in the focal plane.

The motion of a single electron with charge −e and mass me in the laser fields E and B is
described by the Lorentz equation,

dp

dt
= −e(E + v ×B) , (8)

where p = γmev is the electron momentum, γ = (1 − β2)−1/2 is the relativistic factor, and β = v/c
denotes the normalized velocity. Approximating the laser field as a plane electromagnetic wave polar-
ized along the x axis and propagating along the z axis, E(z) = EL cos(k0z − ω0t)ex, or in terms of
vector potential using Eq. (3): A(z) = A0 sin(k0z − ω0t)ex, with A0 = EL/ω0. Taking into account
|B| = |E| /c, the second term in the right-hand side of Eq. (8) can be neglected in the non-relativistic
regime, when β � 1. Then Eq. (8) becomes simply

dp

dt
= −eE = e

∂A

∂t
. (9)

Therefore, an electron, initially at rest at z = 0, oscillates in the direction of the electric field with a
velocity

β = −eA0

mc
sin(ω0t) , −a0 sin(ω0t) . (10)

It follows from Eq. (10) that an electron initially at rest will oscillate in the laser field with no net energy
gain.

For a0 & 1, the electron oscillation velocity will approach c, and the v × B component in the
Lorentz equation must be taken into account. The solution of Eq. (8) in the relativistic regime can be
found, for example, in Ref. [12]. In the frame co-moving with the laser pulse, a(z) = a0 sin(k0ξ)ex,
where ξ = z− ct is the coordinate in the frame co-moving with the laser. The normalized momentum of
the electron can be written as

ux = γβx =
dx

dξ
= a = a0 sin(k0ξ) ,

uz = γβz =
dz

dξ
=
a2

2
=
a20
2

sin2(k0ξ) .

(11)
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Fig. 3: Trajectory of an electron in the laser transverse field in the laboratory frame for two values of the laser
strength.

The electron velocity is always positive in the z direction, so that the v × B force pushes the electron
forward. Integrating Eq. (11) gives the electron coordinates along the trajectory:

x = −a0
k0

cos(k0ξ) ,

z =
a20
8k0

[2k0ξ − sin(2k0ξ)] .
(12)

The set of Eq. (12) indicates that the electron not only moves forward but also oscillates at twice
the laser frequency in the longitudinal z direction. Figure 3 shows the electron trajectories for two values
of a0. The longitudinal momentum scales with the square of the laser strength as a20, while the transverse
one linearly depends on the laser strength by a0. Hence, for a0 � 1, the longitudinal motion of the
electron dominates the transverse oscillation. The excursion distances along the x and z axis calculated
over one period become equal for a0 = 8/π ' 2.55. For a laser wavelength of 800 nm, a0 = 2.55
corresponds to I0 = 1.4× 1019 W/cm2.

This simple analysis shows the importance of operation in the relativistic regime, to achieve elec-
tron motion along the laser propagation direction. Nevertheless, as shown in Fig. 3, the electron is merely
pushed forward during each light cycle but does not gain energy from the laser. The overall net effect is
only to transfer the electron to a new longitudinal position. However, in this section, the laser beam was
assumed to be a uniform and infinite plane wave. This is generally not the case in experiments, where
laser pulses need to be tightly focused to achieve high intensity. The laser intensity is not uniform but
Gaussian-like in the transverse plane. As shown next, the ponderomotive force associated with the laser
intensity gradient excites a plasma wave, as the plasma plays the role of a transformer, to transfer laser
energy to electrons.

2.3 Electromagnetic waves in plasmas
In a plasma, electrons oscillate around an equilibrium position with a characteristic frequency defined as
the plasma frequency [2]

ωp =

√
nee2

meε0
. (13)
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In the non-linear regime, the plasma frequency is modified by relativistic effects to ωpNL = ωp/
√
γ. The

dispersion relation of an electromagnetic wave in a plasma can be written as

ω2
0 = ω2

p + c2k2 . (14)

For ω0 > ωp, k is real and the wave can propagate in the plasma; k becomes imaginary for ω0 < ωp,
and the wave is evanescent. The light is thus either transmitted, damped, or reflected in the plasma,
depending on the plasma density. The critical density, nc, is defined as the density for which ω0 = ωp,
and can be written in practical units as

nc [1021 cm−3] =
ω2
0meε0
e2

=
1.12

λ20 [ µm]
. (15)

The critical density corresponding to a laser wavelength of 0.8 µm is 1.75 × 1021 cm−3. For ne < nc,
the plasma is called underdense, and it is called overdense for ne > nc. The laser-driven wakefield relies
on the excitation of a plasma wave in the underdense regime.

The phase and group velocities of the electromagnetic field in the plasma are calculated from
Eq. (14):

vph =
ω0

k
=

√

c2 +
ω2
p

k2
,

vg =
dω0

dk
=

c2

vph
=

c2√
c2 + ω2

p/k
2
.

(16)

If the evolution of the driving laser pulse in the plasma is not significant during propagation, the
phase velocity of the plasma wave is equal to the group velocity of the driving laser [13]. The normalized
phase velocity and relativistic factor of the plasma wave are then given by

βp =
vg
c

=

√
1− ne

nc
,

γp =
1√

1− β2p
=

√
nc
ne
.

(17)

It can be seen that a lower density leads to a higher phase velocity and a larger relativistic factor.

2.4 Plasma wave excitation
In a plasma, the action of the ponderomotive force leads to the excitation of a plasma wave. This force
is associated with the second-order electron motion [see Eq. (8)], averaged over a time-scale longer than
the laser period. The three-dimensional (3D) ponderomotive force [14] for an electron can be written as

Fp = −mec
2∇
〈
a2/2

〉
= −mec

2∇a20/2 . (18)

The ponderomotive force can be viewed as the radiation pressure of laser intensity. This force expels
charged particles out of the region of high laser intensity, and does not depend on the sign of the charged
particle. Furthermore, it is inversely proportional to particle mass Fp ∝ 1/m. Hence, under the same
laser field, the acceleration exerted on a proton is only 10−6 times that exerted on an electron, so that ion
motion can be neglected for sufficiently low laser strength.

Figure 4 illustrates the excitation of a plasma wave (red solid curve) in the linear (top graph) and
non-linear (bottom graph) regimes, where the on-axis density exhibits localized spikes separated by a
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Fig. 4: Laser envelope (blue dashed line) and density perturbation (red solid line) along the axis of propagation in
(top) the linear and (bottom) non-linear regimes.

distance longer than the linear wavelength; the laser pulse envelope is indicated by a blue dashed line.
The longitudinal electric field associated with a plasma wave is thus a space charge field linked to the
periodic distribution of charges oscillating behind the laser pulse. The oscillation length is the plasma
wavelength linked to the electron density of the plasma, ne, by the relation

λp [µm] ' 33× (ne [1018 cm−3])−1/2. (19)

This plasma wave is called a relativistic plasma wave because its phase velocity, given by Eq. (17), is of
the order of the laser group velocity in the medium when the plasma frequency ωp is much smaller than
the laser frequency ω0. The amplitude of the longitudinal accelerating field can be written as:

Ep [ GV/m] ' 96(ne [1018 cm−3])1/2
δne
ne

. (20)

The amplitude of this field is maximum for a density perturbation of 100%, at the upper limit of the
linear regime, where the plasma wave breaks.

2.5 Regimes of the laser wakefield
Among the parameters determining the characteristics of accelerated electrons in a plasma are the laser
characteristics (amplitude, transverse, and longitudinal sizes) and plasma properties, such as the electron
density and distribution. The laser strength a0 is mainly used to distinguish between linear (or quasi-
linear) and non-linear regimes of laser wakefield excitation. Nevertheless, as the non-linear evolution of
the laser includes a deformation of the spatial volume delimiting the most intense fraction of the laser
pulse, the initial transverse size of the laser, rL, is also a key parameter. In the quasi-linear regime,
a0 ' 1 and

k2pr
2
L

2
>
a20
γ⊥

, (21)

with γ⊥ = (1 + a20/2)1/2. The bubble or blow-out regime occurs for a0 > 1 and is characterized by

kprL ≤ 2
√
a0 . (22)

Figure 5 illustrate the main features of these two different regimes with simulation results. The left panel
of Fig. 5 shows that the laser wakefield in the linear regime exhibits a regular oscillating behaviour [4].
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Fig. 5: Illustration of the two regimes of the laser wakefield. Left: Excitation of a plasma wave in the linear
regime; 3D view and projection in the horizontal plane of the normalized laser intensity, a0, and wake potential,
ϕ. Right: Excitation of a plasma wave in the non-linear regime; map of density in the horizontal plane (grey scale,
white is zero) and superposition of laser amplitude (colour scale, red is a maximum).

The ponderomotive force varies as the laser energy gradient and creates a density distribution in the
longitudinal and transverse directions. The associated transverse and longitudinal fields can be con-
trolled independently by adjusting the focal spot transverse size and the pulse duration. The accelerating
structure is shaped as a sine wave with wavelength λp, typically in the range 10–100 µm; its value is ad-
justed by tuning the plasma electron density. The accelerating field is typically in the range 1–10 GV/m,
this value is limited to the wavebreaking field for a non-relativistic cold plasma, E0 = mecωp/e, and is
of the order of 96 GV/m for a plasma electron density ne = 1018 cm−3. Wavebreaking is characterized
by the fact that electron oscillations become so large that the electrons can escape the collective motion.
This may be at the origin of electron injection in the non-linear regime. In the linear regime, wave-
breaking does not take place, and relativistic electrons need to be produced by an external source and
injected into the linear plasma wave to be accelerated.

The right panel of Fig. 5 illustrates the main features of the non-linear regime. As the laser propa-
gates into the plasma, its front edge diffracts while the rest of the pulse self-focuses. Electrons are
expelled by the ponderomotive force from the high-intensity volume and a plasma cavity, the white area
in Fig. 5, which is void of electrons, is left behind the laser pulse. The expelled electrons travel along
the field lines and accumulate at the back of the cavity, where they can be injected and accelerated. The
cavity size is typically of the order of 10 µm, and produces accelerated electron bunches with a transverse
size of the order of a few micrometres, owing to the focusing field inside the cavity. This regime is also
called the blow-out or bubble regime [5, 15].

2.6 Laser modulation in plasma
The optical properties of the plasma are modified during the excitation of a plasma wave, and can, in
turn, modify the driving pulse. For the range of intensities of interest for a laser-driven wakefield, there
are two important effects, self-focusing and self-compression, corresponding to changes in the transverse
size and duration of the laser pulse during its propagation.

2.6.1 Self-focusing
The propagation of a laser pulse in a plasma can be investigated in terms of the spatial refractive index,
η(r) = c/vph. Recalling the definition of vph in Eq. (16), the refractive index for an underdense plasma,
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with uniform density ne0, and a large amplitude plasma wave, ω2
p(r) = (ω2

p0/γ)ne(r)/ne0, is

η(r) =
c

vph
=

(
1−

ω2
p(r)

ω2
0

)1/2

' 1− 1

2

ne(r)

γ(r)nc
. (23)

Equation (23) shows that the spatial profile of the refractive index η(r) can be modified by the relativistic
factor γ(r) or the density distribution ne(r). In the weakly relativistic case, Eq. (23) can be expanded
as [3, 16]

η(r) = 1−
ω2
p

2ω2
0

(
1− a2

2
+

∆ne
n0

+
δne
n0

)
, (24)

where ∆ne/n0 takes into account the contribution of a preformed plasma channel along the radius; the
δne/n0 term is responsible for plasma wave guiding, self-channelling, and the self-modulation of long
pulses; the a2/2 term corresponds to the contribution of relativistic laser guiding.

For a Gaussian pulse, with intensity peaked on-axis, ∂a2(r)/∂r < 0, which satisfies the condition
for refractive guiding, ∂η(r)/∂r < 0 or ∂vph(r)/∂r > 0. This implies that the on-axis phase velocity
is less than the off-axis velocity, making the laser wavefront curved. The plasma thus plays the role
of a convex lens, focusing the laser beam towards the propagation axis. This mechanism is known as
self-focusing, and is able to balance laser diffraction. As shown in Eq. (24), the modulation of the
refractive index leading to beam focusing scales with a2. Therefore, for a given beam divergence, there
is a minimum threshold for laser intensity to balance diffraction. Self-focusing will occur when the laser
power P exceeds a critical power Pc, which can be written as [17–19]

Pc =
8πε0m

2
ec

5ω2
0

e2ω2
p

' 17
ω2
0

ω2
p

[ GW] . (25)

For example, the critical power for a λ = 0.8 µm laser at plasma density n0 = 7 × 1018 cm−3 is
Pc = 4.25 TW.

The radial ponderomotive force expels electrons from the axis, thus creating a radial density gradi-
ent ∂(δne(r))/∂r > 0, and a negative transverse gradient of the refractive index ∂η(r)/∂r < 0, act-
ing to focus the laser beam, although for P � Pc, the ponderomotive force is not sufficient to guide
the laser [13]. When the laser power approaches the critical power, relativistic self-guiding dominates
laser propagation, while ponderomotive channelling enhances self-guiding. The contribution of pondero-
motive channelling slightly relaxes the critical power for self-guiding to Pc = 16.8(ω2

0/ω
2
p) [ GW].

2.6.2 Self-compression
In addition to the beam size evolution in the transverse direction, the variation of plasma density along the
propagation axis modulates the laser pulse longitudinally. The density variation along the propagation
axis δne(ξ) during the laser pulse makes it experience different local refraction indices, and consequently
compress or stretch in the temporal domain.

Using Eq. (24), the local group velocity of the drive laser, or the phase velocity of the plasma
wave, can be examined, taking into account the longitudinal dependence of η:

vg/c ' η ' 1−
ω2
p

2ω2
0

(
1− a2

2
+
δne
n0

)
. (26)

δne = 0 gives the laser group velocity in the background plasma: vg0. For positive density variation
δne > 0, the laser group velocity decreases vg − vg0 < 0, whereas δne < 0 corresponds to an increase
in laser group velocity: vg − vg0 > 0. As a result of plasma wave excitation (see Fig. 4), the rear of
the laser pulse moves faster than its front edge. The laser pulse is temporally compressed; this is also
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called pulse shortening. This effect plays an important role in laser-driven wakefields as it contributes to
matching the laser pulse duration and plasma wave period.

As a consequence of temporal compression, the spectral bandwidth of the short laser pulse will
increase. Most of the laser pulse can be redshifted, while strong blueshifts occur at the back of the pulse
for pulses longer than the plasma period [20]. As the spectral modulation of the driving laser is created
by the plasma modulation, this provides a good means of diagnosing the excited plasma wave [21].

2.7 Energy gain of an electron in a plasma wave
The energy gain, ∆W , of an electron accelerated in a plasma wave is proportional to the product of the
accelerating longitudinal field associated with the plasma wave, Ep, and the length, Lacc, over which the
electron is submitted to this field,

∆W = eEpLacc . (27)

The amplitude of the accelerating field and the length of acceleration depend on the regime of the laser
wakefield and can be optimized in different ways. Three main mechanisms may limit the acceleration
distance: laser diffraction typically limits acceleration to the Rayleigh length; pump depletion defines
the length over which half of the laser energy is transferred to the plasma wave; and dephasing, in
which accelerated electrons outrun the plasma wave and enter a decelerating phase, defines the dephasing
length. Diffraction is a limitation due to laser propagation in the medium and can be overcome in the
non-linear regime by self-focusing: in that case, the non-linearities imposed on the medium can shape
the transverse density profile to act as a transient focusing length. In the linear regime, where these
non-linear effects are negligible, external guiding has to be implemented; the use of capillary tubes for
this purpose will be described in Section 3. Electron dephasing and laser depletion are intrinsic to laser
plasma acceleration and depend on the electron density. Their dependences are described next.

2.7.1 Dephasing
As the phase of the plasma wave evolves at the group velocity of the laser in the plasma, a relativistic
electron accelerated in this wave can explore different phases of the accelerating field. The dephasing
length [13, 22], Ld, is defined as the length over which an electron can be accelerated before reaching a
decelerating period of the electric field.

In the one-dimensional (1D) linear regime, Ld is evaluated as follows: in the co-moving frame,
the maximum length over which the field is accelerating during one period is λp/2. Assuming that the
accelerated electron propagates at approximately c, and keeping in mind that the plasma wave phase
moves forward with velocity vg, L1D

d is estimated as

L1D
d =

λp
2(c− vg)

c =
λp

2(1− βp)
' nc
ne
λp =

ω2
0

ω2
p

λp . (28)

This expression can be generalized to two-dimensional (2D), by noting that for a 2D plasma wave, there
is only a quarter of the period (λp/4) in which the longitudinal electric field is accelerating and the radial
field is focusing. Therefore, the dephasing length becomes

L2D
d = L1D

d /2 =
ω2
0

2ω2
p

λp . (29)

In the 3D bubble regime, the distance in the co-moving frame for dephasing becomes the bubble radius
Rb. The phase velocity of the plasma wave is modified to βp = 1 − 3ω2

p/(2ω
2
0). Accordingly, the

dephasing length L3D
d is given by

L3D
d =

Rb

1− βp
' 2

3

ω2
0

ω2
p

Rb =
4

3

ω2
0

ω2
p

√
a0
kp

. (30)
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Fig. 6: 3D dephasing length and pump depletion length as functions of plasma electron density. The laser pulse
has a duration of 30 fs and a peak intensity corresponding to a0 = 4.

This expression shows that the 3D non-linear dephasing length depends on both the plasma electron
density and the laser intensity. A longer L3D

d can be achieved either decreasing the plasma density, as
illustrated in Fig. 6, or by increasing the laser intensity.

2.7.2 Pump depletion
Another underlying limit is the so-called pump depletion, associated with the length Lpd, over which
the driving laser becomes depleted. As the laser pulse travels in the plasma, it transfers its energy to the
plasma wave. The pump depletion length is defined as the distance over which the energy contained in
the plasma wave equals that of the driving laser, E2

pLpd =
∫
E2

Ldξ. For a Gaussian driving laser pulse,
the linear pump depletion length is given by [23]

LL
pd =

ω2
0

ω2
p

cτ0
a20

. (31)

In the non-linear regime, the pump depletion length is estimated via the etching velocity vetch ' cω2
p/ω

2
0

[24]; this describes the erosion velocity of the laser front that excites the plasma wave, before the start of
self-focusing. The laser will be depleted over the depletion length given by

LNL
pd =

c

vetch
cτ0 =

ω2
0

ω2
p

cτ0 . (32)

Lu et al. [15] showed that this expression of non-linear pump depletion length LNL
pd is valid for 2D and

3D non-linear cases.

Both the 3D dephasing length L3D
d and the pump depletion length LNL

pd are plotted as functions of
plasma density, for a0 = 4, in Fig. 6. Typically, the two lengths are of the order of a few millimetres in the
density range above ne = 3×1018 cm−3, where dephasing dominates pump depletion. The most efficient
use of laser energy is achieved around the density where L3D

d ' LNL
pd . Below ne = 2.5 × 1018 cm−3,

pump depletion occurs over a shorter length than dephasing, and both lengths increase quickly when the
density becomes of the order of 1× 1018 cm−3 .

2.7.3 Scaling laws
Scaling laws in the different regimes have been established from phenomenological considerations by Lu
et al. [15], and are summarized in Table 1. These scaling laws play an important role in understanding
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Table 1: Summary of scaling laws for linear and non-linear regimes [15], for the dephasing lengthLd, the depletion
length, Lpd, the relativistic factor of the plasma wave γp , and ∆E , the energy gain of an electron accelerated over
the dephasing length.

a0 w0 Ld Lpd γp ∆E/mec
2

Linear <1 λp
ω2
0
ω2
p
λp

ω2
0
ω2
p

cτ0
a20

ω0
ωp

a20
ω2
0
ω2
p

1D non-linear >1 λp 4a20
ω2
0
ω2
p
λp

1
3
ω2
0
ω2
p
cτ0

√
a0

ω0
ωp

4a20
ω2
0
ω2
p

3D non-linear >2
√
a0
π λp

4
3
ω2
0
ω2
p

√
a0
kp

ω2
0
ω2
p
cτ0

1√
3
ω0
ωp

2
3a0

ω2
0
ω2
p

laser plasma acceleration mechanisms, and have been verified in numerous experiments. Scaling laws
can be used, for example, to predict the energy gain in the non-linear regime. Using an average value
of the accelerating field in the bubble regime, and an average value for acceleration over the dephasing
length, the energy gain can be approximately written as

∆E ' 2

3
a0
ω2
0

ω2
p

mec
2 ' mec

2

(
e2P

m2
ec

5

)1/3(
nc
ne

)2/3

, (33)

which becomes, in practical units,

∆E [ GeV] ' 1.7

(
P [TW]

100

)1/3( 0.8

λ0 [µm]

)4/3( 1

ne [1018 cm−3]

)2/3

. (34)

This expression shows that the plasma electron density is a key parameter for tuning the electron bunch
energy: a large energy gain over the dephasing length in the 3D non-linear regime can be achieved for low
electron density and large laser power. Figure 7 shows the electron energy gain as a function of plasma
density and laser power, calculated from Eq. (34). For a laser power of 100 TW, Eq. (34) predicts that
electrons can be accelerated up to 1.7 GeV at a plasma density of ne = 1× 1018 cm−3. The energy gain
displays a stronger dependence on plasma density than on laser power. Hence, to achieve higher electron
energy, a lower electron plasma density is desirable. Nevertheless, one must always remember the laser
size matching condition, which requires w0 = λp

√
a0/π, which is proportional to 1/

√
ne. When ne is

decreased, the laser power must be increased accordingly to meet the requirement for producing a larger
bubble, as P = I0πw

2
0/2, which is proportional to 1/ne .

Numerous experimental results in the non-linear regime, where electrons from the plasma are self-
injected into the accelerating structure, follow the scaling law for energy gain ∝ 1/ne, as illustrated in
Fig. 8. Figure 8 shows that when the density is divided by a factor of 10, from ne = 8 × 1018 cm−3

to ne = 0.8 × 1018 cm−3, the maximum energy of the electron bunch is multiplied by the same factor.
It should be noted that parameters other than the plasma density can change significantly between the
different cases plotted in this graph: in particular, the laser power has been increased over the years and
has contributed to the experimental observation of electrons in the gigaelectronvolt range for petawatt-
class laser systems. The length of the plasma was also increased: starting from millimetre-scale gas
jets at higher densities, gas cells of length between one and a few centimetres are used in intermediate
regimes; the largest energy gain to date was obtained using external guiding by a plasma channel [9].

In conclusion, experimental results are well understood regarding the maximum electron energy
dependence with electron plasma density and clearly indicate the way to increase the energy further.
Reducing the density significantly increases the dephasing length: the next challenge will be to achieve
metre-scale plasma lengths while preserving the laser intensity over the whole distance. Next, we exam-
ine some aspects of low-density operation of laser wakefield excitation over large distances.
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Fig. 7: Energy gain over the dephasing length as a function of plasma density and laser power, calculated using
Eq. (34).

Fig. 8: Energy gain measured in various experiments around the world, plotted with black squares and labels,
follow the dependence ∆W ∝ 1/n. Labels indicate institute acronyms and year of publication.

3 External guiding with capillary tubes
3.1 Choosing a guiding mechanism
Several methods have been developed to guide the focused laser over a distance longer than the Rayleigh
length. Among them, self-focusing is one of the most commonly employed, owing to the simplicity of
its implementation. Relying on this scheme, a powerful laser, PL > Pc, can be guided over the pump
depletion length, typically several millimetres long (see Fig. 6). To achieve self-focusing, the laser power
must be in excess of the critical power, given by Pc GW = 17ω2

0/ω
2
p, which increases rapidly when the

plasma density is decreased: for a plasma density ne = 1× 1018 cm−3, Pc equals 30 TW.
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Fig. 9: Guiding methods: left, plasma channel, characterized by varying plasma density along the radius; right,
capillary tube with glass wall, and laser reflection from the inner walls.

Self-focusing is the result of a modification of the plasma density by the front of the laser pulse,
acting to create a density structure able to compensate diffraction for the rear of the pulse. A dens-
ity structure acting to compensate diffraction (see Eq. (24)) can be formed prior to the intense laser
interaction. A plasma channel can be created with the help of an external electrical discharge [25, 26]
or by a heating laser pulse [27, 28]: the hot on-axis plasma electrons move outward, owing to radial
hydrodynamic expansion, resulting in a density depletion on-axis and a nearly parabolic transverse dens-
ity profile, as illustrated in the left panel of Fig. 9. A parabolic plasma channel can guide a Gaussian
beam with a constant spot size w0 = wm, where wm depends on the curvature of the channel. Under
the matching condition, lasers with intensity of the order of 1018 W/cm2 were successfully guided by
plasma waveguides over many Rayleigh lengths [27,29]. Good-quality guiding in plasma channels relies
on fine tuning of the incident laser parameters (spot size, duration, energy) with channel parameters. As
the guiding mechanism relies on plasma density and its spatial profile, this mechanism cannot be used
for applications requiring plasma parameters that are very different from those required for laser guiding
in the plasma channel.

When a capillary tube is used, as illustrated in the right panel of Fig. 9, the laser beam is guided
by reflections at the inner capillary wall [30], and laser guiding can thus be achieved in vacuum or at low
plasma density. This guiding scheme does not rely on laser power, or plasma density, and provides the
opportunity to explore a large domain of laser plasma parameters. Laser guiding can, in principle, be
achieved inside capillary tubes with total or partial reflection at the inner wall, depending on the material
of the tube wall, which may be either a conductor or a dielectric material. Metallic tubes could be used
to guide the laser beam without loss at the inner wall. In practice, their surface is usually not optically
smooth for the laser wavelength and tube diameters used for laser guiding at high intensities. Dielectric
capillaries, such as glass capillaries, are optically smooth and can be manufactured with a good reliability
for a large range of inner diameters, wall thicknesses and lengths.

3.2 Eigenmodes of capillary tubes
Solving Maxwell’s equations, with boundary conditions for dielectric surfaces at the capillary tube inner
wall, gives hybrid mode solutions, with quasi-transverse electromagnetic modes. Solving the wave equa-
tion in cylindrical geometry, with boundary conditions describing the continuity of the field components
at the boundary between the vacuum inside the tube and the dielectric wall, different families of eigen-
modes of capillary tubes are obtained [30]. An incident linearly polarized Gaussian laser beam can
be efficiently coupled to the linearly polarized family of hybrid modes, namely the EH1m modes. The
transverse electric components of the EH1m modes at zero order can be found in Ref. [30]. For the EH1m

modes, the transverse electric field amplitude inside the capillary tube can be written as

E1m(r, z, t) = J0(k⊥mr) exp(−klmz) cos(ω0t− kzmz) , (35)
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Fig. 10: Field distribution in the transverse plane for the three first hybrid modes EH1m, plotted forRcap = 50 µm;
bottom graphs show the corresponding distributions through y = 0.

where k⊥m is the transverse wavenumber of the mode with orderm, defined as k⊥m = (k20−k2zm)1/2, and
is given by k⊥m = um/Rcap, Rcap is the capillary tube inner radius, um is the mth root of J0(x) = 0,
and J0 is the Bessel function of integer order. Table 2 gives the first nine values of um. kzm is the
longitudinal wavenumber inside the tube, and k0 is the wavenumber of the laser beam in free space.
Figure 10 illustrates the electric field amplitude in the transverse plane for the three first modes. The
electric field of the EH1m modes is maximum at the tube axis; for m = 1, the field variation is close to
the field of a Gaussian beam.

The exponential decay term in Eq. (35) indicates that the electric field is damped along the dir-
ection of propagation, z: each reflection at the dielectric capillary wall is associated with a refracted
fraction of the laser beam inside the dielectric wall. This refracted fraction is minimum for the smallest
perpendicular wavenumber, corresponding to the grazing incidence. The characteristic damping co-
efficient klm is given by [30]:

klm =
u2m

2k2z0R
3
cap

1 + εr√
εr − 1

, (36)

where εr is the dielectric constant of the wall. This shows that klm strongly depends on the capillary
radius, Rcap, the wavelength of the incident laser beam, and the mode order, through um. Laser damping
is usually described by the attenuation length Llm, defined as

Llm =
1

klm
=

2k2z0R
3
cap

u2m

√
εr − 1

1 + εr
. (37)

After a propagation distance ofLlm, the field magnitude decreases by a factor 1/e and the beam energy by
a factor 1/e2, owing to refraction losses. For example, the values of damping length Llm for a Ti:sapphire
laser (λ0 = 800 nm) guided inside a 50 µm radius capillary tube are given in Table 2 for the nine first
modes. Llm drops rapidly with increasing mode order, which means that higher-order modes are damped
over shorter distances. Therefore, the use of the fundamental mode is preferable, to achieve laser guiding
over a long propagation distance.

The group velocity is determined from the dispersion relation of an electromagnetic wave in a
capillary tube, k20 = (k2z + k2⊥m), for k2⊥m � k20 , as

vgm ' c
(

1− k2⊥m
k20

)1/2

. (38)
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Table 2: Values of um, Ll
m, and vgm for the first nine modes of a capillary: radius, 50 µm; laser wavelength,

λ0 = 800 nm.

m um Llm(cm) vgm/c Fmax
m (10−5)

1 2.404826 91.7 0.99998 2.034
2 5.520078 17.4 0.9999 4.604
3 8.653728 7.1 0.9998 7.2011
4 11.79153 3.8 0.9995 9.8049
5 14.93092 2.4 0.9993 12.4113
6 18.07106 1.6 0.9989 15.0189
7 21.21164 1.2 0.9985 17.6272
8 24.35247 0.9 0.9981 20.2359
9 27.49348 0.7 0.9975 22.8449

The fourth column in Table 2 shows the values of vgm. It can be seen that the group velocity is close
to the velocity of light in free space, and decreases as the mode order increases. This again supports
the use a lower-order mode with higher group velocity, corresponding to a higher phase velocity for the
wakefield.

Another important issue associated with the use of a capillary tube is the threshold of material
damage at the inner wall where reflection occurs, which determines the ability of capillary tubes to guide
intense lasers. To examine this, we define the normalized flux at the capillary inner wall, Fm, as the ratio
of the radial component of the Poynting vector at r = Rcap to the longitudinal component of the on-axis
Poynting vector; it is given by [30]

Fm =
k2⊥m
k20

J2
1 (k⊥mRcap)

cos2 θ + εr sin2 θ√
εr − 1

. (39)

Fm depends on the azimuthal angle θ and mode order m. Fm is minimum for θ = 0, π and maximum
for θ = π/2, 3π/2. It also depends on the mode eigenvalue and capillary radius through k2⊥m. Its
maximum value should be below the threshold of material breakdown, to ensure laser guiding without
non-linear interaction at the wall. As shown in Table 2, Fmax

m increases by one order of magnitude
from the fundamental mode to the ninth mode. Once again, it emphasizes the advantage of using the
fundamental mode. For a glass capillary, the ionization threshold is of the order of 1014 W/cm2 for an
800 nm laser pulse with duration shorter than or of the order of 100 fs [31]. The maximum intensity
on-axis guided by a capillary of 50 µm radius on the fundamental EH11 mode without wall ionization is
thus of the order of 1019 W/cm2.

3.3 Mode coupling
When a laser beam is focused at the entrance of a capillary tube, its energy has to be coupled to the
capillary eigenmodes before propagation. In this section, we describe the conditions of coupling for
two kinds of laser energy distribution in the focal plane, located at the entrance of the capillary tube: a
Gaussian beam and an Airy beam, both of which can be good approximations to describe the beams used
in experiments. As shown in the previous section, monomode guiding with the fundamental EH11 mode
has interesting properties for laser wakefield excitation, so the condition for monomode coupling will be
particularly discussed.

3.3.1 Coupling of a Gaussian beam
Laser beams can be described as transverse electromagnetic modes with a transverse Gaussian envelope.
Assuming a linearly polarized Gaussian beam focused at the capillary entrance (z = 0), the amplitude of
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Fig. 11: Coupling coefficient of modes 1 to 4 for a Gaussian beam with waist w0 incident at the entrance of a
capillary with radius Rcap as a function of the ratio Rcap/w0.

its electric field is written as EG(r) = EL exp(−r2/w2
0), while the electric field inside a capillary tube

is a superposition of the EH1m eigenmodes given by Eq. (35). At the entrance (z = 0), the continuity of
fields reads

EL exp(−r2/w2
0) =

∞∑

m=1

AmE1m =
∞∑

m=1

AmJ0

(
umr

Rcap

)
. (40)

The coefficient Am indicates the amplitude of the EH1m mode, which can be determined using the
orthogonality of Bessel functions,

Am = 2EL

∫ 1
0 x exp(−x2R2

cap/w
2
0)J0(umx)dx

J2
1 (um)

. (41)

The coupling coefficient, Cm, is defined as the fraction of incident energy coupled to the EH1m mode,
and can be written as

Cm = 8

(
Rcap

w0

)2

[∫ 1
0 x exp(−x2R2

cap/w
2
0)J0(umx)dx

]2

J2
1 (um)

. (42)

Cm thus depends on the mode orderm, the capillary radiusRcap, and the laser waistw0. Figure 11 shows
the dependence of the coupling coefficient of an incident Gaussian beam on the first four eigenmodes, as
a function of the ratio of capillary radius to laser waist, Rcap/w0. It shows that monomode coupling can
be achieved when Rcap/w0 ' 1.55 (or w0/Rcap ' 0.65). In this case, almost 98% of the incident laser
energy is coupled to the fundamental EH11 mode, and only 1% of laser energy is coupled to higher-order
modes. The remaining 1% of laser energy is the energy contained in the wings of the Gaussian function
outside the capillary diameter, and it is lost into the material at the front surface of capillary tube.

For 1.2 ≤ Rcap/w0 ≤ 2, more than 90% of the incident laser energy can be coupled to the
first mode. When Rcap/w0 → 0, the laser size increases, and the fundamental mode is predominantly
excited, although coupling efficiency decreases quickly. This is because the laser energy is outside the
capillary diameter and hits the front surface of the capillary tube, as illustrated by the left-hand sketch
in Fig. 11. As Rcap/w0 increases, the laser waist becomes small compared with the optimal waist for
quasi-monomode coupling. In this case, the laser energy is nearly 100% coupled into the capillary tube,
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Fig. 12: Coupling coefficient of an Airy beam to the first five eigenmodes as a function Rcap/r0. The grey area
indicates the range of Rcap/r0 where more than 80% of the incident laser energy is coupled to the EH11 mode.

as indicated by the sum. However, the energy coupled to the fundamental mode decreases at the benefit
of the excitation of higher-order modes, resulting in undesired mode beating and severe laser attenuation
during the propagation in the capillary tube.

3.3.2 Coupling of an Airy beam
Another case of interest is the coupling of a laser beam with an Airy-like distribution in the focal plane
[32]. The electric field amplitude for an Airy beam focused at the capillary entrance (z = 0) is written as

EA = EL
J1(ν1r/r0)

r
, (43)

where ν1 = 3.8317 is the first root of the equation J1(x) = 0, and r0 is the radius corresponding to the
first zero. The continuity of the electric field at the capillary entrance gives

EL
J1(ν1r/r0)

r
=
∞∑

m=1

AmE1m =

∞∑

m=1

AmJ0

(
umr

Rcap

)
, (44)

and the coupling coefficient, Cm, can be calculated from

Cm =
4

J2
1 (um)

[∫ 1

0
J1

(
ν1Rcap

r0
x

)
J0(umx)dx

]2
. (45)

The coupling coefficients for the first five eigenmodes are plotted as functions of Rcap/r0 in
Fig. 12. This shows that quasi-monomode guiding of an Airy beam can be achieved for Rcap/r0 ' 1.
However, even in this case, only 83% of the incident laser energy is coupled to the fundamental mode,
while the remaining 17% energy contained by the laser distribution for r > Rcap hits the capillary en-
trance wall. When Rcap/r0 increases, more laser energy can be coupled inside the capillary tube but
essentially to higher-order modes. It is thus less efficient to use an Airy beam than a Gaussian beam in
terms of laser coupling and monomode guiding. Another issue is capillary breakdown. The front surface
of the capillary tube is exposed to a greater energy for an Airy beam than for one with a Gaussian profile;
hence, the peak laser intensity has to be lowered to avoid capillary damage at the entrance.

To summarize, quasi-monomode guiding can be selected by coupling the input laser energy to the
fundamental EH11 mode: 98% of the energy of a Gaussian beam can be coupled to the fundamental
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Fig. 13: Example of guiding of a low-intensity laser in the absence of plasma

mode for a waist size w0 = 0.645Rcap. This mode is preferable for laser wakefield acceleration as its
group velocity is close to the velocity of light in free space, its damping factor is a minimum for a given
capillary radius and wavelength, and the transverse electric field exhibits a variation similar to a Gaussian
beam.

3.4 Experimental demonstration of laser guiding
Guiding in capillary tubes at low intensity has been measured and corresponds to theoretical predictions
in terms of coupling and transmission. Experimentally, the incident beam should be focused at the
entrance plane of the capillary tube, as illustrated in Fig. 13. In this case, a HeNe laser (λ0 = 632 nm)
was focused at the entrance of a capillary tube, of length 30 mm and inner diameter 127 µm. The focal
spot was measured to be Gaussian with a waist of about 43 µm, which corresponds to w0 = 0.68Rcap,
close to the matching condition for monomode guiding. Figure 13 also shows the transmitted laser spot
at the output of the capillary, which is symmetrical and exhibits the pattern of the fundamental mode.

In this case, a transmission of 90 ± 2% was obtained experimentally, and can be compared with
the theoretical transmission. The transmission is defined as the ratio of incident and transmitted laser
energies at the capillary entrance and exit, respectively. The theoretical transmission of energy for the
fundamental mode is given by T1 = C1 exp(−2Lcap/L

l
1) The theoretical value of the coupling co-

efficient C1 of a Gaussian beam for the EH11 mode is 97% for w0 = 0.68Rcap. The attenuation length
is calculated from Eq. (37) as L = 230 cm for λ0 = 632 nm and Rcap = 63 µm. Thus the theoretical
transmission is calculated as T1 = 94%, which is very close to the experimental value, suggesting that
excellent alignment and beam quality were achieved in the experiment, leading to quasi-monomode guid-
ing. The sensitivity of the coupling and transmission to misalignments have been studied theoretically:
predictions are in excellent agreement with experimental results and are discussed in Ref. [33].

Monomode guiding has been demonstrated experimentally for laser intensities of the order of
I0 ' 1016 W/cm2 in a vacuum [34] and the transmission has been measured for different values of the
capillary tube radius. In agreement with theoretical predictions, the damping length was found to increase
with the cube of capillary radius, as illustrated in Fig. 14. The measured transmissions correspond to the
predicted values for quasi-monomode guiding, which was thus measured in a vacuum over a distance
of 100 Rayleigh lengths. Analytical predictions for coupling conditions and damping length have been
confirmed experimentally for tubes under vacuum.

3.5 Measurement of plasma waves in capillary tubes
The excitation of plasma waves over a length of up to 8 cm was, for the first time [21], demonstrated
using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. Laser guiding at
input intensities up to 1018 W/cm2 was achieved with more than 90% energy transmission in evacuated
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Fig. 14: Measured transmission as a function of propagation distance for two values of the capillary tube radius,
Rcap = 35 µm (open circles and dotted line), and Rcap = 25 µm (filled circles and solid line).

Fig. 15: Spectrum of the laser beam at the output of a capillary tube in vacuum (black solid curve, the vertical line
indicates the centre of the spectrum in a vacuum through the capillary) and in 40 mbar of hydrogen (red line).

or hydrogen-filled gas tubes up to 8 cm long, with a radius of Rcap = 50 µm. To investigate the linear
and moderately non-linear regime, the input intensity was kept below 3× 1017 W/cm2, and the electron
density was varied in the range 0.05–5 × 1018 cm−3. The plasma wave amplitude was diagnosed by
analyzing the spectrum of the transmitted laser radiation. Laser pulses transmitted through gas-filled
capillary tubes exhibit broadened spectra. In the range of parameters relevant to this experiment, spectral
modifications of the laser pulse driving the plasma wave, after propagating in the plasma over a large
distance, are mainly related to changes in the index of refraction of the plasma during the creation of the
plasma wave. The front of the laser pulse creates an increase in electron density, leading to a blueshift
at the front of the pulse, while the rear of the pulse creates a decrease of electron density with larger
amplitude, and thus a redshift of the spectrum.

The signature of plasma wave excitation is a redshift of the laser beam, i.e., a shift of the spectrum
towards longer wavelengths, as seen in Fig. 15. The spectrum at the output of a 7 cm long capillary was
measured in a vacuum and compared with the spectrum in the presence of 40 mbar of hydrogen filling
the tube.

The wavelength shift, ∆λ/λ can be shown [35] to be directly related to the energy of the plasma
wave with electric field, Ep, excited in the plasma volume, V ,

∆λ

λ
' 1

16πEout

∫

V
E2

pdV , (46)

where Eout is the total energy of the transmitted laser pulse. For monomode propagation of a laser pulse
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Fig. 16: Wavelength shifts as functions of the length of capillary filled with hydrogen at different pressure values,
as determined experimentally (symbols with error bars) and through modelling (curves).

with a Gaussian time envelope, generating a wakefield in the weakly non-linear regime, the wavelength
shift can be expressed analytically [21]. For small energy losses at the capillary wall, it is proportional to
the peak laser intensity on the capillary axis, and to the length of the capillary, and exhibits a resonant-like
dependence on gas pressure directly linked to plasma wave excitation. The dependence of the spectral
redshift was measured as a function of filling pressure, capillary tube length, and incident laser energy,
and was found to be in excellent agreement with results from modelling, as illustrated in Fig. 16. A
linear behaviour of the wavelength shift as a function of length is observed at 20 mbar. The fit of
experimental data by simulation results demonstrates that the plasma wave is excited over a length as
long as 8 cm. As the pressure is increased, the non-linear laser pulse evolution is amplified, with the
propagation length leading to a plasma wave amplitude larger than the linear prediction. The longitudinal
accelerating field, inferred from a detailed analysis of laser wakefield dynamics in capillary tubes and
numerical simulations [36], is in the range of 1–10 GV/m for an input laser intensity of the order of
I0 ' 1017 W/cm2, as shown in Fig. 17. The average product of gradient and length achieved in this
experiment was thus of the order of 0.4 GV at a pressure of 50 mbar; it could be increased to several
gigavolts by increasing the length and diameter of the capillary tube with higher laser energy.

In conclusion, the outgoing spectra of driving laser pulses measured after propagation in gas-filled
capillaries supported by relevant modelling provide detailed information on laser pulse dynamics and on
the main characteristics of the accelerating fields excited in the wake of the laser pulses over the long
distances necessary for efficient acceleration of electrons to high energies.

4 Conclusion and perspectives
In summary, several features of laser-driven plasma wakefields linked to laser propagation in a plasma
were introduced and discussed. Numerous results from previous studies clearly indicate that reducing the
plasma density is the best method of increasing the energy of the accelerated electrons. At lower dens-
ities, such mechanisms as dephasing between the electron bunch and the plasma wave and the progressive
depletion of the driving laser pulse have to be taken into account, as they limit the maximum attainable
energy. Increased electron energy of the order of a few gigaelectronvolts is currently achieved at lower
plasma densities and higher laser peak powers, in non-linear regimes of laser plasma acceleration, where
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Fig. 17: Average amplitude of the plasma wave electric field measured at the output of a 8 cm long glass capillary
tube as a function of filling pressure.

extending the plasma length to the dephasing length is a challenge. Eventually, lowering the plasma
density will lead to a regime where self-injection of plasma electrons in the plasma wave does not take
place and injection of electrons from external sources has to be implemented.

Ongoing efforts of accelerator development tend to increase the energy of electrons, while im-
proving the electron bunch properties, of which energy spread and transverse emittance are key para-
meters for beam transport and focusing, as well as subsequent applications. Separating electron injection
and acceleration processes, and relying on a number of purely accelerating stages [37], provide solutions
to the issues of dephasing and depletion, and make the acceleration process scalable to higher energies,
while preserving the bunch quality. Two crucial aspects of multistage laser-driven plasma acceleration
are laser guiding over metre-scale distances [38] and control of the properties of the electron bunch for
external injection into the plasma wave of the accelerating stage.

Future work will tackle the different issues of multistage laser-driven plasma acceleration. Laser
guiding and increased laser energy are expected to produce electron bunches in the 10 GeV range in
one stage (see, for example, the BELLA project [39] in the USA or the CILEX APOLLON project [40]
in France). Staging is the next milestone for the development of laser-driven plasma accelerators. The
APOLLON laser facility [41], under construction in France, will provide two beams in the 1–10 PW
range, and a shielded large experimental area built to host multistage experiments [40]. In those experi-
ments, the first stage (i.e., the injector) will be used to generate electrons in the 50–200 MeV range,
which will then be transported [42] and focused into the accelerator stage. The quality of the accelerated
bunch will thus result from the combined intrinsic properties of the injector and the capability of the
transport line to accommodate them.

In the long term, the development of laser-driven accelerators will rely on improvements in the
performance of laser systems, in terms of beam quality, reliability, stability, and average power. Plasma
stages in the quasi-linear regime provide means to control transverse and longitudinal fields, and con-
sequently the dynamics of accelerated bunches. Electron or positron beams can be accelerated in this
regime, and external injection schemes into metre-scale low-density plasma sources need to be de-
veloped.
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Ion Acceleration—Target Normal Sheath Acceleration*

M. Roth and M. Schollmeier
Institute for Nuclear Physics, Technische Universität Darmstadt, Darmstadt, Germany

Abstract
Energetic ions have been observed since the very first laser-plasma experi-
ments. Their origin was found to be the charge separation of electrons heated
by the laser, which transfers energy to the ions accelerated in the field. The
advent of ultra-intense lasers with pulse lengths in the femtosecond regime
resulted in the discovery of very energetic ions with characteristics quite dif-
ferent from those driven by long-pulse lasers. Discovered in the late 1990s,
these ion beams have become the focus of intense research worldwide, be-
cause of their unique properties and high particle numbers. Based on their non-
isotropic, beam-like behaviour, which is always perpendicular to the emitting
surface, the acceleration mechanism is called target normal sheath acceleration
(TNSA). We address the physics of the mechanism and its dependence on laser
and target parameters. Techniques to explore and diagnose the beams, to make
them useful for applications, are also addressed.

Keywords
Laser; ion acceleration; ultraintense lasers; plasma; accelerator.

1 Introduction
Since the first irradiation of a target by a laser, the generation of energetic ions has been well known.
The origin of those ions is the electric field generated by the charge separation as a result of the en-
ergy transferred from a long-pulse laser to the electrons, and their respective temperature [1]. The ions
are then accelerated in the double-layer potential and can reach significant particle energies, expanding
isotropically in all directions from the target front surface. Since the advent of ultra-short-pulse lasers
with pulse lengths of less than picoseconds, one of the most exciting results obtained in experiments
using solid targets is the discovery of very energetic, very intense bursts of ions coming off the rear,
non-irradiated surface in a very high quality, beam-like fashion. At the turn of the century, a number
of experiments have resulted in proton beams with energies of up to several tens of megaelectronvolts
generated behind thin foils irradiated by lasers exceeding hundreds of terawatts [2–4]. Since the first
observations, an extraordinary amount of experimental and theoretical work has been devoted to the
study of these beams’ characteristics and production mechanisms. Particular attention has been devoted
to the exceptional accelerator-like spatial quality of the beams, and current research focuses on their
optimization for use in a number of groundbreaking applications, addressed in Section 4. But first we
will focus on the best understood of all the possible acceleration mechanisms, so-called target normal
sheath acceleration (TNSA).

The greater part of this chapter is drawn from Ref. [5]. Review articles about TNSA, the diag-
nostics of short-pulse laser plasmas, and applications in fast ignition can also be found in Refs. [6–10].

*Re-published, with permission, from P. McKenna et al (eds.), "Laser-Plasma Interactions and Applications", Scottish
Graduate Series (Springer International Publishing, 2013).
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Switzerland, 23–29 November 2014, edited by B. Holzer, CERN-2016-001 (CERN, Geneva, 2016)
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2 Target normal sheath acceleration: the mechanism
2.1 Initial conditions
The primary interaction of a high-intensity short laser pulse with a solid target strongly depends on
the contrast of the laser pulse, that is, the ratio of unwanted, preceding laser light to the main pulse.
At peak intensities exceeding 1020 W/cm2 even a contrast of 106 is sufficient to excite a plasma that is
expanding towards the incoming main pulse. As a common source of this unwanted laser light, amplified
spontaneous emission or prepulses, caused by a limited polarization separation in regenerative amplifiers,
have been identified. This ablative plasma sets the stage for a wealth of uncontrolled phenomena at
the interaction of the main pulse with the target. The laser beam can undergo self-focusing due to
ponderomotive force or relativistic effects, thereby strongly increasing the resulting intensity, or it can
break up into multiple filaments, or, finally, it can excite instabilities that ultimately lead to the production
of energetic electrons. Moreover, the ablative pressure of blow-off plasma caused by the incident laser
energy prior to the main pulse launches a shockwave into the target, which can ultimately destroy the
target before the arrival of the main pulse. We address this issue, even though it is not directly related to
the TNSA mechanism, because of its influence on the electron spectrum and the thickness of targets that
can be used in practice.

2.2 General description
Before going into detail, it is worth taking a step back and qualitatively looking at the general picture
of the TNSA ion acceleration mechanism. Let us interpret the process of generating a proton beam by
TNSA as a new variation on a familiar theme—acceleration by a sheath electrostatic field generated
by the hot-electron component. We assume the interaction of an intense laser pulse well exceeding
1018 W/cm2 with a solid thin foil target as the standard case for TNSA. The interaction of the intense
laser pulse with the preformed plasma and the underlying solid target constitutes a source of hot elec-
trons with an energy spectrum related to the laser intensity. This cloud of hot electrons penetrates the foil
at, as we shall see, an opening angle of about 30◦ and escapes into the vacuum behind the target. The
target’s capacitance, however, allows only a small fraction of the electrons to escape before the target
is sufficiently charged that escape is impossible for even megaelectronvolt electrons. Those electrons
are then electrostatically confined to the target and circulate back and forth through the target, laterally
expanding and forming a charge-separation field on both sides over a Debye length. At the rear surface
there is no screening plasma, owing to the short time-scales involved, and the induced electric fields are of
the order of several teravolts per metre. Such fields can ionize atoms and rapidly accelerate ions normal
to the initially unperturbed surface. The resulting ion trajectories thus depend on the local orientation
of the rear surface and the electric field lines driven by the time-dependent electron density distribution.
As the ions start from a cold solid surface just driven by quasi-static electric fields, the resulting beam
quality is extremely high, as we shall see. This process is illustrated in Fig. 1.

2.3 Electron driver
Current laser systems are not yet capable of accelerating ions directly. Therefore, all existing laser ion
acceleration mechanisms rely on the driving electron component and the resulting strong electric field
caused by charge separation. Thus the electron driver is extremely important, and will be discussed
here in detail. As a rule of thumb, particle-in-cell calculations [11–13] have indicated that the so-called
hot-electron component has a logarithmic-slope temperature that is roughly equal to the ponderomotive
potential of the laser beam. This is represented by the cycle-averaged kinetic energy of an electron
oscillating in the laser electromagnetic field, Thot ≈Upond ≈ 1 MeV× (Iλ 2/1019 W · µm2/cm2)1/2 in the
relativistic regime [14]. The relativistic electrons are directed mainly in the forward direction [15]; hence,
the particle distribution function can be simplified by a one-dimensional Maxwell–Jüttner distribution,
which is close to an ordinary Boltzmann distribution.
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Figure 2.4: Target Normal Sheath Acceleration – TNSA. A thin target foil with thickness d = [5− 50]µm is irra-
diated by an intense laser pulse. The laser pre-pulse creates a pre-plasma on the target’s front side.
The main pulse interacts with the plasma and accelerates MeV-energy electrons mainly in forward
direction. The electrons propagate through the target, where collisions with the background material
can increase the divergence of the electron current. The electrons leave the rear side, resulting in a
dense sheath. An electric field due to charge-separation is created. The field is on the order of the
laser’s electric field (TV/m), which ionizes atoms at the surface. The ions are then accelerated in this
sheath field, pointing in the target normal direction.

2.3.1 Fast-electron transport in dense matter

The transport of fast electrons in dense matter is still a very active research field, because the experimental as

well as the theoretical access are both quite complex due to the high current, high density and the non-linear

interaction involved. An overview of the field can be found in ref. [168].

A schematic picture of the electron transport in intense laser-matter interaction is shown in fig. 2.5 and will

be used for the explanation of the various effects observed in electron transport. The laser impinges from the

left side on a pre-formed, exponentially decaying pre-plasma (sec. 2.2). The light pressure pushes the critical

surface nc , leading to a steeping of the density profile. The plasma ablation drives an inward-traveling shock

wave, leading to ionization as well as a temperature increase in the former cold solid.

The laser creates a hot electron distribution (sec. 2.2.1), which is accelerated into the dense plasma. The

estimate in section 2.2.1 has shown, that about N = ηEL/kB Thot electrons with energies in the MeV-range are

created in intense laser-matter interaction. They are injected into the dense plasma with an angular distribution

according to tanθ = [2/(γ−1)]1/2 [173,195]. The injection direction depends on the direction of the pre-plasma

density gradient as well as the laser beam propagation direction [179].

The huge number of electrons amounts to a current of jfast = e N/τL , that is on the order of mega-ampere for

typical laser parameters. Hence the propagation of fast electrons is not only governed by collisional effects,

determining the stopping power of electrons in the material, but collective (e.g. electromagnetic) effects as

well. Assuming a straight electron transport [196] in a cylinder with radius of the laser spot radius, the current

creates a magnetic flux density B = µ0 jfast/2πr0 on the order of 105
T. The magnetic field energy is then

W =
µ0e2

8π

�
ηEL

τLkB Thot

�2
d, (2.29)

Chapter 2. Relativistic laser-matter interaction and ion acceleration 19

Fig. 1: Target normal sheath acceleration. A thin target foil with thickness d = 5–50 µm is irradiated by an
intense laser pulse. The laser prepulse creates a preplasma on the target’s front side. The main pulse interacts with
the plasma and accelerates megaelectronvolt electrons, mainly in the forward direction. The electrons propagate
through the target, where collisions with the background material can increase the divergence of the electron
current. The electrons leave the rear side, resulting in a dense sheath. An electric field due to charge separation is
created. The field is of the order of the laser electric field (∼ TV/m), and ionizes atoms at the surface. The ions
are then accelerated in this sheath field, pointing in the target normal direction.

The conversion efficiency from laser energy to hot electrons is not perfect, and only a fraction η
is converted. The total number of electrons is

n0 =
ηEL

cτLπr2
0kBThot

, (1)

following a scaling with intensity as

η = 1.2×10−15I0.74 , (2)

with the intensity in watts per square centimetre reaching up to 50% [16]. For ultra-high intensities, η
can reach up to 60% for near-normal incidence and up to 90% for irradiation under 45◦ [17]. A discussion
on which distribution function best fits the experimental data is given in Ref. [18] and, in more detail, in
Ref. [19]. However, neither theoretical nor experimental data give a clear answer to the question about
the shape of the distribution function.

Given the intensities of modern short-pulse lasers, therefore, copious amounts of energetic elec-
trons are generated and, in contrast with thermal electrons in long-pulse laser plasmas, are pushed into
the target. It is fair to estimate that a fraction of N = ηEL/kBThot electrons in the megaelectronvolt range
are created, where EL is the laser energy. These electrons have typical energies such that their mean free
path is much longer than the thickness of the targets typically used in experiments. While the electrons
propagate through the target, they constitute a current that exceeds the Alfvén limit by several orders
of magnitude. Alfvén found that the main limiting factor on the propagation of an electron beam in a
conductor is the self-generated magnetic field, which bends the electrons back towards the source [20].
For parameters of relevance for inertial confinement fusion, a good review is given in Ref. [21]. So as not
to exceed the limit of jA = mec3βγ/e = 17βγ (kA), the net current must be largely compensated for by
return currents, to minimize the resulting magnetic field. The return currents will be driven by the charge
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Figure 2.5: Schematic of laser-generated fast-electron transport. The laser (shown in red) impinges on a pre-
plasma with exponential density profile from the left side. The light pressure leads to profile steepen-
ing, depicted in the one-dimensional scheme on top. An ablation plasma creates an inward-traveling
shockwave, that heats, ionizes and compresses the target. Fast electrons are created by the laser,
propagating into the dense plasma towards the target rear side. The high electron current jfast can
lead to filamentation and magnetic field generation (shown by the light red- and blue-colored areas),
as well as it drives a return current jret.. The global magnetic field tends to pinch the fast-electron
current. Electrons propagating in the dense, solid matter interact by binary collisions with the back-
ground material. This leads to a broadening, that becomes the major effect for longer distances. At
the rear side, the electrons form a sheath and build up an electrostatic field Ez (grey line in 1D-plot).
This can lead to re-fluxing (re-circulation) of the electrons, heating the target even more.

where d denotes the target thickness, that is d = [5− 50]µm typically. The energy stored in this field easily

becomes greater than the laser energy, which violates energy conservation. For typical experimental parame-

ters, e.g. taking the example from sec. 2.2.1, the limit is reached for d ≈ 10µm already. Hence for a trans-

port from the front to the rear side a return current jret. must exist, balancing the forward-directed current

to yield jtotal = jfast + jret. ≈ 0. In addition to that, without the return current the electric field according to

∂ E/∂ t = − jfast/�0 would stop the electrons in a distance of less than 1 nm [197]. The electric field driving

the return current in turn, can be strong enough to stop the fast electrons. The effect is known as transport
inhibition, being significant in insulators [198–200], but negligible in conductors (to first order) [199]. Both

magnetic field as well as electric field generation are inversely dependent on the target’s electrical conductiv-

ity, hence conducting targets are favorable for laser-ion acceleration, where a transport from the front- to the

rear-side is necessary [76]. The condition jtotal = jfast + jret. ≈ 0 implies that the number of fast electrons is

much smaller than the slow electrons carrying the return current [197]. The counter-propagating streams of

charged particles are subject to a nonlinear Weibel instability [201], leading to a filamentation of the electron

beams [202,203] in the low-density part of the target (pre-plasma) and self-generated magnetic field filamenta-

tion. The gyroradius of the electrons is on the order of the local skin length ls = c/ωp ≈ 0.1µm [204]. The large

magnetic fields accompanying the laser-plasma interaction are depicted by the red and blue-colored areas in

20 2.3. Laser-ion acceleration

Fig. 2: Schematic of laser-generated fast-electron transport. The laser (shown in red) impinges on a preplasma
with exponential density profile from the left side. The light pressure leads to profile steepening, depicted in the
graph at the top of the figure. An ablation plasma creates an inward-travelling shockwave that heats, ionizes,
and compresses the target. Fast electrons are created by the laser, propagating into the dense plasma towards the
target’s rear side. The high electron current jfast can lead to filamentation and magnetic field generation (shown
by the light red- and blue-coloured areas), as well as driving a return current jret. The global magnetic field tends
to pinch the fast-electron current. Electrons propagating in the dense solid matter interact with the background
material by binary collisions. This leads to a spatial broadening of the electron distribution, which becomes the
major effect for longer distances. At the rear side, the electrons form a sheath and build up an electrostatic field Ez

(grey line in graph). This can lead to refluxing (recirculation) of the electrons, heating the target even further.

separation in the laser–plasma interaction region and strongly depends on the electrical conductivity of
the target, as those currents are lower in energy and thereby affected by the material properties. The
large counter-streaming currents also give rise to instabilities, which affect the forward motion of the
electrons. The influence of limited electrical conductivity on the inhibition of fast-electron propagation
has been addressed in Ref. [22], also with respect to space charge separation. Without the return currents,
the electric field would stop the electrons in a distance of less than 1 nm [23]. The electric field driving
the return current, in turn, can be strong enough to stop the fast electrons. This effect, known as transport
inhibition, is prominent in insulators, but almost negligible in conductors [24].

The propagation of electrons through the target is still an active field of research. As depicted in
Fig. 2, the laser pushes the critical surface nc, leading to a steepening of the electron density profile. The
motion of the ablated plasma causes a shockwave to be launched into the target, leading to ionization
and therefore a modification of the initial electrical conductivity. As soon as the electrons penetrate
the cold solid region, binary collisions (multiple small-angle scattering) with the background material
are no longer negligible. These tend to broaden the electron distribution, counteracting the magnetic
field effect [25]. For long propagation distances (z ≥ 15 µm), the current density is low enough that
broadening due to small-angle scattering becomes the dominating mechanism [26].
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The majority of data show a divergent electron transport. The transport full-cone angle of the
electron distribution was determined to be dependent on laser energy and intensity, as well as target
thickness. For rather thick targets (d > 40 µm) this value is around 30◦ for full width at half maximum
(FWHM), whereas for thin targets (d ≤ 10 µm) published values are of the order of 16◦ (this figure was
indirectly obtained by a fit to proton energy measurements) and are ≈150◦ at most [27]. It has been
shown that different diagnostics lead to different electron transport cone angles [28], so the nature of the
‘true’ cone angle dependence with laser and target parameters remains unclear.

When the electrons reach the rear side of the target, they form a dense charge-separation sheath.
The outflowing electrons lead to a toroidal magnetic field Bθ , which can spread the electrons over large
transverse distances by a purely kinematic E×Bθ force [29], sometimes called the fountain effect [30].
The electric field created by the electron sheath is sufficiently strong to deflect electrons back into the
target, which then recirculate. Experimental evidence for recirculating electrons is presented in Refs.
[17, 31, 32]. The relevance to proton acceleration was first demonstrated by MacKinnon et al. [33], who
measured a strong enhancement of the maximum proton energy for foils thinner than 10 µm, compared
with thicker foils. With the help of computer simulations, this energy enhancement was attributed to an
enhanced sheath density caused by refluxing electrons. Further evidence of refluxing electrons was also
found in an experiment discussed in Ref. [34].

Neglecting the complicated interaction for thicknesses below d ≈ 15 µm, a reasonable estimate
for the electron beam divergence is the assumption that the electrons are generated in a region of the
size of the laser focus and are purely collisionally transported to the rear side of the target. This is in
agreement with most published data. The broadening of the distribution is then due to multiple Coulomb
small-angle scattering, given analytically, e.g., by Molière’s theory in Bethe’s description [35]. To lowest
order, the angular broadening, f (Θ), follows a Gaussian (see Ref. [35], Eq. (27)),

f (θ) =
2e−ϑ 2

χ2
c B

√
θ/sinθ , (3)

where the second term on the right-hand side is a correction for larger angles (from Ref. [35], Eq. (58)).
The angle ϑ can be related to θ by ϑ = θ/χcB1/2. The transcendental equation, B− lnB = ln

(
χ2

c /χ2
a′
)
,

determines B. The screening angle χ2
a′ is given by χ2

a′ = 1.167(1.13+ 3.76α2)λ 2/a2, where λ = h̄/p
is the de Broglie wavelength of the electron and a = 0.885aBZ−1/3, with the Bohr radius aB. α is
determined by α = Ze2/(4πε0h̄βc) with the nuclear charge Z, electron charge e, and β = v/c, where ε0,
h̄, and c denote the usual constants. The variable χc is given by

χ2
c =

e4

4πε2
0 c2

Z(Z +1)Nd
β 2 p2 , (4)

with the electron momentum p and N = NAρ/A being the number of scattering atoms, determined by
Avogadro’s number NA, material density ρ , and mass number A. χc is proportional to the material
thickness d and density ρ as χc ∝ (ρd)1/2. Since χc determines the width of f (θ), the angular spread of
the electron distribution propagating through matter is proportional to its thickness as well as its density.
The analytical formula allows us to estimate the broadening of the laser-accelerated electron distribution
during the transport through the cold solid target. For a laser intensity IL = 1019 W/cm2, the mean energy
(temperature) is kBThot ≈ 1 MeV. The increase in distribution radius r with target thickness d is shown
in Fig. 3. The electrons were propagated in aluminium (red dashed lines) and gold (blue dashed lines).
Aluminium does not lead to a strong broadening, owing to its low density and Z; compare this with the
broadening observed in gold. The graph shows that in each case the radius at the rear side scales as r ∝ d2

(green lines).

The estimate based on an electron distribution broadening determined by small-angle scattering
can be used to explain the measured proton beam profiles. It should be noted that although the model
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To lowest order the angular broadening f (⌃ ) follows a Gaussian (see ref. [225], eq. (27))

f (⌃ ) =
2e�✓

2

✏2
c B

⌃/ sin⌃ , (2.30)

where the second term on the right-hand side is a correction for larger angles (from [225], eq. (58)). The angle

✓ can be related to ⌃ by ✓ = ⌃/✏cB
1/2. The transcendental equation B � ln B = ln

#
✏2

c /✏
2
a⇣
&

determines B. The

screening angle ✏2
a⇣ is given by ✏2

a⇣ = 1.167 (1.13+ 3.76�2)⌥2/a2, where ⌥ = h/p is the deBroglie wavelength of

the electron and a = 0.885 aB Z�1/3, with the Bohr radius aB (see start of chapter 2 for the definition of aB). � is

determined by � = Ze2/(4⌦⌘0h⇥ c) with the nuclear charge Z , electron charge e, ⇥ = v/c and ⌘0,h, c denote the

usual constants. The variable ✏c is given by

✏2
c =

e4

4⌦⌘2
0c2

Z (Z + 1)N d

⇥2 p2 , (2.31)

with the electron momentum p and N = NA↵/A being the number of scattering atoms, determined by Avo-

gadro’s number NA, material density ↵ and mass number A. ✏c is proportional to the material thickness d and

density ↵ as ✏c ✏ (↵ d)1/2. Since ✏c determines the width of f (⌃ ), the angular spread of the electron distribution

propagating through matter is proportional to its thickness as well as its density.

The analytical formula allows to estimate the broadening of the laser-accelerated electron distribution during

the transport through the cold solid target. For a laser intensity IL = 1019 W/cm2 the mean energy (temperature)

is kB Thot ⌦ 1MeV. The increase of the radius r with target thickness d is shown in figure 2.6. The electrons were

chosen to propagate in Aluminum (– – –) and Gold (– – –). Al does not lead to a strong broadening due to its

low density and Z , compared to the broadening in gold. The graph shows that in both cases the radius at the

rear side scales as r ✏ d2 (——).
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Figure 2.6: Increase of the radius r of an electron distribution with target thickness d . The calculation was done

with eq. (2.30), taking an energy of kB Thot ⌦ 1MeV, corresponding to a laser intensity I = 1019 W/cm2.

(– – –) shows the calculation for Gold, (– – –) corresponds to Aluminum. Both curves resemble a

quadratic increase with thickness d (——-).

22 2.3. Laser-ion acceleration

Fig. 3: Increase in radius r of an electron distribution with target thickness d. The calculation utilized Eq. (3),
taking an energy of kBThot ≈ 1 MeV, corresponding to a laser intensity I = 1019 W/cm2.

seems to be able to calculate the broadening of the forward-propagating fast-electron distribution gener-
ated by intense laser–matter interaction, it could fail to determine the real number of electrons arriving
at the rear side of the target. According to Davies [19], the generation of electromagnetic fields, as well
as the recirculation of the electrons, must be taken into account, making estimation and even calculation
very difficult. Recent experiments by Akli et al. [36] have shown that this is true at least for targets
thinner than 20 µm, but for thicker foils the assumption of strong recirculation overestimates the number
of electrons. Therefore, the question of whether electromagnetic fields and recirculation are essential to
determine fast-electron transport from the front to the rear side of the target can still not be satisfactorily
answered, although assuming simple collisional broadening gives a a relatively good estimate.

2.4 Target normal sheath acceleration
The electrons are transported through the target to its rear side. The laser creates about 1013 electrons,
which potentially all propagate through the target. The broadening results in transverse extension, which
can be estimated by

rsheath = r0 +d tan(θ/2), (5)

where r0 denotes the laser spot radius, d the target thickness, and θ the broadening angle of the distri-
bution, e.g., calculated using Eq. (3). The electrons exhibit an exponential energy distribution

nhot(E) = n0 exp
(
− E

kBThot

)
(6)

with temperature kBT and overall density n0, as given by Eq. (1). The electron density at the rear side
(neglecting recirculation), therefore, can be estimated as
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ne,0 =
ηEL

cτLπ(r0 +d tanθ/2)2kBThot
(7)

≈ 1.5×1019 r2
0

(r0 +d tanθ/2)2

I7/4
18√

1+0.73I18λ 2
µm−1

[
cm−3] . (8)

This last approximation was obtained by inserting E0 =
√

2I0/ε0c≈ 2.7×1012 V/m and using Eqs. (1)
and (2), together with a practical notation for the electron temperature based on ponderomotive scaling,

kBThot = m0c2



√

1+
I0 [W/cm2] λ 2

L [µm2]

1.37×1018 −1


 , (9)

in Eq. (7). I18 indicates that the intensity has to be taken in units of 1018 W/cm2. The estimate shows that
the electron density at the rear side of the target strongly scales with the laser intensity and is inversely
proportional to the square of the target thickness. Taking the standard example of a laser pulse with
I = 1019 W/cm2, focused to a spot of r0 = 10 µm and assuming a target thickness d = 20 µm, the
angular broadening according to Eq. (3) is θ = 42◦ (FWHM) for electrons with mean energy kBT , as
determined by Eq. (9). Hence, the electron density at the target’s rear side is ne,0 = 1.4×1020cm−3. This
is orders of magnitude below the density of the solid and justifies the assumption of a shielded transport
through the target.

The electrons arrive at the rear side of the target and escape into the vacuum. The charge separation
leads to an electric potential Φ in the vacuum region, according to Poisson’s equation. In one dimension,
it is given as

ε0
∂ 2Φ
∂ z2 = ene . (10)

To solve Eq. (10), it is assumed that the solid matter in one half-space (z≤ 0) perfectly compensates for
the electric potential, whereas for z→∞ the potential goes to infinity. The derivative ∂Φ/∂ z vanishes for
z→±∞. In the vacuum region (z > 0), the field can be obtained analytically [37]. The electron density
is taken as

ne = ne,0 exp
(

eΦ
kBThot

)
, (11)

where the electron kinetic energy is replaced by the potential energy −eΦ. The initial electron dens-
ity ne,0 is taken from Eq. (8). The solution of the Poisson equation is found by using the ansatz
eΦ/kBThot = −2ln(λ z+ 1), where λ is a constant defined by the solution and the ‘+1’ is necessary
to fulfil a continuous solution with the condition Φ(0) = 0 at the boundary to the solid matter. The
resulting potential is

Φ(z) =−2kBThot

e
ln
(

1+
z√
2λD

)
(12)

and the corresponding electric field reads

E(z) =
2kBThot

e
1

z+
√

2λD
. (13)

In this solution, the electron Debye length

λD =

(
ε0kBThot

e2ne,0

)1/2

(14)
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appears; this is defined as the distance over which significant charge separation occurs [38]. Replacing
kBThot with Eq. (9) and ne,0 with Eq. (8) leads to

λD ≈ 1.37 µm
r0 +d tanθ/2

r0

√
1+0.73I18λ 2−1

I7/8
18

. (15)

The Debye length, or longitudinal sheath extension, on the rear side is of the order of a micrometre.
It scales quadratically with target thickness (since d tan(θ/2) ∝ d2) and is inversely proportional to the
laser intensity. Thus, a higher laser intensity on the front side of the target leads to a shorter Debye
length at the rear side and results in a stronger electric field. The standard example of Eq. (15) leads to
λD = 0.6 µm.

The maximum electric field is obtained at z = 0:

Emax(z = 0) =

√
2kBThot

eλD
(16)

≈ 5.2×1011 V/m
r0

r0 +d tanθ/2
I7/8
18 , (17)

= 9×1010 V/m
r0

r0 +d tanθ/2
E12E3/4

12 . (18)

Hence, the initial field at z = 0 is proportional to the laser intensity and depends almost quadratically on
the laser’s electric field strength. In Eq. (18), the laser’s electric field strength is inserted in normalized
units of 1012 V/m. By inserting the dependence of the broadening with target thickness from Fig. 3,
the scaling with the target thickness is obtained as Emax(z = 0) ∝ d−2. The standard example leads to a
maximum field strength of Emax ≈ 2× 1012 V/m just at the surface, that is it is of the order of TV/m
or MV/µm. It is only slightly smaller than the laser electric field strength of E0 = 8.7× 1012 V/m.
However, at times later than t = 0, the field strength is dictated by the dynamics at the rear side of the
target, e.g., ionization and ion acceleration.

As just mentioned, the electric field strength instantly leads to ionization of the atoms at the target’s
rear surface, since it is orders of magnitude above the ionization threshold of the atoms. A simple model
to estimate the electric field strength necessary for ionization is the field ionization by barrier suppression
(FIBS) model [39]. The external electric field of the laser overlaps the Coulomb potential of the atom
and deforms it. As soon as the deformation is below the binding energy of the electron, the electron is
instantly freed, hence the atom is ionized. The threshold electric field strength Eion can be obtained with
the binding energy Ubind as

Eion =
πε0U2

bind
e3Z

. (19)

As the electron sheath at the rear side is relatively dense, the atoms could also be ionized by collisional
ionization. However, as discussed by Hegelich [40], the cross-section for field ionization is much higher
than the cross-section for collisional ionization for the electron densities and electric fields appearing
at the target surface. Taking the ionization energy of a hydrogen atom with Ubind = 13.6 eV, the field
strength necessary for FIBS is Eion = 1010 V/m. This is two orders of magnitude less than the field
strength developed by the electron sheath in vacuum calculated earlier. Hence, nearly all atoms (protons,
carbon, heavier particles) at the rear side of the target are instantly ionized and, since they are no longer
neutral particles, they are then subject to the electric field and are accelerated. The maximum charge state
of ions found in an experiment is an estimate of the maximum field strength that appeared. This has been
used to estimate the sheath peak electric field value [40], as well as the transverse field extension [41,42].

The strong field ionizes the target and accelerates ions to mega electronvolt energies, if it is applied
for a sufficiently long time. The time can easily be calculated by the assumption of a test particle moving
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in a static field, generated by the electrons. Free protons were chosen as test particles. The non-linear
equation of motion is obtained from Eq. (13). The solution was obtained numerically with MATLAB [43].
It shows that for a proton to obtain a kinetic energy of 5 MeV, the field has to stay for 500 fs in the shape
given by Eq. (13). During this time, the proton has travelled 11.3 µm. The electric field will be created
as soon as electrons leave the rear side of the target.

Some electrons can escape this field, whereas others with lower energy will be stopped and will
be re-accelerated back into the target. Since the electron velocity is close to the speed of light and the
distances are of the order of a micrometre, this happens on a time-scale of a few femtoseconds, leading
to a situation where electrons are always present outside the rear side of the target. The electric field
being created does not oscillate but is quasi-static on the order of the ion acceleration time. Therefore,
ultra-short laser pulses, although providing the highest intensities, are not the optimum laser pulses for
ion acceleration. The electric field is directed normal to the target’s rear surface; hence, the direction of
the ion acceleration is normal to the target, giving the process its name, target normal sheath acceleration.

2.5 Expansion models
The laser acceleration of ions from solid targets is a complicated, multidimensional mechanism including
relativistic effects, non-linearities, and collective and kinetic effects. Theoretical methods for the various
physical mechanisms involved in TNSA range from analytical approaches for simplified scenarios over
fluid models up to fully relativistic, collisional three-dimensional computer simulations.

Most of the approaches that describe TNSA neglect the complex laser–matter interaction at the
front side of the target as well as the electron transport through the foil. These plasma expansion models
start with a hot-electron distribution that drives the expansion of an initially given ion distribution [16,
37, 44–50]. Crucial features such as the maximum ion energy, as well as the particle spectrum, can be
obtained analytically, whereas the dynamics have to be obtained numerically. The plasma expansion
description dates back to 1954 [51]. Since then, various refinements of the models were obtained, with
an increasing activity after the first discovery of TNSA. These calculations resemble the general features
of TNSA. Nevertheless, they rely on somewhat idealized initial conditions from simple estimates. In
addition to that, the plasma expansion models are one-dimensional, whereas the experiments have clearly
shown that TNSA is at least two-dimensional. Hence, these models can only reproduce one-dimensional
features, e.g., the particle spectrum of the TNSA process.

Sophisticated three-dimensional computer simulation techniques have been developed for a better
understanding of the whole process of short-pulse high-intensity laser–matter interaction, electron trans-
port and subsequent ion acceleration. The simulation methods can be classified as (i) particle-in-cell, (ii)
Vlasov, (iii) Vlasov–Fokker–Planck, (iv) hybrid fluid or particle, and (v) gridless particle codes; see the
short review in Ref. [23] for a description of each method.

The particle-in-cell method is the most widely used simulation technique. In this method, Max-
well’s equations are solved, together with a description of the particle distribution functions. The method
more or less resembles a ‘numerical experiment’ with only a few approximations; hence, a detailed
insight into the dynamics can be obtained. The disadvantage is that no specific theory serves as an input
parameter and the results must be analyzed like experimental results, i.e., they need to be interpreted and
compared with analytical estimates.

2.5.1 Plasma expansion model
Plasma expansion is often described as an isothermal rarefaction wave into free space. There is quite
a large similarity with the expansion models used to describe TNSA. The isothermal expansion model
assumes quasi-neutrality, ne = Zni, and a constant temperature Te. Using the two-fluid hydrodynamic
model for electrons and ions, the continuity, momentum, and energy conservation equations are used,
usually with the assumption of an isothermal expansion (no temperature change in time), no further
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source term (no laser), no heat conduction, collisions or external forces, and a pure electrostatic acceler-
ation (no magnetic fields). One can find a self-similar solution [52]:

v(z, t) = cs +
z
t
, (20)

ne(z, t) = Zni(z, t) = ne,0 exp
(
− z

cst
−1
)
, (21)

where v denotes the bulk velocity and ni(ne) the evolution of the ion (electron) density. The rarefaction
wave expands with the sound velocity c2

s = ZkBTe/mi. By combining these two equations, replacing the
velocity with the kinetic energy v2 = 2Ekin/m and taking the derivative with respect to Ekin, the ion energy
spectrum dN/dEkin from the quasi-neutral solution per unit surface and per unit energy in dependence of
the expansion time t is obtained [46]:

dN
dEkin

=
ne,0cst√

2ZkBThotEkin
exp

(
−
√

2Ekin

ZkBThot

)
. (22)

The ion number N is obtained from the ion density as N = ne,0cst. Moreover, the electric field in the
plasma is obtained from the electron momentum equation, neeE =−kBTe∇ne, as

E =
kBTe

ecst
=

E0

ωpit
, (23)

with E0 = (ne,0kBTe/ε0)
1/2, where ωpi = (ne,0Ze2/miε0)

1/2 denotes the ion plasma frequency. The elec-
tric field is uniform in space (i.e., constant) and decays with time as t−1. The temporal scaling of the
velocity is obtained by solving the equation of motion, v̇ = Zq/mE, with the electric field as before. This
yields

v(t) = cs ln(ωpit)+ cs (24)

z(t) = cst
(
ln(ωpit)−1

)
+ cs t . (25)

(26)

Both equations satisfy the self-similar solution. The scaling of the ion density is found as n(t) = n0/ωpit.

However, at t = 0, the self-similar solution is not defined and has a singularity. Hence, the model
of a self-similar expansion is not valid for a description of TNSA at early times and must be modified.
Additionally, in TNSA there are more differences. Firstly, the expansion is not driven by an electron
distribution, being in equilibrium with the ion distribution, but by the relativistic hot electrons that are
able to extend in the vacuum region in front of the ions. There, quasi-neutrality is strongly violated and
a strong electric field will build up, modifying the self-similar expansion solution.

Secondly, the initial condition of equal ion and electron densities must be questioned, since the
hot-electron density with ne ≈ 1020 cm−3 is about three orders of magnitude less than the solid density of
the rear-side contamination layers. This argument can only be overcome by the assumption of a global
quasi-neutrality condition Zni = ne.

Thirdly, it might not be reasonable to assume a model of an isothermal plasma expansion. It can
be assumed, however, that the expansion is isothermal, since the laser pulse provides ‘fresh’ electrons
from the front side of the target, i.e., the assumption is valid for the laser pulse duration τL. As will be
shown, the main acceleration time period is of the order of the laser pulse duration. This justifies the
assumption of an isothermal expansion.

The plasma expansion, including charge separation, was quantitatively described by Mora [46–48]
with high accuracy. The main point of this model is a plasma expansion with charge separation at
the ion front, in contrast with a conventional, self-similar plasma expansion. The plasma consists of
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electrons and protons, with a step-like initial ion distribution and an electron ensemble that is in thermal
equilibrium with its potential. The megaelectronvolt electron temperature results in a charge separation
being present for long times. It leads to enhanced ion acceleration at the front, compared with the case
of a normal plasma expansion. This difference is sometimes named the TNSA effect.

Although only one-dimensional, the model has been successfully applied to experimental data at
more than 10 high-intensity short-pulse laser systems worldwide in a recent study [16]. It was separately
used to explain measurements taken at the ATLAS-10 at the Max-Planck Institute in Garching, Ger-
many [53] as well as to explain results obtained at the VULCAN PW [54] (with a few modifications).
Therefore, it is seen as a reference model, currently used worldwide for an explanation of TNSA. Because
of its success in describing TNSA, it will be explained in more detail now.

After the laser acceleration at the foil’s front side, the electrons arrive at its rear side and escape
into the vacuum. The atoms are assumed to be instantly field ionized, leading to ni = ne/Z. Charge
separation occurs and leads to an electric potential φ , according to Poisson’s equation:

ε0
∂ 2φ
∂ z2 = e(ne(z)−ni(z)) . (27)

The electron density distribution is always assumed to be in local thermal equilibrium with its potential,

ne = ne,0 exp
(

eφ
kBThot

)
, (28)

where the electron kinetic energy is replaced by the potential energy eφ . The initial electron density ne,0
is taken from Eq. (8). The ions are assumed be of initial constant density ni = ne,0, with a sudden drop to
zero at the vacuum interface. The boundary conditions are chosen such that the solid matter in one half-
space (z ≤ 0) perfectly compensates the electric potential for z→−∞, whereas for z→ ∞ the potential
goes to infinity. Its derivative E =−∂φ/∂ z vanishes for z→±∞. In the vacuum region (initially z> 0),
the field can be obtained analytically [37]. The resulting potential is

φ(z) =−2kBThot

e
ln

(
1+

z√
2exp(1)λD,0

)
− kBThot

e
, (29)

and the corresponding electric field reads

E(z) =
2kBThot

e
1

z+
√

2exp(1)λD,0
. (30)

The initial electron Debye length is λ 2
D,0 = ε0kBThot/e2ne,0. The full boundary value problem,

including the ion distribution, can only be solved numerically. The result obtained with MATLAB [43]
is shown in Fig. 4. The potential φ (red curve) is a smooth function and is in perfect agreement with
the analytical solution Eq. (29) (grey curve) in the vacuum region. Both are given in units of kBThot/e.
The electron density ne (green curve), normalized to ne,0, follows from Eq. (28). The normalized ion
density ni (in black) is a step function with ni(z < 0)/ne,0 = 1 and zero for z > 0. The electric field E
(blue curve) has a strong peak at the ion front, with Emax =

√
2/exp(1)E0 = 0.86E0 . The normalization

field E0 is given by E0 = kBThot/eλD,0. The z coordinate was normalized with λD,0. The subsequent
plasma expansion into vacuum is described in the framework of a fluid model, governed by the equation
of continuity (left) and the momentum balance (right):

∂ni

∂ t
+

∂ (vini)

∂ z
) = 0

∂vi

∂ t
+ vi

∂vi

∂ t
=− e

mp

∂φ
∂ z

. (31)

The full expansion dynamics can only be obtained numerically. Of particular interest is the tem-
poral evolution of the ion distribution and the evolution of the electric field driving the expansion of
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Figure 2.8: Solution of eq. (2.58). The potential ⇤ (——) was obtained numerically. The analytical solution

eq. (2.60) (——) is in perfect agreement. Both are given in units of kB Thot/e. The electron density ne

(——), normalized to ne,0, follows from eq. (2.59). The normalized ion density ni (——) is a step-function

with ni(z < 0)/ne,0 = 1 and zero for z > 0. The electric field E (——) is given in units of kB Thot/e⌥D,0.

The coordinate z is given in units of ⌥D,0.

The initial electron Debye length is ⌥2
D,0 = ⌘0kB Thot/e

2ne,0 . The full boundary value problem including the ion

distribution can only be solved numerically. The result obtained with MATLAB [233] is shown in figure 2.8.

The potential ⇤ (——) is a smooth function and is in perfect agreement with the analytical solution eq. (2.60)

(——) in the vacuum region. Both are given in units of kB Thot/e. The electron density ne (——), normalized to

ne,0, follows from eq. (2.59). The normalized ion density ni (——) is a step-function with ni(z < 0)/ne,0 = 1 and

zero for z > 0. The electric field E (——) has a strong peak at the ion front, with Emax = 2/exp(1) E0 = 0.86 E0.

The normalization field E0 is given by E0 = kB Thot/e⌥D,0. The coordinate z was normalized with ⌥D,0.

The subsequent plasma expansion into vacuum is described in the framework of a fluid model, governed by the

equation of continuity (left) and the momentum balance (right):

⌫ ni

⌫ t
+
⌫ (vini)
⌫ z

= 0
⌫ vi

⌫ t
+ vi
⌫ vi

⌫ z
= � e

mp

⌫⇤
⌫ z

. (2.62)

The full expansion dynamics can only be obtained numerically. Of particular interest is the temporal evolution

of the ion distribution and the evolution of the electric field driving the expansion of the bulk. A part of the work

described in this thesis was the development of a Lagrangian code in MATLAB that solves eqs. (2.59), (2.60)

and (2.62), similar to ref. [67]. The numerical method is similar to the method described in ref. [242], however

the code developed here uses MATLAB’s built-in bvp4c-function for a numerical solution of the boundary value

problem (BVP) in the ion fluid. The initially constant ion distribution is divided into a grid, choosing the left

boundary to be L � cs t. The boundary value for the potential is ⇤(�L) = 0. At the right boundary (initially

at z = 0) the electric field �⌫⇤front/⌫ z = 2/e kB Thot/e⌥D,front has to coincide with the analytical solution of

eq. (2.61), where the local Debye length has to be determined by the potential at the front:

⌥D,front = ⌥D,0 exp
⌦

e⇤front

kB Thot

↵�1/2

. (2.63)

Initially, the Debye length at the ion front is obtained by inserting eq. (2.60) in eq. (2.59) to ⌥D,0,front = e�1⌥D,0.

The code divides the fluid region into a regular grid. Each grid element (cell) has a position zj and an ion

30 2.4. Expansion models

Fig. 4: Solution of Eq. (27). The potential φ (red) was obtained numerically. The analytical solution Eq. (29)
(grey) is in perfect agreement. Both are given in units of kBThot/e. The electron density ne (green), normalized to
ne,0, follows from Eq. (28). The normalized ion density ni (black) is a step function with ni(z < 0)/ne,0 = 1 and
zero for z > 0. The electric field E (blue) is given in units of kBThot/eλD,0. The z coordinate is given in units of
λD,0.

the bulk. In [5] a Lagrangian code in MATLAB was developed, which solves Eqs. (28), (29), and (31),
similar to Ref. [46]. The numerical method is similar to the method described in Ref. [53]; however,
the developed code uses MATLAB’s built-in bvp4c function for a numerical solution of the boundary
value problem in the ion fluid. The initially constant ion distribution is divided into a grid, choosing
the left boundary to be L � cst. The boundary value for the potential is φ(−L) = 0. At the right
boundary (initially at z = 0), the electric field −∂φfront/∂ z =

√
2/ekBThot/eλD,front must coincide with

the analytical solution of Eq. (30), where the local Debye length must be determined by the potential at
the front:

λD,front = λD,0 exp
(

eφfront

kBThot

)−1/2

. (32)

Initially, the Debye length at the ion front is obtained by inserting Eq. (29) in Eq. (28) to give
λD,0,front = e−1λD,0. The code divides the fluid region into a regular grid. Each grid element (cell) has
position z j, ion density n j, and velocity v j. For each time-step ∆t, the individual grid elements are moved
according to the following scheme [53]:

z j′ = z j + v j∆t +
e

2mp
E∆t2 , (33)

v j′ = v j +
e

mp
E∆t . (34)

After that, the density of the cell is changed according to the broadening of the cell due to the movement:

n j′ = n j
∆x j

∆x j′
. (35)

At the front, the individual cells quickly move forward, resulting in a ‘blow-up’ of the cells, which
dramatically diminishes the resolution. Thus, after each time-step, the calculation grid is mapped onto a
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new grid ranging from zmin to the ion front position zfront with an adapted cell spacing. This method is
called rezoning. The new values of v j and n j are obtained by third-order spline interpolation, providing
very good accuracy.

2.5.2 Temporal evolution and scaling
A crucial point in the ion expansion is the evolution of the electric field strength Efront, the ion velocity
vfront and the position zfront of the ion front. Expressions given by Mora are [46–48]

Efront '
(

2ne,0kBThot

eε0

1
1+ τ2

)1/2

, (36)

vfront ' 2cs ln
(

τ +
√

1+ τ2
)
, (37)

zfront ' 2
√

2eλD,0

[
τ ln
(

τ +
√

1+ τ2
)
−
√

1+ τ2 +1
]
, (38)

where e = exp(1) and τ = ωpit/
√

2e. The other variables in these equations are the initial ion density
ni,0, the ion-acoustic (or sound) velocity cs = (ZkBThot/mi)

1/2, Thot is the hot-electron temperature and
ωpi = (ne,0Ze2/miε0)

1/2 denotes the ion plasma frequency. Owing to the charge separation, the ion front
expands more than twice as quickly as the quasi-neutral solution in Eqs. (25) and (26). From Eq. (37),
the maximum ion energy is given as

Emax = 2kBThot ln2
(

τ +
√

1+ τ2
)
. (39)

The particle spectrum from Mora’s model [46–48] cannot be given in an analytic form, but it is very
close to the spectrum of Eq. (22), obtained by the self-similar motion of a fully quasi-neutral plasma
expanding into a vacuum. The phrase ‘fully quasi-neutral’ should indicated that in this solution there is
no charge separation at the ion front, hence there is no peak electric field.

A drawback of the model is the infinitely increasing energy and velocity of the ions with time,
which results from the assumption of an isothermal expansion. Hence, a stopping condition must be
defined. An obvious time duration for the stopping condition is the laser pulse duration τL. However,
as found by Fuchs et al. [16, 45], the model can be successfully applied to measured maximum energies
and spectra, as well as to particle-in-cell simulations, if the calculation is stopped at τacc = α(τL + tmin).
It was found that, for very short pulse durations. the acceleration time τacc tends towards a constant
value tmin = 60 fs, which is the minimum time that the energy transfer from the electrons to the ions
needs. The variable α takes into account that for lower laser intensities the expansion is slower and the
acceleration time must be increased. α varies linearly from 3 at an intensity of IL = 2×1018 W/cm2 to
1.3 at I L = 3×1019 W/cm2. For higher intensities, α is constant, at 1.3. Hence, the acceleration time is

τacc =
(
−6.07×10−20× (IL−2×1018)+3

)
× (τL + tmin) (40)

for IL ∈ [2×1018−3×1019] W/cm2, and

τacc = 1.3× (τL + tmin) (41)

for IL ≥ 3×1019 W/cm2.

Figure 5 shows the temporal evolution of the electric field and the ion velocity at the ion front,
respectively. The electric field was normalized to E0, the ion velocity is divided by the sound velocity.
There is a very good agreement between the simulated values (blue circles) and the expressions by
Mora [46–48] from Eqs. (36) and (37) (red curve). The maximum deviations from the scaling expressions
are 1.6% for the electric field and 0.4% for the velocity. The electric field evolution and the development
of the electron and ion density profiles are shown in Fig. 6. The electric field (green curve) peaks sharply
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transfer from the electrons to the ions needs. The variable � takes into account that for lower laser intensities

the expansion is slower and the acceleration time has to be increased. It varies linearly from 3 at an intensity

of IL = 2⇤ 1018 W/cm2 to 1.3 at IL = 3⇤ 1019 W/cm2. For higher intensities � stays constant at 1.3. Hence the

acceleration time is

�acc =

⇠
⇢
⇡
#
�6.07⇤ 10�20 ⇤ (IL � 2⇤ 1018) + 3

&
⇤ ��L + tmin

⇥
for IL ✓ [2⇤ 1018, 3⇤ 1019[W/cm2,

1.3⇤ ��L + tmin

⇥
for IL � 3⇤ 1019 W/cm2.

(2.71)

The Lagrangian code was used to simulate proton acceleration with the laser parameters as in the standard

case from above, i.e., with the laser intensity IL = 1019 W/cm2, focused to a spot of r0 = 10µm and with a

pulse duration of �L = 600 fs. The acceleration time is then �acc = 1.67 ps. The target thickness is d = 20µm,

the angular broadening according to eq. (2.30) is ⌃ = 42° (FWHM) for electrons with the mean energy kB T ,

determined by eq. (2.28). The resulting initial electron and proton densities at the target’s rear side are n(e,i),0 =
1.4⇤ 1020 cm�3. With these parameters the electron temperature is kB Te = 0.96 MeV, the initial Debye length

is ⌥D = 0.61µm and the sound velocity is cs = 9.58 ⇤ 106 m/s. The electric field used for normalization is

E0 = kB Thot/e⌥D = 1.56⇤ 1012 V/m. The ion fluid was initially set up from zmin/⌥D = �80 to z = 0. To test the

accuracy, a computation grid of 2000 cells and time steps of t = 2.5 fs were chosen. Later simulations were

performed with 500 cells and t = 25 fs.

Figure 2.9 shows the temporal evolution of the elec-

time (fs)

E
/

E 0

Analytical

Simulation

time (fs)

v/
c s

Analytical

Simulation

0 100 200 300 400 500 600 700 800

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1.0

Figure 2.9: Temporal evolution of the electric field and

the ion velocity at the ion front. There is a

very good agreement between the simulated

values (⌃) and eqs. (2.67, 2.68) (—).

tric field and the ion velocity at the ion front, respec-

tively. The electric field was normalized to E0, the

ion velocity is divided by the sound velocity. There

is a very good agreement between the simulated val-

ues (⌃) and the expressions by Mora from eqs. (2.67,

2.68) (—). The maximum deviation from the scaling

expressions is 1.6 % for the electric field and 0.4 %

for the velocity.

The electric field evolution, as well as the develop-

ment of the electron and ion density profiles, are

shown in Fig. 2.10. The electric field (—–) sharply

peaks at the ion front for all times. Initially, the ion

density (—–) is ni = n0 for z ⌥ 0 and zero for z > 0.

The electron density (—–) is infinite and decays pro-

portional to z�2. Note the different axes scalings for

the electric field and the densities, the latter ones are

plotted on a logarithmic scale. For later times, at

t = (500,1000, 1500) fs, the ions are expanded, form-

ing an exponentially decaying profile. A large part of

the expanding plasma is quasi-neutral and can be identified by the constant electric field as derived in eq. (2.55).

At the ion front, the charge-separation is still present, leading to an enhanced electric field that is a factor of

two higher than the electric field in the bulk, in agreement to ref. [67]. This scaling is maintained for the whole

expansion. The scaling of the peak electric field value at the ion front with position z, as given by the analytical

expressions in eqs. (2.67) and (2.69), is in perfect agreement with the simulation (—–).

The final proton spectrum is shown in figure 2.11. The numerical solution (—–) is close to the analytical one

from the quasi-neutral model by eq. (2.54) (—–). The analytical spectrum is assumed to reach up to a max-

imum energy, taken from eq. (2.70). The maximum energy in the simulation is Emax,num. = 19 MeV, that is in

32 2.4. Expansion models

Fig. 5: Temporal evolution of the electric field and the ion velocity at the ion front. There is very good agreement
between simulated values (blue circles) and Eqs. (36) and (37) (red curve).

at the ion front for all times. Initially, the ion density (blue curve) is ni = n0 for z ≤ 0 and zero for
z > 0. The electron density (red curve) is infinite and decays proportionally to z−2. Note the different
axis scalings for the electric field and the densities; the latter are plotted on a logarithmic scale. For later
times, at t = (500,1000,1500) fs, the ions are expanded, forming an exponentially decaying profile.

A large part of the expanding plasma is quasi-neutral and can be identified by the constant electric
field, as derived in Eq. (23). At the ion front, the charge separation is still present, leading to an enhanced
electric field that is a factor of two greater than the electric field in the bulk, in agreement with Ref. [46].
This scaling is maintained for the whole expansion. The scaling of the peak electric field value at the ion
front at position z, as given by the analytical expressions in Eqs. (36) and (38), is in perfect agreement
with the simulation.

The final proton spectrum is shown in Fig. 7. The numerical solution (blue curve) is close to
the analytical solution from the quasi-neutral model of Eq. (22) (red curve). The analytical spectrum is
assumed to reach a maximum energy, taken from Eq. (39). The maximum energy in the simulation is
Emax,num = 19 MeV, which is in close agreement to the analytical value of Emax,analyt = 18.5 MeV. As
expected, there is excellent agreement in the spectra for low energies, since in both cases the expansion
is quasi-neutral. For high energies, the numerical spectrum deviates from the self-similar model. The
numerical spectrum is lower than the self-similar one even though the ion density of the numerical
solution increases close to the ion front, as can be seen in Fig. 6 in the deviation of the electron and ion
densities close to the front. However, the velocity increase at the front in the simulation is much faster
than that in the self-similar solution, owing to the enhanced electric field. Thus, the kinetic energy of the
fluid elements close to the ion front is greater than the kinetic energy of fluid elements in a self-similar
expansion. The spectrum is obtained by taking the derivative of the ion density with respect to the kinetic
energy. It turns out that the kinetic energy increases more strongly than the ion density, hence dN/dE is
a little less than the self-similar expansion.
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Figure 2.10: Temporal evolution of the electric field and the ion and electron density, respectively. The electric

field (—–) sharply peaks at the ion front. The ion density (—–) is ni = n0 for z ⌥ 0 and zero for z > 0 for

t = 0. The electron density (—–) decays proportional to z�2. For later times, at t = (500, 1000,1500) fs,
the ions are expanded, forming an exponentially decaying profile.

close agreement to the analytical value of Emax,analyt. = 18.5 MeV. As expected, there is an excellent agreement in

the spectra for low energies, since in both cases the expansion is quasi-neutral. For high energies, the numerical

spectrum deviates from the self-similar model. The numerical spectrum is lower than the self-similar one even

though the ion density of the numerical solution increases close to the ion front, as can be seen in fig. 2.10 in

the deviation of the electron and ion densities close to the front. However, the velocity increase at the front

in the simulation is much faster than the self-similar solution, due to the enhanced electric field. Thus, the

kinetic energy of the fluid elements close to the ion front is higher than the kinetic energy of fluid elements in a

self-similar expansion. The spectrum is obtained by taking the derivative of the ion density with respect to the

kinetic energy. In turns out, that the kinetic energy increases stronger than the ion density, hence dN/dE is a

little less than the self-similar expansion.

In conclusion, the Lagrangian code and the model developed by Mora show, that TNSA-accelerated ions are

emitted mainly in form of a quasi-neutral plasma, with a charge-separation at the ion front that leads to an

enhanced acceleration compared to the expansion of a completely quasi-neutral plasma. For later times, if

⇣pi t � 1, the analytical expression of the maximum ion energy in eq. (2.70) can be used to accurately deter-

mine the cut-off energy of TNSA-accelerated ions. The spectral shape of the ions is close to the spectrum of a

quasi-neutral, self-similar expansion.

The equations show, that the maximum energy, as well as the spectral shape, strongly scale with the hot electron

temperature. The expression for the initial electric field scales as E ✏ kB Thotne, hence a simplistic estimate

would assume that both are equally important for the maximum ion energy. In contradiction to that, the in-

vestigation has shown that the maximum ion energy only weakly depends on the hot electron density and is
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Fig. 6: Temporal evolution of the electric field and the ion and electron density, respectively. The electric field
(green curve) peaks sharply at the ion front. The ion density (blue curve) is ni = n0 for z≤ 0 and zero for z> 0 for
t = 0. The electron density (red curve) decays proportionally to z−2. For later times, at t = (500,1000,1500) fs,
the ions are expanded, forming an exponentially decaying profile.
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Figure 2.11: Energy spectrum dN/dE from the simulation (—) compared to the spectrum of a quasi-neutral plasma

expansion (—).

directly proportional to the hot electron temperature. It is worth noting that this finding is in agreement with

the (unpublished) results obtained earlier with an electro-static PIC code by Brambrink [243].

The hot electron density - due to the quasi-neutrality boundary condition - determines the number of the gen-

erated ions. Both the number of ions as well as the energy are increasing with time, that again shows that not

the shortest and most intense laser pulses are favorable for TNSA, but somewhat longer pulses on the order of

a picosecond. This requires a high laser energy to keep the intensity sufficiently high.

Nevertheless, the model is still very idealized, since it is one-dimensional and isothermal, with the electrons

ranging into infinity and it neglects the laser interaction and electron transport. An approach with electrons in

a Maxwellian distribution always leads to the same asymptotic behavior of the ion density [244], hence two-

temperature [245] or even tailored [238] electron distributions will lead to different ion distributions. There

are many alternative approaches to the one described here, including e.g. an adiabatic expansion [69], multi-

temperature effects [69,245], an approach where an upper integration range is introduced to satisfy the energy

conservation for the range of a test electron in the potential [234], the expansion of an initially Gaussian shaped

plasma [68] or the expansion of a plasma with an initial density gradient [70]. Most of these approaches assume

an underlying fluid model, where particle collisions are neglected and the fluid elements are not allowed to

overtake each other. Hence a possible wave-breaking or accumulation of particles is not included in the models

but requires a kinetic description, e.g. [71,246]. Furthermore, the transverse distribution of the accelerated ions

cannot be determined from a one-dimensional model and requires further modeling. This will be done in the

framework of a two-dimensional particle-in-cell (PIC) simulation with the the Plasma Simulation computer Code

PSC, developed by Hartmut Ruhl. A PIC simulation allows a much more sophisticated description, including

relativistic laser-plasma interaction, a kinetic treatment of the particles, as well as a fully three-dimensional

approach.

34 2.4. Expansion models

Fig. 7: Energy spectrum dN/dE from the simulation (blue curve) compared to the spectrum of a quasi-neutral
plasma expansion (red curve). norm, normalized.
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In conclusion, the Lagrangian code and the model developed by Mora show that TNSA-accelerated
ions are mainly emitted in the form of a quasi-neutral plasma, with a charge separation at the ion front that
leads to an enhanced acceleration compared with the expansion of a completely quasi-neutral plasma.
For later times, if ωpit� 1, the analytical expression of the maximum ion energy in Eq. (39) can be used
to determine the cut-off energy of TNSA-accelerated ions accurately. The spectral shape of the ions is
close to the spectrum of a quasi-neutral, self-similar expansion.

The equations show, that the maximum energy, as well as the spectral shape, strongly scale with
the hot-electron temperature. The expression for the initial electric field scales as E ∝ kBThotne; hence,
a simplistic estimate would assume that both are equally important for the maximum ion energy. In
contradiction, however, the investigation has shown that the maximum ion energy only depends weakly
on the hot-electron density and is directly proportional to the hot-electron temperature. It is worth not-
ing that this finding is in agreement with results obtained earlier with an electrostatic particle-in-cell
code by Brambrink [55]. The hot-electron density—owing to the quasi-neutrality boundary condition—
determines the number of generated ions. Both the number of ions and the energy increase with time,
again showing that not the shortest and most intense laser pulses are favourable for TNSA, but some-
what longer pulses, of the order of a picosecond. This requires a high laser energy to keep the intensity
sufficiently high.

Nevertheless, the model is still very idealized, since it is one-dimensional and isothermal, with
the electrons ranging into infinity, and it neglects laser interaction and electron transport. An approach
with electrons in a Maxwellian distribution always leads to the same asymptotic behaviour of the ion
density [56], hence two-temperature [57] or even tailored [58] electron distributions will lead to different
ion distributions. There are many alternative approaches to the one described here, including, e.g., an
adiabatic expansion [48]; multitemperature effects [48, 57]; an approach in which an upper integration
range is introduced to satisfy the energy conservation for the range of a test electron in the potential [50];
expansion of an initially Gaussian-shaped plasma [47]; and expansion of a plasma with an initial density
gradient [59]. Most of these approaches assume an underlying fluid model, where particle collisions
are neglected and the fluid elements are not allowed to overtake each other. Hence a possible wave-
breaking or accumulation of particles is not included in the models but requires a kinetic description
[60, 61]. Furthermore, the transverse distribution of the accelerated ions cannot be determined from
a one-dimensional model and requires further modelling. This can be done in the framework of two-
dimensional particle-in-cell simulations. Particle-in-cell simulations allow a much more sophisticated
description, including relativistic laser–plasma interaction, a kinetic treatment of the particles, and a
fully three-dimensional approach.

3 Target normal sheath acceleration: ion beam characteristics
Part of the motivation of the extensive research on laser-accelerated ion beams is based on their ex-
ceptional properties (high brightness and high spectral cut-off, high directionality and laminarity, short
pulse duration), which distinguish them from those of the lower-energy ions accelerated in earlier experi-
ments at moderate laser intensities. In view of these properties, laser-driven ion beams can be employed
in a number of groundbreaking applications in science, technology, and medicine. This section reviews
the main beam parameters; Section 4 focuses on established and proposed applications using these unique
beam properties.

3.1 Beam parameters
3.1.1 Particle numbers
One of the striking features of TNSA-accelerated ion beams is the fact that the particle number in a
forward-directed beam is very high. At present, particle numbers of up to 6×1013 protons with energies
above 4 MeV have been detected in experiments. This typically leads to a conversion efficiency of laser
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to ion beam energy of up to 9%. At these high particle numbers, drawn from a very limited source size,
for high-energy short-pulse laser systems, the depletion of the proton contamination layer at the rear
surface becomes an issue. This has been addressed by Allen et al. [62], who determined that there are
2.24× 1023 atoms/cm3 at the rear surface of a gold foil, in a layer 1.2 Å thick. Assuming an area of
about 200 µm diameter, the accelerated volume is about V = 3.8×10−11 cm−3. Hence, the total number
of protons in this area is about Ntotal = 8.4×1012, which is close to the integrated number determined in
the experiments. Experiments have shown [8] that a rear surface coating of a metal target can provide
enough protons up to a thickness of ≈100 nm, where the layer thickness causes the onset of instabilities
in the electron propagation, owing to its limited electrical conductivity.

3.1.2 Energy spectrum
Based on the acceleration mechanism and the expansion model described earlier, the usual ion energy
distribution is an exponential one with a cut-off energy that is dependent on the driving electron tempera-
ture. Without special target treatment, and independently of the target material, protons are always
accelerated first, as they have the highest charge-to-mass ratio. These protons stem from water vapour
and hydrocarbon contamination, which are always present on the target surface, owing to the limited
achievable vacuum conditions. Protons from the top-most contamination layer on the target surface are
exposed to the highest field gradients and screen the electric field for protons and ions coming from
the successive layers. The acceleration of particles from different target depths results in a broad energy
distribution, which becomes broader with increasing contamination layer thickness. The inhomogeneous
electron distribution in the sheath also leads to an inhomogeneous accelerating field in the transverse
direction. The resulting exponential ion energy spectrum constitutes the main disadvantage in laser ion
acceleration.

Only three groups so far [63–65] have produced a quasi-monoenergetic ion beam with lasers and
an energy spread of 20% or less. Hegelich et al. [63] have used 20 µm thick palladium foils that were
resistively heated before the acceleration. At temperatures of about 600 K, the targets were completely
dehydrogenized, but carbon atoms still remained on the surface. By increasing the target temperature
(T > 1100 K), the carbon underwent a phase transition and formed a monolayer or graphite (graphene)
on the palladium surface, from which C5+ ions were accelerated to 3 MeV/u with an energy spread of
17%. An advantage of resistive heating is the complete removal of all hydrogen at once but there are also
several disadvantages. The formation of graphene cannot be controlled and the set-up requires a very
precise temperature measurement.

Schwoerer et al. [64] used 5 µm thick titanium foils coated with 0.5 µm thick hydrogen-rich poly-
methylmethacrylate dots of 20 µm×20 µm on the target’s rear surface. This configuration was designed
to limit the transverse extension of protons, so that the proton-rich dot would have a smaller diameter
than the scale of inhomogeneity of the electron sheath. In this case, all protons experience the same
potential. The parasitic proton contamination layer could be reduced by nanosecond-laser ablation; the
accelerated protons showed a quasi-monoenergetic energy spectrum peaking at 1.2 MeV.

Ter-Avetisyan et al. [65] produced quasi-monoenergetic deuteron bursts by the interaction of a
high-intensity, high-contrast (>10−8) laser with limited-mass water droplets. The peak position in the
spectrum, at 2 MeV, had an energy spread of 20%. This experiment, however, suffered from a low
laser–droplet interaction probability.

3.1.3 Opening angle
Figure 8 shows the energy-resolved opening angles for data obtained at Trident (blue circles), LULI-
100 TW (green circles), and Z-Petawatt (red circles). The plots have been normalized to the respective
maximum energy of each beam. These are 19 MeV for Trident, 16.3 MeV for LULI-100 TW, and
20.3 MeV for Z-Petawatt, respectively.
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Figure 4.3: Energy-dependence of the (half) opening angle. The data have been obtained at Trident (⌃), at LULI-
100 TW (⌃) and at Z -Petawatt (⌃), respectively. The plots have been normalized to the respective

maximum energy of each beam. The opening angle decreases with increasing energy. A parabolic

dependency could be fit to the LULI and Z -Petawatt results, the data for Trident has a linear slope.

electron sheath shape at the target surface, as pointed out by Carrol et al. [106]. According to the reference,

a sheath with Gaussian dependence in transverse direction results in a strongly curved opening angle-energy

distribution, whereas a parabolic hot electron sheath results in a linear dependency. However, only crude details

about the exact modeling of the acceleration process are given in the reference.

In the framework of this thesis, a more detailed expansion model has been developed, that is able to explain

the experimental results in more detail. The model and its results are described in section 5.2.

It should be noted, that the term “opening angle” is not equivalent to the beam “divergence”. As will be shown

below, the divergence of the protons slightly increases with increasing energy, whereas the emitting area (source

size) decreases with proton energy [72,279]. This results in a total decrease of the opening angle measured with

RCF.

4.1.4 Energy-resolved source sizes

Another feature that can be used in RCF Imaging Spectroscopy (RIS) is the ability of the proton beam to image

corrugations of the target surface in the detector (see sec. 3.5.2). The grooves imprint in the beam and appear

as darker lines in the detector. Due to the large opening angle of the beam, the grooves are magnified up to

a factor of 1000. By counting the lines in each RCF and by multiplying the number with the known grooves

distance, the source size at the target rear side can be determined. When this is done for each RCF layer, the

source size is obtained with energy resolution.

Figure 4.4 shows energy-resolved source sizes for the three laser systems TRIDENT (⌃), LULI-100 TW (⌃) and

Z-Petawatt (⌃), respectively. As in the section before, the energy axis has been normalized to the individual

maximum energy of the shot, with the maximum energies given in the section before. The source size decreases

with increasing energy. Protons with the highest energies are emitted from sources of about 10µm diameter

and less. For lower energies, the source sizes progressively increase, up to about 200µm diameter for the lowest

68 4.1. Typical parameters of TNSA-protons

Fig. 8: Energy dependence of the half opening angle. Data obtained at Trident (blue circles), LULI-100 TW (green
circles), and Z-Petawatt (red circles). The plots have been normalized to the respective maximum energy of each
beam. The opening angle decreases with increasing energy. A parabolic dependency could be fit to the LULI and
Z-Petawatt results, the data for Trident produce a linear slope.

Protons with the highest energy are emitted with the smallest opening angle from the source, up to
a 5◦ half angle. Protons with less energy are subsequently emitted in larger opening angles. Below about
30% maximum energy, the opening angle reaches a maximum and stays constant for lower energies. In
most cases, the opening angles decrease parabolically with increasing energy, as shown in Fig. 8. In
some shots, however, the decrease of opening angle with increasing energy is close to linear, as in the
example obtained at Trident. The slope of the opening angle with energy is a result of the initial hot-
electron sheath shape at the target surface, as pointed out by Carroll et al. [66]. According to Ref. [66], a
sheath with Gaussian dependence in the transverse direction results in a strongly curved opening angle–
energy distribution, whereas a parabolic hot-electron sheath results in a linear dependency. However,
only crude details of the exact modelling of the acceleration process are given in Ref. [66]. In Ref. [5],
a more detailed expansion model is described, which is able to explain the experimental results in more
detail. It should be noted that the term ‘opening angle’ is not equivalent to the beam ‘divergence’. The
divergence of the protons increases slightly with increasing energy, whereas the emitting area (source
size) decreases with proton energy [6,67]. This results in a total decrease of the opening angle measured
experimentally.

3.1.4 Source size
Figure 9 shows energy-resolved source sizes for the three laser systems Trident (blue circle), LULI-
100 TW (green circles), and Z-Petawatt (red circles). As in Section 3.1.3, the energy axis has been
normalized to the individual maximum energy of the shot, with the maximum energies as before. Source
size decreases with increasing energy. Protons with the highest energies are emitted from sources of
about 10 µm diameter and less. For lower energies, the source sizes progressively increase, up to about
200 µm diameter for the lowest energies measurable with radiochromic film imaging spectroscopy, about
1.5 MeV. For even lower energies, the source sizes might be much larger and could reach in excess of
0.5 mm in diameter [42].
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Figure 4.4: Energy-resolved source sizes for data from TRIDENT (⌃), LULI-100 TW (⌃) and Z -Petawatt (⌃), re-
spectively. The energy-source size distribution could be fit to a Lorentzian (eq. (4.1)) with FWHM

� = 54.8µm for TRIDENT, of � = 56.5µm for LULI-100 TW and of � = 92.8µm for Z -Petawatt, respec-
tively.

energies measurable with RIS, that are about 1.5 MeV. For even lower energies, the source sizes might be much

larger and could reach more than 0.5 mm in diameter [75].

The energy-dependence of the source size well fits a Gaussian, indicated by the lines in figure 4.4. The data

could be fit by

E = exp

%�(4 ln(2) source size)2

�2

(
, (4.1)

where 2� denotes the full width at half maximum (FWHM). This fit allows to characterize the complete energy-

dependent source size with one parameter only. The FWHM for Trident with a 10µm thin gold target is

� = 54.8µm. For LULI-100 TW the source size is � = 56.5µm for a 15µm thin gold foil. A larger source

size has been measured at Z-Petawatt with � = 92.8µm and a 25µm thick gold target.

Decreasing source sizes have also been measured in refs. [72,74,75,77,119], but in most cases with less reso-

lution and no statements are made for the shape of the energy-source size distribution.

The energy-dependence of the source size is directly related to the electric field strength distribution of the

accelerating hot electron sheath at the source. Protons with high energies have been accelerated by a high

electric field. Cowan et al. [72] relate an increasing source size with decreasing energy to the shape of the hot

electron sheath, under the assumption of an isothermal, quasi-neutral plasma expansion (see sec. 2.4.1) where

the electric field is E = �(kB Te/e)(�ne/ne) (eq. (2.49)). A transversally Gaussian electric field distribution (as

measured with RIS here) would result in a non-analytic expression for the electron density ne. On the other

hand, the realistic assumption of a Gaussian hot electron distribution would result in a radially linearly increas-

ing electric field, in contradiction to the measured data. Hence it is concluded that the quasi-neutral plasma

expansion, even though being the driving acceleration mechanism for late times, is not the physical mechanism

explaining the observed source sizes.

In fact, the source size must develop earlier in the acceleration process, e.g. at very early times when the electric

field is governed by the Poisson equation (eq. (2.35)), with E(z) ✏ kB Te/⌥D ✏ kB Tene (eq. (2.38)). With the

data from figure 4.4 it is concluded, that there must be a radial dependency of E(z), hence a Gaussian decay of

either the hot electron temperature or density or both.

Chapter 4. Proton-acceleration experiments 69

Fig. 9: Energy-resolved source sizes for data from Trident (blue circles), LULI-100 TW (green circles) and Z-
Petawatt (red circles). The energy-source-size distribution fits to a Lorentzian with full width at half maximum of
54.8 µm for Trident, 56.5 µm for LULI-100 TW, and 92.8 µm for Z-Petawatt.

The energy dependence of the source size well fits a Gaussian, indicated in Fig. 9. The data could
be fit by

E = exp
(−(4ln(2)source size)2

σ2

)
, (42)

where 2σ denotes the FWHM. This fit allows the complete energy-dependent source size to be character-
ized using only one parameter. The FWHM for Trident with a 10 µm thin gold target is σ = 54.8 µm.
For LULI-100 TW, the source size is σ = 56.5 µm for a 15 µm thin gold foil. A larger source size has
been measured at Z-Petawatt, with σ = 92.8 µm and a 25 µm thick gold target.

The energy dependence of the source size is directly related to the electric field strength distri-
bution of the accelerating hot-electron sheath at the source. Protons with high energies have been acceler-
ated by a high electric field. Cowan et al. [67] relate increasing source size with decreasing energy to the
shape of the hot-electron sheath, under the assumption of an isothermal quasi-neutral plasma expansion
where the electric field is E = −(kBTe/e)(δne/ne). A transversely Gaussian electric field distribution
would result in a non-analytical expression for the electron density, ne. Conversely, a realistic assumption
of a Gaussian hot-electron distribution would result in a radially linearly increasing electric field, in
contradiction to the measured data. Hence, it is concluded that the quasi-neutral plasma expansion,
although it is the driving acceleration mechanism for later times, does not explain the observed source
sizes. In fact, the source size must develop earlier in the acceleration process, e.g., at very early times,
when the electric field is governed by the Poisson equation (Eq. (10)), with E(z) ∝ kBTe/λD ∝

√
kBTene.

With the data from Fig. 9, it can be concluded that there must be a radial dependency of E(z), and hence
a Gaussian decay of either the hot-electron temperature or the density, or both.

3.1.5 Emittance
As we have seen, the acceleration of the ions by the TNSA mechanism basically constitutes a quasi-
electrostatic field acceleration of initially cold (room-temperature) atoms at rest, which are field ionized
and then pulled by the charge-separation field. As the electrons are scattered while being pushed through
the target, at least for materials with enough electrical conductivity to provide the return currents, the
transport smooths the distribution at the rear surface to result in a Gaussian-like field shape that expands
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laterally in time as the electrons start to recirculate. Thus the initial random ion movement in the beam,
represented in an extended phase space and often regarded as an effective beam temperature, is very low.

An important parameter in accelerator physics is the transverse emittance of an ion beam. In
view of the nature of the ion sources used in conventional accelerators, there is always a spread in
kinetic energy and velocity in a particle beam. Each point on the surface of the source emits protons with
different initial magnitude and direction of the velocity vector. The emittance ε provides a figure of merit
for describing the quality of the beam, i.e., its laminarity [68]. Assume that the beam propagates in the
z-direction. Each proton represents a point in the position-momentum space (x, px and y, py), the phase
space. The transverse phase space (e.g., in the x-direction) of the TNSA protons is obtained by mapping
the source position (indicated for example by imprinted surface grooves in the radiochromic film) versus
the angle of emission px/pz, obtained by the position x of the imprinted line in the radiochromic film and
the distance d by px/pz = x′ = arctan(x/d).

In general, the quality of charged-particle beams is characterized by their emittance, which is
proportional to the volume of the bounding ellipsoid of the distribution of particles in phase space. By
Liouville’s theorem, the phase space volume of a particle ensemble is conserved during non-dissipative
acceleration and focusing. For the transverse phase space dimensions, the area of the bounding phase
space ellipse equals πε , where the emittance ε , at a specific beam energy (or momentum p), is expressed
in normalized root-mean-square (r.m.s.) units as

εN,rms = (p/mc)
[
< x2 >< x′2 >−< xx′ >2]1/2

. (43)

In Eq. (43), m is the ion mass, c is the velocity of light, x is the particle position within the
beam envelope, and x′ = px/pz is the particle’s divergence in the x-direction. At a beam waist, Eq. (43)
reduces to εN,rms = βγσxσx′ , where σx and σx′ are the r.m.s. values of the beam width and divergence
angle. Several effects contribute to the overall emittance of a beam: its intrinsic transverse ‘thermal’
spread; intrabeam space charge forces; and non-ideal accelerating fields, for example, at apertures in
the source or accelerator. For typical proton accelerators (e.g., the CERN SPS or FNAL-Tevatron), the
emittance at the proton source is ≈0.5 mm ·mrad (normalized r.m.s.) and up to 20–80 mm · mrad within
the synchrotron. The longitudinal phase space (z–pz) is characterized by the equivalent energy–time
product of the beam envelope; for the CERN SpS, a typical value is ∼0.1 eV · s.

The highest quality ion beams have the lowest values of transverse and longitudinal emittance,
indicating a low effective ion temperature and a high degree of angle-space and time-energy correlation.
In typical TNSA experiments, one may estimate an upper limit for the transverse emittance of the proton
beam from Eq. (43), by assuming that initial beamlets were initially focused to a size �100nm, and
that the observed width is entirely due to the initial width of the x′ distribution. The upper limit of the
emittance for 12 MeV protons is <0.002 mm ·mrad. This is a factor of >100 smaller than typical proton
beam sources, and we can attribute this to the fact that during much of the acceleration the proton space
charge is neutralized by the co-moving hot electrons, and that the sheath electric field self-consistently
evolves with the ions to produce an effectively ‘ideal’ accelerating structure. The remaining irreducible
‘thermal’ emittance would imply a proton source temperature of <100 eV. The energy spread of the
laser-accelerated proton beam is large, ranging from zero to tens of megaelectronvolts; however, owing
to the extremely short duration of the accelerating field (<10 ps), the longitudinal phase space energy–
time product must be less than 10−4 eV · s. More details can be found in Ref. [67], from which part of
this section was extracted.

3.1.6 Ion species
Since protons are the lightest ions, and have the highest charge-to-mass ratio, they are favoured by the
acceleration processes. The protons are present in the target as surface contaminants or in compounds of
the target itself or of the target coating. The cloud of accelerated protons then screens the electric field
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Figure 13 
Fig. 10: (a) Overlaid signals of heated and non-heated (blue) W/CaF2 targets: the proton signals vanish for heated
targets, the fluorine signals (especially F7+) go up to much higher energies. (b) Corresponding F7+ spectra: more
than 5 MeV per nucleon are achieved for F7+ ions. From Ref. [40].

generated by the electrons for all the other ion species. The key for the efficient acceleration of heavy
ions is the removal of any proton or light ion contaminants. In a few cases, heating of the target was
performed prior to the experiments, to eliminate the hydrogen contaminants as much as possible, and to
obtain a better, more controllable ion acceleration. In particular, by removing the proton from the targets,
or by choosing H-free targets, the acceleration of heavier ions was favoured. For the latter case, recent
experiments have demonstrated heavy-ion acceleration of up to more than 5 MeV/u, which corresponds
to ion energies that are usually available at the end of a conventional accelerator of hundreds of metres
in length [40].

First attempts to remove the hydrogen contaminants used resistively heated Al targets to tempera-
tures of a few hundred degrees Celsius. The partial removal of the hydrogenous contaminants already
strongly enhanced the acceleration of carbon ions [8]. A reduction by a factor of ten increased the energy
of the carbon ions by a factor of 2.5 and their number by two orders of magnitude. Using tungsten as a
thermally stable target resist and coating the rear surface with the material of interest, the target could be
heated to more than 1200 degrees Celsius. Such targets show no accelerated protons at all, but instead
a strongly increased contribution of heavy ions. The maximum energy could be enhanced by a factor
of five compared with aluminium targets and the conversion efficiency again by a factor of ten [40] (see
Fig. 10). Where the ohmic heating of target materials of interest is prohibited, owing to a low evaporation
point, laser heating has proved an appropriate option for removing the contamination layers. In that case,
the intensity of the laser heating the rear surface and evaporating the proton layers and the timing, with
respect to the short pulse, have to be matched carefully. The energy spectrum of the heavy ions, together
with their charge-state distribution also provides detailed information about the accelerating electric field
at the rear surface. It was shown that, in a typical experiment, collisional ionization and recombination
in flight is negligible, and so the detected charge states directly image the electric field strength because
of the field ionization process. The field strengths that have been obtained match the estimated field
strength, also predicted by theory, very well, and range from 1011 V/m to ∼1012 V/m.

The accelerating field deduced from ion acceleration is also consistent with observed proton ener-
gies with non-heated targets. For example, in typical experiments, fluorine ions were accelerated up to
100 MeV, i.e., more than 5 MeV/nucleon at a maximum charge state of 7+. This corresponds to an
electric field of 2 TV/m, which would have accelerated protons, if present, to energies of up to 25 MeV.
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These were exactly the maximum energies found in experiments with non-heated targets under similar
experimental conditions. Furthermore, the conversion efficiency is very high. Similar to the results
obtained for proton beams, conversion efficiencies of up to 4% from laser to ion beam energy have been
measured. Because of the same accelerating mechanism for protons and heavy ions, an excellent beam
quality was expected. This section was extracted from [6].

3.2 Target dependence
In the previous section, we have looked extensively at the influence of target thickness and conductivity
on the driving electron sheath distribution. To summarize, a highly conducting ultra-thin target is the
most favourable for efficient ion acceleration. Moreover, as the electrons can distribute a part of the
energy provided by the laser into bremsstrahlung, a low-Z material is preferable. The ultimate thickness
of the target is determined by the limited laser contrast, as TNSA requires a sharp density gradient at the
rear surface. For effective ion acceleration, an undisturbed back surface of the target is crucial to provide
a sharp ion density gradient, since the accelerating field strength is proportional to Thot/el0, where Thot
is the temperature of the hot electrons and l0 is the larger of either the hot-electron Debye length or the
ion scale length of the plasma on the rear surface. The limited contrast of the laser causes a shockwave,
launched by the prepulse, that penetrates the target and causes a rarefaction wave that diminishes the
density gradient at the back, thereby drastically reducing the accelerating field. The inward moving
shockwave also alters the initial conditions of the target material due to shockwave heating and therefore
changes, e.g., the target density and conductivity. As a trade-off, one has, however, to note that a certain
preplasma at the front side is beneficial to the production of hot electrons, somehow contradicting the
need for high-contrast lasers. Also, as the lateral expansion of the electron sheath affects the evolution of
the ion acceleration, it has been found that to confine the electron by reducing the transverse dimensions
of the targets also enhances the ion particle energy. So the ideal target would resemble an ultra-thin,
low-Z, highly conducting target with small lateral dimensions and a large preplasma at the front side.

Meanwhile, high-contrast laser systems are able to irradiate targets as thin as only a few nano-
metres, and we begin to see the change in the accelerating mechanism to radiation pressure acceleration
[70] or laser breakout afterburner type acceleration [71], which is beyond the scope of this paper.

Apart from maximizing the ion beam particle energy, targets can be used to shape the beam for
the applications listed next. Ballistic focusing [8, 72–75] and defocusing [8] have been demonstrated
by numerous groups, tailoring on a nanoscale using microstructured targets [76] and layered targets to
modify the shape of the energy spectrum [64].

3.3 Beam control
Ballistic focusing of laser-accelerated proton beams has been known since 2003 [72] and has been in-
vestigated in detail because of the large importance for proton-driven fast ignition [77] and the generation
of warm dense matter [78]. Experiments have shown that the real source size of a few hundred micro-
metres could be collimated down to 30 µm using ballistic focusing from the rear surface of hemispherical
targets. However, one has to take into account the real sheath geometry of the driving electrons to inter-
pret the proton beam profile accurately. The driving sheath consists of a superposition of the sheath field
normal to the inner surface of the hemisphere and the Gaussian electron density distribution caused by
the limited source size of the driving laser focus. Therefore, the experiments in Ref. [72] have indicated
that a larger laser focal spot should minimize the second effect and thus result in a better focus quality.

For almost all applications, a precise control of the beam parameter and the possibility of tailoring
the beams is of great importance. As we have seen, using the guidance by the shape of the target material,
we have large control over the spatial ion beam distribution. However, it might also be instructive and
preferable to try to manipulate the ion beam just using optical methods. Results reported so far were
obtained with a round laser spot, focused as well as possible to obtain the highest intensities. But, as
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found by Fuchs et al. [79], the laser focal spot shape is eventually imprinted in the accelerated proton
beam. Fuchs et al. assumed that the bulk of the hot electrons follow the laser focal spot topology and
create a sheath with the same topology at the rear side. The proton beam spatial profile, as detected by a
film detector, was simulated with a simple electrostatic model. Fuchs et al. took the laser beam profile as
an input parameter and assumed the electron transport to be homogeneous, with a characteristic opening
angle that needed to be fit to match the measured data. The unknown source size of the protons was
fit to best match the experimental results. It was shown, that for their specific target thickness and
laser parameters, the fitted broadening angle of the electron sheath at the rear side closely matched the
broadening angle expected by multiple Coulomb small-angle scattering. However, Fuchs et al. could
only fit the most intense part of the measured beam and neglected the lower intense part that originates
from rear-side accelerated protons. Additionally, there is no information on the dependence of these
findings on target thickness.

Using microgrooved targets, a more detailed understanding has been achieved. The asymmetric
laser beam results in asymmetric proton beam profiles. The energy-resolved source size of the protons
was deduced by imaging the beam perturbations from the microgrooved surface into a radiochromic film
detector stack. It was shown that the protons with the highest energies were emitted from the smallest
source. When the laser focus size was increased, the proton source size increased as well. For symmetric
as well as asymmetric laser beam profiles, the source-size dependent energy distribution in both cases
could be fit to a Gaussian. This leads to the conclusion that the laser beam profile has no significant
contribution to the general expansion characteristics of laser-accelerated protons, but can strongly modify
the transverse beam profile without changing the angle of the beam spread. For a more detailed analysis
of the experimental results, a code for sheath-accelerated beam ray-tracing for ion analysis (SABRINA)
was developed, which takes the laser beam parameters as input and calculates the shape of the proton
distribution in the detector. The electron transport was modelled to follow the laser beam profile topology
closely and a broadening due to small-angle collisions was assumed. It was shown that broadening due
to small-angle collisions is the major effect that describes the source size of protons for thick target foils
(50 µm). By contrast, thin target foils (13 µm) show much larger sources than expected for small-angle
collisions. The physical reason behind this observation remains unclear; it is most likely the result of
electron refluxing. Thus, the shape of the sheath at the rear side of the thick targets can be estimated by a
simple model of broadening due to multiple small-angle scattering, but the model fails for the description
of sheath broadening in thin targets.

The imprint of the laser beam profile affects the intense part of the proton beam profile. This effect
must also be present in cases with a round focal spot. Therefore, a focal spot with a sharp peaked laser
beam profile will result in a strongly divergent proton beam, as observed in experiments. The findings
also explain that in cases where a collimation of the proton beam is required, e.g., proton fast ignition
or the injection of the beam into a post-accelerator, not only is a curved target surface necessary, but a
large, flat-top laser focal spot is indispensable, to produce a flat proton-accelerating sheath.

4 Applications
Summarizing the beam parameters achievable using the TNSA mechanism one can make a number of
conclusions.

The measured particle energies so far extend up to tens of megaelectronvolts (78 MeV protons,
5 MeV/u palladium) and the particles showed complete space charge and current neutralization due to
accompanying electrons. In experiments, particle numbers of more than 1013 ions per pulse and beam
currents in the mega-amp regime were observed. Another outstanding feature is the excellent beam
quality, with a transverse emittance of less than 0.004π mm · mrad and a longitudinal emittance of
less than 10−4 eV · s. Because of these unmatched beam characteristics, a wealth of applications were
foreseen immediately. Those applications range from:
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– injection of high power ion beams for large-scale basic research facilities;
– new diagnostic techniques for short-pulse phenomena, since the short pulse duration allows for the

imaging of transient phenomena;
– modification of material parameters (from applications in material science to warm dense matter

research and laboratory astrophysics);
– applications in energy research (‘fast igniter’ in the inertial fusion energy context);
– medical applications;
– use as a new laser-driven pathway to compact, bright neutron sources.

4.1 Ion source
An important application for TNSA ion beams is for use as next-generation ion sources or accelerators,
where the excellent beam quality and strong field gradients can replace more conventional systems.
Several collaborations are actively working on that task, spearheaded by the LIBRA collaboration in the
UK, the LIGHT collaboration in Germany and a group at JAEA in Japan.

We briefly address a few aspects of current research aimed at applying laser ion beams as a new
source.

4.1.1 Collimation and bunch rotation of accelerated protons
One of the main drawbacks of laser-accelerated ions and, in particular, protons are the exponential energy
spectrum and the large envelope divergence of the beam. Different techniques have been developed to
modify the energy distribution, to produce a more monoenergetic beam. Therefore, special targets were
created with thin proton or carbon layers on the rear side, as well as deuterated droplets. In addition,
there have been attempts to reduce the initial divergence of the beams by ballistic focusing, with the help
of curved hemispherical targets, resulting in a beam focus at a distance of the diameter of the sphere
from the laser focus. In a different experiment, a laser-triggered microlens was used to select a small
energy interval and to focus the protons with these specific energies to a millimetre spot 70 cm from the
target [80].

The total proton yield of typically 1013 particles and the extremely high observed phase space
density immediately behind the source and prior to any collimator are highly encouraging. As in all
cases of sources of secondary particles (antiprotons, muons, rare isotopes, etc.), transmission efficiency
and phase space degradation due to the first collimator need to be carefully examined. In particular,
higher than first-order focusing properties of the collimator are a serious limitation to the realistically
‘usable’ fraction of the production energy spectrum, as well as of the production cone divergence. As
these same limitations might cause a serious degradation of the transverse emittance of the ‘usable’ pro-
tons, the very small production emittance becomes a relatively irrelevant quantity. Instead, an ‘effective’
emittance, taking into account transmission loss and blow-up caused by the collimator, should be used.
In this context, space charge (non-linear) effects are a further source of emittance degradation—probably
not the dominant one—to be carefully examined. Recently, we have shown that the collimation of a laser-
accelerated proton beam by a pulsed high-field solenoid is possible and leads to good results in terms
of collimation efficiencies. More than 1012 particles were caught and transported by the solenoid. The
steadiness of the proton beam after collimation could be proven up to a distance of 324 mm from the tar-
get position. Inside the solenoid, strong space charge effects occurred, owing to the co-moving electrons,
which are forced to circulate around the solenoid’s axis at their gyroradius by the strong magnetic field,
leading to a proton beam aggregation around the axis (see Fig. 11). Details can be found in Ref. [81].

More detailed calculations of the injection into ion optical structures have been published by Ingo
Hofmann [82, 83].
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Abbildung 5.10: Die Simulation zeigt die Propagation der Protonen durch den Solenoiden bis hin zum RCF-Detektor für sechs
Zeitschritte. Die Elektronen sind aus Übersichtsgründen nicht dargestellt. Deutlich sichtbar ist die Protonenaggregation auf die
Solenoidachse. Die Energien der Protonen liegen im Bereich von 1 MeV (·) bis 5 MeV (·).

eine akkurate Berechnung der Protonen- sowie der Elektronendynamik komplexer Systeme, wie z.B. den vorlie-
genden Transport der geladenen Teilchen durch das Solenoidfeld. Erste Ergebnisse stützen die oben beschriebe-
nen CST-Particle-Studio Resultate und wurden erstmalig in Referenz [85] präsentiert. Im folgenden Kapitel zum
neuen Spulendesign werden die gemessenen RCF-Profile den mit Hilfe des WARP-Codes berechneten Profilen
gegenübergestellt. Es zeigt sich eine sehr gute Übereinstimmung.

5.8 Neues Spulendesign

Aufbauend auf den Ergebnissen der ersten Strahlzeit zum Transport laserbeschleunigter Protonen mit einem
gepulsten Solenoiden wurde ein zweites Experiment am PHELIX durchgeführt, in Zusammenarbeit mit Kolle-
gen vom Forschungszentrum Dresden-Rossendorf (FZD). Dabei kam ein neuer Solenoid zum Einsatz, dessen
Design am Hochfeldlabor des FZD entwickelt wurde. Die Spule besteht aus vier Lagen Kupferdraht mit jeweils
27 Windungen und hat eine Gesamtlänge von 150 mm. Die offene Apertur beträgt 48 mm im Durchmesser.
Durch die verdoppelte Länge der Spule im Gegensatz zum ersten Prototypen und die vierfache Wicklung er-
gibt sich eine Induktivität der Spule von ⇠ 250µH. Dies ermöglicht eine Verringerung der benötigten Ströme
zur Erzeugung des Magnetfeldes. Realisiert wurde dies durch eine Halbierung der Kondensatorkapazität auf
1560µF. Abbildung 5.11(a) zeigt ein Foto des neuen Solenoiden, eingebaut in der PHELIX Targetkammer. Die
mechanische Stabilität wird wieder durch massive glasfaserverstärkte Kunstoffflansche erreicht. Zusätzlich ist
die Spule im Inneren durch eine drei Millimeter dicke Schicht glasfaserverstärkten Kunststoff gegen den Ein-
schlag der beschleunigten Teilchen geschützt. Durch diese Maßnahme konnten Überschläge innerhalb der Spule
verhindert werden. Dies ist deutlich an den Stromkurven des Solenoiden zu sehen, die während eines Laser-
schusses zur Protonenbeschleunigung aufgenommen wurden, siehe Abbildung 5.11(b). Es konnte kein Signal
auf der Erdungsleitung gemessen werden. Zusätzlich sieht man an dieser Kurve, dass die neue Spule eine ähnli-
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Fig. 11: Simulation of the propagation of target normal sheath acceleration protons through a solenoid magnet up
to a detector at six timepoints. For a better view, the accompanying electrons are not shown. A clear aggregation
of protons at the axis due to space charge effects is visible. The proton energy in this case ranges from 1 to 5 MeV.
RCF, radiochromic film. Published in Ref. [81].

4.1.2 Chromatic error of solenoid collimation
In general, pulsed solenoids are a good match to the ‘round’ production cone of laser-accelerated par-
ticles; a quadrupole-based focusing system appears to be disadvantageous in the defocusing plane of
the first lens, owing to the relatively large production angles. As an example, we use the short-pulsed
solenoid currently under experimental study at the GSI Helmholtz Centre for Heavy-Ion Research. It has
a length of 72 mm and a theoretical maximum field strength of 16 T, which is sufficient to parallelize
protons at 10 MeV. The distance from the target spot to the solenoid edge is assumed to be 17 mm.

The prevailing higher-order effect of a solenoid is the increase in focal length with particle energy.
Owing to the debunching process, different sections along the bunch have different energies and thus
focus at different distances. This results in an effective increase in the bunch-averaged emittance to the
effect that the tiny initial production emittance should be replaced by a chromatic emittance. To examine
the expected behaviour in detailed simulation, we employed the DYNAMION code [84], which includes
higher-order effects in amplitudes and energy dependence, as well as space charge effects. The latter
are based on particle–particle interaction, which limits the space charge resolution. The solenoid three-
dimensional magnetic field was obtained by direct integration using the coil geometry of the experimental
solenoid. To quantify the chromatic effect, we consider an ensemble of protons with constant energy
spread ∆E/E = ±0.04 around a reference energy of 10 MeV. Results for final emittances (ignoring
space charge) are shown in Fig. 12 to depend exactly quadratically on the considered production cone
opening angle δx′, which varied up to ±172 mrad (±10◦). To test the influence of space charge, we
also simulated a case with the number of protons in the bunch, Nb, equal to 3×109, which is equivalent
to a linac current of I = 50 mA (using I = eNb fRF and assuming that each bucket of a fRF = 108 MHz
sequence is filled identically). For simplicity, the bunch intensity was chosen to be independent of
the opening angle. It is noted that the quadratic law still approximately applies. Since for given δx′

the dependence on ∆E/E is found to be practically linear, we can justify the following scaling of the
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Fig. 12: Dependence of ‘chromatic’ emittances (here total emittances for 95% of particles) on production cone
angle, as obtained by DYNAMION simulations.

chromatic emittances in the absence of space charge:

εx = αc(δx′)2 ∆E
E
, (44)

with αc ≈ 0.04 m/rad for the particular solenoid described here. The law is still approximately true if
space charge is included for the assumed bunch intensity. Note that the chromatic emittance is found to
be practically independent of the initial spot radius rspot—contrary to the production emittance given by
the product rspotδx′.

4.1.3 Transmission through beam pipe
For planned experiments, it is important to note that the increase of emittance with energy spread will
inevitably lead to transmission loss in the finite acceptance of the following beam pipe. To this end,
we have assumed a beam pipe of 3 cm radius up to 250 cm distance from the source. We have also
assumed a linac current Nb ≈ ∆E/E, with Nb = 2× 109 for the lowest value ∆E/E = ±0.04. The
increase in transmission loss with distance is mostly due to the large spread of focusing angles as a
function of the energy spread and is also due, to a lesser extent, to space charge. The surviving energy
distribution evaluated at different distances from the source goes down to 35% for the largest initial
energy spread case in the previous example of ∆E/E = ±0.64 and a correspondingly high current of
560 mA. Obviously, an extended beam pipe serves as an energy filter.

4.1.4 RF bunch rotation
For most applications of laser-accelerated particles, in particular for ion beam therapy, it is desirable
to reduce the final energy spread on the target to a fraction of one per cent, to enable focusing on a
small target spot. This is achieved by means of a ‘bunch rotation’ RF cavity applied to the beam after
debunching to a length suitable for the RF wavelength. The initial short bunch length increases with
debunching proportional to the distance from the source and the considered energy spread. Capture
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into the RF bucket of a fraction of a beam within a given transverse emittance defines the ultimate six-
dimensional extraction efficiency and the ‘usable’ part of the total production of protons. As reference
value we take an energy spread of ∆E/E =±0.04, which can be reduced to a reasonably small value by
using a 500 kV/108 MHz bunch rotation RF cavity approximately 250 cm away from the solenoid. This
means that only the central part of the totally transmitted energy distribution—about 20% for the 3 cm
aperture limitation—can be captured by the RF bucket. Diagnosing the intensity and six-dimensional
emittance of this ‘usable’ fraction in the presence of the background of the fully transmitted spectrum is
a challenge to the diagnostics.

Thus, at the current status, a careful study of the transfer efficiency of these beams into conven-
tional transport and focusing structures is crucial and timely, and will be carried out within the next few
years, given the unique prerequisites present among all the international collaborations. The foremost
goal of the proposed effort is to determine the properties of the generated proton or ion beams with the
prospect of later applications and to examine the possibilities of collimation, transport, debunching and,
possibly, post-acceleration in conventional accelerator structures, both theoretically and experimentally.

4.2 Diagnostics
A highly energetic laminar beam of charge particles with a pulse duration of only a few picoseconds
constitutes an ideal tool to diagnose transient phenomena. Like a short burst of X-rays, a pulse of
laser-driven protons can penetrate a target and reveal important information about its parameters. Laser-
driven protons are complementary to X-rays, as the interactions of charged particles are fundamentally
different from those of electromagnetic radiation. In the past, ion beams produced by conventional
accelerators have already been used to radiograph static and transient samples [85], as well as for the in-
vestigation of electric fields in laser-produced plasmas [86]. Several experiments with laser-accelerated
beams as probes were performed, to investigate the evolution of highly transient electric fields evolving
from charging of laser-irradiated targets [88,92]. These fields change on a picosecond time-scale. Proton
beams from ultra-intense laser–matter interactions are accelerated in a few picoseconds, depending on the
laser pulse length. Combined with the very low emittance [67], these beams allow for two-dimensional
mapping of the primary target with unprecedented spatial and temporal resolution. Using this technique,
remnants of relativistic solitons that were generated in a laser plasma have been detected [89], and the
accelerating Debye sheath in a TNSA process as well as the ion expansion from the rear side of the target
foil could be pictured [90].

Because of the energy spectrum, and owing to the dispersion of the proton pulse at the point of
interaction with the target to be probed, different proton energies probe the target at different times.
Using the radiochromic film stack technique, the ions can be separated in energy, where the high-energy
particles deposit their energy in the rearmost layer, while lower-energy particles are stopped in the front
layers. Thus, by unfolding the layers, one can separate the ion energies and therefore the interaction time
down to picosecond temporal resolution.

4.2.1 Energy loss
The fundamental contrast mechanism for generating image information is energy loss in the sample, and
the consequent shift in the energy distribution of transmitted protons. As one proceeds from the shallow
layers to the deepest radiochromic film layers, protons with progressively higher incident energies are
preferentially recorded. By examining a portion of the image where the sample contained no inter-
vening material, we can deduce the incident proton energy distribution from the depth dependence of the
deposited energy, based on the respective response function.

If the incident protons pass through a thin sample of thickness δx, they lose energy according to
their energy loss rate, and the transmitted proton energy, which is incident on the film detector, is
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Ef ≈ Ei− (dE/dx) ·δx≈ Ei−∆E . (45)

If the sample is thick, so that dE/dx is not constant over the energy range ∆E, then the energy loss
is given by the integral along the trajectory,

∆E =
∫ δx

0
dE(dx)dx . (46)

A limitation of this technique is that energy loss, and therefore thickness information, is encoded
as a spectral shift of the proton energy distribution due to energy loss. If the object has a large thickness
range, and hence large values of the energy loss, early-time (high incident proton energy) information
from thick portions of the sample is recorded in the same final proton energy interval as late-time (low
incident proton energy) information from thinner portions of the sample. Deconvolution of the spa-
tial, temporal, and thickness information is complicated, and even self-consistent solutions may not be
unique.

In the ideal limit of no transverse scattering, the resolvable thickness variation over a sample is
related only to the energy loss and the exponential fall-off of the proton spectrum. This is a strong
function of initial proton energy via the energy dependence of dE/dx. For example, for our test case,
in which we observe a 2 MeV exponential distribution, a resolvable intensity variation of 1% implies a
resolvable energy loss of 20 keV. At a proton energy of 10 MeV, this would correspond to a plastic (CH)
thickness of <5 µm, and, at 4 MeV, a thickness of 2 µm.

4.2.2 Transverse scattering
In addition to continuously slowing down, the protons also undergo multiple small-angle Coulomb scat-
tering from the nuclei in the sample. In the energy range of interest, proton multiple scattering can be
described by a Gaussian fit to the Molière distribution, which is similar to the case of the electrons we
have seen earlier. That is, protons are scattered according to a near-Gaussian polar angle distribution,

dN/dΩ≈ 1√
2πΘ0

exp(−Θ2/2Θ2
0) , (47)

where Θ0 is given by

Θ0 =
13.6 MeV

β pc

√
x/X0[1+0.038ln(x/X0)] , (48)

with X0 defined as

X0 =
716.4 g cm−2 A

Z/(Z +1) ln(287/
√

Z)
. (49)

Multiple scattering of the protons as they traverse the sample degrades the spatial resolution pos-
sible from ideal energy loss imaging, but it can also increase the contrast and hence the thickness reso-
lution. This is because those protons scattered away from the direct line of sight from the source to the
film detector are moved from the umbral to penumbral region on the film, thus reducing the flux of pro-
tons in the direct shadow. The decrease in proton flux associated with a given film plane being sensitive
to higher initial energy protons, owing to the energy loss in the sample, is augmented by a flux reduction
from scattering. The very small-angle scattered protons, however, increase the net flux of protons in the
penumbral region, which can lead to ‘limb brightening’ effects, which are usual for image techniques
based on scattering (rather than absorption).
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4.2.3 Field deflection
Probably the most important applications to date of proton probing are related to the unique capability of
this technique to detect electrostatic fields in plasmas [91,92]. This has allowed researchers to obtain, for
the first time, direct information on electric fields arising through a number of laser–plasma interaction
processes [88, 89, 93]. The high temporal resolution is here fundamental in allowing the detection of
highly transient fields following short-pulse interaction. When the protons cross a region with a non-
zero electric field, they are deflected by the transverse component E⊥ of the field. The proton transverse
deflection at the proton detector plane is equal to

∆r⊥ ≈ eL
∫ b

0
(E⊥/mpv2

p)dl , (50)

where mpv2
p/2 is the proton kinetic energy, e its charge, b the distance over which the field is present,

and L the distance from the object to the detector. As a consequence of the deflections, the proton beam
cross-section profile undergoes variations showing local modulations in the proton density. Assuming
the proton density modulation to be small δn/n0� 1, where n0 and δn are, respectively, the unperturbed
proton density and proton density modulation at the detector plane, we obtain δn/n0 ≈ −div(∆r⊥)/M,
where M is the geometrical magnification. The value of the electric field amplitude and the spatial
scale can then be determined if a given functional dependence of E can be inferred a priori, e.g., from
theoretical or geometrical considerations. More details can be found in the references cited in this paper
and in Ref. [6], from where a part of this section was taken.

4.3 Warm dense matter
The creation of extreme states of matter is important for the understanding of the physics covered in
various research fields, such as high-pressure physics, applied material studies, planetary science, inertial
fusion energy, and all forms of plasma generation from solids. The primary difficulties in the study of
these states of matter are that the time-scales or the changes are rapid (≈1 ps), while the matter is very
dense and the temperatures are relatively low,∼eV/kB. With these parameters, the plasma exhibits long-
and short-range orders, which are due to the correlating effects of the ions and electrons. The state of
matter is too dense or too cold (or both) to admit standard solutions used in plasma physics. Perturbative
approaches using expansions in small parameters for the description of the plasma are no longer valid,
proving a tremendous challenge for theoretical models. This region where condensed matter physics and
plasma physics converge is the so-called warm dense matter regime [94].

Warm dense matter conditions can be generated in a number of ways, such as by laser-generated
shocks [95] or laser-generated X-rays [96, 97], intense ion beams from conventional accelerators [98],
or laser-accelerated protons [72–74], to name just a few. Whereas lasers only interact with the surface
of a sample, ions can penetrate deeply into the material of interest, thereby generating large samples of
homogeneously heated matter. The short pulse duration of intense ion beams furthermore allows for the
investigation of the equation of states close to the solid-state density, because of the material’s inertia,
which prevents the expansion of the sample within the interaction. Moreover, the interaction of ions with
matter is dominantly due to collisions and does not include a high-temperature plasma corona as is the
case in laser–matter interaction.

The generation of large, homogeneous samples of warm dense matter is accompanied by the chal-
lenging task of diagnosing this state of matter, as the usual diagnostic techniques fail under these con-
ditions. The material density results in a huge opacity and the relatively low temperature does not allow
traditional spectroscopic methods to be applied. Moreover, the sample size, deposited energy and life-
time of the matter state are strongly interrelated and are dominated by the stagnation time of the atoms
in the probe. Thus, high spatial and temporal resolution is required to gain quantitative data in those
experiments. Owing to the high density of the sample, laser diagnostics cannot be used. The properties
of matter could be determined by measuring the expansion after the heating [73] or by measuring the

29

ION ACCELERATION–TARGET NORMAL SHEATH ACCELERATION

259



shortpulse laser 
(P > 100 TW)

protons

target 
foil

Au shielding curved HOPG x-ray detector

Au cylinder 
for shielding

backlighter foil 
(Saran, Ti)

pinhole

x-rays

C-sample

Figure 6.5: Proposed experimental scheme to investigate the properties of laser-accelerated proton-heated matter

by spectrally resolved x-ray Thomson scattering. See text for details. Image courtesy of K. Harres.

(partially shown above) is required to prevent parasitic signals in the scatter spectrometer. From the measured

Doppler-broadened, Compton-downshifted signal the temperature and density can be inferred.

Two-dimensional hydrodynamic simulations of the laser-accelerated proton beam energy deposition in a solid

carbon cylinder have been performed by An. Tauschwitz, in order to estimate the temperature by the proton

heating. Details of the simulation are published in ref. [13]. For the estimate the proton beam parameters (spec-

trum, total number, energy dependent source size, energy dependent divergence) determined at LULI-100 TW

have been used. The simulated proton beam had an exponential spectrum (eq. (3.13)) with N0 = 5⇤ 1011 and

kB T = 1.5 MeV. The angle of beam spread decreases parabolic with energy. The decreasing source size with

energy has been fit by a Gaussian. The distance between the proton producing foil and the carbon sample was

chosen to 300µm.

The temperature distribution in the solid carbon sample is shown in fig. 6.6. The left image shows the temper-

ature distribution along the longitudinal direction z. 50 ps after the first protons hit the target, a plateau-like

region (between 10µm and 20µm) of about 8 eV is formed in the yellow-shaded area. In radial direction (see

right-hand image) the temperature is homogeneous at around 8 eV, too. Due to the impulsive heating by the

protons the temperature stays constant for more than 300 ps . This is enough time for the backlighter beams to

probe the sample.

118 6.2. Generation of high-energy density matter

Fig. 13: Experimental scheme to investigate the properties of laser-accelerated proton-heated matter by spectrally
resolved X-ray Thomson scattering. HOPG, highly ordered pyrolytic graphite.

thermal radiation emitted by the sample [72]. However, even more interesting are the plasma parameters
deep inside the sample, where the ion heating is most effective. An ideally suited diagnostic technique
recently developed is X-ray Thomson scattering [96, 99, 100].

Figure 13 shows a typical experimental scheme to investigate the transformation of solid, low-Z
material into the warm dense matter state. The experimental scheme requires a high-energy short-pulse
laser and one or more long-pulse laser beams in the same experimental vacuum chamber. In recent
years, more and more laser facilities have upgraded their laser systems for such types of pump-probe
experiment. A chirped pulse amplification laser beam above 100 TW power generates an intense proton
beam from a thin target foil. The protons hit a solid-density sample and heat it isochorically, up to a
temperature of several eV/kB. The long-pulse beams are used to drive an intense X-ray source from
a titanium or Saran (which contains chlorine) foil. The sample is probed by narrow-band line-radiation
from the chlorine or titanium plasma. The scattered radiation is first spectrally dispersed by a highly
efficient, highly oriented, pyrolytic graphite crystal spectrometer with von Hamos geometry before it
is detected. Extensive gold shielding (partly shown in Fig. 13) is required, to prevent parasitic signals
in the scatter spectrometer. From the measured Doppler-broadened, Compton-downshifted signal, the
temperature and density can be inferred.

Whereas lasers only interact with the surface of a sample, ions can penetrate deeply into the
material of interest, thereby generating large samples of homogeneously heated matter. The short pulse
duration of laser-produced ion beams furthermore allows for the investigation of equation of states close
to the solid-state density, because the material’s inertia prevents expansion of the sample during the
interaction. In addition to these unique characteristics, the interaction of ions with matter is dominantly
due to collisions and does not include a high-temperature plasma corona, as it is present in laser–matter
interaction. The absence of a large radiation background is of importance to the experiment. Large
conversion efficiencies have been observed, and significant energy can be transferred from the ultra-
intense laser via the ion beam into the sample of interest. Because of the high beam quality, ballistic
focusing has been demonstrated, allowing for an increase in local energy deposition, thus leading to
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Scientific case: Ultra-fast optical pump x-ray probe measurements have studied the disordering of the 
crystal lattice due to the strongly perturbed potential when an intense optical laser pulse is absorbed on 
the surface. Siders et al. [1] have used x-ray scattering to measure the ultra-fast non-thermal “melting” 
of laser irradiated semiconductor crystals. The fast disordering of the crystal structure – much faster 
than could have been achieved by thermal melting – was attributed to the high carrier density 
exceeding the crystal stability limit, while the subsequent slower melting was due to propagation of a 
melt-front into the crystal. Lindenberg et al. [2] have measured the disordering of the crystal due to 
inertial moving of the target atoms in a softened inter-atomic potential after optical laser irradiation. In 
these experiments, non-thermal heating was driven by the laser first transferring energy to a non-
equilibrium electron population, which relaxation is then mediated by lattice phonon coupling. 
Differently from above, here we instead propose to directly heat a graphite crystal lattice to and above 
melting temperature using laser-accelerated intense proton beams. Since protons, due to their large 
mass, preferentially deposit energy deep in the target, the energy flow pathways are substantially 
changed. Indeed, this heating mechanism heats the target volumetrically and homogeneously up to 
depths of several 10’s of micrometers. Using laser pulses in excess of 100 J the intense proton beams 
can heat large targets up to several times the melting temperature [3-5]. 
X-ray Thomson scattering has been successfully applied to measure temperatures in warm-dense 
matter [6]. However, measuring the Doppler-broadening of inelastic Compton-scattering from free 
electrons requires temperatures of several 10’s of eV. To infer the ion temperature, equilibration of 
electron and ion subsystems has to be assumed. The temperature dependence of the elastic scattering 

in the long scale length regime has been exploited 
to measure the ion temperature in shock-heated 
matter of up to 2 eV [7]. This dependence however 
is strongly model dependent, and dense matter 
codes show significant disagreement. Moreover, 
recent work that we have performed at the 
Rutherford Appleton Laboratory indicates that the 
structural properties of WDM are not well 
understood in the long wavelength regimes where 
many body correlations play a significant role in 
determining the scattering amplitude [8]. 
In a milestone experiment that we have performed 
at TAW last year, we were able to measure the 
molten fraction in carbon samples heated by 
intense proton beams [9]. Figure 1 shows our 
preliminary results compared with a radiation 
hydrodynamics simulation, which uses SESAME 
as equation of state model. We notice that 
agreement is better at lower temperatures where 
ionization is not important, but at higher 

temperatures the presence of an ionic component may be important.  
Indeed, in this previous experiment, no information on the molten carbon temperature was obtained, 
since incoherent (Thomson) scattering signals are extremely small near the solid-to-liquid phase 
transition. On the other hand, coherent scattering (Bragg diffraction) remains significant and orders of 
magnitude more intense than its incoherent counterpart [10]. In the proposed experiment the 
temperature of the heated sample will be accurately measured with high temporal resolution by x-ray 
diffraction using a laser generated K-alpha probe source. This technique directly measures the 
temperature of the ion system and has the advantage of being model-independent, as it directly 
measures the mean square displacement of the target atoms [1,2]. Thus, this method is allowing us to 
follow the temporal evolution of targets heated within a few picoseconds to well above the melting 
temperature. In addition, the technique provides a direct probing of the ionic form factor near the 

Figure 1: The molten fraction of a carbon sample vs 
the deposited energy by the proton beam, calculated 
from the experimental data and simulated with 
Multi2D [9]. 
 

Fig. 14: Molten fraction of a carbon sample versus deposited energy by the proton beam, calculated from the
experimental data and simulated with Multi2D [78].

higher temperatures. The use of hemispherical targets, including cone-guided targets to enhance the
local proton flux on the material of interest, can even enhance the locally deposited energy.

Using laser pulses in excess of 100 J, the intense proton beams can heat large targets up to several
times the melting temperature. In a milestone experiment at TAW last year, the molten fraction in carbon
samples heated by intense proton beams was measured [78]. Figure 14 shows some results compared
with a radiation hydrodynamics simulation, which uses SESAME as the equation-of-state model. It can
be seen that agreement is better at lower temperatures, where ionization is not important, but at higher
temperatures, the presence of an ionic component may be important.

To summarize, laser-accelerated proton beams are very well suited to produce macroscopic sam-
ples of warm dense matter. Their unique feature, having pulse durations of only a few picoseconds while
containing more than 1012 protons, cannot be matched by conventional ion accelerators.

4.4 Fast ignition
In conventional inertial fusion, ignition and propagating burn occurs when a sufficient temperature (5–
10 keV) is reached within a sufficient mass of deuterium-tritium fuel characterized by a density-radius
product greater than the range of an alpha particle, (ρr)α > 0.3 g cm−2. The necessary conditions
for propagating deuterium-tritium burn are achieved by an appropriate balance between the energy
gain mechanisms and the energy loss mechanisms. Mechanical work (PdV ), alpha particle energy de-
position and, to a smaller extent, neutron energy deposition are the principal energy gain mechanisms
in deuterium-tritium fuel. Electron heat conduction and radiation are the principal energy loss mech-
anisms. When the rate of energy gain exceeds the rate of energy loss for a sufficient period of time,
ignition occurs. Because of the short burn time and the inertia of the fuel, the contribution of expansion
losses is negligible. Fast ignition [101, 102] was proposed as a means to increase the gain, reduce the
driver energy and relax the symmetry requirements for compression, primarily in direct-drive inertial
confinement fusion. The concept is to precompress the cold fuel and subsequently to ignite it with a
separate short-pulse high-intensity laser or particle (electron or ion) pulse. Fast ignition is being exten-
sively studied by many groups worldwide, using short-pulse lasers or temporally compressed heavy-ion
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beams. There are several technical challenges for the success of laser-driven fast ignition. Absorption of
the igniter pulse generates copious relativistic electrons, but it is not yet known whether these electrons
will propagate as a stable beam into the compressed fuel to deposit their energy in a small volume. In
principle, heavy-ion beams can have advantages for fast ignition. A focused ion beam may maintain an
almost straight trajectory while traversing the coronal plasma and compressed target, and ions have an
excellent coupling efficiency to the fuel and deliver their energy in a well-defined volume, owing to the
higher energy deposition at the end of their range (Bragg peak) [103]. With the discovery of TNSA ions
with excellent beam quality, the idea of using those beams for fast ignition was introduced [77,104]. Pro-
tons do have several advantages compared with other ion species [105] and electrons. First, because of
their highest charge-to-mass ratio, they are accelerated most efficiently up to the highest energies. They
can penetrate a target more deeply to reach the high-density region, where the hot spot is to be formed,
because of the quadratic dependence of the stopping power on the charge state. And finally, they do, like
all ions, exhibit a characteristic maximum of the energy deposition at the end of their range, which is
desirable, to heat a localized volume efficiently.

The basic idea is to use a number of short-pulse lasers to irradiate a thin foil. The protons were
accelerated from the rear surface of the foils and, because of the parabolic geometry, are focused into
the compressed fuel. One of the requirements for proton fast ignition is the possibility of focusing the
proton beams into a small volume. It has recently been demonstrated that proton beam focusing is indeed
possible, and spot sizes of about 40 µm have been achieved. This is comparable to what is required by
proton fast ignition. Larger irradiated areas on the target front surface, as required for proton fast ignition,
would flatten the electron distribution at the rear surface. Not only might this result in a single divergence
angle for different energies, but it would also form a much smaller initial divergence angle that could be
compensated, in order to reach the required focal spot diameters.

The pulse length at the source is of the right order of magnitude for proton fast ignition, which has
already been indicated in first experiments on ion acceleration. The protons are not monochromatic but
rather have an exponential energy distribution. This seemed to be a concern at the beginning because of
dispersion and pulse lengthening. A close distance to the pellet, however, raises concerns as to whether
the thin metallic foil, which is to be the source of the protons, can be kept cold enough that it does not
develop a density gradient at the rear surface, which would diminish the accelerating field. A second
concern was related to the stopping power. Because of the difference in initial velocity, the energy
deposition of protons with different kinetic energies is spread over a larger volume. Slower protons are
stopped at a shorter distance and do not contribute to the creation of the igniter spark. Fortunately, further
work has relieved those concerns. Simulations by Basko et al. (presented at the Fast Ignition Workshop
2002, Tampa, Florida) have shown that the protective shield placed in front of the source can withstand
the X-ray flux of the pellet compression and keep the rear surface of the source foil cold enough for
acceleration via TNSA. A thickness of a few tens of micrometres, however, provides thermal shielding
as well as sufficient mechanical stability. The distance between the source and the ignition spot can be
a few millimetres. If this distance is too short for the compression geometry (e.g., if a closely coupled
hohlraum is not used), the distance can be adjusted using a similar cone target, as for conventional fast
ignition. As for the concerns on the hydrodynamic stability of the proton source foil, the proposed usage
of a cone target similar to the one proposed for electron fast ignition [106, 107] has solved most of the
problems, by shielding the foil from primary soft X-rays generated in the compression of the capsule
(see Fig. 15). Furthermore it was demonstrated that small-scale plasma density gradients at the rear side
of the proton source target caused by target preheating have no significant (less than 10%) impact on the
TNSA mechanism [45].

A big surprise was the fact that a monochromatic proton beam is actually not the optimum to
heat a hot spot in a fusion target. Numerical simulations have shown that one has to take into account
the decrease of the stopping power of the nuclear fuel with increasing plasma temperature. Thus, an
exponential energy spectrum, like the one generated by this mechanism, is the most favourable. The first
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protons with the highest energies penetrate the fuel deeply. By the time the proton number increases and
the target temperature rises, the stopping power is reduced, thereby compensating for the lower initial
energy of the incoming protons. Thus the majority of the protons deposit their energy within the same
volume.

Existing short-pulse lasers have already demonstrated intensities that are sufficient for generating
the proton energy spectra required for proton fast ignition. Regardless of the nature of the igniter beam,
calculations show a minimum deposited energy required for fast ignition of the order of a few tens of
kilojoules. There have been many experiments with different laser systems accelerating proton beams.
Interestingly, the laser to ion beam conversion efficiency seems to increase strongly with total laser en-
ergy from a fraction of a per cent up to more than 10%. Carefully extrapolating the conversion efficiencies
to multikilojoule laser systems, conversion efficiencies of more than 10% can be expected, which would
result in the need for a few hundred kilojoules of short-pulse laser energy for proton fast ignition.

The most detailed theoretical analysis so far has been published by Temporal et al. [102] for a
proton beam with an exponential energy spectrum. Following their assumptions, a total proton energy of
about 26 kJ at an effective temperature of 3 MeV is required. This moderate temperature was found to
be an optimum between the need for high temperatures to minimize the pulse lengthening caused by the
velocity spread and the stopping range for the major part of the spectrum. It is interesting to note that the
protons, which effectively heat the hot spot, contain only 10 kJ of the total energy and range from 19 to
10 MeV. If it could be possible to shape the energy spectrum of the laser-accelerated protons, this would
strongly influence the required laser beam energy. The total number of protons needed for ignition is
close to 1016. Is it conceivable to achieve a consistent scenario for those requirements? A typical proton
beam temperature of 3 MeV is commonly obtained in experiments at 5×1019 W cm−2. Assuming a pulse
length of 4 ps (which would increase the damage threshold of modern dielectric compressor gratings)
and a conversion efficiency of 10%, a total laser energy of 260 kJ would be needed.

The use of a cone-guided geometry, as in conventional fast ignition, has been considered to be of
great advantage. The source foil can be shielded from the radiation caused by the primary drivers, the
source-to-hot spot distance can be tailored precisely, and the pellet can be protected from heat during
the injection into the target chamber. A recent experimental campaign to study the influence of the
cone walls on the propagation and the transport of TNSA protons has shown that, despite the influence
of self-generated electric fields in the cone walls by the recirculating electrons, good focusing may be
achievable.

After the initial introduction of laser-accelerated proton beams for fast ignition, theoretical studies
have not only quantified the required beam parameters [102, 103], but also recently introduced sophisti-
cated scenarios that have greatly relaxed those parameters. A recent study proposed a combination of two
spatially shaped proton beam pulses with a total beam energy that would match laser systems that might
be available in the not too distant future [108, 109]. The most recent scenario looks for a ring-shaped
proton beam, to impact into the dense fuel and further compress the hot spot, with a subsequent pulse of
protons in the centre, to ignite the double-compressed core. This would cause an energy that is further
reduced by a factor of two compared with the model described previously. Such laser proton beams have
been generated using advanced cone geometries [110].

4.5 Medical applications
Soon after the discovery of TNSA ion beams, the prospects for medical applications have been the
focus of research. Besides the possibility of transmuting short-lived isotopes for positron emission tom-
ography, the main interest was in the use as a driver for hadron therapy. Hadron therapy [111–115] is
a radiotherapy technique that uses protons, neutrons, or carbon ions to irradiate cancer tumours. The
use of protons and carbon ions in radiotherapy has several advantages over the more widely used X-
radiotherapy. First, the proton beam scattering on the atomic electrons is weak and thus there is less
irradiation of healthy tissues in the vicinity of the tumour. Second, the slowing down length for a proton
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Figure 3. (Courtesy of M Key (LLNL)) Proposed concept of using cone-guided PFI.

Since the first time the concept was brought to the notice of the public a deeper
understanding of the underlying physics has been achieved. Detailed numerical simulations
have been carried out taking advantage of more and more sophisticated and realistic computer
modeling.

A big surprise was the fact that a monochromatic proton beam is actually not optimum
to heat a hot spot in a fusion target. Numerical simulations [29] have shown that one has to
take into account the decrease in the stopping power of the nuclear fuel with increasing plasma
temperature. So an exponential energy spectrum, such as the one that is generated by this
mechanism, is the most favorable one. The first protons with the highest energies penetrate
deep into the fuel. By the time the proton number increases and the target temperature rises, the
stopping power is reduced, thereby compensating for the lower initial energy of the incoming
protons. Thus, the majority of the protons deposit their energy within the same volume. A
recent publication further improves this concept by also spatially shaping the proton beam and
applying two consecutive beams, which brings down the required beam energy to 6 kJ [23].
This is an important fact, because not only a realistic proton spectrum was assumed but also,
assuming already experimentally confirmed laser-to-proton beam conversion efficiencies, the
primary laser energy is in the ballpark of facilities which are currently designed for FI (see
figure 4).

The use of a cone-guided geometry, like in conventional FI, has been considered to be
of great advantage. The source foil can be shielded from the radiation caused by the primary
drivers, the source-to-hot spot distance can be tailored precisely and the pellet can be protected
from heat during the injection into the target chamber.

Conversion efficiency from laser energy into proton beam energy is still an important
question that directly affects the feasibility of the whole concept. Whereas the measured and
published conversion efficiency of 12% into protons above 10 MeV [6] has to be corrected
down to 6%, a conversion efficiency exceeding 6% into protons above 3 MeV has been
confirmed [30]. These numbers are not far from those required by current PFI concepts,
but still need to be improved. Recent new target designs [31, 32] and laser pulse shaping
experiments indicate promising progress in the near future.

Still quite some challenges remain until a more detailed concept can be proposed with
some confidence.

There is an urgent need to better understand the stopping power of ions in ICF relevant
plasmas; in particular, the presence or absence of the beneficial Bragg peak should be addressed.
Experiments should be planned to measure the energy loss of ions in such extreme plasmas.

5

Fig. 15: Proposed concept of using cone-guided proton fast ignition. Courtesy of M. Key (LLNL)

of given energy is fixed, which avoids undesirable irradiation of healthy tissues at the rear side of the
tumour. Third, the well localized maximum of proton energy losses in matter (the Bragg peak) leads to
a substantial increase of the irradiation dose in the vicinity of the proton stopping point.

The proton energy window of therapeutical interest ranges between 60 and 250 MeV, depending
on the location of the tumour. Proton beams with the required parameters are currently obtained using
conventional charged-particle accelerators, such as synchrotrons, cyclotrons, and linacs [116]. The use of
laser-based accelerators has been proposed as an alternative [117–121], which could lead to advantages
in terms of device compactness and cost.

A laser accelerator could be used simply as a high-efficiency ion injector for the proton accelerator,
or could replace a conventional proton accelerator altogether. Because of the broad energy and angular
spectra of the protons, an energy selection and beam collimation system will be needed [122, 123].
Typically, ∆E/E ≈ 10−2 is required for optimal dose delivery over the tumour region. All-optical systems
have also been proposed, in which the ion beam acceleration takes place in the treatment room itself
and ion beam transport and delivery issues are minimized. In this case, the beam energy spread and
divergence would need to be minimized by controlling the beam and target parameters. The required
energies for deep-seated tumours (>200 MeV) are still in the future, but appear to be within reach,
considering ongoing developments in the field. A demanding requirement to be satisfied is also the
system duty factor, i.e., the fraction of time during which the proton beam is available for use, which
must not be less than 0.3.

With the recent experimental results of ion beams in the range up to 80 MeV, the lower threshold
for medical applications has been achieved. However, for deep-seated tumours it is uncertain whether
the TNSA mechanism is still the best option or whether new mechanisms should be explored that not
only lead to higher particle energies, but also offer a much smaller energy dispersion to begin with.

4.6 Neutron source
Since the first experiments with ultra-intense lasers, nuclear reactions have been observed and also used
to diagnose the hot core part of the laser–plasma interaction [124]. In addition to the generation and
detection of radio-isotopes and transmuted nuclei, neutrons are released either as a result of intense
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bremsstrahlung or by electron or ion impact. Because of the large conversion efficiency of laser to ion
beam energy and the large cross-section for subsequent proton neutron reactions, laser-driven neutron
sources based on the TNSA mechanism have become a focus of modern nuclear research.

One has to distinguish between the different neutron generation mechanisms. At proton beam
particle energies in the megaelectronvolt range, the interaction and neutron generation relies on the exci-
tation of giant resonances that result in single (p, n) or multiple (p, ×n) neutron emission. The cross-
section can be quite large and is energy dependent, peaking at characteristic proton impact energies. In
the case of two particles in the exit channel, the neutron spectrum is monoenergetic for a given projectile
energy and neutron emission angle. However, since the angle and energy spread of laser-emitted particles
is large, only strongly exothermal reactions (Q � Eproj) will yield roughly monoenergetic neutrons.
Which process takes place in a particular instance depends on the combination of target, projectile, and
momentum transfer. The cross-sections for these processes are in the range of 100 mb up to 1 b and are
therefore quite large.

As the driving ion beam is ultra-short and the release mechanism is prompt, the neutron pulses are
very short and originate from a very small region maximizing the net flux on secondary samples. Such
a probe exists in the form of fusion neutrons. They are generated by the d(d,n)3He fusion reaction in
deuterated targets, and their use as a laser-plasma diagnostic is not fundamentally new. When neutrons
are produced from laser-accelerated ions in the bulk of an irradiated (CD2)n target, they are emitted
within a few picoseconds from a volume of the order of (10 µm)3. During the neutron pulse, at a distance
of several millimetres from the target, fast neutron fluxes of 1019/(cm2 ·s) can be achieved, which is four
orders of magnitude higher than current continuous research reactors can deliver.

In the past, the neutron emission caused by (γ , n) and (p, n) reactions from the target have been
measured at moderate laser intensities. A typical detector set-up is a silver activation detector attached to
a photomultiplier tube. On typical shots, the neutrons are generated by (γ , n) reactions within the target
(caused by the bremsstrahlung photons from the relativistic electrons) and by (p, n) reactions of our
proton beam impacting on the radiochromic film screen or a dedicated secondary production target. This
can be, e.g., a target of deuterated plastic (CD2), which was irradiated by a beam of TNSA-accelerated
deuterons. One can observe the yield of neutrons from (d, d) fusion reactions.

To optimize laser-driven neutron sources, one can perform simulation studies using consolidated
findings on particle beam characteristics obtained from laser experiments [125]. The optimization will be
according to the absolute neutron yield and angle, as well as the spectral distribution. For neutron gener-
ation, we attempt a two-stage target design in which the TNSA ion beam irradiates a secondary sample.
The advantage of this design is that we can optimize the proton or deuteron generation using different
targets in the first stage. According to the beam properties obtained from the first stage, it will be possible
to optimize the neutron production via proton- and deuteron-induced neutron disintegration reactions,
respectively, in the second stage. The neutron production target design (second stage) allows adaptation
to the desired application. In earlier experimental campaigns at the PHELIX laser facility at the GSI
Helmholtz Centre for Heavy-Ion Research, >109 neutrons per shot from proton-induced reactions in
copper have been produced. The integrated number of protons was 1012 to 1013. Each neutron yield
in these experiments already exceeded that from the accelerator-driven neutron source FRANZ [126]
in Frankfurt (Germany) by five orders of magnitude. With the help of the GEANT4 code [127], we
can simulate the expected neutron yield for TNSA protons using experimental input spectra. We have
simulated the neutron spectra and the production efficiencies using several isotopes within the second-
stage target. The thickness of these different targets was 10 mm. The highest production efficiencies
were obtained from proton-induced reactions at lithium, beryllium, boron, and vanadium in their natural
abundance. As a benchmark, one can compare the simulation results for copper with experimental data,
where one finds a good agreement.

The neutron spectra from proton-induced reactions in beryllium and lithium show high particle
numbers in the lower energy range and in the range around several megaelectronvolts, respectively. This
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agreement with the experimental results from experiments
performed at the PHELIX facility. This demonstrates the 
capability to use GEANT4 for further target design 
studies. 

The neutron spectra from proton-induced reactions in
beryllium and lithium show a high particle number in the 
lower energy range and in the range around several MeV,
respectively. This is of interest in transmutation studies 
and nuclear material science. Figure 13 demonstrates the 
difference of the simulated neutron spectra using lithium
(Li) in the natural abundance and the compound lithium-
fluoride (LiF). The properties of the initial proton
spectrum which was used in the simulation were obtained 
from experimental results at the PHELIX facility. The 
initial particle number was 1013 and the maximum proton
energy was 25 MeV. 

Fig. 13. Simulated neutron spectra from proton-induced
reactions in Li and LiF. 

In addition, the neutron yield using LiF is much
higher than the neutron yield from proton-induced
reactions in Li. The explanation is that the mass density of
LiF is higher due to the inter-atomic compounds. LiF has 
a mass density of 2.64 g/cm3 and the mass density of Li is
only 0.53 g/cm3. This demonstrates the attraction to use 
composite targets in future studies of laser driven neutron
sources. 

IV.  CONCLUSIONS 

We have presented advanced nuclear diagnostic
methods to investigate the relativistic laser-matter 
interaction and to characterize laser driven ion 
acceleration at high particle fluxes. For the investigation
of relativistic laser plasmas we used novel composite 
activation targets. Compared to other activation-based
techniques which used a stacked or one material target
design our set-up leads to a compact activation target 
design with the following advantages: Firstly, a high
density due to the pseudoalloic composition is available. 
As a result we achieve a short radiation length, hence, a 
high reaction yield is possible. Secondly, compared to 
stacked targets no jumps in electric conductivity are

present that occur between the several layers in stacked 
targets. In addition, there are several points of the photon
spectrum in the range of 7 MeV to 40 MeV which allow 
the reconstruction of the bremsstrahlung spectrum and,
therefore, the electron distribution in detail. Furthermore, 
a nuclear activation-based diagnostic which is called
NAIS is used for the spectral and spatial characterization 
of laser driven ion beams. The principle of this diagnostic
are stacked foils which will be activated and an
autoradiography using imaging plates. These are basic 
diagnostics in realization and optimization of future
development in laser driven neutron sources. 

With the consolidated findings about the interaction 
mechanisms and, therefore, the beam properties of the
laser driven ion acceleration we will realize an optimize
laser driven neutron sources for nuclear and material 
science applications. We used a two-stage design for the
neutron source. For the optimization we have performed 
first simulation studies using GEANT4. In future
developments of the optimization of laser driven neutron
sources we will use more sophisticated composite target 
designs for the adaptation to the desired application. First
experimental results performed at the PHELIX facility are 
in nice agreement with the simulation.
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Fig. 16: Simulated neutron spectra for different converter materials

is of interest in transmutation studies and nuclear material science. Figure 16 demonstrates the difference
in simulated neutron spectra using lithium in the natural abundance and lithium fluoride. The properties
of the initial proton spectrum that was used in the simulation were obtained from experimental results at
the PHELIX facility. The initial particle number was 1013 and the maximum proton energy was 25 MeV.

In addition, the neutron yield using lithium fluoride is much higher than the neutron yield from
proton-induced reactions in lithium. The explanation is that the mass density of lithium fluoride is higher,
owing to the interatomic compounds. Lithium fluoride has a mass density of 2.64 g/cm3 and the mass
density of lithium fluoride is only 0.53 g/cm3. This demonstrates the attraction in using composite
targets in future studies of laser-driven neutron sources. In future developments of the optimization of
laser-driven neutron sources, we will use more sophisticated composite target designs for adaptation to
the desired applications.
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AWAKE, A Particle-driven Plasma Wakefield Acceleration Experiment 
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CERN, Geneva, Switzerland 

Abstract 
The Advanced Proton Driven Plasma Wakefield Acceleration Experiment 
(AWAKE) aims at studying plasma wakefield generation and electron 
acceleration driven by proton bunches. It is a proof-of-principle R&D 
experiment at CERN and the world’s first proton driven plasma wakefield 
acceleration experiment. The AWAKE experiment will be installed in the 
former CNGS facility and uses the 400 GeV/c proton beam bunches from the 
SPS. The first experiments will focus on the self-modulation instability of the 
long (r.m.s ~12 cm) proton bunch in the plasma. These experiments are 
planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) 
electrons will be externally injected to sample the wakefields and be 
accelerated beyond 1 GeV. 

Keywords 
AWAKE; proton-driven plasma acceleration; plasma wakefield acceleration; 
self-modulation instability. 

1  Introduction 
The construction of ever larger and costlier accelerator facilities has its limits; accelerating fields of 
today’s RF cavities and microwave technology are limited to about 100 MV/m; hence, several tens of 
kilometres are required for future linear colliders. New technologies will be needed to push back the 
energy frontier. 

Harnessing wakefields, physicists may be able to produce accelerator gradients hundreds of times 
higher than those achieved in current radiofrequency cavities. This would allow future colliders to 
achieve higher energies over shorter distances than is possible today. 

With plasma wakefield acceleration, a new energy frontier for particle physics might be realized 
in an affordable manner; plasma machines could be the vaunted ‘table-top’ accelerator. Scales of metres 
rather than kilometres could bring accelerator labs within the reach of any university or industrial 
laboratory. 

For the next generation wakefield accelerator, one could envision so-called ‘afterburners’, in 
which existing conventional accelerators, such as the LHC, are used to excite the plasma waves. 

Before this new technology can be applied, to fully exploit the high gradients for future 
accelerators, several key performance parameters need to be benchmarked. 

Experimental results have demonstrated the success of the plasma wakefield acceleration and its 
research: e.g., beam-driven plasma wakefield acceleration experiments [1] performed at Stanford Linear 
Accelerator Center (SLAC) successfully doubled the energies of some of the electrons in an initial 
42 GeV beam in less than 1 m of plasma. Recent results report high-efficiency acceleration of a discrete 
trailing bunch of electrons containing sufficient charge to extract a substantial amount of energy from 
the high-gradient, non-linear plasma wakefield accelerator; the core particles gained about 1.6 GeV of 
energy per particle, with a final energy spread as low as 0.7% and an energy-transfer efficiency from 
the wake to the bunch that could exceed 30% [2]. 
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2 Beam-driven plasma wakefield acceleration experiments: landscape 
Table 1 gives a summary of beam-driven plasma wakefield experiments that are either ongoing or under 
construction. 

2.1 AWAKE 

AWAKE is the first plasma wakefield acceleration experiment worldwide to use a proton beam as a 
drive beam [3]. The first physics is expected late 2016. AWAKE is a proof-of-principle experiment with 
the aim of providing a design for a particle physics frontier accelerator within the next decade. AWAKE 
will be explained in detail in the following sections. 

2.2 FACET, Stanford Linear Accelerator Center 

FACET (Facility for Advanced Accelerator Experimental Tests) is a user facility at the SLAC 
International Laboratory, providing high energy density electron and positron beams with peak currents 
of ≈20 kA focused down to 30 × 30 µm2 transverse spot size at an energy of 20 GeV [4]. The facility 
studies the acceleration of high-quality and high-efficiency witness bunch beams, as well as the 
acceleration of positrons. FACET started in 2012 and hosts more than 150 users and 25 experiments. 
FACET II has been proposed, to start in 2018. 

2.3 DESY, Zeuthen 

PITZ is the Photo-Injector Test Facility at DESY, Zeuthen. This is a research and development 
facility [5]; its 20 MeV electron beam is used to study the self-modulation instability (SMI) in a lithium 
plasma cell. 

2.4 DESY FLASH Forward 

FLASH Forward [6] aims at the advancement of beam-driven plasma wakefield physics towards 
applications utilizing the expertise and tools provided by the Free Electron Laser facility at DESY. Its 
goals are the demonstration of capture and controlled release of externally shaped electron beams, the 
exploration of novel in-plasma beam-generation techniques, and the assessment of those beams for free 
electron laser gain. 

2.5 Brookhaven ATF 

At Brookhaven National Laboratory [7], experiments are performed to study the quasi-non-linear 
plasma wakefield acceleration (PWA) regime, driven by multiple bunches and visualization with optical 
techniques. 

2.6 SPARC LAB, Frascati 

SPARC LAB is a multi-purpose user facility, which includes experiments on laser- and beam-driven 
plasma wakefield acceleration experiments.  
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Table 1: Beam-driven plasma wakefield experiments 

Facility Location Drive beam Witness beam Start End Goal 
AWAKE CERN, Geneva, 

Switzerland 
400 GeV 
protons 

Externally injected 
electron beam 
(PHIN 15 MeV) 

2016 2020, 
or later 

Use for future high energy e−/e+ 
collider 
Study self-modulation instability 
Accelerate externally injected 
electrons 
Demonstrate scalability of 
acceleration scheme. 

SLAC-
FACET 

SLAC, Stanford, 
USA 

20 GeV 
electrons and 
positrons 

Two-bunch formed 
with mask 
(e−/e+ and e−e+ 
bunches) 

2012 Sept 
2016 

Acceleration of high-quality 
high-efficiency witness bunch 
Acceleration of positrons 
FACET II proposal for 2018 
operation 

DESY, 
Zeuthen 

PITZ, DESY, 
Zeuthen, 
Germany 

20 MeV 
electron beam 

No witness beam, 
only drive beam 
from RF gun 

2015 ≈2017 Study self-modulation instability 

DESY, 
FLASH 
Forward 

DESY, 
Hamburg, 
Germany 

X-ray free 
electron laser 
type electron 
beam 1 GeV 

Drive and witness in 
free electron laser 
bunch,  
or independent 
witness bunch (laser 
wakefield 
acceleration) 

2016 2020+ Application (mostly) for X-ray 
free electron laser 
Energy-doubling of FLASH-
beam energy 
Upgrade-stage: use 2 GeV free 
electron laser drive beam 

Brookhaven 
ATF 

Brookhaven 
National 
Laboratory, 
USA 

60 MeV 
electrons 

Several bunches, 
drive and witness 
formed with mask 

Ongoing  Study quasi-non-linear plasma 
wakefield acceleration regime 
Study plasma wakefield 
acceleration driven by multiple 
bunches 
Visualization with optical 
techniques 

SPARC LAB Frascati, Italy 150 MeV 
electrons 

several bunches Ongoing  multi-purpose user facility: 
includes laser- and beam-driven 
plasmas wakefield experiments. 

3 AWAKE: components for a particle-driven plasma wakefield acceleration 
experiment 

3.1 Introduction 

AWAKE, the advanced proton-driven plasma wakefield acceleration experiment will be installed at 
CERN in the former CNGS (CERN Neutrinos to Gran Sasso) area and is currently under construction 
[8]. The first beam for physics experiments is expected by the end of 2016. 

AWAKE will use proton bunches, for the first time ever, to drive plasma wakefields [9]. The 
main physics goals of the experiment are as follows. 

— To study the physics of self-modulation of long proton bunches in plasma as a function of beam 
and plasma parameters. This includes radial modulation and seeding of the instability. 

— To probe the longitudinal (accelerating) wakefields with externally injected electrons. This 
includes measuring their energy spectra for different injection and plasma parameters. 
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— To study injection dynamics and the production of multigigaelectronvolt electron bunches, either 
from side injection or from on-axis injection (with two plasma cells). This will include using a 
plasma density step to maintain the wakefields at the GV/m level over metre distances. 

— To develop long, scalable, and uniform plasma cells and develop schemes for the production and 
acceleration of short bunches of protons for future experiments and accelerators. 

In the baseline design of AWAKE at CERN, an LHC-type proton bunch of 400 GeV/c (with an 
intensity of 3 × 1011 protons/bunch) will be extracted from the CERN Super Proton Synchrotron (SPS) 
and sent along the 750 m long proton beam line towards a plasma cell, which is installed at the upstream 
end of the CNGS area (see Fig. 1). The proton beam will be focused to σx,y = 200 µm near the entrance 
of the 10 m long rubidium vapour plasma cell with an adjustable density in the 1014 to 1015 electrons/cm3 
range. 

When the proton bunch, with an r.m.s. bunch length of σz = 12 cm (0.4 ns), enters the plasma cell, 
it undergoes the SMI, i.e., the development a long bunch of protons into a series of micro-bunches that 
resonantly drive large wakefields. The effective length and period of the modulated beam is set by the 
plasma wavelength (for AWAKE, typically λpe = 1 mm). 

A high power (≈4.5 TW) laser pulse, co-propagating and co-axial with the proton beam, will be 
used to ionize the neutral gas in the plasma cell and also to generate the seed of the proton bunch self-
modulation. 

 
 

Fig. 1: Baseline design of AWAKE 

An electron beam of 1.2 × 109 electrons, which will be injected at 10−20 MeV/c into the plasma 
cell, serves as a witness beam and will be accelerated in the wake of the proton bunch. 

Several diagnostic tools will be installed downstream of the plasma cell to measure the proton 
bunch self-modulation effects and the accelerated electron bunch properties. 

Figure 1 shows the baseline design of the AWAKE experiment. The baseline parameters of the 
experiment are summarized in Table 2. 

In the AWAKE master schedule, the experiment to obtain evidence for the SMI (see Section 3.3) 
corresponds to Phase 1, and is expected to start by the end of 2016. In Phase 2, AWAKE aims at the 
first demonstration of proton-driven plasma wakefield acceleration of an electron witness beam; this 
programme is planned to start by the end of 2017. 
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Table 2: Baseline parameters of the AWAKE experiment 

Parameter Value  Parameter Value 
Proton beam  Laser beam to plasma cell 

Momentum 400 GeV/c  Laser type Fibre 
titanium:sapphire 

Protons/bunch 3 × 1011  Pulse wavelength L0 = 780 nm 
Bunch extraction 
frequency 

0.03 Hz (ultimate: 
0.14 Hz) 

 Pulse length 100−120 fs 

Bunch length σz = 0.4 ns 
(12 cm) 

 Pulse energy 450 mJ 

Bunch size at 
plasma entrance 

σx,y = 200 µm  Laser power 4.5 TW 

Normal emittance 
(r.m.s.) 

3.5 mm mrad  Focused laser size σx,y = 1 mm 

Relative energy 
spread 

∆p/p = 0.45%  Energy stability ±1.5% r.m.s. 

Beta function β*
x = β*

y = 4.9 m  Repetition rate 10 Hz 
Dispersion D*

x = D*
y = 0    

Electron beam  Plasma source 
Momentum 16 MeV/c  Plasma type Laser ionized 

rubidium vapour 
Electrons/bunch 1.2 × 109  Plasma density 7 × 1014 cm−3 

Bunch charge 0.2 nC  Length 10 m 

Bunch length σz = 4 ps (1.2 mm)  Plasma radius >1 mm 
Bunch size at 
focus 

σx,y = 250 µm  Skin depth 0.2 mm 

Normalized 
emittance (r.m.s.) 

2 mm mrad  Wavebreaking 
field, E0 = 
mcωcp/e 

2.54 GV/m 

Relative energy 
spread 

∆p/p = 0.5%    

Beta function β*
x = β*

y = 0.4 m    
Dispersion D*

x = D*
y = 0    

In the following sections, the different components required for a plasma wakefield experiment 
will be discussed for the example of the AWAKE project and the choices made in the design explained. 
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Fig, 2: Layout of the CERN accelerator chain 

3.2 Drive beam 

In the baseline design of the AWAKE experiment at CERN, an LHC-type proton bunch of 400 GeV/c 
will be extracted from the CERN SPS (see Fig. 2). 

Simulations for optimization studies were performed [10] with the AWAKE baseline parameters 
as shown in Table 1. Figure 3 shows the simulated wakefield amplitude of a 400 GeV/c proton beam 
along a 10 m long plasma cell. With the chosen emittance, the baseline radius of the proton beam of 
r = 0.2 mm is the optimum; wide beams are not dense enough to drive the wave to the limiting field; 
narrow beams quickly diverge, owing to transverse emittance. 

Figure 4 displays the variation of the driver energy at a constant normalized emittance. The 
nominal beam energy of the SPS at 400 GeV is well suited for the experiment. 

 
 

Fig. 3: Wakefield driven by 400 GeV proton beam along 10 m long plasma cell with different transverse beam 
sizes. 
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Fig. 4: Wakefield driven by proton beam at constant normalized emittance with different energies along plasma 
cell. 

The AWAKE experiment requires short bunches with very high intensity from the SPS, which 
have not yet been used in operation by any other experiment. The required bunch intensity is above the 
instability threshold, so these bunches are unstable. If the bunches are unstable, it is difficult to control 
their parameters (particle distribution and bunch length) from shot to shot. However, they can be 
stabilized by increasing their longitudinal emittance (and therefore the bunch length) using controlled 
emittance blow-up. 

To obtain smaller bunch lengths, bunches should be rotated in the longitudinal phase space by a 
quarter of the synchrotron period just before extraction on the SPS flat top (see Fig. 5). This is achieved 
by reducing and then sharply increasing the RF voltage. This RF manipulation was not used before in 
the SPS and will be introduced for AWAKE. 

The shortest achievable bunch length is determined by the maximum available RF voltage and 
the smallest possible longitudinal emittance. The maximum voltage in the two RF systems of the SPS 
is currently 8 MV at 200 MHz and 600 kV at 800 MHz; this will be increased to 12 MV at 200 MHz 
(by around 2019) and 1.2 MV at 800 MHz (in 2015). 

With this method, the SPS proton beam can be optimized to the following parameters: 
3 × 1011 protons/bunch; normalized transverse emittance, 1.7 mm mrad; r.m.s. bunch length, 9 cm 
(0.3 ns); peak current, 60 A [11]. However, using conservative estimates, an r.m.s. bunch length of 
12 cm (0.4 ns) will be used. 

 
Fig. 5: Bunch rotation of SPS beam in longitudinal phase space instead of adiabatic voltage increase 
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The longitudinal SPS proton beam size of σz = 12 cm is much longer than the plasma wavelength 
(typically for AWAKE λpe = 1 mm). However, the long proton beam can be used directly for plasma 
wakefield acceleration experiments. This initial approach to proton-driven plasma wakefield 
acceleration will be through self-modulation of a long bunch of protons into a series of micro-bunches 
that drive resonantly large wakefields [12]. 

3.3 Self-modulation instability 

Plasma wakefields are usually driven by laser pulses or particle bunches approximately one plasma 
wavelength long: σz = λpe. Here, λpe = 2πc/ωpe is the wavelength of a relativistically moving plasma wave 
with electron plasma angular frequency ωpe = (nee2/ε0μe)1/2 in a plasma with density ne. 

The longitudinal amplitude of the wakefield scales as the wave breaking field [11]: 
 EWB = μecωpe/eαne

1/2. 

This scaling therefore favours short pulses or bunches and large plasma densities to reach large 
amplitude wakefields. These wakefields, for sufficiently intense drivers, have accelerating or 
decelerating longitudinal components (Ez ≈ EWB) and transverse focusing or defocusing components 
with comparable amplitudes. In the linear wakefield regime, these fields vary periodically behind the 
drive bunch and have a π/2 phase difference. 

Unlike recent plasma wakefield accelerator experiments, which employed short bunches (σz < λpe) 
to drive intense wakefields, the AWAKE experiment will use much longer proton bunches (σz > 100 λpe) 
to generate plasma wakefields. 

The AWAKE experiment will thus operate in the so-called self-modulated plasma wakefield 
accelerator regime [12]. In this regime, the maximum plasma density for wakefield excitation is given 
by the condition that the plasma return current must flow outside the drive bunch. This condition is 
satisfied when the bunch transverse size σr is smaller than the cold plasma collisionless electron skin 
depth c/ωpe or when kpeσr < 1 (kpe = ωpe/c). When this condition is not satisfied, the bunch can be subject 
to the current filamentation instability. The instability breaks the bunch into transverse current filaments 
[13] and prevents the efficient excitation of plasma wakefields. For σr = 200 µm, setting kpeσr = 1 yields 
ne = 7 × 1014 cm3, λpe = 1.2 mm and EWB = 3 GV/m. 

With relativistic bunches, energy gain and loss does not lead to significant dephasing between 
drive bunch particles over metre-scale plasma lengths: 
 ∆𝐿𝐿 ≈  1

𝛾𝛾2
 ∆𝛾𝛾
𝛾𝛾

 𝐿𝐿 ≪  𝜆𝜆pe 

(for particles with energies γ and γ ± ∆γ and plasma length L). This means that there is no longitudinal 
bunching. 

However, the transverse wakefield components can periodically focus and defocus the particles 
that typically have non-relativistic transverse velocities, 
 〈𝑣𝑣⊥〉 ≈

𝜀𝜀
𝜎𝜎0
𝑐𝑐 ≪ 𝑐𝑐, 

where ε is the beam transverse emittance and σ0 its waist size [14]. 

3.3.1 Transverse modulation of a long bunch 

When a long and narrow particle bunch travels in a dense plasma; i.e., when σz ≪ λpe, it is subject to a 
transverse two-stream instability or SMI [13]. The low amplitude transverse wakefields driven by the 
long bunch modulate its radius with wavelength ~λpe. This generates a micro-bunch pattern, as seen in 
Fig. 6 [15]. 
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Fig. 6: Self-modulated proton bunch resonantly driving plasma wakefields sustained by plasma density 
perturbation. The plasma electron density is shown increasing from white to blue and the proton density increasing 
from yellow to dark red. 

This periodic bunch density modulation then resonantly drives wakefields to larger amplitudes, 
thereby providing a feedback mechanism for the SMI to develop. The SMI is a convective instability 
that grows both along the bunch and along the plasma. If the drive bunch propagates in a uniform density 
plasma, then the instability destroys the micro-bunches soon after the maximum field is reached [16]. 
The reason lies in the slow motion of the defocusing field regions with respect to the bunch. This effect 
causes a strong decrease in the peak accelerating field, as seen in Fig. 7(a). 

As the SMI grows, the interplay between bunch radius and wakefield amplitude leads to an 
effective wakefield phase velocity slower than that of the drive bunch [17, 18], as seen in Fig. 7(b). The 
figure shows the location of the accelerating and focusing fields along the bunch (z − ct) as a function 
of propagation distance along the plasma, z. Once the SMI saturates, these two velocities become equal. 

It is possible to avoid the destruction of the micro-bunch structure by a proper step-up in the 
plasma density (Fig. 7(a)), which modifies the instability growth in such a way that the field motion 
relative to the bunches stops at the optimal moment. 

 
Fig. 7: (a) Maximum amplitude of accelerating field Ez excited along the bunch plotted as a function of position 
along the plasma. (b) Positions along the bunch (z −ct) where the wakefields are both accelerating and focusing 
for witness electrons are shown in grey as a function of propagation along the plasma. This position varies over 
the first 4 m of propagation and remains at the same z−ct position after that. 

3.3.2 Seeding of the self-modulation instability 

The SMI can, in principle, grow from noise in the plasma and the drive bunch. However, seeding of the 
instability considerably shortens the plasma length needed for the SMI to reach saturation. Calculations 
[19] and simulations show that the noise level is very low and that the SMI would not grow to a 

Pl
as

m
a 

el
ec

tro
n 

de
ns

ity
 ρ

pl
as

m
a 

Pr
ot

on
 b

ea
m

 d
en

si
ty

 ρ
be

am
 

AWAKE, A PARTICLE-DRIVEN PLASMA WAKEFIELD ACCELERATION EXPERIMENT

279



 

detectable level over metre-scale plasmas. More importantly, seeding the SMI fixes the phase of the 
wakefields, a condition necessary to deterministically inject a short witness bunch in the accelerating 
and focusing phase of the wakefields. The SMI can be seeded by a short laser pulse or particle bunch 
driving low amplitude wakefields in a preformed plasma ahead of the long drive bunch. A sharp 
(compared with λpe) boundary between the drive bunch and the plasma, such as a cut in the bunch current 
profile or a relativistic ionization front propagating within the drive bunch, also seeds the SMI [20]. 

The SMI leads to a radially symmetric modulation of the bunch charge density. However, there 
is an asymmetric competing instability known as the hose instability [21]. This instability is similar to 
the beam break-up instability in RF accelerators. It grows from noise in the transverse displacement of 
the bunch-slice centroids and results in a non-axially symmetric displacement of the bunch along its 
length. The hose instability has a growth rate comparable to that of the SMI, and the two instabilities 
directly compete. Simulations indicate that seeding helps the SMI dominate over the hose instability 
[17, 18]. 

3.4 Plasma cell 

The plasma cell for the AWAKE experiment shall fulfil the following requirements. 

— Plasma density ne between 1014 and 1015 cm−3: Fig. 8 shows the wakefield resulting from a proton 
beam with AWAKE parameters along a 10 m long plasma cell with different plasma densities 
[10]. For excessive plasma densities, filamentation and hosing instabilities can occur. 

— Allow for seeding. 

— Density uniformity δne/ne of the order of 0.2 %. The wakefield phase is determined by the plasma 
density. If the plasma wavelength changes locally, the witness electrons will be defocused. The 
density must be constant with an accuracy of δpe/4σz. 

— High-Z gas to avoid background plasma ion motion. 

— Gas or vapour easy to ionize. 

— Radius Rp larger than ≈3 proton bunch r.m.s. radii. 

— Plasma length L ~ 10 m. 

 
Fig. 8: Wakefield along 10 m long plasma cell with different plasma densities ne 
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Several options exist for plasma cells: discharge plasma sources, helicon sources and metal 
vapour sources. 

AWAKE performs developments using the discharge plasma [22] and helicon sources [23] as 
these are scalable in length. 

In the first phases, and with these requirements, AWAKE will use a rubidium vapour source, 
10 m long and 4 cm in diameter [24]. The density uniformity is achieved by controlling the tube 
containing the vapour to ±0.5 °C. This is achieved by circulating synthetic oil inside a thermal insulation 
around the tube containing the rubidium vapour. The oil temperature can be stabilized to ±0.01 °C. 
Figure 9 shows the 10 m long prototype of the AWAKE plasma cell installed in a test area at CERN. 

 
Fig. 9: Prototype of 10 m long rubidium vapour plasma cell for AWAKE 

A threshold ionization process for the first Rb electron is used to turn the uniform neutral density 
into a uniform plasma density. The ionization potential is very low, ΦRb = 4.177 eV; as is the intensity 
threshold for over the barrier ionization (OBI), IIoniz ≈ 1.7 × 1012 W/cm2. 

3.5 Laser beam 

The plasma creation method uses a short laser pulse and has many advantages, since it also serves as 
ionization front seeding method. 

A titanium:sapphire laser pulse with 30−100 fs pulse length, λ0 = 800 ns and energy of 20−40 mJ 
provides the energy necessary to ionize the atoms in the plasma and the intensity to ionize along the 
10 m long plasma cell [25]. 

The laser beam moves co-linearly with the proton beam, creating the ionization front, which acts 
as if the proton beam is sharply cut and in turn directly seeds the SMI. 

Figure 10 shows the distribution of the beams after propagating 4 m in the plasma. Protons are 
blue, electrons are red and the laser pulse is the pink line at z−ct = 0. The laser pulse seeds the SMI for 
the proton bunch: only the protons that are behind the laser pulse are affected. 
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Fig. 10: Beam distribution after propagating 4 m in the plasma. Protons are blue 

3.6 Witness beam 

The electron beam is externally injected into the plasma wakefield driven by the proton beam. The 
considerations for the electron beam specifications are that the electrons must be trapped in the grey 
area shown in Fig. 7b, where the wakefields are both accelerating and focusing. The optimal electron 
energy is 10−20 MeV, which corresponds to the wakefield phase velocity at the self-modulation stage. 

Table 2 shows the electron beam parameters fitting to the requirements that will be used in 
AWAKE for the first phase of the experiment. Simulations show a trapping efficiency of the order of 
~10% when injecting electrons on-axis at the beginning of the plasma cell [26]. With these parameters 
and after passing through the 10 m long plasma cell, the expected average energy gain of the electrons 
will be 1.3 GeV. 

Initially, the injected electron bunch will be at least one plasma period long, to avoid precise 
timing of a much shorter electron bunch with respect to the wakefields [27]. However, in this scheme, 
the trapping efficiency of electrons is very sensitive to the length of a possible density ramp at the plasma 
entrance, whereas that of protons is not [12]. 

The numbers are rather conservative, also allowing the use of the provided electron source 
without major modifications. However, at a later stage, the requirements for the bunch charge (i.e., 1 nC) 
and bunch length (i.e., 0.3 ps) will be much tighter, to optimize the performance of the electron 
acceleration. 

Many injection parameters must be optimized in the experiment: 

Figure 11 shows the comparison between two different electron injection delays with respect to 
the laser pulse; in Fig. 11(a), the electron beam is well caught in the wakefield and is accelerated to 
1.2 GeV after 10 m. In Fig. 11(b), the different injection delay causes a only very weak acceleration. 

 
Fig. 11: Co-moving coordinate ξ (top) and energy (bottom) versus propagation distance for two typical test 
electrons injected with different delays with respect to the laser pulse. The top plot also shows the color map of 
the on-axis electric field Ez in the vicinity of the electron. 
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3.6.1 Electron source 

The PHIN Photo-Injector built for CTF3 [28], which will have completed its experimental programme 
for the Compact Linear Collider at the end of 2015, fulfils the baseline electron beam requirements 
(10−20 MeV/c, 1.2 × 109 electrons/bunch, σz =4 ps, σx,y = 250 µm at focus, εnorm = 2 mm mrad) and will 
be used as electron source for the AWAKE experiment. The electron source consists of a metal 
photocathode housed in a 2.5-cell normal conducting RF cavity, a load-lock system for cathode 
exchange, a 3 GHz booster accelerator, to boost the energy to the required 20 MeV/c and electrical and 
optical diagnostics (beam position monitors, fast current transformer, Faraday cup, and screens for 
emittance and spectrometer measurements). In addition, the klystron and modulator system will be 
recuperated from CTF3, providing 3 GHz RF power. 

3.7 Diagnostics for the drive beam 

The first experiments in AWAKE will be aimed at demonstrating and studying the SMI of the long 
proton bunch in the dense plasma. Therefore, beam diagnostic tools to measure the radial self-
modulation of the bunch density will be developed. 

3.7.1 Direct SMI measurements 

The direct SMI diagnostic tools [29] are based on transformation of the charge distribution information 
into a radiation distribution using transition radiation. Transition radiation is emitted when a single 
charged particle or a collection of charged particles cross a boundary between two media with different 
dielectric constants (e.g., vacuum—metal interface). The radiation is incoherent at wavelengths much 
shorter than the characteristic charge distribution scale (length or radius) and in the visible range is 
called optical transition radiation. It is coherent at wavelengths much longer than the characteristic 
charge distribution scale and is called coherent transition radiation or transverse coherent transition 
radiation. 

With optical transition radiation, the bunch spatial or temporal characteristics are contained in the 
light intensity and can be measured using, e.g., a streak camera. The best streak cameras have a single 
pulse temporal resolution of ~1 ps down to ~200 fs. The period of the modulation (expected to be that 
of the plasma wave) can, in principle, be measured up to frequencies of ~300 GHz. For the AWAKE 
plasma densities, the plasma and modulation frequency range is 100−300 GHz. 

The modulated proton bunch also emits coherent transition radiation, whose spectrum reflects the 
bunch longitudinal and transverse structure (radial modulation with longitudinal period approximately 
that of the plasma wave). Therefore, coherent transition radiation emission at the plasma frequency from 
the radially modulated proton bunch can, in principle, be detected. The long proton bunch radiation can 
be filtered out by a section of waveguide in cut-off (high-pass filter) and the high-frequency time 
evolution of the radiation detected using a fast Schottky diode (∼200 ps rise time). In particular, 
coherent transition radiation emission at high frequencies should be correlated with the ionizing laser 
position within the proton bunch, i.e., with the SMI seed. The modulation frequency can, in principle, 
be determined using a heterodyne measurement system, mixing the RF modulation signal of unknown 
frequency with a known local oscillator frequency in a crystal that generates the difference or 
intermediate frequency. By choosing appropriate frequencies and a suitable crystal, one can bring the 
intermediate frequency within the measurement range. 

3.7.2 Indirect SMI measurements 

Another method is to detect the SMI effect by measuring the angular divergence of the proton beam 
caused by the SMI in the plasma cell, which is of the order of ~1 mrad (M. Turner and A. Petrenko, 
private communication). For this purpose, the bunch profile is measured at two different scintillator 
screens installed downstream of the plasma cell and at a distance of ≈8 m with a resolution of ~0.1 mm. 
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Figure 12(a) shows the energy deposition of the proton beam in the first scintillator screen downstream 
of the plasma cell; Fig. 12(b) shows the energy deposition in the second scintillator screen, which 
is ≈8 m downstream of the first one. With this method the saturation point of the SMI inside the plasma 
cell can also be measured, at a 2% level. 

 
 

Fig. 12: Energy deposition in GeV/cm3 per primary proton particle of the self-modulated proton beam downstream 
of the plasma cell. (a) Scintillator 1 m downstream of the plasma cell. (b) Scintillator 9 m downstream of the 
plasma cell. 

3.7.3 Witness beam diagnostics 

The purpose of the experiment is to accelerate the externally injected electrons. A magnetic spectrometer 
was developed with a relatively large energy acceptance, from a few hundred megaelectronvolts to a 
few gigaelectronvolts [30]. The electron spectrometer system consists of a C-shaped magnet providing 
a 1.5 T field to separate the electrons from the proton beam and disperse them in energy. The 
spectrometer system includes a quadrupole doublet in a point-to-point imaging configuration, to focus 
the beam exiting the plasma onto the spectrometer screen and increase the energy resolution. The 
electrons impinge on a scintillating screen (the baseline is gadolinium oxysulfide) and an optical line 
will transport the screen light to a CCD camera. Calculations show that a percentage-level energy 
resolution can be achieved with a signal-to-noise ratio greater than 1000:1. 

4 The AWAKE facility—putting the pieces together 
The AWAKE experiment will be integrated in an existing underground area, which previously housed 
the CNGS facility [31]. The different components described in Section 3 must be put together and 
connected with beam lines. 

Figure 13 shows the integration of the AWAKE experiment in the experimental area. 
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Fig. 13: Integration of the AWAKE experiment in the experimental area 

4.1 Proton beam line 

The proton beam is extracted from the CERN SPS and sent along the 850 m long proton beam line 
towards the plasma cell (see Fig. 2). The existing proton beam line is modified only in its last 80 m or 
so, i.e., in the matching section and in the final focusing part, to comply with the AWAKE requirements. 
The laser beam delivered from the laser source is merged with the proton beam at a distance of ≈20 m 
from the plasma cell by adding a proton beam chicane to integrate the laser mirror. An offset of 19.9 mm 
exists between the proton and the laser beam axis, enough clearance to avoid intercepting protons and 
inducing losses [32]. The proton and laser beams are made co-axial over the full length of the plasma 
cell, in particular the 3σ proton beam envelope (≈0.6 mm) must be contained in the 1σ laser spot size 
(≈1 mm). A pointing precision of 100 µm is required at the cell entrance, resulting in a maximum 
angular error of 15 µrad for the proton beam line. To achieve this, the ripple in the current of the main 
dipole power converter is kept below 5 × 10−4. A 0.2 mm thick aluminium window will be installed in 
the proton beam line to separate the SPS and the AWAKE vacuums. Modifications and new beam 
diagnostics are required at the end of the proton beam line; the electronics of the beam position monitors 
are modified to allow for single bunch measurements. Two BTVs, located about 1 m upstream and 
downstream of the plasma cell, will perform profile and position measurements and will also be used 
during set-up to align the proton and laser beams. The synchronization between the two beams will be 
adjusted with a streak camera connected to a BTV, located ~2 m upstream of the plasma cell. 

4.2 Laser beam line 

A gallery previously used for CNGS equipment storage is modified to become a dust-free (over-
pressurized) and temperature-stabilized area to house the laser system. Owing to the small size of the 
gallery, the integration of the laser, pulse compressor, laser beam transport optics, laser tables, racks, 
and clean-room features, such as a special cooling and ventilation system, and a double door access 
system, is very challenging, but has been successfully achieved [33]. Two laser beams are to be 
transported from the laser room. The first laser beam is used for plasma production and seeding of the 
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SMI in the proton bunch. For that aim a 4 m long laser core (50 cm in diameter) was drilled between 
the laser room and the proton beam line tuning. As the peak power of the 100 fs compressed laser pulse 
is very high, the laser beam must be injected into the vacuum system of the SPS proton beam before 
laser pulse compression. Therefore, the vacuum laser beam line connecting the laser with the proton 
merging area has to fulfil the requirements of the SPS vacuum system (10−7 mbar), resulting in a 
demanding design for the laser line optics and vacuum system. 

The second laser beam is required for the generation of the electron beam and has to be transported 
to the electron source. 

4.3 Electron beam line 

A new 15 m long electron beam line has been designed to transport the electron beam from the RF gun, 
across a newly built tunnel (7 m long, 2.5 m wide), towards the proton beam line to be injected into the 
plasma cell on the same axis as the proton and laser beam. To comply with experimental requirements, 
the electron beam optics must provide a flexible design so that the focal point can be varied by up to 
6 m inside the plasma cell [34]. The proton and the electron beams share the last ≈5 m of the line 
upstream of the plasma cell. The technical parameters for the new magnets (4 dipoles, 11 quadrupoles, 
and 11 correctors) have been specified. In addition, specifications were defined for the electron beam 
line diagnostics; e.g., the beam position monitors should be able simultaneously to measure the position 
of electrons in the presence of the AWAKE proton beam. A peak-to-peak resolution of 50 µm is 
required. The electron beam shall be synchronized with the proton and laser beam at a <1 ps level, and 
will be measured with a streak camera linked to a BTV. To meet the performance criteria of the light 
transmission system, a straight line between the beam screen and the camera was required, which 
implied the excavation of a ≈4 m long 15 cm diameter core between the proton line and the electron 
source area, where the streak camera will be installed. 

4.4 Beam synchronization 

Synchronization between the laser pulse and the electron beam at the level of a few tens of femtoseconds 
(a fraction of the plasma period of ≈4 ps) is required for the deterministic injection of the witness bunch 
into the plasma wakefields. This is achieved by driving the RF gun of the electron source with a laser 
pulse derived from the same laser system used for plasma ionization and seeding. The synchronization 
between the proton and the laser beam must be better than 100 ps, i.e., better than the r.m.s. proton 
bunch length of ≈400 ps. The laser mode-locker (fML = 88.17 MHz) cannot follow the relative revolution 
frequency change through the SPS acceleration cycle, and therefore the proton bunch in the SPS must 
be synchronized to the AWAKE reference prior to extraction. 

A low phase-noise RF source at 3 GHz is made the master, to which the 34th harmonic of the 
laser oscillator (at fML) is locked [35]. Lower frequencies for fast triggers (176.3 MHz), SPS 
synchronization (8.68 kHz) and laser or electron beam repetition rate (10 Hz) are derived by integer 
division from the master oscillator. Only the 200 MHz RF source for the synchronization with the SPS 
requires a fractional divider. 

A system is foreseen that allows the exchange of synchronization signals on ≈3 km long fibres 
between the AWAKE facility and the SPS RF Faraday cage; it has been verified that the jitter and drift 
of the signal transmission do not exceed the picosecond range, slow variations will be compensated by 
a feedback loop. 

5 Summary 
The AWAKE experiment will, for the first time, use a proton bunch to drive wakefields in a plasma. 
The first experiments, scheduled to begin in late 2016, will aim at studying the development and seeding 
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of the SMI of the proton bunch in a ≈10 m long, 1014 to 1015 cm−3 electron density plasma. Later 
experiments, scheduled for 2018, will study the injection of a RF-gun-produced long electron bunch in 
the wakefields and its acceleration to gigaelectronvolt energies. Future experiments will use two plasma 
sources and an ultra-short electron bunch to address accelerator related issues [29]. Long-term prospects 
include using a short proton bunch to drive wakefields without resort to SMI with the possibility of 
accelerating electrons to very high energies, possibly at the energy frontier. 
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An Overview of Recent Progress in Laser Wakefield Acceleration
Experiments

S.P.D. Mangles
John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, UK

Abstract
The goal of this paper is to examine experimental progress in laser wakefield
acceleration over the past decade (2004–2014), and to use trends in the data
to understand some of the important physical processes. By examining a set
of over 50 experiments, various trends concerning the relationship between
plasma density, accelerator length, laser power and the final electron beam en-
ergy are revealed. The data suggest that current experiments are limited by
dephasing and that current experiments typically require some pulse evolution
to reach the trapping threshold.

Keywords
Laser wakefield accelerators; plasma accelerators; laser-plasma acceleration.

1 Introduction
This paper is a summary of a lecture given at the CERN Accelerator School 2015 on plasma-based
wakefield accelerators. Its purpose is to provide an overview of recent experimental progress in laser
wakefield acceleration, concentrating on the energy frontier and general trends that can be observed in
the data produced by the many groups around the world contributing to this growing field. There are now
more than 20 active laboratories performing laser wakefield acceleration experiments. We will not detail
the key results from each of these laboratories in this paper, although we will examine data from various
published experiments and use the trends in the data to try to gain some understanding of the underlying
physical processes.

Laser wakefield accelerators were proposed 36 years ago in the seminal 1979 paper by Tajima
and Dawson [1] and experiments in laser wakefield acceleration were undertaken as soon as laser pulses
of sufficiently short duration and high power became available, thanks to the development of the laser
technique called ‘chirped pulse amplification’ [2]. Some of the early work in what we call laser wakefield
acceleration (i.e., where the pulse duration, τL is comparable to the plasma period 2π/ωp) occurred in
the 1990s (e.g., Refs. [3, 4]) using picosecond glass lasers. The field passed a major milestone in the
early 2000s as high-power (∼10 TW) femtosecond laser pulses, using titanium sapphire laser systems,
became available. One major result from that era occurred when three groups from the UK, USA and
France all demonstrated that laser wakefield accelerators could produce electron beams with well-defined
energies [5–7]. The electron beams produced by these ∼10 TW lasers had energies of ∼100 MeV and
were produced in plasmas of a plasma density ∼1019 cm−3 that were only ∼1 mm long.

One of the key challenges that has driven progress in the field of laser wakefield acceleration
is the maximum achievable beam energy, and this paper will concentrate on this challenge. There
have, of course, been many other significant areas of experimental progress including: improving beam
stability, especially by controlling injection (e.g., Refs. [8, 9]); diagnosis of wakefield accelerators (e.g.,
Refs. [10,11]) and the resulting improvements in our understanding of the underlying processes; and the
application of laser wakefield accelerators for a range of applications, perhaps most notably their use as
novel sources of X-radiation (e.g., Refs. [12–14]). Details of the progress in these areas are outside the
scope of this paper.

This paper will examine how the maximum achievable beam energy has progressed over the last
decade, and will use a set of published results [5–9,15–60] to try to understand some of the physics behind
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Fig. 1: Reported electron beam energies from laser wakefield experiments at various laboratories over the last
decade; data from Refs. [5–9, 15–60].

this progress. The progress in the maximum beam energy in laser wakefield accelerator experiments has
been rapid, as shown in Fig. 1, from a maximum beam energy of 0.2 GeV reported in 2002 [61] to the
current record of 4 GeV from the group at the Lawrence Berkeley National Laboratory [58] achieved in
2014 – an increase by a factor of 20 in just over a decade. It should be noted that this is by no means an
exhaustive list of all published experiments in laser wakefield accelerators (there are just 52 publications
in this dataset, whereas a literature search for papers on ‘laser wakefield’ will find over 1000 papers).

2 Overall trends in laser wakefield acceleration experiments
The rapid progress shown in Fig. 1 is impressive. But how has it been achieved? Over the same period of
time, short-pulse (≈30 fs) laser systems have become more powerful. Figure 2 shows that there is a clear
trend: higher-power lasers are capable of producing higher-energy electron beams. However, these gains
were not achieved by simply increasing the laser power, the researchers behind these experiments have
often found the optimum conditions for their experiments. Key parameters involved in this optimization
include the operating plasma density, the length of the accelerator and the laser intensity. This section
will examine the data from various experiments and compare them with predicted trends, to see whether
they can confirm those predictions and the underlying physical processes.

2.1 Accelerator length and operating plasma density
Let us first consider the density of the plasma accelerator. The energy gained by a particle of charge q
in an accelerating structure is simply proportional to the product of the electric field and the length of
the accelerator, d, i.e., W ' qEd, where E is the average accelerating electric field experienced by the
particle. One of the key physical limitations in a laser wakefield accelerator is dephasing. The electrons
trapped in a wake are highly relativistic (γ � 1), so they travel at a speed approaching that of light in
vacuum (ve → c), but the phase speed of the wake is determined by the speed of the laser pulse that
drives the plasma wave. A simple expression for the speed of a laser pulse in a plasma can be found by
using the standard expression for the group velocity of an electromagnetic wave in a plasma,

vg
c

=

√
1− ne

nc
≈ 1− 1

2

ne
nc

, (1)

where ne is the electron density of the plasma, nc is the critical density for propagation of the electro-
magnetic (i.e., when the plasma frequency ωp equals the frequency of the electromagnetic wave, ω0) and
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Fig. 2: Variation of reported electron beam energy with laser power from various experiments; data from Refs.
[5–9, 15–60].

it is assumed that ne � nc. The wake’s phase speed is therefore slightly, but significantly, less than c;
crucially, the lower the plasma density, the faster the phase velocity.

Because of this difference between the electron velocity and the wake phase velocity, electrons in a
laser-driven wake will outrun the wake1. If the electron is injected at the start of the accelerating phase of
the plasma wave and then outruns the wave by half a plasma wavelength (i.e., λp/2 = πc/ωp), it can no
longer gain energy from the plasma wave. If the electron has an initial velocity ve = βec and the plasma
wave has a phase velocity vφ = βφc, then the time it takes for this to occur is td = λp/(2c(βe − βφ)).
The dephasing length is then the distance that the electron travels in this time. Since βe → 1 and
βφ ' 1− 1

2(ne/nc), this reduces to

Ldephasing '
nc
ne
λp ∝ n

− 3
2

e . (2)

It is interesting to see how the lengths of the accelerators in the set of experiments vary, and how
this compares with what we might expect if dephasing is important. These data are shown in Fig. 3. The
top panel shows how the reported electron beam energy varies with the length of the wakefield acceler-
ator. There is a clear correlation – the higher electron energies are achieved with longer accelerators, as
we might expect. The bottom panel of Fig. 3 shows how the length of the accelerator and the plasma
density at which it was operating are related. The line on this curve is the simple expression for the
dephasing length (Eq. (2)).

The maximum electric field that a plasma wave can support increases with plasma density, since
it scales as

Emax ' mcωp/e ∝
√
ne . (3)

The maximum energy that can be gained by an electron in a plasma wave as a function of plasma
density is therefore expected to be

W (ne) ' EmaxLdephasing ∝
1

ne
. (4)

1Note that dephasing does not occur in wakefield accelerators driven by highly relativistic charged particle beams as both
the accelerated and driver beams are highly relativistic.
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Fig. 3: Top: Variation of reported electron beam energy with accelerator length. Bottom: Relationship between
operating plasma density and accelerator length. The line shows the expression for the dephasing length (Eq. (2)).
Data from Refs. [5–9, 15–60].

Figure 4 shows how the plasma density and beam energy vary in the set of experiments. The line on
Fig. 4 is simply W/(mec

2) = κnc/ne and shows good agreement with the entire dataset for κ = 1. The
scaling laws in Ref. [62], by Wei Lu et al., for the blow-out or ‘bubble’ regime of wakefield accelerators,
suggest that the scaling law should be

W (ne, a0) '
2

3
a0
nc
ne
mec

2 ∝ a0
ne

, (5)

where a0 = eA0/(mec) = eE0/(meω0c) is the normalized peak vector potential (or strength parameter)
of the laser pulse. This scaling predicts that the beam energy should not only be proportional to 1/ne but
also proportional to the laser strength, a0. The experiments shown correspond to a wide range of initial
laser intensities (corresponding to a0 = 0.5–4.0), yet they do not appear to show a dependence on a0.

One possible reason for this apparent discrepancy is that the initial value for a0 is not the value
of a0 that determines the wake amplitude. It is well known that laser pulses can undergo significant
evolution once they enter the plasma. The processes of self-focusing, self-compression and photon
acceleration [63] can all act to change a0 as the pulse propagates. Together, these processes can be
termed the ‘self-evolution’ of the laser pulse. One interpretation of the experimental data is, therefore,
that the process of self-evolution has occurred until a0 ≈ 3 for all of the data shown. Why would this
be the case? One reasonable hypothesis is that each point in the dataset corresponds to the maximum
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Fig. 4: Variation of reported electron beam energy with the density in the accelerator. The line shows the relation
W/(mec

2) = κnc/ne with κ = 1. Data from Refs. [5–9, 15–60].

energy achieved during a particular experiment and that this will occur at (or at least close to) the lowest
density at which a particular experiment can trap and accelerate electrons. Many experiments operate by
fixing the laser power and plasma length while varying the plasma density, for reasons of experimental
simplicity. When an experiment is conducted in this manner, there will be a minimum density at which
electron beams are trapped and accelerated (the trapping threshold). Because self-evolution happens
less quickly and severely at lower densities, the maximum a0 that is reached inside the accelerator will
decrease with decreasing plasma density. Therefore, the maximum achieved electron beam energy will
correspond to the minimum laser strength required to produce trapping. The fact that the experimental
dataset matches the non-linear wakefield scaling but only if a0 ≈ 3 suggests that the minimum a0
required for trapping is a0 ≈ 3.

2.2 Laser spot size and matched guiding
The experimental data clearly show that higher-power lasers are required to achieve higher electron beam
energies. But what are the physical processes behind this trend? It was argued that the experimental
trends are consistent with there being a minimum value of a0 ≈ 3, which is needed for trapping, and that
this value is reached because of the way the pulse evolves as it propagates.

Consider the relationship between the intensity, I (∝ a20), and power, P , of a laser pulse. Since
I = P/A, where A (∝ w2, the laser spot size) is the focal spot area, we have

P ∝ a20w2 . (6)

The fact that higher-power lasers are needed to reach the a0 ≈ 3 threshold at lower densities therefore
implies that the spot size that these laser pulses produce after evolution is larger. Pulse evolution is a
result of the feedback between the refractive index gradient associated with the plasma wave and the
laser pulse, i.e., it is mediated by the plasma itself. Lower-density plasmas, therefore, have a lesser effect
on the laser pulse – resulting in slower evolution – and crucially this affects the properties that the pulse
obtains as a result of self-evolution.

One important concept that arises from this is that of the matched spot size – i.e., one where
the self-focusing caused by the plasma balances the natural diffraction of the laser pulse and stable
propagation occurs. In the blow-out regime (where the laser pulse expels practically all the electrons
from inside the bubble), the transverse density profile of the bubble is approximately zero and flat inside
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the bubble, with very steep walls at the edges. The refractive index of an underdense plasma is η ≈
1 − ne/(2nc), so the refractive index profile of this bubble is similar to that of a single-mode optical
fibre, i.e., we have a ‘core’ of a certain diameter (the bubble diameter) surrounded by ‘cladding’ (the
bubble sheath) of a lower refractive index. The guided mode in such an optical fibre has a transverse size
that is approximately equal to the size of the core, so we expect that in a laser wakefield accelerator we
will get stable propagation (i.e., no spot size oscillations) when the transverse size of the laser pulse is
approximately equal to that of the bubble.

Of course, one main difference between the bubble and an optical fibre is that the size of the bubble
is determined by the properties of the laser pulse itself. If the laser spot is too small, then it will drive
a bubble that is larger than the laser spot. This over-sized bubble will support a larger mode and the
laser pulse will expand, which in turn reduces the bubble size. The radius of the bubble can be found
by balancing the ponderomotive force of the laser pulse with the force due to the electric field of the
bubble. If the bubble is approximately the same size as the laser pulse then it will be matched. The size
of the matched spot can be found by balancing the forces on an electron at the edge of the bubble (i.e.,
the laser’s ponderomotive force and the force due to the electric field inside the bubble). An expression
for the matched spot size, wm is

wm ' 2
c

ωp

√
a0 , (7)

where the numerical factor of two was found through particle-in-cell simulations [62]. This expression
is particularly useful for finding the correct initial parameters of the accelerator, i.e., for a given laser
system, one should first determine the spot size at which the threshold a0 ' 3 is reached; this expression
can then be used to determine the correct operating plasma density. However, when self-focusing plays
an important role, we need an expression for the matched spot size that depends not on the initial laser
intensity but rather the value of a0 that it reaches after self-focusing. We can use the fact that the ratio of
the laser power, PL, to the critical power for self-focusing, Pc, can be written as

PL

Pc
=

1

32

ω2
p

c2
a20w

2 , (8)

and the fact that a20w
2 is constant during focusing (assuming that self-focusing happens more rapidly

than any pulse compression) to eliminate a0 from Eq. (7). This results in the following expression for
the matched spot size:

wm ' 2
√
2
c

ωp

(
PL

Pc

) 1
6

. (9)

Note that 2wm ≈ λp, as long as PL is not many times greater than Pc.

It is interesting to examine how the spot size used in experiments compares with this matched spot
size. Figure 5 shows the variation in the initial (i.e., vacuum) laser focal spot size with the operating
plasma density in the experiments in the dataset. There is a clear overall trend towards larger initial spots
at lower densities (and therefore higher electron beam energies), and the spot sizes used are reasonably
close to λp (shown as a solid blue line in Fig. 5). However, given that the evidence suggests that most
of these experiments reached a0 ≈ 3 as a result of pulse evolution, it is also interesting to compare the
initial spot size with the expected matched spot size for a0 ≈ 3 (this is shown as a dashed red line in
Fig. 5). Most of the experiments are clearly operating at an initial spot size significantly larger than
this matched spot size, and none of the selected experiments operate with a spot size below this. This
suggests either that most experiments are operating with too large an initial spot size, wasting accelerator
length and laser energy while the laser pulse self-focuses, or that there is some experimental advantage
in starting at a spot size larger than the matched spot size and letting pulse evolution happen.
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Fig. 5: Variation of initial laser focal spot size with operating plasma density in various laser wakefield acceleration
experiments. Solid blue line, plasma wavelength, λp; red dashed line, matched spot size assuming a0 ≈ 3. Data
from Refs. [5–9, 15–60].

2.3 To guide or not to guide?
It is well known that a tightly focused laser pulse will quickly diffract in a vacuum. Effectively, the
pulse can only remain intense over a distance of about a Rayleigh length, zR = πw2

0/λ. The accelerator
lengths used in laser wakefield experiments are typically much longer than this and some sort of ‘guiding’
is therefore needed to keep the laser intensity sufficiently high to drive a wake throughout the structure.
There are two principal techniques to achieve this guiding, which both rely on creating a waveguide
structure to counteract diffraction. This requires that the transverse plasma density profile has a minimum
on-axis. Such a density minimum is naturally created by the laser pulse itself – that is, the bubble itself
acts as a waveguide. Alternatively, a preformed density minimum can be formed, for example using a
capillary discharge [24]; using a preformed waveguide brings significant complexity to an experiment
and restricts diagnostic access (e.g., for wake imaging diagnostics based on ultrashort probes [11]).
However, the bubble cannot self-guide the very front slice of the laser pulse, since the density minimum
is not formed immediately. Because of this, external channels are expected to be more efficient, i.e.,
they allow the laser to propagate over greater distances at high a0. With these points in mind, it is
interesting to see whether the experimental evidence supports the use of external waveguides. In Fig. 6,
the data are sorted into self-guided and externally guided experiments. The top panel of Fig. 6 appears to
show that there is no real advantage to using external guiding structures; the electron beam energy, as a
function of plasma density, follows the same trend for both subsets of the data, i.e., they are both limited
by dephasing. However, the bottom panel of Fig. 6 reveals the distinct advantage that experiments in
externally guided structures have over self-guided ones. The highest electron energy achieved at a given
laser power is almost always from an externally guided experiment; the self-guided experiments at the
same power tend to produce lower energy electron beams.

Are these data sufficient to suggest that external guiding structures improve the efficiency of laser
wakefield accelerators, owing to reduced energy losses as the pulse propagates? Or is something more
subtle occurring? In one experiment with an external waveguide using a '20 TW laser [30], differences
between the plasma density measured during a high-intensity laser shot and plasma density measure-
ments made offline suggested that, under the conditions in which electron beams were observed, the laser
pulse caused additional ionization of the plasma. As the plasma used in that experiment was formed
from hydrogen, which is readily ionized, this suggested that high-Z impurities from the walls of the
capillary were being ionized by the main pulse and injected into the plasma wave. Since that work, a
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Fig. 6: Variation of reported electron beam energy from various experiments. Top: Variation of beam energy
with plasma density. Bottom: Variation of beam energy with laser power. Filled circles, experiments in preformed
guiding structures; open squares, experiments without preformed guiding structures. Data from Refs. [5–9,15–60].

number of groups have proceeded to exploit this ionization injection mechanism to reduce the threshold
for injection and increase the beam charge (e.g., Refs. [36, 39]). There are also various other injection
techniques, including injection due to propagation in a density gradient [9, 35] and colliding pulse in-
jection [8]. In Fig. 7, the variation of electron beam energy with laser power is plotted again, this time
with the data divided into subsets based on injection type. As it is not known whether the majority
of capillary-discharge-based experiments rely on self-injection or whether ionization injection plays a
role, as in Ref. [30], these experiments have been placed in their own subset. Some of the ionization in-
jection experiments also produce higher electron beam energies for a given laser power than self-injection
experiments, and lie on the upper curve of the entire dataset, just as the capillary discharge dataset
does. This might suggest that the injection mechanism is more important than the guiding mechanism in
determining the maximum energy that can be achieved from a given laser power. This makes sense, as the
value that a0 reaches after self-evolution decreases with decreasing laser power, but alternative injection
mechanisms should lower the value that a0 needs to reach in order for injection to occur. However,
injection mechanisms other than ionization injection seem to perform similarly to self-injection in terms
of the electron energy that can be obtained for a given laser power. At present, the evidence is still
inconclusive; this is clearly a matter that requires further study.
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Fig. 7: Variation of reported electron beam energy from various experiments as a function of laser power and for
different injection mechanisms. Filled black circles, capillary discharge experiments; black squares, ionization
injection; green diamonds, density down-ramp injection; cyan triangles, colliding pulse injection; open black
squares, self-injection. Data from Refs. [5–9, 15–60].

3 Future directions
Having examined the trends in experimental data from laser wakefield experiments over the last decade,
we find that there is one overriding message. To keep pushing the electron energy achievable from a
single stage of a laser wakefield to ever higher values clearly requires operation at lower densities and
over longer distances, and such experiments will need more powerful lasers. However, it should be noted
that laser power can be increased in two ways, either by increasing the laser energy or by decreasing the
pulse duration. Most of the data presented were obtained using laser pulses with a duration of ∼30 fs,
so the trends in laser power are dominated by the pulse energy. Simulations demonstrate that the pulse
length in a laser wakefield accelerator should not be too short. Energy is lost predominantly from the
front of the laser pulse (this is the part of the laser that is doing work on the plasma), so the shorter the
laser pulse, the more quickly it runs out of energy. As new laser facilities come online around the world,
it is worth remembering that the shortest pulse is not necessarily the best for driving laser wakefield
accelerators. Pulse durations where cτL is comparable to the plasma wavelength, λp, drive efficient
wakes and allow the pump depletion length to match the dephasing length [62]. Pulses significantly
shorter than λp/2 expend their energy before the maximum energy can be reached.

The experimental trends show that most experiments are attaining electron beam energies that are
limited by dephasing. If the community is to be able to keep up the impressive pace it has sustained over
the last decade then methods to overcome this limitation will become increasingly important, especially
as further increases in laser power become ever more expensive. As a result, techniques to overcome
dephasing, such as quasi-phase matching [64], staging [65] and density tapering [66] will all become
important areas of research.

The final point that we would like to make is that the laser systems currently used to drive laser
wakefield accelerators are woefully inefficient. A titanium sapphire laser has a ‘wall plug’ efficiency of
∼0.1%. They also currently run at very low repetition rates compared with a conventional accelerator. As
laser wakefield accelerators push the energy frontier and strive to become workhorses for applications, it
will become increasingly important that both repetition rate and efficiency are properly considered and
significantly improved. Much more efficient laser architectures are available, including thin-disc [67]
and fibre [68] lasers, that can also readily operate at much higher repetition rates. However, these sys-
tems do not yet have the capability to produce laser pulses with the high energy and short pulse duration
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needed to drive current laser wakefield acceleration experiments. Innovative solutions, including the
use of coherent [69] and incoherent [70] combinations of many low-energy laser pulses to drive wake-
field experiments, or the use of trains of many low-energy pulses to resonantly drive a high amplitude
wakefield [71], may well form the most promising routes to high repetition rate, high-efficiency laser
wakefield accelerators suitable for particle physics experiments or light-source based applications.
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Abstract 
The field of plasma-based particle accelerators has seen tremendous progress 
over the past decade and experienced significant growth in the number of 
activities. During this process, the involved scientific community has 
expanded from traditional university-based research and is now encompassing 
many large research laboratories worldwide, such as BNL, CERN, DESY, 
KEK, LBNL and SLAC. As a consequence, there is a strong demand for a 
consolidated effort in education at the intersection of accelerator, laser and 
plasma physics. The CERN Accelerator School on Plasma Wake Acceleration 
has been organized as a result of this development. In this paper, we describe 
the interactive component of this one-week school, which consisted of three 
case studies to be solved in 11 working groups by the participants of the 
CERN Accelerator School. 

Keywords 
Plasma wakefield accelerators; applications; case study. 
 

1 Introduction 
The CERN Accelerator School on Plasma Wake Acceleration was held in Geneva at CERN from 
November 23 to 29, with the aim of teaching students and postdoctoral researchers the basic concepts 
of plasma wakefield acceleration at the intersection of accelerator, laser and plasma physics. An 
important objective of this school was to include an educational component that deviated in form from 
the lectures given by experts and fostered interaction between participants. 

Therefore, three case studies were developed, pertaining to future applications, which required 
the design of wakefield accelerators for specific purposes. The students were confronted with problems 
that left a considerable amount of freedom in approaching their solutions. Intentionally, this demanded 
self-organization of the students within their working group (there were 11 such groups), a break-up of 
these cases into subproblems and a distribution of tasks within each group. The students had 4 days, in 
parallel with the lectures, to work out possible case study solutions and prepare one short presentation 
per group, which were delivered at the end of the school to the students and lecturers. 

This paper summarizes the case study activities. The cases are presented in Section 2. Section 3 
discusses the educational objectives of this undertaking, Section 4 describes its organization and 
Section 5 details the outcome and highlights some specific results. 
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2 Case study problems 

2.1 Case study 1: A plasma-based booster module for the International Linear Collider 

2.1.1 Introduction 

Today the search for new particles and forces at energies of hundreds or thousands of gigaelectronvolts 
plays a central role in the field of elementary particle physics. Particle physicists have established a 
Standard Model for the strong, weak and electromagnetic interactions that passes tests at both low and 
high energies. The model is extremely successful, and yet it is incomplete in many important respects. 
New particles and interactions are needed to fill the gaps. 

Some of the difficulties of the Standard Model are deep and abstract; their explanations may be 
found only in the distant future. The Standard Model does not explain how gravity is connected to the 
other forces of nature. It does not explain why the basic particles of matter are the quarks and leptons, 
or how many of these there should be. 

However, the Standard Model also fails to explain three phenomena that, by rights, should be 
accounted for at the energies now being probed with particle accelerators, e.g., at the LHC at CERN. 
Astronomers believe that the dominant form of matter in the universe is a neutral weakly interacting 
species, called dark matter that cannot be composed of any particle present in the Standard Model. The 
Standard Model cannot explain why the universe contains atomic matter made of electrons, protons and 
neutrons but no comparable amount of antimatter. 

The problem of the Higgs field is likely to be connected to these questions about the matter 
content of the universe. Explanatory models of the Higgs field often contain particles with the correct 
properties to make up the dark matter. There are also strong, independent, arguments that the mass of 
the dark-matter particle is comparable to the masses—of the order of 100 GeV—of the heaviest particles 
that receive mass from the Higgs field. The predominance of baryons over antibaryons in the universe 
could arise from interactions among Higgs fields that violate space-time charge-parity symmetry. More 
generally, any model of fundamental physics at energies above 100 GeV must contain the Higgs field 
or some generalization and must account for the place of this field within its structure.  

A way to prove the existence of the Higgs field and to study its interactions is to find and study 
the quantum of this field, the Higgs boson. The International Linear Collider (ILC) was designed to 
study this particle and other new particles that might be associated with it. It provides an ideal setting 
for detailed exploration of the origin and nature of the Higgs field. In July 2012, the ATLAS and CMS 
experiments at the CERN Large Hadron Collider announced the discovery of a new particle with a mass 
of 125 GeV and many properties of the Higgs boson, as postulated in the Standard Model. The ILC will 
enable the properties of this Higgs boson to be studied in much greater detail than previously possible. 
(this section was reproduced, with permission, from the International Linear Collider Technical Design 
Report [1].) 

2.1.2 Task 

Assume that the ILC (see Fig. 1) is a 250 GeV centre-of-mass high-luminosity linear electron–positron 
collider built specifically for the study of the Higgs field, based on 1.3 GHz superconducting radio 
frequency (RF) accelerating technology. The initial programme of the ILC, to discover a 125 GeV Higgs 
boson, H0, at this energy, will give the peak cross-section for the reaction e+ + e− → Z + H0. In this 
reaction, the identification of a Z boson at the energy appropriate to recoil against the Higgs boson tags 
the presence of the Higgs boson. At higher energies, other reactions could be studied (see Table 1), 
which are not accessible in the current design. Wakefield accelerators could offer a cost-efficient path 
to boost the energy of the ILC and therefore allow for detailed studies of these additional processes. 
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Fig. 1: Basic design of the International Linear Collider (taken from Ref. [1]) 

Table 1: Reactions of the Higgs field and other events at the energy scale of interest (cf. Ref. [1]) 

 
Your task is to design a plasma-based energy-booster section for the ILC. The required beam 

power currently excludes lasers as wakefield drivers. To achieve a realistic design, consider and 
motivate a beam-driven approach for both the electron and the positron arms of the ILC. Please be 
careful to conserve the beam properties required in the ILC accelerator section to sustain a suitable event 
rate (see Table 2). 
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Table 2: Beam parameters of the ILC accelerator (cf. [1]) 

 

2.2 Case study 2: An X-ray free-electron laser based on laser wakefield acceleration 

2.2.1 Introduction 

At gigaelectronvolt energies, the radiation losses of electrons travelling in strong (usually magnetic) 
fields becomes appreciable. The radiation can easily extend to the X-ray range, as well as being naturally 
collimated and ultrashort (of the order of femtoseconds). By employing an undulator, a periodically 
poled magnetic field configuration, this synchrotron radiation can be reinforced in the direction of travel 
of the electron beam. If the radiated energy is sufficiently bright, it can cause bunching of the electrons, 
causing them to emit radiation coherently and thus even more strongly. This feedback causes 
exponential growth of the radiated signal in a device called a free-electron laser (FEL) [2]. 

To date, two FELs operating at X-ray wavelengths have been demonstrated, the Linac Coherent 
Light Source at SLAC [3] and SACLA at RIKEN [4], and they are soon to be joined by a handful of 
others, including the European XFEL at DESY. The enormous increase in the brightness of X-ray 
sources at these facilities has created dramatic new scientific possibilities, such as the possibility of 
determining the structure of complex molecules in a single shot, and the ability to generate unique far-
from-equilibrium states of ionized matter. However, these facilities are few, and will remain so, 

J. OSTERHOFF ET AL.

304



primarily because of the exacting requirements on the electron beam to seed an X-ray FEL. The electron 
beam must have, simultaneously, high energy, high bunch charge, low energy spread and low emittance. 
This can be seen by the electron beam properties of the existing FEL labs given in Table 3. 

Table 3: Main parameters of operational and planned X-ray FEL facilities 

Name Where Eelec 
(GeV) 

∆E/Eelec Charge 
(pC) 

εn (µm) Ephot  
(keV) 

LCLS SLAC (USA) 14 << 1% 250 1 8 
SACLA J-PARC (Japan) 8.5 << 1% 250 0.8 10 
XFEL DESY (Germany) 17.5 << 1% 250 1.4 10 

 

Obviously wakefield accelerators could produce high charge beams in a short distance. They are 
an obvious candidate for generating an electron beam with sufficient energy to drive an X-ray FEL at 
reduced cost. However, the other parameters required may be harder to produce, and so will require 
some consideration. 

2.2.2 Task 

In this case study, we will try to design an accelerator to drive an X-ray FEL with a laser wakefield 
scheme. The first stage will be to determine the plasma characteristics required to achieve the energies 
needed for the wakefield accelerator. 

Once this has been achieved, it is necessary to consider whether this accelerator will be able to 
provide the necessary charge, with sufficient beam quality. The requirements of the laser and plasma to 
be able to create this source should be determined. A survey of the literature would allow us to determine 
how close we are with present experiments and laser systems. Could other wakefield techniques be used 
to achieve the required characteristics? Are there advances in FEL research that could help us? 

2.3 Case study 3: A high repetition-rate laser-plasma accelerator for electron diffraction 

2.3.1 Introduction 

One of the current challenges of science is to unravel the dynamical structure of nature on the atomic 
time-scale; for example, understanding atomic motion during a chemical reaction, or following electron 
dynamics in a protein after photoexcitation. In the past decade, pulsed sources of X-rays have become 
available and provide a probe for atomic motion in complex matter at the femtosecond level. For 
example, the Linac Coherent Light Source at Stanford has reached a high level of performance with the 
production of unprecedented bright pulses of ultrashort coherent X-rays. In spite of their remarkable 
capabilities, these sources, based on the use of large electron accelerators, are restricted to a few large 
facilities with limited beam time access. 

In parallel, a less expensive tabletop alternative has been developed, which uses ultrashort 
electron bunches to probe atomic motion and structural dynamics, either through diffraction [5] or 
microscopy. In addition to their small size, these electron sources provide another significant advantage 
in that they offer an elastic scattering cross-section, which is more than five orders of magnitude higher 
than for X-rays, providing much higher diffraction efficiency. Ultrashort electron bunches have been 
used successfully for the study of structural dynamics in condensed matter, chemistry and biology. 
However, the time resolution currently does not exceed 200 fs, preventing the observation of faster 
phenomena. 

Typical electron guns for electron diffraction are d.c. (static acceleration field) photoguns (based 
on the use of a UV-driven photocathode as the source of electrons) and operate at around 100 keV. 
Recently, RF guns are being developed, to decrease the pulse duration to below 100 fs. These RF guns 
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operate at a few megaelectronvolts but they are subject to a timing jitter between the laser and the 
electron pulses. Consequently, reaching <100 fs or even <10 fs is very difficult, even though interesting 
dynamics occur on these time-scales. To summarize, the current limitations in ultrafast electron 
diffraction are: 

- space charge of the beam, limiting the bunch duration to >100 fs and the charge to 
femtocoulomb levels (for static acceleration fields); 

- synchronization (jitter) between the excitation laser and the electron bunch (for RF fields), 
limiting the resolution to >100 fs. 

Laser-plasma accelerators offer an opportunity to provide even shorter electron pulses for two 
main reasons: (i) the huge accelerating fields (10–100 GV/m) prevent space charge and (ii) in principle, 
the electron bunches are jitter-free because they originate from a laser-driven accelerating structure. In 
this case study, we will examine the possibility of designing a laser-plasma accelerator with the right 
parameters (see Table 4) and offering <10 fs electron bunches. 

Table 4: Main parameters of typical electron guns used for electron diffraction. The bottom row lists the 
parameters that the design should obtain. 

Accelerator Eelec 
(MeV) 

∆E/Eelec Charge 
(fC) 

εn (µm) Bunch 
duration 

Rep. rate 

DC photogun [5] 0.1 <1% 1 5×10-2 >200 fs 1 kHz 
RF photogun [6] 3.5 <1% 100 7×10-2 >100 fs 10 Hz 
Laser-plasma 0.1-10 <1% 1-1000 <0.1 <10 fs >0.1 kHz 

 

2.3.2 Task 

In this case study, we will try to design an accelerator that could be used for electron diffraction 
applications. The target parameters of the design are quite exotic for a laser-plasma accelerator: note, 
for example, that for the energy should be quite low (<10 MeV) and that it is preferable that the 
repetition rate be large (>100 Hz; a kilohertz repetition rate is preferable for good statistics in electron 
diffraction experiments). The beam quality should be very good, for making clear and usable diffraction 
patterns; in particular, the transverse emittance needs to be low. 

A first step in designing this accelerator would be to determine the necessary plasma parameters, 
followed by the necessary laser parameters. A survey of the literature would allow us to determine how 
close we are with present experiments and laser systems (note that first experiments at high repetition 
rate have begun to produce some results [7]). We should then think about what injection techniques 
could be used to produce the electron beam. We should also discuss what kind of beam quality we could 
obtain and how close it is from the target parameters, and suggest ways to improve things. 
Considerations on bunch duration and elongation upon propagation would also be helpful. 

3 Educational objectives 
The main educational purpose of these case studies was to familiarize the students with advantages, 
problems and principles of plasma wakefield acceleration. Deliberately, the chosen scenarios were 
focused on actual visions for applications of plasma-based accelerators, which are currently pursued and 
studied by a number of research groups worldwide, but remain unsolved in the sense that they have yet 
to be experimentally realized. Thus, the students were working on cutting-edge problems. 

It was intended that these problems should be approached using the knowledge that the students 
obtained during the lectures at this CERN Accelerator School. Since a number of solution strategies 
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were applicable to each case, each problem was assigned to three or four different groups of students, 
who produced a variety of outcomes and approaches. 

A significant hurdle in the solution process was the initial strategic discussion and distribution of 
tasks within each working group. This was intentional. The participants had to interact and self-organize 
as peers to come up with a successful strategy, strengthening their networking, social interaction and 
group performance skills. The collective work on a specific problem turned out to be highly motivating 
for many students. Many of them spent hours following different solution paths, experimenting with 
different parameters and optimizing their base designs, using every free minute they had between 
lectures and after dinner, and often working until late at night. 

4 Case study organization 
On the first day, the three case studies were distributed to three (case study 1) or four different groups 
(case studies 2 and 3), resulting in 11 working groups altogether. Each group consisted of up to 10 
students with backgrounds in accelerator, laser or plasma physics, who worked jointly on the assigned 
tasks. 

The case study work itself was supposed to be done after the end of the lectures in the evenings 
and during two tutorial sessions (of at least an hour each) on days two and three of the school. For this 
purpose, three separate seminar rooms were booked with two tutors each. The tutors were selected from 
the list of lecturers. In these tutorials, students were given the chance to discuss the problems and their 
solutions with experts. 

On the final day of lectures, the students were given an extra hour to prepare their concluding 
presentations, to be delivered at the end of that day. These presentations were 5 minute breakdowns of 
the achieved results and suggested designs and were presented to students and lecturers in the audience 
and a jury, who selected winners for the categories ‘best overall solution’, ‘most innovative solution’ 
and ‘most entertaining presentation’. 

5 Outcome, highlights and conclusions 
The extremely active, productive and creative atmosphere during the case study work that was prevalent 
during the week resulted in a number of highly interesting solutions and innovative schemes suggested 
by the different working groups, making the case study programme a great success. In the following, a 
number of these proposals and highlights are discussed for each case study. 

5.1 Case study 1: A plasma-based booster module for the International Linear Collider 

The three groups working on this case proposed various design solutions at different plasma densities 
from 1015 cm−3 to 1016 cm−3. All the groups suggested reshaping the ILC bunch train structure, such that 
odd and even numbered bunches from the train could be utilized as drivers and witnesses, respectively, 
in a beam-driven plasma wakefield accelerator set-up. The main issue, which was correctly identified, 
is the conservation of beam properties in the plasma booster stage, in particular in the positron arm of 
the ILC. The three proposals differed significantly, proposing the use of hollow-core plasma channels 
[8–10], plasma acceleration in the linear regime and even the use of plasmas consisting of antihydrogen. 

5.2 Case study 2: An X-ray free-electron laser based on laser wakefield acceleration 

This case study was considered by four groups, who came up with different design ideas, in particular 
with respect to the utilized undulator technology. The proposed methods covered cryogenic undulators 
[11], transverse gradient undulators [12], synchronized seeding from solid-target high harmonic sources 
[13] and travelling wave Thomson scattering [14]. Beam transport was also taken into account, with an 
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emphasis on beam emittance preservation and the inclusion of a plasma-based beam dechirper. Proposed 
electron injection techniques within the plasma target ranged from ionization injection [15, 16] to 
counter-propagating pulse injection [17]. 

5.3 Case study 3: A high repetition-rate laser-plasma accelerator for electron diffraction 

The four working groups considered the creation of suitable low-emittance and low-energy-spread 
beams from a plasma to be challenging and therefore presented solutions using various controlled 
injection methods and a sophisticated electron beam transport system. Electron beams were generated 
by colliding few-cycle laser pulses or by shock-front injection [18]. In some cases, the transport system 
also included a post-plasma energy filter for the generation of well-defined narrow-bandwidth spectra. 
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