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Abstract 
In this lecture we introduce from basic principles the main concepts of beam 
focusing and transport in modern accelerators using the beam envelope 
equation as a convenient mathematical tool. Matching conditions suitable for 
preserving beam quality are derived from the model for significant beam 
dynamics regimes. An extension of the model to the case of plasma 
accelerators is introduced. The understanding of similarities and differences 
with respect to traditional accelerators is also emphasized. 
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1 Introduction 
Light sources based on high-gain free electron lasers or future high-energy linear colliders require the 
production, acceleration and transport up to the interaction point of low divergence, high-charge density 
electron bunches [1]. Many effects contribute in general to the degradation of the final beam quality, 
including chromatic effects, wake fields, emission of coherent radiation, and accelerator misalignments. 
Space charge effects and mismatch with the focusing and accelerating devices typically contribute to 
emittance degradation of high-charge density beams [2], hence the control of beam transport and 
acceleration is the leading edge for high-quality beam production.  

In particular, further development of plasma-based accelerators requires careful phase space 
matching between plasma acceleration stages, and between plasma stages and traditional accelerator 
components. It represents a very critical issue and a fundamental challenge for high-quality beam 
production and its applications. Without proper matching, significant emittance growth may occur when 
the beam is propagating through different stages and components due to the large differences of 
transverse focusing strength. This unwanted effect is even more serious in the presence of finite energy 
spread. 

In this paper we introduce from basic principles the main concepts of beam focusing and transport 
in modern accelerators using the beam envelope equation as a convenient mathematical tool. Matching 
conditions suitable for preserving beam quality are derived from the model for significant beam 
dynamics regimes. An extension of the model to the case of plasma accelerators is introduced. The 
understanding of similarities and differences with respect to traditional accelerators is also emphasized. 
A more detailed discussion of the previous topics can be found in the many classical textbooks on this 
subject, as listed in Refs. [3–6]. 

2 Laminar and non-laminar beams 
An ideal high-charge particle beam has orbits that flow in layers that never intersect, as occurs in a 
laminar fluid. Such a beam is often called a laminar beam. More precisely, a laminar beam satisfies the 
following two conditions [6]. 
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1 All particles at a given position have identical transverse velocities. On the contrary, the orbits 
of two particles that start at the same position could separate and later cross each other. 

2 Assuming the beam propagates along the z axis, the magnitudes of the slopes of the trajectories 
in the transverse directions x and y, given by ( ) d / dx z x z′ =  and ( ) d / dy z y z′ = , are linearly 
proportional to the displacement from the z axis of beam propagation. 

Trajectories of interest in beam physics are always confined to the inside of small, near-axis regions, 
and the transverse momentum is much smaller than the longitudinal momentum, px,y << pz ≈ p. As a 
consequence, it is convenient in most cases to use the small angle, or paraxial, approximation, which 
allows us to write the useful approximate expressions x′ = px/pz ≈ px/p and y′ = py/pz ≈ px/p.  

To help understand the features and the advantages of a laminar beam propagation, the following 
figures compare the typical behaviour of a laminar and of a non-laminar (or thermal) beam. 

Figure 1 illustrates an example of orbit evolution of a laminar mono-energetic beam with half 
width x0 along a simple beam line with an ideal focusing element (solenoid, magnetic quadrupoles, or 
electrostatic transverse fields are usually adopted to this end), represented by a thin lens located at the 
longitudinal coordinate z = 0. In an ideal lens, focusing (defocusing) forces are linearly proportional to 
the displacement from the symmetry axis z so that the lens maintains the laminar flow of the beam.  

 
Fig. 1: Particle trajectories and phase space evolution of a laminar beam [7] 

The beam shown in Fig. 1 starts propagating completely parallel to the symmetry axis z; in this 
particular case the particles all have zero transverse velocity. There are no orbits that cross each other 
in such a beam. Ignoring collisions and inner forces, like coulomb forces, such a parallel beam could 
propagate an infinite distance with no change in its transverse width. When the beam crosses the ideal 
lens it is transformed in a converging laminar beam. Because the transverse velocities after the linear 
lens are proportional to the displacement off-axis, particle orbits define similar triangles that converge 
to a single point. After passing through the singularity at the focal point, the particles follow diverging 
orbits. We can always transform a diverging (or converging) beam to a parallel beam by using a lens of 
the proper focal length, as can be seen by reversing the propagation axis of Fig. 1. 

The small boxes in the lower part of the figure depict the particle distributions in the trace space 
(x,x′), equivalent to the canonical phase space (x,px ≈ x′p) when p is constant, i.e. without beam 
acceleration. The phase space area occupied by an ideal laminar beam is a straight segment of zero 
thickness. As can be easily verified, the condition that the particle distribution has zero thickness 
proceeds from condition 1; the segment straightness is a consequence of condition 2. The distribution 
of a laminar beam propagating through a transport system with ideal linear focusing elements is thus a 
straight segment with variable slope. 
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Particles in a non-laminar beam have a random distribution of transverse velocities at the same 
location and a spread in directions, as shown in Fig. 2. Because of the disorder of a non-laminar beam, 
it is impossible to focus all particles from a location in the beam toward a common point. Lenses can 
influence only the average motion of particles. Focal spot limitations are a major concern for a wide 
variety of applications, from electron microscopy to free electron lasers and linear colliders. The phase 
space plot of a non-laminar beam is no longer a straight line: the beam, as shown in the lower boxes of 
Fig. 2, occupies a wider area of the phase space. 

 
Fig. 2: Particle trajectories and phase space evolution of a non-laminar beam [7] 

3 The emittance concept 
The phase space surface A occupied by a beam is a convenient figure of merit for designating the quality 
of a beam. This quantity is the emittance εx and is usually represented by an ellipse that contains the 
whole particle distribution in the phase space (x,x′), such that A = πεx. An analogous definition holds for 
the (y,y′) and (z,z′) planes. The original choice of an elliptical shape comes from the fact that when linear 
focusing forces are applied to a beam, the trajectory of each particle in phase space lies on an ellipse, 
which may be called the trajectory ellipse. Being the area of the phase space, the emittance is measured 
in [mm mrad] or more often in [µm]. 

The ellipse equation is written as 
 2 22x x x xx xx xγ α β ε′ ′+ + =   (1) 

where x and x′ are the particle coordinates in the phase space and the coefficients αx(z), βx(z), γx(z) are 
called Twiss parameters, which are related by the geometrical condition: 
 2 1x x xβ γ α− =  . (2) 

As shown in Fig. 3 the beam envelope boundary Xmax, its derivative (Xmax)′ and the maximum beam 
divergency X′max, i.e. the projection on the axis x and x′ of the ellipse edges, can be expressed as a 
function of the ellipse parameters: 
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x x

x x
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
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Fig. 3: Phase space distribution in a skewed elliptical boundary showing the relationship of Twiss parameters to 
the ellipse geometry [6]. 

According to Liouville’s theorem the 6D (x,px,y,py,z,pz) phase space volume occupied by a beam 
is constant, provided that there are no dissipative forces, no particles lost or created, and no coulomb 
scattering among particles. Moreover, if the forces in the three orthogonal directions are uncoupled, 
Liouville’s theorem also holds for each reduced phase space (x,px), (y,py), (z,pz) surfaces and hence 
emittance also remains constant in each plane [3].  

Although the net phase space surface occupied by a beam is constant, nonlinear field components 
can stretch and distort the particle distribution in the phase space, and the beam will lose its laminar 
behaviour. A realistic phase space distribution is often very different from a regular ellipse, as shown in 
Fig. 4. 

 
Fig. 4: Typical evolution of phase space distribution (black dots) under the effects of non-linear forces with the 
equivalent ellipse superimposed (red line). 
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We introduce, therefore, a definition of emittance that measures the beam quality rather than the phase 
space area. It is often more convenient to associate to a generic distribution function f(x,x′,z) in the phase 
space a statistical definition of emittance, the so-called r.m.s. emittance:  
 2 2

,rms2x x x xx xx xγ α β ε′ ′+ + =   (4) 

such that the equivalent-ellipse projections on the x and x′ axes are equal to the r.m.s. values of the 
distribution, implying the following conditions: 

 
,rms

,rms

x x x

x x x

σ β ε

σ γ ε′

 =


=
  (5) 

where 
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+∞ +∞

−∞ −∞

+∞ +∞
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−∞ −∞


′ ′= =



 ′ ′ ′ ′= =

∫ ∫

∫ ∫
 (6) 

are the second moments of the distribution function f(x,x′,z). Another important quantity that accounts 
for the degree of (x,x′) correlations is defined as 

 ( ) ( ), , d dxx z xx xx f x x z x xσ
+∞ +∞

′
−∞ −∞

′ ′ ′ ′= = ∫ ∫ . (7) 

From Eq. (3) it holds also ,rmsxxx
x x

x x

εσσ α
σ β

′′ = = − , see also Eq. (16), which allows us to link the 

correlation moment Eq. (7) to the Twiss parameter as 
 ,rmsxx x xσ α ε′ = −  
.  (8) 

One can easily see from Eq. (3) and Eq. (5) that 1 d
2 d

x
x z

βα = −  also holds. 

By substituting the Twiss parameter defined by Eq. (5) and Eq. (8) into condition 2 we obtain [5] 

 
2 2

,rms ,rms ,rms

1x x xx

x x x

σ σ σ
ε ε ε

′ ′
 

− =  
   .

 (9) 

Reordering the terms in Eq. (8) we end up with the definition of r.m.s. emittance in terms of the second 
moments of the distribution: 

 ( )22 2 2 2 2
rms x x xx x x xxε σ σ σ′ ′ ′ ′= − = −   (10) 

where we omit, from now on, the subscribed x in the emittance notation: εrms = εx,rms. Root mean square 
emittance tells us some important information about phase space distributions under the effect of linear 
or non-linear forces acting on the beam. Consider, for example, an idealized particle distribution in 
phase space that lies on some line that passes through the origin as illustrated in Fig. 5. 

INJECTION, EXTRACTION AND MATCHING

163



 
 (a) (b) 

Fig. 5: Phase space distributions under the effect of (a) linear or (b) non-linear forces acting on the beam 

Assuming a generic correlation of the type x′ = Cxn and computing the r.m.s. emittance according to 
Eq. (10) we have 

 
2 rms2 2 2 1

rms
rms

1 0
.

1 0
n n n

C x x x
n

ε
ε

ε
+ = ⇒ =

= −  > ⇒ ≠  (11) 

When n = 1 the line is straight and the r.m.s. emittance is εrms = 0. When n > 1 the relationship is 
nonlinear, the line in phase space is curved, and the r.m.s. emittance is in general not zero. Both 
distributions have zero area. Therefore, we conclude that even when the phase space area is zero, if the 
distribution is lying on a curved line its r.m.s. emittance is not zero. The r.m.s. emittance depends not 
only on the area occupied by the beam in phase space, but also on distortions produced by non-linear 
forces.  

If the beam is subject to acceleration it is more convenient to use the r.m.s. normalized emittance, 
for which the transverse momentum x z op p x m c xβγ′ ′= =  is used instead of the divergence: 

( ) ( )( )22 22 2 2 2 2 2
,rms

0 0

1 1
x xn x p xp x xx p xp x x x x

m c m c
ε σ σ σ βγ βγ′ ′= − = − = − . (12) 

The reason for introducing a normalized emittance is that the divergences of the particles x′ = px/p are 
reduced during acceleration as p increases. Thus, acceleration reduces the un-normalized emittance, but 
does not affect the normalized emittance. Assuming a small energy spread within the beam, the 
normalized and un-normalized emittances can be related by the approximated relation 

 
rmsβγ ε . This 

approximation, which is often used in conventional accelerators, may be strongly misleading when 
adopted for describing beams with significant energy spread, like those presently produced by plasma 
accelerators. A more careful analysis is reported below [8]. 

When the correlations between the energy and transverse positions are negligible (as in a drift 
without collective effects), Eq. (12) can be written as 
 

2 22 2 2 2 2
,rmsn x x xxε β γ βγ′ ′= −  . (13) 

Consider now the definition of relative energy spread 2

222
2

βγ

βγγβ
σ γ

−
= , which can be inserted 

into Eq. (13) to give 

 ( )2 22 2 2 2 2 2 2 2
,rms .n x x x x xxγε β γ σ βγ′ ′ ′= + −

  (14) 
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Assuming relativistic particles (β = 1) we get 
 ( )2 2 2 2 2 2

,rms rms .n x xγε γ σ σ σ ε′= +
  (15) 

If the first term in the parentheses is negligible, we find the conventional approximation of normalized 
emittance, as rmsγ ε . For a conventional accelerator this might generally be the case. Considering, for 
example, beam parameters for the SPARC_LAB photoinjector [9], at 5 MeV the ratio between the first 
and the second term is ~10−3; while at 150 MeV it is ~10−5. On the other hand, using typical beam 
parameters at the plasma–vacuum interface, the first term is of the same order of magnitude as for 
conventional accelerators at low energies; however, due to the rapid increase of the bunch size outside 
the plasma (σx′ ~ mrad) and the large energy spread (σγ > 1%), it becomes predominant compared to the 
second term after a drift of a few millimetres. Therefore the use of approximated formulas when 
measuring the normalized emittance of plasma accelerated particle beams is very inappropriate [10]. 

4 The root mean square envelope equation 
We are now interested in following the evolution of particle distribution during beam transport and 
acceleration. One can take profit of the first collective variable defined in Eq. (6), the second moment 
of the distribution termed r.m.s. beam envelope, to derive a differential equation suitable for describing 
r.m.s. beam envelope dynamics [11]. To this end let us compute the first and second derivative of σx [4]: 

 

( )

2 2

22 2 2 2
2

2 3 3 3

d d 1 d 1 2
d d 2 d 2

d dd 1 1
d d d

x xx

x x x

xx xx xx xx xx xx

x x x x x x x

x x xx
z z z

xx
x xx

z z z

σ σ
σ σ σ

σσ σ σ σ σ σ
σ σ σ σ σ σ σ

′

′′ ′ ′ ′ ′

′= = = =

′′+
′ ′= = − = + − = −

 . (16) 

Rearranging the second derivative Eq. (16) we obtain a second-order nonlinear differential equation for 
the beam envelope evolution, 

 
2 2 2

3
x x xx

x
x x

xxσ σ σσ
σ σ

′ ′
′′−′′ = +  (17) 

or, in a more convenient form using the r.m.s. emittance definition Eq. (10), 

 
2
rms

3

1
x

x x

xx εσ
σ σ

′′ ′′− =  .
 
 (18) 

In Eq. (18) the emittance term can be interpreted physically as an outward pressure on the beam envelope 
produced by the r.m.s. spread in trajectory angle, which is parameterized by the r.m.s. emittance. 

Let’s now consider, for example, the simple case with 0xx′′ = , describing a beam drifting in 
free space. The envelope equation reduces to 

 3 2
rmsx xσ σ ε′′ =  .  (19) 

With initial conditions σ0, σ′0 at z0, depending on the upstream transport channel, Eq. (19) has a 
hyperbolic solution: 

 ( ) ( )( ) ( )
2

2 2rms
0 0 0 02

0

z z z z zεσ σ σ
σ

′= + − + − . 
 
 (20) 

INJECTION, EXTRACTION AND MATCHING

165



Considering the case of a beam at waist ( 0xx′ = ) with σ′0 = 0, using Eq. (5), the solution Eq. (20) is 
often written in terms of the β function as 

 ( )
2

0
0

w

1 z zzσ σ
β

 −
= +  

 
 
 
 (21) 

This relation indicates that without any external focusing element the beam envelope increases from the 
beam waist by a factor √2 with a characteristic length  𝛽𝛽𝑤𝑤 = 𝜎𝜎02

𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟
as shown in Fig. 6.  

 
Fig. 6: Schematic representation of the beam envelope behaviour near the beam waist 

At waist the relation ε2
rms = σ2

0,xσ2
0,x′ also holds, which can be inserted into Eq. (20) to get 

σ2
x(z) = σ2

0x′(z − z0)2. Under this condition Eq. (15) can be written as follows: 

 

 ( ) ( )( )22 2 2 4 2
,rms 0 rmsn xz z zγε γ σ σ ε′= − +  

showing that beams with large energy spread and divergence undergo a significant normalized 
emittance growth even in a drift of length (z − z0) [8, 12]. 

Notice also that the solution Eq. (21) is exactly analogous to that of a Gaussian light beam for 
which the beam width w = 2σph increases away from its minimum value at the waist w0 with 

characteristic length 
2
0π

R
wZ
λ

=  (Rayleigh length) [4]. This analogy suggests that we can identify an 

effective emittance of a photon beam as ph 4π
λε = . 

For the effective transport of a beam with finite emittance it is mandatory to make use of some 
external force providing beam confinement in the transport or accelerating line. The term xx′′  
accounts for external forces when we know x″ given by the single particle equation of motion: 

 
d .
d

x
x

p F
t

=
  (22) 

Under the paraxial approximation px << p = βγmc the transverse momentum px can be written as 
px = px′ = βγm0cx′, so that 
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 ( ) ( )d d d
d d d

x
x

p px c px F
t t z

β′ ′= = =   (23) 

and the transverse acceleration results to be: 

 .xFpx x
p cpβ
′

′′ ′= − +  
 
 (24) 

It follows that 

 .x x
xx

xF xFp pxx xx
p cp p cp

σ
β β′

′ ′
′′ ′= − + = +

 
 (25) 

Inserting Eq. (25) into Eq. (18) and recalling Eq. (16), xx
x

x

σσ
σ

′′ = , the complete r.m.s. envelope equation 

is 

 
2
,rms

2 3
1 nx

x x
x x

xFp
p cp

ε
σ σ

σ β γ σ
′

′′ ′+ − =   (26) 

where we have included the normalized emittance εn,rms = γεrms. Notice that the effect of longitudinal 
accelerations appears in the r.m.s. envelope equation as an oscillation damping term, called ‘adiabatic 
damping’, proportional to p′/p. The term xxF  represents the moment of any external transverse force 
acting on the beam, such as that produced by a focusing magnetic channel. 

5 External forces 

Let’s now consider the case of an external linear force acting on the beam in the form xF kx= ± . It can 
be focusing or defocusing according to the sign. The moment of the force results as 
 2 2

x xxF k x kσ= ± = ±  (27) 

and the envelope equation becomes 

  (28) 

where we have explicitly used the momentum definition p = γmc for a relativistic particle with β ≈ 1 and 

defined the wavenumber 2
ext 2

0

kk
m cγ

= . 

Typical focusing elements are quadrupoles and solenoids [3]. The magnetic quadrupole field is 
given in Cartesian coordinates by 

 
0 0

0 0

d

d

x

y

yB B B y

xB B B x

 ′= =

 ′= =


  (29) 
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where d is the pole distance and 0B′  the field gradient. The force acting on the beam is 

( )0
ˆ ˆ

zF qv B yj xi⊥ ′= −


 that, when B0 is positive, is focusing in the x direction and defocusing in y. The 

focusing strength is 20
quad ext

0

qBk k
m cγ

′
= = .  

In a solenoid the focusing strength is given by 
2

20
sol ext

02
qBk k

m cγ
 

= = 
 

. Notice that the solenoid 

is always focusing in both directions, an important properties when the cylindrical symmetry of the 
beam must be preserved. On the other hand, being a second-order quantity in γ it is more effective at 
low energy. 

It is interesting to consider the case of a uniform focusing channel without acceleration described 
by the r.m.s. envelope equation 

 
2

2 rms
ext 3x x

x

k εσ σ
σ

′′ + =
 .
 (30) 

By substituting rmsx xσ β ε=  in Eq. (30) one obtains an equation for the ‘betatron function’ βx(z) that 
is independent of the emittance term: 

 
2

2
ext

22 .
2

x
x x

x x

k ββ β
β β

′
′′+ = +

 
 (31) 

Equation (31) contains just the transport channel focusing strength and, being independent of the 
beam parameters, suggests that the meaning of the betatron function is to describe the transport line 
characteristic by itself. The betatron function reflects exterior forces from focusing magnets, and is 
highly dependent on the particular arrangement of the quadrupole magnets. The equilibrium, or 

matched, solution of Eq. (31) is given by eq
ext

1
2πk

βλ
β = = , as can be easily verified. This result shows 

that the matched βx function is simply the inverse of the focusing wave number, or equivalently is 
proportional to the ‘betatron wavelength’ λβ. 

6 Space charge forces 
Another important force acting on the beam is the one produced by the beam itself due to the internal 
coulomb forces. The net effect of the coulomb interaction in a multi-particle system can be classified 
into two regimes [3]: 

– collisional regime, dominated by binary collisions caused by close particle encounters; 

– collective regime or space charge regime, dominated by the self-field produced by the 
particles’ distribution that varies appreciably only over large distances compared to the 
average separation of the particles. 

A measure for the relative importance of collisional versus collective effects in a beam with particle 
density n is the relativistic Debye length, 

 
2

0 B b
D 2

k T
e n

ε γλ =   (32) 
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where the transverse beam temperature Tb is defined as 2
B b 0k T m vγ ⊥= , and kB is the Boltzmann 

constant. As long as the Debye length remains small compared to the particle bunch transverse size the 
beam is in the space-charge dominated regime and is not sensitive to binary collisions. Smooth functions 
for the charge and field distributions can be used in this case, and the space charge force can be treated 
like an external applied force. The space charge field can be separated into linear and nonlinear terms 
as a function of displacement from the beam axis. The linear space charge term defocuses the beam and 
leads to an increase in beam size. The nonlinear space charge terms also increase the r.m.s. emittance 
by distorting the phase-space distribution. Under the paraxial approximation of particle motion we can 
consider the linear component alone. We shall see below that the linear component of the space charge 
field can also induce emittance growth when correlation along the bunch are taken into account. 

For a bunched beam of uniform charge distribution in a cylinder of radius R and length L, carrying 
a current Ȋ and moving with longitudinal velocity vz = βc, the linear component of the longitudinal and 
transverse space charge field are given approximately by [13] 

 ( ) ( )2
0

ˆ
,

2πz
ILE h
R cε β

ζ ζ=
  (33) 

 ( ) ( )r 2
0

ˆ

2
,

π
r IrE g

R c
ζ

β
ζ

ε
=  .

  (34) 

The field form factor is described by the functions 

 ( ) ( ) ( )221 2 1h A Aζ ζ ζ ζ= + − − ++ − ,
  (35) 

 ( ) ( )
( )2 22

1

22 1
g

AA

ζ ζζ
ζζ

−
= +

++ −
  (36)

 

where ζ = z/L  is the normalized longitudinal coordinate along the bunch and A = R/γL is the beam aspect 
ratio. The field form factors account for the variation of the fields along the bunch. As γ increases, 

( ) 1g ζ →  and ( ) 0h ζ → , thus showing that space charge fields mainly affect transverse beam 
dynamics. It shows also that an energy increase corresponds to a bunch lengthening in the moving frame 
L′ = γL, leading to a vanishing longitudinal field component, as in the case of a continuous beam in the 
laboratory frame. 

To evaluate the force acting on the beam one must also account for the azimuthal magnetic field 

associated with the beam current that in cylindrical symmetry is given by rB E
cϑ
β

= . Thus, the Lorentz 

force acting on each single particle is given by 

 ( ) ( )2
21 r

r r r
eEF e E cB e Eϑβ β
γ

= − = − =  . (37) 

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the 
repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect and 
decreases as γ−2. 

In order to include space charge forces in the envelope equation let us start writing the space 
charge forces produced by the previous fields in Cartesian coordinates: 

 ( )2 2
0

ˆ

2πx
x

eIxF g
cγ ε σ

ζ
β

= .
 
 (38) 
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Then, computing the moment of the force we need 

 
( )

( )
sc

33 3 3 2 2
0 02π

x

x x

kF eIxx
cp m cβ ε

ζ
γ β σ βγ σ

′′ = = =  
 
 (39)

 

where we have introduced the generalized beam perveance  

 ( ) ( )sc
A

ˆ2Ik g
I

ζ ζ=   (40)
 

normalized to the Alfven current IA = 4πε0m0c3/e = 17 kA for electrons. Notice that in this case the 
perveance in Eq. (40) explicitly depends on the slice coordinate ζ. We can now calculate the term that 
enters in the envelope equation for a relativistic beam, 

 2sc sc
3 2 3

x

k kxx x
γ σ γ

′′ = = , (41) 

leading to the complete envelope equation 

 
2
,rms2 sc

ext 2 3 3 .n
x x x

x x

kk
εγσ σ σ

γ γ σ γ σ
′

′′ ′+ + = +
 
 (42)

 

From the envelope equation Eq. (42) we can identify two regimes of beam propagation: space-
charge dominated and emittance dominated. A beam is space-charge dominated as long as the space 
charge collective forces are largely dominant over the emittance pressure. In this regime the linear 
component of the space-charge force produces a quasi-laminar propagation of the beam, as one can see 
by integrating one time Eq. (39) under the paraxial ray approximation x′ << 1. A measure of the relative 
importance of space-charge effects versus emittance pressure is given by the laminarity parameter, 
defined as the ratio between the space-charge term and the emittance term: 

 
2

2
A

ˆ
.

2 n

I
I

σρ
γ ε

=
  (43) 

When ρ greatly exceeds unity, the beam behaves like a laminar flow (all beam particles move on 
trajectories that do not cross), and transport and acceleration require a careful tuning of focusing and 
accelerating elements in order to keep laminarity. Correlated emittance growth is typical in this regime, 
which can be made reversible if proper beam matching conditions are fulfilled, as discussed below. 
When ρ < 1 the beam is emittance dominated (thermal regime) and the space charge effects can be 
neglected. The transition to the thermal regime occurs when ρ ≈ 1 corresponding to the transition energy 

 
2

tr 2
A

ˆ
.

2 n

I
I

σγ
ε

=
  (44) 

For example a beam with Ȋ = 100 A εn = 1 μm and σ = 300 μm is leaving the space charge dominated 
regime and is entering the thermal regime at the transition energy of 131 MeV. From this example one 
may conclude that the space charge dominated regime is typical of low energy beams. Actually, for 
applications like linac-driven free electron lasers, peak current exceeding kilo amperes are required. 
Space charge effects may recur if bunch compressors are active at higher energies and a new energy 
threshold with higher Ȋ has to be considered. 

7 Correlated emittance oscillations 
When longitudinal correlations within the bunch are important, like that induced by space charge effects, 
beam envelope evolution is generally dependent also on the bunch coordinate ζ. In this case the bunch 
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should be considered as an ensemble of n longitudinal slices of envelope ( )s ,zσ ζ , whose evolution 
can be computed from n slice envelope equations equivalent to Eq. (42) provided that the bunch 
parameters refer to each single slice: γs, γ′s, ksc,s = kscg(ζ). Correlations within the bunch may cause 
emittance oscillations that can be evaluated, once an analytical or numerical solution [13] of the slice 
envelope equation is known, by using the following correlated emittance definition: 

 22 2
rms,cor s s s sε σ σ σ σ′ ′= −  (45) 

where the average is performed over the entire slice ensemble. In the simplest case of a two-slices model 
the previous definition reduces to 
 rms,cor 1 2 2 1ε σ σ σ σ′ ′= −  , (46) 

which represents a simple and useful formula for an estimation of the emittance scaling [14]. 

The total normalized r.m.s. emittance is the given by the superposition of the correlated and 
uncorrelated terms as  

 2 2
rms,cor rms rms,corε γ ε ε= + .   (47) 

An interesting example to consider here, showing the consequences of non-perfect beam 
matching, is the propagation of a beam in the space-charge dominated regime nearly matched to an 
external focusing channel (kext = ksol), as illustrated in Fig. 7. To simplify our computations we can 
neglect acceleration, as in the case of a simple beam transport line. The envelope equation for each slice, 
indicated as σs, reduces to 

 sc,s2
s ext s 3

s

k
kσ σ

γ σ
′′+ =  . (48) 

 
Fig. 7: Schematic representation of a nearly matched beam in a long solenoid. The dashed line represent the 
reference slice envelope fully matched to the Brillouin flow condition. The other slice envelopes are oscillating 
around the equilibrium solution. 

A stationary solution, called the Brillouin flow, is given by 

 
( )

s,B 2 3
ext A

ˆ1
2
Ig

k I
ζ

σ
γ

=  (49) 

where the local dependence of the current Ȋs = Ȋg(ζ) within the bunch has been explicitly indicated. This 
solution represent the matching conditions for which the external focusing completely balances the 
internal space-charge force. Unfortunately, since kext has a slice-independent constant value, the 
Brillouin matching condition cannot be achieved at the same time for all of the bunch slices. Assuming 
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that there is a reference slice perfectly matched with an envelope σr,B, the matching condition for the 
other slices can be written as 

 rB s
sB rB ˆ2

I
I

σ δσ σ  = +  
   (50) 

with respect to the reference slice. Considering a small perturbation δs from the equilibrium in the form  
 s s,B sσ σ δ= +   (51) 

and substituting into Eq. (48) we can obtain a linearized equation for the slice offset 
 2

s ext s2 0kδ δ′′+ =  (52) 

which has a solution given by 
 ( )s 0 extcos 2k zδ δ=  (53) 

where δ0 = σ − σsB is the amplitude of the initial slice mismatch, which we assume for convenience is 
the same for all slices. Inserting Eq. (53) into Eq. (51) we get the perturbed solution: 
 ( )s s,B 0 extcos 2k zσ σ δ= +  .

  (54) 

Equation (54) shows that slice envelopes oscillate together around the equilibrium solution with the 
same frequency for all slices (√2kext, often called the plasma frequency) dependent only on the external 
focusing forces. This solution represents a collective behaviour of the bunch similar to that of the 
electrons subject to the restoring force of ions in a plasma. Using the two-slices model and Eq. (54) the 
emittance evolution Eq. (46) results in 

 ( )rms,cor sol rB 0 ext
1 Δ sin 2ˆ4

Ik k z
I

ε σ δ=   (55)
 

where ΔI= Ȋ1 − Ȋ2. Notice that, in this simple case, envelope oscillations of the mismatched slices induce 
correlated emittance oscillations that periodically go back to zero, showing the reversible nature of the 
correlated emittance growth. It is, in fact, the coupling between transverse and longitudinal motion 
induced by the space-charge fields that allows reversibility. With a proper tuning of the transport line 
length or of the focusing field one can compensate for the transverse emittance growth at the expenses 
of the longitudinal emittance. 

At first it may seem surprising that a beam with a single charge species can exhibit plasma 
oscillations, which are characteristic of plasmas composed of two-charge species. But the effect of the 
external focusing force can play the role of the other charge species, providing the necessary restoring 
force that is the cause of such collective oscillations, as shown in Fig. 8. The beam can actually be 
considered as a single component, relativistic, cold plasma. 
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Fig. 8: The restoring force produced by the ions (green dots) in a plasma may cause electron (red dots) oscillations 
around the equilibrium distribution. In a similar way the restoring force produced by a magnetic field may cause 
beam envelope oscillations around the matched envelope equilibrium. 

It is important to bear in mind that beams in linacs are also different from plasmas in some 
important respects [5]. One is that beam transit time through a linac is too short for the beam to reach 
thermal equilibrium. Also, unlike a plasma, the Debye length of the beam may be larger than, or 
comparable to, the beam radius, so shielding effects may be incomplete. 

8 Matching conditions in a plasma accelerator 
The concepts developed for the beam transport in the previous sections can be now applied to the case 
of a plasma accelerator [15], giving important information about the critical topic of beam–plasma 
matching conditions. To this end we introduce a simplified model for the plasma and for the resulting 
fields acting on the beam in order to be able to write an envelope equation for the accelerated beam. 

In this section we are interested in the case of the external injection of particles in a plasma wave, 
in the so-called ‘bubble’ regime, that could be excited by a short, intense laser pulse [15, 16] or by a 
driving electron beam [17, 18] with beam density nb larger than the plasma density n0, nb > n0. A very 
simplified model for the plasma behind the driving pulse is illustrated in Fig. 9. We will consider a 
spherical, uniform ion distribution, as indicated by a dashed circle, with particle density n0. This model 
is justified by the fact that, in this regime, the fields are linear in longitudinal and transverse directions, 
at least in the region of interest for particle acceleration, as that produced by a uniform ion distribution 

within a sphere of radius sphere p / 2R λ≈  where 2
p 0 02πc /m n eλ ε=  is the plasma wavelength. A 

more detailed treatment [19] shows that the correct scaling is ( )sphere b 0 r2 /R n n σ= , where σr is the 

driving beam r.m.s. radius, that for a uniform cylindrical driving bunch gives p
sphere 3 3

0

4
π 2

eIR
mc

λ
ε

= . 
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Fig. 9: Schematic representation of the longitudinal wake field (black line) and ion distribution (red area) behind 
a driving laser or particle beam [16]. 

The field produced by the ions and experienced by a witness electron beam is purely electrostatic, 
being the ions at rest in the laboratory frame in the timescale of interest, and is simply given by 

 0
r

0

,
3
enE r
ε

=
 
 (56) 

i.e. it has a radial symmetry (other authors, see for example Ref. [17], consider a uniform charged 

cylindrical ion column producing a transverse field of the form 0
r

02
enE r
ε

= ). The ion sphere is 

‘virtually’ moving along z with the speed βd of the driving pulse due to the plasma electron collective 
oscillation, even if the source of the field remains at rest in the laboratory frame. There are also magnetic 
fields produced by the plasma electron displacement but, as shown in Ref. [20], the net effect on a 
relativistic beam is negligible. 

The accelerating component of the field is linearly increasing from the moving sphere centre 
zc = βdct: 

 ( ) 0

03z
enE ζ
ε

ζ =   (57) 

where ζ = z − zc, and has a maximum on the sphere edge at p / 2ζ λ= . The corresponding energy gained 
by a witness electron is given by γ = γ0 + αLact where Lacc is the accelerating length in the plasma and 

( ) ( )
2

2
p

1 2π
3

zeE c
mc

α ζ ζ
λ

ζ  
= =   

 
 is the normalized accelerating gradient. The energy spread 

accumulated by a bunch of finite r.m.s. length σz is given by acc

0 acc p

zL
L

δγ δα δα σ
γ γ α α λ

= ≈ =
+

, showing 

that ultra-short electron bunches are required to keep energy spread below 1%. In this simplified model, 
beam loading effects are not considered, nor beam slippage with respect to the driving pulse. 

The transverse (focusing) field 

 0

03x
enE x
ε

=  (58) 

at a distance x off the propagation axis is independent of ζ so that correlated emittance growth is not 
typically induced by the ion focusing field.  
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In Fig. 10 are shown the plasma wavelength and the longitudinal and transverse fields experienced 
by a test particle located at x = 1 μm and p / 4ζ λ=  versus typical plasma densities, according to 
Eqs. (54, 55). 

 
 (a) (b) (c) 
Fig. 10: (a) Plasma wavelength, (b) longitudinal and (c) transverse fields versus typical plasma densities 
experienced by a test particle located at x = 1 μm and p / 4ζ λ= . 

As discussed in the previous sections the transverse beam dynamics can be conveniently 
described by means of a proper envelope equation. To this end let us consider the single particle equation 
of motion:  

 
22
p0

2
03 3

x kF e nx x x
cp mcβ ε γ γ

′′ = = =   (59)
 

where 2 2
p 0/k ne mcε=  is the plasma wave number. The moment of the force acting on the beam 

particles is given by  

 
2
p p2 2

3 3 x

k k
xx x σ

γ γ
′′ = =  . (60) 

Inserting into the envelope equation we obtain 

 
2 2 0
p sc

2 3 3 .
3

n
x x x

x x

k kεγσ σ σ
γ γ γ σ γ σ
′

′′ ′+ + = +  
 
 (61)

 

An equilibrium solution of the previous equation has not yet been found, nevertheless some 
simplification is still possible and an approximated matching condition exists. As one can see, there are 
two focusing terms, the adiabatic damping and the ion focusing, and two defocusing terms, the emittance 
pressure and the space-charge effects. To compare the relative importance of the first two terms it is 
more convenient to rewrite the previous equation with the new variable x xσ γσ= leading to the 
equation 

 
2 2 2

3 22 3

sc
p n o

x x
x x

k kεγσ σ
γ γ σ γ σ

 ′ ′′  + + = +    
 

 

 . (62)
 

The beam is space charge dominated, as already discussed inSection 6, when 

 
2 2

2 2 2 1
sc sc
o x o x

n n

k kσ σρ
ε γ ε γ

= = >>


  (63) 

and ion focusing dominated when 
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2

2

4
1

3
pkγ

η
γ

= >>
′

 . (64) 

With the typical beam parameters of a plasma accelerator: 1 kA peak current, 2 μm normalized 
emittance, injection energy γ0 = 300 and spot size about 3 μm, we have ρ < 1 and η > 1. It follows that 
the envelope equation (61) can be well approximated by the following reduced expression: 

 
2 2

2 33
p n

x x
x

k εσ σ
γ γ σ

′′ + =   (65) 

with γ(z) = γ0 + αz. Looking for a particular solution in the form σx = γ−1/4σ0 we obtain 

 
2

2 2
p 0 3

0

5 1
16 3

nk γεγ γ σ
σ

 ′ + = 
 

  (66) 

that for η > 1 has a simple solution 0
p

3 n

k
εσ =  giving the matching condition of the beam with the 

plasma 

 1/4
40

p

3 n
x k

εσ γ σ
γ

−= =  . (67) 

In Fig. 11 are shown the matched beam envelope given by Eq. (67) with normalized emittance of 2 μm 
and injection energy γ = 300 versus the plasma density. The figure also shows the evolution of the beam 
envelope in a 10 cm long plasma with density 1016 cm−3, corresponding to an accelerating field of 5 
GV/m (extraction energy γ = 1300) and focusing field of 60 MV/m. 

 
 (a) (b) 
Fig. 11: (a) Matched beam envelope with normalized emittance of 2 μm and injection energy γ = 300 versus (b) 
the plasma density and the evolution of the beam envelope in a 10 cm long plasma with density 1016 cm−3, 
corresponding to an accelerating field of 5 GV/m and focusing field of 60 MV/m. 

Notice that the beam experiences focusing as γ increases and the beam density increases, leading 
to a significant perturbation of the plasma fields. A possible solution to overcoming this effect is to taper 
the plasma density along the channel in order to achieve beam transport with a constant envelope. 
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It is an interesting exercise to see the effect of a plasma density vanishing as ( ) ( )
0

0n z n
z

γ
γ

= , 

giving 
2

2 20 0 0
p 0,p2

0

e nk k
mc

γ γ
ε γ γ

= = . In this case the envelope equation Eq. (61) without space-charge 

effects becomes 

 
2 2

0 0,p
2 2 33

n
x x x

x

kγγ εσ σ σ
γ γ γ σ
′

′′ ′+ + =   (68) 

which admits a constant equilibrium solution 

 4

0 0,p

3 .n
x k

εσ
γ

=
 
 (69) 

Figure 12 shows the plasma density along the accelerating section and the resulting equilibrium beam 
envelope given by Eq. (69), with the same beam parameters as those in Fig. 11  

 
 (a) (b) 
Fig. 12: (a) Plasma density along the accelerating section; (b) the resulting equilibrium beam envelope given by 
Eq. (69). 

On the other hand before injection in the plasma accelerator, the beam has to be focused to the 
matching spot given by Eq. (67) to prevent envelope oscillations that may cause emittance growth and 
an enhancement of betatron radiation emission. It has been proposed [21] to shape the plasma density 
profile in order to gently capture the beam by means of the increasing ion focusing effect. For example, 

by varying the plasma density as ( ) ( )
0

0

z
n z n

γ
γ

=  at the entrance of the plasma column, the envelope 

equation Eq. (61) can be written as 

 
2 2
0,p

2 3
03

n
x x

x

k εσ σ
γ γ σ

′′ + =   (70) 

where 
2

2 20
p 0,p2

0 0 0

e nk k
mc

γ γ
ε γ γ

= = . This equation has a particular solution assuming that γ″ is negligible, 

 4
0

0,p

3 n
x k

εσ γ
γ

= , (71)
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showing that with a proper choice of the initial plasma density the beam envelope can be gently matched 
to the accelerating plasma channel. 

For additional discussions about injection and extraction beam matching conditions see also some 
recent papers, Refs. [22–25]. 

Acknowledgements 
I wish to thank A. Cianchi, P. Muggli, J.B. Rosenzweig, A.R. Rossi and L. Serafini, for the many helpful 
discussions and suggestions. 

References 
[1] T. Shintake, Proc. 22nd Particle Accelerator Conf., Albuquerque, NM, 25–29 June 2007 (IEEE, 

New York, 2007), p. 89. http://dx.doi.org/10.1109/PAC.2007.4440331  
[2] L. Serafini and J.B. Rosenzweig, Physical Review E 55 (1997) p. 7565. 
[3] M. Reiser, Theory and Design of Charged Particle Beams (Wiley, New York, 1994). 

http://dx.doi.org/10.1002/9783527617623 
[4] J.B. Rosenzweig, Fundamentals of Beam Physics (Oxford University Press, New York, 2003). 

http://dx.doi.org/10.1093/acprof:oso/9780198525547.001.0001 
[5] T. Wangler, Principles of RF Linear Accelerators (Wiley, New York, 1998). 

http://dx.doi.org/10.1002/9783527618408 
[6] S. Humphries, Charged Particle Beams (Wiley, New York, 2002). 
[7] N. Pichoff, Beam dynamics basics in RF linacs, Proc. CERN Accelerator School: Small 

Accelerators, Zeegse, The Netherlands, 2005, CERN-2006-012. 
http://dx.doi.org/10.5170/CERN-2006-012 

[8] M. Migliorati et al., Phys. Rev. ST Accel. Beams 16 (2013) 011302.  
http://dx.doi.org/10.1103/PhysRevSTAB.16.011302 

[9] M. Ferrario et al., Nucl. Instrum. Methods. Phys. Res. B 309 (2013) 183.  
http://dx.doi.org/10.1016/j.nimb.2013.03.049 

[10] A. Cianchi et al., Nucl. Instrum. Methods Phys. Res. A 720 (2013) 153.  
http://dx.doi.org/10.1016/j.nima.2012.12.012 

[11] F.J. Sacherer, IEEE Trans. Nucl. Sci. NS-18 (1971) 1105.  
http://dx.doi.org/10.1109/TNS.1971.4326293 

[12] K. Floettmann, Phys. Rev. ST Accel. Beams 6 (2003) 034202.  
http://dx.doi.org/10.1103/PhysRevSTAB.6.034202 

[13]  M. Ferrario et al., Int. J. Mod. Phys. A 22 (2007) 4214.  
http://dx.doi.org/10.1142/S0217751X07037779 

[14] J. Buon, Beam phase space and emittance, in Proc. CERN Accelerator School: 5th General 
Accelerator Physics Course, Jyvaskyla, Finland, 1992, CERN-94-01.  
http://dx.doi.org/10.5170/CERN-1994-001 

[15] E. Esarey et al., Rev. Mod. Phys. 81 (2009) 1229.  
http://dx.doi.org/10.1103/RevModPhys.81.1229 

[16]  C. Joshi and W. B. Mori, Phil. Trans. R. Soc. A (2006) 364, 577. doi:10.1098/rsta.2005.1723 
[17] J.B. Rosenzweig et al., Phys Rev A 44 (1991) 10. http://dx.doi.org/10.1103/PhysRevA.44.R6189 
[18] P. Muggli and M.J. Hogan, C. R. Physique 10 (2009) 116.  

http://dx.doi.org/10.1016/j.crhy.2009.03.004 
[19] W. Lu et al., Phys. Plasmas 12 (2005) 063101. http://dx.doi.org/10.1063/1.1905587 

M. FERRARIO

178



[20] W. Lu et al., Phys. Rev. Lett. 96 (2006) 165002.  
http://dx.doi.org/10.1103/PhysRevLett.96.165002 

[21]  P. Tomassini, Private communication. 
[22] R. Lehe et al., Phys. Rev. ST Accel. Beams 17 (2014) 121301.  

http://dx.doi.org/10.1103/PhysRevSTAB.17.121301 
[23] T. Mehrling et al., Phys. Rev. ST Accel. Beams 15 (2012) 111303.  

http://dx.doi.org/10.1103/PhysRevSTAB.15.111303 
[24] K. Floettmann, Phys. Rev. ST Accel. Beams 17 (2014) 054402.  

http://dx.doi.org/10.1103/PhysRevSTAB.17.054402 
[25] I. Dornmair et al., Phys. Rev. ST Accel. Beams 18 (2015) 041302.  

http://dx.doi.org/10.1103/PhysRevSTAB.18.041302 

INJECTION, EXTRACTION AND MATCHING

179


