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Abstract
These notes represent a summary of three lectures on flavour and CP violation,
given at the CERN’s European School of High Energy Physics in 2014. They
cover flavour physics within the standard model, phenomenology of CP viola-
tion in meson mixing and decays, as well as constraints of flavour observables
on physics beyond the standard model. In preparing the lectures (and con-
sequently this summary) I drew heavily from several existing excellent and
exhaustive sets of lecture notes and reviews on flavour physics and CP vio-
lation [1]. The reader is encouraged to consult those as well as the original
literature for a more detailed study.

1 What is flavour?
In the standard model (SM) the basic constituents of matter are excitations of fermionic fields with spin
1/2. In this context matter flavours refers to several copies of the same gauge representation. Under the
unbroken SM gauge group SU(3)c × U(1)EM these are

– up-type quarks: (3)2/3 : u, c, t,
– down-type quarks: (3)−1/3 : d, s, b,
– chrged leptons: (1)−1 : e, µ, τ ,
– neutrinos: (1)0 : ν1, ν2, ν3,

where the colour representations are given in the brackets, while the electric charges are written as
subscripts. The different flavours of the same gauge representation differ only in their masses.

Ordinary matter is essentially made up of the first generation: u and d quarks are bound within
protons and neutrons, while the electrons form atoms; finally “electron neutrinos", which are an admix-
ture of ν1,2,3, are produced in reactions inside stars. Second and third generation families are produced
only in high-energy particle collisions. They all decay via weak interactions into first generation parti-
cles. One of the big open questions in fundamental physics is why there are thee almost identical replicas
of quarks and leptons and which is the origin of their different masses?

Flavour physics refers to interactions that distinguish between flavours. Within the SM these are
weak and Yukawa (Higgs boson) interactions.

Flavour parameters are those that carry flavour indices. Within the SM these are the nine masses
of charged fermions and four mixing parameters (three angles and one complex CP violating phase).1

Flavour universal interactions are those with couplings proportional to the identity in flavour
space. Within the SM these are strong and electromagnetic interactions (and also weak interactions
in the so-called interactions basis, see below). Such interactions are sometimes also called flavour blind.

Flavour diagonal interactions are those whose couplings are diagonal (in the matter mass basis),
but not necessarily universal. Within the SM these are the Yukawa interactions of the Higgs boson.

Flavour changing processes are those where the initial and final flavour-numbers are different (a
flavour number is the number of particles with a certain flavour minus the number of anti-particles of

1Adding Majorana mass terms for neutrinos introduces three additional neutrino masses plus six mixing parameters (three
mixing angles and three phases).
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the same flavour). We can further specify flavour changing charged currents which involve both up- and
down-type quark flavours or both charged lepton and neutrino flavours. Examples of such processes are
the muon decay µ− → e−νiν̄j or the muonic charged kaon decay K− → µ−ν̄i (which corresponds to
the quark-level transition sū → µ−ν̄i). Within the SM such processes are mediated already by a single
W exchange at the tree level (the amplitudes being proportional to the Fermi constant GF ). On the other
hand, flavour changing neutral currents (FCNCs) involve either up- or down- type flavours but not both;
and/or either charged lepton flavours or neutrino flavours but not both. Examples of such processes are
the radiative muon decay µ− → e−γ and the muonic decays of the neutral kaons, KL → µ+µ− (sd̄ →
µ+µ− at the quark level). Within the SM these processes occur at higher orders in the weak expansion
(i.e. via loops) and are often highly suppressed. In connection with flavour changing interactions, one
often speaks also of flavour violation.

1.1 Why is flavour interesting?
Flavour physics can discover new physics (NP) or probe it before it is directly observed in high-energy
experiments. Historical examples of this include:

– The smallness of the ratio Γ(KL → µ+µ−)/Γ(K− → µ−ν̄i) lead to the prediction of the charmed
quark.

– Furthermore, the measurement of the mass difference between the two neutral kaons ∆mK ≡
mKL

−mKS
lead to the prediction of the charm quark mass.

– Similarly, the mass difference between the two neutral B mesons ∆mB ≡ mB0
H
−mB0

L
inferred

a prediction of the top quark mass almost two decades before top quarks (or more precisely, their
decay products) were directly observed in experiments.

– Finally, the observation of the CP violating decay KL → π+π− (i.e the measurement of εK) lead
to the prediction of the third generation of matter.

CP violation: Within the SM there is a single CP violating parameter determining the amount of
CP violation in all flavour changing processes. Successful baryogenesis would require new CP violating
sources.

Solutions of the electroweak (EW) hierarchy problem (in the form of a quadratic sensitivity of
the EW scale to UV physics) require NP to appear at or below the TeV scale. On the other hand, such
NP with a generic flavour structure would predict FCNCs orders of magnitude above the observed rates.
Conversely, flavour physics can probe NP scales up to O(105 TeV). The resulting NP flavour puzzle
refers to the fact that NP at the TeV scale needs to exhibit approximate flavour symmetries.

The SM flavour parameters are both hierarchical (i.e. mu � mc � mt) and mostly very small
(mf 6=t � mW,Z,h) . The question whether this points to some unknown underlying flavour dynamics is
sometimes called the SM flavour puzzle.

2 Flavour in the standard model
Any (local) quantum field theory model is specified by both (i) symmetries and the pattern of their
spontaneous breaking; as well as (ii) representations of fermions and scalars. The SM Lagrangian (LSM)
is thus completely determined by specifying the local (gauge) symmetry GSM

local = SU(3)c × SU(2)L ×
U(1)Y which is spontaneously broken to GSM

local → SU(3)c × U(1)EM ; plus the relevant fermionic

QiL ∼ (3, 2)1/6 , U iR ∼ (3, 1)2/3 , Di
R ∼ (3, 1)−1/3 , LiL ∼ (1, 2)−1/2 , (1)

(where i = 1, 2, 3) and scalar

φ ∼ (1, 2)1/2 , 〈φ0〉 ≡ v√
2
' 174GeV , (2)
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representations. Above, the first (second) entries in the brackets denote the SU(3)c (SU(2)L) represen-
tations, while the U(1)Y charges are given in the subscripts. Also, 〈. . .〉 denotes a vacuum condensate
value. LSM can be conveniently split into three parts

LSM = LSM
kinetic + LSM

EWSB + LSM
Yukawa . (3)

The sum of the gauge-kinetic terms LSM
kinetic is simple and symmetric. It is completely specified by the

SM local symmetry and its matter representations. The three physical parameters associated with this
part of the theory are conventionally chosen to be the three gauge couplings (gs, g and g′) . The EW
symmetry breaking (EWSB) part LSM

EWSB contains two additional parameters. They can be chosen to
correspond to v and the physical Higgs boson mass mh. Finally, all flavour dynamics is contained in
LSM

Yukawa which also involves all the SM flavour parameters.

2.1 Interaction basis
It is convenient to start our discussion in a flavour basis where all the gauge-kinetic terms are diagonal.
This can always be achieved by applying suitable unitary rotations on the matter fields. In this basis

LSM
kinetic = (Dµφ)†(Dµφ) +

∑

i,j=1,2,3

∑

ψ=QL,...,ER

ψ̄ii /Dδijψj

− 1

4

∑

a=1,...,8

GaµνG
a,µν − 1

4

∑

a=1,2,3

W a
µνW

a,µν − 1

4
BµνB

µν , (4)

where G, W, and B denote the field strengths of the SU(3)c, SU(2)L and U(1)Y gauge interactions,
respectively. The covariant derivatives Dµ are defined as Dµ = ∂µ + igsG

a
µL

a + igW b
µT

b + ig′BµY ,
where La, T a and Y denote the SU(3)c, SU(2)L generators and the U(1)Y charges, respectively. Note
that in this basis, LSM

kinetic is manifestly flavour universal and CP conserving. Similarly

LSM
EWSB = µ2φ†φ− λ(φ†φ)2 , (5)

is also CP and flavour conserving.2 Thus bothLSM
kinetic and triviallyLSM

EWSB have a large flavour symmetry
corresponding to the independent unitary rotations in the flavour space of the five fermionic fields

GSM
flavour = U(3)5 = SU(3)3

q × SU(3)2
` × U(1)5 ,

SU(3)3
q = SU(3)Q × SU(3)U × SU(3)D ,

SU(3)2
` = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (6)

Among the U(1) factors, U(1)B,L are the baryon and lepton number, respectively. U(1)Y is gauged and
broken spontanouesly by 〈φ0〉 . On the other hand U(1)PQ can be defined such that only the Higgs and
Di
R, E

i
R are charged under it and with opposite charges. It is thus broken only by the up-quark Yukawas.

Finally U(1)E refers to flavour universal phase rotations of EiR alone and is thus broken by the charged
lepton Yukawas.

The Yukawa Lagrangian of the SM

−LSM
Yukawa = Y ij

d Q̄
i
LφD

j
R + Y ij

u Q̄
i
Lφ̃U

j
R + Y ij

e L̄
iφEjR + h.c. , (7)

where φ̃ = iσ2φ, is in general flavour dependent (if Yf /∝ I) and CP violating. The pattern of explicit
GSM

flavour breaking by Yf 6= 0 is as follows:
2It is also symmetric under SO(4) rotations of the four real scalar fields φ1,2,3,4 contained in φ = (φ1 + iφ2, φ3 + iφ4)

T .
This approximate symmetry of the SM is sometimes called the custodial symmetry.
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– U(1)E is broken by Ye 6= 0 ,
– U(1)PQ is broken by Yu · Yd 6= 0 and Yu · Ye 6= 0 ,
– SU(3)Q × SU(3)U → U(1)u × U(1)c × U(1)t is due to Yu /∝ I ,
– SU(3)Q × SU(3)D → U(1)d × U(1)s × U(1)b is due to Yd /∝ I ,
– the remaining U(1) factors in the quark sector are broken by the fact that [Yu, Yd] 6= 0 down to
U(1)B ,

– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group
also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf 6= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3
q×SU(3)2

`

and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-
tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM
Yukawas to non-dynamical fields with well-defined transformation properties under GSM

flavour

Yu ∼ (3, 3̄, 1)SU(3)3
q
, Yd ∼ (3, 1, 3̄)SU(3)3

q
, Ye ∼ (3, 3̄)SU(3)2

`
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical
flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.
2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.
3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.
4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three
U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases
each. Thus schematicallyNtotal = 3×(3+6i) . ConsequentlyNbroken = Ntotal−1i = 9+17i . The two
quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2× (9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9 + 1i, representing six
quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories
(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to be
related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM C and P are
violated maximally: left-handed and right-handed fermion fields furnish different gauge representations,
while C and P both change the chirality of fermion fields. This maximal C and P violation within the SM
is also independent of the values of the SM parameters. On the other hand, the CP violation within the
SM does depend on the (Yukawa) parameters. The hermiticity of the Lagrangian namely implies

Yijψ̄
i
Lφψ

j
R + Y ∗ijψ̄

j
Rφ
†ψiL

CP→ Yijψ̄
j
Rφ
†ψiL + Y ∗ijψ̄

i
Lφψ

j
R . (9)

Thus, the Yukawa Lagrangian will be CP symmetric if Yij = Y ∗ij . More precisely, the requirement for
CP conservation can be written in terms of the Jarlskog invariant (J) [4] as

J ≡ Im[det(YdY
†
d , YuY

†
u )] = 0 . (10)

4
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2.4 Mass basis
Upon replacing Re(φ0)→ (v + h)/

√
2, Yukawa interactions give rise to fermion mass matrices

Mq =
v√
2
Yq . (11)

The mass bassis corresponds, by definition, to diagonal mass matrices. The unitary transformations
between any two bases which leave the gauge-kinetic terms invariant are

QL → VQQL , UR → VUUR , DR → VDDR . (12)

The Yukawa matrices on the other hand transform as

Yu → VQYuV
†
U , Yd → VQYdV

†
D . (13)

The diagonalization of MQ requires bi-unitary transformations

V u
QMuV

†
U = Mdiag

u =
v√
2
λu ; λu = diag(yu, yc, yt) ,

V d
QMdV

†
D = Mdiag

d =
v√
2
λd ; λd = diag(yd, ys, yb) . (14)

While VU,D are unphysical (they leave the gauge-kinetic terms invariant), V u,d
Q produce a physical effect.

In particular, since [Mu,Md] 6= 0, a nontrivial mixing matrix V u
QV

d†
Q ≡ VCKM 6= 1 (due to Cabibbo,

Kobayashi and Maskawa [5]) modifies the charged weak gauge interactions. The resulting SM flavour
Lagrangian in the mass basis is thus

LFm =
(
q̄i /Dq

jδij
)

NC
+

g√
2
ūiL /W

+
V ij

CKMd
j
L + ūiLλ

ij
u u

j
R

(
v + h√

2

)
+ d̄iLλ

ij
d d

j
R

(
v + h√

2

)
+ h.c. , (15)

where (uiL, d
i
L) ≡ QTL and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three
CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current
interactions involve exclusively left-handed fermion fields.

3.1 Parametrisation of the CKM matrix
We start by fixing the permutation of quark generations via mass ordering. The resulting CKM matrix
has the form

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (16)

Experimentally, VCKM exhbits a strong hierarchical pattern in off-diagonal elements [6]

|Vud| ' |Vcs| ' |Vtb| ' 1 , |Vus| ' |Vcd| ' 0.22 ,

|Vcb| ' |Vts| ' 4× 10−2 , |Vub| ' |Vtd| ' 5× 10−3 . (17)

Such structure can be made explicit in the Wolfenstein expansion [7] in λ ≡ |Vus| ' 0.22

VCKM =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) . (18)

5
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The four parameters in this parametrisation λ, A, ρ and η can be mapped exactly to the four physical
CKM parameters at any order in the λ expansion. All are of the order O(0.1 − 1) and the CP violating
phase is encoded in the imaginary contribution proportional to η. Current experimental precision already
requires that in phenomenological applications, expansion at least to order O(λ4) should be taken into
account.

3.2 Unitarity of the CKM
Being a unitary matrix, one can derive unitarity conditions on the rows and columns of the CKM matrix,
in particular

∑

k

V ∗ikVjk = δij ,
∑

k

V ∗kiVkj = δij . (19)

Phenomenologically, the most interesting condition applies for i = 1 and j = 3

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (20)

simply because all the three terms on the left hand side are of the same order in λ. The equation defines
a triangle in the complex plane. Normalizing one of the sides to unity

VudV
∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 , (21)

one can re-express it in terms of the Wolfenstein parameters (up to O(λ5))

[ρ̄+ iη̄] + [(1− ρ̄)− iη̄] + 1 = 0 , (22)

where ρ̄ = ρ(1 − λ2/2) + O(λ4) and η̄ = η(1 − λ2/2) + O(λ4) . The angles (denoted by α, β and
γ in Fig. 1) and sides of this triangle are invariant under phase transformations of quark fields and are
observable quantities.

3.3 Self consistency of the CKM assumption
The CKM description of quark flavour conversion has been tested experimentally to great precision. In
particular

– |Vus| (λ) can be extracted from the semileptonic kaon decay K → π`ν with a precision of three
per-mille: λ = 0.2253(9) [6] .

– |Vcb| (A) can be determined from semileptonic B meson decay width measurements B → Xc`ν
to a precision of two percent: A = 0.822(12) [6, 8] .

– Then, |Vub| ∝
√
ρ̄2 + η̄2 can be extracted using charmless semileptonic decays of B mesons

B → Xu`ν .
– The time-dependent CP asymmetry in the decay B → ψKS (SψKS

' sin 2β = 2η̄(1− ρ̄)/[(1−
ρ̄)2 + η̄2]) has been measured to great precision at the B factory experiments Belle and BaBar.

– The rates B → DK decays depend on the phase exp(iγ) = (ρ+ iη)/(ρ2 + η2) .
– Similarly, the rates of B → ππ, ρπ, ρρ depend on the angle α = π − β − γ .
– The ratio of neutralB andBs meson mass diferences ∆md/∆ms ∝ |Vtd/Vts|2 = λ2

[
(1− ρ̄)2 + η̄2

]

exhibits another non-trivial constraint in the (ρ̄, η̄) plane.
– Finally, CP violation in K → ππ decays (εK) depends in a complicate way on (ρ̄, η̄).

6
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dm
K

K

sm & dm

ubV

sin 2

(excl. at CL > 0.95)
 < 0sol. w/ cos 2

excluded at CL > 0.95

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

FPCP 13

CKM
f i t t e r

Fig. 1: Result of the SM CKM fit projected onto the ρ̄− η̄ plane, as obtained by the CKMfitter [8] collaboration.
Shown shaded are the 95% C.L. regions selected by the given observables.

Combined, these measurements lead to an impressive agreement with the best fit ranges for ρ and η (see
also Fig. 1 and Ref. [9]) [8]

ρ = 0.130± 0.024 , η = 0.362± 0.014 . (23)

Note that |η| & |ρ| implies that the CKM phase defined in this way isO(1) . We can also conclude
that, very likely, CP violation in flavour changing processes is dominated by the CKM phase and that the
Kobayashi-Maskawa mechanism of CP violation is at work. Again one can define a reparametrisation
invariant measure of CP violation

Im[VijV
∗
kjVklV

∗
il ] = JKM

∑
εikmεjln , (24)

where JKM = λ6A2η = O(10−5) . Written in this form it is clear the CP violation in the SM is
suppressed by small mixing among the quark generations. The Jarlskog determinant in the SM can then
be written compactly as

J = JKM
∏

i>j

m2
i −m2

j

v2
= O(10−22) . (25)

We see that compared to JKM , J is further suppressed by the large quark mass hierarchies.

4 Closer look at CP violation in neutral meson mixing and decays
For simplicity, we will focus on the neutral B meson sistem with the flavour eigenstates B0 ∼ b̄d and
B̄0 ∼ bd̄. Since in general, these are not CP eigenstates, we have

CP |B0〉 = eiξB |B̄0〉 ,

7
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CP |B̄0〉 = e−iξB |B0〉 . (26)

Stating from an initial superposition state at t = 0 |ψ(0)〉 = a(0)|B0〉+ b(0)|B̄0〉, the time evolution of
such a system can in general be described as

|ψ(t)〉 = a(t)|B0〉+ b(t)|B̄0〉+ c1(t)|f1〉+ c2(t)|f2〉+ . . . , (27)

where f1,2,... denote the B0 and B̄0 decay products. If we are only interested in a(t) and b(t), we can
construct an effective description of the time evolution in terms of a non-hermition Hamiltonian

H = M + i
Γ

2
, (28)

where M and Γ are time-independent, Hermitian 2 × 2 matrices, describing possible oscillations and
decays, respectively. The dispersive part M recieves contributions from off-shell intermediate states,
while Γ is the absorptive part and given by a sum over possible on-shell intermediate states. The time-
evolution is then described by

i
d

dt

(
a(t)
b(t)

)
= H

(
a(t)
b(t)

)
, (29)

with the eigenvectors |BL,H〉 = pL,H |B0〉 ± qL,H |B̄0〉 , and where |pL,H |2 + |qL,H |2 = 1 . Imposing
CPT, one obtains M11 = M22, Γ11 = Γ22, and consequently pL = pH ≡ p and qL = qH ≡ q . If CP is
conserved one furthermore obtains that Arg(M12) = Arg(Γ12) and thus |q/p| = 1 .

Conventionally, on defines the following CP conserving oscillation parameters

m ≡ ML +MH

2
, Γ ≡ ΓL + ΓH

2
,

∆m ≡MH −ML , ∆Γ ≡ ΓH − ΓL , (30)

or equivalently x ≡ ∆m/Γ and y ≡ ∆Γ/2Γ .

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)〉 corresponding to |B0〉 at initial time t = 0, and |B̄0(t)〉 corresponding to |B̄0〉 at t = 0

|B0(t)〉 = g+(t)|B0〉 − q

p
g−(t)|B̄0〉 ,

|B̄0(t)〉 = g+(t)|B̄0〉 − q

p
g−(t)|B0〉 , (31)

where
g± ≡

1

2

(
e−mH t−ΓH t/2 ± e−mLt−ΓLt/2

)
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

〈f |H|B0〉 ≡ Af ,
〈f̄ |H|B0〉 ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)〉)→ |f(t)〉
dt

= N0e
−Γ t|Af |2×

{
1 + |λf |2

2
cosh

∆Γ t

2
+

1− |λf |2
2

cos ∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin ∆mt

}
,

8
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dΓ(|B̄0(0)〉)→ |f(t)〉
dt

= N0e
−Γ t|Āf |2×

{
1 + |λ̄f |2

2
cosh

∆Γ t

2
+

1− |λ̄f |2
2

cos ∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin ∆mt

}
, (34)

where N0 is the overall flux normalization,

λf ≡
q

p

Āf
Af

, λ̄f ≡
p

q

Af
Āf

=
1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |2, |Āf |2 describe a decay without net oscillation.
– Terms proportional to |λf |2, |λ̄f |2 describe a decays following net oscillations.
– Terms proportional to sin ∆mt, sinh ∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) 6= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

[
B̄0(0)→ fCP (t)

]
− dΓ

dt

[
B0(0)→ fCP (t)

]

dΓ
dt

[
B̄0(0)→ fCP (t)

]
+ dΓ

dt [B0(0)→ fCP (t)]
. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| ' 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |2
, Cf ≡

1− |λf |2
1 + |λf |2

. (38)

4.1 Phases in decay amplitudes
Consider the decay B → f described by the amplitude Af and its CP conjugate process B̄ → f̄
associated with the amplitude Āf̄ . Any complex parameter in the theory Lagrangian entering the two
amplitudes will appear complex conjugated after CP and will thus appear with opposite signs in Af and
Āf̄ . The associated CP odd phases are conventionally called weak phases. In the SM they are induced
via W exchanges. Note that single amplitude phases are convention dependent and thus not physical.
Only differences between phases of different amplitudes are physical.

On the other hand, on-shell intermediate states in scattering or decay ampitudes can produce phase
changes even if the relevant Lagrangian is real. These are thus independent of CP. They will appear with
same signs in both Af and Āf̄ . These CP even phases are often reffered to as strong phases. In the SM
they are due to strong interaction induced re-scattering. Again, only relative phases between amplitudes
are physical.

In general, one can thus write both decay amplitudes as

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) + . . . ,

Āf̄ = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2) + . . . , (39)

where a1,2,... are contributions to the amplitude with different phases, δ1,2... are the strong phases and
φ1,2... are the weak phases.
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4.2 CP violation inB → ψKS

To a good approximation, the B → ψKS decays are described by a just single weak decay amplitude to
a CP eigenstate (with CP eigenvalue ηf )

Af = |af |ei(δf+φf ) ,

Āf = |af |ei(δf−φf )ηf , (40)

so that λf = ηf (q/p) exp(−2iφf ) . In the neutral B system |Γ12| � |M12|, since it is due to O(G2
F )

long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally
since ∆Γ� ∆m). Then one can write

(
q

p

)2

=
M∗12 − i

2Γ∗12

M12 − i
2Γ12

' e2iξB , (41)

and thus λf ' ηf exp[i(ξB−2φf )], leading to a simple expression for the time-dependent CP asymmetry
Af (t), in particular

SfCP
' ηf sin(ξB − 2φf ) . (42)

In the SM, ξB and φf are exactly computable in terms of the CKM elements. In particular

ξB = −Arg(M12) ' −Arg[(V ∗tbVtd)
2] = −Arg

(
V ∗tbVtd
VtbV

∗
td

)
, (43)

while

−e−2iφf =
Ā

(B)
ψKS

A
(B)
ψKS

= −VcbV
∗
cs aT + . . .

V ∗cbVcs aT + . . .
eiξK ' −VcbV

∗
cs

V ∗cbVcs

V ∗cdVcs
VcdV ∗cs

. (44)

In the above equation, the dots denote additional amplitudes suppressed by small coefficients and CKM
elements. Also, in the second step we have taken into account the phase projection of the neutral kaon
flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain

λ
(B)
ψKS

' V ∗tbVtd
VtbV

∗
td

VcbV
∗
cd

V ∗cbVcd
= −e−2iβ . (45)

The observable S(B)
ψKS

' sin 2β (note that C(B)
ψKS

' 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation inBs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely

∆ms

∆md
∼ |M

s
12

|Md
12|
∝
∣∣∣∣
Vts
Vtd

∣∣∣∣
2

∼ 30 . (46)

Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ
(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
[
S

(Bs)
ψφ

]
SM

= 2Arg
V ∗tbVts
V ∗cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].
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4.4 CP violation inB decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry

dΓ
dt

[
B̄0(0)→ f(t)

]
− dΓ

dt

[
B0(0)→ f̄(t)

]

dΓ
dt

[
B̄0(0)→ f(t)

]
+ dΓ

dt

[
B0(0)→ f̄(t)

] =

∣∣∣pq
∣∣∣
2
−
∣∣∣ qp
∣∣∣
2

∣∣∣pq
∣∣∣
2

+
∣∣∣ qp
∣∣∣
2 ' Im

(
Γ12

M12

)
+O

(∣∣∣∣
Γ12

M12

∣∣∣∣
2
)
, (48)

where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a
(d)
SL =

Γ(B̄0 → X`+ν)− Γ(B0 → X`−ν̄)

Γ(B̄0 → X`+ν) + Γ(B0 → X`−ν̄)
, (49)

with the SM expectation of a(d)
SL = −8(2)× 10−4 [10] .

4.5 CP violation in chargedB decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D − D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b→ cūs ,

B− → D̄0K− : b→ c̄us . (50)

The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]

D0 → fCP : c→ dd̄u , ss̄u ,

D̄0 → fCP : c̄→ dd̄ū , ss̄ū . (51)

In the SM the ratio of the two decay amplitudes is then

AB(D→f)K

AB
(D̄→f)K

=
V ∗cbVusa

B
DK

V ∗ubVcsa
B
D̄K

ei(δ
B
DK−δBD̄K

)ηf
VcdV

∗
ud

V ∗cdVud

aDf

aD̄f
ei(δ

D
f −δD̄f ) ' ηfrBei(δB−γ) , (52)

where we have used the definition of the angle γ ≡ Arg(−VudV ∗ub/VcdV ∗cb) ' 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by mea-
suring several available decay rates only, which are CP even quantities. In particular

A(B− → f+K
−) = A0

[
1 + rBe

i(δB−γ)
]
,

A(B− → f−K−) = A0

[
1− rBei(δB−γ)

]
,

A(B+ → f+K
−) = A0

[
1 + rBe

i(δB+γ)
]
,

A(B+ → f−K−) = A0

[
1− rBei(δB+γ)

]
. (53)

can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non CP
eigenstates [13].
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5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+`ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu`ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)

Using the measurements of the Fermi constant from the muon life-time, one can further reinterpret these
constraints as tests of the charged current universality between leptonic and semileptonic weak processes
at the per-mille level. In light of this, it is reasonable to consider NP contributions to observables which
are (loop, CKM) suppressed in the SM. Then one can use the CKM determination from tree-level ob-
servables, in particular |Vud|, |Vus|, |Vcb| and |Vub| as well as γ from B → DK decays (and/or α from
tree-level dominated B → ππ decays) . This finally allows to predict SM contributions also to loop
suppressed observables, greatly enhancing their sensitivity to NP.

5.1 New physics inB − B̄ mixing
In the following we will assume a presence of heavy NP – such that it would only contribute to dispersive
B − B̄ amplitudes. In that case, the most general modification of M12 can be parametrised as

M12 = MSM
12 r2

de
2iθd (55)

where the NP parameters rd and θd signify a change of the magnitude and phase with respect to the
SM prediction, respectively. Such effects of NP can then be easily translated to all relevant B mixing
observables as

∆mB = r2
d (∆mB)SM ,

S
(B)
ψKS

' sin(2β + 2θd) ,

a
(d)
SL = −Re

(
Γ12

M12

)SM sin 2θd
r2
d

+ Im

(
Γ12

M12

)SM cos 2θd
r2
d

. (56)

One can compare these expectations to the current experimental measurements of [6]

∆mB = 51.0(4)× 1010/s , S
(B)
ψKS

= 0.671(24) , a
(d)
SL = −0.2(7)× 10−3 , (57)

where the SM expectation with tree-level CKM inputs for [S
(B)
ΨKS

]SM
tree = 0.76(4) [8] . We can immedi-

ately draw the following conclusions

– NP in M12 with a large phase relative to β is constrained to 20% − 30% of the SM contribution.
Thus, CKM clearly dominates CP violation in B − B̄ mixing. (A similar conclusion can be made
for the case of K0 − K̄0 system: the measured value of εK = 1.596(13) × 10−3 constrains
CP violating NP in kaon mixing amplitudes to be subdominant. The power of this constraint is
however presently limited by theory uncertainties.)
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– NP inM12 with a phase that is aligned to β is constrained to be at most comparable to the SM con-
tribution. (Again a similar conclusion can be made for the case of K0− K̄0 system: the measured
value of ∆mK = 52.93(9) × 108/s constrains CP conserving NP in kaon mixing amplitudes
to be comparable to SM estimates, which however contrary to the B case carry sizable theory
uncertainties.)

As a comparison, in the case of Bs mixing, NP can be at most comparable to the SM contribution
regardless of the phase since SSM

ψφ . δSexp
ψφ .

5.2 The new physics flavour puzzle
The SM is not a complete theory of Nature.

1. It does not include a (quantum) description of gravity. Thus its validity is limited below the Planck
scale mPlanck ' 1019 GeV.

2. It does not include neutrino masses. This further limits its validity down to below the maxi-
mal scale at which new degrees of freedom can accommodate at least two massive neutrinos
msee−saw . 1015 GeV.

3. The fine-tuning of the EW symmetry breaking scale compared to the large scales in the above
points 1. and 2. suggests NP already at scales of the order 4πv ∼ 1 TeV .3

Given the SM is merely an effective field theory valid below a cut-off energy scale Λ, one needs to
consider additional terms in the theory Lagrangian consisting of SM field operators with canonical di-
mensions d > 4:

L = LSM +
∑

d>4

∑

n

c
(d)
n

Λd−4
O(d)
n . (58)

In a natural theory one expects c(d)
n ∼ O(1) unless the relevant operators are forbidden or suppressed by

symmetries. For Λ ∼ TeV and without imposing additional symmetries beyond the gauged SM ones, the
above condition is severely violated for several O(6)

n , which contribute to flavour changing processes.
This constitutes the so-called NP flavour puzzle , which can be articulated through the following question:
If there is NP at the TeV scale, why haven’t we seen its effects in flavour observables? Naively, one
could argue, that the same it true for NP violating baryon and lepton numbers. However, B and L are
(classically) exact accidental symmetries of the SM, while in the SM the flavour symmetry is already
broken explicitly.

5.3 Bounds on new physics from ∆F = 2 processes
The NP flavour puzzle can be demonstrated perhaps most dramatically in the case ∆F = 2 FCNCs.
In the SM the dispersive contributions to ∆F = 2 processes of down-quarks are typically dominated
by box diagrams with the top quarks appearing in the loop. These contributions can be schematically
written as

MSM
12 =

G2
Fm

2
t

16π2
(V ∗tiVtj)

2 〈M̄ |(d̄iLγµdjL)2|M〉F
(
m2
t

m2
W

)
+ . . . , (59)

where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function
normalized to F (∞) = 1 , while the dots denote corrections due to charm quark contributions, which
are numerically relevant only in the case of K − K̄ mixing. Note that the prefactor can be rewritten
completely in terms of the fundamental flavour parameters (Yukawas) in the unbroken theory

G2
Fm

2
t

16π2
(V ∗tiVtj)

2 =
(YuY

∗
u )ij

128π2m2
t

, (60)

3Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is
in the form of a thermal particle relic.
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which can be interpreted as due to Goldstone Higgs exchanges in the gaugeless (g → 0) limit of the SM.

The relevant hadronic matrix elements between the external M and M̄ mesons can be written as

〈M̄ |(d̄iLγµdjL)(d̄iLγ
µdjL)|M〉 =

2

3
f2
Mm

2
M B̂M , (61)

where the relevant meson decay constant fM is defined via 〈0|diγµγ5d
j |M(p)〉 ≡ ipµfM , while B̂M ∼

O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using
lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected in
the precise values of [15]

fB = 0.186(4) GeV , B̂B = 1.27(10) ,

fBs = 0.224(5) GeV , B̂Bs = 1.33(6) ,

fK = 0.1563(9) GeV , B̂K = 0.7661(99) . (62)

With these inputs we can use the experimental measurements of neutral meson mixing observables to
constrain possible NP contributions of the form

L∆F=2
NP =

csd
Λ2

(
d̄Lγ

µsL
)2

+
cbd
Λ2

(
b̄Lγ

µsL
)2

+
cbs
Λ2

(s̄Lγ
µbL)2

+
ccu
Λ2

(ūLγ
µcL)2 +

ctu
Λ2

(ūLγ
µtL)2 +

ctc
Λ2

(c̄Lγ
µtL)2 . (63)

The effects of such NP on neutral meson oscillations can namely be completely encoded into

MM
12

mM
∼ cij

(
fM
Λ

)2

, (64)

which leads to the following set of current experimental constraints [9, 16]

∆mK

mK
∼ 7× 10−15 ⇒ Λ√

|csd|
& 103 TeV or |csd| . 10−6

(
Λ

TeV

)2

,

∆mD

mD
∼ 9× 10−15 ⇒ Λ√

|ccu|
& 103 TeV or |ccu| . 10−6

(
Λ

TeV

)2

,

∆mB

mB
∼ 6× 10−14 ⇒ Λ√

|cbd|
& 4× 102 TeV or |cbd| . 5× 10−6

(
Λ

TeV

)2

,

∆mBs

mBs

∼ 2× 10−12 ⇒ Λ√
|cbs|

& 70 TeV or |cbs| . 2× 10−4

(
Λ

TeV

)2

. (65)

Furthermore, in case of maximal CP violating phases in cij , one obtains even stronger constraints

εK ∼ 0.0023 ⇒ Λ√
|Im(csd)|

& 2× 104 TeV or |Im(csd)| . 6× 10−10

(
Λ

TeV

)2

,

AΓ

yCP
. 0.2 ⇒ Λ√

|Im(ccu)|
& 3× 103 TeV or |Im(ccu)| . 10−7

(
Λ

TeV

)2

,

SψKS
∼ 0.67 ⇒ Λ√

|Im(cbd)|
& 8× 102 TeV or |Im(cbd)| . 10−6

(
Λ

TeV

)2

,

Sψφ ∼ 0.1 ⇒ Λ√
|Im(cbs)|

& 70 TeV or |Im(cbs)| . 2× 10−4

(
Λ

TeV

)2

. (66)

The two main messages one can draw from such an analysis are that (1) NP with a generic flavour
structure is irrelevant for EW hierarchy, since flavour measurements in this case require Λ � TeV; and
(2) in case of TeV NP, its flavour structure needs to be far from generic.
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6 Conclusions
The absence of significant deviations from the SM in quark flavour physics is a key constraint on any ex-
tension of the SM. At the same time there are still various open questions regarding the flavour structure
of the standard model itself that can be possibly addressed only at low energies, using flavour phyiscs
measurements. The set of flavour observables to be measured with higher precision in the search for indi-
rect hints of NP is limited, but not necessarily small. For example, we still have only limited knowledge
about CP violation in theBs andD systems. In addition, despite significant recent progress, new-physics
effects could still be hidden in certain rare kaon, D and B decays [17]. The experimental progress on
these, as expected from the LHCb [18] in LHC run II, Belle II [19] and other upcoming flavour experi-
ments will thus be invaluable.
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