
Particle-In-Cell Codes for Plasma-based Particle Acceleration

A. Pukhov
University of Düsseldorf, Düsseldorf, Germany

Abstract
In this report we discuss the basic principles of Particle-In-Cell (PIC) codes
and their application to plasma-based acceleration. The ab initio full electro-
magnetic relativistic PIC codes provide the most reliable description of plas-
mas, and their properties are described in detail. However, while they represent
the most fundamental model, full PIC codes are computationally expensive.
Plasma-based acceleration is a multi-scale problem with very disparate scales.
The smallest scale is the laser or plasma wavelength (on the order of one to
a hundred microns), and the largest scale is the acceleration distance (which
ranges from a few centimetres to metres or even kilometres). The Lorentz
boost technique allows the scale disparity to be reduced, at the cost of com-
plicating the simulations and causing unphysical numerical instabilities in the
code. Another possibility is to use the quasi-static approximation, whereby the
different scales are separated analytically.

Keywords
Particle-In-Cell method; plasma-based acceleration; bubble regime; AWAKE;
high-performance computing.

1 Introduction
Plasma-based particle acceleration involves a nonlinear medium, the relativistic plasmas [1]. Modelling
this type of medium requires proper numerical simulation tools. Over the past few decades, Particle-In-
Cell (PIC) codes have proven to be a very reliable and successful method for kinetic plasma simulations
[2–5]. The success of PIC codes relies to a large extent on their analogy with the actual plasma, as
suggested by their name. The plasma is in reality an ensemble of many individual particles, electrons
and ions, interacting with each other via self-consistently generated fields. PIC codes have a very similar
set-up, with the difference being that the number of numerical particles, or macroparticles, that we follow
in the code may be significantly smaller than the number of particles in an actual plasma. One could think
of one numerical ‘macroparticle’ as representing a clump, or cloud, of many real particles, which occupy
a finite volume in space and all move together with the same velocity. Thus we have a ‘numerical plasma’
consisting of heavy macroparticles that have the same charge-to-mass ratio as the real plasma electrons
and ions, but where each macroparticle substitutes for many real particles.

Depending on the application, different approximations can be used. The most fundamental ap-
proximation is provided by the full electromagnetic PIC codes, which solve the Maxwell equations to-
gether with the relativistic equations of motion for the numerical particles. These ab initio simulations
produce the most detailed results, but can be very expensive. In the case of long-scale acceleration, where
the driver propagates distances many times greater than its own length, the quasi-static approximation
can be exploited. In this case, it is assumed that the driver changes little as it propagates distances that
are comparable with its own length. The quasi-static approximation enables separation of fast and slow
variables and hence great acceleration of the simulation, but at the cost of omitting radiation: the laser
pulse or any emitted radiation cannot be described directly by such codes; rather, an additional module
for the laser pulse is required, usually in the envelope approximation.

In this report, we describe the basic principles of PIC methods—both the full electromagnetic
codes and the quasi-static approximation—as well as their application to plasma-based acceleration.

Published by CERN in the Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva,
Switzerland, 23–29 November 2014, edited by B. Holzer, CERN-2016-001 (CERN, Geneva, 2016)

0007–8328 – c© CERN, 2016. Published under the Creative Common Attribution CC BY 4.0 Licence.
http://dx.doi.org/10.5170/CERN-2016-001.181

181

http://dx.doi.org/10.5170/CERN-2016-001.181

2 The basic equations
First, let us formulate the problem we are going to solve. To conduct electromagnetic and kinetic simu-
lations, we have to solve the full set of Maxwell equations [6]:

∂E

∂t
= c∇×B− 4πj, (1)

∂B

∂t
= −c∇×E, (2)

∇ ·E = 4πρ, (3)

∇ ·B = 0, (4)

where we use metric cgs units and c is the speed of light in vacuum.

Let us pause for a moment at this very fundamental system of equations. The electric and magnetic
fields, E and B, evolve according to the time-dependent equations (1) and (2), where the source term is
in the form of the current density j. This current is produced by the self-consistent charge motion in our
system of particles. It is well known from texts on electrodynamics (see, e.g., Ref. [6]) that the Gauss
law (3) together with the curl-free part of Eq. (2) lead to the charge continuity equation

∂ρ

∂t
+∇ · j = 0. (5)

One can apply the operator ∇· to the Faraday law (2) and use the Gauss equation (3) for ∇ ·E to obtain
(5). The opposite is true as well: if the charge density always satisfies the continuity equation (5), then
the Gauss equation (3) is satisfied automatically during the evolution of the system, if it was satisfied
initially. By symmetry this is also valid for the magnetic field B. As there is no magnetic charge, Eq. (4)
remains valid always if it was valid initially.

This means that we may reduce our problem to solving the two evolution equations (1) and (2),
while considering Eqs. (3) and (4) as initial conditions only. This is a very important and fruitful ap-
proach; PIC codes using it have a ‘local’ algorithm, i.e. at each time step information is exchanged
between neighbouring grid cells only. No global information exchange is possible because the Maxwell
equations have ‘absolute future’ and ‘absolute past’ [7]. This property makes the corresponding PIC
codes perfectly suitable for parallelization, and in addition the influence of (always unphysical) bound-
ary conditions is strongly reduced.

3 Kinetics and hydrodynamics
Now we define our source term j. In general, to do this, we have to know the distribution function of the
plasma particles,

FN (x1,p1, . . . ,xN ,pN), (6)

which defines the probability that an N -particle system takes a particular configuration in the 6N -
dimensional phase space. Here xn and pn are the coordinates and momentum of the nth particle. The
function (6) provides the exhaustive description of the system. However, as has been shown in statis-
tical physics (see, e.g., Ref. [8]), knowing the single-particle distribution function for each species of
particle may suffice to describe the full system. The sufficient condition is that the inter-particle corre-
lations should be small and can be treated perturbatively. The equation governing the evolution of the
single-particle distribution function f(x,p) is called the Boltzmann–Vlasov equation [9, 10]:

∂f

∂t
+

p

mγ
∇f +

F

m
∇pf = St, (7)

where m is the single-particle mass of the species, γ =
√

1 + (p/mc)2 is the relativistic factor, F is the
force, and St is the collisional term (inter-particle correlations).

2

A. PUKHOV

182

The kinetic equation (7) for the single-particle distribution function is six-dimensional and still
complicated. Solving it either analytically or numerically is a challenge.

However, under appropriate conditions one can make further simplifications. In statistics it has
been shown that inter-particle collisions lead to the Maxwellian distribution function (H-theorem; see,
e.g., Ref. [8]). In the non-relativistic case the Maxwellian distribution has the form

f(x,v) =
n(x)√
2πT

exp

(
−(v −V)2

2mT

)
, (8)

where n(x) is the local particle density, T is the temperature, and V is the local streaming velocity. The
characteristic time for establishment of the Maxwellian distribution is the inter-particle collision time.
Therefore, if the effective collision time in the system is short in comparison with other characteristic
times, the distribution function remains Maxwellian. It is sufficient, then, to write evolution equations
for the momenta of the distribution function, such as the local density

n(x) =

∫
f(x,v) d3v, (9)

the hydrodynamic velocity

V(x) =

∫
vf(x,v) dv, (10)

and the temperature

T (x) =

∫
(v −V)2

2m
f(x,v) d3v. (11)

These quantities are said to be fluid-like, or of hydrodynamic type.

4 Vlasov and PIC codes
If, however, the distribution function does deviate, or is expected to deviate, significantly from the
Maxwellian distribution, then we have to solve the Boltzmann–Vlasov equation, (7). What would be
the appropriate numerical approach here?

At the first glance, it might seem that the most straightforward approach is to solve the partial
differential equation (7) using finite differences on the Eulerian grid in phase space. Indeed, this direction
has been pursued by several groups [11], and has gained even more popularity with the rapid growth
of available computing power. One potential advantage of these ‘Vlasov’ codes is the possibility of
producing ‘smooth’ results. Indeed, Vlasov codes handle the distribution function, which outputs a
smoothly varying real number that gives the probability of finding plasma particles at a particular point
in phase space.

Vlasov codes, however, are very computationally expensive, and even one-dimensional problems
may require the use of parallel supercomputers. The reason these codes need so much computational
power can be seen from Fig. 1(a). It shows schematically a mesh that one would need for a 1d1v Vlasov
code. The notation ‘1d1v’ means that the code resolves one spatial coordinate and one coordinate in
the momentum (velocity) space. The shaded area represents the region of phase space that is occupied
by plasma particles, where the associated two-dimensional distribution function f(x, px) is essentially
non-zero. The unshaded region is void of particles, and nothing interesting happens there. Nevertheless,
one has to maintain such empty regions as parts of the numerical arrays, and process them when solving
Eq. (7) on the Eulerian grid. This processing of empty regions leads to an enormous waste of compu-
tational power. This drawback becomes even more severe with an increase in the dimensionality of the
problem under consideration. The efficiency of Vlasov codes drops exponentially with the number of
dimensions, and becomes minuscule in the real 3d3v case, where the computer has to retain in memory
and process a six-dimensional mesh, most of it empty of particles.

3

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

183

Fig. 1: Kinetic plasma simulations: (a) Vlasov method, using an Eulerian grid in the phase space; (b) PIC method,
where numerical macroparticles mark the distribution function.

There is another, currently more computationally effective, method to solve the Boltzmann–Vlasov
equation (7), namely the finite element method. The principle of this method is illustrated in Fig. 1(b).
Again, imagine some distribution function in the phase space (the shaded region). Now, let us approxi-
mate, or sample, this distribution function by a set of Finite Phase-Fluid Elements (FPFEs):

f(x,p) =
∑

n

W ph
n Sph(x− xn,p− pn), (12)

where W ph
n is the ‘weight’ of the nth FPFE and Sph(x,p) is the ‘phase shape’, or the support function

in phase space. The centre of the nth FPFE is positioned at (xn,pn). We are free to make a choice of
the support function. For simplicity, we choose here a six-dimensional hypercube

Sph(x,p) = 1, |xα| <
∆xα

2
, |pα| <

∆pα
2

for α = x, y, z,

where ∆xα is the FPFE size along the j-axis in configuration space, and ∆pα is the FPFE size along the
pα-axis in momentum space.

The ‘phase fluid’ transports the distribution function along the characteristics of the Boltzmann–
Vlasov equation (see, e.g., Ref. [18]). So we have to advance the centres of the FPFEs along the charac-
teristics:

dxn
dt

=
p

mγ
, (13)

dpn
dt

= F + FSt, (14)

where FSt denotes the effective ‘collisional’ force due to the collision term in Eq. (7). The FPFEs follow
the evolution of the distribution function in phase space. Of course, Eqs. (13) and (14) are just the
relativistic equations of motion of particles! Thus, the FPFE method is equivalent to the PIC method.

A significant advantage of the finite element method over the Vlasov codes is that one does not
need to maintain a grid in the full phase space. Instead, the FPFEs sample (or mark) only the interesting
regions where particles are present and something important is going on. We still do maintain a grid in
the configuration space to solve the field equations (1) and (2), but this grid has only three dimensions

4

A. PUKHOV

184

(and not six as in the Vlasov case). Thus, PIC codes may be viewed as ‘packed’ or ‘Lagrangian’ Vlasov
codes. Moreover, the FPFE approach is even more fundamental than the Boltzmann–Vlasov equation
itself, because it can easily be generalized to the case where one macroparticle corresponds to just one
real particle, and where inter-particle correlations are not small. The corresponding codes are usually
called P3M (particle–particle–particle–mesh) codes [5].

As soon as we consider our macroparticles not simply as ‘large clumps of real particles’ but as
finite elements in the phase space, we find that there is no fundamental obstacle to simulation of a cold
plasma. Moreover, it is in this setting that the finite element approach really becomes effective computa-
tionally and superior to the Vlasov codes. The phase space of a cold plasma is degenerate: the particles
occupy a mere three-dimensional hypersurface in the full six-dimensional phase space. Evidently, this
hypersurface can be accurately sampled by even a relatively small number of macroparticles (FPFEs).
As the system evolves, this surface deforms, stretches and contracts, but it remains degenerate and three-
dimensional, unless any heating (i.e. diffusion in the phase space) is present. There is a full stock of
interesting physical phenomena associated with relativistic laser–plasma interactions where the physical
collisional heating is negligible. Unfortunately, the numerical heating that occurs in the ‘standard’ PIC
codes [4] leads to an unphysical numerical diffusion in the phase space, which spoils the picture. Any
code able to successfully simulate initially cold plasma must be energy-conserving.

5 Continuity equation
Historically, the first PIC codes were electrostatic [5], and they have to solve explicitly the Poisson
equation

∇2φ = −4πρ, (15)

giving the static electric field
E‖ = −∇φ. (16)

Generalization to the electromagnetic case seemed quite natural; one would simply add the vector poten-
tial A to get

E = E‖ + E⊥ = −∇φ− 1

c

∂A

∂t
. (17)

Yet, there is another way of treating the electromagnetic fields. We established in the previous
section that the simultaneous solution of Ampère’s law (1) and the continuity equation (5) satisfies the
Gauss law (3) automatically. Hence, one can work with the fields E and B directly, without introducing
the electrostatic potential φ and without solving the Poisson equation (15).

It is very advantageous to avoid solving the Poisson equation (15), as it is nonlocal. This is an
elliptic equation, and its solution essentially depends on the (usually unphysical) boundary conditions.
A small perturbation or numerical error at the boundary may give rise to a global perturbation in the full
simulation domain. In contrast, the Maxwell equations (1) and (2) are local. Any signal can propagate
no faster than the vacuum speed of light, and we refer here to the Minkovski diagram, Fig. 2. As the
central event (tn, xi, yj , zk) we choose some grid cell with indices (n, i, j, k) so that tn = nτ , xi = i∆x,
yj = j∆y and zk = k∆z. Here τ,∆x,∆y and ∆z denote the numerical steps along the time, X-, Y -
and Z-axes. The light cone separates the full four-dimensional space into the regions of ‘absolute past’,
‘absolute future’, and ‘absolutely distant’ events. Only the events taking place in the ‘absolute past’
may stay in a casual connection with the central event. Thus, fields at the grid position (tn, xi, yj , zk)
are influenced by the events happening at the instant tn−1 at the grid cells located within the circle cτ
around the original cell. If we use an explicit numerical scheme, then the time step is limited through the
Courant condition cτ < min(∆x,∆y,∆z), and only the immediate neighbouring cells are involved. A
numerical scheme that has this physical property is said to be local. In this sense, any numerical scheme
that involves the solution of an elliptic equation, like the Poisson equation (15), is nonlocal.

5

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

185

Fig. 2: Minkovski space–time diagram illustrating the causality in special relativity theory

A key issue in developing a local numerical scheme is the method of current deposition on the
grid during particle motion. Let us consider a cubic FPFE (numerical particle) on a grid. We suppose
that the particle and the grid elementary volume (i.e. cell volume) Vc = ∆x∆y∆z are identical, so that
the particle length ∆xα is also the grid step along the α-axis, for α = x, y, z. We mark the grid cells
with the indices i, j and k along the x-, y- and z-axes

In discussing multi-dimensional PIC codes, we normally use a staggered or Yee lattice (grid), as il-
lustrated in Fig. 3. We define the charge density on the grid at the centres of the cells, ρi+1/2, j+1/2, k+1/2,
as

ρi+1/2, j+1/2, k+1/2 =
∑

n

W ρ
n S

ρ(xi+1/2, j+1/2, k+1/2 − xn). (18)

The weight and form of the charge density interpolation for the particle are

Sρ(x) = Sρx(x)Sρy (y)Sρz (z),
(19)

Sρj (xj) = 1− 2
|xj |
∆j

, |xj | < 0.5∆j .

The scheme (19) is the ‘volume’ (or ‘area’) weighting. It actually assigns the portion of the particle
residing in a cell to the cell’s centre.

Fig. 3: Yee lattice in (a) 2D and (b) 3D

6

A. PUKHOV

186

Now, if the particle moves, it generates current. How should one interpolate this current to the
grid cells? One could try to use a straightforward interpolation, say J =

∑
nVnS

ρ
n, or others like those

discussed in Birdsall and Langdon’s book [4]. Generally, such interpolations do not satisfy the continuity
equation, i.e. defined in this way the current flux through a cell’s boundaries does not represent the actual
charge change in the cell. A further consequence is revealed when we integrate in time the Ampère law
(1): the electric field obtained does not satisfy the Gauss law (3).

One possible way around this inconsistency is to correct the electric field obtained [4]. Suppose
that we have advanced the electric field E′ according to Eq. (1) and we run into difficulties with the
Gauss law: ∇ · E′ 6= 4πρ. We could try to correct the electric field by introducing a potential δφ such
that

∇2δφ = −4πρ+ E′, (20)

and then construct the corrected electric field as

E = E−∇δφ, (21)

which does satisfy the Gauss law:
∇E = 4πρ. (22)

Unfortunately, this correction requires us to solve the nonlocal elliptic problem (20).

It turns out, however, that the currents can be defined in a self-consistent way [2]. To do so,
one has to follow the particle trajectory in detail, and keep recording of how much charge has passed
through each of the cell’s boundaries. Fig. 4 illustrates the idea. Let us take a particle with centre located
inside the grid elementary volume Vc centred at the grid vertex (i, j, k). The particle’s initial position is
(x0, y0, z0), and after one time step the particle moves to the new position (x1, y1, z1). To begin with, we
suppose that the new position is still inside the elementary volume. We denote the particle displacement
by (δx, δy, δz). The particle generates the instantaneous current density j = VW ρSρ, and the current
fluency J, i.e. the charge that has crossed some surface Ω during the time step τ , is given by

J =

∫

Ω
dΩ

∫ τ

0
VW ρSρ dt =

∫

Ω
dΩ

∫ x1

x0

W ρSρ dx. (23)

Fig. 4: Tracing of a particle’s trajectory

Thus, we have to integrate along the particle trajectory. If, as usual [4], we are using the second-order
finite difference scheme to advance the particle position, then the particle moves along a straight line
during one time step. Assuming this, it is easy to calculate that if the particle remained within the
elementary volume, it has induced the following currents on the grid:

Jxi, j+1/2, k+1/2 = δxW ρ(ayaz + byz),

7

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

187

Jyi+1/2, j, k+1/2 = δyW ρ(azax + bzx),

Jzi+1/2, j+1/2, k = δz W ρ(axay + bxy),

Jxi, j−1/2, k+1/2 = δxW ρ[(1− ay)az − byz],
Jxi, j+1/2, k−1/2 = δxW ρ[ay(1− az)− byz],
Jxi, j−1/2, k−1/2 = δxW ρ[(1− ay)(1− az) + byz],

(24)
Jyi+1/2, j, k−1/2 = δyW ρ[(1− az)ax − bzx],

Jyi−1/2, j, k+1/2 = δyW ρ[az(1− ax)− bzx],

Jyi−1/2, j, k−1/2 = δyW ρ[(1− az)(1− ax) + bzx],

Jzi−1/2, j+1/2, k = δz W ρ[(1− ax)ay − bxy],
Jzi+1/2, j−1/2, k = δz W ρ[ax(1− ay)− bxy],
Jzi−1/2, j−1/2, k = δz W ρ[(1− ax)(1− ay) + bxy],

where

aα = 1− 2
|xα + 0.5∆α|

∆α
,

bαβ =
1

12
δxαδxβ (25)

for α, β ∈ {x, y, z}.

If the particle leaves the elementary volume where it was residing initially, then the full displace-
ment must be split into several ‘elementary’ motions. During each elementary motion the particle must
remain inside an elementary volume surrounding the corresponding vertex of the grid. This ‘bookkeep-
ing’ of the particle motion does require some programming effort, but it appears to be very important to
implement it.

The electric field is then advanced in time according to

En+1 −En = cτ∇̂ ×Bn+1/2 − 4πJn+1/2, (26)

with the particular components of the electric field E defined at the same positions on the grid as the
current J; here ∇̂× denotes the finite difference version of the curl operator.

One may think of an alternative approach that is somewhat easier from the programming point of
view: why don’t we replace the actual, straight motion of the particle during one time step by the average
of all possible rectangular paths along the grid axes which connect the initial and final positions of the
particle? This approach was taken by Morse and Nielson [12]; however, this ‘fake’ integration led to an
unacceptably rapid growth of electromagnetic noise in their code. The author has also found that even
small deviations from the accurate current deposition (24) will immediately result in noise boosting, even
if the deviated scheme is still charge-conserving.

Therefore, scheme (24) is the method to use to avoid solving elliptic equations and yet still satisfy
the Gauss law numerically. In other words, we rigorously enforce the detailed—i.e. down to each grid
cell—charge conservation and correct continuity equation.

6 Energy conservation
In the previous section we discussed how to develop an electromagnetic PIC code that is rigorously
charge-conserving. Another important conservation law we would like to enforce is total energy con-
servation. Indeed, it is well known that one of the worst plagues of standard PIC codes is the effect of

8

A. PUKHOV

188

numerical heating. The numerical ‘temperature’ (or rather the chaotic energy per numerical particle) is
known to grow exponentially until the effective Debye length becomes comparable with the grid size;
thereafter the exponential growth transitions to a more moderate linear heating. This is an effect of
‘aliasing’—the inconsistent interpolation of the fields defined on the grid to the particle position.

As we hinted in the Introduction, there is no fundamental reason for numerical heating to occur
if we adhere to the FPFE paradigm. Now we proceed to design an energy-conserving electromagnetic
code. We start with the exact analytical equation for the full energy of the system,

H =
∑

n

mnc
2(γ − 1) +

1

8π

∫

V
(E2 +B2) dV, (27)

where mn is the particle’s mass, γ =
√

1 + (p/mnc)2 is the relativistic γ-factor, and the integration is
taken over the full volume V .

Next, we split the electric field into longitudinal E‖ and transverse E⊥ parts, so that

∇ ·E⊥ = 0,
(28)

∇×E‖ = 0.

Then, we introduce a potential φ such that E‖ = −∇φ. One can show easily that
∫

V
E⊥E‖ dV = −

∫

Ω
φE⊥ dΩ = 0 (29)

for an infinite or periodic volume. Here Ω is a surface surrounding the volume. As a consequence, we
can write the energy of our system as

H =
∑

n

mnc
2(γ − 1) +

1

8π

∫

V
(E2
‖ + E2

⊥ +B2) dV = Hkin +HS +HEM +HB, (30)

where
Hkin =

∑

p

mpc
2(γ − 1) (31)

is the kinetic energy of the particles,

HS =
1

8π

∫

V
E2
‖ dV (32)

is the electrostatic part of the electric field energy,

HEM =
1

8π

∫

V
E2
⊥ dV (33)

is the electromagnetic part of the electric field energy, and

HB =
1

8π

∫

V
B2 dV (34)

is the magnetic field energy.

The expression (30) for the energy is for continuous fields and individual particles; however, it is
straightforward to write an analogue for a finite difference numerical scheme.

We are using the staggered grid (Yee lattice) and have fixed the current interpolation to the grid
using the system (24). Now we have to define the force interpolation to the actual particle position in
such a way that the resulting numerical scheme conserves the Hamiltonian (30).

9

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

189

Most dangerous in terms of numerical heating is the electrostatic part of the code. It is the elec-
trostatic plasma waves that are responsible for the Debye shielding. Also, the v ×B part of the Lorentz
force acting on the particle conserves energy automatically, as does the B-field advance according to the
Faraday law (2). Hence, for the time being, we neglect the magnetic field and the magnetic energy part,
and we enforce the conservation of HE = Hkin +HS +HEM. The numerical scheme will conserve the
energy if it is derived from equations in the canonical form

dpp
dt

= −∂xpHE, (35)

dxp
dt

= ∂ppHE, (36)

where the index p runs through all particles.

We rewrite Eqs. (35) and (36) more explicitly as

dpp
dt

= − 1

4π

∫

V
E · ∂xpE dV, (37)

dxp
dt

=
pp
γp

= Vp. (38)

To deal with Eq. (37), one has to refer to Eq. (26) for the advance in time of the electric field. To get
the correct expression for ∂xpE, let us displace the particle p by a small distance δx. This displacement
generates a current δJ on the adjacent grid positions according to (24). The resulting change δE in the
electric field is

δE = −4πδJ (39)

at the same grid positions. Hence, we may rewrite the first canonical equation (37) as

dpp
dt

=

∫

V
E · ∂xpδJ dV. (40)

The expression (40) has a very simple and clear meaning: to make the PIC code energy-conserving,
one has to employ the same scheme for the electric field interpolation to the particle position as for the
current deposition. Thus, the energy-conserving interpolation scheme for the E-field is

Epx = W ρ
[
Exi, j+1/2, k+1/2ayaz + Exi, j−1/2, k+1/2(1− ay)az
+ Exi, j+1/2, k−1/2ay(1− az) + Exi, j−1/2, k−1/2(1− ay)(1− az)

]
,

Epy = W ρ
[
Eyi+1/2, j, k+1/2axaz + Eyi−1/2, j, k+1/2(1− ax)az

(41)
+ Eyi+1/2, j, k−1/2ax(1− az) + Eyi−1/2, j, k−1/2(1− ax)(1− az)

]
,

Epz = W ρ
[
Ezi+1/2, j+1/2, kayax + Ezi+1/2, j−1/2, k(1− ay)ax
+ Ezi−1/2, j+1/2, kay(1− ax) + Ezi−1/2, j−1/2, k(1− ay)(1− ax)

]
,

It is important that the electric field is taken at the present particle position and not averaged along
the trajectory. Also, the higher-order corrections bα which we introduced for the current depositions
are absent here. This is because Eq. (40) gives the analytical expression for the infinitesimal particle
displacements, i.e. it has to be considered in the limit |δx| → 0.

6.1 Particle push
For advancing the particle in time one could then use the Boris scheme [4], with the electric field E
interpolated according to (41) and the magnetic field B interpolated using a different scheme, to be
discussed later. The Boris scheme is

p1 − p0

τ
= e

(
E +

1

c

p1 + p0

2γ1/2
×B

)
, (42)

10

A. PUKHOV

190

where p0 and p1 are the initial and the final particle momenta and γ1/2 is the γ-factor taken at the middle
of the time step. This scheme is time-reversible and semi-implicit. It can be analytically resolved for the
final momentum p1 (see Ref. [4]):

pn+1/2 = p− − eE
τ

2
, (43)

pn−1/2 = p+ + eE
τ

2
, (44)

p+ − p−

τ
=

q

2γmc
p+ + p− ×B, (45)

p′ = p− +
qτ

2γ
p− ×B, (46)

p+ = p− +
2

1 +

(
qτB

2γ

)2 p′ ×B. (47)

The γ-factor should be calculated after step (43). However, as the magnetic field rotates the
particle momentum, the Boris scheme is not exactly symmetric. An alternative scheme has been proposed
recently; see Ref. [13]. We derive this alternative scheme below.

The equation of motion is discretized as

p− p0

τ
= qE +

q

2

(
p

γ
+

p0

γ0

)
×B. (48)

Here, p0 is the initial particle momentum and p is the particle momentum after the push with the corre-
sponding γ-factors. We can rewrite this equation in the form

p = a +
p

γ
× b, (49)

where
a = p0 + qτE +

qτ

2

p0

γ0
×B (50)

and
b =

qτ

2
B. (51)

We rewrite (49) as
γp = γa + p× b. (52)

Taking the scalar product of (52) with p gives

p2 = a · p. (53)

Taking the scalar product of (52) with b gives

b · p = a · b. (54)

Taking the scalar product of (52) with a gives

γa · p− γa2 = a · (p× b) = p · (b× a) = b · (a× p) . (55)

Taking the vector product of a and (52) gives

γa× p = p (a · b)− b (a · p) . (56)

11

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

191

Combining (53)–(56) gives

γ
(
p2 − a2

)
=

b

γ

[
p(a · b)− b(a · p)

]
=

[
(a · b)2 − b2p2

]

γ
(57)

or
γ2
(
γ2 − 1− a2

)
= (a · b)2 − b2

(
γ2 − 1

)
. (58)

This leads to the quadratic equation

γ4 + γ2
(
b2 − 1− a2

)
− b2 − (a · b)2 = 0, (59)

which has the solution

γ2 =
1 + a2 − b2

2
+

√(
1 + a2 − b2

2

)2

+ b2 + (a · b)2. (60)

Now we have to find the particle momentum after the push p. To do this, we take the vector product of
b and (52) to get

γ (b× p− b× a) = p · b− b (p · b) = p b2 − b (a · b) . (61)

Using (52), we find that
γ2a− γ2p− γb× a = pb2 − b (a · b) . (62)

Solving for p, we obtain

p =
γ2a + γa× b + b(a · b)

γ2 + b2
. (63)

This pusher is fully implicit and does not require splitting of the Lorentz operator into the electric field
push and the magnetic field rotation.

6.2 Energy conservation tests
The interpolation scheme consisting of (24) and (41) conserves the energy exactly for time steps which
are small enough that the particle does not leave the original grid cell. If, however, motion of the particle
becomes highly relativistic, the system will exhibit a slow energy growth. Notwithstanding this small
drawback, we have solved one of the major problems with PIC codes. We may now simulate cold plasma.
As ‘cold’ usually means non-relativistic ‘temperatures’, the energy is conserved and numerical heating is
absent. If we do have a hot plasma, with temperatures close to relativistic ones, the method of stochastic
sampling of the phase space becomes valid. Fortunately, the Debye length of such plasmas is many grid
cells anyway, and numerical heating is not an issue.

The scheme (41) for electric field interpolation to the particle position is identical to the energy-
conserving scheme used in electrostatic codes with the charge–potential (ρ–φ) formalism [4,5]. However,
as we shall see later, there is a significant difference between these electrostatic codes and the field–
current (E–J) formalism used in our electromagnetic simulations.

Figure 5 shows the evolution of total energy in an isolated system of particles for an energy-
conserving (EC) algorithm (solid lines) and a ‘momentum-conserving’ (MC) [4] algorithm (dashed lines)
in the following two cases: (a) warm plasma, with Debye length D = 0.5∆x; (b) cold plasma, with
D = 5 × 10−3∆x. Although energy conservation for the EC algorithm is not exact, it is much better
than in the MC case. The actual energy change is only 2% over 100 plasma oscillations for the EC
algorithm; this property makes it possible to simulate a cold plasma.

12

A. PUKHOV

192

Fig. 5: Energy conservation in Virtual Laser Plasma Lab (VLPL) code based on an energy-conserving (EC) algo-
rithm (solid lines) and numerical heating in a standard momentum-conserving (MC) algorithm (dashed lines), for
the cases of (a) warm plasma, with Debye length D = 0.5∆x, and (b) cold plasma, with D = 5 · 10−3∆x. The
energy change in the VLPL code is within 2% after 100 plasma periods.

7 Momentum and current conservation
It is known that the energy-conserving electrostatic PIC codes do not conserve momentum [4]. Indeed,
it is easy to show that, strictly speaking, electric field interpolation to the particle position in the form of
(41) does not conserve the total momentum:

dPtotal

dt
=
∑

p

qpEp 6= 0, (64)

if the particles cross cell boundaries during their motion.

Now, the question is: how detrimental is this lack of momentum conservation to the PIC code?

Momentum non-conservation in electrostatic PIC codes using the ρ–φ formalism leads to some
notable consequences [4]. If one starts the simulation with electrons drifting with respect to the resting
ions, the electrons will experience an average drag force from the grid. As a result, after a few plasma
periods, an initially regular electron drift becomes chaotic, and the simulation ends up with disordered
hot electrons without any net motion with respect to the ions. Although the final energy of the system
is preserved, and remains the same as the initial kinetic energy of the drifting electrons, the failure of
momentum conservation is spectacular.

However, this spectacular example of momentum non-conservation in the one-dimensional elec-
trostatic PIC code is rather an artefact of the ρ–φ formalism. Moreover, even the inital ‘equilibrium’ of
electrons drifting with respect to ions is an artefact itself. Indeed, the original Maxwell equations (1)
and (2) simply do not allow for freely drifting electrons in the one-dimensional geometry! This drift
would correspond to a constant current, which results in a fast build-up of the longitudinal electric field.
Consequently, electrons must oscillate around their initial positions at the local plasma frequency. This
contradiction with the Maxwell equations has apparently remained unmentioned in regard to the ρ–φ
formulation of the electrostatic code.

In the more realistic E–J formalism of electromagnetic codes, the ions have to drift together with
the electrons, unless the forward electron current is compensated for by some artificial ‘return’ current,
such as the longitudinal part of∇×B, which evidently does not exist in the one-dimensional geometry.
A code using the E–J formalism conserves the net current:

〈J〉 = J0 = constant, (65)

13

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

193

where the averaging is done in time over the local plasma frequency. Indeed, the only possible deviations
in the current are those due to the longitudinal part of the electric field, i.e. the charge displacement
current.

The current conservation law (65) is a very important property, which may compensate for the
absence of a detailed momentum conservation. As an example, let us consider the total electron current
flowing in the simulation,

Je =
∑

p

eWpVp, (66)

where e is the electron charge and Wp is the ‘weight’ of the numerical particle p. When averaged over
the plasma period, the current (66) is conserved by our code. Now we may write the electron momentum
in the non-relativistic case as

Pe =
∑

p

meWpVp =
e

me
Je, (67)

where me is the electron mass.

It follows from (67) that the total momentum is simply proportional to the total current, and so it is
conserved on average. This is good news for the energy-conserving PIC code we have designed here: the
code does conserve momentum on average in the non-relativistic case. When the particles are moving
with relativistic energies, however, the identity (67) breaks down, and the momentum conservation is
no longer ideal. Fortunately, the current conservation (66) still imposes a strong enough symmetry to
prevent bad consequences such as those discussed in Ref. [4].

8 Maxwell solver: numerical dispersion-free scheme
Earlier, we discussed how to push particles and collect currents on the grid. Now we discuss the finite
difference solver for the time-dependent Maxwell equations (1) and (2).

The standard way to propagate the fields on the Yee lattice (Fig. 3) is to use the centred conser-
vative scheme [4]. Let us first consider the two-dimensional geometry for simplicity. In the 2D X–Y
geometry, one may distinguish two kinds of polarization: s-polarizations with Ez , Bx and By fields,
and p-polarizations with Ex, Ey and Bz fields. It can be shown that if the initial condition contains
p-polarized fields and Jx and Jy currents only, then the s-polarized fields are not excited at all [4]. Thus,
we may take the p-polarization as an example. The standard 2D scheme for the p-polarization is

Bz
n+1/2
i,j −Bzn−1/2

i,j =
cτ

∆y
(Ex

n
i, j+1/2 − Exni, j−1/2)− cτ

∆x
(Ey

n
i+1/2, j − Eyni−1/2, j), (68)

Ex
n+1
i, j+1/2 − Ex

n
i, j+1/2 =

cτ

∆y
(Bz

n+1/2
i, j+1 −Bz

n+1/2
i,j)− 4πτjx

n+1/2
i, j+1/2, (69)

Ey
n+1
i+1/2, j − Ey

n
i+1/2, j =

cτ

∆x
(Bz

n+1/2
i+1, j −Bz

n+1/2
i,j)− 4πτjy

n+1/2
i+1/2, j . (70)

The scheme (68)–(70) uses centred expressions for the finite difference∇× operators, such as

(∇×Bz)x =
1

∆y
(Bz

n+1/2
i,j+1 −Bz

n+1/2
i,j). (71)

The Maxwell equations (1) and (2) and the corresponding scheme (68)–(70) are essentially linear
partial differential equations where the only nonlinear source terms are in the form of the currents j. In
this case, we decide on the quality of the finite difference scheme (68)–(70) by comparing its dispersion
properties with those of the Maxwell equations themselves.

According to the Maxwell equations, all electromagnetic waves in vacuum travel at the speed of
light c. There is no dispersion in vacuum; not so for the finite differences. We Fourier-analyse the scheme

14

A. PUKHOV

194

(68)–(70) by decomposing the fields in plane waves:

E =
∑

k

Ek exp(−iωkt+ ik·x),

B =
∑

k

Bk exp(−iωkt+ ik·x), (72)

where k is the wavevector, ωk is the corresponding frequency, and Ek and Bk are the amplitudes of the
Fourier harmonics. For the continuum Maxwell equations we have the simple dispersion relation

ωk = c|k|, (73)

while the discretization in the finite difference scheme (68)–(70) introduces the numerical dispersion

1

c2τ2
sin2 ωkτ

2
=

1

∆x2
sin2 kx∆x

2
+

1

∆y2
sin2 ky∆y

2
, (74)

where ∆x and ∆y are the spatial grid steps and τ is the time step. The time step is limited by the Courant
stability condition c2τ2 ≤ ∆x2∆y2/(∆x2 + ∆y2). If we run the code close to this limit of stability,
then only the waves propagating along the grid diagonals are dispersion-free. The largest numerical
dispersion is experienced by the waves running along the grid axes. This is illustrated in Fig. 6(a), where
we plot the phase velocity of the numerical modes, Vph = ωk/k, for this standard scheme. We mention
that we have chosen ∆y = 2∆x here, and this explains the apparent asymmetry of the plot.

Fig. 6: Plots of the numerical phase velocity vph/c corresponding to (a) the standard scheme (74) and (b) the NDF
scheme (80) used in the VLPL code. The grid cell aspect ratio is ∆x/∆y = 0.5. The scheme (74) is dispersionless
along the mesh diagonals kx = ky , while the NDF scheme (80) is dispersionless for waves travelling in the
X-direction when ky = 0.

Although numerical dispersion of the standard scheme may not be an issue when one is simulating
dense, nearly critical plasma, it can cause trouble in simulations of very underdense plasmas, as it is
important for particle acceleration [17]. In the dense plasma case, the plasma dispersion is usually
stronger than the numerical dispersion, and so the problem is masked. In low-density plasma, however,
the plasma dispersion is small; yet it has to be resolved accurately, as it influences the phase velocity
of the laser pulse. As a consequence, one needs to use many grid cells per laser wavelength to obtain
physically correct results. Of course, one could send the laser along one of the grid diagonals, but this is
extremely inconvenient from the programming point of view.

We now aim at designing a superior numerical scheme which does not have numerical dispersion
at all, or removes it to a large extent. Let us return to the finite difference expression for the curl operator,

15

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

195

(71). This centred operator can be written in a different way, using averages from the adjacent cells:

(∇×Bz)x →
1

2∆y

(
Bz

n+1/2
i+1, j+1 +Bz

n+1/2
i−1, j+1 −Bz

n+1/2
i+1, j −Bz

n+1/2
i−1, j

)
. (75)

At first sight it is unclear what we have gained from averaging. It seems evident that the averaged scheme
(75) may have only worse dispersion than the simpler scheme (71), but this is only partially true.

It turns out that one can choose a linear combination of the two schemes (71) and (75) in such a
way that the dispersions of the two schemes compensate for each other! The resulting scheme for the
p-polarization in the 2D geometry is

Bz
n+1/2
i,j −Bzn−1/2

i,j =
cτ

∆y

[
bx
(
Ex

n
i, j+1/2 − Exni, j−1/2

)

+ ax
(
Ex

n
i+1, j+1/2 − Exni+1, j−1/2 + Ex

n
i−1, j+1/2 − Exni−1, j−1/2

)]

− cτ

∆x

[
by
(
Ey

n
i+1/2, j − Eyni−1/2, j

)

+ ay
(
Ey

n
i+1/2, j+1 − Eyni−1/2, j+1 + Ey

n
i−1/2, j−1 − Eyni−1/2, j−1

)]
, (76)

Ex
n+1
i, j+1/2 − Ex

n
i, j+1/2 =

cτ

∆y

(
Bz

n+1/2
i, j+1 −Bz

n+1/2
i, j

)
− 4πτjx

n+1/2
i, j+1/2, (77)

Ey
n+1
i+1/2, j − Ey

n
i+1/2, j =

cτ

∆x

(
Bz

n+1/2
i+1, j −Bz

n+1/2
i, j

)
− 4πτjy

n+1/2
i+1/2, j , (78)

where the coefficients of the linear combination of the two schemes are

ax = ay = 0.125
∆x

∆y
,

bx = 1− 2ax,

by = 1− 2ay, (79)

and we have assumed that ∆x ≤ ∆y.

The dispersion relation for numerical scheme (76)–(78) is immediately found to be

1

c2τ2
sin2 ωτ

2
=

1

∆x2
sin2 kx∆x

2
(by + 2ay cos ky∆y)

+
1

∆y2
sin2 ky∆y

2
(bx + 2ax cos kx∆x). (80)

It follows from (80) that the scheme is stable even at cτ = ∆x. This is quite a unique property for an
explicit multi-dimensional finite difference scheme. In addition, the scheme (80) goes over to the usual
Yee scheme in the limit ∆x/∆y → 0.

When used close to the stability limit, the scheme completely removes numerical dispersion along
the X-axis (the laser propagation direction). For this reason we call this the NDF scheme, which stands
for ‘Numerical Dispersion- Free’ [14]. The phase velocities of the numerical modes for the NDF scheme
are plotted in Fig. 6(b). We mention that the region in which the numerical phase velocities are close to
c becomes much wider than for the standard scheme; cf. Fig. 6(a).

The presence of the plasma changes the stability condition slightly, and the maximum τ is limited
by the condition

1− τ

∆x
>
ω2

pτ
2

4
, (81)

where ωp =
√

4πnee2/me is the maximum plasma frequency in the simulation domain. For an under-
dense plasma, however, this is an insignificant change.

16

A. PUKHOV

196

The scheme (76)–(78) was written for the p-polarization in the 2D planar geometry. It must be
slightly modified before it can be used in the full 3D space. The final version of the 3D NDF scheme is

Bx
n+1/2
i+1/2, j, k −Bx

n−1/2
i+1/2, j, k = − cτ

∆y

[
bz
(
Ez

n
i+1/2, j+1/2, k − Ezni+1/2, j−1/2, k

)

+ az
(
Ez

n
i+1/2, j+1/2, k+1 − Ezni+1/2, j−1/2, k+1

+ Ez
n
i+1/2, j+1/2, k−1 − Ezni+1/2, j−1/2, k−1

)]

+
cτ

∆z

[
by
(
Ey

n
i+1/2, j, k+1/2 − Eyni+1/2, j, k−1/2

)

+ ay
(
Ey

n
i+1/2, j+1, k+1/2 − Eyni+1/2, j+1, k−1/2

+ Ey
n
i+1/2, j−1, k+1/2 − Eyni+1/2, j−1, k−1/2

)]
, (82)

By
n+1/2
i, j+1/2, k −Bx

n−1/2
i+1/2, j, k =

cτ

∆x

[
bz
(
Ez

n
i+1/2, j+1/2, k − Ezni−1/2, j+1/2, k

)

+ az
(
Ez

n
i+1/2, j+1/2, k+1 − Ezni−1/2, j+1/2, k+1

+ Ez
n
i+1/2, j+1/2, k−1 − Ezni−1/2, j+1/2, k−1

)]

− cτ

∆z

[
bx
(
Ex

n
i, j+1/2, k+1/2 − Exni, j+1/2, k−1/2

)

+ ax
(
Ex

n
i+1, j+1/2, k+1/2 − Exni+1, j+1/2, k−1/2

+ Ex
n
i−1, j+1/2, k+1/2 − Exni−1, j+1/2, k−1/2

)]
, (83)

Bz
n+1/2
i, j, k+1/2 −Bz

n−1/2
i, j, k+1/2 =

cτ

∆y

[
bx
(
Ex

n
i, j+1/2, k+1/2 − Exni, j−1/2, k+1/2

)

+ ax
(
Ex

n
i+1, j+1/2, k+1/2 − Exni+1, j−1/2, k+1/2

+ Ex
n
i−1, j+1/2, k+1/2 − Exni−1, j−1/2, k+1/2

)]

− cτ

∆x

[
by
(
Ey

n
i+1/2, j, k+1/2 − Eyni−1/2, j, k+1/2

)

+ ay
(
Ey

n
i+1/2, j+1, k+1/2 − Eyni−1/2, j+1, k+1/2

+ Ey
n
i−1/2, j−1, k+1/2 − Eyni−1/2, j−1, k+1/2

)]
, (84)

Ex
n+1
i, j+1/2, k+1/2 − Ex

n
i, j+1/2, k+1/2 =

cτ

∆y

[
bz
(
Bz

n+1/2
i, j+1, k+1/2 −Bz

n+1/2
i, j, k+1/2

)

+ az
(
Bz

n+1/2
i, j+1, k+3/2 −Bz

n+1/2
i, j, k+3/2

+Bz
n+1/2
i, j+1, k−1/2 −Bz

n+1/2
i, j, k−1/2

)]

− cτ

∆z

[
by
(
By

n+1/2
i, j+1/2, k+1 −By

n+1/2
i, j+1/2, k

)

+ ay
(
By

n+1/2
i, j+3/2, k+1 −By

n+1/2
i, j+3/2, k

+By
n+1/2
i, j−1/2, k+1 −By

n+1/2
i, j−1/2, k

)]

− 4πτjx
n+1/2
i, j+1/2, k+1/2, (85)

Ey
n+1
i+1/2, j, k+1/2 − Ey

n
i+1/2, j, k+1/2 = − cτ

∆x

[
bz
(
Bz

n+1/2
i+1, j, k+1/2 −Bz

n+1/2
i, j, k+1/2

)

+ az
(
Bz

n+1/2
i+1, j, k+3/2 −Bz

n+1/2
i, j, k+3/2

+Bz
n+1/2
i+1, j, k−1/2 −Bz

n+1/2
i, j, k−1/2

)]

17

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

197

+
cτ

∆z

[
bx
(
Bx

n+1/2
i+1/2, j, k+1 −Bx

n+1/2
i+1/2, j, k

)

+ ax
(
Bx

n+1/2
i+3/2, j, k+1 −Bx

n+1/2
i+3/2, j, k

+Bx
n+1/2
i−1/2, j, k+1 −Bx

n+1/2
i−1/2, j, k

)]

− 4πτjy
n+1/2
i+1/2, j, k+1/2, (86)

Ez
n+1
i+1/2, j+1/2, k − Ez

n
i+1/2, j+1/2, k =

cτ

∆x

[
by
(
By

n+1/2
i+1, j+1/2, k −By

n+1/2
i, j+1/2, k

)

+ ay
(
By

n+1/2
i+1, j+3/2, k −By

n+1/2
i, j+3/2, k

+By
n+1/2
i+1, j−1/2, k −By

n+1/2
i, j−1/2, k

)]

− cτ

∆y

[
bx
(
Bx

n+1/2
i+1/2, j+1, k −Bx

n+1/2
i+1/2, j, k

)

+ ax
(
Bx

n+1/2
i+3/2, j+1, k −Bx

n+1/2
i+3/2, j, k

+Bx
n+1/2
i−1/2, j+1, k −Bx

n+1/2
i−1/2, j, k

)]

− 4πτjz
n+1/2
i+1/2, j+1/2, k, (87)

where we are using the following expressions for the free parameters aα and bα:

ax = ay + az,

ay = 0.125
∆x

∆y
,

az = 0.125
∆x

∆z
, (88)

bx = 1− 2ax,

bx = 1− 2ay,

bx = 1− 2az.

Here we have chosen the coefficients (88) in such a way that the scheme is stable provided ∆x ≤ ∆y,∆z,
and numerical dispersion is removed for waves running along the X-axis.

9 Lorentz boost
Plasma-based particle acceleration is a multi-scale problem, and the scales are very disparate; see Fig. 7.
The smallest scale is the laser wavelength λ in the case of laser-driven acceleration, or the plasma wave-
length λp for beam-driven plasma wakefields. The laser wavelength is on the order of micrometres,
while the plasma wavelength can range from tens of micrometres to millimetres. The medium scale is
the driver length; it can be comparable to the plasma wavelength in the bubble [16] and blow-out [15]
regimes, or be much greater when we are relying on self-modulation in the plasma [19–22]. The largest
scale is the acceleration length, which can range from centimetres to hundreds of metres or even kilo-
metres [17]. It is the discrepancy between the driver scale and the acceleration distance that makes the
simulations rather expensive.

One possible way to bring the scales together is to change the reference frame from the laboratory
frame to a frame that is co-moving with the driver. This is called the Lorentz boost technique [23]. Let us
assume that we transform from the laboratory frameL into a frameRmoving in the propagation direction
of the driver. The relative velocity of theR-frame is V = βc, and its relativistic factor is γ = 1/

√
1− β2.

Then the driver is Lorentz-stretched in the R-frame with factor γ(1 + β), and the propagation length is
compressed by the same factor; see Fig. 7. Thus, potentially, the Lorentz transformation allows us to

18

A. PUKHOV

198

Fig. 7: Scale discrepancy in plasma-based acceleration; transformation to a co-moving frame reduces the discrep-
ancy in scales.

increase the longitudinal grid step and time step—provided it is the grid step that limits the time step—
and we have a smaller distance to propagate. The overall enhancement in performance could be huge.

Unfortunately, the background plasma becomes streaming in the R-frame with the same transfor-
mation velocity−V . The plasma density is higher in theR-frame than in the laboratory frame by a factor
of γ. This leads to a source of free energy that can be converted into numerical plasma heating as the
plasma particles interact with the numerical spatial grid. The associated numerical instability can have a
considerable effect on the simulation quality [24]. The numerical noise generated by the unstable modes
can completely mask the regular wake structure, as shown in the example in Fig. 8.

Fig. 8: Three-dimensional view of a numerical instability caused by plasma streaming in the co-moving frame

The main reason for the numerical instability is the Cerenkov resonance between the streaming
plasma particles and the numerical electromagnetic modes on the grid. The numerical electromagnetic
modes have subluminal phase velocities and can be in particle–wave resonance with the macroparticles

19

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

199

of the background plasma that stream through the grid with the relativistic factor γ. The mechanism of
the numerical instability is illustrated in Fig. 9. Plasma fluctuations deflect particles from the straight-line
trajectory; this leads to transverse currents. The transverse currents give rise to electromagnetic fields,
and some of these electromagnetic modes propagate at exactly the particle velocity and can resonantly
exchange energy with the particles. This is the Cerenkov mechanism.

Fig. 9: The Cerenkov resonance mechanism underlying the numerical instability

One can solve the wave–particle dispersion relation for the standard Yee electromagnetic solver
and calculate the growth rate of the instability analytically. A comparison of the observed electromag-
netic modes in a PIC simulation and the analytical prediction is shown in Fig. 10. This tells us that,
indeed, the reason behind the numerical instability is the Cerenkov resonance between relativistically
moving plasma particles and numerical electromagnetic modes that have subluminal phase velocities on
the Yee grid.

Fig. 10: Comparison of observed growing modes in a PIC simulation (left) and the analytically calculated growth
rates of Cerenkov unstable modes (right).

20

A. PUKHOV

200

One might hope to remove the instability by choosing a different Maxwell solver. For example, one
could use a dispersion-free solver based on Fourier transformation. Indeed, a dispersion-free solver will
reduce the instability growth rate, but unfortunately it is not able to eliminate the instability completely.
The reason is the spatial and temporal aliasing on the grid; the relativistic particle starts to interact
with the numerical modes from the other Brillouin zones. The non-resolved aliased frequencies of the
numerical grid can be written as

ωeff = ±
(√

k2
x + k2

y −
1

∆t

)
, (89)

where ∆t is the time step. The resonance condition is then satisfied for electromagnetic waves with
wavenumbers

ky(kx) =
1

h

√
h2k2

x

(
v2

0 − 1
)
− 2hkxv2

0 + v2
0, (90)

where h is the grid step. The analytical resonance curve and the growing modes observed in a numerical
experiment are shown in Fig. 11.

Fig. 11: Observed growing modes in a PIC simulation (colour scale) and the analytical resonance condition due to
grid aliasing (dashed line).

The only viable way of taming the numerical instability in Lorentz-boosted simulations is to apply
low-pass filters to the deposited currents before the electromagnetic fields are updated at each time step.
The filtering reduces the instability to acceptable levels; yet a heavy filtering of the currents can in turn
influence the dispersion of numerical modes, so one has to be very careful with this approach [25].

10 Quasi-static codes
Another way to bridge the gap between disparate scales in plasma-based acceleration is by using the
quasi-static approximation. It separates explicitly the fast scale of the driver and the slow scale of accel-
eration [26]. To do so, we introduce new variables

τ = t, (91)

ζ = z − ct. (92)

We assume that the driver changes slowly as it passes a distance of its own length. Hence, as we are
calculating plasma response to the driver, we neglect all derivatives with respect the slow time τ and
advance from the front of the driver to the tail to calculate the wakefield configuration at a particular

21

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

201

time τ . After obtaining the fields and the plasma particle distribution, we can advance the driver with
a large time step in τ . This procedure enhances the code’s performance by many orders of magnitude.
Simulations of large-scale plasma-based acceleration that require huge massively parallel computers
when using the explicit PIC can be done on a desktop workstation in the quasi-static approximation.
Of course, the quasi-static approximation is limited in that it does not describe radiation, only the static
electromagnetic fields.

The first quasi-static PIC code, WAKE, was written by Mora and Antonsen [26]. It is a 2D code
in cylindrical geometry and uses equations written in terms of the wake potential and the magnetic
field. Later, a full 3D code, Quick-PIC, was developed that used the same equations [27]. Another 2D
code in cylindrical geometry, called LCODE, has been developed by Lotov and uses equations on fields
directly [28]. Here we describe the formalism used by the quasi-static version of the VLPL code. It is a
full 3D code in Cartesian geometry. Like LCODE, it uses equations for the fields. Below we derive the
quasi-static field equations.

We start again with the Maxwell equations (1)–(4) and write them in terms of the new variables
(91) and (92), neglecting derivatives with respect to the slow time τ :

c∇×B = −c∂E

∂ζ
+ 4πj, (93)

c
∂B

∂ζ
= c∇×E, (94)

∇ ·E = 4πρ, (95)

∇ ·B = 0. (96)

First, we take the curl of the Ampère law (93) and the ζ-derivative of the Faraday law (94). Upon
combining these two equations, we arrive at the first quasi-static equation on the magnetic field,

∇2
⊥B = −4π

c
∇× j, (97)

where the∇⊥ operator acts on coordinates transverse to the propagation direction.

Next, we take the gradient of the Poisson law (95). We use a well-known identity from vector
analysis,∇(∇ ·E) = ∇2E +∇×∇×E, and obtain for the transverse components of the electric field
the equation

∇2
⊥E⊥ = 4π

(
∇⊥ρ−

1

c
∂ζj⊥

)
. (98)

For the longitudinal electric field component we obtain

∇2
⊥E‖ = 4π

∂

∂ζ

(
ρ− 1

c
j‖

)
=

4π

c
∇⊥ · j⊥, (99)

where we have also used the continuity equation

∂

∂ζ
ρ =

∂

∂ζ
j‖ +∇⊥ · j⊥. (100)

The continuity equation (100) can be used to remove the charge density ρ from the quasi-static equations
and so work with the currents only. This can help to reduce the noise in PIC codes.

A typical quasi-static PIC code works as follows (see illustration in Fig. 12). First, the charge
density and currents generated by the driver on the numerical grid are gathered. These are the sources
that contribute to the basic equations (97)–(99). Then, a layer of numerical macroparticles is seeded at
the front boundary (the head of the driver) of the simulation box. These numerical particles advance
in the negative ζ direction (towards the tail of the driver) according to Eqs. (97)–(99). As the plasma

22

A. PUKHOV

202

Fig. 12: Illustration of how the quasi-static PIC code is implemented

particles pass the whole simulation domain, the fields and density are defined on the grid and can be used
to advance the driver in time τ .

If the driver is a charged particle beam, then we solve the equations of motion for beam particles
in the calculated plasma fields. If the driver is a laser pulse, we have to solve an envelope equation on
the laser pulse amplitude; this is required because the quasi-static equations do not describe radiation.
Thus, an independent analytical model is required for the laser pulse. The laser pulse vector potential is
represented as A(τ, ζ, r) = Re[a(τ, ζ, r) exp(ikζ)]. The envelope equation for the complex amplitude
a(τ, ζ, r) reads [26] [

2

c

∂

∂τ

(
ik0 +

∂

∂ζ

)
+∇2

⊥

]
a = χ(ζ, r), (101)

where χ(ζ, r) = 〈4πq2n/(γmc2)〉 is the plasma refraction averaged over all the particles in the cell with
charge q, mass m and relativistic factor γ.

The laser pulse acts on the plasma particles via its ponderomotive force

Fp = − q2

γmc2
∇a2. (102)

The ponderomotive force (102) is added to the standard Lorentz force in the particle pusher.

A typical time step of a quasi-static code is shown in Fig. 13. First, there is a cycle that proceeds
along the fast variable ζ for the low-frequency (LF) fields. Then, the plasma refraction is calculated and
the envelope equation for the high-frequency (HF) fields is updated.

Fig. 13: Typical time step of a quasi-static code; the cycle for low-frequency (LF) plasma fields is followed by the
cycle for the envelope equation of the high-frequency (HF) laser driver.

Figure 14 shows a comparison of the quasi-static code (upper half of the simulation frame) and the
full PIC code VLPL3D (lower half). We have simulated a blow-out generated by an overdense electron

23

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

203

bunch. The electron bunch density had the profile nb(z, r) = nb0 exp(−z2/2σ2
z) exp(−r2/2σ2

r). The
maximum bunch density was two times higher than the background plasma density: nb0 = 2np. The
bunch was spherical with kpσz = kpσr = 1.

Fig. 14: Blow-out wakefield generated by an overdense electron bunch. The upper half of the frame is taken from a
quasi-static simulation, and the lower part from a simulation using a full PIC code, VLPL3D. The left panel shows
the plasma density, and the right panel shows the longitudinal electric field component of the wakefield. Cerenkov
radiation emitted from the wavebreaking point is seen in the full 3D PIC simulation; this radiation is absent from
the quasi-static code.

The two simulations are nearly identical. The only significant difference is the presence of Ceren-
kov radiation in the full 3D PIC simulation, emitted from the wavebreaking point at the tip of the tail of
the first bubble. In the full simulation, we initialized the electron bunch vacuum in front of the plasma
layer, so the plasma layer had to have a density ramp. The length of the bubble depends on the plasma
density: the higher the density, the shorter the bubble. Consequently, the wavebreaking point moved with
a superluminal velocity in the density ramp region and could emit Cerenkov radiation. In the quasi-static
code, the Cerenkov radiation cannot be simulated. In addition, no density ramp is needed there: the field
distribution is defined only by the local plasma density and by the instantaneous shape of the driver.

11 Computational costs of different codes
It is useful to estimate the number of operations required (called the computational cost) to simulate a
particular plasma-based acceleration problem with different codes. The most general code, the full 3D
PIC code, uses a 3D spatial grid of sizeN‖×N2

⊥ cells andNt time steps. The longitudinal step is limited
by the laser wavelength, h‖ � λ0, and the corresponding time step must be such that τ � λ0/c. The
transverse grid steps are usually limited by the plasma wavelength, h⊥ � λp. The number of time steps
is Nt = Lacc/cτ , where Lacc is the acceleration distance. Hence, the number of operations required by
the explicit PIC code scales as

NPIC
op ∝

Laccld
λ2

0

N2
⊥. (103)

Here we have assumed that the ‘moving window’ technique is used, so that the longitudinal size ld of the
simulation box scales with the plasma wavelength λp.

If one uses the Lorentz boost technique with the transformation relativistic factor γboost, the num-
ber of required operations reduces by a factor of γ2

boost ideally:

NPIC-LB
op ∝ γ−2

boost

Laccld
λ2

0

N2
⊥ = γ−2

boostN
PIC
op . (104)

24

A. PUKHOV

204

The quasi-static approximation relaxes the time step restriction via the Courant condition. In ad-
dition, the grid step is no longer limited by the laser wavelength λ0, but rather by the plasma wavelength
λp. The time step must resolve the betatron oscillation of the beam particles, τωβ � 1, where the be-
tatron frequency for a beam particle with mass M and relativistic factor γb is ωβ = ωp

√
me/2γbM .

If the driver is a laser pulse, then the time step must resolve the diffraction length, cτ/ZR � 1, where
the characteristic diffraction length of a laser pulse with focal spot R is defined by the Rayleigh length
ZR = πR2/λ0. The overall number of operations required by the quasi-static code scales as

NQS
op ∝

Laccωβ
c

ld
λp
N2
⊥ =

λ2
0

λpλβ
NPIC

op , (105)

where λβ = 2πc/ωβ is the betatron wavelength. The performance gain, λ2
0/λpλβ , of the quasi-static

code over the fully explicit PIC code can be huge and easily reach six orders of magnitude.

12 The future of PIC codes
Electromagnetic PIC codes provide a fundamental model for the dynamics of ideal plasma. Particularly
in the relativistic regime of short-pulse laser–plasma interactions, these codes are unique in their predic-
tive capabilities. In this regime, the binary collisions of plasma particles are either negligible or can be
considered a small perturbation, and thus the electromagnetic PIC codes are the most appropriate tools.

However, the explicit PIC codes do have their limits. As soon as one tries to simulate laser inter-
actions with highly overdense plasmas, these PIC codes become extremely expensive. Indeed, because
the scheme is explicit, the code must resolve the plasma frequency and the skin depth. Even for un-
compressed solid targets of high-Z materials, the plasma frequency can easily be 30 times higher than
the laser frequency. The time and grid steps must be chosen accordingly. For a 3D code, simultaneous
refinement of the grid and time steps in all dimensions by a factor of α leads to an increase in computa-
tional effort by a factor of α4. For this reason, the simulation of a highly overdense plasma still poses a
challenge for the explicit PIC codes.

A way around this difficulty might be to use implicit PIC codes, such the code LSP [29], or hybrid
codes, such as a combination of a hydrodynamic description of the high-density background plasma and
a PIC module for the hot electrons and ions [30]. Such codes alleviate the time step limitation, because
they suppose the background plasma to be quasi-neutral and thus eliminate the fastest plasma oscillations
at the Langmuir frequency. Very large plasma regions of high density can easily be simulated using such
codes. Yet, these codes sacrifice a lot of the physics, and for any particular problem it must be checked
whether the omitted physics is important or not. One possible way to perform this check is to benchmark
the results of implicit codes against the direct PIC simulation on model problems which can be handled
by both types of code.

Acknowledgements
This work was supported by the EU FP7 project EUCARD-2 and by BMBF, Germany.

References
[1] A. Pukhov, Rep. Prog. Phys. 66 (2001) 47. http://dx.doi.org/10.1088/0034-4885/66/1/202
[2] J. Villasenor and O. Buneman, Comput. Phys. Commun. 69 (1992) 306.

http://dx.doi.org/10.1016/0010-4655(92)90169-Y
[3] J. Dawson, Rev. Mod. Phys. 55 (1983) 403. http://dx.doi.org/10.1103/RevModPhys.55.403
[4] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulations (Adam Hilger, New

York, 1991). http://dx.doi.org/10.1887/0750301171

25

PARTICLE-IN-CELL CODES FOR PLASMA-BASED PARTICLE ACCELERATION

205

[5] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, London,
1981).

[6] J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
[7] L. Landau and E. Lifshitz, The Classical Theory of Fields, 2nd ed. (Addison-Wesley, Reading, MA,

1962).
[8] N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973).
[9] S.I. Braginskii, Transport properties in a plasma, in Reviews of Plasma Physics, Ed. M.A. Leon-

tovich (Consultants Bureau, New York, 1965).
[10] A.A. Vlasov, Many-Particle Theory and Its Application to Plasma (Gordon and Breach, New York,

1961).
[11] H. Ruhl and P. Mulser, Phys. Lett. A205 (1995) 388; P. Bertrand, A. Ghizzo, T.W. Johnston,

M. Shoucri, E. Fijalkov and M. R. Feix, Phys. Fluids B5 (1990) 1028.
[12] R.C. Morse and C.W. Nielsen, Phys. Fluids 14 (1971) 830. http://dx.doi.org/10.1063/1.1693518
[13] R.H. Cohen, A. Friedman, D.P. Grote and J.L. Vay, Nucl. Instrum. Methods Phys. Res. A606 (2008)

53. http://dx.doi.org/10.1016/j.nima.2009.03.083
[14] A. Pukhov, J. Plasma Phys. 61 (1999) 425. http://dx.doi.org/10.1017/S0022377899007515
[15] K. V. Lotov, Phys. Rev. E 69 (2004) 046405. http://dx.doi.org/10.1103/PhysRevE.69.046405
[16] A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B74 (2001) 355.

http://dx.doi.org/10.1007/s003400200795
[17] E. Esarey, C.B. Schroeder and W.P. Leemans, Rev. Mod. Phys. 81 (2009) 1229.

http://dx.doi.org/10.1103/RevModPhys.81.1229
[18] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1984).

http://dx.doi.org/10.1007/978-1-4757-5595-4
[19] C. Joshi, T. Tajima, J.M. Dawson, H.A. Baldis and N.A. Ebrahim, Phys. Rev. Lett. 47 (1981) 1285.

http://dx.doi.org/10.1103/PhysRevLett.47.1285
[20] N.E. Andreev, L.M. Gorbunov, V.I. Kirsanov, A.A. Pogosova and R.R. Ramazashvili, Pis’ma Zh.

Ehksp. Teor. Fiz. 55 (1992) 551.
[21] T.M. Antonsen Jr. and P. Mora, Phys. Rev. Lett. 69 (1992) 2204.

http://dx.doi.org/10.1103/PhysRevLett.69.2204
[22] A. Pukhov, N. Kumar, T. Tückmantel, A. Upadhyay, K. Lotov and P. Muggli, Phys. Rev. Lett. 107

(2011) 145003. http://dx.doi.org/10.1103/PhysRevLett.107.145003
[23] J.-L. Vay, Phys. Rev. Lett. 98 (2007) 130405. http://dx.doi.org/10.1103/PhysRevLett.98.130405
[24] J.-L. Vay, C.G.R. Geddes, E. Cormier-Michel and D.P. Grote, J. Comput. Phys. 230 (2011) 5908.

http://dx.doi.org/10.1016/j.jcp.2011.04.003
[25] B.B. Godfrey and J.L. Vay, arXiv:1502.01387 (2015).
[26] P. Mora and T.M. Antonsen, Phys. Plasmas 4 (1997) 217. http://dx.doi.org/10.1063/1.872134
[27] C. Huang, V.K. Decyk, C. Ren, M. Zhou, W. Lu, W.B. Mori, J.H. Cooley, T.M. Antonsen Jr. and T.

Katsouleas, J. Comput. Phys. 217 (2006) 658. http://dx.doi.org/10.1016/j.jcp.2006.01.039
[28] K.V. Lotov, Phys. Rev. ST Accel. Beams 6 (2003) 061301.

http://dx.doi.org/10.1103/PhysRevSTAB.6.061301
[29] D.R. Welch, D.V. Rose, B.V. Oliver and R.E. Clark, Nucl. Instrum. Methods Phys. Res. A464 (2001)

134. http://dx.doi.org/10.1016/S0168-9002(01)00024-9
[30] T. Tückmantel and A. Pukhov, J. Comput. Phys. 269 (2014) 168.

http://dx.doi.org/10.1016/j.jcp.2014.03.019

26

A. PUKHOV

206

