
Introduction to the Standard Model of the Electro-Weak Interactions

J. Iliopoulos
Laboratoire de Physique Théorique de L’Ecole Normale Supérieure, Paris, France

Abstract
These lectures notes cover the basic ideas of gauge symmetries and the phe-
nomenon of spontaneous symmetry breaking which are used in the construc-
tion of the Standard Model of the Electro-Weak Interactions.

Keywords
Lectures; Standard Model; electroweak interaction; gauge theory; spontaneous
symmetry breaking; field theory.

1 Introduction
These are the notes from a set of four lectures that I gave at the 2015 European Organization for Nuclear
Research (CERN)–Latin-American School of High-Energy Physics as an introduction to more special-
ized lectures. With minor corrections, they follow the notes of the lectures I gave at the 2012 CERN
Summer School. In both cases, the students were mainly young graduate students doing experimental
high-energy physics. They were supposed to be familiar with the phenomenology of particle physics and
to have a working knowledge of quantum field theory and the techniques of Feynman diagrams. The lec-
tures were concentrated on the physical ideas underlying the concept of gauge invariance, the mechanism
of spontaneous symmetry breaking, and the construction of the Standard Model. Although the methods
of computing higher-order corrections and the theory of renormalization were not discussed at all in the
lectures, the general concept of renormalizable versus non-renormalizable theories was supposed to be
known. Nevertheless, for the benefit of the younger students, a special lecture on the physical principles
of renormalization theory was included. It is given as an appendix in these notes. The plan of the notes
follows that of the lectures with five sections:

– a brief summary of the phenomenology of the electromagnetic and the weak interactions;
– gauge theories, Abelian and non-Abelian;
– spontaneous symmetry breaking;
– the step-by-step construction of the Standard Model;
– the Standard Model and experiment.

It is generally accepted that progress in physics occurs when an unexpected experimental result
contradicts the established theoretical beliefs. As Feynman put it “progress in physics is to prove yourself
wrong as soon as possible”. This has been the rule in the past, but there are exceptions. The construction
of the Standard Model is one of them. In the late 1960s, weak interactions were well described by the
Fermi current × current theory and there was no compelling experimental reason to want to change it:
the problems were theoretical. It was only a phenomenological model which, in technical language,
was non-renormalizable. In practice, this meant that any attempt to compute higher-order corrections
in the standard perturbation theory would give meaningless, divergent results. So the motivation for
changing the theory was for aesthetic rather than experimental reasons: it was the search for mathematical
consistency and theoretical elegance. In fact, at the beginning, the data did not seem to support the
theoretical speculations. Although the history of these ideas is a fascinating subject, I decided not to
follow the historical evolution which would have taken more than four lectures to develop. I start instead
from the experimental data known at present and show that they point unmistakably to what is known as
the Standard Model. In the last section, I recall its many experimental successes.
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Table 1: Our present ideas on the structure of matter. Quarks and gluons do not exist as free particles and the
graviton has not yet been observed.

Table of elementary particles
Quanta of radiation

Strong interactions Eight gluons
Electromagnetic interactions Photon (γ)
Weak interactions Bosons W+ , W− , Z0

Gravitational interactions Graviton (?)
Matter particles

Leptons Quarks
1st family νe , e− ua , da , a = 1, 2, 3
2nd family νµ , µ− ca , sa , a = 1, 2, 3
3rd family ντ , τ− ta , ba , a = 1, 2, 3

Higgs boson

2 Phenomenology of the electro-weak interactions: a reminder
2.1 The elementary particles
The notion of an ‘elementary particle’ is not well defined in high-energy physics. It evolves with time
following progress in experimental techniques which, by constantly increasing the resolution power of
our observations, have shown that systems that were believed to be ‘elementary’ are in fact composed of
smaller constituents. So, in the last century we went through the chain:

molecules→ atoms→ electrons + nuclei→ electrons + protons + neutrons→ electrons + quarks

→ ???

There is no reason to believe that there is an end to this series and, even less, that this end has
already been reached. Table 1 summarizes our present knowledge, and the following remarks can be
made.

– All interactions are produced by the exchange of virtual quanta. For the strong, electromagnetic,
and weak interactions they are vector (spin-one) fields, whereas the graviton is assumed to be a
tensor, spin-two field. We shall see in these lectures that this property is well understood in the
framework of gauge theories.

– The constituents of matter appear to all be spin one-half particles. They are divided into quarks,
which are hadrons, and ‘leptons’ which have no strong interactions. No deep explanation is known
either for their number (why three families?) or for their properties, such as their quantum num-
bers. We shall come back to this point when we discuss the gauge-theory models. In the framework
of some theories that go beyond the Standard Model, such as supersymmetric theories, we can find
particles of zero spin among the matter constituents.

– Each quark species, called ‘flavour’, appears in three forms, often called ‘colours’ (no relation to
the ordinary sense of either word).

– Quarks and gluons do not appear as free particles. They form a large number of bound states,
known as the hadrons. This property of ‘confinement’ is one of the deep unsolved problems in
particle physics.

– Quarks and leptons seem to fall into three distinct groups, or ‘families’. No deep explanation is
known.

– The mathematical consistency of the theory, known as ‘the cancellation of the triangle anomalies’,
requires that the sum of all electric charges inside any family is equal to zero. This property has
strong predictive power.
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2.2 The electromagnetic interactions
All experimental data are well described by a simple Lagrangian interaction in which the photon field
interacts with a current created from the fields of charged particles.

Li ∼ eAµ(x)jµ(x) . (1)

For the spinor matter fields of Table 1, the current takes the simple form

jµ(x) =
∑

i

qiΨ̄i(x)γµΨi(x) , (2)

where qi is the charge of the field Ψi in units of e.

This simple Lagrangian has some remarkable properties, all of which are verified by experiment.

– j is a vector current. The interaction separately conserves P , C and T .
– The current is diagonal in flavour space.
– More complex terms, such as jµ(x)jµ(x) and ∂A(x)Ψ̄(x) . . .Ψ(x), . . . are absent, although they

do not seem to be forbidden by any known property of the theory. All these terms, as well as
all others we can write, share one common property: in a four-dimensional space–time, their
canonical dimension is larger than four. We can easily show that the resulting quantum field
theory is non-renormalizable. For some reason, nature does not like non-renormalizable theories.

Quantum electrodynamics (QED), the quantum field theory described by the Lagrangian in Eq. (1)
and supplemented with the programme of renormalization, is one of the most successful physical theo-
ries. Its agreement with experiment is spectacular. For years it was the prototype for all other theories.
The Standard Model is the result of the efforts to extend the ideas and methods of electromagnetic inter-
actions to all other forces in physics.

2.3 The weak interactions
Weak interactions are mediated by massive vector bosons. When the Standard Model was proposed,
their very existence as well as their number were unknown. But today we know that three massive vector
bosons exist; two which are electrically charged and one which is neutral: W+, W− and Z0. Like the
photon, their couplings to matter are described by current operators:

Li ∼ Vµ(x)jµ(x); Vµ : W+
µ , W−

µ , Z0
µ , (3)

where the weak currents are again bi-linear in the fermion fields: Ψ̄ . . .Ψ. Depending on the correspond-
ing vector boson, we distinguish two types of weak currents: the charged current, coupled to W+ and
W− and the neutral current coupled to Z0, which have different properties.

The charged current:

– contains only left-handed fermion fields

jµ ∼ Ψ̄LγµΨL ∼ Ψ̄γµ(1 + γ5)Ψ ; (4)

– is non-diagonal in the quark flavour space;
– the coupling constants are complex.

The neutral current:
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– contains both left- and right-handed fermion fields

jµ ∼ CLΨ̄LγµΨL + CRΨ̄RγµΨR ; (5)

– is diagonal in the quark flavour space.

With these currents, weak interactions have some properties which differ from those of the electromag-
netic ones.

– Weak interactions violate P , C and T .
– In contrast to the photon, the weak vector bosons are self-coupled. The nature of these couplings

is predicted theoretically in the framework of gauge theories and it has been determined experi-
mentally.

– A new element has been added recently to the experimental landscape. It is a new scalar particle,
compatible with what theorists have called the Higgs boson. Although all its properties have not
yet been studied in detail, the existing evidence points towards the Higgs boson predicted by the
Standard Model.

It is this kind of interaction that the Standard Model is supposed to describe.

3 Gauge symmetries
3.1 The concept of symmetry
In physics the concept of a symmetry follows from the assumption that a certain quantity is not measur-
able. As a result, the equations of motion should not depend on this quantity. We know from the general
properties of classical mechanics that this implies the existence of conserved quantities. This relation
between symmetries and conservation laws, epitomized by Noether’s theorem, has been one of the most
powerful tools in deciphering the properties of physical theories.

Some simple examples are given by the symmetries of space and time. The assumption that the
position of the origin of the coordinate system is not physically measurable implies the invariance of
the equations under space translations and the conservation of momentum. In the same way that we
obtain the conservation laws of energy (time translations) and angular momentum (rotations), we can
also distinguish between symmetries in continuous transformations, such as translations and rotations,
and discrete symmetries, such as space or time inversions. Noether’s theorem applies to the first. All
symmetries of space and time are geometrical in the common sense of the word, and are easy to under-
stand and visualize. During the last century we were led to consider two abstractions, each one of which
has had a profound influence on our way of thinking about the fundamental interactions. Reversing the
chronological order, we shall introduce first the idea of internal symmetries and second, that of local or
gauge symmetries.

3.2 Internal symmetries
Internal symmetries are those with transformation parameters that do not affect the point of space and
time x. The concept of such symmetries can be seen in classical physics, but it becomes natural in
quantum mechanics and quantum field theory. The simplest example is the phase of the wave function.
We know that it is not a measurable quantity, so the theory must be invariant under a change of phase.
This is true for both relativistic or non-relativistic quantum mechanics. The equations of motion (Dirac
or Schrödinger), as well as the normalization condition, are invariant under the transformation:

Ψ(x)→ eiθΨ(x) . (6)
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~x′ = ~x+ ~a

Fig. 1: A space translation by a constant vector ~a

The transformation leaves the space–time point invariant, so it is an internal symmetry. Through
Noether’s theorem, invariance under Eq. (6) implies the conservation of the probability current.

The phase transformation in Eq. (6) corresponds to the Abelian group U(1). In 1932 Werner
Heisenberg enlarged the concept to a non-Abelian symmetry with the introduction of isospin. The as-
sumption is that strong interactions are invariant under a group of SU(2) transformations in which the
proton and the neutron form a doublet N(x):

N(x) =




p(x)

n(x)


 ; N(x)→ ei~τ×~θN(x) , (7)

where ~τ are proportional to the Pauli matrices and ~θ are the three angles of a general rotation in a three-
dimensional Euclidean space. Again, the transformations do not apply on the points of ordinary space.

Heisenberg’s iso-space is three dimensional and isomorphic to our physical space. With the dis-
covery of new internal symmetries the idea was generalized to multi-dimensional internal spaces. The
space of physics, i.e. the space in which all symmetry transformations apply, became an abstract math-
ematical concept with non-trivial geometrical and topological properties. Only a part of it, the three-
dimensional Euclidean space, is directly accessible to our senses.

3.3 Gauge symmetries
The concept of a local, or gauge, symmetry was introduced by Albert Einstein in his quest for the theory
of general relativity1. Let us come back to the example of space translations, as shown in Fig. 1.

Figure 1 shows that if A is the trajectory of a free particle, then its image, after a translation of
the form ~x → ~x + ~a, A′, is also a possible trajectory of a free particle. The dynamics of free particles
is invariant under space translations by a constant vector. It is a global invariance, in the sense that
the parameter ~a is independent of the space–time point x. Is it possible to extend this invariance to a
local one, namely one in which ~a is replaced by an arbitrary function of x; ~a(x)? One usually calls the
transformations in which the parameters are functions of the space–time point x gauge transformations2

There may be various, essentially aesthetic, reasons for which one may wish to extend a global invariance
to a gauge one. In physical terms, it can be argued that the formalism should allow for a local definition

1It is also present in classical electrodynamics if one considers the invariance under the change of the vector potential
Aµ(x) → Aµ(x) − ∂µθ(x) with θ an arbitrary function, but before the introduction of quantum mechanics, this aspect of the
symmetry was not emphasized.

2This strange terminology is due to Hermann Weyl. In 1918 he attempted to enlarge diffeomorphisms to local scale trans-
formations and he called them, correctly, gauge transformations. The attempt was unsuccessful but, when he developed the
theory for the Dirac electron in 1929, he still used the term gauge invariance, a term which has survived ever since, although
the theory is no longer scale invariant.
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Fig. 2: A space translation by a vector ~a(x)

of the origin of the coordinate system, since the latter is an unobservable quantity. From the mathematical
point of view, local transformations produce a much richer and more interesting structure. Whichever
one’s motivations may be, physical or mathematical, it is clear that the free-particle dynamics is not
invariant under translations in which ~a is replaced by ~a(x). This is shown schematically in Fig. 2.

We see that no free particle would follow the trajectory A′′. This means that for A′′ to be a tra-
jectory, the particle must be subject to external forces. Can we determine these forces? The question
sounds purely geometrical without any obvious physical meaning, so we expect a mathematical answer
with no interest for physics. The great surprise is that the resulting theory, which is invariant under local
translations, turns out to be classical general relativity, one of the four fundamental forces in nature.
Gravitational interactions have such a geometric origin. In fact, the mathematical formulation of Ein-
stein’s original motivation to extend the principle of equivalence to accelerated frames is precisely the
requirement of local invariance. Historically, many mathematical techniques which are used in today’s
gauge theories were developed in the framework of general relativity.

The gravitational forces are not the only ones that have a geometrical origin. Let us come back
to the example of the quantum mechanical phase. It is clear that neither the Dirac nor the Schrödinger
equation are invariant under a local change of phase θ(x). To be precise, let us consider the free Dirac
Lagrangian,

L = Ψ̄(x)(i∂/−m)Ψ(x) . (8)

It is not invariant under the transformation

Ψ(x)→ eiθ(x)Ψ(x) . (9)

The reason behind this is the presence of the derivative term in Eq. (8) which gives rise to a term
proportional to ∂µθ(x). In order to restore invariance, one must modify Eq. (8), in which case it will
no longer describe a free Dirac field; invariance under gauge transformations leads to the introduction
of interactions. Both physicists and mathematicians know the answer to the particular case of Eq. (8):
one introduces a new field Aµ(x) and replaces the derivative operator ∂µ by a ‘covariant derivative’ Dµ

given by

Dµ = ∂µ + ieAµ , (10)

where e is an arbitrary real constant. Dµ is said to be ‘covariant’ because it satisfies

Dµ[eiθ(x)Ψ(x)] = eiθ(x)DµΨ(x) , (11)
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valid if, at the same time, Aµ(x) undergoes the transformation

Aµ(x)→ Aµ(x)− 1

e
∂µθ(x) . (12)

The Dirac Lagrangian density now becomes

L = Ψ̄(x)(iD/−m)Ψ(x) = Ψ̄(x)(i∂/− eA/−m)Ψ(x) . (13)

It is invariant under the gauge transformations of Eqs. (9) and (12) and describes the interaction
of a charged spinor field with an external electromagnetic field! Replacing the derivative operator by
the covariant derivative turns the Dirac equation into the same equation in the presence of an external
electromagnetic field. Electromagnetic interactions give the same geometrical interpretation3. We can
complete the picture by including the degrees of freedom of the electromagnetic field itself and add to
Eq. (13) the corresponding Lagrangian density. Again, gauge invariance determines its form uniquely
and we are led to the well-known result

L = −1

4
Fµν(x)Fµν(x) + Ψ̄(x)(iD/−m)Ψ(x) (14)

with
Fµν(x) = ∂µAν(x)− ∂νAµ(x) . (15)

The constant e we introduced is the electric charge, the coupling strength of the field Ψ with the
electromagnetic field. Notice that a second field Ψ′ will be coupled with its own charge e′.

Let us summarize: we started with a theory invariant under a group U(1) of global phase transfor-
mations. The extension to a local invariance can be interpreted as a U(1) symmetry at each point x. In
a qualitative way we can say that gauge invariance induces an invariance under U(1)∞. We saw that this
extension, a purely geometrical requirement, implies the introduction of new interactions. The surprising
result here is that these ‘geometrical’ interactions describe the well-known electromagnetic forces.

The extension of the formalism of gauge theories to non-Abelian groups is not trivial and was first
discovered by trial and error. Here we shall restrict ourselves to internal symmetries which are simpler
to analyse and they are the ones we shall apply to particle physics outside gravitation.

Let us consider a classical field theory given by a Lagrangian density L. It depends on a set of
N fields ψi(x), i = 1, . . . , r, and their first derivatives. The Lorentz transformation properties of these
fields will play no role in this discussion. We assume that the ψ transform linearly according to an r-
dimensional representation, not necessarily irreducible, of a compact, simple Lie group, G, which does
not act on the space–time point x.

Ψ =




ψ1

...
ψr


 , Ψ(x)→ U(ω)Ψ(x), ω ∈ G , (16)

where U(ω) is the matrix of the representation of G. In fact, in these lectures we shall be dealing only
with perturbation theory and it will be sufficient to look at transformations close to the identity in G.

Ψ(x)→ eiΘΨ(x), Θ =
m∑

a=1

θaT a (17)

3The same applies to the Schrödinger equation. In fact, this was done first by V. Fock in 1926, immediately after
Schrödinger’s original publication.
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where the θa are a set of m constant parameters, and the T a are m r × r matrices representing the m
generators of the Lie algebra of G. They satisfy the commutation rules

[T a, T b] = ifabcT c . (18)

The f are the structure constants of G and a summation over repeated indices is understood. The
normalization of the structure constants is usually fixed by requiring that, in the fundamental representa-
tion, the corresponding matrices of the generators ta are normalized such as

Tr(tatb) =
1

2
δab . (19)

The Lagrangian density L(Ψ, ∂Ψ) is assumed to be invariant under the global transformations
of Eqs. (16) or (17). As was done for the Abelian case, we wish to find a new L, invariant under the
corresponding gauge transformations in which the θa of Eq. (17) are arbitrary functions of x. In the same
qualitative sense, we look for a theory invariant under G∞. This problem, stated the way we present it
here, was first solved by trial and error for the case of SU(2) by C.N. Yang and R.L. Mills in 1954. They
gave the underlying physical motivation and these theories are called since ‘Yang–Mills theories’. The
steps are direct generalizations of the ones followed in the Abelian case. We need a gauge field, the
analogue of the electromagnetic field, to transport the information contained in Eq. (17) from point to
point. Since we can performm independent transformations, the number of generators in the Lie algebra
of G, we need m gauge fields Aaµ(x), a = 1, . . . ,m. It is easy to show that they belong to the adjoint
representation of G. Using the matrix representation of the generators we can cast Aaµ(x) into an r × r
matrix:

Aµ(x) =

m∑

a=1

Aaµ(x)T a . (20)

The covariant derivatives can now be constructed as

Dµ = ∂µ + igAµ , (21)

with g as an arbitrary real constant. They satisfy

DµeiΘ(x)Ψ(x) = eiΘ(x)DµΨ(x) , (22)

provided the gauge fields transform as

Aµ(x)→ eiΘ(x)Aµ(x)e−iΘ(x) +
i

g

(
∂µeiΘ(x)

)
e−iΘ(x) . (23)

The Lagrangian density L(Ψ,DΨ) is invariant under the gauge transformations of Eqs. (17) and
(23) with an x-dependent Θ, if L(Ψ, ∂Ψ) is invariant under the corresponding global ones of Eqs. (16)
or (17). As with the electromagnetic field, we can include the degrees of freedom of the new gauge
fields by adding to the Lagrangian density a gauge invariant kinetic term. It turns out that it is slightly
more complicated than Fµν of the Abelian case. Yang and Mills computed it for SU(2) but it is uniquely
determined by geometry plus some obvious requirements, such as absence of higher-order derivatives.
The result is given by

Gµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ] . (24)

The full gauge-invariant Lagrangian can now be written as
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Linv = −1

2
TrGµνGµν + L(Ψ,DΨ) . (25)

By convention, in Eq. (24) the matrix A is taken to be

Aµ = Aaµt
a , (26)

where we recall that the ta are the matrices representing the generators in the fundamental representation.
It is only with this convention that the kinetic term in Eq. (25) is correctly normalized. In terms of the
component fields Aaµ, Gµν reads

Gµν = Gaµνt
a, Gaµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (27)

Under a gauge transformation Gµν transforms like a member of the adjoint representation:

Gµν(x)→ eiθa(x)ta Gµν(x) e−iθa(x)ta . (28)

This completes the construction of the gauge invariant Lagrangian. We add some remarks below.

– As was the case with the electromagnetic field, the Lagrangian of Eq. (25) does not contain terms
proportional to AµAµ. This means that, under the usual quantization rules, the gauge fields de-
scribe massless particles.

– Since Gµν is not linear in the fields Aµ, the G2 term in Eq. (25), besides the usual kinetic term
which is bilinear in the fields, contains tri-linear and quadri-linear terms. In perturbation theory,
they will be treated as coupling terms whose strength is given by the coupling constant g. In other
words, the non-Abelian gauge fields are self-coupled while the Abelian (photon) field is not. A
Yang–Mills theory, containing only gauge fields, is still a dynamically rich quantum field theory,
whereas a theory with the electromagnetic field alone is a trivial free theory.

– The same coupling constant g appears in the covariant derivative of the fields Ψ in Eq. (21). This
simple consequence of gauge invariance has an important physical application: if we add another
field Ψ′, its coupling strength with the gauge fields will still be given by the same constant g.
Contrary to the Abelian case studied before, if electromagnetism is part of a non-Abelian simple
group, gauge invariance implies charge quantization.

– The above analysis can be extended in a straightforward way to the case where the group G is the
product of simple groups G = G1 × · · · ×Gn. The only difference is that one should introduce n
coupling constants g1, . . . , gn, one for each simple factor. Charge quantization is still true inside
each subgroup, but charges belonging to different factors are no longer related.

– The situation changes if one considers non semi-simple groups, where one or more of the factors
Gi is Abelian. In this case, the associated coupling constants can be chosen different for each field
and the corresponding Abelian charges are not quantized.

As we alluded to above, gauge theories have a deep geometrical meaning. In order to get a better
understanding of this property without entering into complicated issues of differential geometry, it is
instructive to consider a reformulation of the theory replacing the continuum of space–time with a four-
dimensional Euclidean lattice. We can do that very easily. Let us consider, for simplicity, a lattice with
hypercubic symmetry. The space–time point xµ is replaced by

xµ → nµa , (29)

where a is a constant length (the lattice spacing) and nµ is a d-dimensional vector with components
nµ = (n1, n2, . . . , nd) which take integer values 0 ≤ nµ ≤ Nµ. Nµ is the number of points of our lattice
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in the direction µ. The total number of points, i.e. the volume of the system, is given by V ∼∏d
µ=1Nµ.

The presence of a introduces an ultraviolet, or short distance, cut-off because all momenta are bounded
from above by 2π/a. The presence of Nµ introduces an infrared or large distance cut-off because the
momenta are also bounded from below by 2π/Na, whereN is the maximum ofNµ. The infinite volume–
continuum space is recovered at the double limit a→ 0 and Nµ →∞.

The dictionary between quantities defined in the continuum and the corresponding ones on the
lattice is easy to establish (we take the lattice spacing a equal to one):

– a field Ψ(x) ⇒ Ψn ,
where the field Ψ is an r-component column vector as in Eq. (16);

– a local term such as Ψ̄(x)Ψ(x) ⇒ Ψ̄nΨn;
– a derivative ∂µΨ(x) ⇒ (Ψn −Ψn+µ),

where n + µ should be understood as a unit vector joining the point n with its nearest neighbour
in the direction µ;

– the kinetic energy term4 Ψ̄(x)∂µΨ(x) ⇒ Ψ̄nΨn − Ψ̄nΨn+µ.

We may be tempted to write similar expressions for the gauge fields, but we must be careful with
the way gauge transformations act on the lattice. Let us repeat the steps we followed in the continuum.
Under gauge transformations a field transforms as:

– gauge transformations Ψ(x)→ eiΘ(x)Ψ(x) ⇒ Ψn → eiΘnΨn,
so all local terms of the form Ψ̄nΨn remain invariant but the part of the kinetic energy which
couples fields at neighbouring points does not;

– the kinetic energy Ψ̄nΨn+µ → Ψ̄ne−iΘneiΘn+µΨn+µ ,
which shows that we recover the problem we had with the derivative operator in the continuum.

In order to restore invariance we must introduce a new field, which is an r×rmatrix, and which has
indices n and n+µ. We denote it by Un,n+µ and we shall impose on it the constraint Un,n+µ = U−1

n+µ,n.
Under a gauge transformation, U transforms as

Un,n+µ → eiΘnUn,n+µe−iΘn+µ . (30)

With the help of this gauge field we write the kinetic-energy term with the covariant derivative on
the lattice as:

Ψ̄n Un,n+µ Ψn+µ , (31)

which is invariant under gauge transformations.

U is an element of the gauge group but we can show that, at the continuum limit and for an
infinitesimal transformation, it correctly reproduces Aµ, which belongs to the Lie algebra of the group.
Notice that, contrary to the field Ψ, U does not live on a single lattice point, but it has two indices, n and
n+ µ, in other words it lives on the oriented link joining the two neighbouring points. We see here that
the mathematicians are right when they do not call the gauge field ‘a field’ but ‘a connection’.

In order to finish the story we want to obtain an expression for the kinetic energy of the gauge
field, the analogue of TrGµν(x)Gµν(x), on the lattice. As for the continuum, the guiding principle is
gauge invariance. Let us consider two points on the lattice n and m. We shall call a path pn,m on the
lattice a sequence of oriented links which continuously join the two points. Next, consider the product
of the gauge fields U along all the links of the path pn,m:

4We write here the expression for spinor fields which contain only first-order derivatives in the kinetic energy. The extension
to scalar fields with second-order derivatives is obvious.
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P (p)(n,m) =
∏

p

Un,n+µ · · ·Um−ν,m . (32)

Using the transformation rule in Eq. (30), we see that P (p)(n,m) transforms as

P (p)(n,m)→ eiΘnP (p)(n,m)e−iΘm . (33)

It follows that if we consider a closed path c = pn,n, the quantity TrP (c) is gauge invariant. The
simplest closed path for a hypercubic lattice has four links and it is called a plaquette. The correct form
of the Yang–Mills action on the lattice can be written in terms of the sum of TrP (c) over all plaquettes.

4 Spontaneous symmetry breaking
Since gauge theories appear to predict the existence of massless gauge bosons, when they were first
proposed they did not seem to have any direct application to particle physics outside electromagnetism.
It is this handicap which plagued gauge theories for many years. In this section, we shall present a
seemingly unrelated phenomenon that will turn out to provide the answer.

An infinite system may exhibit the phenomenon of phase transitions. It often implies a reduction
in the symmetry of the ground state. A field theory is a system with an infinite number of degrees of
freedom, so it is not surprising that field theories may also show the phenomenon of phase transitions.
Let us consider the example of a field theory invariant under a set of transformations forming a group G.
In many cases, we encounter at least two phases.

– The unbroken or the Wigner phase: the symmetry is manifest in the spectrum of the theory whose
excitations form irreducible representations of the symmetry group. For a gauge theory, the vector
gauge bosons are massless and belong to the adjoint representation. But we have good reason
to believe that, for non-Abelian gauge theories, a strange phenomenon occurs in this phase: all
physical states are singlets of the group. All non-singlet states, such as those corresponding to
the gauge fields, are supposed to be confined, in the sense that they do not appear as physically
realizable asymptotic states.

– The spontaneously broken phase: part of the symmetry is hidden from the spectrum. For a gauge
theory, some of the gauge bosons become massive and appear as physical states.

It is this kind of phase transition that we want to study in this section.

4.1 An example from classical mechanics
A very simple example is provided by the problem of the bent rod. Let a cylindrical rod be charged as
in Fig. 3. The problem is obviously symmetric under rotations around the z-axis. Let z measure the
distance from the basis of the rod, and X(z) and Y (z) give the deviations, along the x and y directions
respectively, of the axis of the rod at the point z from the symmetric position. For small deflections the
equations of elasticity can be linearized and take the form

IE
d4X

dz4
+ F

d2X

dz2
= 0 ; IE

d4Y

dz4
+ F

d2Y

dz2
= 0 . (34)

where I = πR4/4 is the moment of inertia of the rod and E is the Young modulus. It is obvious that the
system shown in Eq. (34) always possesses a symmetric solution X = Y = 0. However, we can also
look for asymmetric solutions of the general formX = A+Bz+C sin kz+D cos kz with k2 = F/EI ,
which satisfy the boundary conditions X = X ′′ = 0 at z = 0 and z = l. We find that such solutions
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Fig. 3: A cylindrical rod bent under a force F along its symmetry axis

exist, X = C sin kz, provided kl = nπ;n = 1, . . . . The first such solution appears when F reaches a
critical value Fcr given by

Fcr =
π2EI

l2
. (35)

The appearance of these solutions is already an indication of instability and a careful study of the
stability problem proves that the non-symmetric solutions correspond to lower energy. From that point
Eq. (34) is no longer valid because they only apply to small deflections, and we must use the general
equations of elasticity. The result is that this instability of the symmetric solution occurs for all values of
F larger than Fcr

What has happened to the original symmetry of the equations? It is still hidden in the sense that
we cannot predict in which direction the rod is going to bend in the x–y plane. They all correspond to
solutions with precisely the same energy. In other words, if we apply a symmetry transformation (in
this case a rotation around the z-axis) to an asymmetric solution, we obtain another asymmetric solution
which is degenerate with the first one.

We call such a symmetry ‘spontaneously broken’, and in this simple example we see all its char-
acteristics:

– there exists a critical point, i.e., a critical value of some external quantity which we can vary
freely (in this case the external force F ; in several physical systems it is the temperature) which
determines whether spontaneous symmetry breaking will take place or not. Beyond this critical
point:

– the symmetric solution becomes unstable;
– the ground state becomes degenerate.

The complete mathematical analysis of this system requires the study of the exact equations of
elasticity which are non-linear, but we can look at a simplified version. A quantity, which plays an
important role in every phenomenon of phase transition, is the order parameter, whose value determines
in which phase the system is. In our example, we choose it to be the two-component vector ~δ shown
in Fig. 3, which we write as a complex number δ = δx + iδy with δ = ρeiθ. The symmetric phase
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corresponds to ρ = 0. It is instructive to express the energy of the system E as a function of the order
parameter. Rotational invariance implies that E depends only on ~δ × ~δ = ρ2. At the vicinity of the
critical point ρ2 is small and we can expand E as

E = C0 + C1ρ
2 + C2ρ

4 + · · · . (36)

The C are constants which depend on the characteristics of the rod and the force F . Stability is
obtained by

dE
dρ

(ρ = v) = 0 ⇒ v(C1 + 2C2v
2) = 0 . (37)

We thus find the two solutions we mentioned above, namely v = 0 for the symmetric case and
v2 = −C1/2C2 for the spontaneously broken phase. Since ρ is real, this second solution is acceptable
if C1/C2 is negative. C2 must be positive for the energy to be bounded from below in the approximate
Eq. (36). Therefore, C1 must vanish at the critical point and change sign with F − Fcr. As a result, we
can write C1 = Ĉ1(Fcr − F ) with Ĉ1 > 0. For F > Fcr, C1 is negative and we can write the energy as

E = C0 + Ĉ1(Fcr − F )~δ × ~δ + C2(~δ × ~δ)2 = Ĉ1(F − Fcr)
(ρ2 − v2)2

2v2
, (38)

with v given by the non-zero solution of Eq. (37). With the energy defined up to an arbitrary additive
constant, we have fixed C0 by the condition that the energy of the ground state ρ = v vanishes. In the
phase with spontaneous symmetry breaking, the energy of the symmetric ρ = 0 solution is positive and
given by

E0 = Ĉ1(F − Fcr)
v2

2
. (39)

The expression for the energy given by Eq. (38) has the well-known form of Fig. 4 with a single
minimum v = 0 for F < Fcr and the Mexican hat form for F > Fcr.

There are a great variety of physical systems, both in classical and quantum physics, exhibiting
spontaneous symmetry breaking, but we will not describe any others here. The Heisenberg ferro-magnet
is a good example to keep in mind, because we shall often use it as a guide, but no essentially new
phenomenon appears outside the ones already described. Therefore, we shall go directly to some field
theory models.

4.2 A simple field theory model
Let φ(x) be a complex scalar field whose dynamics is described by the Lagrangian density

L1 = (∂µφ)(∂µφ∗)−M2φφ∗ − λ(φφ∗)2 , (40)

where L1 is a classical Lagrangian density and φ(x) is a classical field. No quantization is considered
for the moment. Eq. (40) is invariant under the group U(1) of global transformations:

φ(x) → eiθφ(x) . (41)

The current, jµ ∼ φ∂µφ
∗ − φ∗∂µφ, whose conservation can be verified using the equations of

motion, corresponds to this invariance.

We are interested in the classical field configuration which minimizes the energy of the system.
We thus compute the Hamiltonian density given by
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Fig. 4: The potential V (φ) with M2 ≥ 0 (left) and M2 <0 (right)

H1 = (∂0φ)(∂0φ
∗) + (∂iφ)(∂iφ

∗) + V (φ) , (42)

V (φ) = M2φφ∗ + λ(φφ∗)2 . (43)

The first two terms of H1 are positive definite. They can only vanish for φ = constant. Therefore,
the ground state of the system corresponds to φ = constant = minimum of V (φ). V has a minimum only
if λ > 0. In this case, the position of the minimum depends on the sign of M2. (Notice that we are still
studying a classical field theory and M2 is just a parameter. One should not be misled by the notation
into thinking that M is a ‘mass’ and M2 is necessarily positive.)

For M2 > 0, the minimum is at φ = 0 (symmetric solution, shown in the left-hand side of Fig. 4),
but for M2 < 0 there is a whole circle of minima at the complex φ-plane with radius v = (−M2/2λ)1/2

(Fig. 4, right-hand side). Any point on the circle corresponds to a spontaneous breaking of Eq. (41).

We see that:

– the critical point is M2 = 0;
– for M2 > 0 the symmetric solution is stable;
– for M2 < 0 spontaneous symmetry breaking occurs.

Let us choose M2 < 0. In order to reach the stable solution we translate the field φ. It is clear that
there is no loss of generality by choosing a particular point on the circle, since they are all obtained from
any given one by applying the transformations from Eq. (41). Let us, for convenience, choose the point
on the real axis in the φ-plane. We thus write

φ(x) =
1√
2

[v + ψ(x) + iχ(x)] . (44)

Bringing (44) in (40) we find

L1(φ) → L2(ψ, χ) =
1

2
(∂µψ)2 +

1

2
(∂µχ)2 − 1

2
(2λv2)ψ2

− λvψ(ψ2 + χ2)− λ

4
(ψ2 + χ2)2 .

(45)
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Notice that L2 does not contain any term proportional to χ2, which is expected since V is locally
flat in the χ direction. A second remark concerns the arbitrary parameters of the theory. L1 contains two
such parameters: M , which has the dimensions of a mass, and λ, a dimensionless coupling constant. In
L2 we again have the coupling constant λ and a new mass parameter v which is a function of M and
λ. It is important to notice that, although L2 also contains trilinear terms, its coupling strength is not a
new parameter but is proportional to vλ. L2 is still invariant under the transformations with infinitesimal
parameter θ:

δψ = −θχ ; δχ = θψ + θv , (46)

to which corresponds a conserved current

jµ ∼ ψ∂µχ− χ∂µψ + v∂µχ . (47)

The last term, which is linear in the derivative of χ, is characteristic of the phenomenon of spon-
taneous symmetry breaking.

It should be emphasized here that L1 and L2 are completely equivalent Lagrangians. They both
describe the dynamics of the same physical system and a change of variables, as in Eq. (44), cannot
change the physics. However, this equivalence is only true if we can solve the problem exactly. In this
case, we shall find the same solution using either of them. However, we do not have exact solutions
and we intend to apply perturbation theory, which is an approximation scheme. The equivalence is then
no longer guaranteed and perturbation theory has much better chances to give sensible results using one
language rather than the other. In particular, if we use L1 as a quantum field theory and we decide to
apply perturbation theory, using the quadratic terms of L1 as the unperturbed part, we immediately see
that we shall get nonsense. The spectrum of the unperturbed Hamiltonian would consist of particles
with negative square mass, and no perturbation corrections at any finite order could change that. This is
essentially because we are trying to calculate the quantum fluctuations around an unstable solution and
perturbation theory is just not designed to do that. On the contrary, we see that the quadratic part of
L2 gives a reasonable spectrum; thus we hope that perturbation theory will also give reasonable results.
Therefore, we conclude that our physical system, considered now as a quantum system, consists of two
interacting scalar particles, one with mass m2

ψ = 2λv2 and the other with mχ = 0. We believe that this
is the spectrum we would have also found starting from L1, if we could solve the dynamics exactly.

The appearance of a zero-mass particle in the quantum version of the model is an example of a
general theorem attributable to J. Goldstone: for every generator of a spontaneously broken symmetry
there corresponds a massless particle, called the Goldstone particle. This theorem is just the translation
of the statement about the degeneracy of the ground state into quantum-field-theory language. The
ground state of a system described by a quantum field theory is the vacuum state, and you need massless
excitations in the spectrum of states in order to allow for the degeneracy of the vacuum.

4.3 Gauge symmetries
In this section, we want to study the consequences of spontaneous symmetry breaking in the presence of
a gauge symmetry. We shall find a very surprising result. When combined together, the two problems,
namely the massless gauge bosons on the one hand and the massless Goldstone bosons on the other, will
solve each other. It is this miracle that we want to present here5. We start with the Abelian case.

We look at the model of the previous section in which the U(1) symmetry of Eq. (41) has been
promoted to a local symmetry with θ → θ(x). As we explained already, this implies the introduction of

5In relativistic physics this mechanism was invented and developed by François Englert and Robert Brout, Peter Higgs, as
well as Gerald Guralnik, Carl Richard Hagen and Thomas Walter Bannerman Kibble.
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a massless vector field, which we can call the ‘photon’ and the interactions are obtained by replacing the
derivative operator ∂µ by the covariant derivative Dµ and adding the photon kinetic energy term:

L1 = −1

4
F 2
µν + |(∂µ + ieAµ)φ|2 −M2φφ∗ − λ(φφ∗)2 . (48)

L1 is invariant under the gauge transformation:

φ(x) → eiθ(x)φ(x) ; Aµ → Aµ −
1

e
∂µθ(x) . (49)

The same analysis as before shows that for λ > 0 and M2 < 0 there is a spontaneous breaking of
the U(1) symmetry. Replacing Eq. (44) for (48) we obtain

L1 → L2 = −1

4
F 2
µν +

e2v2

2
A2
µ + evAµ∂

µχ

+
1

2
(∂µψ)2 +

1

2
(∂µχ)2 − 1

2
(2λv2)ψ2 + · · · ,

(50)

where the dots stand for coupling terms which are at least trilinear in the fields.

The surprising term is the second one, which is proportional to A2
µ. It looks as though the photon

has become massive. Notice that Eq. (50) is still gauge invariant since it is equivalent to Eq. (48). The
gauge transformation is now obtained by replacing Eq. (44) with Eq. (49):

ψ(x) → cos θ(x)[ψ(x) + v]− sin θ(x)χ(x)− v
χ(x) → cos θ(x)χ(x) + sin θ(x)[ψ(x) + v]

Aµ → Aµ −
1

e
∂µθ(x) .

(51)

This means that our previous conclusion, that gauge invariance forbids the presence of an A2
µ

term, was simply wrong. Such a term can be present, but the gauge transformation is slightly more
complicated; it must be accompanied by a translation of the field.

The Lagrangian of Eq. (50), if taken as a quantum field theory, seems to describe the interaction
of a massive vector particle (Aµ) and two scalars, one massive (ψ) and one massless (χ). However, we
can immediately see that something is wrong with this counting. A warning is already contained in the
non-diagonal term between Aµ and ∂µχ. Indeed, the perturbative particle spectrum can be read from the
Lagrangian only after we have diagonalized the quadratic part. A more direct way to see the trouble is to
count the apparent degrees of freedom6 before and after the translation:

– Lagrangian of Eq. (48):
(i) one massless vector field: 2 degrees;
(ii) one complex scalar field: 2 degrees;
total: 4 degrees.

6The terminology here is misleading. As we pointed out earlier, any field theory, considered as a dynamical system, is a
system with an infinite number of degrees of freedom. For example, the quantum theory of a free neutral scalar field is described
by an infinite number of harmonic oscillators, one for every value of the three-dimentional momentum. Here, we use the same
term ‘degrees of freedom’ to denote the independent one-particle states. We know that for a massive spin-s particle we have
2s + 1 one-particle states, and for a massless particle with spin other than zero we only have two. In fact, it would have been
more appropriate to talk about a (2s+ 1)-infinity and 2-infinity degrees of freedom, respectively.
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– Lagrangian of Eq. (50):
(i) one massive vector field: 3 degrees;
(ii) two real scalar fields: 2 degrees;
total: 5 degrees.

Since physical degrees of freedom cannot be created by a simple change of variables, we conclude
that the Lagrangian of Eq. (50) must contain fields which do not create physical particles. This is indeed
the case, and we can show a transformation which makes the unphysical fields disappear. Instead of
parametrizing the complex field φ by its real and imaginary parts, let us choose its modulus and its
phase. The choice is dictated by the fact that it is a change of phase that describes the motion along the
circle of the minima of the potential V (φ). We thus write

φ(x) =
1√
2

[v + ρ(x)]eiζ(x)/v ; Aµ(x) = Bµ(x)− 1

ev
∂µζ(x) . (52)

In this notation, the gauge transformation Eq. (49) or Eq. (51) is simply a translation of the field
ζ: ζ(x)→ ζ(x) + vθ(x). Replacing Eq. (52) with Eq. (48) we obtain

L1 → L3 = −1

4
B2
µν +

e2v2

2
B2
µ +

1

2
(∂µρ)2 − 1

2
(2λv2)ρ2

− λ

4
ρ4 +

1

2
e2B2

µ(2vρ+ ρ2)

Bµν = ∂µBν − ∂νBµ .

(53)

The ζ(x) field has disappeared. Equation (53) describes two massive particles, a vector (Bµ) and
a scalar (ρ). It exhibits no gauge invariance, since the original symmetry ζ(x) → ζ(x) + vθ(x) is now
trivial.

We see that there are three different Lagrangians describing the same physical system. L1 is
invariant under the usual gauge transformation, but it contains a negative square mass and it is therefore
unsuitable for quantization. L2 is still gauge invariant, but the transformation law from Eq. (51) is more
complicated. It can be quantized in a space containing unphysical degrees of freedom. This by itself
is not a great obstacle and it occurs frequently. For example, ordinary QED is usually quantized in a
space involving unphysical (longitudinal and scalar) photons. In fact, it is L2, in a suitable gauge, which
is used for general proofs of renormalizability as well as for practical calculations. Finally, L3 is no
longer invariant under any kind of gauge transformation, but clearly exhibits the particle spectrum of
the theory. It contains only physical particles and they are all massive. This is the miracle that was
announced earlier. Although we start from a gauge theory, the final spectrum contains massive particles
only. Actually, L3 can be obtained from L2 by an appropriate choice of gauge. The conclusion so far
can be stated as follows.

In a spontaneously broken gauge theory, the gauge vector bosons acquire a mass and the would-
be massless Goldstone bosons decouple and disappear. Their degrees of freedom are used to make the
transition from massless to massive vector bosons possible.

The extension to the non-Abelian case is straightforward. Let us consider a gauge group G with
m generators and, thus, m massless gauge bosons. The claim is that we can break part of the symmetry
spontaneously, leaving a subgroup H with h generators unbroken. The h gauge bosons associated with
H remain massless while the m−h others acquire a mass. In order to achieve this result we need m−h
scalar degrees of freedom with the same quantum numbers as the broken generators. They will disappear
from the physical spectrum and will re-appear as zero-helicity states of the massive vector bosons. As
previously, we shall see that one needs at least one more scalar state which remains physical.
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In the remaining part of this section, we show these results for a general gauge group. The reader
who is not interested in technical details may skip this part.

We introduce a multiplet of scalar fields φi which transform according to some representation, not
necessarily irreducible, of G of dimension n. According to the rules we explained in the last section, the
Lagrangian of the system is given by

L = −1

4
Tr(GµνG

µν) + (DµΦ)†DµΦ− V (Φ) . (54)

In component notation, the covariant derivative is, as usual, Dµφi = ∂µφi − ig(a)T aijA
a
µφj where

we have allowed for the possibility of having arbitrary coupling constants g(a) for the various generators
of G because we do not assume that G is simple or semi-simple. V (Φ) is a polynomial in the Φ invariant
under G of degree equal to four. As before, we assume that we can choose the parameters in V such that
the minimum is not at Φ = 0 but rather at Φ = v where v is a constant vector in the representation space
of Φ. v is not unique. The m generators of G can be separated into two classes: h generators which
annihilate v and form the Lie algebra of the unbroken subgroup H; and m− h generators, shown in the
representation of Φ by matrices T a, such that T av 6= 0 and all vectors T av are independent and can be
chosen to be orthogonal. Any vector in the orbit of v, i.e. of the form eiwaTav, is an equivalent minimum
of the potential. As before, we should translate the scalar fields Φ by Φ → Φ + v. It is convenient to
decompose Φ into components along the orbit of v and orthogonal to it, the analogue of the χ and ψ
fields of the previous section. We can write

Φ = i
m−h∑

a=1

χaT av

|T av| +
n−m+h∑

b=1

ψbub + v , (55)

where the vectors ub form an orthonormal basis in the space orthogonal to all T av. The corresponding
generators span the coset space G/H . As before, we shall show that the fields χa will be absorbed by
the Brout–Englert–Higgs mechanism and the fields ψb will remain physical. Note that the set of vectors
ub contains at least one element since, for all a, we have

v × T av = 0 (56)

because the generators in a real unitary representation are anti-symmetric. This shows that the dimension
n of the representation of Φ must be larger than m − h and, therefore, there will remain at least one
physical scalar field which, in the quantum theory, will give a physical scalar particle7.

Let us now bring in the Lagrangian from Eq. (54) the expression of Φ from Eq. (55). We obtain

L =
1

2

m−h∑

a=1

(∂µχ
a)2 +

1

2

n−m+h∑

b=1

(∂µψ
b)2 − 1

4
Tr(FµνF

µν)

+
1

2

m−h∑

a=1

g(a)2|T av|2AaµAµa −
m−h∑

a=1

g(a)T av∂µχaAaµ − V (Φ) + · · · , (57)

where the dots stand for coupling terms between the scalars and the gauge fields. In writing Eq. (57) we
took into account that T bv = 0 for b > m− h and that the vectors T av are orthogonal.

7Obviously, the argument assumes the existence of scalar fields which induce the phenomenon of spontaneous symmetry
breaking. We can construct models in which the role of the latter is played by some kind of fermion–anti-fermion bound states
and they come under the name of models with a dynamical symmetry breaking. In such models the existence of a physical spin-
zero state, the analogue of the σ-particle of the chiral symmetry breaking of quantum chromodynamics (QCD), is a dynamical
question and in general hard to answer.
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The analysis that gave us Goldstone’s theorem shows that

∂2V

∂φk∂φl
|Φ=v(T

av)l = 0 , (58)

which shows that the χ-fields would correspond to the Goldstone modes. As a result, the only mass
terms which appear in V in Eq. (57) are of the form ψkMklψl and do not involve the χ-fields.

As far as the bilinear terms in the fields are concerned, the Lagrangian from Eq. (57) is the sum of
terms of the form found in the Abelian case. All gauge bosons which do not correspond to H generators
acquire a mass equal to ma = g(a)|T av| and, through their mixing with the would-be Goldstone fields
χ, develop a zero-helicity state. All other gauge bosons remain massless. The ψ represent the remaining
physical Higgs fields.

5 Building the Standard Model: a five-step programme
In this section we shall construct the Standard Model of electro-weak interactions as a spontaneously
broken gauge theory. We shall follow the hints given by experiment following a five-step programme.

– Step 1: Choose a gauge group G.
– Step 2: Choose the fields of the ‘elementary’ particles and assign them to representations of G.

Include scalar fields to allow for the Brout–Englert–Higgs mechanism.
– Step 3: Write the most general renormalizable Lagrangian invariant under G. At this stage, gauge

invariance is still exact and all gauge vector bosons are massless.
– Step 4: Choose the parameters of the scalar potential so that spontaneous symmetry breaking

occurs.
– Step 5: Translate the scalars and rewrite the Lagrangian in terms of the translated fields. Choose a

suitable gauge and quantize the theory.

Note that gauge theories provide only the general framework, not a detailed model. The latter will
depend on the particular choices made in Steps 1 and 2.

5.1 The lepton world
We start with the leptons and, in order to simplify the presentation, we shall assume that neutrinos are
massless. We follow the five steps.

Step 1: Looking at the table of elementary particles we see that, for the combined electromagnetic
and weak interactions, we have four gauge bosons, namely W±, Z0 and the photon. As we explained
earlier, each one of them corresponds to a generator of the group G, more precisely its Lie algebra. The
only non-trivial algebra with four generators is that of U(2) ≈ SU(2) × U(1).

Following the notation which was inspired by the hadronic physics, we call Ti, i = 1, 2, 3, the
three generators of SU(2) and Y that of U(1). Then, the electric charge operator Q will be a linear
combination of T3 and Y . By convention, we write

Q = T3 +
1

2
Y . (59)

The coefficient in front of Y is arbitrary and only fixes the normalization of the U(1) generator
relatively to those of SU(2)8. This ends our discussion of the first step.

8The normalization of the generators for non-Abelian groups is fixed by their commutation relations. That of the Abelian
generator is arbitrary. The relation of Eq. (59) is one choice which has only a historical value. It is not the most natural one
from the group theory point of view, as you will see in the discussion concerning Grand-Unified theories.
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Step 2: The number and the interaction properties of the gauge bosons are fixed by the gauge
group. This is no longer the case with the fields describing the other particles. In principle, we can
choose any number and assign them to any representation. It follows that the choice here will be dictated
by the phenomenology.

Leptons have always been considered as elementary particles. We have six leptons but, as we noted
already, a striking feature of the data is the phenomenon of family repetition. We do not understand why
nature chooses to repeat itself three times, but the simplest way to incorporate this observation into the
model is to use the same representations three times, one for each family. This leaves SU(2) doublets
and/or singlets as the only possible choices. A further experimental input we shall use is the fact that the
charged W couple only to the left-handed components of the lepton fields, in contrast to the photon which
couples with equal strength to both right and left. These considerations lead us to assign the left-handed
components of the lepton fields to doublets of SU(2):

Ψi
L(x) =

1

2
(1 + γ5)

(
νi(x)
`−i (x)

)
; i = 1, 2, 3 , (60)

where we have used the same symbol for the particle and the associated Dirac field.

The right-handed components are assigned to singlets of SU(2):

νiR(x) =
1

2
(1− γ5)νi(x) (?) ; `−iR(x) =

1

2
(1− γ5)`−i (x) . (61)

The question mark next to the right-handed neutrinos means that the presence of these fields is not
confirmed by the data. We shall drop them in this lecture, but we may come back to this point later. We
shall also simplify the notation and put `−iR(x) = Ri(x). The resulting transformation properties under
local SU(2) transformations are

Ψi
L(x)→ ei~τ~θ(x)Ψi

L(x) ; Ri(x)→ Ri(x) , (62)

with ~τ the three Pauli matrices. This assignment and the Y normalization given by Eq. (59), also fix the
U(1) charge and, therefore, the transformation properties of the lepton fields. For all i we find

Y (Ψi
L) = −1 ; Y (Ri) = −2 . (63)

If a right-handed neutrino exists, it has Y (νiR) = 0, which shows that it is not coupled to any
gauge boson.

We are left with the choice of the Higgs scalar fields and we shall choose the solution with the
minimal number of fields. We must give masses to three vector gauge bosons and keep the fourth one
massless. The latter will be identified with the photon. We recall that, for every vector boson acquiring
mass, a scalar with the same quantum numbers decouples. At the end we shall remain with at least one
physical, neutral, scalar field. It follows that the minimal number to start with is four, two charged and
two neutral. We choose to put them, under SU(2), into a complex doublet:

Φ =

(
φ+

φ0

)
; Φ(x)→ ei~τ~θ(x)Φ(x) , (64)

with the conjugate fields φ− and φ0∗ forming Φ†. The U(1) charge of Φ is Y (Φ) = 1.

This ends our choices for the second step. At this point the model is complete. All further steps
are purely technical and uniquely defined.

Step 3: What follows is straightforward algebra. We write the most general, renormalizable,
Lagrangian, involving the fields of Eqs. (60), (61) and (64) invariant under gauge transformations of
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SU(2) × U(1). We shall also assume the separate conservation of the three lepton numbers, leaving the
discussion on the neutrino mixing to a specialized lecture. The requirement of renormalizability implies
that all terms in the Lagrangian are monomials in the fields and their derivatives, and their canonical
dimension is less than or equal to four. The result is

L = −1

4
~Wµν × ~Wµν − 1

4
BµνB

µν + |DµΦ|2 − V (Φ)

+

3∑

i=1

[
Ψ̄i

LiD/Ψi
L + R̄iiD/Ri −Gi(Ψ̄i

LRiΦ + h.c.)
]
. (65)

If we call ~W and B the gauge fields associated with SU(2) and U(1) respectively, the correspond-
ing field strengths ~Wµν and Bµν appearing in Eq. (65) are given by Eqs. (24) and (15).

Similarly, the covariant derivatives in Eq. (65) are determined by the assumed transformation
properties of the fields, as shown in Eq. (21):

DµΨi
L =

(
∂µ − ig ~τ2 × ~Wµ + ig

′
2 Bµ

)
Ψi

L ; DµRi = (∂µ + ig′Bµ)Ri,

DµΦ =
(
∂µ − ig ~τ2 × ~Wµ − ig

′
2 Bµ

)
Φ .

(66)

The two coupling constants g and g′ correspond to the groups SU(2) and U(1), respectively. The
most general potential V (Φ) compatible with the transformation properties of the field Φ is

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 . (67)

The last term in Eq. (65) is a Yukawa coupling term between the scalar Φ and the fermions. In the
absence of right-handed neutrinos, this is the most general term which is invariant under SU(2) × U(1).
As usual, h.c. stands for ‘hermitian conjugate’. Gi are three arbitrary coupling constants. If right-handed
neutrinos exist there is a second Yukawa term with Ri replaced by νiR and Φ by the corresponding
doublet proportional to τ2Φ∗, where * means ‘complex conjugation’. We see that the Standard Model
can perfectly well accommodate a right-handed neutrino, but it couples only to the Higgs field.

A final remark: as expected, the gauge bosons ~Wµ and Bµ appear to be massless. The same is
true for all fermions. This is not surprising because the assumed different transformation properties of
the right- and left-handed components forbid the appearance of a Dirac mass term in the Lagrangian. On
the other hand, the Standard Model quantum numbers also forbid the appearance of a Majorana mass
term for the neutrinos. In fact, the only dimensionful parameter in (65) is µ2, the parameter in the Higgs
potential in Eq. (67). Therefore, the mass of every particle in the model is expected to be proportional to
|µ|.

Step 4: The next step of our programme consists of choosing the parameter µ2 negative to trigger
the phenomenon of spontaneous symmetry breaking and the Brout–Englert–Higgs mechanism. The
minimum potential occurs at a point v2 = −µ2/λ. As we have explained earlier, we can choose the
direction of the breaking to be along the real part of φ0.

Step 5: Translating the scalar field by a real constant,

Φ→ Φ +
1√
2

(
0
v

)
, v2 = −µ

2

λ
, (68)

transforms the Lagrangian and generates new terms, as it was explained in the previous section. Let us
look at some of them.
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(i) Fermion mass terms. Replacing φ0 by v in the Yukawa term in Eq. (65) creates a mass term for
the charged leptons, leaving the neutrinos massless:

me =
1√
2
Gev, mµ =

1√
2
Gµv, mτ =

1√
2
Gτv . (69)

Since we have three arbitrary constants Gi, we can fit the three observed lepton masses. If we
introduce right-handed neutrinos we can also apply whichever Dirac neutrino masses we wish.

(ii) Gauge-boson mass terms. They come from the |DµΦ|2 term in the Lagrangian. A straight
substitution produces the following quadratic terms among the gauge boson fields:

1

8
v2[g2(W 1

µW
1µ +W 2

µW
2µ) + (g ′Bµ − gW 3

µ )2 ] . (70)

Defining the charged vector bosons as

W±µ =
W 1
µ ∓ iW 2

µ√
2

, (71)

we obtain their masses,

mW =
vg

2
. (72)

The neutral gauge bosons Bµ and W3
µ have a 2×2 non-diagonal mass matrix. After diagonaliza-

tion, we define the mass eigenstates as

Zµ = cos θWBµ − sin θWW
3
µ

Aµ = cos θWBµ + sin θWW
3
µ ,

(73)

with tan θW = g′/g. They correspond to the mass eigenvalues

mZ =
v(g2 + g′2)1/2

2
=

mW

cos θW

mA = 0 .

(74)

As expected, one of the neutral gauge bosons is massless and will be identified with the pho-
ton. The Brout–Englert–Higgs mechanism breaks the original symmetry according to SU(2) × U(1)→
U(1)em and θW is the angle between the original U(1) and the one left unbroken. It is the parameter first
introduced by S.L. Glashow, although it is often referred to as the ‘Weinberg angle’.

(iii) Physical Higgs mass. Three out of the four real fields of the Φ doublet will be absorbed
in order to allow for the three gauge bosons W± and Z0 to acquire a mass. The fourth one, which
corresponds to (|φ0φ0†|)1/2, remains physical. Its mass is given by the coefficient of the quadratic part
of V (Φ) after the translation of Eq. (68) and is equal to

mh =
√
−2µ2 =

√
2λv2 . (75)

In addition, we produce various coupling terms which we shall present, together with the hadronic
ones, in the next section.
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5.2 Extension to hadrons
Introducing the hadrons into the model presents some novel features largely because the individual quark
quantum numbers are not separately conserved. With regard to the second step, there is currently a
consensus regarding the choice of the ‘elementary’ constituents of matter: besides the six leptons, there
are six quarks. They are fractionally charged and come each in three ‘colours’. The observed lepton–
hadron universality property tells us to also use doublets and singlets for the quarks. The first novel
feature we mentioned above is that all quarks appear to have non-vanishing Dirac masses, so we must
introduce both right-handed singlets for each family. A naïve assignment would be to write the analogue
of Eqs. (60) and (61) as

QiL(x) =
1

2
(1 + γ5)

(
U i(x)
Di(x)

)
; U iR(x) ; Di

R(x) , (76)

with the index i running over the three families as U i =u,c,t and Di =d,s,b for i = 1, 2, 3, respectively9.
This assignment determines the SU(2) transformation properties of the quark fields. It also fixes their Y
charges and, hence their U(1) properties. Using Eq. (59), we find

Y (QiL) =
1

3
; Y (U iR) =

4

3
; Y (Di

R) = −2

3
. (77)

The presence of the two right-handed singlets has an important consequence. Even if we had only
one family, we would have two distinct Yukawa terms between the quarks and the scalar field of the form

LYuk = Gd(Q̄LDRΦ + h.c.) +Gu(Q̄LURΦ̃ + h.c.) . (78)

Φ̃ is the doublet proportional to τ2Φ∗. It has the same transformation properties under SU(2) as Φ,
but the opposite Y charge.

If there were only one family, this would have been the end of the story. The hadron Lagrangian
L(1)

h is the same as Eq. (65) with quark fields replacing leptons and the extra term of Eq. (78). The
complication we alluded to before comes with the addition of more families. In this case the total
Lagrangian is not just the sum over the family index. The physical reason is the non-conservation of the
individual quark quantum numbers we mentioned previously. In writing Eq. (76), we implicitly assumed
a particular pairing of the quarks in each family; u with d, c with s and t with b. In general, we could
choose any basis in family space and, since we have two Yukawa terms, we will not be able to diagonalize
both of them simultaneously. It follows that the most general Lagrangian will contain a matrix with non-
diagonal terms which mix the families. By convention, we attribute it to a different choice of basis in
the d–s–b space. It follows that the correct generalization of the Yukawa Lagrangian of Eq. (78) to many
families is given by

LYuk =
∑

i,j

[
(Q̄iLG

ij
d D

j
RΦ + h.c.)

]
+
∑

i

[
Giu(Q̄iLU

i
RΦ̃ + h.c.)

]
, (79)

where the Yukawa coupling constant Gd has become a matrix in family space. After translation of the
scalar field, we shall produce masses for the up quarks given by mu = G1

uv, mc = G2
uv and mt = G3

uv,
as well as a 3 × 3 mass matrix for the down quarks given by Gijd v. As usual, we want to work in
a field space where the masses are diagonal, so we change our initial d–s–b basis to bring Gijd into a
diagonal form. This can be done through a 3 × 3 unitary matrix D̃i = U ijDj such that U †GdU =
diag(md,ms,mb) . In the simplest example of only two families, it is easy to show that the most general
such matrix, after using all freedom for field redefinitions and phase choices, is a real rotation:

9An additional index a, also running through 1, 2 and 3 and denoting the colour, is understood.
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C =

(
cos θ sin θ
− sin θ cos θ

)
, (80)

with θ being our familiar Cabibbo angle. For three families, an easy counting shows that the matrix has
three angles, the three Euler angles, and an arbitrary phase. It is traditionally written in the form

KM =




c1 s1c3 s1s3

−s1c3 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

−s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ


 , (81)

with the notation ck = cos θk and sk = sin θk, k = 1, 2, 3. The novel feature is the possibility of
introducing the phase δ. This means that a six-quark model has a natural source of CP or T violation,
whereas a four-quark model does not.

The total Lagrangian density, before the translation of the field Φ, is now

L = −1

4
~Wµν × ~Wµν − 1

4
BµνB

µν + |DµΦ|2 − V (Φ)

+

3∑

i=1

[
Ψ̄i

LiD/Ψi
L + R̄iiD/Ri −Gi(Ψ̄i

LRiΦ + h.c.) (82)

+ Q̄iLiD/QiL + Ū iRiD/U iR + D̄i
RiD/Di

R +Giu(Q̄iLU
i
RΦ̃ + h.c.)

]

+
3∑

i,j=1

[
(Q̄iLG

ij
d D

j
RΦ + h.c.)

]
.

The covariant derivatives on the quark fields are given by

DµQ
i
L =

(
∂µ − ig

~τ

2
× ~Wµ − i

g′

6
Bµ

)
QiL (83)

DµU
i
R =

(
∂µ − i

2g′

3
Bµ

)
U iR

DµD
i
R =

(
∂µ + i

g′

3
Bµ

)
Di

R .

The classical Lagrangian in Eq. (82) contains 17 arbitrary real parameters. They are:

– the two gauge coupling constants g and g′;
– the two parameters of the scalar potential λ and µ2;
– three Yukawa coupling constants for the three lepton families, Ge,µ,τ ;

– six Yukawa coupling constants for the three quark families, Gu,c,tu ; and Gd,s,bd .
– four parameters of the KM matrix, the three angles and the phase δ.

A final remark: 15 out of these 17 parameters are directly connected with the Higgs sector.

Translating the scalar field by Eq. (68) and diagonalizing the resulting down-quark mass matrix
produces the mass terms for fermions and bosons as well as several coupling terms. We shall write here
the ones which involve the physical fields10.

10We know from QED that, in order to determine the Feynman rules of a gauge theory, one must first decide on a choice of
gauge. For Yang–Mills theories, this step introduces new fields called Faddeev–Popov ghosts. This point is explained in every
standard text book on quantum field theory, but we have not discussed it in these lectures.
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(i) The gauge boson–fermion couplings. They are the ones which generate the known weak and
electromagnetic interactions. Aµ is coupled to the charged fermions through the usual electromagnetic
current:

gg′

(g2 + g′2)1/2

[
ēγµe+

3∑

a=1

(
2

3
ūaγµua − 1

3
d̄aγµda

)
+ · · ·

]
Aµ , (84)

where the dots stand for the contribution of the other two families e→ µ, τ , u→ c,t and d→ s,b and the
summation over a extends over the three colours. Equation (84) shows that the electric charge e is given
in terms of g and g′ by

e =
gg′

(g2 + g′2)1/2
= g sin θW = g′ cos θW . (85)

Similarly, the couplings of the charged W to the weak current are

g

2
√

2

(
ν̄eγ

µ(1 + γ5)e+
3∑

a=1

ūaγµ(1 + γ5)daKM + · · ·
)
W+
µ + h.c. . (86)

Combining all these relations, we can determine the experimental value of the parameter v, the
vacuum expectation value of the Higgs field. We find v ∼ 246 GeV.

As expected, only left-handed fermions participate. dKM is the linear combination of d–s–b given
by the KM matrix in Eq. (81). By diagonalizing the down-quark mass matrix, we introduced the off-
diagonal terms into the hadron current. When considering processes, like nuclear β-decay or µ-decay,
where the momentum transfer is very small compared to the W mass, the W propagator can be approxi-
mated by mW

−2 and the effective Fermi coupling constant is given by

G√
2

=
g2

8m2
W

=
1

2v2
. (87)

In contrast to the charged weak current shown in Eq. (86), the Z0-fermion couplings involve both
left- and right-handed fermions:

−e
2

1

sin θW cos θW

[
ν̄Lγ

µνL + (sin2 θW − cos2 θW)ēLγ
µeL

+2 sin2 θWēRγ
µeR + · · ·

]
Zµ ,

(88)

e

2

3∑

a=1

[(
1

3
tan θW − cot θW

)
ūaLγ

µuaL +

(
1

3
tan θW + cot θW

)
d̄aLγ

µdaL

+
2

3
tan θW(2ūaRγ

µuaR − d̄aRγµdaR) + · · ·
]
Zµ .

(89)

Again, the summation is over the colour indices and the dots stand for the contribution of the other
two families. In this formula we verify the property of the weak neutral current to be diagonal in the
quark-flavour space. Another interesting property is that the axial part of the neutral current is propor-
tional to [ūγµγ5u − d̄γµγ5d]. This particular form of the coupling is important for phenomenological
applications, such as the induced parity violating effects in atoms and nuclei.

(ii) The gauge boson self-couplings. One of the characteristic features of Yang–Mills theories is
the particular form of the self-couplings among the gauge bosons. They come from the square of the
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non-Abelian curvature in the Lagrangian, which, in our case, is the term −1
4
~Wµν × ~Wµν . Expressed in

terms of the physical fields, this term gives

− ig(sin θWA
µ − cos θWZ

µ)(W ν−W+
µν −W ν+W−µν)

− ig(sin θWF
µν − cos θWZ

µν)W−µ W
+
ν

− g2(sin θWA
µ − cos θWZ

µ)2W+
ν W

ν−

+ g2(sin θWA
µ − cos θWZ

µ)(sin θWA
ν − cos θWZ

ν)W+
µ W

−
ν

− g2

2
(W+

µ W
µ−)2 +

g2

2
(W+

µ W
−
ν )2 ,

(90)

where we have used the following notation: Fµν = ∂µAν − ∂νAµ, W±µν = ∂µW
±
ν − ∂νW

±
µ and

Zµν = ∂µZν − ∂νZµ with g sin θW = e. Let us concentrate on the photon–W+W− couplings. If we
forget, for the moment, about the SU(2) gauge invariance, we can use different coupling constants for
the two trilinear couplings in Eq. (90), say e for the first and eκ for the second. For a charged, massive
W, the magnetic moment µ and the quadrupole moment Q are given by

µ =
(1 + κ)e

2mW
Q = − eκ

m2
W

. (91)

Looking at Eq. (90), we see that κ = 1. Therefore, SU(2) gauge invariance gives very specific
predictions concerning the electromagnetic parameters of the charged vector bosons. The gyromagnetic
ratio equals two and the quadrupole moment equals −em−2

W .

(iii) The scalar fermion couplings. They are given by the Yukawa terms in Eq. (65). The same
couplings generate the fermion masses through spontaneous symmetry breaking. It follows that the
physical Higgs scalar couples to quarks and leptons with strength proportional to the fermion mass.
Therefore, the prediction is that it will decay predominantly to the heaviest possible fermion compatible
with phase space. This property provides a typical signature for its identification.

(iv) The scalar gauge boson couplings. They come from the covariant derivative term |DµΦ|2 in
the Lagrangian. If we call φ the field of the physical neutral Higgs, we find

1

4
(v + φ)2

[
g2W+

µ W
−µ + (g2 + g′2)ZµZ

µ
]
. (92)

This gives a direct coupling φ–W+–W−, as well as φ–Z–Z, which has been very useful in the
Higgs searches.

(v) The scalar self-couplings. They are proportional to λ(v + φ)4. Equations (75) and (87) show
that λ = Gm2

h/
√

2, so, in the tree approximation, this coupling is related to the Higgs mass. It could
provide a test of the Standard Model Higgs, but it will not be easy to measure. On the other hand, this
relation shows that, were the physical Higgs very heavy, it would also have been strongly interacting,
and this sector of the model would become non-perturbative.

The five-step programme is now complete for both leptons and quarks. The 17 parameters of the
model have all been determined by experiment. Although the number of arbitrary parameters seems very
large, we should not forget that they are all mass and coupling parameters, like the electron mass and the
fine structure constant of QED. The reason we have more of them is that the Standard Model describes a
much larger number of particles and interactions in a unified framework .

6 The Standard Model and experiment
Our confidence in this model is amply justified on the basis of its ability to accurately describe the bulk
of our present-day data and, especially, of its enormous success in predicting new phenomena. Let us
mention a few of them. We shall follow the historical order.
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Fig. 5: A comparison between measured and computed values for various physical quantities

– The discovery of weak neutral currents by Gargamelle in 1972:

νµ + e− → νµ + e− ; νµ + N→ νµ + X .

Both their strength and their properties were predicted by the Standard Model.
– The discovery of charmed particles at SLAC in 1974. Their presence was essential to ensure the

absence of strangeness changing neutral currents, for example K0 → µ++µ− . Their characteristic
property is to decay predominantly into strange particles.

– A necessary condition for the consistency of the Model is that
∑

iQi = 0 inside each family.
When the τ lepton was discovered this implied a prediction for the existence of the b and t quarks
with the right electric charges.

– The observed CP violation could be naturally incorporated into a model with three families. The
b and t quarks were indeed discovered.

– The discovery of the W and Z bosons at CERN in 1983 with the masses predicted by the the-
ory. The characteristic relation of the Standard Model with an isodoublet Brout–Englert–Higgs
mechanism mZ = mW/ cos θW has been checked with very high accuracy (including radiative
corrections).

– The t-quark was seen at LEP through its effects in radiative corrections before its actual discovery
at Fermilab.

– The vector boson self-couplings, γ–W+–W− and Z0–W+–W− have been measured at LEP and
confirm the Yang–Mills predictions given in Eq. (91).

– The recent discovery of a new boson which can be identified with the Higgs particle of the Standard
Model is the last of this impressive series of successes.

All these discoveries should not make us forget that the Standard Model has been equally success-
ful in fitting a large number of experimental results. You have all seen the global fit given in Fig. 5. The
conclusion is obvious: the Standard Model has been enormously successful.
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Fig. 6: The effective coupling constant for strong interactions as a function of the energy scale

Although in these lectures we did not discuss QCD, the gauge theory of strong interactions, the
computations whose results are presented in Fig. 5, take into account the radiative corrections induced
by virtual gluon exchanges. The fundamental property of QCD, the one which allows for perturbation
theory calculations, is the property of asymptotic freedom, which is the particular dependence of the
effective coupling strength on the energy scale. This is presented in Fig. 6 which shows the theoretical
prediction based on QCD calculations, including the theoretical uncertainties. We see that the agreement
with the experimentally measured values of the effective strong interaction coupling constant αs is truly
remarkable. Notice that this agreement extends to rather low values of Q of the order of 1–2 GeV, where
αs equals approximately 1/3.

This brings us to our next point, namely that the success presented so far is in fact a success of
renormalized perturbation theory. The extreme accuracy of the experimental measurements, mainly at
LEP but also at FermiLab and elsewhere, allow a detailed comparison between theory and experiment to
be made for the first time including the purely weak interaction radiative corrections.

In Fig. 7 we show the comparison between theory and experiment for two quantities, ε1 and ε3,
defined in Eqs. (93) and (94), respectively:

ε1 =
3GFm

2
t

8
√

2π2
− 3GFm

2
W

4
√

2π2
tan2 θW ln

mH

mZ
+ · · · , (93)

ε3 =
GFm

2
W

12
√

2π2
ln
mH

mZ
− GFm

2
W

6
√

2π2
ln
mt

mZ
+ · · · . (94)

They are defined with the following properties: (i) they include the strong and electromagnetic
radiative corrections; and (ii) they vanish in the Born approximation for the weak interactions. So, they
measure the weak interaction radiative corrections. The figure shows that, in order to obtain agreement
with the data, one must include these corrections. Weak interactions are no longer a simple phenomeno-
logical model, but have become a precision theory.

The moral of the story is that the perturbation expansion of the Standard Model is reliable as long
as all coupling constants remain small. The only coupling which does become large in some kinematical
regions is αs, which grows at small energy scales, as shown in Fig. 6. In this region, we know that a
hadronization process occurs and perturbation theory breaks down. New techniques are necessary in
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Fig. 7: Comparison between theory and experiment for two quantities sensitive to weak interaction radiative
corrections.

Fig. 8: The hadron spectrum obtained by numerical simulations of QCD on a space–time lattice

order to compare theoretical predictions with experimental data. In recent years, considerable effort has
been devoted to this question with extensive numerical studies of QCD in the approximation in which
the four-dimensional space–time has been replaced by a finite lattice. In Fig. 8 we show the computed
spectrum of low-lying hadron states and the comparison with the data. The agreement makes us believe
that we control the theory at both the weak- and strong-coupling regime. We should no longer talk
about the Standard Model, but rather about the Standard Theory of the interactions among elementary
particles. As a by-product of this analysis, we feel confident to say that at high energies perturbation
theory is expected to be reliable unless there are new strong interactions.
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This brings us to our last point that this very success shows that the Standard Model cannot be
a complete theory. In other words there must be new physics beyond the Standard Model. The argu-
ment is simple and it is based on a straightforward application of perturbation theory with an additional
assumption which we shall explain presently.

We assume that the Standard Model is correct up to a certain scale Λ. The precise value of Λ does
not matter, provided it is larger than any energy scale reached so far11.

A quantum field theory is defined through a functional integral over all classical field configu-
rations, the Feynman path integral. By a Fourier transformation we can express it as an integral over
the fields defined in momentum space. Following K. Wilson, let us split this integral in two parts: the
high-energy part with modes above Λ and the low-energy part with the modes below Λ. Let us imagine
that we perform the high-energy part. The result will be an effective theory expressed in terms of the
low-energy modes of the fields. We do not know how to perform this integration explicitly, so we cannot
write down the correct low-energy theory, but the most general form will be a series of operators made
out of powers of the fields and their derivatives. Since integrating over the heavy modes does not break
any of the symmetries of the initial Lagrangian, only operators allowed by the symmetries will appear.
Wilson remarked that, when Λ is large compared to the mass parameters of the theory, we can determine
the leading contributions by simple dimensional analysis12. We distinguish three kinds of operators,
according to their canonical dimension.

– Those with dimension larger than four. Dimensional analysis shows that they will come with a
coefficient proportional to inverse powers of Λ, so, by choosing a scale large enough, we can make
their contribution arbitrarily small. We shall call them irrelevant operators.

– Those with dimension equal to four. They are the ones which appeared already in the original
Lagrangian. Their coefficient will be independent of Λ, up to logarithmic corrections which we
ignore. We shall call them marginal operators.

– Finally, we have the operators with dimension smaller than four. In the Standard Model there is
only one such operator, the square of the scalar field Φ2 which has dimension equal to two13. This
operator will appear with a coefficient proportional to Λ2, which means that its contribution will
grow quadratically with Λ. We shall call it the relevant operator. It will give an effective mass to
the scalar field proportional to the square of whichever scale we can think of. This problem was
first identified in the framework of Grand Unified Theories and is known since as the hierarchy
problem. Let me emphasize here that this does not mean that the mass of the scalar particle will
be necessarily equal to Λ. The Standard Model is a renormalizable theory and the mass is fixed
by a renormalization condition to its physical value. It only means that this condition should be
adjusted to arbitrary precision order by order in perturbation theory. It is this extreme sensitivity to
high scales, known as the fine tuning problem, which is considered unacceptable for a fundamental
theory.

Let us summarize: the great success of the Standard Model tells us that renormalized perturbation theory
is reliable in the absence of strong interactions. The same perturbation theory shows the need of a fine
tuning for the mass of the scalar particle. If we do not accept the latter, we have the following two
options.

11The scale Λ should not be confused with a cut-off that is often introduced when computing Feynman diagrams. This cut-off
disappears after renormalization is performed. Here Λ is a physical scale which indicates how far the theory can be trusted.

12There are some additional technical assumptions concerning the dimensions of the fields, but they are satisfied in perturba-
tion theory.

13There exists also the unit operator with dimension equal to zero which induces an effective cosmological constant. Its
effects are not observable in a theory which ignores the gravitational interactions, so we shall not discuss it here. One could
think of the square of a fermion operator Ψ̄Ψ, whose dimension is equal to three, but it is not allowed by the chiral symmetry
of the model.
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– Perturbation theory breaks down at some scale Λ. We can imagine several reasons for a such a
breakdown to occur. The simplest is the appearance of new strong interactions. The so-called
technicolor models, in which the role of the Higgs field is played by a bound state of new strongly
coupled fermions, were in this class. More exotic possibilities include the appearance of new,
compact space dimensions with compactification length ∼ Λ−1.

– Perturbation theory is still valid but the numerical coefficient of the Λ2 term which multiplies the
Φ2 operator vanishes to all orders of perturbation theory. For this to happen we must modify the
Standard Model introducing appropriate new particles. Supersymmetry is the only systematic way
we know to achieve this goal.

7 Conclusions
In these lectures we saw the fundamental role of geometry in the dynamics of the forces among the
elementary particles. It was the understanding of this role which revolutionized our way of thinking and
led to the construction of the Standard Model. It incorporates the ideas of gauge theories, as well as
those of spontaneous symmetry breaking. Its agreement with experiment is spectacular. It fits all data
known today. However, unless one is willing to accept a fine tuning with arbitrary precision, one should
conclude that new physics will appear beyond a scale Λ. The precise value of Λ cannot be computed,
but the amount of fine tuning grows quadratically with it, so it cannot be too large. Hopefully, it will be
within reach of the LHC.
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Appendix A: The principles of renormalization
In this appendix I want to recall and summarize the basic principles of perturbative renormalization
theory. Since renormalization has a well-deseved reputation of complexity, this will be done by omitting
all technical details. My purpose is to dissipate a widely spread belief according to which renormalization
is a mathematically murky procedure: adding and subtracting infinities. On the contrary, I want to explain
that it offers the only known mathematically consistent way to define the perturbation expansion of a
quantum field theory.

A.1 The need for renormalization
Everyone who has attempted to compute a one-loop Feynman diagram knows that divergent expressions
are often encountered. For example, in the φ4 theory we find the diagram of Fig. A.1 involving the
integral

I =

∫
d4k

(k2 −m2 + iε)[(k − p)2 −m2 + iε]
, (A1)

which diverges logarithmically at large k. Similar divergences can be found in any theory, such as QED,
Yang–Mills, etc. They have no place in a well-defined mathematical theory. So, if we find them, it
means that we have made a mathematical mistake somewhere. Where is it? Let us first notice that the
divergence in Eq. (A1) occurs at large values of the internal momentum, which, by Fourier transform,
implies short distances. Did we make a mistake at short distances? Yes we did! We wrote the Lagrangian
density as

L =
1

2
(∂µφ(x)) (∂µφ(x))− 1

2
m2(φ(x))2 − λ

4!
(φ(x))4 . (A2)

On the other hand, the canonical commutation relations for a scalar quantum field are given by

[
φ(~x, t), φ̇(~y, t)

]
= i~δ3(~x− ~y) . (A3)

We know that the Dirac δ-function is not really a ‘function’ but a special form of what we call ‘a
distribution’. Many properties of well-behaved functions do not apply to it. In particular, the multiplica-
tion is not always a well-defined operation. (δ(x))2 is meaningless. The presence of the δ-function on the
right-hand side of Eq. (A3) implies that the field φ(x) is also a distribution14, so the product φ2 is ill de-
fined. Yet, it is precisely expressions of this kind that we wrote in every single term of our Lagrangian
Eq. (A2). Since our initial Lagrangian is not well defined, it is not surprising that our calculations yield
divergent results.

Now that we have identified the origin of the problem, we can figure out ways to solve it. A
conceptually simple one would be to replace the field products in Eq. (A2) by splitting the points:

φ(x)φ(x)→ lim
a→0

φ
(
x+

a

2

)
φ
(
x− a

2

)
. (A4)

This expression is perfectly well defined for all values of the parameter a, except a = 0. In terms
of distributions this means that the product is defined up to an arbitrary distribution F(a) which has
support (i.e. it is non-zero), only at a = 0. Such a distribution is a superposition of the δ-function and its
derivatives,

F(a) =
∑

i

Ciδ
(i)(a) (A5)

14The precise term is ‘operator valued distribution’.

32

J. ILIOPOULOS

32



p1

p2

p = p1 + p2

k

k − p

Fig. A.1: An one-loop divergent diagram in the φ4 theory

with the Ci arbitrary real constants. The moral of the story is that the quantization rules for a local-
field theory imply that every term in the Lagrangian contains a set of arbitrary constants which must
be determined by experiment. Renormalization is the mathematical procedure which allows us to do it.
A final remark: how many parameters are needed in order to define a given field theory? The answer
involves the distinction between renormalizable and non-renormalizable theories. For the first, a finite
number suffices. For the second, we need an infinite number, which means that non-renormalizable
theories have no predictive power.

A.2 The theory of renormalization
In this section, I want to give some more information concerning the renormalization prescription. The
process we outlined above was formulated in x-space. It is intuitively easier to understand, but not very
convenient for practical calculations, which are usually performed in momentum space. The connection
is by Fourier transform. The derivatives of the δ-function in Eq. (A5) become polynomials in the external
momenta.

The renormalization programme follows three steps:

– the power counting which determines how many constantsC we shall need for a given field theory;
– the regularization which is a prescription to make every Feynman diagram finite with the price of

introducing a new parameter in the theory, the analogue of the point-splitting parameter a we used
in Eq. (A4);

– the renormalization which is the mathematical procedure to eliminate the regularization parameter
and determine the values of the necessary constants C.

A.2.1 The power counting
As the term indicates, it is the counting which determines whether a given diagram is divergent or not.
We shall need to introduce some terminology. First, we have the obvious notions of disconnected and
connected diagrams. A further specification is the one-particle irreducible (1PI) diagrams. A diagram
is 1PI if it cannot be separated into two disconnected pieces by cutting a single internal line. A general
connected diagram is constructed by joining together 1PI pieces, see Fig. A.2. It is obvious that a
connected diagram is divergent if, and only if, one or more of its 1PI pieces is divergent, because the
momenta of the internal connecting lines are fixed by energy-momentum conservation in terms of the
external momenta and bring no new integrations.

This brings us to the power-counting argument. A single loop integral will be ultravioletly diver-
gent if and only if the numerator is of equal or higher degree in the loop momentum than the denominator.
For multiloop diagrams this may not be the case, since the divergence may be entirely due to a particular
sub-diagram. However, in the spirit of perturbation theory, the divergent sub-diagram must be treated
first. We thus arrive at the notion of superficial degree of divergence d of a given 1PI diagram, defined
as the difference between the degree of integration momenta of the numerator minus that of the denom-
inator. The diagram will be called primitively divergent if d ≥ 0. Let us compute, as an example, d for
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=

Fig. A.2: The 1PI decomposition of the three point function

the diagrams of the scalar field theory described in Eq. (A2), in the generalization in which we replace
the interaction term φ4 by φm with m integer, m ≥ 3. Let us consider an 1PI diagram of nth order
in perturbation with I internal and E external lines. Every internal line brings four powers of k to the
numerator through the d4k factor and two powers in the denominator through the propagator. Every
vertex brings a δ4-function of the energy-momentum conservation. All but one of them can be used to
eliminate one integration each, the last reflecting the overall conservation which involves only external
momenta. Therefore, we obtain

d = 2I − 4n+ 4 . (A6)

This expression can be made more transparent by expressing I in terms of E and m. A simple
counting gives 2I + E = mn and Eq. (A6) becomes

d = (m− 4)n− E + 4 . (A7)

This is the main result. Although it is shown here as a plausibility argument, it is in fact a rigorous
result. We see that m = 4 is a critical value and we can distinguish three cases.

1. m = 3, d = 4 − n − E. d is a decreasing function of n, the order of perturbation theory.
Only a limited number of diagrams are primitively divergent. Above a certain order they are all
convergent. For reasons that will be clear soon, we shall call such theories super-renormalizable.

2. m = 4, d = 4 − E. d is independent of the order of perturbation theory. If a Green function
is divergent at some order, it will be divergent at all orders. For the φ4 theory we see that the
primitively divergent diagrams are those with E = 2, which have d = 2 and are quadratically
divergent and those with E = 4 which have d = 0 and are logarithmically divergent. (Notice
that, for this theory, all Green functions with odd E vanish identically because of the symmetry
φ→ −φ). We shall call such theories renormalizable.

3. m > 4, d is an increasing function of n. Every Green function, irrespective of the number of
external lines, will be divergent above some order of perturbation. We call such theories non-
renormalizable.

This power-counting analysis can be repeated for any quantum field theory. As a second example,
we can look at QED. We should now distinguish between photon and electron lines, which we shall
denote by Iγ , Ie, Eγ and Ee for internal and external lines, respectively. Taking into account the fact that
the fermion propagator behaves like k−1 at large momenta, for the superficial degree of divergence of an
1PI diagram we obtain

d = 2Iγ + 3Ie − 4n+ 4 = 4− Eγ −
3

2
Ee . (A8)

We see that d is independent of the order of perturbation theory and, therefore, the theory is
renormalizable.
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We leave it as an exercise to the reader to establish the renormalization properties of other field
theories. In four dimensions of space–time, the result is:

1. there exists only one super-renormalizable field-theory with interaction of the form φ3;
2. there exist five renormalizable ones:

(a) φ4;
(b) Yukawa ψ̄ψφ;
(c) QED ψ̄γµA

µψ;
(d) scalar electrodynamics, it contains two terms [φ†∂µφ− (∂µφ

†)φ]Aµ and AµAµφ†φ;
(e) Yang–Mills TrGµνG

µν ;

3. all other theories are non-renormalizable.

For φ3, the energy will turn out to be unbounded from below, so this theory alone cannot be a
fundamental theory for a physical system. A most remarkable fact is that, as we shall see later, nature
uses all renormalizable theories to describe the interactions among elementary particles.

Before closing this section we want to make a remark which is based on ordinary dimensional
analysis. In four dimensions, a boson field has dimensions of a mass (remember, we are using units
such that the speed of light c and Planck’s constant h are dimensionless) and a fermion field with a
mass to the power 3/2. Since all terms in a Lagrangian density must have dimensions equal to four,
we conclude that the coupling constant of a super-renormalizable theory must have the dimensions of a
mass, a renormalizable theory must be dimensionless, and a non-renormalizable theory must have the
dimensions of an inverse power of mass. In fact we can rephrase the power-counting argument for the
superficial degree of divergence of an 1PI diagram as an argument based on dimensional analysis. The
result will be this connection between the dimensions of the coupling constant and the renormalization
properties of the theory. However, there is a fine point: for this argument to work we must assume that
all boson propagators behave like k−2 at large momenta and all fermion ones like k−1. So, the argument
will fail if this behaviour is not true. The most important example of such a failure is a theory containing
massive vector fields whose propagator is like a constant at large k. As a result, such theories, although
they may have dimensionless coupling constants, are in fact non-renormalizable.

A.2.2 Regularization
The point splitting we presented in Eq. (A4) is an example of a procedure we shall call regularization.
It consists of introducing an extra parameter in the theory (in the case considered, it was the splitting
distance a), to which we do not necessarily attach a physical meaning, with the following properties: (i)
the initial theory is recovered for a particular value of the parameter, in our example a = 0; (ii) the theory
is finite for all values of the parameter in a region which contains the ‘physical’ one a = 0; and (iii) at
this value we get back the divergences of the initial theory. We shall call this parameter a cut-off.

If our purpose is to perform computations of Feynman diagrams, we may choose any cut-off
procedure that renders these diagrams finite. There is a plethora of such methods and there is no need
to give a complete list. A direct method would be to cut all integrations of loop momenta at a scale Λ.
The initial theory is recovered at the limit Λ → ∞. For practical calculations it is clear that we must
choose a cut-off procedure that renders these computations as simple as possible. By trial and error, the
simplest regularization scheme turned out to be a quite counter-intuitive one. We start by illustrating it
in the simple example of the divergent integral of Eq. (A1). Since we are interested only in the divergent
part, we can simplify the discussion by considering the value of I at p = 0. We thus obtain

I =

∫
d4k

(2π)4

1

(k2 −m2 + iε)2
. (A9)
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Ignoring the divergence for the moment, we notice that the integrand depends only on k2, so we
choose spherical coordinates and write d4k = k3dkdΩ(3), where dΩ(3) is the surface element on the
three-dimensional unit sphere. Further, we notice that I would have been convergent if we were working
in a space–time of three, two or one dimensions. The crucial observation is that in all three cases we can
write the result in a compact form as follows15:

I(d) =

∫
ddk

(2π)d
1

(k2 +m2)2
=

1

(4π)d/2
Γ(2− d/2)

(m2)(2−d/2)
; d = 1, 2, 3, (A10)

where Γ(z) is the well-known special function which generalizes the concept of the factorial for a com-
plex z. The important values for Eq. (A10) are given by

Γ(n) = (n− 1)! ; Γ(n+ 1/2) =
(π)1/2

2n
(2n− 1)!! ; n = 1, 2, . . . . (A11)

And now comes the big step. Nothing on the right-hand side of Eq. (A10) forces us to consider
this expression only for d = 1, 2 or 3. In fact, Γ is a meromorphic function in the entire complex plane
with poles whenever its argument becomes equal to an integer n ≤ 0. For the integral I(d), using the
identity nΓ(n) = Γ(n+1), we see that, when d→ 4, the Γ function behaves as Γ(2−d/2) ∼ 2/(4−d).
So we can argue that, at least for this integral, we have introduced a regularization, i.e. a new parameter,
namely ε = 4 − d, such that the expression is well defined for all values in a region of ε and diverges
when ε→ 0.

Before showing how to generalize this approach to all other integrals we may encounter in the cal-
culation of Feynman diagrams, let us try to make the logic clear by emphasizing what this regularization
does not claim to be. First, it does not claim to be the result one would have obtained by quantizing the
theory in a complex number of dimensions. In fact we do not know how to consistently perform such
an operation. In this sense, dimensional regularization does not offer a non-perturbative definition of the
field theory. The prescription applies directly to the integrals obtained order by order in the perturbation
expansion. Second, it cannot even be viewed as the analytic continuation to the complex d plane of the
results we obtain in performing the integral for d = 1, 2, 3. Indeed, the knowledge of the values of a
function on a finite number of points on the real axis does not allow for a unique analytic continuation.
Instead, the claim is that Eq. (A10), appropriately generalized, offers an unambiguous prescription to
obtain a well-defined answer for any Feynman diagram as long as ε stays away from zero.

The observation which allows for such a generalization is that Feynman rules always yield a spe-
cial class of integrals. In purely bosonic theories, whether renormalizable or not, they are of the form

I(p1, p2, . . . , pn) =

∫ ∏

i

(
ddki
(2π)d

)
N(k1, k2, . . .)

D(k1, k2, . . .)

∏

r

(
(2π)dδd(k, p)

)
, (A12)

where the k and the p are the momenta of the internal and external lines respectively, the product over i
runs over all internal lines, that of r over all vertices, the δ functions denote the energy and momentum
conservation on every vertex, and N and D are polynomials of the form

N(k1, k2, . . .) = kµ1
1 kµ2

1 . . . kν1
2 k

ν2
2 . . . , (A13)

D(k1, k2, . . .) =
∏

i

(k2
i +m2

i ) . (A14)

D is just the product of all propagators and mi is the mass of the ith line. N appears through
derivative couplings and/or the kµkν parts of the propagators of higher-spin bosonic fields. It equals

15We write the result after a Wick rotation in Euclidean space
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one in theories with only scalar fields and non-derivative couplings, such as φ4. All scalar products are
written in terms of the d-dimensional Euclidean metric δµν which satisfies

δµµ = Tr 11 = d . (A15)

The dimensional regularization consists of giving a precise expression for I(p1, p2, . . . , pn) as a
function of d which coincides with the usual value whenever the latter exists and is well defined for every
value of d in the complex d plane except for those positive integer values for which the original integral
is divergent.

At one loop the integral Eq. (A12) reduces to

I(p1, p2, . . . , pn) =

∫
ddk

(2π)d
N(k)

D(k, p1, p2, . . .)
, (A16)

with k being the loop momentum. The denominator D is of the form

D(k, p1, p2, . . .) =
∏

i

[(k − Σ(i)p)
2 +m2

i ] , (A17)

where Σ(i)p denotes the combination of external momenta which goes through the ith internal line. This
product of propagators can be cast in a more convenient form by using a formula first introduced by
Feynman:

1

P1P2 . . . Pη
= (η − 1)!

∫ 1

0

dz1dz2 . . . dzηδ(1− Σizi)

[z1P1 + z2P2 + · · ·+ zηPη]η
. (A18)

With the help of Eq. (A18) and an appropriate change of variables, all one-loop integrals become
of the general form

Î(p1, p2, . . . , pn) =

∫
ddk

(2π)d
kµ1kµ2 . . . kµl

[k2 + F 2(p,m, z)]η
, (A19)

with F some scalar function of the external momenta, the masses and the Feynman parameters. F has the
dimensions of a mass. I(p1, p2, . . . , pn) is obtained from Î(p1, p2, . . . , pn) after integration with respect
to the Feynman parameters zi of Eq. (A18). For odd values of l, Î vanishes by symmetric integration.
For l even it can be easily computed using spherical coordinates. Some simple cases are as follows:

∫
ddk

(2π)d
1

[k2 + F 2(p,m, z)]η
=

1

(4π)d/2
Γ(η − d/2)

Γ(η)
[F 2](d/2−η) . (A20)

∫
ddk

(2π)d
kµkν

[k2 + F 2(p,m, z)]η
=

1

(4π)d/2
δµν
2

Γ(η − 1− d/2)

Γ(η)
[F 2](d/2+1−η) . (A21)

At the end, we are interested in the limit d → 4. The first integral Eq. (A20) diverges for η ≤ 2
and the second Eq. (A21) for η ≤ 3. For η = 2 and d = 4, Eq. (A20) is logarithmically divergent and
our regularized expression is regular for Re d < 4 and presents a simple pole ∼1/(d − 4). For η = 1,
it is quadratically divergent but our expression still has a simple pole at d = 4. The difference is that
now the first pole from the left is at d = 2. We arrive at the same conclusions looking at the integral
of Eq. (A21): by dimensionally regularizing a one-loop integral corresponding to a Feynman diagram
which, by power counting, diverges as Λ2n, we obtain a meromorphic function of d with simple poles
starting at d = 4− 2n. By convention, n = 0 denotes a logarithmic divergence.
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Fig. A.3: The one loop primitively divergent diagrams of the φ4 theory

A.2.3 Renormalization
In this section, we want to address the physical question of under which circumstances can a meaningful
four-dimensional theory be recovered from the regularized ε-dependent expressions. As one could have
anticipated, the answer will turn out to be that this is only possible for the renormalizable (and super-
renormalizable) theories we introduced before. The procedure to do so is called renormalization. In this
section, we shall present some simple examples.

Let us start with the simplest four-dimensional renormalizable theory given by our already familiar
Lagrangian density from Eq. (A2). In d = 4, the field φ has the dimensions of a mass and the coupling
constant λ is dimensionless. Since we intend to use dimensional regularization, we introduce a mass
parameter µ and write the coefficient of the interaction term λ → µελ, so that the coupling constant λ
remains dimensionless at all values of ε. We shall present the renormalization programme for this theory
at the lowest non-trivial order, that which includes all diagrams up to and including those with one closed
loop.

The power-counting argument presented previously shows that, at one loop, the only divergent 1PI
diagrams are the ones of Fig. A.3.

The two-point diagram is quadratically divergent and the four-point diagram is logarithmically
divergent16. We choose to work entirely with dimensional regularization and for these diagrams in
Minkowski space–time, using (A20) at the limit d→ 4, we obtain

Γ
(2)
1 =

λµε

2

∫
ddk

(2π)d
1

k2 −m2
=

iλm2

16π2

1

ε
(A22)

Γ
(4)
1 (p1, . . . , p4) =

1

2
λ2µ2ε

∫
ddk

(2π)d
1

(k2 −m2)[(k − P )2 −m2]
+ crossed

=
1

2
λ2µ2ε

∫ 1

0
dz

∫
ddk

(2π)d
1

[k2 −m2 + P 2z(1− z)]2 + crossed

=
3iλ2

16π2

1

ε
+ finite terms ,

(A23)

16We could prevent the appearance of the first diagram by ‘normal ordering’ the φ4 term in the interaction Lagrangian, but,
for pedagogical purposes, we prefer not to do so. Normal ordering is just a particular prescription to avoid certain divergences,
but it is not always the most convenient one. First, it is not general. For example, it will not prevent the appearance of divergence
in the two-point function at higher orders and second, its use may complicate the discussion of possible gauge symmetries of
L.
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where P = p1 + p2, ‘crossed’ stands for the contribution of the two crossed diagrams in Fig. A.3 and
‘finite terms’ represent the contributions which are regular when d = 4. We can make the following
remarks.

1. The divergent contributions are constants, independent of the external momenta. We shall see
shortly, in the example of QED, that this is a particular feature of the φ4 theory. In fact, even for
φ4, it is no longer true when higher loops are considered. However, we can prove the following
general property: all divergent terms are proportional to monomials in the external momenta. We
have already introduced this result. For one-loop diagrams the proof is straightforward. We start
from the general expression of Eq. (A19) and notice that we can expand the integrand in powers of
the external momenta p taken around some fixed point. Every term in this expansion increases the
value of η, so after a finite number of terms, the integral becomes convergent. It takes some more
work to generalize the proof to multi-loop diagrams, but it can be done,

2. The dependence of the divergent terms on m2 could be guessed from dimensional analysis. This
is one of the attractive features of dimensional regularization,

3. The finite terms in Eq. (A23) depend on the parameter µ. The Laurent expansion in ε brings terms
of the form ln{[m2 − P 2z(1− z)]/µ2}.

The particular form of the divergent terms suggests the prescription to remove them. Let us start
with the two-point function. In the loop expansion we write

Γ(2)(p2) =
∞∑

l=0

Γ
(2)
l (p2) = Γ

(2)
0 (p2) + Γ

(2)
1 (p2) + · · · , (A24)

where the index l denotes the contribution of the diagrams with l loops. In the tree approximation we
have

Γ
(2)
0 (p2) = −i(p2 −m2) . (A25)

The one-loop diagram adds the term given by Eq. (A22). Since it is a constant, it can be interpreted
as a correction to the value of the mass in Eq. (A25). Therefore, we can introduce a renormalized mass
m2

R, which is a function of m, λ and ε. Of course, this function can only be computed as a formal power
series in λ. Up to and including one-loop diagrams we write

m2
R(m,λ, ε) = m2

(
1 +

λ

16π2

1

ε

)
+ O(λ2) . (A26)

A formal power series whose zero-order term is non-vanishing is invertible in terms of another
formal power series. So, we can write m as a function of mR, λ and ε:

m2(mR, λ, ε) = m2
R

(
1− λ

16π2

1

ε

)
+ O(λ2) ≡ m2

RZm + O(λ2) , (A27)

where we have defined the function Zm(λ, ε) as a formal power series in λ with ε-dependent coefficients.

The parameterm is often called the bare mass. In the Lagrangian Eq. (A2), replacing the bare mass
m with the help of Eq. (A27) results in: (i) changing the Feynman rules m by mR and (ii) introducing a
new term in L of the form

δLm = m2
R

λ

32π2

1

ε
φ2(x) . (A28)
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Fig. A.4: The new diagram resulting from δLm of Eq. (A28)

Since δLm is proportional to the coupling constant λ, we can view it as a new vertex in the
perturbation expansion which, to first order, gives the diagram of Fig. A.4. In this case the complete
two-point function to first order in λ is given by

Γ(2)(p2) = −i(p2 −m2
R) +

iλm2
R

16π2

1

ε
− iλm2

R

16π2

1

ε
+ O(λ2)

= −i(p2 −m2
R) + O(λ2) ,

(A29)

which means that, if we keep fixed mR and λ instead of m and λ, we can take the limit d → 4 and find
no divergences up to and including one-loop diagrams for the two-point function.

Now that we have understood the principle, it is straightforward to apply it to the four-point func-
tion. In the same spirit we write

Γ(4)(p1, . . . , p4) =
∞∑

l=0

Γ
(4)
l (p1, . . . , p4) = Γ

(4)
0 (p1, . . . , p4) + Γ

(4)
1 (p1, . . . , p4) + · · · . (A30)

In the tree approximation, Γ
(4)
0 (p1, . . . , p4) = −iλ. Including the one-loop diagrams we obtain

Γ(4)(p1, . . . , p4) = −iλ

(
1− 3λ

16π2

1

ε
+ finite terms

)
+ O(λ3) . (A31)

We change from the bare coupling constant λ to the renormalized one λR by writing

λR(λ, ε) = λ

(
1− 3λ

16π2

1

ε
+ O(λ2)

)
, (A32)

or, equivalently,

λ(λR, ε) = λR

(
1 +

3λR

16π2

1

ε
+ O(λ2

R)

)
≡ λRZλ . (A33)

Again, replacing λ with λR in L produces a new four-point vertex which cancels the divergent
part of the one-loop diagrams of Fig. A.3. Let us also notice that we can replace λ with λR in Eq. (A27)
since the difference will appear only at the higher order.

Until now we have succeeded in building a new, renormalized Lagrangian, and the resulting theory
is free from divergences up to and including one-loop diagrams. It involves two new terms which change
the coefficients of the φ2 and φ4 terms of the original Lagrangian. These terms are usually called counter-
terms. They are the expression, in terms of the dimensional regularization cut-off parameter ε, of the
process we outlined in Eqs. (A4) and (A5). They provide the correct definition, up to this order of
perturbation, of the Lagrangian density, by removing the short-distance ambiguities inherent in the local
expressions φ2 and φ4.

Before looking at higher orders, let us see the price we had to pay for this achievement. It can
be better seen at the four-point function. Looking back at the Eq. (A23), we make the following two
observations. First, as we noticed already, the finite part seems to depend on a new arbitrary parameter
with the dimensions of a mass µ. Second, the definition of Zλ in Eq. (A33) also seems arbitrary. We
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Fig. A.5: The primitively divergent 1PI Green’s functions of QED. The last one, the light-by-light scattering, is
convergent as a consequence of gauge invariance.

could add to it any term of the form CλR with C any arbitrary constant independent of ε. Such an
addition would change the value of the coupling constant at the one-loop order. The two observations
are not unrelated. Indeed, changing the parameter µ from µ1 to µ2 in Eq. (A23) adds a constant term
proportional to λ ln(µ1/µ2) which, as we just saw, can be absorbed in a redefinition of Zλ and thus
of the value of the coupling constant. This µ dependance can be studied systematically and gives rise
to the renormalization group equation which I will not present here. We conclude that, at the one-loop
level, all arbitrariness of the renormalization programme consists of assigning prescribed values to two
parameters of the theory, which can be chosen to be the mass and the coupling constant. A convenient
choice is given by two conditions of the form

Γ(2)(p2 = m2
R) = 0 (A34)

and
Γ(4)(p1, . . . , p4)|point M = iλ

(M)
R . (A35)

The first one, Eq. (A34), defines the physical mass as the pole of the complete propagator. Al-
though this choice is the most natural for physics, from a purely technical point of view, we could use
any condition assigning a prescribed value to Γ(2)(p2) at a fixed point p2 = M2, provided it is a point
in which Γ(2)(p2) is regular. Similarly, in the second condition Eq. (A35), by ‘point M ’ we mean some
point in the space of the four momenta pi, i = 1, . . . , 4, provided it is a point in which Γ(4) is regular. For
a massive theory the point pi = 0 is an example. Once these conditions are imposed, all Green functions
at one loop are well defined and calculable. A final remark: at one loop no counter-term corresponding
to the kinetic energy term (∂µφ)2 is needed. This is an accident of the one-loop for the φ4 theory. It
appears only at higher orders.

This process of removing the ambiguities by introducing counter-terms in the original Lagrangian
can be extended to all orders of perturbation. The proof is rather complicated but essentially elemen-
tary. No new ideas are necessary. We must prove that, at any order, the terms appear with the correct
combinatoric factor, even in the cases in which sub-diagrams are divergent to which counter-terms have
already been assigned. At the end, all Green functions of a renormalizable theory, or any combination of
renormalizable theories, are well defined and calculable.

As a second example, we shall present the renormalization for the one-loop diagrams of QED.
The method is exactly the same and yields ‘renormalized’ values of the various terms which appear in
the QED Lagrangian. Looking at the power-counting Eq. (A8), we see that the only possibly divergent
1PI diagrams with one loop are those of Fig. A.5. A simple calculation gives:

– the photon self-energy

Γ(2,0)
µν (q) =

2iα

3π

1

ε
(qµqν − q2gµν) + · · · , (A36)

where α = e2/4π is the fine-structure constant and the dots stand for finite terms;
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– the electron self-energy

Γ(0,2)(p) =
iα

2π

1

ε
p/− 2iα

π

1

ε
m+ · · · , (A37)

where we have suppressed spinor indices and, again, the dots stand for finite terms—we can see
that in Eqs. (A36) and (A37) the divergent terms are monomials in the external momenta;

– the vertex function

Γ(1,2)
µ (p, p′) =

iα

2π

1

ε
eγµ + · · · . (A38)

As before, all these divergences can be absorbed in the definition of renormalized quantities as

Aµ(x) = Z
1/2
3 AµR(x) =

(
1− α

3π

1

ε
+ O(α2)

)
AµR(x), (A39)

ψ(x) = Z
1/2
2 ψR(x) =

(
1− α

4π

1

ε
+ O(α2)

)
ψR(x), (A40)

m = ZmmR =

(
1− 2α

π

1

ε
+ O(α2)

)
mR, (A41)

Γ(1,2)
µ (p, p′) = −ieZ1γµ + · · · = −ieγµ

(
1− α

2π

1

ε
+ O(α2)

)
+ · · · . (A42)

As we noticed already, in QED the counter-terms corresponding to the kinetic energies of the
electron and the photon appear already at the one-loop order. Putting all counter-terms together, the
interaction Lagrangian becomes:

−eψ̄γµψAµ = −ZeZ2Z
1/2
3 eRψ̄RγµψRA

µ
R . (A43)

It follows that the condition which determines the charge renormalization constant Ze is

ZeZ2Z3 = Z1 . (A44)

By comparing Eqs. (A42) and (A40), we see that, at least at this order, Z1 = Z2. Therefore, the
entire charge renormalization is determined by the photon self-energy diagram. We can show that this
property is valid to all orders of perturbation theory and is a consequence of gauge invariance. It is the
same property of gauge invariance which guarantees that the last diagram of Fig. A.5, when computed
using dimensional regularization which respects gauge invariance, is in fact finite.

This completes a very sketchy discussion of renormalization theory. Only straightforward calcula-
tions are needed to adapt it to any renormalizable theory and to any order in the perturbation expansion.
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