
Higgs Physics

A. Pomarol
Dept. de Física, Universitat Autònoma de Barcelona, Barcelona, Spain

Abstract
With the discovery of the Higgs, we have access to a plethora of new physical
processes that allow us to further test the SM and beyond. We show a con-
venient way to parametrize these physics using an effective theory for Higgs
couplings, discussing the importance of the basis selection, predictions from a
SM effective field theory, and possible ways to measure these couplings with
special attention to the high-energy regime. Predictions from the MSSM and
MCHM, with the comparison with data, are also provided.

1 Motivation
The 4th of July of 2012 marked a milestone in particle physics, as CERN announced the discovery of
a new particle whose properties were in accordance with the sought-after Higgs boson [1]. Since then,
we have been accumulating more and more data and measuring more decay channels, increasing the
significance of the discovery while keeping at the same time a good agreement with the predictions
from the Standard Model (SM) Higgs [2, 3]. To appreciate this agreement, it is convenient to plot the
experimental fit to Higgs couplings in the coupling–mass plane, as shown in Fig. 1 by courtesy of CMS
[2]. Were this new particle not the SM Higgs, we would have expected its couplings to lay on any point of
this plane, and therefore differing significantly from the SM predictions. As an example, let us consider a
scalar coming from a weak-doublet not being (the main) responsible for electroweak symmetry breaking
(EWSB). This scalar could have couplings to fermions as large as O(1), but very small couplings to
Z/W . These predictions are shown in red in Fig. 1. Data clearly disfavours this type of scalars as
compared with the SM Higgs whose predictions lay on a straight line. We can then say today that the
SM Higgs is significantly supported by the experimental data, leaving most competitors far behind.

Having discovered the Higgs, we have now experimental access to new processes that will help
us to test the SM and beyond. There is a fundamental aspect that makes Higgs physics very special:
the Higgs is the only particle of the SM that its lightness (mh ∼ 125 GeV � MP ) is not expected on
theoretical grounds, requiring the presence of new physics beyond the SM (BSM) at the TeV. This is
referred as the hierarchy problem. This makes the Higgs boson one of the most sensitive SM particle to
BSM effects, and therefore the measurement of its properties one of the best ways to indirectly discover
new physics and help to discriminate between different BSMs. As an example, two of the most well-
motivated BSM scenarios, the minimal supersymmetric SM and the composite Higgs, predict, as we
will see below, sizeable corrections to the Higgs couplings. In few words, natural theories explaining
the lightness of the Higgs demand the Higgs to be SM-like only in a first approximation, predicting
departures from the SM predictions to be seen in the near future.

2 Effective Higgs couplings
To characterize the most interesting Higgs processes, it is convenient to parametrize, in the most general
way possible, the couplings of the Higgs to the SM particles. For this purpose we will write an effective
theory for the Higgs couplings, Lh. We will define Lh in position-space, as it makes it simpler to
eliminate redundancies. Our only approximation at this point will be to assume that the momenta q
in the Higgs form-factors are smaller than a heavy scale Λ associated with the BSM physical scale,
q/Λ� 1. This is equivalent to say that we can make an expansion in derivatives Dµ/Λ in Lh. We leave
for later the implications when an expansion of SM fields over Λ can be also carried out. We assume that
the interactions preserve SU(3)c×U(1)EM, with the Higgs defined as a neutral CP-even scalar field.

Published by CERN in the Proceedings of the 2014 European School of High-Energy Physics, Garderen, the
Netherlands, 18 June – 1 July 2014, edited by M. Mulders and G. Zanderighi, CERN-2016-003 (CERN, Geneva, 2016)

0531-4283 – c© CERN, 2016. Published under the Creative Common Attribution CC BY 4.0 Licence.
http://dx.doi.org/10.5170/CERN-2016-003.59

59

http://dx.doi.org/10.5170/CERN-2016-003.59


Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 
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Fig. 1: Fit of the Higgs couplings, ghff and
√
ghV V /2v, and predictions from the SM [2]. A generic scalar would

have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h + ∆Lh . (1)

We will only keep interactions up to order O(h3), O(h∂2V 2) and O(hV f2) since they are the most
relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of Λ,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
suppressed by phase space). Then, for CP-conserving couplings, we have without loss of generality 1

Lprimary
h = ghV V h

[
W+µW−µ +

1

2c2θW
ZµZµ

]
+

1

6
g3h h

3 + ghff
(
hf̄LfR + h.c.

)

+ κGG
h

2v
GAµνGAµν + κγγ

h

2v
AµνAµν + κZγ

h

v
AµνZµν , (2)

and

∆Lh = δghZZ h
ZµZµ
2c2θW

+ ghZff
h

2v

(
ZµJ

µ
N + h.c.

)
+ ghWff ′

h

v

(
W+
µ J

µ
C + h.c.

)

+ κWW
h

v
W+µνW−µν + κZZ

h

2v
ZµνZµν , (3)

where JµN = f̄γµf (for f = fL, fR) and JµC = f̄γµf ′ are respectively the neutral and charged cur-
rents. Flavour indices are implicit. We also defined cθW ≡ cos θW where θW is the weak-angle,
and GAµν ≡ ∂µG

A
ν − ∂νG

A
µ for gluons, and similarly for the photon, Aµ, the Zµ and W+

µ . We can
use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
some linear combinations of the contact-interactions hVµJµ could be written as interactions of the type
hVµ∂νF

µν [4] by the redefinition Vµ → (1 + αh)Vµ, with an appropriate α, in the full Lagrangian (and
using integration by parts). Nevertheless, we consider that Eq. (2) and Eq. (3) are the most convenient

1From here and on, all Higgs-coupling coefficients are defined real.
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way to write the Higgs couplings. Our parametrization of Higgs couplings gives priority to operators
with the largest number of fields (as opposed to operators with more derivatives), as this is important
when estimating the size of the couplings or looking for the dominant effects in the high-energy regime,
as we will show later.

For CP-violating couplings we have

Lprimary
h = δg̃hff

(
ihf̄LfR + h.c.

)
+ κ̃GG

h

2v
GAµνG̃Aµν + κ̃γγ

h

2v
AµνÃµν + κ̃Zγ

h

v
AµνZ̃µν , (4)

∆Lh = g̃hZff
h

2v

(
iZµJ

µ
N + h.c.

)
+ g̃hWff ′

h

v

(
iW+

µ J
µ
C + h.c.

)

+ κ̃WW
h

v
W+µνW̃−µν + κ̃ZZ

h

2v
ZµνZ̃µν , (5)

where G̃Aµν = εµνρσGAρσ/2 and similarly for other gauge bosons.

It is important to understand the implications of global symmetries in the Higgs couplings. In
particular, if the Higgs couplings are induced from BSMs that respect a custodial SU(2) symmetry [5]
only weakly broken by the gauging of U(1)Y and fermions masses, and responsible for m2

W = m2
Zc

2
θW

at tree-level, we have the relations [6] 2

κWW = c2θW κZZ + s2θW κZγ + s2θW κγγ , (6)

cθW g
h
Zff =

√
2T3f g

h
Wff ′V

†
CKM − Yf δghZZ/mW for f= up-type fermion ,

cθW g
h
Zf ′f ′ =

√
2T3f ′ V

†
CKMg

h
Wff ′ − Yf ′ δghZZ/mW for f ′= down-type fermion , (7)

where T3f and Yf are respectively the 3-component isospin and hypercharge of the fermion f , with
Qf = T3f + Yf the electric charge, and VCKM the CKM quark-mixing matrix [7]. Eq. (6) was first
derived in [8]. A left-right parity PLR [9] can further restrict the coefficients [6]:

κZγ =
c2θW
s2θW

κγγ . (8)

Similar expressions are derived for the CP-violating counterparts.

We can also have a reduction of Higgs couplings due to dynamical reasons. For example, in
BSMs with a strongly-interacting Higgs, we can neglect κZZ,WW in comparison with ghV V and δghZZ ,
as the formers are associated to interactions that contain more derivatives and therefore are expected to
be smaller in our Dµ/Λ expansion (see later a power counting for these couplings). Also in "universal"
BSMs (as those in which the BSM states only couple to SM bosons and not to fermions) we only have
three relevant contact-interactions hVµJµ:

ghZJ3
h

v
ZµJ

µ
3 , ghZJY

h

v
ZµJ

µ
Y , ghWJ

h

v

(
W+
µ J

µ
W + h.c.

)
, (9)

where Jµ3 , JµY and JµW are respectively the 3-component isospin, hypercharge and charged SM currents
[7]. Demanding also custodial invariance, we obtain

ghZJ3 =
ghWJ
cθW

, ghZJY = − δghZZ
cθWmW

, (10)

that is equivalent to

ghWff ′ = ghWJVCKM , ghZff = T3f

√
2ghWJ

cθW
− Yf

δghZZ
cθWmW

. (11)

Eq. (11), together with Eq. (6), show that universality and custodial symmetry reduce Eq. (3) to only 3
independent Higgs couplings, that we can take to be δghZZ , κZZ and ghWJ . This is in accordance with [8].

2The terms proportional to Yf arise from the operator ∂µhZνg′Bµν that, after field redefinitions, can be rewritten as
interactions in Eq. (2) and Eq. (3). One has to have this in mind when estimating the size of the coefficients.
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3 The SM predictions for Higgs couplings
In the SM the Higgs sector is given by

LSMh = |DµH|2 − (yuQ̄LH̃uR + ydQ̄LHdR + yeL̄LHeR + h.c.) + µ2|H|2 − λ|H|4 , (12)

where the complex Higgs field H is a 21/2 of SU(2)L×U(1)Y , H̃ = iσ2H∗, and

QL =

(
uL
dL

)
, LL =

(
νL
eL

)
. (13)

When the Higgs gets a vacuum expectation value (VEV), 〈H〉 = (0 v/
√

2)T , where v ' 246 GeV, the
gauge bosons W/Z and fermions get a mass proportional to their coupling to the Higgs field. Out of
the 4 degrees of freedom in H , 3 corresponds to the would-be Nambu-Golstone bosons that become the
longitudinal component of the W and Z, and the 4th is the Higgs particle h. In the SM all couplings of
the Higgs are predicted as a function of particle masses. We have, at tree-level, that the only nonzero
couplings are

ghff = − gmf

2mW
, ghV V = gmW , g3h = −3gm2

h

2mW
, (14)

that lead to the straight line of Fig. 1. The rest of the Higgs couplings arise at the loop level; κGG is
mainly induced by the top loop, while κγγ and κZγ are generated by W and top loops, as can be found
for example in [10].

4 Higgs couplings in an Effective Field Theory approach to the SM
Let us consider BSMs characterized by a mass-scale Λ much larger than the electroweak scalemW , such
that, after integrating out the BSM sector, we can make an expansion not only in derivatives Dµ over Λ,
as we did in previous sections, but also an expansion of SM fields over Λ. In this way we can obtain an
Effective Field Theory (EFT) made of local operators: 3

LEFT =
Λ4

g2∗
L
(
Dµ

Λ
,
g∗H

Λ
,
g∗fL,R
Λ3/2

,
gFµν
Λ2

)
' L4 + L6 + · · · . (15)

Here Ld denotes the term in the expansion made of local operators of dimension d, while g∗ denotes a
generic coupling, and g and Fµν represent respectively the SM gauge couplings and field-strengths. The
Lagrangian in Eq. (15) is based on dimensional analysis and the dependence on the coupling g∗ is easily
obtained when the Planck constant ~ is put back in place. Indeed, working with units ~ 6= 1, the couplings
have dimensions [g∗] = [~]−1/2, while [H] = L−1 · [~]1/2 and the Lagrangian mass-terms [Λ] = L−1.
This dictates the dimensionless expansion-parameters to be g∗H/Λ and Dµ/Λ, and that terms in the
Lagrangian that contains n fields must carry n− 2 couplings to have the right dimensions. This counting
is therefore valid even if g∗ is not small. Although we are using a generic coupling and mass-scale, g∗
and Λ, it is clear that this ought not to be always the case. For example, for a strongly-interacting light
Higgs (SILH) [4] only the couplings of the Higgs to the strong BSM sector are large (g∗ � 1 for the
Higgs), while SM fermions are assumed to have small couplings (g∗ ∼ √yf for fermions).

The Lagrangian terms of L4 redefine the SM (and have no physical impact), while L6 encodes
the dominant BSM effects. Therefore the study of the physical implications of L6 in the physics of the
SM is of great importance. There are different bases used in the literature for the set of independent
d = 6 operators in L6. Although physics is independent of the choice of basis, it is clear that some
bases are better suited than others in order to extract the relevant information, e.g., for Higgs physics.

3This EFT also contains operators of dimension five, L5, but these induce neutrino masses and therefore their coefficients
must be very small (or their suppression scale Λ very large). For this reason we neglect them here since they cannot play any
role for Higgs physics at the TeV.
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The first complete and non-redundant basis of dimension-6 operators was given in [11]. The virtue
of that basis is that it is constructed with the maximum number of operators made of fields instead of
using derivatives, following our approach for Eq. (2) and Eq. (3). As we mentioned, this can be useful
when estimating the size of the coefficients (see section below) or looking for the dominant effects
at high-energies. Nevertheless, from a model-building point of view, it can be more advantageous to
define bases that capture in few operators the impact of the most interesting BSM scenarios. With this
philosophy, the SILH basis was constructed in [4], and generalised to a complete L6 basis in [8,9]. In this
basis "universal" BSMs are encoded in few operators made only of SM bosons. This has the virtue of, for
example, having a more direct connection between operator coefficients and the S and T parameters [12]
that characterize the main electroweak effects of these BSMs. This simplicity is not present in the basis
of [11] in which the equivalent of the S and T parameters involve vertex corrections [13] and then
a less direct connection with the operator coefficients. Another useful basis is given in [14] with the
interesting property of having a one-to-one correspondence between operators and the most relevant
physical interactions measured at experiments.

In all the above mentioned bases it is possible to separate the operators into the following two
groups: those that could (in principle) be induced at tree-level from integrating out heavy states with
spin ≤ 1 in renormalizable weakly-interacting BSMs, and those operators that can only be induced at
the one-loop level from these BSMs [9,15]. This property is, however, not respected for bases constructed
with the operators of [16] where tree and loop operators are mixed.

The coefficients of L6, referred as Wilson coefficients, are generated at the scale Λ where they
are generated after integrating out the BSM heavy states. The renormalization group evolution (RGE)
from Λ down to the electroweak scale, where they are supposed to be measured, can give important
corrections to the Wilson coefficients and mix them [9,17,18]. For example, in supersymmetric theories
or composite Higgs models, where the Wilson coefficients can be determined (see below), the RGE
give us the leading-log corrections to the predictions for the Higgs couplings at low-energy that can be
significant in certain cases [9].

The full set of physical implications of L6 was given in [13], where it was shown that not all type
of interactions can be obtained from L6 and, of the possible ones, not all of them are independent. The
set of independent couplings that are, at present, the experimentally best tested ones, were called primary
couplings. The ones of the Higgs are presented below.

4.1 Primary Higgs couplings
Among all dimension-6 operators present in L6, there are few of them that contribute only to Higgs
couplings and not to other couplings (such as V ff ) [9]. These are the set of independent dimension-6
operators constructed with |H|2. The CP-conserving ones are 4

|H|2Q̄LH̃uR + h.c. , |H|2Q̄LHdR + h.c. , |H|2L̄LHeR + h.c. ,

|H|2|DµH|2 , |H|6 , |H|2GAµνGAµν , |H|2BµνBµν , |H|2W aµνW a
µν , (16)

where W a
µ , Bµ are the SU(2)L×U(1)Y gauge bosons. To see that, indeed, the above operators can only

be probed by measuring Higgs couplings, we just have to put the Higgs field in the EWSB vacuum,
|H|2 → v2/2, and realize that the resulting terms are operators already present in the SM, i.e., their only
effect is a redefinition of the SM parameters.

The set of Higgs couplings that can be independently generated from Eq. (16) are the primary
Higgs couplings [13]. Their measurements provide new probes to new physics only accessible by Higgs
physics. The number of primary Higgs couplings must obviously coincide with the number of Wilson
coefficients associated with the operators of Eq. (16) (for the CP-conserving case). We have chosen
as primary Higgs couplings those in Eq. (2), as all of them can be independently generated from the

4Notice that the operator |H|2f 6Df can always be eliminated from the Lagrangian by field redefinitions.
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operators of Eq. (16). We must be aware however that the correspondence is not one-to-one [9, 19].
There is a certain freedom to choose the set of primary Higgs couplings. For example, instead of κγγ
and κZγ , we could have taken κZZ,WW , as these latter can also receive independent contributions from
Eq. (16). The reason to choose Eq. (2) as primary Higgs couplings it is just experimental: they are the
set of primary Higgs couplings best measured at the LHC.

Similarly, the CP-violating dimension-6 operators constructed with |H|2 are

i|H|2Q̄LH̃uR + h.c. , i|H|2Q̄LHdR + h.c. , i|H|2L̄LHeR + h.c. ,

|H|2GAµνG̃Aµν , |H|2BµνB̃µν , |H|2W aµνW̃ a
µν , (17)

that can independently generate the set of primary Higgs couplings of Eq. (4). Again, all these operators
for |H|2 → v2/2 generate SM terms (that redefine SM parameters) and therefore their physical effects
can only be seen in Higgs physics.

The primary Higgs couplings can enter at the quantum level in other non-Higgs observables. For
example, the CP-violating Higgs couplings can contribute at the loop-level to the neutron and electron
electric dipole moment (EDM). The fact that we have excellent bounds on these EDMs, place indirect
bounds on these Higgs couplings. We must be aware however that these bounds are model-dependent,
as there can be, in principle, other BSM effects entering in the EDMs.

4.2 Beyond the primaries
The rest of CP-conserving Higgs couplings, beyond the primaries, are those of Eq. (3) at the order we
mentioned before. They can in principle be generated from operators in L6. 5 Nevertheless, it can be
proven [9, 19] that contributions from L6 to Eq. (3) are not independent from contributions to primary
Higgs couplings and other electroweak couplings. Therefore they can, in principle, be constrained by
other experimental measurements. As an example, consider the operator H†DµHēRγ

µeR. This gives
a contribution to the Higgs coupling ghZff , but it also contributes to the coupling ZēReR that has been
very-well measured at LEP, putting strong bounds on possible BSM effects.

The explicit relations between the L6-contributions to Eq. (3) and to other couplings were explic-
itly calculated in [13, 14, 19] assuming family universality. Here we give these relations for the general
case (derived at the tree-level) [6]:

δghZZ = 2gt2θWmW

(
c2θW δg

Z
1 − δκγ

)
,

ghZff = 2δgZff − 2δgZ1 (gZffc2θW + gγffs2θW ) + 2δκγYf
esθW
c3θW

, ghWff ′ = 2δgWff ′ − 2δgZ1 g
W
ff ′c

2
θW

, (18)

κZZ =
1

c2θW
δκγ + 2

c2θW
s2θW

κZγ + κγγ , κWW = δκγ + κZγ + κγγ , (19)

with
δgWff ′ =

cθW√
2

(
δgZffVCKM − VCKMδg

Z
f ′f ′
)

for f = fL , (20)

and where

gγff = eQf , gZff =
g

cθW

(
T3f −Qfs2θW

)
, gWff ′ =

g√
2
VCKM, 0 resp. for f = fL, fR , (21)

are the γ, Z and W couplings to fermions in the SM. Flavor indices are again implicit. We have also
defined by δgZff (δgWff ′) the BSM corrections to the Z (W ) couplings to fermions:

∆LVff =
δgZff

2

(
ZµJ

µ
N + h.c.

)
+ δgWff ′

(
W+
µ J

µ
C + h.c.

)
, (22)

5AtO(hFff) we also have dipole-type interactions that can arise from L6. Their Wilson coefficients are however expected
to be suppressed by SM Yukawa-couplings (otherwise could largely contribute at the loop level to the SM fermion masses).
These couplings are related to fermion EDMs as can be found in [13].
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while δgZ1 is the correction to the ZWW coupling and δκγ parametrizes BSM contributions to the EDM
of the W , following the notation of [16] for anomalous triple gauge couplings (TGC):

∆L3V = igcθW δg
Z
1

[
Zµ
(
W+ νW−µν − h.c.

)
+ ZµνW+

µ W
−
ν

]
+ ieδκγ

[
(Aµν − tθWZµν)W+

µ W
−
ν

]
.

(23)
Following [13], we have chosen to work in the mass-eigenstate basis within a parametrization in which
kinetic terms and masses do not receive corrections and then take the SM values. All BSM effects are in
couplings. We think this is the most convenient parametrization of BSM effects due to the straightforward
connection between couplings and physical processes, that in most of the cases is a one-to-one corre-
spondence. The SM input parameters can be taken to be αEM, mZ and mW that, in our parametrization,
do not have BSM corrections, as opposed to GF that receive corrections from 4-fermion interactions.
We remark again that the predictions Eq. (18) and Eq. (19) are derived at the tree-level and only apply to
BSM effects coming from L6. There are also SM contributions to these couplings at the loop level, that
can be as important as new-physics contributions, and must be incorporated accordingly.

Eq. (18) and Eq. (19) are important results. They show that all Higgs couplings of Eq. (3) can be
written as a function of BSM effects to two primary Higgs couplings (κγγ , κZγ), Z/W couplings to SM
fermions (δgZff , δgWfRf ′R

), and two TGC (δgZ1 , δκγ). Experimental bounds on κγγ,Zγ are already at the
per-cent level [19], while Z/W couplings have also been experimentally contrained, mostly from LEP
and SLC [20, 21] (with Tevatron providing an accurate measurement of the W -mass). One finds that
bounds on δgZff are quite strong, at the per mille-level in most of the cases, but bounds on δgZ1 and δκγ
are much weaker [22]. Therefore, at present, we can already derive, using Eq. (18) and Eq. (19), relevant
model-independent bounds on the Higgs couplings of Eq. (3) [19].

In the case of custodial-invariant universal BSMs, Eq. (18) reduces to

δghZZ = 2gt2θWmW

(
c2θW δg

Z
1 − δκγ + Ŝ

)
,

ghZff = −2T3f δg
Z
1 gcθW − Yf

δghZZ
cθWmW

, ghWff ′ = −2δgZ1 g
W
ff ′c

2
θW

, (24)

where Ŝ is, up to a normalization constant [23], the S-parameter [12]. As expected, Eq. (24) and Eq. (18)
fulfill Eq. (6) and Eq. (11), and ghZff is fully determined by the custodial symmetry as a function of ghWff ′
and δghZZ .

The CP-violating non-primary Higgs couplings, Eq. (5), are also not independent but related to
other couplings. We have

g̃hZff = 2δg̃Zff , g̃hWff ′ = 2δg̃Wff ′ ,

κ̃ZZ =
1

c2θW
δκ̃γ + 2

c2θW
s2θW

κ̃Zγ + κ̃γγ , κ̃WW = δκ̃γ + κ̃Zγ + κ̃γγ , (25)

where
δg̃Wff ′ =

cθW√
2

(
δg̃ZffVCKM − VCKMδg̃

Z
f ′f ′
)

for f = fL , (26)

with δg̃Zff and δg̃Wff ′ defined as

∆L̃Vff =
δg̃Zff

2

(
iZµJ

µ
N − h.c.

)
+ δg̃Wff ′

(
iW+

µ J
µ
C − h.c.

)
, (27)

and κ̃γ being the CP-violating TGC:

∆L
3Ṽ

= ieδκ̃γ

[
(Ãµν − tθW Z̃µν)W+

µ W
−
ν

]
. (28)
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The predictions Eq. (18), Eq. (19) and Eq. (25) rely on the (quite plausible) hypothesis that the leading
SM deviations arise from L6. Finding experimental evidence for deviations from these predictions,
would mean that nature does not fulfil this hypothesis: either because there are light BSM states (Λ .
mh), the composite-scale of the Higgs is low (Λ ∼ g∗v), that is equivalent to say that h cannot be
identified within the SM doublet, or that there are other sources of EWSB independent of 〈H〉 [24].

4.3 Power counting for Higgs couplings
It can be useful to estimate the size of the contributions to the effective Higgs couplings arising from
generic BSMs. As it is clear from the expansion in Eq. (15), the coefficients in Eq. (2) and Eq. (3) can
have different dependence with g∗. The Higgs couplings that can receive the largest power of g∗ are g3h
and ghff where

δg3h ∼
g4∗v

3

Λ2
, δghff ∼

g3∗v
2

Λ2
. (29)

For g∗ � 1, Eq. (29) can give O(1) corrections to g3h and ghff , even after demanding g2∗v
2/Λ2 � 1 nec-

essary to make the expansion Eq. (15) valid. Nevertheless, in theories where the Higgs mass is protected
by a symmetry, as it happens in theories that solve the hierarchy problem such as supersymmetry or
composite Higgs models, the contributions to g3h are also expected to be protected and then proportional
to m2

h/v
2 ∼ λ. Also it is natural to expect that chirality protects terms proportional to f̄LfR, at least by

a Yukawa coupling yf ∼ mf/v, otherwise corrections to fermion masses would be too large. For this
reason, it is more natural to assume that the corrections to these Higgs couplings are of order

δg3h ∼ λv
g2∗v

2

Λ2
, δghff ∼ yf

g2∗v
2

Λ2
, (30)

that potentially give relative corrections of O(g2∗v
2/Λ2). At the same order, we also have

δghV V ∼ g2v
g2∗v

2

Λ2
, (31)

and

δgZff , δg
Z
1 ∼ g

g2∗v
2

Λ2
. (32)

Finally, couplings coming from a derivative (or field-strength) expansion, the κi, are expected to scale as

κi ∼
g2v2

Λ2
. (33)

Nevertheless, in renormalizable BSMs these coefficients can only be induced at the loop-level and there-
fore expected to be

κi ∼
g2∗

16π2
g2v2

Λ2
. (34)

Indeed, it can be shown [4, 9] that the κi cannot be generated at tree-level from integrating out scalars,
fermions and vector bosons in renormalizable theories.

The above estimates are useful to determine which are the most sizeable BSM corrections to the
Higgs couplings. For example, in theories in which the Higgs is strongly coupled, the largest corrections
are those of Eq. (30) and Eq. (31) that depend quadratically in the strong coupling g∗ � 1 [4]. If also the
SM fermions are strongly-coupled, Eq. (32) can also give similar size corrections. It is also important to
remark that even for theories in which the field expansion in Eq. (15) is not valid (e.g., when g∗v ∼ Λ),
the power counting for Higgs couplings given here is expected to be correct. In particular, the above
estimates are in accordance with the NDA analysis of [25] proposed for QCD.
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Fig. 2: Predictions for the main Higgs production cross-sections and Higgs BR in the SM [26].

For the non-primary Higgs couplings we have the estimates

δghZZ
g2v

,
ghZff
g
,
ghWff ′

g
∼ g2∗v

2

Λ2
and κZZ , κWW ∼

g2v2

Λ2
, (35)

in agreement with the relations in Eq. (18). Similar estimates follow for CP-violating Higgs couplings.

5 Experimental determination of the effective Higgs couplings
The primary Higgs couplings can be determined by searching for the Higgs through the different pro-
duction mechanisms and decays. The main Higgs production mechanisms at the LHC are

Gluon fusion: GG→ h ,

V h-associated production: qq̄ → V h ,

Vector boson fusion (VBF): qq → qqV V ∗ → qqh ,

htt-associated production: GG→ tt̄h , (36)

while the most important Higgs branching ratios (BR) are

BR(h→ bb̄) , BR(h→ τ τ̄) , BR(h→ V ff̄) , BR(h→ γγ) , BR(h→ Zγ) . (37)

The predictions for a SM Higgs are given in Fig. 2. The Higgs mass can be mainly determined from the
Higgs decay to γγ and Zff that allows to obtain

mh = 125.03
+0.26
−0.27

(stat.)
+0.13
−0.15

(syst.) GeV from CMS ,

mh = 125.36± 0.37 (stat.)± 0.18 (syst.) GeV from ATLAS . (38)

At the LHC one can combine the different Higgs production mechanisms and BR of Eq. (36) and Eq. (37)
to determine 7 primary Higgs couplings: ghff (f = t, b, τ), ghV V , κGG, κγγ and κZγ . 6 The CMS
fit of six of the primary Higgs couplings is shown in Fig. 3, where other Higgs couplings have been
set to zero. 7 The fit shows a good agreement with the SM predictions and no sing of new-physics.
The implications of these measurements in particular BSMs will be discussed in the next section. The

6We note that ghtt and ghV V also affect BR(h→ γγ/Zγ) and σ(GG→ h) at the one-loop level [4].
7The ATLAS results are not shown here since the fit is performed only for few primaries at each time instead of a global fit

to all of them [3]. For a combination of ATLAS and CMS data see, for example, [28, 29] .

9

HIGGS PHYSICS

67



Fig. 3: Fit of 6 primary Higgs couplings from CMS [2]. Notation: κV ≡ ghV V /g
h SM
V V , κf ≡ ghff/g

h SM
ff , κg ≡

κGG/κ
SM
GG and κγ ≡ κγγ/κSMγγ ; loop effects in κGG and κγγ are not included [2].

primary coupling κZγ has not been included in the fit of Fig. 3, but one can use the experimental bound
BR(h → Zγ)/BR(h → Zγ)SM . 10 [27] to derive the constraint −0.01 . κZγ . 0.02 [19]. The
fact that in the SM h → Zγ arises at the one-loop level, and therefore has a small branching fraction
BR(h → Zγ) ∼ 0.15%, makes this BR very sensitive to new-physics; it probably provides the last
chance to find large BSM effects in SM Higgs couplings.

Among the remaining primary Higgs couplings to be measured we have g3h. Its determination
however will be very difficult since it requires to search for double-Higgs production pp → hh that
has small rates [30]. Also Higgs couplings to light fermions ghff (beyond the 3rd family) are going to
be difficult to measure since we expect these couplings to be proportional to mf/mW (see Eq. (14)
and Eq. (30)), giving then very small BR. For example, for the case of the muon, that is probably the
most accessible, we have in the SM BR(h → µµ) ∼ 0.02%. Therefore a high luminosity at the
LHC run 2 will be needed to measure this coupling. Flavour-violating Higgs couplings in ghff can also
be accessible through Higgs decays. This is particularly interesting for theories of flavour in which
Yukawas are generated from the mixing of the SM fermions with heavy BSM states. The strength
of these mixings are expected to be ∼

√
mfi/v, and therefore predicting ghfifj ∼

√
mfimfj/v that

can lead to sizeable flavour-violating Higgs decays. In particular, one has BR(h → τµ) ∼ mµ/mτ ×
BR(h→ ττ) ∼ 0.4% that is quite close to the present experimental boundBR(h→ τµ) < 1.57% [31].
Finally, most of the CP-violating Higgs couplings are poorly measured since they appear quadratically
in production rates and BR since the interference terms with the SM contributions vanish. 8 Kinematical
differential distributions can be used to measure these couplings [32], and alternative methods have been
recently proposed in [33]. Nevertheless, indirect bounds on most of these couplings are very strong (see
for example [34] for bounds on κ̃γγ from EDMs), making difficult to believe that Higgs CP-violating
couplings are sizeable. The exception is probably δg̃hττ whose bounds are not so strong and could have
possible impact in CP-violating Higgs decays.

The experimental full extraction of all Higgs couplings, including the non-primary ones, Eq. (3)
and Eq. (5), is a difficult task. The best way to disentangle the effects of δghZZ , κZZ,WW and ghVff
(V = Z,W ), as well as their CP-violating counterparts, is by looking for modifications in differential

8Since in the SM the hGG, hγγ and hZγ couplings are small (as they arise at the one-loop level), the interference terms
are also small, and the corresponding bounds on CP-conserving and CP-violating couplings, κi and κ̃i, are comparable.
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2.  Beyond the primary Higgs couplings

h ZμZμ ,  h ZμνZμν ,  hWμνWμν ,  h Zμ f γμf ,  hWμ f γμf  , …
 ➥ no large deviations expected in these couplings

BUT worth to explore.  Some interesting physical effects in:

VH associated production

Higgs
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h → V ff , in V h-associated production or
in the VBF-like process pp→ qqV/qqV V ∗ → qqh.

distributions in Higgs processes. The most relevant ones are the Higgs decays h → V ff , the V h-
associated production and the VBF-like process pp → qqV/qqV V ∗ → qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)

MhVff (q, p) =
1

v
ε∗µ(q) JνV (p)

[
AV ηµν + BV (p · q ηµν − pµ qν) + CV εµνρσp

ρqσ
]
, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in JµV = JµN , J
µ
C for

V = Z,W , and εµ is the polarization 4-vector of V . We have defined

AV = aV + âV
m2
V

p2 −m2
V

, BV = bV
1

p2 −m2
V

+ b̂V
1

p2
, CV = cV

1

p2 −m2
V

+ ĉV
1

p2
, (40)

with b̂W , ĉW = 0, and where

aZ = δghZff + iδg̃hZff , aW = δghWff ′ + iδg̃hWff ′ ,

âZ = 2gZff

(
1 +

δghV V + δghZZ
gmW

)
, âW = 2gWff ′

(
1 +

δghV V
gmW

)
,

bZ = −2gZffκZZ , bW = −2gWff ′κWW ,

b̂Z = −2eQfκZγ ,

cZ = −2gZff κ̃ZZ , cW = −2gWff ′ κ̃WW ,

ĉZ = −2eQf κ̃Zγ . (41)

From the differential distributions of the decay products in h → V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
λWZ − 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have−0.35 < λWZ−1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

λ2WZ − 1 ' 0.6δgZ1 − 0.5δκγ − 0.7κZγ , (42)
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where we have used Eqs. (18)-(19), neglecting κγγ and δgZ,Wff , since they are experimentally constrained
to be less than 10−2 − 10−3.

5.1 Towards the high-energy regime
One of the most interesting perspectives at the LHC run 2 is the access to physical processes at much
higher energies. This can be used to probe Higgs production mechanism or off-sell Higgs mediated
processes in a regime in which the effects of some anomalous Higgs couplings can be enhanced by
factors E2/Λ2. As an example, let us consider the associated Higgs production, pp → V h. As it is
clear from Eq. (40), at high-energies, E � mV , the coefficient aV dominates the amplitude. Thanks
to our parametrization for Higgs couplings, this coefficient is in one-to-one correspondence with the
contact-interaction ghVff . Indeed, at the partonic level, we have

σ(qq → hV )
∣∣∣
ŝ�m2

h

= σ(qq → hVL)SM

(
1 +

ghVff

gVff

ŝ

m2
V

+ . . .

)
. (43)

By looking at high invariant-masses for hV , it is possible to put important bounds on ghVff [35, 36].
Nevertheless, one has to be careful that one is not probing these couplings at energies above Λ where
an expansion in ŝ/Λ2 would not be valid. To address this issue, the power-counting of section 4.3 is
crucial. Using Eq. (35), we can write ghVff ≡ gchVffg

2
∗v

2/Λ2 where chVff is a coefficient O(1). Now,
experimentally, due to the lack of experimental accuracy in the measurement of pp → V h at the LHC,
we can only bound at present high-energy deviations from the SM to be less than O(1) [35, 36], that is
equivalent to say, using Eq. (43),

ghVff

gVff

ŝ

m2
V

< O(1) → chVff . Λ2

ŝ

g2

g2∗
. (44)

To guarantee the validity of the expansion in Lh, we must stay in the regime Λ2/ŝ � 1. Therefore the
experimental bound Eq. (44) can only be restrictive (and useful) for strongly-interacting BSMs in which
g∗ � g. In these scenarios we can safely use the hV -production high-energy data to obtain bounds on
ghVff at the per-cent level [36]. In models in which, in addition, the expansion of Eq. (15) is valid, bounds
on ghVff can be translated into bounds on δgZ1 . Indeed, we have from Eq. (18), after neglecting δgZff due
to the strong constraints from LEP, and neglecting δκγ since this does not grow with g2∗ [13],

δgZ1 ' −
gchZff

2(gZffc2θW + eQfs2θW )

g2∗v
2

Λ2
' −

gchWff ′

2gWff ′c
2
θW

g2∗v
2

Λ2
. (45)

From the experimental data at the high-energy regime of the hV -associated production we obtain [36]

−0.01 < δgZ1 < 0.04 (95% CL) . (46)

This is as competitive as the one obtained from anomalous TGC at LEP [21] and at the LHC [37].

5.2 Invisible Higgs decay
We have assumed so far that there are no more light particles than those of the SM. If there were new
light states to which the Higgs could decay to, all the Higgs BRs would be reduced, changing the fit
of the Higgs couplings [38]. There are well-motivated BSMs where the Higgs can decay invisibly. An
example is given in [39] where the Higgs can decay to a gravitino and neutrino that interact so weakly
that escape from detection. Also in certain models the Higgs can decay to dark matter that, being stable
and EM neutral, also escape from detection. 9 There are direct searches for Higgs decaying invisibly
based on looking for missing energy plus a Z/W/γ/jet. The CMS bound is given in Fig. 3.

9Alternative effects from new light physics can be found in [40].
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6 Predictions for the Higgs couplings from BSM solutions to the hierarchy problem
The simplicity of the SM Higgs-mechanism is at odds with its quantum stability. The fact that the
Higgs is a scalar, a spin zero state, makes it difficult to keep it light (mh � MP ). This problematic
can be easily understood just by looking at the degrees of freedom (DOF) of a massless and massive
state of spin 0, and compare them with those of a state of spin 1/2, 1, or higher. Indeed, a massless
vector, as the photon, has two polarizations (2 DOF), while a massive vector has 3 polarizations. The
2 6= 3 guarantees that a massless vector can never get a mass by continuous variations of parameters
(or quantum fluctuations); only a discrete change in the theory, increasing the DOF, can make vector
massive. Similarly for fermions, we have that a charged massless fermion has 2 DOF, while a massive
one has the double (left- and right-handed states), and therefore, for the same reason, massless fermions
are safe from getting masses under fluctuations. 10 Now, massless scalars have the same DOF as massive
scalars: 1 DOF for neutral ones. Even if we start with a massless scalar at tree-level, it is not guaranteed
that quantum corrections will not give it a mass.

A possible solution to keep the Higgs stable from getting a large mass is to upgrade the SM to
include a symmetry relating the Higgs, a scalar, to a fermion whose mass can be stable, as we explained
above. This is the case of supersymmetry. An alternative option is to assume that the Higgs is not
an elementary state but a state made of elementary fermions, as pions in QCD. In this case, the Higgs
arises as a composite state from a new strong-sector at the TeV. It is interesting to point out that both
scenarios predicted a light Higgs. While in minimal supersymmetric versions of the SM (MSSM) the
lightest-Higgs mass was expected to be in the rangemh . 135 GeV [41], minimal versions of composite
Higgs (MCHM) predicted 115 GeV . mh . 185 GeV [42]. The connection between the Higgs mass
and the mass spectrum of resonances is of crucial phenomenological interest, since allows to obtain
predictions, from the present experimental value mh ' 125 GeV, for the heavy spectrum, either stops
for the MSSM [43] or fermionic resonances for the MCHM [44, 45].

In the following, we will centre in the predictions of these models to Higgs couplings. As we
emphasized in the introduction, the Higgs is usually the SM particle whose couplings are most sensitive
to BSM corrections. Indeed, as we will see below, in supersymmetric theories Higgs couplings can be
affected at tree-level [46], while other SM couplings are affected at the loop level. Similarly, in strongly-
interacting theories in which the Higgs is composite, effects on Higgs couplings can be enhanced by a
factor g2∗ [4], that can be as large as∼ 16π2, with respect to effects in other couplings. It is also important
to remark that in BSMs trying to solve the hierarchy problem the main BSM effects in Higgs physics are
captured by the primary Higgs couplings, as contributions to non-primary Higgs couplings are usually
negligible. This shows once more the importance of the primaries.

6.1 The Minmal Supersymmetric SM (MSSM)
We will work in the limit in which the supersymmetric spectrum is heavier than mh. This covers most of
the parameter space of the MSSM, after LHC searches have pushed the superpartner masses towards the
TeV regime, and none deviation from the SM has been observed. Also to accommodate mh ' 125 GeV
requires large stop masses in the MSSM [43].

The only tree-level corrections to the lightest-Higgs couplings come from the extra heavy Higgs
doublet of the MSSMH ′. This is due to theR-parity of the MSSM that only allowR-even field tree-level
corrections. At order v2/M2

H′ (i.e., keeping only 1/Λ2-suppressed effects where now Λ = MH′), only
the Higgs couplings to fermions are affected, since corrections to hV V appear at order v4/M4

H′ as can
be easily understood from Feynman diagrams –see Fig. 5. Deviations from the SM values for the hff

10If a fermion has no charge, it can get a Majorana-type mass without increasing the DOF, as probably is the case for the SM
neutrinos. For this reason, to keep naturally massless fermions, we must assume that the fermion has some type of charge.
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Fig. 5: Feynman diagrams contributing to ghV V and ghff from integrating the heavy MSSM Higgs H ′.

Fig. 6: Relative modifications of the Higgs couplings to fermions with respect to their SM values at tree-level
(dashed line), and after including RGE effects from Λ to the electroweak scale (solid lines), as a function of tanβ

in a MSSM scenario with Λ = MH′ = 600 GeV and unmixed stops heavy enough to reproduce mh = 125 GeV.
Left plot: Higgs coupling to tops. Right plot: Higgs coupling to bottoms (upper solid line) and taus (lower solid
line) [9].

couplings, including also one-loop RGE effects coming from the top, are given by [9]

δghtt
ghSMtt

=
v2

M2
H′

(
λ′

tβ

[
1− 21y2t

16π2
log

MH′

mh

]
+

3y4t
4π2t2β

log
MH′

mh

)
,

δghbb
ghSMbb

= − v2

M2
H′

(
λ′tβ

[
1− y2t

2π2
log

MH′

mh

]
+

y2t
16π2

[
5
λ′

tβ
− 14y2t

]
log

MH′

mh

)
,

δghττ
ghSMττ

= − v2

M2
H′

(
λ′tβ

[
1− 3y2t

8π2
log

MH′

mh

]
+

3y2t
8π2

[
λ′

tβ
− 2y2t

]
log

MH′

mh

)
, (47)

with tβ ≡ tanβ and 11

λ′ =
1

8
(g2 + g′2) sin 4β − 3y4t

8π2tβ
log

M2
t̃

M2
H′
, (48)

where Mt̃ is the value of the stop masses taking, for simplicity, zero stop left-right mixing. To illustrate
the impact of these corrections, let us take Mt̃ large enough to get mh ' 125 GeV through the well-
known loop corrections to the Higgs quartic coupling, which at one-loop and neglecting stop left-right

mixings read: λ = 1
8(g2 + g′2) cos2 2β +

3y4t
16π2 log

M2
t̃

M2
t

. This gives the value of λ′ as a function of tβ

11In Eq. (48) we are also including RGE effects from Mt̃ to MH′ proportional to the top-Yukawa yt.
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Fig. 7: Regions of the mA − tanβ plane excluded by Higgs physics in a MSSM with heavy partners [47].

and MH′ that we can then plug in Eq. (47) to obtain the RGE-improved corrections for ghff induced by
integrating out the heavy Higgs. The results are shown in Fig. 6. The experimental bounds on the Higgs
couplings can be translated into a bound on MH′ as a function of tβ . This is given in Fig. 7 where mA

is the mass of the heavy MSSM CP-odd scalar that, at the order we are working at, is equal to MH′ .
12 Stop left-right mixing effects or extra D-term effects can be easily included along the lines of [48].
Corrections to g3h can also arise at order O(v2/M2

H′), but we already said that this coupling is difficult
to measure as it requires double Higgs production.

6.2 The Minimal Composite Higgs Model (MCHM)
For models in which the Higgs is a pseudo Goldstone boson (PGB) arising from a new strong-sector
at the TeV [49], similar to a pion in QCD, the Higgs couplings must depart from their SM value. This
was studied in generality in [4]. The main effects are expected to arise in the Higgs coupling to Z/W
and fermions. The minimal model is the MCHM [50], where the global symmetry-breaking pattern is
SO(5)→ SO(4) with an "order parameter" f , that give the following predictions [4]:

ghV V
ghSMV V

=

√
1− v2

f2
,

ghff

ghSMff

=
1− (1 + n)v2/f2√

1− v2/f2
, (49)

where n = 0, 1, 2, ... depends on how fermions are implemented in the model. In particular, for the
MCHM4 (MCHM5) we have n = 0 (1) [45]. From the minimization of the Higgs potential, we expect
f & v [4], but constraints from the Ŝ parameter give v2/f2 . 0.1 [49]. The Higgs coupling predictions
of the MCHM are shown in Fig. 8 and compared with a fit of the ATLAS data. The fact that the exper-
imental data does not favour smaller Higgs couplings than those of the SM, as predicted from Eq. (49),
implies that we can derive an upper bound on ξ ≡ v2/f2, and consequently on the composite scale,
Λ ' g∗f , where g∗ is here the coupling among the resonances of the strong sector, expected to be in the
range, 1� g∗ . 4π. ATLAS [47] gives the observed (expected) 95% CL upper limit of ξ < 0.12 (0.29)
for the MCHM4 and ξ < 0.15 (0.20) for the MCHM5 that start being as competitive as the ones coming
from LEP [49].

12Mass splittings among the heavy Higgs-doublet components are O(v2/M2
H′), and then their effects are of higher-order in

our expansion.

15

HIGGS PHYSICS

73



Fig. 8: Two-dimesional fit of the Higgs couplings κV ≡ ghV V /g
h SM
V V and κF ≡ ghff/g

h SM
ff and predictions from

the MCHM4 and MCHM5 as a function of ξ ≡ v2/f2 [47].

Contributions to κγγ and κGG are suppressed in the MCHM due to the PGB nature of the Higgs
[4]. Nevertheless, this suppression is not present in κZγ that can receive significant contributions [51]
that could be even larger than those of the SM, providing a strong motivation for searching for h→ Zγ.

7 Conclusions
With the Higgs discovery, the full SM has been experimentally established. Nevertheless, the presence
of the Higgs, a zero-spin state, demands new physics at the TeV to make the SM a natural theory. The
Higgs is the most sensitive SM particle to new physics, and for this reason an accurate measurement of
its couplings provides an excellent way to indirectly discover new phenomena.

At the LHC (and in future colliders) we can have access to a large variety of Higgs couplings.
We have argued that the most relevant Higgs couplings are the primary ones, given in Eq. (2) for CP-
conservation. These couplings probe new directions in the parameter space of BSMs. We have showed
the predictions for two of the most well-motivated BSMs, the MSSM and the MCHM. These analysis
can be extended to other BSMs, such as the non-minimal MSSM (NMSSM), or other possibilities for
composite Higgs, for example those in which the Higgs is lighter than the composite scale Λ not because
of its PGB nature, as in the MCHM, but due to an "accidental" supersymmetry (SUSY Composite Higgs)
or scale symmetry (Higgs as a dilaton) [49]. Supersymmetry can also allow for partly-composite Higgs
where the TeV strong-sector could also break the electroweak symmetry (bosonic TC) [24]. A brief
summary of the largest effects in the primary Higgs coupling arising from these scenarios is giving in
Table 1. If in the future departures from the SM Higgs couplings are observed, the analysis of the pattern
of these deviations will be extremely useful to discriminate between different BSM scenarios.
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ghff ghV V κGG κγγ κZγ g3h

MSSM X X
NMSSM X X X X X X
MCHM X X X X

SUSY Composite Higgs X X X X X X
Higgs as a Dilaton X X X X

Partly-Composite Higgs X X X X
Bosonic TC X

Table 1: Largest contributions to Higgs couplings (relative to the SM one) expected from different BSM scenarios.
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