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Abstract
These lectures are a brief introduction to supersymmetry.

1 Introduction
You have probably heard in the past about the motivation for supersymmetry. Through these lectures,
this will (hopefully) become clear and more concrete. But it’s important to state at the outset: There is no
experimental evidence for supersymmetry. The amount of effort that has been invested in supersymmetry,
in both theory and experiment, may thus be somewhat surprising. In this respect, supersymmetry is no
different from any other “new physics” scenario. There is no experimental evidence for any underlying
theory of electroweak symmetry breaking, which would give rise to the (fundamental scalar) Higgs
mechanism as an effective description. There is of course experimental evidence for physics beyond the
standard model (SM): dark matter, the baryon asymmetry—CP violation.

Why so much effort on supersymmetry? It is a very beautiful and exciting idea because it’s con-
ceptually different from anything we know in Nature. It’s a symmetry that relates particles of different
spins—bosons and fermions. In fact, we are now in a very special era from the point of view of spin:
The Higgs was discovered. As far as we know, it is a fundamental particle. So for the first time, we have
a spin-0 fundamental particle. It would be satisfying to have some unified understanding of the spins we
observe. Supersymmetry would be a step in this direction. Given the SM fermions, it predicts spin-0
particles. Beyond this purely theoretical motivation, the fact that the Higgs is a scalar poses a more
concrete (yet purely theoretical) puzzle. Scalar fields (unlike vector bosons or fermions) have quadratic
divergences. This leads to the fine-tuning problem, as we will review in the next Section. Supersymmetry
removes these divergences. We will see that in some sense Supersymmetry makes a scalar behave like
a fermion.

Supersymmetry is not a specific model. Rather, there is a wide variety of supersymmetric ex-
tensions of the SM. These involve different superpartner spectra, and therefore different experimental
signatures. In thinking about these, we have developed a whole toolbox for collider searches, including
different triggers and analyses. In particular, supersymmetry supplies many concrete examples with new
scalars (same charges as SM fermions), new fermions (same charges as SM gauge bosons), potentially
leading to missing energy, displaced vertices, long lived charged particles, or disappearing tracks, to
name just some of the possible signatures.. For discovery, spin is a secondary consideration. So even if
we are misguided in thinking about supersymmetry, and Nature is not supersymmetric, the work invested
in supersymmetry searches may help us discover something else.

1.1 Plan
In Section 2 of these lectures we will see the basics of supersymmetry through a few simple toy models.
These toy models can be thought of as “modules” for building the supersymmetrized standard model. In
the process, we will try to de-mystify supersymmetry and understand the following questions about it:

– In what sense is it a space-time symmetry (extending translations, rotations and boosts)?
– Why does it remove UV divergences (thus solving the fine-tuning, or Naturalness problem)?
– Why do we care about it even though it’s clearly broken?
– Why is the gravitino relevant for LHC experiments?
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In Section 3 we will describe the Minimal Supersymmetric Standard Model (MSSM). Here we will put
to use what we learned in Section 2. We will discuss:

– Motivation (now that you can appreciate it)
– The field content
– The interactions: we will see that there is (almost) no freedom in these
– The supersymmetry-breaking terms: this is where we have freedom, and these determine experi-

mental signatures.
– EWSB and the Higgs mass
– Spectra (the general structure of superpartner masses)

We will conclude in Section 5 with general considerations for LHC searches.

The aim of these lectures is to provide a conceptual understanding of supersymmetry and the
supersymmetrized standard model. Therefore, we will start with a pretty technical review of what sym-
metries are and their derivation from Lagrangians. This is necessary so that you get a clear idea of what
supersymmetry is. As we go on however, we will take a more qualitative approach. For more details, I
refer you to the many excellent books and reviews of the subject, including, for example [1–3]. I cannot
do justice to the vast literature on the subject in these short lectures. For original references, I refer you
again to the books and reviews above.

2 Supersymmetry basics
2.1 Spacetime symmetry
The symmetry we are most familiar with is Poincare symmetry. It contains

– Translations: xµ → xµ + aµ (generators: Pµ)
– Lorentz transformations: xµ → xµ + wµνxν , where wµν is antisymmetric (generators: Jµν)

Throughout we will only consider global, infinitesimal transformations, so aµ andwµν are small, coordinate-
independent numbers.

These transformations contain rotations. For a rotation around the axis xk (with angle θk): wij =
εijkθk. Thus for example for rotations around z:

x0 → x0 ; x1 → x1 − θx2 ; x2 → x2 + θx1 ; x3 → x3

The Lorentz transformations also contain boosts. For a boost along the axis xk (with speed βk):
−w0k = wk0 = βk. Thus for example for a boost along z,

x0 → x0 + βx3 ; ; x1 → x1 ; x2 → x2 ; x3 → x3 + βx0 .

The Lorentz algebra is:
[Pµ, P ν ] = 0

[Pµ, Jρσ] = 0 (1)

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ) .

Here Pµ are the momenta—the generators of translations, Jµν contain the angular momenta, which
generate rotations (with µ, ν = 1, 2, 3) and the generators of boosts (with µ = 0, ν = 1, 2, 3).

Let’s recall where all this is coming from. To do that, let’s “discover” all the above in a simple
field theory, namely a field theory of a single free complex scalar field. The Lagrangian is,

L = ∂µφ∗ ∂µφ−m2 |φ|2 . (2)
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What’s a symmetry? It’s a transformation of the fields which leaves the Equations of Motion
(EOMs) invariant. The EOMs follow from the action, so this tells us that the action is invariant under
the symmetry transformation. Since the action is the integral of the Lagrangian, it follows that the
Lagrangian can change by a total derivative,

L → L+ α∂µJ µ , (3)

where α is the (small) parameter of the transformation.

What’s the symmetry of our toy theory? First, there’s a U(1) symmetry:

φ(x)→ eiαφ(x) . (4)

Under this transformation, L is invariant. This is an example of an internal symmetry, that is, a symmetry
which is not a space-time symmetry (it does not do anything to the coordinates).

But our toy theory also has spacetime symmetries:
Translations:

xµ → xµ + aµ (5)

φ(x)→ φ(x− a) = φ(x)− aµ∂µφ(x) (6)

or
δaφ(x) = aµ∂µφ(x) (7)

and Lorentz transformations:

xµ → xµ + wµνxν (8)

φ(xµ) → φ(xµ − wµνxν) (9)

so
δwφ(x) = wµνxµ∂νφ(x) =

1

2
wµν(xµ∂ν − xν∂µ)φ(x) (10)

The Lagrangian only changes by a total derivative under these, so the action is invariant.

Now let’s see how the algebra arises. Consider performing two translations. First we do a trans-
lation with xµ → xµ + aµ. Then we do a translation with xµ → xµ + bµ. Alternatively, we could first
perform the translation with bµ and then the one with aµ. Obviously, this should not make any difference.
Mathematically, this translates to the fact that the commutator of two translations vanishes. Indeed,

[δa, δb]φ ≡ δa(δbφ)− δb(δaφ) = 0 . (11)

With rotations and boosts, the order does matter. Consider the commutator of two Lorentz transforma-
tions with parameters wµν and λρσ:

[δwµν , δλρσ ]φ = iwµνλρσ · i {gνρ(xµ∂σ − xµ∂σ) + permutations} (12)

So we derived the algebra of spacetime symmetry transformations (=the Poincare algebra) in this toy
example. Now let’s do the same in a supersymmetric theory.

2.2 A simple supersymmetric field theory
Our example will be a free theory with one massive (Dirac) fermion of mass m, which we will denote by
ψ(x), and two complex scalars of mass m which we will denote by φ+(x) and φ−(x). The Lagrangian
is,

L = ∂µφ∗+ ∂µφ+ −m2 |φ+|2 + ∂µφ∗− ∂µφ− −m2 |φ−|2 + ψ̄(i/∂ −m)ψ (13)

3

INTRODUCTION TO SUPERSYMMETRY

97



The labels +, − are just names, we’ll see the reason for this choice soon. This isn’t the most minimal
supersymmetric 4d field theory. “Half of it” is: a 2-component (Weyl) fermion plus one complex scalar.
But Dirac spinors are more familiar so we start with this example.

Just as in the previous example, this theory has spacetime symmetry, including translations, rota-
tions, and boosts. The only difference is that ψ(x) itself is a spinor, so it transforms nontrivially,

ψ(x)→ ψ′(x′) . (14)

Actually, the L-handed and R-handed parts of the spinor transform differently under Lorentz. Write
(
ψL
ψR

)
(15)

where ψL and ψR are 2-component spinors. Then under Lorentz transformations,

ψL → ψ′L = (1− iθiσ
i

2
− βiσ

i

2
) (16)

ψR → ψ′R = (1− iθiσ
i

2
+ βi

σi

2
) (17)

so it will be useful to write everything in terms of 2-component spinors.

Recall that we can write any R-handed spinor in terms of a L-handed one:

ψR = −εχ∗L (18)

where

ε ≡ −iσ2 =

(
0 −1
1 0

)
(19)

Exercise: prove eq. (18)

We can then write our Dirac spinor in terms of two L-handed spinors ψ+ and ψ−: ψL = ψ+,
ψR = −εψ∗− so that,

ψ =

(
ψ−
−εψ∗+

)
(20)

Let’s write the Lagrangian in terms of these 2-component spinors,

L = ∂µφ∗+ ∂µφ+ + ψ†+iσ̄
µ∂µψ+

+ ∂µφ∗− ∂µφ− + ψ†−iσ̄
µ∂µψ− (21)

− m2 |φ−|2 −m2 |φ+|2 −m(ψT+εψ− + hc)

Exercise: Derive this. Show also that ψT+εψ− = ψT−εψ+, where ψ± are any 2-component spinors.

All we’ve done so far is to re-discover spacetime symmetry in this simple field theory. Now comes
the big question: Can this spacetime symmetry be extended?

The answer is YES: there’s more symmetry hiding in our theory! Take a constant (anti-commuting)
2-component L-spinor ξ. Consider the following transformations,

δξφ+ =
√

2 ξT εψ+

δξψ+ =
√

2 iσµεξ∗∂µφ+ (22)
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and similarly for +→ −.

Exercise: Check that this is a symmetry of our theory: 1. Show that the massless part of the
Lagrangian is invariant. 2. Show that the rest of the Lagrangian is invariant too if the masses of the
fermion and scalars are the same. Here you will have to use the EOMs.

We see that the symmetry transformations take a boson into a fermion and vice versa. THIS IS
SUPERSYMMETRY.

As an (important) aside, we note that the symmetry separately relates φ− − ψ− and φ+ − χ+.
Thus, if m = 0, the two halves of the theory decouple, and each one is symmetric separately. Therefore,
as mentioned above, this theory is not the most minimal supersymmetric theory, but half of it is. This is
very handy if we’re to implement supersymmetry in the SM, because the SM is a chiral theory.

Is the symmetry we found indeed an extension of Poincare? It’s surely a spacetime symmetry
since it takes a fermion into a boson (the transformation parameters carry spinor indices). Furthermore,
let’s consider the algebra. Take the commutator of two new transformations with parameters ξ, η:

[δξ, δη]φL = aµ∂µφL with aµ = 2i
(
ξ†σ̄µη − η†σ̄µξ

)
(23)

This is a translation! We see that the commutator of two new transformations gives a translation. So
indeed, the new symmetry is an extension of the “usual” spacetime symmetry.

Exercise: Check eq. (23). You will have to use the EOMs.

Let’s summarize: Our simple theory is supersymmetric. We have an extension of spacetime sym-
metry that involves anti-commuting generators. The supersymmetry transformations relate bosons and
fermions.

There are a couple of features of this simple example that are worth stressing because they hold
quite generally: (i) If the bosons and fermions had different masses, we would not have this symmetry.
That is, the theory would not be supersymmetric. (ii) Let’s count the physical degrees of freedom (dof’s):
on-shell we have 2 + 2 = 4 fermions, 2 + 2 = 4 bosons. Thus we have equal numbers of fermionic and
bosonic dof’s. (Off shell, the bosons are the same, but the fermions have 2× 4.)

2.3 The vacuum energy
Recall that global symmetries lead to Noether currents. For each global symmetry there is a current jµ,
with ∂µjµ = 0, so that there is a conserved charge:

Q =

∫
d3x j0(x) with

d

dt
Q = 0 . (24)

For translations in time, the conserved charge is the Hamiltonian H .

Thus, what we found above in eqn. (23) means that the anti-commutator of two supersymmetry
transformations gives the Hamiltonian. Schematically,

{SUSY, SUSY} ∝ H , (25)

where SUSY stands for the generator of a supersymmetry transformation.

Now consider the vacuum expectation value (VEV) of this last relation,

〈0| {SUSY,SUSY} |0〉 ∝ 〈0|H|0〉 . (26)

If supersymmetry is unbroken, the ground state is supersymmetric. Therefore it is annihilated by the
SUSY generator,

SUSY|0〉 = 0 . (27)
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Using eqn (26) we find
〈0|H|0〉 = 0 . (28)

In a supersymmetric theory, the ground state energy is zero.

As you probably heard many times (and as we will review soon), one of the chief motivations for
supersymmetry is the fine-tuning problem, that is, the fact that supersymmetry removes the quadratic
divergence in the Higgs mass. Here you can already see the power of supersymmetry in removing
UV divergences. The vacuum energy usually diverges. (This should remind you of your first quantum
mechanics class, where you saw that there’s an infinite constant in the energy of the harmonic oscillator.
In QM, we just set this infinite constant to zero, by choosing the zero of the energy.) This is in fact the
worst divergence we encounter in field theory, a quartic divergence. Now we see that supersymmetry
completely removes this divergence: in a supersymmetric theory, the ground state energy is zero. This
gives us hope that supersymmetry can help with other UV divergences.

The next worst divergence you can have in field theory is a quadratic divergence. Where does it
show up? In the mass-squared of scalar fields:

δm2 ∝ Λ2 (29)

where Λ is the cutoff. This is why we are worried about fine tuning in the Higgs mass. You could ask
yourself why no one ever worries about the electron mass. It too is much smaller than the Planck scale.
The reason this is not a problem, is that fermion masses have no quadratic divergences, only logarithmic
divergences. This is a very important result so we will see it in three ways.
(1) Consider a fermion Lagrangian with a mass term m0,

L = ψ̄(i/∂ −m0)ψ = ψ̄(i/∂)ψ −m0(ψ†LψR + ψ†RψL) (30)

Note that the mass term is the only term that couples ψL and ψR. So if m0 = 0, ψL, ψR don’t talk
to each other. A mass term (L-R coupling) is never generated. Therefore, even if we include quantum
corrections,

δm ∝ m0 , (31)

(Here m is the full, physical mass including quantum corrections.) We see that with m0 = 0 we have
two different species: ψL—call it,say, a “blue” fermion, and ψR, a “red fermion”, and they don’t interact
at all.

(2) Consider m0 6= 0. Take a L-fermion (spin along p̂). This is our “blue fermion”. We can run
very fast alongside. If our speed is greater than the fermion’s speed, p̂→ −p̂, but the spin stays the same.
Thus the fermion helicity (which is the projection of the spin along the direction of motion) changes. L
becomes R. The “blue” fermion turns into a “red” fermion. (We see that helicity is not a good quantum
number for a massive fermion.) But if m0 = 0, the “blue” fermion is massless. It travels at the speed of
light—we can never run fast enough. The blue fermion does not change into a red fermion. Thus, L and
R are distinct in this case, and the blue fermion and the red fermion are decoupled. We thus learn that
any correction to the bare mass m0 must be proportional to m0,

δm ≡ m−m0 ∝ m0 (32)

How can the UV cutoff Λ enter? On dimensional grounds,

δm ∝ m0 log
m0

Λ
, (33)

so
δm = 0 · Λ + #m0 log

m0

Λ
. (34)

Indeed, there is no quadratic divergence in the fermion mass. The worst divergence that can appear is a
logarithmic divergence. This is why no one ever worries about fine-tuning in the electron mass.
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(3) Again, the question we’re asking is: why is there no quadratic divergence in the fermion mass?
We’ll now see this using a global symmetry—the chiral symmetry. Let’s consider the fermion Lagrangian
again,

L = ψ̄(i/∂)ψ −m0(ψ†LψR + ψ†RψL) (35)

if m0 = 0, we have two independent U(1) symmetries, U(1)L×U(1)R. This symmetry forbids the mass
term. We again conclude (33).

We saw that supersymmetry implies that the boson mass equals the fermion mass. We also saw that
chiral symmetry implies that there is no quadratic divergence in the fermion mass. Putting these together
we conclude that in a supersymmetric theory: there is no quadratic divergence in the boson mass.
This is how supersymmetry solves the fine-tuning problem.

But there’s more that we can learn just based on dimensional analysis. We know there is no
supersymmetry in Nature. We know for example that there is no spin-0 particle whose mass equals the
electron mass. So why should we care about supersymmetry? The reason is that supersymmetry is so
powerful that even when it’s broken by mass terms, the quadratic divergence does not reappear! All we
need in order to see this is dimensional analysis. Suppose we take a supersymmetric theory and change
the scalar mass (squared) 1

m0
2
scalar = m0

2
fermion + m̃2 (36)

where m̃2 is some constant. Will there be a quadratic divergence in the scalar mass?

δm2
scalar = #Λ2 + #m0

2
scalar log

m0
2
scalar

Λ2
?? (37)

No. For m̃2 = 0, supersymmetry is restored, and therefore there shouldn’t be a quadratic divergence. So
the Λ2 term (which is the quadratic divergence) must be proportional to m̃2. But there’s nothing we can
write in perturbation theory that would have the correct dimension.

We conclude that, if supersymmetry is broken by

m0
2
scalar 6= m0

2
fermion (38)

the scalar mass-squared has only log divergences. In other words, the supersymmetry breaking (given
by the fact that the scalar mass is different from the fermion mass) does not spoil the cancellation of the
quadratic divergence. This type of breaking is called soft-supersymmetry breaking. (This is what we
have in the Minimal Supersymmetric Standard Model (MSSM).)

Parenthetically, we note that one can also have hard supersymmetry breaking. Take a supersym-
metric theory, and change some dimension-less number, eg, the coupling of the boson compared to the
coupling of the fermion. This will reintroduce the quadratic divergences.

We derived all these results based on dimensional analysis. Now let’s see them concretely. To get
something non-trivial we must add interactions. Let’s go back to our simple theory,

L = ∂µφ∗+ ∂µφ+ + ψ†+iσ̄
µ∂µψ+ (39)

+ ∂µφ∗− ∂µφ− + ψ†−iσ̄
µ∂µψ− (40)

− m2 |φ−|2 −m2 |φ+|2 −m(ψT+εψ− + hc) (41)

Our two fermions look like the two pieces of an electron or a quark. For example, you can think of ψ−
as the SM SU(2)-doublet quark, and of the ψ+ as the SM SU(2)-singlet quark. To get interactions, let’s
add a complex scalar h, with the “Yukawa” interaction:

δL = −y hψT+εψ− + hc (42)

1For scalar fields, the physical parameter is the mass-squared. This is what appears in the Lagrangian.
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here y is a coupling. To make a supersymmetric theory we also need a (L) fermion h̃ (their supersym-
metry transformations are just like φ+ and ψ+) 2. Finally, just for simplicity, let’s set m = 0.

It’s easy to see that if we just add this Yukawa interaction, the Lagrangian is not invariant under
supersymmetry. So we must add more interactions,

L = ∂µφ∗+ ∂µφ+ + ∂µφ∗− ∂µφ− + ∂µh∗ ∂µh

+ ψ†+iσ̄
µ∂µψ+ + ψ†−iσ̄

µ∂µψ− + h̃†iσ̄µ∂µh̃

+ Lint , (43)

with

Lint = − y (hψT+εψ− + φ+h̃
T εψ− + φ−h̃T εψ+ + hc)

− |y|2[|φ+|2 |φ−|2 + |h|2 |φ−|2 + |h|2 |φ+|2] . (44)

Now that we have an interacting supersymmetric theory, we are ready to consider the UV diver-
gence in the scalar mass-squared. Consider δm2

h. It gets contributions from a φ+ loop, a φ− loop and a
fermion loop.

To calculate the fermion loop, let’s convert to Dirac fermion language,

y hψT+εψ− + hc = yhψ̄PLψ + hc . (45)

So the fermion loop is

−|y|2
∫

d4p

(2π)4
TrPL

i

/p
PR

i

/p
= 2|y|2

∫
d4p

(2π)4

1

p2
. (46)

(In the MSSM, the analog of this is the top contribution to the Higgs mass).

The boson loop is,

2× i|y|2
∫

d4p

(2π)4

i

p2
= −2|y|2

∫
d4p

(2π)4

1

p2
, (47)

(in the MSSM, the analog of this is the stop contribution to the Higgs mass).

Before we argued that the cancellation is not spoiled by soft supersymmetry breaking. Let’s see
this in this example. Suppose we change the φ± masses-squared to m̃2

±. Indeed there is no quadratic
divergence,

δm2
h ∝ |y|2

∫
d4p

(2π)4

[
2

p2
− 1

p2 − m̃2
+

− 1

p2 − m̃2
−

]
(48)

= |y|2 m̃2
1

∫
d4p

(2π)4

1

p2(p2 − m̃2
+)

+ (m̃2
+ → m̃2

−) .

We see that when supersymmetry is softly broken, the scalar mass squared is log divergent, and the
divergence is proportional to the supersymmetry breaking m̃2. In contrast to “hard” supersymmetry
breaking: if we change one of the 4-scalar couplings from |y|2, the quadratic divergence is not cancelled.

We now know a lot of supersymmetry basics. Let’s recap and add some language:

– Supersymmetry is an extension of the Poincare symmetry: it’s a spacetime symmetry.

2If h and h̃ remind you of the Higgs and Higgsino that’s great, but here they have nothing to do with generating mass, we
are just interested in the interactions.
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– The basic supersymmetry “module” we know is a complex scalar + a 2-component spinor of the
same mass. eg,

(φ+, ψ+) (49)

These transform into each other under supersymmetry. Together they form a representation, or a
multiplet of supersymmetry. For obvious reasons, we call this the “chiral supermultiplet”.

– The number of fermionic dof’s equals the number of bosonic dof’s. (This is true generally.)
– Supersymmetry dictates not just the field content but also the interactions. The couplings of

fermions, bosons of the same supermultiplets are related. (Again, this is true generally.) Start-
ing from a scalar1–fermion2–fermion3 vertex, supersymmetry requires also a fermion1–scalar2–
fermion3 vertex and a fermion1–fermion2–scalar3 vertex all with same coupling, as well as 4-
scalar vertices (with the same coupling squared).

You see that the structure of supersymmetric theories is very constrained, and that as a result it’s less
divergent. (This is the real reason theorists like supersymmetry, it’s easier.. In fact, the more supersym-
metry, the easier it gets. There are less divergences, more constraints, one can calculate many things,
even at strong coupling. By the time you get to maximal supersymmetry in 4d you have a finite, scale
invariant theory.)

We also know a great deal about supersymmetry breaking, so let’s summarize that too.

– With unbroken supersymmetry the vacuum energy is zero. Thus the vacuum energy is an order
parameter for supersymmetry breaking, and supersymmetry breaking always involves a scaleEvac.

– Supersymmetry (breaking) and UV divergences: With unbroken supersymmetry we have only log
divergences. Even in the presence of soft supersymmetry breaking (ie, supersymmetry is broken
by dimensionful quantities only), there are only log divergences. In contrast, hard supersymmetry
breaking (ie when pure numbers, such as couplings, break supersymmetry) reintroduces quadratic
divergences, so it’s not that interesting from the point of view of the fine-tuning problem.

Let’s pause and talk about language. This will be useful when we supersymmetrize the SM. Our
simple example of eqn (21) has two chiral supermultiplets, each contains one complex scalar and one
L-handed fermion,

(φ+ ψ+) , (φ− ψ−) (50)

In the SM each fermion, eg the top quark, comes from a fusion of 2 Weyl fermions: one originating
from an SU(2) doublet and the other from an SU(2) singlet. These are the analogs of ψ+, ψ−. When
we supersymmetrize the SM we must add two scalars (the stops, or top squarks) these are the analogs of
φ+, φ−. One often refers to the doublet and singlet fermions as “L-handed” and “R-handed”. This is bad
language (remember we can always write a left handed spinor using a right-handed spinor). If we used
this bad language anyway, we could call our fermions ψL, ψR, and the accompanying scalars: φL, φR.
This is why you hear people talk about the stop-left and stop-right, or left squarks and right squarks. Of
course the stops are scalars, and have no chirality, but the names just refer to their fermionic partners.

2.4 Spontaneous supersymmetry breaking: the vacuum energy, UV divergences
If supersymmetry is realized in Nature it’s realized as a broken symmetry. We already saw that even
explicit (soft) supersymmetry breaking can be powerful. But the picture we had is not very satisfying:
we don’t want to put in the parameter m̃2 by hand. We want it to be generated by the theory itself: we
want the theory to break supersymmetry spontaneously.

We also saw that with unbroken supersymmetry the vacuum energy vanishes, and the potential
V ≥ 0. Thus, supersymmetry is unbroken if there are solution(s) of the EOMs with V = 0. Recall that
this followed from

〈0| {SUSY, SUSY} |0〉 ∝ 〈0|H|0〉 (51)
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and with unbroken SUSY,
SUSY|0〉 = 0 (52)

However, if supersymmetry is spontaneously broken:

SUSY|0〉 6= 0 (53)

and the ground state has nonzero (positive) energy!

In the SM, the only scalar is the Higgs, so the only potential is the Higgs potential, and we’re
not that used to thinking about scalar potentials. But in supersymmetric theories, fermions are always
accompanied by scalars and any fermion interaction results in a scalar potential, eg

V (φ+, φ−, h) = |y|2
[
|φ+|2 |φ−|2 + |h|2 |φ−|2 + |h|2 |φ+|2

]
(54)

Note that indeed: V ≥ 0—unbroken supersymmetry.

To break supersymmetry spontaneously all we need is to find a supersymmetric theory with a
potential which is always above zero. So we need a scale. Classically, we can just put in scale by hand.
This brings us to the simplest example of spontaneous supersymmetry breaking.

2.4.1 The O’Raifeartaigh model
The simplest supersymmetric theory with chiral supermultiplets that breaks supersymmetry sponta-
neously has three chiral supermultiplets,

(φ, ψ) , (φ1, ψ1) , (φ2, ψ2) (55)

and two mass parameters. We will only write the scalar potential3,

V = |yφ2
1 − f |2 +m2|φ1|2 + |2φ1φ+mφ2|2 (56)

Here m is a mass, f has dimension mass2, and y is a dimensionless coupling. It is easy to see that there
is no supersymmetric minimum. The first two terms cannot vanish simultaneously. Supersymmetry is
broken! Note that we need f 6= 0 for that (we must push some field away from the origin) as well as
m 6= 0.

Finding the ground state requires more effort. Let’s assume f < m2/(2y). The ground state is at
φ1 = φ2 = 0 with φ arbitrary (φ is a flat direction of the potential),

V0 = |f |2 (57)

Expanding around the VEVs, one finds the following spectrum: One massless Weyl fermion, one Dirac
fermion of mass m, and several real bosons of which two are massless, two have mass m, one has mass√
m2 + 2yf , and one

√
m2 − 2yf . Indeed, for f = 0 supersymmetry is restored, and the fermions and

bosons become degenerate.

Why are there massless bosons in the spectrum? Recall that φ is arbitrary, it’s a flat direction (2
real dof’s). Why is there a massless Weyl fermion? Normally a spontaneously broken global symmetry
implies the existence of a massless Goldstone boson (or pion). Here we have spontaneously broken
supersymmetry, which is a “fermionic” symmetry, so we have a massless Goldstone fermion. Since
supersymmetry is broken spontaneously, the supersymmetry generator does not annihilate the vacuum,

SUSY|0〉 6= 0 (58)

3The kinetic terms and fermion-fermion-scalar interactions are there too, but there’s nothing instructive in them at this point.

10

Y. SHADMI

104



where SUSY stands for the supersymmetry generator. Since this generator carries a spinor index, this
state is a fermion state, which is precisely the Golsdtone fermion (sometimes called a Goldstino).

Recall that we needed a scale, or a dimensionful parameter in order to break supersymmetry.
Above we simply put it in by hand. But suppose we started with no scale in the Lagrangian. Then
classically, supersymmetry would remain unbroken. This suggest that, since no scale can be generated
perturbatively, if supersymmetry is unbroken at the tree-level, it remains unbroken to all orders in pertur-
bation theory. This is actually true, and it is a very powerful result. It’s a consequence of the constrained
structure of supersymmetry. So if supersymmetry is unbroken at tree level, it can only be broken by
non-perturbative effects, with a scale that’s generated dynamically, just like the QCD scale,

Λ = MUV exp

(−8π2

bg2

)
(59)

which is exponentially suppressed compared to the cutoff scale.

This type of supersymmetry breaking is called, for obvious reasons, dynamical supersymmetry
breaking. We will come back to this when we discuss the standard model. It leads to a beautiful scenario:
The supersymmetry breaking scale can naturally be 16 or so orders of magnitude below the Planck scale.

2.5 The chiral and vector multiplets
We have the chiral supermultiplet:

(φ, ψ) (60)

with φ a complex scalar, ψ a 2-component fermion. In the real world we also have spin-1 gauge bosons,
Aaµ, where a denotes the gauge group index. So in order to supersymmetrize the SM we also need vector
supermultiplets,

(Aaµ, λ
a) (61)

namely, a gauge field + a “gaugino”. On-shell Aaµ has 2 dof’s (2 physical transverse polarizations), so
λa is a 2-component spinor. Aaµ is real, so if we want to write λa as a 4-component spinor it must be a
Majorana spinor4,

(
λ
−ελ∗

)
(63)

Under a supersymmetry transformation, Aaµ λa transform into each other, and we can construct super-
symmetric Lagrangians for them as we did for the chiral supermultiplet.

2.6 Supersymmetric Lagrangians
We now have the gauge module (gauge field + gaugino) and the chiral module (scalar + fermion). What
are the Lagrangians we can write down? With a theory of such a constrained structure, you expect to
have many limitations. Indeed, all the theories we can write down are encoded by two functions, the
Kähler potential (K), which gives the kinetic and gauge interactions5, and the superpotential (W), which
gives the non-gauge (Yukawa like) interactions of chiral fields.

Let’s start with the gauge part: after all, gauge interactions are almost all we measure.
4As opposed to the Dirac fermion which consists of two distinct 2-component fermions,

ψ =

(
ψ−

−εψ∗
+

)
(62)

.
5As we will see, there is no freedom there at the level of 4d terms so we won’t even write it down.
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2.7 A pure supersymmetric gauge theory
We want a gauge-invariant supersymmetric Lagrangian for

(Aaµ, λ
a) (64)

Gauge symmetry (and supersymmetry) determine it completely up to higher-dimension terms. It is

Lgauge = −1

4
F aµνF aµν + λa†iσ̄ · Dλa (65)

Exercise: Check that this Lagrangian is supersymmetric.

2.8 A supersymmetric theory with matter fields and only gauge interactions
We also want to couple “matter fields” to the gauge field. So we add our chiral modules (φi, ψi). Here
too, there is no freedom because of gauge symmetry plus supersymmetry,

L = Lgauge +Dµφ∗i Dµφi + ψ†i iσ̄
µDµψi

−
√

2g (φ∗iλ
aTT aεψi − ψ†i ελa∗T aφi)−

1

2
DaDa (66)

where
Da = −gφ†iT aφi (67)

As in the chiral theory, supersymmetry dictates a “new” coupling. In non-supersymmetric theories we
have a coupling

gauge field—fermion—fermion
Now we also have,

gaugino—fermion—scalar,
and of course there’s also

gauge field—scalar—scalar.

In addition, there is a scalar potential with a 4-scalar interaction,

V =
1

2
DaDa (68)

with
Da = −gφ†iT aφi (69)

This is a quartic scalar potential, but the quartic coupling isn’t arbitrary, it’s the gauge coupling. This
will be very important when we discuss the Higgs!

Note what happened here. Starting from a non-supersymmetric gauge theory with a gauge field
Aaµ and a fermion ψ, and an interaction g Aµ − ψ − ψ, when we supersymmetrize the theory, the field
content is gauge field + gaugino, fermion + scalar. The interactions are Aµ − φ − φ (nothing new, φ
is charged), but also, λ − φ − ψ (gaugino-scalar-fermion) all with same coupling g. In addition there
is a 4-scalar interaction, with coupling g2. We had no freedom in the process. The field content and
couplings of the supersymmetric theory were dictated by (i) the original non-supersymmetric theory we
started from (ii) the gauge symmetry (iii) supersymmetry.

2.9 Yukawa like interactions
We also want Yukawa-like interactions of just the chiral scalars and fermions (φi, ψi). There is a simple
recipe for writing down the most general supersymmetric interaction Lagrangian. Choose an analytic
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functionW (φ1, . . . , φn)—the “superpotential”. Analytic means thatW is not a function of the conjugate
fields (no daggers!). All the allowed interactions are given by

Lint = −1

2

∂2W

∂φi∂φj
ψTi εψj + hc−

∑

i

|Fi|2 (70)

where
F ∗i = −∂W

∂φi
(71)

This Lagrangian is guaranteed to be supersymmetric! (There is an elegant way to see this.)

Let’s write our previous examples in this language. Start with the theory containing h, φ+, φ−:
Take

W = y hφ+ φ− (72)

so

F ∗h = −∂W
∂h

= yφ+φ−

∂2W

∂h∂φ+
= yφ− (73)

and similarly for the remaining fields. We indeed recover

Lint = − y (hψT+εψ− + φ+ h̃
T εψ− + φ− h̃T εψ+ + hc)

− |y|2(|φ+|2 |φ−|2 + |h|2 |φ−|2 + |h|2 |φ+|2) (74)

Exercise: Check that the massive theory with φ± is obtained from

W = mφ+φ− (75)

Exercise: Check that the O‘Raifeartaigh model is obtained from

W = φ (yφ2
1 − f) +mφ1φ2 (76)

2.10 R-symmetry
We now know how to write the most general supersymmetric theory in 4d (with minimal supersymme-
try). Note that the theory has a global U(1) symmetry. Under this U(1), the gauge boson has charge 0,
the gaugino has charge +1, the chiral fermion has charge 0 and the scalar −1. Alternatively we could
take the fermion to have charge −1 and the scalar to be 0. This is called a U(1)R symmetry. It does not
commute with supersymmetry: members of the same supermultiplet have different charges.

This symmetry (or its remanent) is crucial in LHC supersymmetry searches!

2.11 F -terms andD-terms
In writing the theory, we defined F -terms and D-terms. For each vector multiplet (λa, Aaµ) we have

Da = −gφ†iT aφi (dim− 2) (77)

(to which all the charged scalars contribute).

For each chiral multiplet (φi, ψi) we have a

F ∗i = −∂W
∂φi

(dim− 2) (78)
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and the scalar potential is

V = F ∗i Fi +
1

2
DaDa (79)

With this language, we can revisit supersymmetry breaking. First we immediately see that indeed V ≥ 0.
Second, supersymmetry is broken if some Fi 6= or Da 6= 0. So the Fi’s and Da’s are order parameters
for supersymmetry breaking.

2.12 Local supersymmetry: the gravitino mass and couplings
So far we thought about supersymmetry as a global symmetry. Translations and Lorentz transformations
are however local symmetries. The “gauge theory” of local spacetime symmetry is gravity. We therefore
have no choice: supersymmetry is a local symmetry too. The theory of local (spacetime and) super-
symmetry is called supergravity. The spin-2 graviton must have a supersymmetric partner, the gravitino,
which has spin-3/2. Since supersymmetry is broken the gravitino should get mass.

If you’re only interested in collider experiments, should you care about this? Normally, the effects
of gravity are suppressed by the Planck scale and we can forget about them when discussing HEP exper-
iments. However, the gravitino mass is related to a broken local symmetry (supersymmetry), so just as in
the usual Higgs mechanism of electroweak symmetry breaking, it gets mass by “eating” the Goldstone
fermion. Thus, a piece of the gravitino (the longitudinal piece), is some “ordinary” field (which par-
ticipates in supersymmetry breaking), and the gravitino couplings to matter are not entirely negligible.
Furthermore, they are dictated by the supersymmetry breaking. If supersymmetry is broken by some
non-zero F term, the gravitino mass is

m3/2 = #
F

MP
(80)

3 The Supersymmetrized Standard Model
3.1 The Supersymmetrized SM: motivation and structure
Now that we understand what supersymmetry is, we can supersymmetrize the SM. Let’s review first the
motivations for doing that. Before 2012, all fundamental particles we knew had spin-1 or spin-1/2. We
now have the Higgs, which is spin 0. This is the source of the fine-tuning problem, or the naturalness
problem. Since the Higgs is spin-0, its mass is quadratically divergent

δm2 ∝ Λ2
UV , (81)

unlike fermions, whose masses are protected by the chiral symmetry as we saw, or gauge bosons, whose
masses are protected by gauge symmetry.

In the case of the Higgs mass, there are one loop corrections that are quadratically divergent. The
dominant one is from the top quark. This is not a practical problem. We can calculate any physical
observable by including a counter term that cancels this divergent contribution. Rather, the problem is
of a theoretical nature. We believe that ΛUV is a concrete physical scale, such as the mass scale of new
fields, or the scale of new strong interactions. Then at the low-scale µ

m2(µ) = m2(ΛUV ) + # Λ2
UV (82)

m2(ΛUV ) determined by the full UV theory, and the number is # determined by the SM. We know the
LHS of eqn. (82): m2 ∼ 100 GeV2. So if ΛUV is the Planck scale ∼ 1018 GeV we need m2(ΛUV ) ∼
1036 GeV2 and the two terms on the RHS must be tuned to 32 orders of magnitude.. Such dramatic
tunings do not seem natural. In general, for a cutoff scale ΛUV , the parameters of the two theories must
be tuned to TeV2/Λ2

UV .
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As we saw above, with supersymmetry (even softly broken), scalar masses-squared have only log
divergences:

m2(µ) = m2(ΛUV )

[
1 + # log

(
m2(ΛUV )

Λ2
UV

)]
(83)

just as for fermions! The reason is that supersymmetry ties the scalar mass to the fermion mass.

The way this happens in practice is that the quadratic divergence from fermion loops is cancelled
by the quadratic divergence from scalar loops. The cutoff scale then only enters in the log, andm2(ΛUV )
can be order (100 GeV)2. This is the main motivation for supersymmetric extensions of the SM. There
are further motivations too. Supersymmetric extensions of the SM often supply dark matter candidates,
new sources of CP violation etc. Finally, extending space time symmetry is theoretically appealing.

So let’s supersymmetrize the SM. Each gauge field is now part of a vector supermultiplet: for the
gluon we have,

Gaµ → (g̃a, Gaµ) +Da , (84)

where the physical fields are the gluon and the spin-1/2 gluino. Similarly for the W ,

W I
µ → (w̃I ,W I

µ) +DI (85)

where the physical fields are the W and the wino, and for B

Bµ → (b̃, Bµ) +DY , (86)

where the physical fields are the B and the bino.

Each fermion is now part of a chiral supermultiplet of the form

(φ, ψ) + F . (87)

Taking all the SM fermions q, uc, dc, l, ec to be L-fermions, we have

q → (q̃, q) + Fq all transforming as (3, 2)1/6 (88)

with the physical fields being the (doublet) quark q and a spin-0 squark q̃. Similarly,

uc → (ũc, uc) + Fu all transforming as (3̄, 1)−2/3 (89)

with the physical fields being the (singlet) up-quark uc + up squark ũc,

dc → (d̃c, dc) + Fd all transforming as (3̄, 1)1/3 (90)

with the physical fields being the (singlet) down-quark dc + down squark d̃c,

l→ (l̃, l) + Fl all transforming as (1, 2)−1/2 (91)

with the physical fields being the (doublet) lepton l + a slepton l̃, and finally

ec → (ẽc, ec) + Fe all transforming as (1, 1)1 (92)

with the physical fields being the (singlet) lepton ec + a slepton ẽc.

Once electroweak symmetry is broken the doublets split:

q =

(
u
d

)
q̃ =

(
ũ

d̃

)
(93)
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and

l =

(
ν
l

)
l̃ =

(
ν̃

l̃

)
(94)

Now let’s move on to the interactions, staring with the gauge interactions. There is nothing we
have to do here. As we saw above, these interactions are completely dictated by supersymmetry and the
gauge symmetry. We wrote the Lagrangian for a general gauge theory in the previous lecture:

L = Lgauge +Dµφ∗i Dµφi + ψ†i iσ̄
µDµψi

−
√

2g (φ∗iλ
aTT aεψi − ψ†i ελa∗T aφi)−

1

2
DaDa (95)

where
Da = −gφ†iT aφi (96)

Applying this to the SM,
ψi = qi, u

c
i , d

c
i , li, e

c
i φi = q̃i, ũ

c
i , d̃

c
i , l̃i, ẽ

c
i (97)

The covariant derivatives now contain the SU(3), SU(2) and U(1) gauge fields, λa sums over the SU(3),
SU(2), U(1) gauginos

λa → g̃a, w̃I , b̃ (98)

and there are D terms for SU(3), SU(2), U(1)

Da → Da, DI , DY (99)

In addition there is of course the pure gauge Lagrangian that I didn’t write (we saw it in the previous
lecture).

The Lagrangian above contains the scalar potential,

V =
1

2
DaDa +

1

2
DIDI +

1

2
DYDY (100)

where for SU(3): (recall T3̄ = −T ∗3 and we will write things in terms of the fundamental generators)

Da = g3 (q̃†T aq̃ − ũc†T a∗uc − d̃c†T a∗uc) (101)

similarly for the SU(2) and
DY = gY

∑

i

Yif̃
†
i f̃i (102)

We see that we get 4-scalar interactions with the quartic couplings equal to the gauge couplings.

Again we emphasize that there was no freedom so far, and no new parameters. We also didn’t put
in the Higgs field yet, so let’s do this now. The SM Higgs is a complex scalar, so it must be part of a
chiral module

H → (H, H̃) + FH all transforming as (1, 2)−1/2 (103)

We immediately see a problem (in fact, many problems, which are all related): First, there is a problem
with having a single Higgs scalar. We want the Higgs (and only the Higgs) to get a VEV. However, the
Higgs is charged under SU(2), U(1), so its VEV gives rise to nonzero D terms:

V ∼ DIDI +D2
Y (104)

where
DI = g2 〈H†〉T I〈H〉 DY = g1

1

2
〈H〉†〈H〉 (105)
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that is, EWSB implies supersymmetry breaking! You might think this is good, but it’s not (for many
reasons). For one, the non-zero D-terms would generate masses for the squarks and sleptons. Consider
DY for example:

DY =
1

2
v2 +

∑

i

Yi|f̃i|2 (106)

where f̃ sums over all squarks, sleptons and Yi is their hypercharge. Recall the scalar potential V ∼ D2.
Therefore some of the squarks will get negative masses-squared of order v2. This is a disaster: SU(3)
and EM are broken at v! The solution is to add a second Higgs scalar, with opposite charges. The two
Higgs scalars can then get equal VEVs with all < D >= 0.

A second problem is that H̃ is a Weyl fermion. If this is all there is, we will have a massless
fermion around—the Higgsino. In the presence of massless fermions, gauge symmetries can become
anomalous, that is, the gauge symmetry can be broken at the loop level. In the SM, the fermion rep-
resentations and charges are such that there are no anomalies. Before discussing the Higgs, we only
added scalars to the SM (squarks and sleptons, known collectively as sfermions). These are harmless
from the point of view of anomalies. We also added gauginos. These are fermions, but they are adjoint
fermions, which don’t generate any anomalies (essentially because the adjoint is a real representation).
In contrast, the Higgsino H̃ is a massless fermion which is a doublet of SU(2) and charged under U(1)Y .
The simplest way to cancel the anomaly is to add a second Higgsino in the conjugate representation. So
we must add a second Higgs field with conjugate quantum numbers. When we consider interactions, we
will see other reasons why we must do this.

We will call the SM Higgs HD and the new Higgs HU . Thus,

HD → (HD, H̃D) + FHD all transforming as (1, 2)−1/2 , (107)

and we also add,
HU → (HU , H̃U ) + FHU all transforming as (1, 2)1/2 , (108)

and in the limit of unbroken supersymmetry,

〈HU 〉 = 〈HD〉 . (109)

In the SM we add a quartic potential for the Higgs field,

λ(H†H)2 . (110)

Here there is quartic potential built in, coming from the D terms. This potential will not necessarily give
mass to the physical Higgs.

We now turn to the Yukawa couplings. In the SM we have Higgs-fermion-fermion Yukawa cou-
plings. Consider the down-quark Yukawa first

yDHDq
T εdc (Higgs − quark− quark) , (111)

as we saw above, with supersymmetry, this must be accompanied by

+yD (q̃H̃T
Dεd

c + d̃cH̃T
Dεq) (squark − Higgsino− quark)

all coming from the superpotential
WD = yDHDqd

c . (112)

Similarly for the lepton Yukawa,

Wl = ylHDle
c → (113)
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Ll = yl(HDl
T εec + l̃H̃T

Dεe
c + ẽcH̃T

Dεl + hc) (114)

Higgs− lepton− lepton

+ slepton−Higgsino− lepton (115)

What about the up Yukawa? We need,

(Higgs)qT εuc (116)

This coupling must come from a superpotential,

(Higgs)quc (117)

In the SM (Higgs)= H†D. But the superpotential is holomorphic, no daggers are allowed.

This is the 4th reason why we needed a second Higgs field with the conjugate charges6,

WU = yUHUqu
c → (118)

LU = yU (HUq
T εuc + q̃H̃T

U εu
c + ũcH̃T

U εq) + hc (119)

You can now see what’s going on. In some sense, holomorphy makes a scalar field “behave like
a fermion”. In a supersymmetric theory, the interactions of scalar fields are controlled by the superpo-
tential, which is holomorphic. For a fermion to get mass you need an LR coupling. So starting from a
L-fermion you need a R-fermion, or another L-fermion with the opposite charge(s). For a scalar φ to
get mass in a non-supersymmetric theory: you don’t need anything else (you can just use φ∗ to write a
charge neutral mass term). Not so in a supersymmetry theory: because you cannot use φ∗, you must have
another scalar with the opposite charge(s), just as for fermions.

To summarize, we have 2 Higgs fields HU and HD. The SM Yukawa couplings come from the
superpotential

W = yUHUqu
c + yDHDqd

c + ylHDle
c . (120)

Note again that there was no freedom here, and no new parameter.

3.2 R-symmetry
Our supersymmetric Lagrangian also has a U(1)R symmetry. Here is one possible choice of charges:
gaugino (−1), sfermions (1), Higgsinos (1), with all other fields, namely the SM fields, neutral. You can
easily check that the Lagrangian is invariant.

To recap, we wrote down the Supersymmetric Standard Model. It contains

– gauge bosons + (spin 1/2) gauginos,
– fermions + (spin 0) sfermions,
– 2 Higgses + 2 (spin 1/2) Higgsinos

The interactions are all dictated by the SM interactions + supersymmetry: The new interactions are

– gauge-boson—scalar—scalar
– gauge-boson—gauge-boson—scalar—scalar
– gaugino-sfermion-fermion
– gauge-boson—Higgsino—Higgsino
– 4-scalar (all gauge invariant contributions)

6All these are actually different aspects of the same problem.
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All the couplings are determined by the SM gauge couplings. In particular, there is a quartic Higgs
coupling which is proportional to the gauge-coupling squared.

Furthermore, there is the Yukawa part, which now contains
Higgsino—fermion—sfermion
with a coupling equal to the SM Yukawa coupling.

The Lagrangian is invariant under a U(1)R symmetry: in each of the interactions, the new super-
partners appear in pairs! This is important both for LHC production and for DM.

There is now no quadratic divergence in the Higgs mass. Each quark contribution is canceled by
the corresponding squark contribution. In particular the top loop is canceled by the L, R stops. Similarly,
the contribution from the Higgs self coupling (from the D term) is canceled by the Higgsinos, and each
gauge boson contribution is canceled by the gaugino contribution.

But we now have, a wino degenerate with the W , a selectron degenerate with the electron, etc.
Supersymmetry must be broken. Somehow the wino, selectron, and all the new particles should get mass.
It would be nice if the supersymmetrized SM broke supersymmetry spontaneously (after all we have lots
of scalars with a complicated potential). But it does not, and so we must add more fields and interactions
that break supersymmetry. These new fields must couple to the SM fields in order to generate masses for
the superpartners.

3.3 The supersymmetrized standard model with supersymmetry-breaking superpartner masses
3.3.1 General structure
The general structure is then

SB —– SSM

Here SSM is the Supersymmetrized SM. SB is a set of new fields and interactions such that supersym-
metry is spontaneously broken. As a result there are mass splittings between the bosons and fermions of
the same SB multiplet.

Finally, —– stands for some coupling(s) between the SSM fields and the SB fields. Since there are
supersymmetry-breaking mass-splittings among the SB fields, this coupling will generate mass splitting
between the SM fields and their superpartners, mediating the supersymmetry breaking to the MSSM.
The mediation mechanism determines the supersymmetry-breaking terms in the MSSM, which in turn
determine the experimental signatures of supersymmetry.

3.3.2 The supersymmetry-breaking terms: what do we expect?
Any term is allowed in the Lagrangian unless a symmetry prevents it. Now that we broke supersymmetry,
supersymmetry breaking terms are allowed. In the matter sector, sfermions get mass. However, the
fermions don’t: they are protected by chiral symmetry. In the gauge sector, gauginos get mass. However,
gauge bosons don’t: they are protected by gauge symmetry. In the Higgs sector, the Higgses get mass.
Higgsinos don’t, they are protected by chiral symmetry. This is a problem. We would like the gauginos
to get mass, so we will have to solve this problem.

In addition, there are trilinear scalar terms that can appear, such as a Higgs—squark—squark
coupling, or a Higgs—slepton—slepton coupling. These are allowed by gauge symmetry, and super-
symmetry is no longer there to forbid them. These terms are called A-terms.

Thus the supersymmetry-breaking part of the SSM Lagrangian is:

Lsoft = −1

2
[m̃3g̃

T εg̃ + m̃2w̃
T εw̃ + m̃1b̃

T εb̃]

− q̃∗m̃2
q q̃ − ũc∗m̃2

uRũ
c − d̃c∗m̃2

dRd̃
c
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− l̃∗m̃2
l l̃ − ẽc∗m̃2

eRẽ
c (121)

− H∗Um
2
HU
HU −H∗Dm2

HD
HU

− HU q̃
∗AU ũc −HD q̃

∗AU d̃c −HD l̃
∗Alẽ

c

− BµHUHD

The last line is a quadratic term for the Higgs scalars. The line before last is the new trilinear scalar
interactions, orA-terms. When the Higgses get VEVs, these too will induce sfermion mass terms (mixing
L and R scalars). Finally, m2

q etc are 3× 3 matrices in generation space. So are the A-terms (AU etc).

The values of the supersymmetry-breaking parameters are determined by the SB theory and mainly
by the mediation. You sometimes hear people criticize supersymmetric extensions of the SM for having
a hundred or so new parameters (the parameters of Lsoft). These are all determined however by the SB
and the mediation scheme. Often, these involve very few new parameters (only one in anomaly mediation
and two in minimal gauge mediation).

Note too that the parameters of Lsoft are the only freedom we have, and where all the interesting
physics lies. These parameters determine the spectrum of squarks, sleptons, gauginos, and therefore the
way supersymmetry manifests itself in Nature.

3.3.3 R-parity
The gaugino masses and A-terms break the U(1)R symmetry of the SSM Lagrangian. There is a discrete
symmetry left however. This remanent symmetry is called R-parity. Under R-parity, the gauginos,
sfermions, and Higgsinos are odd, and all SM fields are even. Thus, when we supersymmetrize the SM
without adding any new interactions, we have a new parity symmetry. It follows that the the lightest
superpartner (LSP) is stable!

3.3.4 The mu-term: a supersymmetric Higgs and Higgsino mass
Before we go on, let’s discuss one remaining problem. We have two massless Higgsinos in the theory.
As we saw above, these do not get mass from supersymmetry breaking. So we must also include a
supersymmetric mass term for them,

W = µHUHD . (122)

3.4 Mediating the breaking
What can mediate supersymmetry breaking? What can the coupling —– be? There are many possibili-
ties. One is gauge interactions. This is the basis of Gauge Mediated Supersymmetry Breaking (GMSB).
Another is gravity. This is the basis of Anomaly Mediated Supersymmetry Breaking (AMSB). Planck-
suppressed interactions, which are also associated with gravity, are at the basis of “gravity mediated
supersymmetry breaking”7. Even Yukawa-like interactions can do the job.

3.4.1 Gauge Mediated Supersymmetry Breaking
Gauge interactions are the ones we know best. Therefore gauge mediation gives full, concrete, and often
fully calculable supersymmetric extensions of the SM.

We can start with a toy example to illustrate how things work. We saw the O‘Raifeartaigh model,

W = φ (φ2
1 − f) +mφ1φ2 . (123)

Recall that this model breaks supersymmetry. The spectrum of the model contains a supermultiplet with
supersymmetry-breaking mass splittings: a fermion of mass m, and scalars of masses-squared m2 + 2f ,
m2 − 2f .

7mSUGRA or the cMSSM are ansatze of gravity mediation with the assumption of flavor-blind soft terms.
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Let’s complicate the model slightly, by considering five fields, φ, φ1±, φ2±, with the superpoten-
tial,

W = φ (φ1+φ1− − f) +mφ1+φ2− +mφ1−φ2+ (124)

now the model has a U(1) symmetry, under which φ has charge zero, and φi± (with i = 1, 2) has
charge ±1. It is easy to see that supersymmetry is still broken. Again we have supermultiplets with
supersymmetry breaking splittings between fermions and bosons. Now let’s promote the U(1) symmetry
to a gauge symmetry, and identify it with hypercharge. Another way to think about this is the following.
Add to the SM the fields φ, φ1±, φ2± of hypercharges 0, ±1, respectively, with the superpotential (124).
Now consider a squark. It is charged under hypercharge, so it couples to these split supermultiplets.
Therefore, a squark mass is generated!

Minimal Gauge Mediation Models are the simplest models of this type. Suppose we have a
supersymmetry-breaking model with chiral supermultiplets Φi and Φ̄i, i = 1, 2, 3 such that the fermions
ψΦi and ψΦ̄i

combine into a Dirac fermion of mass M , and the scalars have masses-squared M2 ± F
(with F < M2). Now identify i as an SU(3) color index. Thus Φ is a 3 of SU(3), Φ̄ is a 3̄ of SU(3).
These fields have supersymmetry-breaking masses. The gluino talks to the Φ’s directly and therefore
gets mass at one loop. The squarks talk to the gluino and therefore get mass at two loops. We have a
gluino mass,

mg̃ = #
α

4π

F

M
+O(F 2/M2) (125)

and a squark mass-squared at two loops:

mq̃ = #
α2

(4π)2

F 2

M2
+O(F 4/M6) (126)

where the numbers are group theory factors. We can infer this form very simply:

– Since the masses arise at one or two loops there is the appropriate loop factor.
– The masses should vanish as F → 0.
– The masses should vanish as M →∞.

Gauge mediation is very elegant:

– The soft masses are determined by the gauge couplings.
– The squark matrices are flavor-blind (∝ 13×3 in flavor space).
– The gluino masses ∼ squark masses.
– The only new parameters are F and M , and the overall scale is F/M . If want soft masses around

the TeV, F/M ∼ 100 TeV.

The new fields Φ are the messengers of supersymmetry breaking. In order to give masses to all the MSSM
fields we need messenger fields charged under SU(3), SU(2), U(1), eg,N5 copies of (3, 1)−1/3+(3̄, 1)1/3

and (1, 2)−1/2 + (1, 2)1/2 (filling up a 5 + 5̄ of SU(5)). This adds another parameter, namely the number
of messengers, N5.

The messenger scale M mainly enters through running. The soft masses are generated at the
messenger scale. To calculate them at the TeV we need to include RGE effects.

The gravitino mass in these models is

m3/2 = Feff/MP (127)

where Feff is the the dominant F term. Therefore,

m3/2 ≥
F

MP
∼ 100 TeV

M

MP
(128)
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and for low messenger scales, the gravitino can be very light (∼eV).

Minimal gauge mediation is just a simple example. Gauge mediation can in principle have a very
different structure. The only defining feature is that the soft masses are generated by the SM gauge
interactions. Generically then,

– Colored superpartners (gluinos, squarks) are heavier than non-colored (EW gauginos, sleptons..)
by a factor

α3

α2
or

α3

α1
(129)

– In particular, gaugino masses scale as
α3 : α2 : α1 (130)

and the bino is the lightest gaugino.
– To leading order, the A terms vanish at M .
– The gravitino is light.

3.4.2 Gravity Mediation
With gauge mediation, we had to do some real work: add new fields, make sure they get supersymmetry-
breaking masses, couple them to the MSSM. But supersymmetry breaking is one place where we can
expect a free lunch. Imagine we have, in addition to the SM, some SB fields, eg, the O’Raifeartaigh
model. Since supersymmetry is a space-time symmetry, the SM fields should know this automatically.
We would expect soft terms to be generated, suppressed by MP . This is known as “gravity mediation”.
We will discuss first the purest form of gravity mediation: anomaly mediation, and then what’s commonly
referred to as gravity mediation.

Anomaly mediation: We assume that supersymmetry is broken by some fields that have no cou-
pling to the SM. These fields are called the “hidden sector”. The gravitino gets mass m3/2. Would
the SSM “know” about supersymmetry breaking? Yes: at the quantum level, it’s not scale-invariant:
all the couplings (gauge, Yukawa) run—they are scale dependent. Therefore they are sensitive to the
supersymmetry-breaking gravitino mass, and all the soft terms are generated. The gaugino masses are
given by,

m1/2 = b
α

4π
m3/2 (131)

where α is the appropriate gauge coupling and b is the beta-function coefficient. Thus for SU(3) b = 3,
for SU(2) b = −1 and for U(1) b = −33/5.

Sfermions get masses proportional to their anomalous dimensions:

m2
0 ∼

1

16π2
(y4 − y2g2 + bg4)m2

3/2 (132)

For the first and second generation sfermions, we can neglect the Yukawas and,

m2
0 ∼

g4

16π2
bm2

3/2 (133)

A terms are generated too, proportional to the beta functions of the appropriate Yukawa.

This is amazing: These contributions to the soft terms are always there. All the soft terms are
determined by just the SM couplings with one new parameter, the gravitino mass. It seems too good to be
true. Indeed, while SU(3) is asymptotically free and b3 > 0, SU(2), U(1) are not, b2, b1 < 0. Therefore
the sleptons are tachyonic. There are various solutions to this problem, but the gaugino masses are fairly
robust,

mw̃ : mb̃ : mg̃ : m3/2 ∼ 1 : 3.3 : 10 : 370 (134)
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In this scenario, the wino is the LSP. Note that the gravitino is roughly a loop factor heavier than the SM
superpartners.

Gravity mediation: mediation by Planck suppressed operators: Let’s return to our basic setup.
The SSM is the supersymmetric standard model. SB contains new fields and interactions that break
supersymmetry (the “hidden sector”). Generically, we expect to have higher-dimension operators, sup-
pressed byMP , that couple the SB fields and the SSM fields. Supersymmetry breaking leads to non-zero
F terms (or D terms) for the SB fields, so the higher-dimension operators coupling the two sectors will
generate supersymmetry-breaking terms in the SSM, with sfermion mass from

|F |2
M2
P

f̃ †f̃ (135)

and gaugino masses from
|F |
MP

λT ελ (136)

You can think of these as mediated by tree-level exchange of Planck-scale fields.

Unlike in the previous two schemes, here we don’t know the order-one coefficients. Consider for
example the doublet-squarks. Their mass terms are,

cij
|F |2
M2
P

q̃†i q̃j (137)

where cij are order-one coefficients. Thus,

(m2
q̃)ij = cijm

2
0 where m0 ≡

|F |
MP

(138)

In “minimal sugra”, or the cMSSM one assumes

cij = δij . (139)

It is not easy to justify this: the Yukawas are presumably generated at this high scale, so there are flavor-
dependent couplings in the theory.

Including the running to low scales,

d

dt
m1/2 ∝

α

4π
m1/2 (140)

we find that starting from a common gaugino mass at the GUT scale, the gaugino masses scale as

α3 : α2 : α1 (141)

just as in gauge mediation. Again the bino is the LSP. The gravitino mass is of order the superpartner
masses in this case.

These are a few possibilities for mediating supersymmetry breaking but by no means an exhaustive
list.

4 The MSSM spectrum
4.1 EWSB and the Higgs mass
In the MSSM we have two Higgses, HU and HD, which can get VEVs,

〈HU 〉 =

(
vU
0

)
〈HD〉 =

(
0
vD

)
(142)
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Let’s start in the supersymmetry limit (with no mu term). The D term must vanish, so the VEVs must be
equal,

D = 0 → vU = vD (143)

The two Higgs fields contain 8 real scalars. Of these, 3 are eaten by W±, Z.

Consider the heavy Z supermultiplet. It contains a heavy gauge boson which has 3 physical
polarizations, and therefore 3 bosonic dof’s and a Dirac fermion (4 dof’s). Therefore, in order to have
the same number of fermion and boson dof’s there must be one more real scalar. This scalar comes
from the Higgs fields. The same holds for the W±. Thus, 3 real scalars “join” the heavy W±, Z
supermultiplets. In the limit of unbroken supersymmetry which we are assuming now, all of these fields
have masses MW or MZ .

Thus, of the 8 real scalars in HU and HD, 2 neutral fields remain. One is the SM physical Higgs,
h. The other must be there because we have supersymmetry, and hmust reside in a chiral supermultiplet.
As we saw above, this multiplet contains a complex scalar field.

Note that so far there is no potential for h. This is not surprising. We haven’t added any Higgs
superpotential so the Higgs could only have a quartic from VD. But along the D-flat direction, the
physical Higgs is massless. Thus its mass must come from supersymmetry breaking !

Fortunately supersymmetry is broken—we have soft terms. The Higgs potential comes from the
following sources:

– The mu term: W = µHUHD,

δV = |µ|2|HU |2 + |µ|2|HD|2 (144)

– The Higgs soft masses:
δV = m̃2

HU
|HU |2 + m̃2

HD
|HD|2 (145)

so we need m2
HU

< 0 and/or m2
HU

< 0

– The Bµ term:
δV = BµHUHD + hc (146)

These are all quadratic terms.
– Then we have quartic terms:

δV =
1

2
g2

2D
IDI +

1

2
g2

1DYDY (147)

where

DI = H†Uτ
IHU −H†Dτ I∗HD (148)

and
DY =

∑

i

Yif̃
†
i f̃i +

1

2
(H†UHu −H†DHD) (149)

Recall we had two parameters, the two Higgs VEVs. We can trade them for:

1.
√
v2
U + v2

D: determined by W mass to be 246 GeV

2. tanβ ≡ vU/vD

Requiring a minimum of the potential determines:

Bµ =
1

2
(m2

HU
+m2

HD
+ 2µ2) sin 2β (150)
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µ2 =
m2
HD
−m2

HU
tan2 β

tan2 β − 1
− M2

Z

2
(151)

Thus, for given m2
HU

, m2
HD

: Bµ and µ are determined, and we have two free parameters, tanβ and
sign(µ).

Expanding around the VEVs we find that the various scalars from HU and HD have the following
masses (squared),

H± : M2
W +M2

A (SUSY :M2
W )

H0 :
1

2
(M2

Z +M2
A) +

1

2

√
(M2

Z +M2
A)2 − 4m2

AM
2
Z cos2 2β

(SUSY :M2
Z)

A0 : M2
A = Bµ(cotβ + tanβ) (SUSY : 0) (152)

and for the physical Higgs,

m2
h =

1

2
(M2

Z +M2
A)− 1

2

√
(M2

Z +M2
A)2 − 4m2

AM
2
Z cos2 2β (153)

This is a PREDICTION:
mh ≤ mZ | cos 2β| ≤MZ (154)

The measurement of the Higgs mass provides the first quantitative test of the Minimal Supersym-
metric Standard Model. It fails. However, the result (153) is a tree-level result. There are large radiative
corrections to this result, mainly from stop loops. In the decoupling limit

m2
h ∼ m2

Z cos2 2β +
3m2

t

4π2v2

[
log

M2
S

m2
t

+
X2
t

M2
S

]
(155)

where

Xt = At − µ cotβ the LR stop mixing

MS =
√
mt̃1

mt̃2
the average stop mass

This can raise Higgs mass to around 130–150 GeV. Thus for a 126 GeV Higgs we need heavy stops
and/or large stop A terms. This is not very attractive. We wanted supersymmetry to solve the fine-tuning
problem, for which we need light stops. So the large Higgs mass typically implies some fine-tuning.

In specific predictive models, like minimal GMSB, in which the stop mixing is small (because
there no A-terms at messenger scale), one needs stops around 8 TeV, and because the other squarks and
gluino masses are close by, all the colored superpartners are hopelessly heavy. Thus, the Higgs mass sets
a much stronger constraint on this framework than direct supersymmetry searches.

There’s another important caveat. So far we did not add in any Higgs potential on top of what the
MSSM “gave us”. Let’s compare this to the SM. In the SM, we add (by hand) a quartic Higgs potential,
with a quartic coupling λ, to get the Higgs mass. Here we didn’t have to: D-terms give a quartic potential.
As a result, there is no new parameter: λ = g. We could add a quartic interaction a la the SM. To do that,
we must add at least one new field, a SM singlet S, with

W = λSHUHD → V = λ2(|HU |2|HD|2 + . . .) (156)

This is called the Next to Minimal SSM (NMSSM).

We can pursue the comparison to the SM at a deeper level. In the SM, we put in EWSB by hand.
We had to put in a negative mass-squared for the Higgs. In the MSSM, EWSB can have a dynamical
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origin. Recall that we needed m̃2
HU

< 0 or m̃2
HD

< 0. This happens (almost) automatically in super-
symmetric theories, since the RGEs drive the Higgs mass-squared negative! The crucial contribution is
due to the large Yukawa coupling of the Higgs to stops.

Now let’s see why this happens. Suppose we start with m̃2
HU

> 0 at the supersymmetry breaking
scale. The running gives

d

dt
m2
HU
∼ − g2

16π2
m2

1/2+
y2
t

16π2
m̃2
t . (157)

The negative Yukawa contribution wins because

1. The top Yukawa is large compared to the SU(2), U(1) gauge couplings.
2. The stop is colored, so the Yukawa contribution is enhanced by a color factor (=3).

Note that there are many scalars in the MSSM, so you could worry about their masses-squared
driven negative by the RGE. However, the Higgs is special: it’s an SU(3) singlet, so there is no large
positive contribution from the gluino. Furthermore, it has an order-1 Yukawa to the colored stop. Thus
only the Higgs develops a VEV.

Let’s summarize our results so far. Putting aside the unpleasant 126 GeV Higgs mass (which can
be accounted for), supersymmetry gives a very beautiful picture. The MSSM (SSM + soft terms) has
only log divergences: the quadratic divergence in the Higgs mass-squared is cancelled by superpartners
at m̃. The tuning is then ∼ M2

Z/m̃
2 and the hierarchy between the EWSB scale and the Planck/GUT

scale is stabilized.

Furthermore: starting with m̃2
HU

> 0 in the UV, the running (from stops) drives it negative, and
electroweak symmetry is broken, with a scale proportional to m̃.

Finally, we remark that with a SB sector that breaks supersymmetry dynamically, the supersym-
metry breaking scale is exponentially suppressed. m̃ can naturally be around the TeV. In this case, the
correct hierarchy between the EWSB scale and the Planck/GUT scale is not only stabilized, but actually
generated.

Returning to the Higgs mass, with mh = 126 GeV the Minimal SSM is stretched: we often
need heavy stops which implies some level of tuning. More practically, discovery becomes more of a
challenge.

Now that we understand supersymmetry breaking and EWSB let’s turn to the superpartner spec-
trum.

4.1.1 Neutralinos and charginos
We have 4 neutral 2-component spinors: two gauginos and two Higgsinos

b̃ , W̃ 0 , H̃0
D , H̃

0
U (158)

with the mass matrix



M1 0 −g1vD/
√

2 g1vU/
√

2

0 M2 g2vD/
√

2 −g2vU/
√

2

−g1vD/
√

2 g2vD/
√

2 0 µ

g1vU/
√

2 −g2vU/
√

2 µ 0


 (159)

Diagonalizing this matrix we find 4 neutralino mass eigenstates: χ̃0 i = 1, . . . , 4.

Similarly, there are two charginos mass eigenstates which are combinations of the charged Hig-
gsino and wino, χ̃±i i = 1, 2.
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4.1.2 Sfermion spectrum
Consider for example the up squarks. There are 6 complex scalars: ũLi and ũRa with i, a = 1, 2, 3
labeling the three generations. The mass (squared) matrix is therefore a 6×6 matrix:

(
m2
LL m2

LR

m2†
LR m2

RR

)
(160)

where each of the blocks is 3×3.

Consider m2
U,LL. It gets contributions from:

1. the SSM Yukawa (supersymmetric)
2. the SUSY breaking mass-squared
3. the D-term (because D ∼ v2

U − v2
D + q̃†Tq + · · · )

Thus,
m2
U,LL = m†umu + m̃2

q +DU13×3 , (161)

and similarly for m2
U,RR.

m2
LR gets contributions from:

1. the A term (supersymmetry breaking)
2. the µ term:

∣∣∣∣
∂W

∂HD

∣∣∣∣
2

→ ∂W

∂HD
= µHU + yUqu

c (162)

so
m2
U,LR = vU (A∗U − yUµ cotβ). (163)

The remaining sfermions (down-squarks, sleptons, sneutrinos) have a similar structure.

4.1.3 Flavor structure
Now let’s consider the sfermion flavor structure, starting with the up squarks as before. Work in the
quark mass basis (up, charm, top): the Lagrangian contains the following:

– gaugino—uLi—ũLj couplings. Here the gaugino can be either a gluino, a wino or a bino. In our
original Lagrangian, these are proportional to δij. We therefore say that the Lagrangian is given
in the interaction basis. Note that since we are in the fermion mass basis, this defines the L up
squark, charm squark and top squark (stop). For example, the L stop is the state that couples to a
gluino and the doublet-top quark.

– gaugino—uRa—ũRb couplings. Again, in our original Lagrangian, these are proportional to δab.
– . . .
– The up squark 6 × 6 mass matrix. This can in principle have an arbitrary structure. In particular,

the various 3× 3 blocks need not be diagonal.

Diagonalizing the squark mass matrix, we get 6 mass eigenstates, ũI , with I = 1, . . . , 6. However, the
gaugino—quark—squark couplings are no longer diagonal. Writing these in terms of the up-squark mass
eigenstates we have in general

KiI g̃uLi − ũI , (164)

These mix the different generations, andKiI are the quark-squark mixing parameters. Each squark (mass
state) is a composition of the different flavor states.
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Are sfermions degenerate? Is m2
U,LL ∝ 1? That depends on the mediation of supersymmetry.

However, we don’t understand the structure of fermion masses. In fact this structure is very strange,
suggesting a fundamental theory of flavor. If there is such a theory, it will also control the structure of
m2
U,LL and the other sfermion mass-matrices.

4.1.4 R-parity violating couplings
So far, we merely generalized the SM gauge and Yukawa interactions. In the SM, the Yukawa couplings
were the only renormalizable couplings allowed. Now however, there are new renormalizable Yukawa-
like interactions

W = λijkLiLje
c
k + λ′ijkLiQjd

c
k + λ′′ijku

c
id
c
jd
c
k . (165)

These are the only terms we can add, nothing else is gauge invariant. These terms are problematic. The
first two terms break lepton number, the third breaks baryon number. If they are all there we would get
proton decay! Note also that all these new terms break R-parity. If we impose R-parity, these dangerous
terms are forbidden, and proton decay can only arise from higher-dimension operators, much like in the
SM. But this may be overly restrictive. Certain flavor patters of R-parity breaking operators are viable.

5 LHC searches: general considerations
As we saw, supersymmetry is not a single model. In the minimal supersymmetric extension of the
standard model, the MSSM, in which we add no new fields to the SM apart from those required by
supersymmetry, all the interactions are dictated by the SM and supersymmetry (with the exception of
R-parity violating couplings), and the only freedom is in the soft supersymmetry breaking terms, which
are determined by the mechanism for mediating supersymmetry breaking. Still, this allows for a wide
variety of new and distinct signatures. Therefore, while searches for specific models are useful, it’s also
important to adopt a signature-based approach.

Here we will outline the main considerations to keep in mind.

1. Interactions: There are only two sources of model dependence here.

– R-parity violating (RPV) couplings: If R-parity is conserved, superpartners are produced
in pairs, and each superpartner decays to a lighter superpartner plus SM particles. Thus any
decay chain ends with the stable LSP. In the presence of RPV couplings, a single superpartner
can be produced. There are strong bounds on RPV couplings. Still, single superpartner
production via a small RPV coupling may be competitive because of the kinematics. Most
superpartners decay through the usual R-parity conserving couplings (gauge or Yukawa),
with the exception of the LSP, which can only decay through RPV couplings.

– Squark and/or slepton flavor mixing: For general sfermion mass matrices, the gaugino-
sfermion-fermion couplings may mix different flavors. This could affect both production
and decay.

2. Superpartner masses:

– The hierarchy between colored and non-colored superpartners: In most mediation schemes,
colored superpartners are heavier (roughly by factors of a few to 10). Unless there is a huge
hierarchy between colored and non-colored superpartners, the production of squarks and
gluinos dominates at the LHC. As the hierarchy increases, the production of EWK gauginos
(ewkinos) and or sleptons becomes more competitive.

– Flavor structure: superpartners of the same gauge charges may have generation dependent-
masses. Thus for example, the L-handed up squark can have a different mass from the L-
handed charm or top squarks. An arbitrary flavor structure leads to flavor changing processes
which, especially when the 1st and 2nd generations are involved, are stringently constrained.
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However, roughly speaking, the constrained quantities involve the products of the mass split-
tings and the flavor mixings KiI , so models with some degree of mass degeneracy and some
alignment of fermion and sfermion mass matrices are allowed. These would affect both the
production of sfermions and their decay.

The (N)LSP plays a special role in determining the collider signatures of supersymmetry. Both the mass
spectrum and its interactions are relevant here.

– The (N)LSP lifetime: The LSP is stable if R-parity is conserved. In the presence of RPV couplings,
the LSP can decay to SM particles, but its lifetime may be long because the sizes of these couplings
are constrained. Finally, the LSP may have only very weak couplings to the SM, as is the case of
the gravitino. Superpartners produced at the LHC will decay to the lightest superpartner charged
under the SM, which is called the NLSP (next to lightest superpartner), which in turn decays to
the LSP. Clearly, since the latter is only weakly coupled to the SM, the NLSP can be long lived.
Different models span the whole range from propmt NLSP decays to NLSPs which are long-lived
on detector scales.

– The (N)LSP charge. The (N)LSP can be either neutral (eg a neutralino or sneutrino), charged (eg
a slepton), or even colored (eg the gluino). Naturally, the precise identity of the (N)LSP plays an
key role in determining the signatures of supersymmetry at the LHC. The signatures of a spectrum
with a pure bino (N)LSP are very different from the signatures of a spectrum with a pure Higgsino
(N)LSP even though both are neutral.

If the (N)LSP is neutral and long lived, superpartner production is accompanied by missing energy. If
it’s charged and long lived, it behaves like a heavy muon, and dE/dx and time-of-flight measurements
must be used to distinguish it from a muon. If it’s colored and long lived, it will hadronize in the detector,
and subsequently either stop in the detector or traverse the entire detector. If it decays inside the detector,
its charge and lifetime determine the specific signature, ranging from a disappearing track to a displaced
vertex, with or without missing energy. Thus, supersymmetry has motivated a wide variety of ingenious
approaches for searching for new physics. Whether supersymmetry is there or not, this net of searches
will hopefully lead to new discoveries!
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