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Abstract
The one-dimensional wakefield generation equations are solved for increasing
levels of non-linearity, to demonstrate how they contribute to the overall be-
haviour of a non-linear wakefield in a plasma. The effect of laser guiding is
also studied as a way to increase the interaction length of a laser wakefield
accelerator.
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1 Introduction
Large amplitude relativistic plasma waves, driven in the wake of a relativistic driver passing through a
plasma, are a potential linear accelerator system [1]. This is commonly called a wakefield accelerator.
The plasma, being already ionized, can support accelerating fields many orders of magnitude greater
than in conventional accelerators. Indeed, at the time of writing, reports of energy gains of ∼1 GeV in
distances of centimetres are now becoming common [2–5].

Possible drivers of the relativistic plasma wave include light [1], electron [6], positron [7], or pro-
ton beams [8]. A generalized one-dimensional (1D) wakefield generation equation describing generation
by all of the mentioned drivers is [9]
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where the potential φ is normalized to mc2/e and the variations are in the quasi-static frame with
ζ = z − vpt for a driver of velocity vp. The first term on the right describes the response to a par-
ticle beam driver and is + for an electron and − for a positively charged driver. In its absence (nb = 0),
and in the limit that the phase velocity of the wave γp � 1, then expanding the square brackets and also
expanding βp = (1− 1

γp2 )
1/2 gives a non-linear laser wakefield driver equation:
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In the small amplitude limit, φ� 1, this can be further simplified to
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which reveals itself to be a driven oscillator. Below, we obtain Eq. (3) starting from the linear forms of the
fluid equations of motion, continuity and Gauss’s Law. The electric field and density can then be obtained
from E = −∇φ and Poisson’s equation. This allows us to obtain some of the common characteristics
of a laser driven wakefield accelerator. By adding further levels of non-linearity, we reveal some of the
behaviour of laser wakefield accelerators in the non-linear regime.
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2 Laser wakefield
2.1 Basic equations
Beginning with Gauss’s Law, and the continuity and fluid motion equations for electrons in a plasma in
one dimension (the ions are assumed to be heavy and thus fixed) subject to a laser of peak intensity I
and wavelength λ with a normalized vector potential a = eE/mωc ≈ 8.9× 10−6

(
Iλ2)
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where p = γmv is the momentum of the fluid element. Note that the last term on the right of the
equation of motion is the relativistic ponderomotive force, with the relativistic factor due to the quiver
motion usually given by γ⊥ =

√
1 + (a2/2) for linear polarization. It is this ponderomotive force which

mediates the interaction between laser and plasma.

For simplicity, we use normalized units: ε0, e,m, c = 1. We also move to the frame in which the
laser driver is stationary (the quasistatic approximation), i.e. ζ = z − vpt ≈ z − ct. So ∂

∂z = ∂
∂ζ and

∂
∂t = −c ∂∂ζ . Also using ne = n0 + n1, where n0 is the initial plasma density and n1 is therefore the
amplitude of the plasma wave, the above equations become
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Here β = v/c and is given by
β =

p

(1 + p2 + a2)1/2
,

i.e. the relativistic factor of the electrons depends on not only their longitudinal motions but also their
transverse oscillations, which at the intensities used to drive laser wakefield accelerators are also rela-
tivistic.

Starting from these base equations, we can now consider different levels of non-linearity and assess
their effect on wakefield generation.

2.2 Linear wakes
For small amplitudes, we can assume, n1 � n0, β � 1, γ = 1 and p = mcβ:

∂E

∂ζ
= −n1, n1 = n0β,

∂β

∂ζ
= E − ∂(a2)

∂ζ
.
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Fig. 1: Linear wakefield generation: plots of E/E0, v/c, and ne/n0 (in blue) for laser pulse a = a0 sin(πζ/L)

with pulse length L = (a) 1
2 , (b) 1, (c) 2λp and a0 = 0.2 (in red).
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Combining these equations gives us essentially Eq. (2), with (in normalized units) kp2 = n0. For a
normalized laser intensity profile a2 = a0

2 sin2(πζ/L) for 0 < ζ < L, i.e. a half sinusoid, the wake
growth is optimized for L = λp ≡ 2π/kp, or alternatively, when the intensity full-width half-max
Lfwhm = λp/2. This can be seen in Fig. 1 where these equations have been solved numerically using the
scipy.integrate.odeint function in python. One can see that the plasma wave grows at the front end of the
laser pulse as the ponderomotive force pushes electrons ahead of it, which then relax to form a plasma
oscillation. When resonant, the back of the pulse gives an extra ponderomotive kick to the plasma wave
growing it to higher amplitude. At resonance, the wake trailing (behind) the laser pulse has solution

ne = n0

(
1 +

π

4
a0

2 sin kpζ
)
, Ez = E0

π

4
a0

2 cos kpζ, φ = −mc
2

e

π

4
a0

2 sin kpζ,

where E0 = (mcωp/e) is the electric field for sinusoidal oscillations of maximum amplitude, i.e. for
n1 = n0. For yet longer pulse lengths, the wakefield (the plasma wave amplitude following the laser
pulse) reduces again, to the point where for L = 2λp, there is no wakefield at all. There is however
a driven (or forced) oscillation of the plasma wave whilst the laser pulse is still active (see Fig. 1(c)),
which may be useful if only a single bunch needs to be accelerated, rather than a pulse train. There are
also smaller amplitude resonances for L ≈ (n+ 1

2)λp for integer n > 2.

Clearly there is a problem for linear solutions with a0 > 1, where ne can become negative. In fact,
in the fluid model, electron sheets would cross, so that instead of seeing a returning force, some electrons
end up being continually accelerated, a process called ‘wavebreaking’ [10]. Wavebreaking is interesting
because it suggests that plasma electrons can themselves be a source of particles to be accelerated in the
accelerator [11]. Thus, this cold linear wavebreaking limit for the electric field E0 = (mcωp/e) is useful
for giving an estimate of the energy output from the accelerator. In the laser driven case, the wakefield
travels at the group velocity of the driving pulse, as quantified by γph ≈ (ω0/ωp) for a laser of angular
frequency ω0. The maximum energy gain is then given by

Wmax ≈ 2γph
2mc2,

and so is dependent on the plasma density. Interestingly, lower density (smaller ωp, thus higher γph)
results in greater energy gain. This, however, comes at the expense of the greater laser energy that is
required to drive the larger sized wakefield that results from lower density.

2.3 Non-linear wakes
For n1 ∼ n0, the continuity equation gives n1 = n0(1− β)−1. Since in their fluid motion, the electrons
have −1 < β < 1, one can see that 1

2 < n1/n0 < ∞. Because of this non-linearity in the continuity
equation, the lowest density in a 1D wake cannot be less than 1

2n0. The plasma wave as a result becomes
non-linearly steepened, with sharp high-density spikes associated with longer areas of lower electron
density plasma. Of course this is only true in one dimension. In three dimensions, at high a0, transverse
motion can lead to ne → 0, or cavitation. Relativistic effects in the equation of motion add further non-
linearity, as in Eq. (4). The effect of these non-linearities can be seen in Fig. 2, for a half sinusoidal laser
pulse (as before) with L = λp, and increasing laser strength a0.

Even for a0 = 0.5 (Fig. 2(a)), the density profiles of the plasma wave have begun to be non-linearly
steepened. This is particularly clear for a0 = 1.0, 1.5 (Fig. 2(b,c)), where the plasma wave consists of
sharp density spikes either side of shallow long density troughs. As a result, the electric field becomes
sawtoothed in nature, with a long region of linearly increasing field followed by a sharp drop due to the
density spikes. In the non-linear case too, the fluid approximation breaks down for large amplitudes, as
particle sheets cross from neighbouring wave buckets, leading to wavebreaking. Due to the non-linear
steepening, the density spikes have much higher density than in the linear case, and the value at which
wavebreaking occurs (for a cold relativistic plasma) is given by [12]

EWB =
√
2(γph − 1)1/2E0.
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Fig. 2: Non-linear wakefield generation: plots ofE/E0, v/c, and ne/n0 (in blue) for laser pulse a = a0 sin(πζ/L)

with a0 = (a) 0.5, (b) 1.0 and (c) 1.5 (in red).

The non-linearities in density also causes lengthening of the plasma wave. This can be seen in Fig. 3(a),
where adding relativistic effects results in an increasing lengthening of the laser pulse length at which
resonance occurs. This is because the plasma wave wavelength increases as relativistic effects give
the plasma electrons greater inertia. Figure 3(b) shows the increase of the maximum electric field with
increasing laser strength a0. At low intensity, the field increases proportional to a02, whereas at high laser
strength the dependence becomes closer to a0. This dependence follows the ponderomotive potential
of the laser pulse. Because of the non-linear steepening, the electric field can easily exceed the cold
wavebreaking limit E0 at high a0. At resonance, the wake amplitude is given by

Emax ≈
a0

2

(1 + a02)1/2
E0.

(a) (b)

Fig. 3: Wake amplitude for (a) a0 = 1 with varying pulse length for a linear (blue) and non-linear (red) wake, and
(b) L = λp and varying a0.

3 Electromagnetic waves
3.1 The wave equation in vacuum
The wave equation in vacuum is

∇2E− 1

c2
∂2E
∂t2

= 0.

The paraxial ray approximation assumes that the phase of the electromagnetic wave varies primarily in
z, the direction of propagation, i.e. E = E(x, y, z) exp(i(kz − ωt))x̂, which is true for gentle focussing
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as in wakefield accelerators. So,

∇2E =

(
∂2

∂x2
+

∂2

∂y2

)
E +

∂2E

∂z2
ei(kz−ωt)x̂ + ikei(kz−ωt)

∂E

∂z
x̂− k2E.

The last term, k2E, cancels with
1

c2
∂2E
∂t2

=
ω2

c2
E since ω ≈ ck, and we can assume that the variation in

z is slow, so that
∂2E

∂z2
→ 0, leading to

(
∂2

∂x2
+

∂2

∂y2

)
E − 2ik

∂E

∂z
= 0. (cartesian paraxial ray wave equation)

In two dimensions, e.g., taking
∂2E

∂y2
= 0, the equation forms a time-dependent Schrödinger equation.

3.2 Gaussian optics
For a cylindrically symmetric beam, the paraxial ray equation can be rewritten:

∂2E

∂r2
+

1

r

∂E

∂r
− 2ik

∂E

∂z
= 0. (paraxial ray wave equation)

This equation has a solution of the form:

E(r, z) =
w0

w
exp

[−r2
w2
− iπr2

λR
+ iφ0

]
,

where

w = w0

√
1 +

(
z

zR

)2

, (beam waist)

R =
1

z

(
z2 + zR

2
)
, (radius of curvature)

tanφ0 =
λz

πw0
2
, (Gouy phase)

where zR =
πw0

2

λ
is the Rayleigh length, and w0 is the beam waist, and its variation in vacuum can

be seen in the Fig. 4. The beam has a minimum at z = 0 and like an unconstrained wave packet, will
disperse with increasing propagation. R is the curvature of the incoming phase fronts and φ0 is known
as the Gouy phase, which flips through zero as a beam passes through focus.

The intensity is then given by I(r, z)/I0 =
w2
0

w2
exp

[−2r2
w2

]
, so for z = ±zR, the intensity falls

by half. As can be seen in Fig. 4, this is also the distance over which the phase fronts are approximately
flat. For z � zR, the beam waist expands almost linearly with an angle given by

tan θ = lim
z�zR

[w
z

]
=
w0

zc
=

λ

πw0
.

Or θ ∼ 1

πF
, where the F -number, F =

w0

λ
=

f

d
, which is the ratio of focal length, f , to the beam

diameter at the final mirror, d.

For wakefield generation, it would seem advantageous to have as high an intensity as possible,
i.e. focusing to small focal spot size. This however implies a short Rayleigh range and so a short accel-
eration distance. To try to maintain a near constant intensity over the interaction distance (zR > Ldeph)
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Fig. 4: Evolution of beam waist (red line) of an ideal Gaussian beam, with curvature of phase fronts (blue lines)
and Rayleigh range, zR, (shaded grey) also shown.

would require gentle focussing. This has an implication though for the real size of a plasma accelera-
tor, since the beam diameter is typically constrained by damage thresholds on the final turning mirror
(Idam ∼ 1012 W cm−2), which then has to be further away from final focus for a longer focal length
interaction. Luckily, plasma effects can help guide an intense laser beam for distances much longer than
the Rayleigh range, alleviating this problem.

3.3 Propagation in plasma
The wave equation including the effect of plasma can be written

∇2E− η2

c2
∂2E
∂t2

= 0,

where η, the plasma refractive index, is given by

ηR ' 1− ωp
2

2ω2

n(r)

n0γ⊥
,

for the case of sufficiently underdense plasmas, i.e. ωp
2/ω2 � 1. Note that both the density profile n(r)

and the relativistic factor γ⊥(r) can now vary radially, in the latter case due to the dependence of γ⊥ on
intensity, i.e. γ⊥ =

√
1 + (a20/2) for linear polarization.

Either an intensity decrease away from the axis of propagation (∂a2/∂r2) < 0 or a density increase
(∂n2e/∂r

2 > 0) can lead to a higher refractive index on-axis and so, like an optical fibre, causes flow of
energy towards the axis or self-focusing. For small variations, the refractive index can be written

ηR ' 1− ωp
2

2ω2

(
1 +

δn

n0
− a2

2

)
,

where δn is the density depression, which can be due to a number of effects such as a preformed channel,
or ponderomotive expulsion of plasma electrons.

A Gaussian laser pulse with transverse variation a(r) = a0 exp(−r2/R2), where R is now the
beam waist, can be used as a trial solution to the paraxial ray equation. Keeping only dominant terms,
the evolution of the beam waist can be approximated by [9]

d2R

dz2
=

1

zR2R3

(
1− P

Pc

)
.

The spot size has been normalized to r0, the minimum vacuum focal spot size of the laser pulse and the
power unit Pc ' 17(ω2/ωp

2) GW, which is dependent on density. Figure 5 demonstrates the effect of
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Fig. 5: Behaviour of laser beam waist focussed on boundary of sharp density plasma transition for P/Pcr = (a) 0,
(b) 0.5, (c) 0.9, (d) 1.0 and (e) 1.1.

P/Pcr on the evolution of the beam waist. Increasing P/Pcr leads to a greater influence of the second
term, which is due to intensity effects, over the first term which causes diffraction. At P = Pcr, a balance
is formed between diffraction and self-focusing and the laser pulse can be guided. Hence this is a critical
power for self-focusing. For P > Pcr, the model predicts catastrophic self-focusing. In reality however,
including higher order diffraction terms prevents this as strong focussing invariably leads to generation
of higher modes and thus filamentation [13].

3.4 Guiding
For wakefield driving short pulses, the leading edge of the pulse interacts with the wrong curvature of
density due to the plasma wave (increasing on-axis) and this can cause increased diffraction of the laser
pulse. This is true even if the body of the laser pulse is being self-focused. To overcome this, guiding
channels are used, where the guiding of the pulse is now determined by

d2R

dz2
=

1

zR2R3

(
1− δn

δnc
R4

)
.

A Gaussian beam with R = 1, i.e. r = r0, can be guided, provided there is a density depression with
δn = δnc, where

δnc =
1

πrer02
, (5)

and re = e2/me
2c2 is the ‘classical radius of the electron’. Such channels can be formed, for example,

by thermal equilibration of a discharge with its cold walls, or by ponderomotive or thermal expulsion of a
plasma by a secondary laser pulse [14]. Channel guiding allows laser energy to be used more efficiently
in a laser wakefield and also allows potentially simpler operation in the linear regime.

There is a critical beam or ‘matched’ spot size at which the beam propagates with minimum
channel waist oscillations (see Fig. 6), as can be found by inverting Eq. (5). The goal for laser wakefield
operation is to match the Gaussian focussed laser spot to the matched spot of the accelerator, which
determines the required focussing parameter. However, as can be seen in the figure, not focussing at
the matched spot size will lead to channel oscillations which can lead to a loss of guided energy, as the
channels are invariably ‘leaky’.
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Fig. 6: Behaviour of the waist of the leading edge of a laser pulse focussed on boundary of sharp density transition
on a plasma with radial guiding channel with δn/δncr = (a) 0, (b) 0.1, (c) 0.5, (d) 1.0 and (e) 1.4.

3.5 Propagation effects
A laser pulse of course does not stay unchanged as it drives a wakefield, it must lose energy. However
this does not necessarily lead to a reduction in intensity, since the pulse can compress as it propagates.
In a linear wake, the rate of compression is given by the difference in the group velocity from the first
maximum to minimum of the plasma wave. This can be seen in Fig. 7 which shows that due to the
density rise, the front of the laser pulse has a slower group velocity than the rear of the pulse, causing the
back to ‘catch-up’ and the pulse to compress. For the case of a pulse with L ∼ λp, the variation of pulse
length as a function of propagation distance ` is [15]

τ = τ0 −
ne0l

2ncrc
.

The pulse compression has the beneficial effect that the power of the driving pulse can stay relatively
constant, even though the energy within the laser pulse is being progressively reduced. The laser pulse
also redshifts from the front as those photons that drive the wakefield lose energy. This almost complete
loss of energy of the driving photons leads to an etching of the laser pulse. By contrast the trailing
photons in the wake are ‘squeezed’ as they travel in the density depression and so become blue shifted.
This process is often called photon acceleration and the amount of blue shifting (energy gain) of the
photon is given by [16]

δω = ω0

(
1− zdβp

dζ

)
' ω0

(
1− z d

dζ

(
δn

n0

))
.

Photon acceleration can be a useful diagnostic of wakefields in cases where there are no charged particles
available to accelerate [17].

4 Conclusion
We have discussed a number of effects which are important for laser wakefield acceleration. We have
shown how non-linear effects increase the plasma wave wavelength and also allow larger wakefield
amplitudes at high intensities (a0 > 1). This is due to the characteristic peak and trough nature of the
non-linear wakes in this regime.
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(a) (b)

Fig. 7: Compression and photon acceleration of a wakefield driving laser pulse for a0 = 1, L = λp. (a) ne (top),
group velocity (middle) and pulse shape (bottom) showing regions of speeding and slowing of the pulse. (b) ne
(top), phase velocity (middle) and pulse shape (bottom) showing regions of stretching and compressing of phase.

We have also discussed simple models for the guiding of laser pulses which allow the length of a
laser wakefield well beyond the Rayleigh range of the laser pulse. This is important as it allows the full
energy gain to be extracted from the laser wakefield. We also discussed how preformed channels can
enhance the guiding effect for a laser pulse focussed to the matched spot size of the channel.
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