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Abstract
Accelerators and detectors are expensive, both in terms of money and human
effort. It is thus important to invest effort in performing a good statistical anal-
ysis of the data, in order to extract the best information from it. This series of
five lectures deals with practical aspects of statistical issues that arise in typical
High Energy Physics analyses.
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1 Outline
This series of five lectures deals with practical aspects of statistical issues that arise in typical High
Energy Physics analyses. The topics are:

– Introduction. This is largely a reminder of topics which you should have encountered as under-
graduates. Some of them are looked at in novel ways, and will hopefully provide new insights.

– Least Squares and Likelihoods. We deal with two different methods for parameter determination.
Least Squares is also useful for Goodness of Fit testing, while likelihood ratios play a crucial role
in choosing between two hypotheses.

– Bayes and Frequentism. These are two fundamental and very different approaches to statistical
searches. They disagree even in their views on ‘What is probability?’

– Searches for New Physics. Many statistical issues arise in searches for New Physics. These may
result in discovery claims, or alternatively in exclusion of theoretical models in some region of
their parameter space (e.g. mass ranges).

– Learning to love the covariance matrix. This is relevant for dealing with the possible correla-
tions between uncertainties on two or more quantities. The covariance matrix takes care of all
these correlations, so that you do not have to worry about each situation separately. This was an
unscheduled lecture which was included at the request of several students.

Lectures 3 to 5 are not included in these proceedings but can be found elsewhere [1–3].

The material in these lectures follows loosely that in my book [4], together with some significant
updates (see ref. [5]).

2 Introduction to Lecture 1
The first lecture, covered in Sections 2 to 11, is a recapitulation of material that should already be fa-
miliar, but hopefully with some new emphases. We start with a a discusssion of ‘What is Statistics?’
and a comparison of ‘Statistics’ and ’Probability’. Next the importance of calculating uncertainties is
emphasised, as well as the difference between random and systematic uncertainties.

The following sections are about combinations. The first is about how to combine different in-
dividual contributions to a particlar experimental result; the second is the combination of two or more
separate experimental determinaions of the same physical quantity.

The final topics are the Binomial, Poisson and Gaussian probability distributions. Undertanding
of these is important for many statistical analyses.
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3 What is Statistics?
Statistics is used to provide quantitative results that give summaries of available data. In High Energy
Physics, there are several different types of statistical activities that are used:

– Parameter Determination:
We analyse the data in order to extract the best value(s) of one or more parameters in a model.
This could be, for example, the gradient and intercept of a straight line fit to the data; or the mass
of the Higgs boson, as deduced using its decay products. In all cases, as well as obtaining the best
values of the parameter(s), their uncertainties and possible correlations must be specified.

– Goodness of Fit:
We are comparing a single theory with the data, in order to see if they are compatible. If the theory
contains free parameters, their best values need to be used to check the Goodness of Fit. If the
quality of the fit is unsatisfactory, the best values of the parameters are probably meaningless.

– Hypothesis Testing:
Here we are comparing the data with two different theories, to see which provides a better de-
scription. For example, we may be very interested in knowing whether a model involving the
production of a supersymmetric particle is better than one without it.

– Decision Making:
As the result of the information we have available, we want to decide what further action to take.
For example, we may have some evidence that our data shows hints of an exciting discovery, and
need to decide whether we should collect more data. This was the situation faced by the CERN
management in 2000, when there were perhaps hints of a Higgs boson in data collected at the LEP
Collider.
Such decisions usually require a ‘cost function’ for the various possible outcomes, as well as
assessments of their relative probabilities. In the example just quoted, numerical values were
needed for the cost of missing an important discovery if the experiment was not continued; and on
the other hand of running the LEP Collider for another year and for delaying the start of building
the Large Hadron Collider.
Decision Making is not considered further in these lectures.

4 Probability and Statistics
Probability theory involves starting with a model, and using it to make predictions about possible out-
comes of an experiment where randomness plays a role; it involves precise mathematics, and in general
there is only one correct solution about the probabilities of the different outcomes. Statistics involves the
opposite procedure of using the observed data in order to make statements about the relevant theory or
model. This is usually not a precise process and there may be different approaches which yield different
answers, none of which being necessarily invalid.

The example of throwing dice (see Table 1) illustrates the relationship of Probability Theory and
Statistics for some of the statistical procedures.

5 Why uncertainties?
Without an estimate of the uncertainty of a parameter, its central value is essentially useless. This is
illustrated by Table 2. The three lines of the Table refer to different possible results; all have the same
central value of the ratio of the experimental result divided by the theoretical prediction, but each has a
different uncertainty on this ratio. The conclusions about whether the data supports the theory are very
different, depending on the magnitude of the uncertainty, even though the central values are the same for
each of the three situations. It is thus crucial to estimate uncertainties accurately, and also correlations
when measuring two or more parameters.
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Table 1: Probability and Statistics: Throwing dice

Probability Statistics Procedure
Given p(5) =1/6, Given 20 5s in 100 trials,

what is prob(20 5s in 100 trials)? what is p(5)?
and its uncertainty? Parameter Determination

If unbiassed, Given 60 evens in 100 trials,
what is prob(n evens in 100 trials)? is it unbiassed? Goodness of Fit

Or is prob(evens) = 2/3? Hypothesis Testing
THEORY→ DATA DATA→ THEORY

Table 2: Experiment testing General Relativity.

Experiment/Theory Uncertainty Conclusion
0.970 ± 0.05 Consistent with 1.0
0.970 ± 0.006 Inconsistent with 1.0
0.970 ± 0.7 Do a better experiment

6 Random and systematic uncertainties
Random or statistical uncertainties result from the limited accuracy of measurements, or from the fluc-
tuations that arise in counting experiments where the Poisson distribution is relevant (see Section 10). If
the experiment is repeated, the results will vary somewhat, and the spread of the answers provides (not
necessarily the best) estimate of the statistical uncertainty.

Systematic uncertainties can also arise in the measuring process. The quantities we measure may
be shifted from the true values. For example, our measuring device may be miscalibrated, or the number
of events we count may be not only from the desired signal, but also from various background sources.
Such effects would bias our result, and we should correct for them, for example by performing some
calibration measurement. The systematic uncertainty arises from the remaining uncertainty in our cor-
rections. Systematics can cause a similar shift in a repeated series of experiments, and so, in contrast to
statistical uncertainties, they may not be detectable by looking for a spread in the results.

For example consider a pendulum experiment designed to measure the acceleration due to gravity
g at sea level in a given location:

g = 4π2L/τ2 (1)

where L is the length of the pendulum, τ = T/N is its period, and T is the time for N oscillations. The
uncertainties we have mentioned so far are the statistical ones on L and T 1. There may also be systematic
uncertainties on these variables.

Unfortunately there are further possible systematics not associated with the measured quantities,
and which thus require more careful consideration. For example, the derivation of eqn. (1) assumes that:

– our pendulum is simple i.e. the string is massless, and has a massive bob of infinitesimal size;
– the support of the pendulum is rigid;
– the oscillations are of very small amplitude (so that sin θ ≈ θ); and
– they are undamped.

1Note that althoughN involves counting the number of swings, we do not have to allow for Poisson fluctuations, since there
are no random fluctuations involved.
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None of these will be exact in practice, and so corrections must be estimated for them. The uncertainties
in these corrections are systematics.

Furthermore, there may be theoretical uncertainties. For example, we may want the value of
g at sea level, but the measurements were performed on top of a mountain. We thus need to apply
a correction, which depends on our elevation and on the local geology. There might be two or more
different theoretical correction factors, and again this will contribute a systematic uncertainty.

6.1 Presenting the results
A common way of presenting the result of a measurement y is as y ± σstat ± σsyst, where the statistical
and systematic uncertainties are shown separately. Alternatively, it may be presented as y±σ, where the
total uncertainty is usually given by σ2 = σ2

stat + σ2
syst.

The other extreme is to give a list of all the individual systematics separately (usually in a Table,
rather than in the Abstract or Conclusions). The motivations for this are that:

– systematics are sometimes caused by uncertainties in other people’s measurements of some rel-
evant quantity. If subsequently this measurement is updated, it will be possible to reduce the
systematic uncertainty appropriately; and

– our measurement may be combined with others to produce a ‘World average’, or it may be used
together with another result to calculate something else. In both these cases, correlations between
the different experimental measurements are needed, and so the individual sources are required.

For example, it may be interesting to compare the sea-level values of g at the same location several
years apart. In that case, although there might be significant uncertainties from the correction of the
measurements to sea-level, they are a fully correlated, and so will cancel in their difference

7 Combining uncertainties
In this section, we consider how to estimate the uncertainty σz in a quantity of interest z, which is
defined in terms of measured quantities x, y, .... by a known function z(x, y, .....). The uncertainties on
the measured quantities are known and assumed to be uncorrelated. The recipe for σz depends on the
functional form of z.

7.1 Linear forms
As a very simple example, consider

z = x− y (2)

From this, we obtain
δz = δx− δy (3)

where δz is the change in z that would be produced by specific changes in x and y. But eqn. 3 refers
to specific offsets, rather than the uncertainties σz , etc, which are the RMS values of the offsets i.e. δz2,
etc. Thus we need to square eqn. 3, which yields

δz2 = δx2 + δy2 − 2δxδy, (4)

and to average over a whole series of measurements. We then obtain the correct formula for combining
the uncertainties:

σ2
z = σ2

x + σ2
y , (5)
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provided we ignore the last term in eqn 4. The justification for this is that the average value of δxδy is
zero, provided the uncertainties on x and on y are uncorrelated.2

For the general linear form
z = k1x+ k2y + ....... (6)

where k1, k2, .... are constants, the uncertainty on z is given by

σz = k1σx & k2σy & ....... , (7)

where the symbol & is used to mean “combine using Pythagoras’ Theorem". For the special case of
z = x− y, as is expected this gives the result of eqn. 5 for σz .

For this case of z being a linear function of the measurements, it is the absolute uncertainties that
are relevant for determining σz . It is important not to use fractional uncertainties. Thus if you want to
determine your height by making independent measurements of the distances of the top of your head and
the bottom of your feet from the centre of the earth, each with an accuracy of 1 part in 1000, you will not
determine your height to anything like 1 part in 1000.

7.2 Products and quotients
The general form here is

z = xαyβ......, (8)

where the powers α, β, etc. are constants. This includes forms such as x2, y3/x,
√
x/y, etc. The formula

for combining the uncertainties is

σz/z = ασx/x & βσy/y & .... (9)

That is, the fractional uncertainty on z is derived from the fractional uncertainties on the measurements.

Because this result was derived by taking the first term of a Taylor expansion for δz, it will be
a good approximation only for small uncertainties. If the uncertainties are large, more sophisticated
approaches are required for determining the uncertainty in z. This also applies to the next section, but is
irrelevant for the linear cases discussed above, as all terms in the Taylor series beyond those involving
first derivatives are zero.

7.3 All other functions
Finally we deal with any functional form z = z(x1, x2, x3, .....). Our prescription of writing down the
first term in the Taylor series expansion for δz, squaring and averaging gives

σz =
∂z

∂x1
σ1 &

∂z

∂x2
σ2 & .... (10)

where the σi are the uncertainties on xi, again assumed uncorrelated.

A slightly easier method to apply is to use a numerical approach for calculating the partial deriva-
tives. We evaluate

z0 = z(x1, x2, x3, ....)

z1 = z(x1 + σ1, x2, x3, ....)

z2 = z(x1, x2 + σ2, x3, ....)

z3 = z(x1, x2, x3 + σ3, ....)

etc.

(11)

and then
σ2
z = Σ(zi − z0)2 (12)

2Note that it is the uncertainties which are required to be uncorrelated. Thus for a simple pendulum, L and τ are correlated
by eqn 1, but the uncertainties on the measured length and period are uncorrelated.
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8 Combining experiments
Sometimes different experiments will measure the same physical quantity. It is then reasonable to ask
what is our best information available when these experiments are combined. It is a general rule that
it is better to use the DATA for the experiments and then perform a combined analysis, rather than
simply combine the RESULTS. However, combining the results is a simpler procedure, and access to
the original data is not always possible.

For a series of unbiassed, uncorrelated measurements xi of the same physical quantity, the com-
bined value x̂ ± σ̂ is given by weighting each measurement by wi, which is proportional to the inverse
of the square of its uncertainty i.e.

x̂ = Σwixi, wi = (1/σ2
i )/Σ(1/σ2

j ) (13)

with the uncertainty σ̂ on the combined value being given by

1/σ̂2 = Σ1/σ2
i (14)

This ensures that the uncertainty on the combination is at least as small as the smallest uncertainty of the
individual measurements. It should be remembered that the combined uncertainty takes no account of
whether or not the individual measurements are consistent with each other.

In an informal sense, 1/σ2
i is the information content of a measurement. Then each xi is weighted

proportionally to its information content. Also the equation for σ̂2 says that the information content of
the combination is the sum of the information contents of the individual measurements.

An example demonstrates that care is needed in applying the formulae. Consider counting the
number of high energy cosmic rays being recorded by a large counter system for two consecutive one-
week periods, with the number of counts being 100 ± 10 and 1 ± 1 3. (See section 10 for the choice of
uncertainties). Unthinking application of the formulae for the combined result give the ridiculous 2± 1.
What has gone wrong?

The answer is that we are supposed to use the true accuracies of the individual measurements
to assign the weights. Here we have used the estimated accuracies. Because the estimated uncertainty
depends on the estimated rate, a downward fluctuation in the measurement results in an underestimated
uncertainty, an overestimated weight, and a downward bias in the combination. In our example, the
combination should assume that the true rate was the same in the two measurements which used the
same detector and which lasted the same time as each other, and hence their true accuracies are (unknown
but) equal. So the two measurements should each be given a weight of 0.5, which yields the sensible
combined result of 50.5± 5 counts.

8.1 BLUE
A method of combining correlated results is the ‘Best Linear Unbiassed Estimate’ (BLUE). We look for
the best linear unbiassed combination

xBLUE = Σwixi, (15)

where the weights are chosen to give the smallest uncertainty σBLUE on xBLUE . Also for the com-
bination to be unbiassed, the weights must add up to unity. They are thus determined by minimising
ΣΣwiwjE

−1
ij , subject to the constraint Σwi = 1; here E is the covariance matrix for the correlated

measurements.
3It is vital to be aware that it is a crime (punishable by a forcible transfer to doing a doctorate on Astrology) to combine

such discrepant measurements. It seems likely that someone turned off the detector between the two runs; or there was a large
background in the first measurement which was eliminated for the second; etc. The only reason for my using such discrepant
numbers is to produce a dramatically stupid result. The effect would have been present with measurements like 100 ± 10 and
81± 9.
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The BLUE procedure just described is equivalent to the χ2 approach for checking whether a
correlated set of measurements are consistent with a common value. The advantage of BLUE is that
it provides the weights for each measurement in the combination. It thus enables us to calculate the
contribution of various sources of uncertainty in the individual measurements to the uncertainty on the
combined result.

8.2 Why weighted averaging can be better than simple averaging
Consider a remote island whose inhabitants are very conservative, and no-one leaves or arrives except for
some anthropologists who wish to determine the number of married people there. Because the islanders
are very traditional, it is necessary to send two teams of anthropologists, one consisting of males to
interview the men, and the other of females for the women. There are too many islanders to interview
them all, so each team interviews a sample and then extrapolates. The first team estimates the number of
married men as 10, 000 ± 300. The second, who unfortunately have less funding and so can interview
only a smaller sample, have a larger statistical uncertainty; they estimate 9, 000 ± 900 married women.
Then how many married people are there on the island?

The simple approach is to add the numbers of married men and women, to give 19, 000±950 mar-
ried people. But if we use some theoretical input, maybe we can improve the accuracy of our estimate.
So if we assume that the islanders are monogamous, the numbers of married men and women should be
equal, as they are both estimates of the number of married couples. The weighted average is 9, 900±285
married couples and hence 19, 800± 570 married people.

The contrast in these results is not so much the difference in the estimates, but that incorporating
the assumption of monogamy and hence using the weighted average gives a smaller uncertainty on the
answer. Of course, if our assumption is incorrect, this answer will be biassed.

A Particle Physics example incorporating the same idea of theoretical input reducing the uncer-
tainty of a measurement can be found in the ‘Kinematic Fitting’ section of Lecture 2.

9 Binomial distribution
This and the next sections on the Poisson and Gaussian distributions are probability theory, in that they
make statements about the probabilities of different outcomes, assuming that the thoretical distribution is
known. However, the results are important for Statistics, where we use data in order to make statements
about theory.

The binomial distribution applies when we have a set of N independent trials, in each of which
a ‘success’ occurs with probability p. Then the probability P (s;N, p) of s successes in the N trials is
obviously

P (s;N, p) =
N !

s! (N − s)! p
s (1− p)N−s. (16)

An example of a Binomial distribution would be the number of times we have a 6 in 20 throws of
a die; or the distribution of the number of successfully reconstructed tracks in a sample of 100, when the
probability for reconstructing each of them is 0.98

The expected number of successes <s> is Σs×P (s;N, p), which after some algebra turns out to
be (not surprisingly) Np. The variance σ2

s of the distribution in s is obviously given by Np(1− p). Note
that, while for the Poisson distribution the mean and variance are equal, this is not so in general for the
Binomial - it is approximately so at small p.

As an example several Binomial distributions with fixed number of trials N but varying probabil-
ities of success p are shown in Fig. 1.
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Fig. 1: The probabilities P (r) according to the binomial distribution, for r successes out of 12 independent trials,
when the probability p of success in an individual trial is as specified. As the expected number of successes is
12p, the peak of the distribution moves to the right as p increases. The variance of the distribution is 12p(1 − p)
and hence is largest for p = 1/2. Since the chance of success when p = 1/6 is the same as that for failure when
p = 5/6, diagrams (a) and (d) are mirror images of each other. Similarly for p = 1/2 (see (c)) the distribution is
symmetric about r = 6 successes.

10 Poisson distribution
The Poisson distribution (see Fig. 2) applies to situations where we are counting a series of observations
which are occuring randomly and independently during a fixed time interval t, where the underlying rate
r is constant. The observed number nwill fluctuate when the experiment is repeated, and can in principle
take any integer value from zero to infinity. The Poisson probabilty of observing n decays is given by

Pn = e−rt(rt)n/n! (17)

It applies to the number of decays observed from a large number N of radioactive nuclei, when the
observation time t is small compared to the lifetime τ . It will not apply if t is much larger than τ , or if
the detection system has a dead time, so that after observing a decay the detector cannot observe another
decay for a period Tdead.

Another example is the number of counts in any specific bin of a histogram when the data is
accumulated over a fixed time.

The average number of observations is given by

< n >= ΣnPn = rt (18)

If we write the expected number as µ, the Poisson probability becomes

Pn = e−µµn/n! (19)
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Fig. 2: Poisson distributions for various values of the Poisson parameter λ: (a) λ = 1.2 (b) λ = 5.0 (c) λ = 20.0.
Pr is the probability for observing r events. For each λ, the mean value of r is λ and the RMS width is

√
λ. As λ

increases above about 10, the distribution becomes more like a Gaussian.

It is also relatively easy to show that the variance

σ2 = Σ(n− µ)2Pn = µ (20)

This leads to the well-known n ± √n approximation for the value of the Poisson parameter when we
have n counts. This approximation is, however, particularly bad when there are zero observed events;
then 0± 0 incorrectly suggests that the Poisson parameter can be only zero.

Poisson probabilities can be regarded as the limit of Binomial ones as the number of trialsN tends
to infinity and the Binomial probability of success p tends to zero, but the product Np remains constant
at µ.

When the Poisson mean becomes large, the distribution of observed counts approximates to a
Gaussian (although the Gaussian is a continuous distribution extending down to −∞, while a Poisson
observable can only take on non-negative integral values). This approximation is useful for the χ2 method
for parameter estimation and goodness of fit (see Lecture 2).

10.1 Relation of Poisson and Binomial Distributions
An interesting example of the relationship between the Poisson and Binomial distributions is exhibited
by the following example.
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Fig. 3: Gaussian distributions. Both are centred at x = µ, but the dashed curve is twice as wide as the solid one.
Because they have the same normalisation the maximum of the solid curve curve is twice as high as that of the
dashed one. The scale on the horizontal axis refers to the solid curve.

Imagine that the number of people attending a series of lectures is Poisson distributed with a
constant mean ν, and that the fraction of them who are male is p. Then the overall probability P of
having N people of whom M are male and F = N − M are female is given by the product of the
Poisson probability Ppois for N and the binomial probability Pbin for M of the N people being male.
i.e.

P = PpoisPbin =
e−ννN

N !
× N !

M !F !
pM (1− p)F (21)

This can be rearranged as

P =
e−νp(νp)M

M !
× e−ν(1−p)(ν(1− p))F

F !
(22)

This is the product of two Poissons, one with Poisson parameter νp, the expected number of males,
and the other with parameter ν(1 − p), the expected number of females. Thus with a Poisson-varying
total number of observations, divided into two categories (here male and female), we can regard this as
Poissonian in the total number and Binomial in the separate categories, or as two independent Poissons,
one for each category. Other situations to which this applies could be radioactive nuclei, with decays
detected in the forward or backward hemispheres; cosmic ray showers, initiated by protons or by heavier
nuclei; patients arriving at a hospital emergency centre, who survive or who die; etc.

10.2 For your thought
The first few Poisson probabilities P (n;µ) are

P (0) = e−µ, P (1) = µe−µ, P (2) = (µ2/2!) e−µ, etc. (23)

Thus for small µ, P (1) and P (2) are approximately µ and µ2/2 respectively. But if the probability of
one rare event happening is µ, why is the probability for 2 independent rare events not equal to µ2?

11 Gaussian distribution
The Gaussian or normal distribution (shown in Fig. 3) is of widespread usage in data analysis. Under
suitable conditions, in a repeated series of measurements x with accuracy σ when the true value of the
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quantity is µ, the distribution of x is given by a Gaussian4. A mathematical motivation is given by
the Central Limit Theorem, which states that the sum of a large number of variables with (almost) any
distributions is approximately Gaussian.

For the Gaussian, the probability density y(x) of an observation x is given by

y(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (24)

where the parameters µ and σ are respectively the centre and width of the distribution. The factor
1/(
√

2πσ) is required to normalise the area under the curve, so that y(x) can be directly interpreted as a
probability density.

There are several properties of σ:

– The mean value of x is µ, and the standard deviation of its distribution is σ. Since the usual symbol
for standard deviation is σ, this leads to the formula σ = σ (which is not so trivial as it seems,
since the two σs have different meanings). This explains the curious factor of 2 in the denominator
of the exponential, since without it, the two types of σ would not be equal.

– The value of y at the µ ± σ is equal to the peak height multiplied by e−0.5 = 0.61. If we are
prepared to overlook the difference between 0.61 and 0.5, σ is the half-width of the distribution at
‘half’ the peak height.

– The fractional area in the range x = µ − σ to µ + σ is 0.68. Thus for a series of unbiassed,
independent Gaussian distributed measurements, about 2/3 are expected to lie within σ of the true
value.

– The peak height of y at x = µ is 1/(
√

2πσ). It is reasonable that this is proportional to 1/σ as the
width is proportional to σ, so σ cancels out in the product of the height and width, as is required
for a distribution normalised to unity.

For deciding whether an experimental measurement is consistent with a theory, more useful than
the Gaussian distribution itself is its tail area beyond r, a number of standard deviations from the central
value (see Fig. 4). This gives the probability of obtaining a result as extreme as ours or more so as a
consequence of statistical fluctuations, assuming that the theory is correct (and that our measurement is
unbiassed, it is Gaussian distributed, etc.). If this probability is small, the measurement and the theory
may be inconsistent.

Figure 4 has two different vertical scales, the left one for the probability of a fluctuation in a
specific direction, and the right side for a fluctuation in either direction. Which to use depends on the
particular situation. For example if we were performing a neutrino oscillation disappearance experiment,
we would be looking for a reduction in the number of events as compared with the no-oscillation scenario,
and hence would be interested in just the single-sided tail. In contrast searching for any deviation from
the Standard Model expectation, maybe the two-sided tails would be more relevant.

12 Introduction to Lecture 2
This lecture deals with two different methods for determining parameters, least squares and likelihood,
when a functional form is fitted to our data. A simple example would be straight line fitting, where
the parameters are the intercept and gradient of the line. However the methods are much more general
than this. Also there are other methods of extracting parameters; these include the more fundamental
Bayesian and Frequentist methods, which are dealt with in Lecture 3 .

The least squares method also provides a measure of Goodness of Fit for the agreement between
the theory with the best values of the parameters, and the data; this is dealt with in section 14. The

4However, it is often the case that such a distribution has heavier tails than the Gaussian.
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Fig. 4: The fractional area in the tail(s) of a Gaussian distribution i.e. the area with f above some specified value
r, where f is the distance from the mean, measured in units of the standard deviation σ. The scale on the left refers
to the one-sided tail, while that on the right is for both tails. Thus for r = 0, the fractional areas are 1/2 and 1
respectively.

likelihood technique plays an important role in the Bayes approach, and likelihood ratios are relevant for
choosing between two hypotheses; this is covered in Lecture 4.

13 Least squares: Basic idea
As a specific example, we will consider fitting a straight line y = a+ bx to some data, which consist of a
series on n data points, each of which specifies (xi, yi± σi) i.e. at precisely known xi, the y co-ordinate
is measured with an uncertainty σi. The σi are assumed to be uncorrelated. The more general case could
involve

– a more complicated functional form than linear;
– multidimensional x and/or y;
– correlations among the σi; and
– uncertainties on the xi values.
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In Particle Physics, we often deal with a histogram of some physical quantity x (e.g. mass, angle,
transverse momentum, etc.), in which case y is simply the number of counts for that x bin. Another
possiblity is that y and x are both physical quantities e.g. we have a two-dimensional plot showing the
recession velocities of galaxies as a function their distance.

There are two statistical issues: Are our data consistent with the theory i.e. a straight line? And
what are the best estimates of the parameters, the intercept and the gradient? The former is a Goodness
of Fit issue, while the latter is Parameter Determination. The Goodness of Fit is more fundamental, in
that if the data are not consistent with the hypothesis, the parameter values are meaningless. However,
we will first consider Parameter Detemination, since checking the quality of the fit requires us to use the
best straight line.

The data statistic used for both questions is S, the weighted sum of squared discrepancies5

S = Σ(ythi − yobsi )2/σ2
i = Σ(a+ bxi − yobsi )2/σ2

i (25)

where ythi = a + bxi is the predicted value of y at xi, and yobsi is the observed value. In the expression
for S, we regard the data (xi, yi ± σi) as being fixed, and the parameters a and b as being variable. If for
specific values of a and b the predicted values of y and the corresponding observed ones are all close (as
measured in terms of the uncertainties σ), then S will be ‘small’, while significant discrepancies result
in large S. Thus, according to the least squares method, the best values of the parameters are those that
minimise S, and the width of the S distribution determines their uncertainties. For a good fit, the value
of Smin should be ‘small’. A more quantative discussion of ‘small’ appears below.

To determine the best values of a and b, we need to set the first derivatives of S with respect to a
and b both equal to zero. This leads to two simultaneous linear equations for a and b 6 which are readily
solved, to yield

a =
< x2 >< y > − < xy >< x >

< x2 > − < x >2

b =
< xy > − < x >< y >

< x2 > − < x >2

(26)

where < f > = Σ(fi/σ
2
i )/Σ(1/σ2

i ) i.e it is the weighted average of the quantity inside the brackets. If
the positions of the data points are such that < x > = 0, then a = < y >, i.e. the height of the best fit
line at the weighted centre of gravity of the data points is just the weighted average of the y values.

It is also essential to calculate the uncertainties σa and σb on the parameters and their correlation
coefficient ρ = cov/(σxσy), where cov is their covariance. The elements of the inverse covariance
matrix M are given by

Maa =
1

2

∂2S

∂a2
= Σ(1/σ2

i )

Mab =
1

2

∂2S

∂a ∂b
= Σ(xi/σ

2
i )

Mbb =
1

2

∂2S

∂b2
= Σ(x2

i /σ
2
i )

(27)

The covariance matrix is obtained by inverting M . Since the covariance is proportional to − < x >, if
the data are centred around x = 0, the uncertainties on a and b will be uncorrelated. That is one reason
why track parameters are usually specified at the centre of the track, rather than at its starting point.

5Many people refer to this as χ2. I prefer S, because otherwise a discussion about whether or not χ2 follows the mathemat-
ical χ2 distribution sounds confusing.

6The derivatives are linear in the parameters, because the functional form is linear in them. This would also be true for
more complicated situations such as a higher order polynomial (Yes, with respect to the coefficients, a 10th order polynomial
is linear), a series of inverse powers, Fourier series, etc.
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13.1 Correlated uncertainties on data
So far we have considered that the uncertainties on the data are uncorrelated, but this is not always the
case; correlations can arise from some common systematic. Then instead of the first equation of (25),
we use

S = ΣΣ(ythi − yobsi )Eij(y
th
j − yobsj ) (28)

where the double summation is over i and j, and E is the inverse covariance matrix7 for the uncertainties
on the yi. For the special case of uncorrelated uncertainties, the only non-zero elements of E are the
diagonal ones Eii = 1/σ2

i and then eqn. (28) reduces to (25).

This new equation for S can then be minimised to give the best values of the parameters, and Smin
can be used in a Goodness of Fit test. As before, if yth is linear in the parameters, their best estimates can
be obtained by solving simultaneous linear equations, without the need for a minimisation programme.

14 Least squares for Goodness of Fit
14.1 The chi-squared distribution
It turns out that, if we repeated our experiment a large number of times, and certain conditions are
satisfied, then Smin will follow a χ2 distribution with ν = n − p degrees of freedom, where n is the
number of data points, p is the number of free parameters in the fit, and Smin is the value of S for the
best values of the free parameters. For example, a straight line with free intercept and gradient fitted to
12 data points would have ν = 10.

The conditions for this to be true include:

– the theory is correct:
– the data are unbiassed and asymptotic;
– the yi are Gaussian distributed about their true values;
– the estimates for σi are correct; etc.

Useful properties to know about the mathematical χ2 distribution are that their mean is ν and their
variance is 2ν. Thus if a global fit to a lot of data has Smin = 2200 and there are 2000 degrees of freedom,
we can immediately estimate that this is equivalent to a fluctuation of 3.2σ.

More useful than plots of χ2 distributions are those of the fractional tail area beyond a particular
value of χ2 (see figs. 5 and 6 respectively). The χ2 goodness of fit test consists of

– For the given theoretical form, find the best values of its free parameters, and hence Smin;
– Determine ν from n and p; and
– Use Smin and ν to obtain the tail probability p 8.

Then p is the probability that, if the theory is correct, by random fluctuations we would have
obtained a value of Smin at least as large as the observed one. If this probability is smaller than some
pre-defined level α, we reject the hypothesis that the model provides a good description of the data.

14.2 When ν 6= n− p
If we add an extra parameter into our theoretical description, even if it is not really needed, we expect the
value of Smin to decrease slightly. (This contrasts with including a parameter which is really relevant,

7We use the symbolE for the inverse covariance matrix of the measured variables y, andM for that of the output parameters
(e.g. a and b for the straight line fit).

8If the conditions for Smin to follow a χ2 distribution are satisfied, this simply involves using the tail probability of a χ2

distribution. In other cases, it may be necessary to use Monte Carlo simulation to obtain the distribution of Smin; this could be
tedious.
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Fig. 5: Mathematical distributions of χ2, for different numbers of degrees of freedom ν (shown beside each curve).
As ν increases, so do the mean and variance of the distribution.

Fig. 6: The percentage area in the upper tails of χ2 distributions, for various numbers of degrees of freedom,
shown by each curve. Both scales are logarithmic. These curves bear the same relationship to those of figure 5 as
does fig. 4 to the Gaussian of fig. 3, both in Lecture 1.
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which can result in a dramatic reduction in Smin.) In determining p-values, this is allowed for by the
reduction of ν. On average, a parameter which is not needed reduces Smin by 1. But consider the
following examples.

14.2.1 Small oscillatory term
Imaging we are fitting a histogram of a variable φ by a distribution of the form

dy

dφ
= N [1 + 10−6cos(φ− φ0)], (29)

where the two parameters are the normaisation N and the phase φ0. Because of the factor 10−6 in front
of the cosine term, φ0 will have a miniscule effect on the prediction, and so including this as a parameter
has negligible effect on Smin; φ0 is effectively not a free parameter.

14.2.2 Neutrino oscillations
For a scenario of two oscillating neutrino flavours, the probability P of a neutrino of energy E to remain
the same flavour after a flight length L is

P = 1−Asin2(δm2L/E) (30)

where the two parameters are δm2, the difference in the mass-squareds of the two neutrino flavours, and
A = sin22θ with θ being the mixing angle. However, since for small angles α, sinα ≈ α, for small
δm2L/E the probability P of eqn 30 is approximately 1 − A(δm2L/E)2. Thus the two parameters
occur only as the product A(δm2)2, and cannot be determined separately. Thus in that regime we have
effectively just a single parameter.

In both the above examples, an enormous amount of data would enable us to distinguish the small
effects produced by the second parameter; hence the requirement for asymptotic conditions.

14.3 Errors of First and Second Kind
In deciding in a Goodness of Fit test whether or not to reject the null hypothesis H0 (e.g. that the data
points lie on a straight line), there are two sorts of mistake we might make:

– Error of the First Kind. This is when we reject H0 when it is in fact true. The fraction of cases in
which this happens should equal α, the cut on the p-value.

– Error of the Second Kind. This is when we do not reject H0, even though some other hypothesis
is true. The rate at which this happens depends on how similar H0 and the alternative hypothesis
are, the relative frequencies of the two hypotheses being true, etc.

As α increases the rates of Errors of the First and Second kinds go up and down respectively. These
Errors correspond to a loss of efficiency and to an increase of contamination respectively.

14.4 Other Goodness of Fit tests
The χ2 method is by no means the only one for testing Goodness of Fit. Indeed whole books have
been written on the subject [6]. Here we mention just one other, the Kolmogorov-Smirnov method (K-
S), which has the advantage of working with individual observations. It thus can be used with fewer
observations than are required for the binned histograms in the χ2 approach.

A cumulative plot is produced of the fraction of events as a function of the variable of interest x.
An example is shown in Fig. 7. This shows the fraction of data events with x smaller than any particular
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Fig. 7: Cumulative distributions for the Kolmogorov-Smirnov goodness of fit method. The stepped distribution
shows the fraction of events in a data sample, while the continuous curve is that expected for a Gaussian with mean
zero and unit variance. The method uses the maximum vertical separation d between the two distributions, and the
number of observations, to obtain the probability of obtaining a value of d at least as large as the observed one. A
small probability implies that it is unlikely that the data sample comes from the assumed distribution.

value. It is thus a stepped plot, with the fraction going from zero at the extreme left, to unity on the
right hand side. Also on the plot is a curve showing the expected cumulative fraction for some theory.
The K-S method makes use of the largest (as a function of x) vertical discrepancy d between the data
plot and the theoretical curve. Assuming the theory is true and given the number of observations N , the
probability pKS of obtaining d at least as large as the observed value can be calculated. The beauty of
the K-S method is that this probability is independent of the details of the theory. As in the χ2 approach,
the K-S probability gives a numerical way of checking the compatibility of theory and data. If pKS is
small, we are likely to reject the theory as being a good description of the data.

Some features of the K-S method are:

– The main advantage is that it can use a small number of observations.
– The calculation of the K-S probability depends on there being no adjustable parameters in the

theory. If there are, it will be necessary for you to determine the expected distribution for d,
presumably by Monte Carlo simulation.

– It does not extend naturally to data of more than one dimension, because of there being no unique
way of producing an ordering in several dimensions.

– It is not very sensitive to deviations in the tails of distributions, which is where searches for new
physics are often concentrated e.g. high mass or transverse momentum. Fortunately variants of
K-S exist, which put more emphasis on discrepancies in the tails.

– Instead of comparing a data cumulative distribution with a theoretical curve, it can alternatively
be compared with another distribution. This can be from a simulation of a theory, or with another
data set. The latter could be to check that two data sets are compatible. The calculation of the K-S
probability now requires the maximum discrepancy d, and the numbers of events N1 and N2 in
each of the two distributions being compared.

15 Kinematic Fitting
Earlier we had the example of estimating the number of married people on an island, and saw that
introducing theoretical information could improve the accuracy of our answer. Here we use the same idea
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in the context of estimating the momenta and directions of objects produced in a high energy interaction.
The theory we use is that energy and momentum are conserved between the inital state collison and the
observed objects in the reaction.

The reaction can be either at a collider or with a stationary target. We denote it by a+b→ c+d+e,
but the number of final state objects can be arbitrary. We assume for the time being the energy and
momenta of all the objects are measured9.

The technique is to consider all possible configurations of the particles’ kinematic variables that
conserve momentum and energy, and to choose that configuration that is closest to the measured vari-
ables. The degree of closeness is defined by the weighted sum of squares of the discrepancies S, taking
the uncertainties and correlations into account. If the uncertainties on the kinematic quantities mi were
uncorrelated,

S = Σ(fi −mi)
2/σ2

i (31)

where the summation is over the 4 components for all the objects in the reaction, mi are the measured
values and fi are the corresponding fitting quantities. Because of correlations, however, this becomes

S = ΣΣ(fi −mi)Eij(fj −mj) (32)

where there is now a double summation over the components, and Eij is the (i, j)th component of the
inverse covariance matrix for the measured quantities10. The procedure then consists in varying f in
order to minimise S, subject to the energy and momentum constraints. This usually involves Lagrange
Multipliers. The result of this procedure is to produce a set of fitted values of all the kinematic quantities,
which will have smaller uncertainties than the measured ones. This is an example of incorporating theory
to improve the results. Thus if the objects are jets, their directions are usually quite well determined, but
their energies less so. The fitting procedure enables the accurately determined jet directions to help
reduce the uncertainties on the jet energies.

The fitting procedure also provides Smin, which is a measure of how well the best fi agree with
the mi. In the case described, the distribution of Smin is approximately χ2 with 4 degrees of freedom
(because of the 4 constraints).

If Smin is too large, then our assumed hypothesis for the reaction may be incorrect; for example,
there might have been an extra object produced in the collision that was undetected (e.g. a neutrino, or a
charged particle which passed through an uninstrumented region of our detector).

Since we have 4 constraint equations, we can also allow for up to 4 missing kinematic quantities.
Examples include an undetected neutrino in the final state (3 unmeasured momentum components), a
wide-band neutrino beam of known direction (1 missing variable), etc. With m missing variables in an
interaction involving a single vertex, Smin should have a χ2 distribution with 4−m degrees of freedom.

Kinematic fitting can be extended to more complicated event topologies including production and
decay vertices, reactions involving particles of well known mass which decay promptly (e.g. ψ →
µ+µ−), etc.

15.1 Example of a simplified kinematic fit
Consider a non-relativistic elastic scattering of two equal mass objects, for example a slow anti-proton
hitting a stationary proton. For simplicity, the measured angles θm1 ± σ and θm2 ± σ that the outgoing
particles make with the direction of travel of the incident anti-proton are assumed to have the same
uncorrelated uncertainties σ. As a result of energy and momentum conservation, the angles must satisfy
the constraint

θt1 + θt2 = π/2 (33)
9For objects like charged particles whose momenta are determined from their trajectories in a magnetic field, the energy is

determined from the momentum by using the relevant particle mass.
10The main correlations are among the 4 components of a single object, rather than between different objects.
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where the superscipt t denotes the true value. There are 3 further constraints but for simplicity we shall
ignore them.

To find our best estimates of θt1 and θt2, we must minimise

S = (θt1 − θm1 )2/σ2 + (θt2 − θm2 )2/σ2 (34)

subject to the constraint 33. By using Lagrange Multipliers or by eliminating θt2 and then minimising S,
this yields

θt1 = θm1 + 0.5 ∗ (π/2− θm1 − θm2 )

θt2 = θm2 + 0.5 ∗ (π/2− θm1 − θm2 )
(35)

That is, the best estimate of each true value is obtained by adding to the corresponding measured value
half the amount by which the measured values fail to satisfy the constraint 33.

The uncertainties on the fitted estimates of the angles are easily obtained by propagation of the
uncertainties σ on the measured angles vias eqns. 35, and are both equal to σ/

√
2.

We thus have an example of the promised outcome that kinematic fitting improves the accuracy
of our measurements. The factor of

√
2 improvement can easily be understood in that we have two

independent estimates of θt1, the first being the original measurement θm1 , and the other coming from the
measurement θm2 via the constraint 33. However, even with uncorrelated uncertainties on the measured
angles, the fitted ones would be anti-correlated.

16 THE paradox
I refer to this as ‘THE’ paradox as, in various forms, it is the basis of the most frequently asked question.

You have a histogram of 100 bins containing some data, and use this to determine the best value
µ0 of a parameter µ by the χ2 method. It turns out that Smin = 87, which is reasonable as the expected
value for a χ2 with 99 degrees of freedom is 99± 14. A theorist asks whether his predicted value µth is
consistent with your data, so you calculate S(µth) = 112. The theorist is happy because this is within the
expected range. But you point out that the uncertainty in µ is calculated by finding where S increases by
1 unit from its minimum. Since 112 is 25 units larger than 87, this is equivalent to a 5 standard deviation
discrepancy, and so you rule out the theorist’s value of µ.

Deciding which viewpoint is correct is left as an excercise for the reader.

17 Likelihood
The likelihood function is very widely used in many statistics applications. In this Section, we consider
it just for Parameter Determination. An important feature of the likelihood approach is that it can be
used with unbinned data, and hence can be applied in situations where there are not enough individual
observations to construct a histogram for the χ2 approach.

We start by assuming that we wish to fit our data x, using a model f(x;µ) which has one or more
free parameters µ, whose value(s) we need to determine. The function f is known as the ‘probability
distribution’ (pdf ) and specifies the probability (or probability density, for the data having continuous as
opposed to discrete values) for obtaining different values of the data, when the parameter(s) are specified.
Without this it is impossible to apply the likelihood (or many other) approaches. For example x could be
observations of a variable of interest within some range, and f could be any function such as a straight
line, with gradient and intercept as parameters. But we will start with an angular distribution

y(cos θ;β) =
d p

d cos θ
= N(1 + β cos2 θ) (36)

Here θ is the angle at which a particle is observed, dp/d cos θ is the pdf specifying the probability
density for observing a decay at any cos θ, β is the parameter we want to determine, and N is the crucial
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nomalisation factor which ensures that the probability of observing a given decay at any cos θ in the
whole range from −1 to +1 is unity. In this case N = 1/(2(1 + β/3)). The data consists of N decays,
with their individual observations cos θi.

Assuming temporarily that the value of the parameter β is specified, the probability density y1 of
observing the first decay at cos θ1 is

y1 = N(1 + β cos2 θ1) = 0.5(1 + β cos2 θ1)/(1 + β/3), (37)

and similarly for the rest of the N observations. Since the individual observations are independent, the
overall probability P (β) of observing the complete data set of N events is given by the product of the
individual probabilities

P (β) = Πyi = Π 0.5(1 + β cos2 θi)/(1 + β/3) (38)

We imagine that this is computed for all values of the parameter β; then this is known as the likelihood
function L(β).

The likelihood method then takes as the estimate of β that value which maximises the likelihood.
That is, it is the value which maximises (with respect to β) the probability density of observing the given
data set. Conversely we rule out values of β for which L(β) is very small. The uncertainty on β is related
to the width of the L(β) distribution (see later).

It is often convenient to consider the logarithm of the likelihood

l = lnL = Σ ln yi (39)

One reason for this is that, for a large number of observations some fraction could have small yi. Then
the likelihood, involving the product of the yi, could be very small and may underflow the computer’s
range for real numbers. In contrast, l involves a sum rather than a product, and ln yi rather than yi, and
so produces a gentler number.

17.1 Likelihood and pdf
The procedure for constructing the likelihood is first to write down the pdf , and then to insert into that
expression the observed data values in order to evaluate their product, which is the likelihood. Thus both
the pdf and the likelihood involve the data x and the parameter(s) µ. The difference is that the pdf is a
function of x for fixed values of µ, while the likelihood is a function of µ given the fixed observed data
xobs.

Thus for a Poisson distribution, the probability of observing n events when the rate µ is specified
is

P (n;µ) = e−µµn/n! (40)

and is a function of n, while the likelihood is

L(µ;n) = e−µµn/n! (41)

and is a function of µ for the fixed observed number n.

17.2 Intuitive example: Location and width of peak
We consider a situation where we are studying a resonant state which would result in a bump in the mass
distribution of its decay particles. We assume that the bump can be parametrised as a simple Breit-Wigner

y(m;M0,Γ) =
Γ/(2π)

(m−M0)2 + (Γ/2)2
(42)
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Fig. 8: A visual demonstration of how the maximum likelihood method gives sensible values for the parameters,
the position and width of a resonance. The bars along the m-axis represent the experimental measurements of a
set of mass values mi, which are to be fitted by a simple Breit-Wigner resonance shape. In (a), the width Γ of the
resonance is kept fixed, and the mass parameter M0 is varied. This has the effect of sliding the curve to the left
or right along the m-axis, without changing its shape or height. To calculate the likelihood for a given position of
the curve we multiply all the y(mi) values; i.e. the height of the curve at each observed mass. The best value of
M0 is thus equivalent to finding the best location of the curve in order to maximise this product. Clearly we need
to locate the peak near where most of the data values are. In (b), we regard M0 as constant, but vary the width.
The effect of the normalisation condition then means that the wider curve will have lower peak height and vice
versa. The narrow curve suffers becase of the very small y values for the extreme observed mass values, while
wide curves do not benefit so much from the concentration of masses around the central value. The best value of
Γ is the result of a compromise between these two effects.

where y is the probability density of obtaining a massm if the location and width the state areM0 and Γ,
the parameters we want to determine. It is essential that y is normalised, i.e. its integral over all physical
values of m is unity; hence the normalisation factor of Γ/(2π). The data consists of n observations of
m, as shown in fig. 8.

Assume for the moment that we know M0 and Γ. Then the probability density for observing the
ith event with mass mi is

yi(M0,Γ) =
Γ/(2π)

(mi −M0)2 + (Γ/2)2
(43)

Since the events are independent, the probability density for observing the whole data sample is

yall(M0,Γ) = Π
Γ/(2π)

(mi −M0)2 + (Γ/2)2
(44)

and this is known as the likelihood L(M0,Γ). Then the best values for the parameters are taken as the
combination that maximises the probability density for the whole data sample i.e. L(M0,Γ). Parameter
values for which L is very small compared to its maximum value are rejected, and the uncertainties on
the parameters are related to the width of the distribution of L; we will be more specific later.

The curve in fig. 8(left) shows the expected probability distribution for fixed parameter values.
The way L is calculated involves multiplying the heights of the curve at all the observed mi values. If
we now consider varying M0, this moves the curve bodily to the left or right without changing its shape

21

PRACTICAL STATISTICS FOR PARTICLE PHYSICISTS

265



or normalisation. So to determine the best value of M0, we need to find where to locate the curve so that
the product of the heights is a maximum; it is plausibe that the peak will be located where the majority
of events are to be found.

Now we will consider how the optimum value of Γ is obtained. A small Γ results in a narrow
curve, so the masses in the tail will make an even smaller contribution to the product in eqn. 44, and
hence reduce the likelihood. But a large Γ is not good, because not only is the width larger, but because
of the normalisation condition, the peak height is reduced, and so the observations in the peak region
make a smaller contribution to the likelihood. The optimal Γ involves a trade-off between these two
effects.

Of course, in finding the optimal of values of the two parameters, in general it is necessary to find
the maximum of the likelihood as a function of the two parameters, rather than maximising with respect
to just one, and then with respect to the other and then stopping (see section 17.5).

17.3 Uncertainty on parameter
With a large amount of data, the likelihood as a function of a parameter µ is often approximately Gaus-
sian. In that case, l is an upturned parabola. Then the following definitions of σµ, the uncertainty on
µbest, yield identical answers:

– The RMS of the likelihood distribution.
– [− d2l

dµ2 ]−1/2. If you remember that the second derivative of the log likelihood function is involved
because it controls the width of the l distribution, a mneumonic helps you remember the formula
for σµ: Since σµ must have the same units as µ, the second derivative must appear to the power
−1/2. But because the log of the likelihood has a maximum, the second derivative is negative, so
the minus sign is necessary before we take the square root.

– It is the distance in µ from the maximum in order to decrease l by half a unit from its maximum
value. i.e.

l(µbest + σµ) = lmax − 0.5 (45)

In situations where the likelihood is not Gaussian in shape, these three definitions no longer agree.
The third one is most commonly used in that case. Now the upper and lower ends of the intervals can be
asymmetric with respect to the central value. It is a mistake to believe that this method provides intervals
which have a 68% chance of containing the true value of the parameter11.

Symmetric uncertainties are easier to work with than asymmetric ones. It is thus sometimes better
to quote the uncertainty on a function of the first variable you think of. For example, for a charged particle
in a magnetic field, the reciprocal of the momentum has a nearly symmetric uncertainty. Especially for
high momentum tracks, the upper uncertainty on the momentum can be much larger than the lower one
e.g. 1.0 +1.5

−0.4 TeV.

17.4 Coverage
An important feature of any statistical method for estimating a range for some parameter µ at a specified
confidence level α is its coverage C. If the procedure is applied many times, these ranges will vary
because of statistical fluctuations in the observed data. Then C is defined as the fraction of ranges which
contain the true value µtrue; it can vary with µtrue.

It is very important to realise that coverage is a property of the statistical procedure and does
not apply to your particular measurement. An ideal plot of coverage as a function of µ would have C
constant at its nominal value α. For a Poisson counting experiment, figure 9 shows C as a function of
the Poisson parameter µ, when the observed number of counts n is used to determine a range for µ via

11Unfortunately, this incorrect statement occurs in my book [4]. It is corrected in a separate update [5].
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Fig. 9: Coverage C for Poisson parameter intervals, as determined by the ∆(log(L)) = 0.5 rule. Repeated trials
(all using the same Poisson parameter µ) yield different values of n, each resulting in its own range µl to µu for
µ; then C is the fraction of trials that give ranges which include the chosen value of µ for the trials. The coverage
C varies with µ, and has discontinuities because the data n can take on only discrete integer values. For large µ, C
seems to approach the expected 0.68, shown by the arrow, but for small µ, the coverage takes on values between
30% and 100%.

the change in log-likelihood being 0.5. The coverage is far from constant at small µ. If C is smaller
than α, this is known as undercoverage. Certainly frequentists would regard this as unfortunate; it means
that people reading an article containing parameters determined this way are likely to place more than
justified reliance on the quoted range. Methods using the Neyman construction to determine parameter
ranges by construction do not have undercoverage.

Coverage involves a statement about Prob[µl ≤ µtrue ≤ µu]. This is to be interpreted as a
probability statement about how often the ranges µl to µu contain the (unknown but constant) true value
µtrue. This is a frequentist statement; Bayesians do not want to consider the ensemble of possible results
if the measurement procedure were to be repeated. Thus Bayesians would regard the statement about
Prob[µl ≤ µtrue ≤ µu] as describing what fraction of their estimated posterior probability density for
µtrue would be between the fixed values µl and µu, derived from their actual measurement.

17.5 More than one parameter
For the case of just one parameter µ, the likelihood best estimate µ̂ is given by the value of µ which
maximises L. Its uncertainty σµ is determined either from

1/σ2
µ = −d2 lnL/dµ2; (46)

of by finding how far µ̂ would have to be changed in order to reduce lnL by 0.5.

When we have two or more parameters βi the rule for finding the best estimates β̂i is still to
maximise L. For the uncertainties and their correlations, the generalisation of equation 46 is to construct
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the inverse covariance matrix M, whose elements are given by

Mij = − ∂2 lnL

∂βi ∂βj
(47)

Then the inverse of M is the covariance matrix, whose diagonal elements are the variances of βi, and
whose off-diagonal ones are the covariances.

Alternatively (and more common in practice), the uncertainty on a specific βj can be obtained by
using the profile likelihood Lprof (βj). This is the likelihood as a function of the specific βj , where for
each value of βj , L has been remaximised with respect to all the other β. Then Lprof (βj) is used with
the ‘reduce lnLprof = 0.5’ rule to obtain the uncertainty on βj . This is equivalent to determining the
contour in β-space where lnL = lnLmax−0.5, and finding the values βj,1 and βj,2 on the contour which
are furthest from β̂j . Then the (probably asymmetric) upper and lower uncertainties on βj are given by
βj,2 − β̂j and β̂j − βj,1 respectively.

Because these are likelihood methods of obtaining the intervals, these estimates of uncertainities
provide only nominal regions of 68% coverage for each parameter; the actual coverage can differ from
this. Furthermore, the region within the contour described in the previous paragraph for the multidi-
mensional β space will have less than 68% nominal overage. To achieve that, the ‘0.5′ in the rule for
how much lnL has to be reduced from its maximum must be replaced by a larger number, whose value
depends on the dimensionality of β.

18 Worked example: Lifetime determination
Here we consider an experiment which has resulted in N observed decay times ti of a particle whose
lifetime τ we want to determine. The probability density for observing a decay at time t is

p(t; τ) = (1/τ) e−t/τ (48)

Note the essential normalisation factor 1/τ ; without this the likelihood method does not work.

It should be realised that realistic situations are more complicated than this. For example, we
ignore the possibility of backgrounds, time resolution which smears the expected values of t, acceptance
or efficiency effects which vary with t, etc., but this enables us to estimate τ and its uncertainty στ
analytically. In real practical cases, it is almost always necessary to calculate the likelihood as a function
of τ numerically.

From equation 48 we calculate the log-likelihood as

lnL(τ) = ln[Π (1/τ)e−ti/τ ] = Σ(− ln τ − ti/τ) (49)

Differentiating lnL(τ) with respect to τ and setting the derivative to zero then yields

τ = Σti/N (50)

This equation has an appealing feature, as it can be read as “The mean lifetime is equal to the mean
lifetime", which sounds as if it must be true. However, what it really says is not quite so trivial: “Our
best estimate of the lifetime parameter τ is equal to the mean of the N observed decay times in our
experiment."

We next calculate στ from the second derivative of lnL, and obtain

στ = τ/
√
N (51)

This exhibits a common feature that the uncertainty of our parameter estimate decreases as 1/
√
N as

we collect more and more data. However, a potential problem arises from the fact that our estimated
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uncertainty is proportional to our estimate of the parameter. This is relevant if we are trying to combine
different experimental results on the lifetime of a particle. For combining procedures which weight each
result by 1/σ2, a measurement where the fluctuations in the observed times result in a low estimate of
τ will tend to be over-weighted (compare the section on ‘Combining Experiments’ in Lecture 1), and
so the weighted average would be biassed downwards. This shows that it is better to combine different
experiments at the data level, rather than simply trying to use their results.

One final point to note about our simplified example is that the likelihood L(τ) depends on the
observations only via the sum of the times Σti i.e. their distribution is irrelevant. Thus the likelihood
distributions for two experiments having the same number of events and the same sum of observed decay
times, but with one having the decay times consistent with an exponential distribution and the other
having something completely different (e.g. all decays occur at the same time), would have identical
likelihood functions. This provides an example of the fact that the unbinned likelihood function does not
in general provide useful information on Goodness of Fit.

19 Conclusions
Jut as it is impossible to learn to play the violin without ever picking it up and spending hours actually
using it, it is important to realise that one does not learn how to apply Statistics merely by listening to
lectures. It is really important to work through examples and actual analyses, and to discover more about
the topics.

There are many resources that are available to help you. First there are textbooks written by
Particle Physicists [8], which address the statistical problems that occur in Particle Physics, and which
use a language which is easier for other Particle Physicists to understand.

The large experimental collaborations have Statistics Committees, whose web-sites contain lots of
useful statistical information. That of CDF [9] is most accessible to Physicists from other experiments.

The Particle Data Book [10] contains short sections on Probability, Statistics and Monte Carlo
simulation. These are concise, and are useful reminders of things you already know. It is harder to use
them instead of lengthier articles and textbooks in order to understand a new topic.

If in the course of an analysis you come upon some interesting statistical problem that you do not
immediately know how to solve, you might be tempted to invent your own method of how to overcome
the problem. This can amount to reinventing the wheel. It is a good idea to try to see if statisticians
(or even Particle Physicists) have already dealt with this topic, as it is far preferable to use their circular
wheels, rather than your own hexagonal one.

Finally I wish you the best of luck with the statistical analyses of your data.
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