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Abstract
A basic introduction to transverse and longitudinal beam dynamics as well
as the most relevant beam loss mechanisms in circular machines will be
presented in this lecture. This lecture is intended for physicists and engineers
with little or no knowledge of this subject.
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1 Introduction
A vast variety of mechanisms can lead to beam losses in accelerators. Examples are collisions in col-
liders, beam gas interactions, intra-beam scattering, the Touscheck effect, RF noise, collective effects,
transition crossing, equipment failures and many more. Losses have an impact on performance, such as
the luminosity in a collider or the brightness of the beam. Losses lead to radio-activation, which can
have an impact on machine availability and maintainability. Hands-on maintainability requires radiation
of less than 1 mSv/h. High losses can cause downtime of the accelerator, due to quenches in supercon-
ducting machines, or even damage to components.

Particles are lost in the vacuum chamber if their transverse trajectory amplitudes are larger than the
dimension of the vacuum chamber. It is important to understand the mechanisms that can create large
amplitudes, to give input for the design of machine protection reaction times, collimators, absorbers,
instrumentation, etc. The important characteristic in this respect is the number of particles lost per unit
time ∆N/∆t. The so-called beam lifetime τ is defined with

N(t) = N0 · e−
t
τ , (1)

whereN0 is the initial intensity. At the accelerator design stage, such questions as, “What is the minimum
possible beam lifetime?” and, “What is the tolerable beam loss rate for accelerator components?” have
to be answered. This lecture will discuss some of the typical beam loss mechanisms in circular machines.
To make the discussion accessible to non-accelerator physicists, a good part of the lecture will be spent
on introducing the most basic concepts of accelerator physics.

2 Principles of transverse and longitudinal beam dynamics – synchrotrons
This part of the lecture will only introduce the concepts required later on for the discussion of typical
beam loss mechanisms. It is based on the lectures by B. Holzer, F. Tecker and O. Bruning at the CERN
Accelerator School [1]. A complete introduction to the subject of accelerator physics can be found in
Ref. [2].

A typical layout of a synchrotron is shown in Fig. 1. Bending magnets are used to keep the
particles on the synchrotron orbit. Strong focusing from an alternating gradient lattice ensures trajectory
stability over many turns. Radio-frequency accelerating structures increase the particle momentum turn
by turn. Other insertions are arranged to inject or extract the beam with dedicated equipment.
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Fig. 1: Typical layout of synchrotron

2.1 The transverse plane
The trajectories of charged particles can be manipulated with electromagnetic fields via the Lorentz
force:

~F = q · ( ~E + ~v × ~B) . (2)

For relativistic particles, the effect of magnetic fields is much enhanced via the product with the velocity,
and dipole fields are mainly used as guide fields. For the particles to stay on a circular orbit in a circular
machine, the Lorentz force FL from the magnetic field has to compensate the centrifugal force Fcentr.

FL = qvB ,

Fcentr = mv2

ρ .
(3)

From
mv2

ρ
= qvB , (4)

the well-known relation for the product Bρ, the beam rigidity, follows:

p

q
= Bρ . (5)

A useful formula for ‘back-of-the-envelope’ estimates is

1

ρ [m]
≈ 0.3

B [T]

p [GeV/c]
. (6)

Vertical dipole magnets define the design trajectory in the horizontal plane. In a beam of many par-
ticles, the trajectories of the particles will deviate from the design trajectory. Without a restoring force,
the trajectories will deviate more and more until the particles are eventually lost. Quadrupole magnets
provide the required restoring force. They produce a dipole field in the horizontal and vertical plane
that increases as a function of the distance from the design trajectory. A schematic cross-section of a
quadrupole with its field lines is given in Fig. 2. For example, the vertical field in a quadrupole will be a
function of the horizontal position:

F (x) = q · v ·B(x) . (7)
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Fig. 2: A schematic cross-section of a quadrupole magnet. The red arrows indicate the direction of the force on
the particle. A quadrupole that is focusing in the horizontal plane is defocusing in the vertical plane.

It depends linearly on the deviation from the design trajectory:

By = g · x . (8)

The horizontal field is
Bx = g · y . (9)

A focusing quadrupole in the horizontal plane will be defocusing in the vertical one and vice versa. The
characteristic parameter of a quadrupole magnet is its gradient,

g =
2µ0nI

r2

[
T
m

]
, (10)

where r is the distance between the quadruple centre and the pole surface. The normalized gradient is
often used to define the strength of the quadrupole:

k =
g

p/e
[m−2] . (11)

2.1.1 Equation of motion
To describe the particle trajectories in the synchrotron, the equation of motion has to be solved:

Fr = m ar = eByv . (12)

To simplify the task, we use the Frenet–Serret coordinate system, see Fig. 3, and the magnetic field is
expanded in a Taylor series,

By(x) = By0 +
∂By
∂x

x+
1

2

∂2By
∂x2

x2 +
1

3!

∂3By
∂x3

x3 + . . . , (13)

and normalized with p/e,

By(x)

p/e
=

1

ρ
+ k x+

1

2
m x2 +

1

3!
n x3 + . . . (14)
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Fig. 3: The trajectory coordinates are given with respect to the Frenet–Serret frame, which rotates with the ideal
particle around the accelerator. The ideal particle has design momentum p0 = m0γv. It has coordinates x = 0,
y = 0 for a certain longitudinal location s lying on the design orbit.

Only the terms linear in x are kept:
By(x)

p/e
≈ 1

ρ
+ k x . (15)

Using the magnetic field as defined in Eq. (15), the equation of motion in the horizontal plane in the
Frenet–Serret frame turns out to be

x′′ + x

(
1

ρ2
− k
)

= x′′ + xK = 0 , (16)

where x′ = dx/ds and K combines the focusing properties of dipoles and quadrupoles. Assuming that
there are no vertical bending magnets, the equation of motion in the vertical plane becomes

y′′ + ky = 0 . (17)

Around the accelerator, K will not be constant, but will depend on s. However, K(s) will be periodic
with L, K(s + L) = K(s), where L is the lattice period. For instance, L can be the circumference of
the accelerator. We then have

x′′(s) +K(s)x(s) = 0 . (18)

This type of equation of motion with these characteristics of non-constant but periodic restoring force is
called the Hill equation, after George Hill, an astronomer of the 19th century. The general solution of
the Hill equation is a quasi-harmonic oscillation:

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ) . (19)

In the case of accelerators, this quasi-harmonic oscillation is called betatron oscillation. The amplitude
and phase of the oscillation depend on the position in the ring. ε and φ are integration constants and de-
pend on the initial conditions. The so-called beta function, β(s), is a periodic function, β(s+L) = β(s),
and is determined by the focusing properties of the lattice, i.e. quadrupole strengths. The phase advance
of the oscillation between point s = 0 and point s in the lattice is

ψ(s) =

∫ s

0

ds

β(s)
. (20)

Two other functions are commonly used: α(s) and γ(s). They are defined as

α(s) = −1

2
β′(s) , (21)

γ(s) =
1 + α(s)2

β(s)
. (22)
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Fig. 4: Turn-by-turn oscillation recorded at a beam position monitor after a one-turn excitation with a kicker
magnet on the left side. The fast Fourier transform spectrum of this oscillation on the right side. The amplitude
peak in the spectrum indicates the tune of the oscillation.

2.1.2 The transport matrix
The integration constants φ and ε can be defined from an initial position x0 and angle x′0 at location
s(0) = s0 and ψ(0) = 0, and can be replaced in the equations of position x and angle x′ ,

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ) ,

x′(s) = −
√
ε√
β(s)

α(s) cos(ψ(s) + φ) + sin(ψ(s) + φ) ,
(23)

such that they become a function of x0 and x′0 , as
(

x
x′

)

s1

= M

(
x
x′

)

s0

, (24)

where M is the transport matrix:

M =



√

β
β0

(cosψ + α0 sinψ)
√
ββ0 sinψ

(α0−α) cosψ−(1+αα0) sinψ√
ββ0

√
β0
β (cosψ − α sinψ))


 . (25)

Equation (24) is a very useful relation. The trajectory in terms of position and angle can be calculated at
any point of the ring as long as the coordinates at a position s0 and the so-called Twiss functions, α and
β, at both longitudinal positions are known.

2.1.3 The tune
Another important parameter in a circular accelerator is the so-called tune, the number of betatron oscil-
lations per turn

Q =
ψ(Lturn)

2π
=

1

2π

∮
ds

β(s)
. (26)

As we will see later, an exact knowledge of the tune in both transverse planes and the ability to correct
the tune is of great importance for beam stability. The machine tune can be calculated from the turn-by-
turn beam position data at a beam position monitor. The tune can then be obtained from the fast Fourier
transform of the turn-by-turn data, as indicated in Fig. 4.

2.1.4 Phase-space ellipse and emittance
With x and x′ in Eq. (23), one can solve for ε:

ε = γ(s)x(s)2 + 2α(s)x(s)x′(s) + β(s)x′(s)2 . (27)
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Fig. 5: The trajectory of a particle in phase space x, x′, turn after turn, is an ellipse. The orientation and shape is
defined by the focusing properties of the lattice, whereas the area of the ellipse is an intrinsic property of the beam.

Fig. 6: Transverse profile measurements of a particle beam (red dots), using a wire scanner, and Gaussian fit (blue
line).

The result in Eq. (27) is the parametric representation of an ellipse in x,x′-space, see Fig. 5. The shape
and orientation of the ellipse are given by the Twiss parameters, β, α and γ. The area of the ellipse is
A = π · ε, which is a constant of motion according to Liouville’s theorem. Therefore, ε is also constant,
and is called the Courant–Snyder invariant. The area of the ellipse is an intrinsic property of the beam
and cannot be changed by the focusing properties of the machine.

Typically, the particles in an accelerator have a Gaussian particle distribution in position and angle.
The distribution in position in the horizontal plane, for example, follows the well-known relation

ρ(x) =
N√
2πσx

· e−
x2

2σ2x . (28)

An example of a transverse profile measurement with a wire scanner is shown in Fig. 6. The emittance ε
of a beam of many particles corresponds to the ellipse in phase space that contains 68.3% of the particles,
such that the standard deviation of a Gaussian distribution corresponds to

σx =
√
εβx . (29)

The beam emittance is an invariant, since the ellipse areas in phase-space are invariant. It shrinks,
however, during acceleration, as will be shown next.
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Liouville’s theorem from Hamiltonian mechanics states that the volume in phase space is con-
served for the canonical variables p and q, where q is typically a position coordinate and p the mo-
mentum: ∫

p dq = const . (30)

For our discussion, q can be written as x and p = γmv = mcγβx, where βx = vx/c. The angle x′ can
be transformed into

x′ =
dx

ds
=

dx

dt

dt

ds
=
βx
β
, (31)

such that Liouville’s theorem from Eq. (30) can be rewritten as
∫
p dq = mc

∫
γβxdx = mcγβ

∫
x′dx = const . (32)

During acceleration, γ and β increase. For the left-hand side of Eq. (32) to remain constant, the area in
phase space and therefore also the emittance has to decrease proportionally with 1/(βγ). The beam size
therefore shrinks during acceleration:

ε =

∫
x′dx ∝ 1

βγ
. (33)

2.2 Longitudinal plane
Circular accelerators allow for multiple application of the same RF accelerating voltage to increase the
particle energy. The energy gain per turn for a sinusoidal RF voltage is

∆E = eV sinφ = eV sinωRFt . (34)

The synchrotron has a fixed orbit and bending radius and a magnetic field that increases synchronously
with the beam energy. A synchronous RF phase of the RF field exists, for which the energy gain of the
particles fits the increase of the magnetic field. A particle that arrives turn after turn at the same phase,
φ = φs = const, with respect to the RF field is called a synchronous particle. For the acceleration to
work, the RF frequency must be locked to the beam revolution frequency,

ωRF = hωrev , (35)

where h is an integer and is called the harmonic number. The energy gain per turn for the synchronous
particle is ∆E = eV sinφs. With E2 = E2

0 + p2c2 → ∆E = v∆p and v = 2πR/Tturn, the energy gain
can be written as

2πR
dp

dt
= q · V · sinφs . (36)

Thus, the stable phase and voltage are changed during acceleration. In the LHC, for example, the energy
ramp takes more than 15 min, and the stable phase is close to 180◦. The total energy gain per turn is only
about 500 keV.

2.2.1 The principle of phase stability
As not all particles will go through the accelerating gap at exactly the same time, not all particles will
receive the same energy gain; therefore, not all particles will have the same energy. The particles of a
beam whose energy is distributed around a mean energy are all accelerated as long as the synchronous
phase is chosen adequately (and the energy differences of the different particles are not too large). This
is due to the principle of phase stability.

Let us assume a group of non-relativistic particles, where the energy increase is still transferred
into velocity increase. The particles P1 and P2 in Fig. 7 are two different synchronous particles; they
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will see the same energy gain turn after turn. The particles N1, M1, N2 and M2 represent the particle
distribution around the two synchronous particles. The energy gain as a function of time for the different
particles coming from the sinusoidal RF field is also shown. The particle N1 had a larger energy than
P1 in the previous turn. It arrived earlier this turn and will get less energy than P1. The particle M1 on
the other hand had less energy than P1 and arrived later than the synchronous particle. It will get more
energy this time and will move closer to the synchronous particle. It will therefore stay synchronous with
acceleration.

The situation is different for the particles around synchronous particle P2. Particle M2 arrived
earlier, as it had more energy than P2 and will get even more energy during this passage through the
accelerating gap. It will move away from P2. Particle N2 was too slow and will become even slower
this time round. These particles will not stay synchronous with the acceleration and the changing mag-
netic field and will be lost in the vacuum chamber. The two synchronous phases for P1 and P2 are not
equivalent. The synchronous phase has to be chosen adequately.

If a particle is shifted in momentum, it will run on a different orbit with a different length. The par-
ameter momentum compaction, α, gives the relative orbit length change for a given relative momentum
change:

α =
dL/L

dp/p
. (37)

The particle will also have a different velocity and hence a different revolution frequency. The slippage
factor parameter, η, gives the relative revolution frequency change for a given momentum change. η
depends on the momentum compaction as

η =
dfrev/frev

dp/p
=

1

γ2
− α , (38)

where γ is the relativistic gamma. The energy corresponding to γ = γt = 1/
√
α divides the longitu-

dinal motion into two regimes. The energy γt is called the transition energy. Below transition energy
(γ < γt, η > 0), higher momentum corresponds to a higher revolution frequency. Above transition
energy (γ > γt, η < 0), higher momentum leads to a lower revolution frequency. Below transition
energy, an energy increase still leads to a velocity increase. Above the transition energy, where v ≈ c,
the velocity stays roughly constant and the increase in momentum just leads to an increase in path length.
In addition, transition crossing during acceleration makes the previously stable synchronous phase un-
stable. In Fig. 7, the synchronous particle P1 has a correct stable phase below transition energy; above
the transition energy, the synchronous phase of P2 has the stable phase. The moment of transition dur-
ing acceleration is delicate. The RF system needs to make a rapid phase change, a phase jump, when
crossing the transition.

2.2.2 The RF bucket and RF acceptance
As in the transverse plane, the particles are oscillating in the longitudinal plane. The particles keep
oscillating around the stable synchronous particle varying phase and dp/p, see Fig. 8. The separatrix
defines the region of stable motion, the so-called bucket. The entire particle distribution needs to fit
into the bucket, to avoid particle losses. The bucket area, called the RF acceptance, is measured in
electronvolts in ∆E–∆t space, which is equivalent to ∆p/p–∆φ space. The number of buckets around
the ring corresponds to the harmonic number h. The bucket area is largest when the synchronous phase
is 0◦, or 180◦, where the beam is not accelerated. For acceleration, the synchronous phase has to move
towards 90◦ and the buckets become smaller, see Fig. 9. The RF acceptance increases with RF voltage,
however. RF acceptance plays an important role for losses created by RF capture and stored beam
lifetime. During bucket-to-bucket transfer from one machine to another, the bunches might arrive with
small momentum and phase errors. If the RF acceptance is too small, part of the injected bunch ends up
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Fig. 7: The principle of phase stability (Courtesy of F. Tecker)

Fig. 8: The longitudinal motion in the upper plot follows the trajectory in phase-space in the lower plot. The
separatrix defines the limit of stable motion (Courtesy of F. Tecker.)

outside the RF acceptance. This part of the beam will not be accelerated with the rest of the beam when
the momentum increases, and will be lost on the vacuum chamber.

2.2.3 Synchrotron oscillations
To describe the motion of the particles in the longitudinal plane, their coordinates are expressed with
respect to the coordinates of the synchronous particle. Let us call the synchronous particle Ps; a particle
P has a phase difference with respect to the synchronous particle of

∆φ = φ− φs , (39)
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Fig. 9: The buckets around the ring shrink during acceleration when the synchronous phase is moved towards 90◦

(Courtesy of F. Tecker.)

and P will also have a different revolution frequency:

d∆φ

dt
= −2πh∆frev ,

d2∆φ

dt2
= −2πh

d∆frev

dt
.

(40)

When the particles cross the RF cavity, the momentum increase of the two particles will be different:

2πR
dps
dt

= q · V · sinφs ,

2πR
dp

dt
= q · V · sinφ ,

2πR
d∆p

dt
= q · V · sinφ− q · V · sinφs .

(41)

Using the definition of the slippage factor,

η =
dfrev/frev

dp/p
=

∆frev/frev

∆p/ps
,

Eq. (40) can be transformed to

d2∆φ

dt2
= −2πh

d∆frev

dt
= −2πηhfrev

ps

d∆p

dt
. (42)

Using Eq. (41) for d∆p/dt, the second-order non-linear differential equation describing the synchrotron
motion is obtained:

d2∆φ

dt2
+
η · fRF

R · ps
q · V (sinφ− sinφs) = 0 . (43)

For small amplitude oscillations, with small phase deviations from the synchronous particle, the term
(sinφ− sinφs) can be written as

sinφ− sinφs = sin(φs + ∆φ)− sinφs ∼= cosφs∆φ , (44)
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and Eq. (43) can be linearized to an equation of an undamped resonator with resonant frequency Ωs,

d2∆φ

dt2
+

[
ηfRF cosφs

Rps
qV

]
∆φ =

d2∆φ

dt2
+ Ω2

s∆φ = 0 , (45)

Ωs =

√
ηfRF cosφs

Rps
qV . (46)

This resonant frequency, Ωs, is called the synchrotron frequency. The periodic motion is stable if the
expression under the square root of the definition of the synchrotron frequency is larger than zero. This
is the case if η · cosφs > 0. The necessary conditions for the synchronous phase follow from this
requirement. Below transition, the condition for the stable synchronous phase is

γ ≤ γtr ⇒ η ≥ 0⇒ cosφs ≥ 0⇒ φs ∈ [0, π/2] . (47)

Above transition, the condition for the stable synchronous phase becomes

γ ≥ γtr ⇒ η ≤ 0⇒ cosφs ≤ 0⇒ φs ∈ [π/2, π] . (48)

2.2.4 Dispersion
From this discussion on the behaviour of the particles in the longitudinal plane, it is now clear that not
all particles have the same momentum. In fact, a bunch contains a distribution of ∆p/p. The typical
momentum spread is of the order of dp/p ≈ 10−3. This has been neglected so far in the discussion of
transverse motion. Including this fact turns the homogeneous equations of motion in Eq. (16) into the
inhomogeneous equation.

x′′ + x

(
1

ρ2
− k
)

=
∆p

p

1

ρ
. (49)

The general solution to this equation is the sum of solution to the homogeneous equation xh(s) and a
solution that fulfils the inhomogeneous equation xi(s) with x(s) = xh(s)+xi(s). The dispersion is then
defined as

D(s) =
xi(s)

∆p/p
. (50)

The dispersion is the trajectory an ideal particle would have with ∆p/p = 1. The trajectory of any
particle is the sum of xβ(s) plus dispersion × momentum offset. D(s) is just another trajectory and will
therefore be subject to the focusing properties of the lattice. For a particle with momentum offset, the
equation for calculating the coordinates x, x′ at any location of the ring becomes

(
x
x′

)

s1

= M

(
x
x′

)

s0

+
∆p

p

(
D
D′

)

s1

. (51)

Dispersion also has an effect on the size of the beam. At a given place in the ring, the beam size depends
on β(s) and D(s), together with the momentum spread of the beam, ∆p/p:

σ =

√
βε+D2

(
∆p

p

)2

. (52)

3 Beam loss mechanisms
The tune, the number of betatron oscillations per turn, was introduced in Section 2.1.3. The choice of
tune, and hence the focusing properties of the lattice, have important implications for the stability of
motion in the presence of linear magnetic field errors and non-linear fields.
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3.1 Dipole field errors
If the magnetic centre of a quadrupole magnet is not perfectly aligned transversely with the design orbit,
or if dipole field errors are present, orbit perturbations around the ring are generated. The orbit at a
location s is the average trajectory over many turns at that location. With a field error ∆x′ at location s0

the orbit at location s changes according to

x(s) =
∆x′

2
·
√
β(s0)β(s)

cos(πQ− ψs0→s)
sin(πQ)

. (53)

The effect of the error, ∆x′, will be large at locations with large β(s) and depends on the phase advance
between the error location and the orbit location of interest. Also, the larger β(s0) is at the error location,
the larger will be the effect of the error around the ring. The other important lesson to be drawn from
Eq. (53) is the dependence on the tune. With the term sin(πQ) in the denominator, the orbit response
around the ring for any dipole error diverges for Q = N , where N is an integer.

3.2 Gradient errors
Gradient errors will lead to a change in the tune and the beta functions around the ring. The tune change
can be calculated by evaluating the distorted one-turn matrix with a small field error ∆k over a distance
l, which might be the length of a magnet. The one-turn matrix is the transport matrix from location
s→ s+ L = s, where L is the circumference of the ring:

Mturndist
=

(
cos 2πQ+ α sin 2πQ β sin 2πQ
−γ sin 2πQ cos 2πQ− α sin 2πQ

)

=

(
1 0
−∆kl 1

)
·
(

cos 2πQ0 + α sin 2πQ0 β sin 2πQ0

−γ sin 2πQ0 cos 2πQ0 − α sin 2πQ0

)
,

(54)

where Q = Q0 + ∆Q. With Tr(Mturndist
) = Tr(Merror ·Mturn), the tune change evaluates to

∆Q =
1

4π
β∆k · l . (55)

The larger the beta function at the location of the gradient error, the larger the tune change. The relative
beta function change, the so-called beta-beat, due to the gradient error ∆k is

∆β(s)

β(s)
= − 1

2 sin(2πQ)
β(s0) cos [2 (ψ(s0)− ψ(s))− 2πQ] ·∆k · l . (56)

As discussed earlier, the beta function is related to the size of the beam with σ =
√
βε. The beta

functions, and hence the beam sizes, diverge with any gradient error if the tune Q = N, N/2, where N
is an integer, owing to the term sin 2πQ in the denominator.

3.3 Non-linear imperfections
In the Taylor series expansion of the magnetic field for the derivation of the equation motion in the
transverse plane, the higher-order components in x or y were neglected. Higher-order fields might,
however, be present, owing to non-perfect dipole and quadrupole magnets, or they might be introduced
on purpose, to stabilize the beam. The magnetic field of multiple of order n is

By(x, y) + i ·Bx(x, y) = (Bn(s) + iAn(s)) · (x+ iy)n , (57)

where Bn(s) are the normal coefficients and An(s) are the skew coefficients from the Taylor series
expansion,

Bn(s) =
1

(n)!

∂nBy
∂xn

,

An(s) =
1

(n)!

∂nBx
∂xn

.

(58)
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Fig. 10: The tune diagram indicates forbidden resonance lines. The chosen machine tunes in the horizontal and
vertical plane have to be far from these lines.

For example, ∂2By/∂x
2 and ∂3By/∂x

3 are the sextupole and octupole component, respectively. In the
presence of non-linear fields, the equation of motion becomes a non-linear differential equation. An
example for the horizontal plane would be

d2x

ds2
+K(s) · x =

Fx
v · p , (59)

where Fx is the Lorentz force from the non-linear magnetic field.

It was mentioned earlier that the motion becomes unstable for Q = N, N/2 in the case of
quadrupole field errors. It can be shown for sextupole perturbations that amplitudes increase for
Q = N, N/3; and for octupole perturbations that amplitudes increase for Q = N, N/2, N/4. In
general, the machine tune has to be chosen such that it does not fulfil the condition

nQx +mQy = N , (60)

where n, m and N are small integers. The forbidden tunes are often summarized in the so-called tune
diagram as resonance lines. The resonance lines with the lowest order are the most dangerous ones. An
example of a tune diagram with low-order resonance lines is shown in Fig. 10.

3.3.1 Sextupole fields
The example of the sextuple fields and their effect on particle motion will be briefly discussed to further
explain the effect of non-linear fields. The resulting fields of a sextuple coil configuration are

Bx = g̃xy ,

By =
1

2
g̃
(
x2 − y2

)
.

The sextupole fields generate a gradient in both planes, rising linearly with the offset in x according to

∂Bx
∂y

=
∂By
∂x

= g̃x .

The equations of motion in the presence of the sextupole field become

x′′ +Kx(s) = −1

2
msext(s)(x

2 − y2) , (61)
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Fig. 11: The trajectories in phase space x, x′ with sextuple fields in the ring. The size of the stable area within the
triangle is a function of the distance of the tune from the third-order resonance.

y′′ +Ky(s) = msext(s)xy , (62)

where msext is the normalized sextuple strength with msext = g̃/(p/e). The effect of a single sextuple
around the ring on the particle trajectories can be simulated by adding a sextuple kick at the location of
the sextuple,

∆x′ = −1

2
msextl(x

2 − y2) ,

∆y′ = msextlxy ,

where l is the length of the sextuple. As a result of these kicks, the phase-space trajectories become more
and more distorted for larger amplitudes and are no longer elliptical, see Fig. 11. The motion becomes
unstable, meaning that the amplitudes of the particles become larger and larger after each turn. The size
of the stable area within the triangle in phase space is proportional to (Q − p

3)/(msext), where p is an
integer.

3.3.2 Chromaticity
The normalized quadrupole gradient was defined as k = g/(p/e). The different particles in a beam have
a distribution of momenta around the ideal momentum p0. For a given particle, p = p0 + ∆p, and the
normalized gradient for this particle is

k =
eg

p0 + ∆p
≈ e

p0

(
1− ∆p

p0

)
g = k0 + ∆k ,

where the gradient error is

∆k = −∆p

p0
k0 .

As discussed already, gradient errors result in tune changes. Thus, particles with a different momentum
p distributed around p0 will all have different tunes. Using Eq. (55), the tune change for a particle of a
given momentum offset ∆p/p0 is

∆Q =
1

4π
β∆k · l = − 1

4π

∆p

p0
k0βl . (63)

14

V. KAIN

34



The parameter chromaticity is defined as the ratio of the tune change for a given relative momentum
change:

∆Q = Q′
∆p

p
, (64)

and, from Eq. (63), the chromaticity of a synchrotron equates to

Q′ = − 1

4π

∮
k(s)β(s)ds . (65)

Chromaticity is created in the vertical and horizontal planes by the quadrupole fields. Together with the
beam momentum spread, it indicates the size of the tune spot in the tune diagram, which will no longer be
a single point. The natural chromaticity in the LHC, for example, is 250 units. With a typical momentum
spread of ∆p/p = 0.2 × 10−3 and fractional injection tune Qx = 0.28, the particles would have tunes
between Qx = 0.26 and Qx = 0.33. The particle distribution would cross several dangerous resonance
lines, leading to beam loss. Chromaticity, therefore, has to be corrected. The sorting of the particle
amplitudes in the horizontal plane due to dispersion xD(s) = D(s)∆p

p is used for this purpose. Sextupole
magnets are placed at locations with large dispersionDx. The resulting gradient at the sextupole location
depends on the particle amplitude in the horizontal plane, and the sextupole strength is chosen such that
the chromaticity in both planes is adjusted to a suitable value. Q′ = 0 is, however, not necessarily
desirable, owing to so-called collective effects.

3.4 Collective effects
Collective effects can cause beam instabilities, emittance blow-up and beam loss. A typical example of
the turn-by-turn trajectory during a beam instability is shown in Fig. 12. There are three main categories
of collective effect:

Beam–self: The beam interacts with itself through space-charge, causing a tune spread pro-
portional to 1/(β2γ3). This effect is one of the main brightness limitations in low-energy ma-
chines.
Beam–beam: Beams interact with each other at or close to the collision point in colliders or they
interact with ambient electron clouds. Colliding beams produce large tune spreads and tune shifts,
owing to head-on and long-range collisions.
Beam–environment: These are impedance-related instabilities. The beam induces electro-
magnetic fields in the accelerator environment, such as in the vacuum chambers. These so-called
wake fields can act back on the trailing beam. The Fourier transform of the wake field is called the
impedance. Energy is lost, owing to the wake field. If the energy remains trapped, it can lead to
component heating. If the energy is transferred to the trailing beam, it can cause beam instabilities.

It is possible to stabilize the beam under the influence of collective effects, using such mitigative
means as transverse feedback with sufficient bandwidth or the introduction of tune spread through non-
zero chromaticity, octupole fields, or the head-on beam–beam effect in colliders for Landau damping. A
coherent oscillation at a frequency within the beam frequency spread is generally damped.

3.4.1 Space-charge effect
The space-charge effect is the simplest and most fundamental of all collective effects. It will be treated
in a simple approximation as an example for collective effects associated with direct space-charge.

Let us assume that the beam is a long uniformly charged cylinder of current I , as indicated in
Fig. 13. The force exerted on a particle by the surrounding beam at a distance r from the beam centre is:

Fr = FE + FB =
eI

2πcβε0γ2a2
r . (66)
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Fig. 12: Beam position measurement at a beam position monitor turn-by-turn. During the instability, the trajectory
amplitude grows exponentially until the beam loses intensity and stabilizes itself.

Fig. 13: For a cylindrical beam, the space-charge force on a particle at distance r from the beam centre can easily
be easily calculated.

For simplicity, it can be assumed that the particle has only a horizontal offset from the beam centre; in
the Frenet–Serret coordinate system, Eq. (66) becomes

Fx =
eI

2πcβε0γ2a2
x . (67)

The influence of the space-charge force on transverse motion is derived by treating it as perturbation of
the linear equation of motion, as discussed with the non-linear fields:

x′′(s) +K(s)x =
FSC

mγβ2c2
,

x′′(s) +

(
K(s)− 2r0I

ea2β3γ3c

)
x = 0 ,

where r0 = e2/(4πε0m0c
2) is the classical particle radius. As the space-charge force is linear in x, it

introduces a gradient error, and gradient errors lead to tune shift. The tune shift from the space-charge
around the whole ring with radius R is

∆Qx =
1

4π

∫ 2πR

0
βx(s)∆KSC(s)ds = − r0RI

eβ3γ3c

〈
βx(s)

a2(s)

〉
. (68)

As a is related to the transverse size of the cylindrical beam, a2/βx is related to the invariant of motion,
εx = a2/βx. The space-charge tune shift can therefore be written as

∆Qx = − nr0

2πεxβ2γ3
, (69)

with I = (neβc)/(2πR). The tune shift is larger if the beam has higher brightness n/(εx,y) and lower
energy.
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Fig. 14: Tune spread due to the space-charge effect for high-intensity beams in the CERN PS Booster. Injection
energy, 50 MeV; maximum extraction energy towards the CERN PS, 1.4 GeV.

In realistic beams, the particle density will not be uniform and the different particles will see
different space-charge forces, depending on where they are in the beam. This will introduce a tune
spread instead of a tune shift. An example of the tune spread due to space-charge in the CERN PS
Booster is shown in Fig. 14.

4 Accidental beam loss
Unforeseen aperture limitations can cause beam losses. The aperture limitation may be the result of
misalignment of equipment or movable equipment, such as screens, girders or collimators, that is only
partially retracted. Aperture limitations may also be introduced by orbit changes from quadrupole mis-
alignment or orbit bumps. Orbit bumps might be needed for extraction systems or to introduce crossing
angles in colliders. Orbit bumps might also result from corrections made as a result of false beam position
monitor readings.

Fast transverse kickers, such as aperture kicker magnets, tune kicker magnets, crab cavities or
transverse feedback systems, can excite significant fractions of the beam to high amplitudes within a
single or a few turns. Power supply limitations or special run configurations are put in place to avoid
large deflections from the aperture kicker at high intensity in the LHC. Injection kickers or extraction
kickers firing asynchronously can be very dangerous for high-intensity machines. This topic is discussed
further in Ref. [3].

Beam losses can also originate from uncaptured beams. Uncaptured beam is generated at injection
if part of the bunch is injected outside the RF acceptance. Many mechanisms can drive the beam out of
the bucket after injection, for example, intra-beam scattering, beam–beam interactions or malfunctioning
equipment. Malfunctioning equipment comprises noise in the phase loop, badly adjusted longitudinal
blow-up or the switch-off of an RF cavity, resulting in a reduction in the total available voltage and
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hence reduction of the RF acceptance. Once uncaptured, the time taken for the particles to get lost on
the vacuum chamber depends on the energy loss per turn due to synchrotron radiation, electron cloud or
impedance and the so-called momentum aperture in ∆p/p for the given mechanical aperture, dispersion
and beta function.

4.1 Powering failures
The power supplies of the circuits powering the machine elements can fail and the magnetic field seen
by the beam of the concerned elements will then decay. Failing dipole magnets will generate an orbit
distortion that changes with time. If the failure is sufficiently slow (e.g. in the LHC, over more than 10
turns), the closed orbit formula in Eq. (53) for a time-varying field error can be used to calculate what
happens to the beam,

∆xCO(s) =

√
β(s)

2 sin(πQ)

(
I(t)

I0
− 1

) N∑

i

θi
√
β(si) cos(ψ(s)− ψ(si) + πQ) , (70)

where N is the number of dipole magnets connected in series to the failing power supply. A power
supply has many possible failure cases. The function I(t) needs to be established. In most powering
failure cases, the voltage is set to zero and the current decays as

I(t) = I0e−
t
τ , (71)

where the time constant τ is defined by the resistance and inductance of the circuit as τ = L/R. In the
case of a main dipole magnet quench in the LHC, the current in the quenching magnet would decay as

I(t) = I0e−
t2

2σ2 , (72)

where σ has been found to be σ = 200 ms. A failing quadrupole circuit will move the tune in the tune
diagram with the risk of crossing resonance lines. The beam size will also change as a result of the
change of the beta functions, as discussed for gradient errors. If the orbit is not zero in the quadrupole,
the failing quadrupole will also change the orbit. This discussion can be extended to cover higher-order
circuits. The higher the order, the less critical the circuits tend to be.
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