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Abstract
In these lectures we present a few topics in quantum field theory in detail.
Some of them are conceptual and some more practical. They have been se-
lected because they appear frequently in current applications to particle physics
and string theory.

1 Introduction

These notes summarize lectures presented at the 2005 CERN-CLAF School in Malargüe (Argentina),
the 2009 CERN-CLAF School in Medellín (Colombia), the 2011 CERN-CLAF School in Natal (Brazil),
the 2012 Asia-Europe-Pacific School of High Energy Physics in Fukuoka (Japan), and the 2013 CERN–
Latin-American School of High-Energy Physics in Arequipa (Peru). The audience in all occasions was
composed to a large extent by students in experimental High Energy Physicswith an important minority
of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as
quantum field theory. For this reason the lectures were intended to providea review of those parts of the
subject to be used later by other lecturers. Although a cursory acquaitance with th subject of quantum
field theory is helpful, the only requirement to follow the lectures it is a workingknowledge of Quantum
Mechanics and Special Relativity.

The guiding principle in choosing the topics presented (apart to serve as introductions to later
courses) was to present some basic aspects of the theory that presentconceptual subtleties. Those topics
one often is uncomfortable with after a first introduction to the subject. Among them we have selected:

- The need to introduce quantum fields, with the great complexity this implies.

- Quantization of gauge theories and the rôle of topology in quantum phenomena. We have included
a brief study of the Aharonov-Bohm effect and Dirac’s explanation ofthe quantization of the
electric charge in terms of magnetic monopoles.

- Quantum aspects of global and gauge symmetries and their breaking.

- Anomalies.

- The physical idea behind the process of renormalization of quantum fieldtheories.

- Some more specialized topics, like the creation of particle by classical fields and the very basics
of supersymmetry.

These notes have been written following closely the original presentation, with numerous clarifi-
cations. Sometimes the treatment given to some subjects has been extended, in particular the discussion
of the Casimir effect and particle creation by classical backgrounds. Since no group theory was assumed,
we have included an Appendix with a review of the basics concepts.

By lack of space and purpose, few proofs have been included. Instead, very often we illustrate a
concept or property by describing a physical situation where it arises.A very much expanded version
of these lectures, following the same philosophy but including many other topics, has appeared in book
form in [1]. For full details and proofs we refer the reader to the many textbooks in the subject, and in
particular in the ones provided in the bibliography [2–11]. Specially modernpresentations, very much
in the spirit of these lectures, can be found in references [5, 6, 10, 11]. We should nevertheless warn the
reader that we have been a bit cavalier about references. Our aim has been to provide mostly a (not
exhaustive) list of reference for further reading. We apologize to those authors who feel misrepresented.
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A note about notation

Before starting it is convenient to review the notation used. Through thesenotes we will be using the
metric ηµν = diag (1,−1,−1,−1). Derivatives with respect to the four-vectorxµ = (ct, ~x) will be
denoted by the shorthand

∂µ ≡ ∂

∂xµ
=

(
1

c

∂

∂t
, ~∇

)
. (1)

As usual space-time indices will be labelled by Greek letters (µ, ν, . . . = 0, 1, 2, 3) while Latin indices
will be used for spatial directions (i, j, . . . = 1, 2, 3). In many expressions we will use the notation
σµ = (1, σi) whereσi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2)

Sometimes we use of the Feynman’s slash notation/a = γµaµ. Finally, unless stated otherwise, we work
in natural units~ = c = 1.

2 Why do we need quantum field theory after all?

In spite of the impressive success of Quantum Mechanics in describing atomic physics, it was immedi-
ately clear after its formulation that its relativistic extension was not free of difficulties. These problems
were clear already to Schrödinger, whose first guess for a wave equation of a free relativistic particle was
the Klein-Gordon equation

(
∂2

∂t2
−∇2 +m2

)
ψ(t, ~x) = 0. (3)

This equation follows directly from the relativistic “mass-shell” identityE2 = ~p 2 +m2 using the corre-
spondence principle

E → i
∂

∂t
,

~p → −i~∇. (4)

Plane wave solutions to the wave equation (3) are readily obtained

ψ(t, ~x) = e−ipµxµ
= e−iEt+i~p·~x with E = ±ωp ≡ ±

√
~p 2 +m2. (5)

In order to have a complete basis of functions, one must include plane wavewith bothE > 0 andE < 0.
This implies that given the conserved current

jµ =
i

2

(
ψ∗∂µψ − ∂µψ

∗ ψ
)
, (6)

its time-component isj0 = E and therefore does not define a positive-definite probability density.

A complete, properly normalized, continuous basis of solutions of the Klein-Gordon equation (3)
labelled by the momentum~p can be defined as

fp(t, ~x) =
1

(2π)
3
2
√
2ωp

e−iωpt+i~p·~x,

f−p(t, ~x) =
1

(2π)
3
2
√
2ωp

eiωpt−i~p·~x. (7)
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Fig. 1: Spectrum of the Klein-Gordon wave equation

Given the inner product

〈ψ1|ψ2〉 = i

∫
d3x

(
ψ∗
1∂0ψ2 − ∂0ψ

∗
1 ψ2

)

the states (7) form an orthonormal basis

〈fp|fp′〉 = δ(~p− ~p ′),

〈f−p|f−p′〉 = −δ(~p− ~p ′), (8)

〈fp|f−p′〉 = 0. (9)

The wave functionsfp(t, x) describes states with momentum~p and energy given byωp =
√

~p 2 +m2.
On the other hand, the states|f−p〉 not only have a negative scalar product but they actually correspond
to negative energy states

i∂0f−p(t, ~x) = −
√

~p 2 +m2 f−p(t, ~x). (10)

Therefore the energy spectrum of the theory satisfies|E| > m and is unbounded from below (see Fig.
1). Although in a case of a free theory the absence of a ground state is not necessarily a fatal problem,
once the theory is coupled to the electromagnetic field this is the source of all kinds of disasters, since
nothing can prevent the decay of any state by emission of electromagnetic radiation.

The problem of the instability of the “first-quantized” relativistic wave equation can be heuristi-
cally tackled in the case of spin-1

2 particles, described by the Dirac equation
(
−iβ

∂

∂t
+ ~α · ~∇−m

)
ψ(t, ~x) = 0, (11)

where~α andβ are4× 4 matrices

αi =

(
0 iσi

−iσi 0

)
, β =

(
0 1
1 0

)
, (12)
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Fig. 2: Creation of a particle-antiparticle pair in the Dirac see picture

with σi the Pauli matrices, and the wave functionψ(t, ~x) has four components. The wave equation (11)
can be thought of as a kind of “square root” of the Klein-Gordon equation (3), since the latter can be
obtained as

(
−iβ

∂

∂t
+ ~α · ~∇−m

)†(
−iβ

∂

∂t
+ ~α · ~∇−m

)
ψ(t, ~x) =

(
∂2

∂t2
−∇2 +m2

)
ψ(t, ~x). (13)

An analysis of Eq. (11) along the lines of the one presented above for theKlein-Gordon equation
leads again to the existence of negative energy states and a spectrum unbounded from below as in Fig.
1. Dirac, however, solved the instability problem by pointing out that now theparticles are fermions
and therefore they are subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be
occupied by at most one particle, so the states withE = m can be made stable if we assume thatall the
negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum where all
negative energy states are occupied, the so-called Dirac sea, it also leads directly to the conclusion that a
single-particle interpretation of the Dirac equation is not possible. Indeed,a photon with enough energy
(E > 2m) can excite one of the electrons filling the negative energy states, leaving behind a “hole” in
the Dirac see (see Fig. 2). This hole behaves as a particle with equal mass and opposite charge that
is interpreted as a positron, so there is no escape to the conclusion that interactions will produce pairs
particle-antiparticle out of the vacuum.

In spite of the success of the heuristic interpretation of negative energy states in the Dirac equation
this is not the end of the story. In 1929 Oskar Klein stumbled into an apparentparadox when trying to
describe the scattering of a relativistic electron by a square potential usingDirac’s wave equation [12] (for
pedagogical reviews see [13, 14]). In order to capture the essenceof the problem without entering into
unnecessary complication we will study Klein’s paradox in the context of theKlein-Gordon equation.

Let us consider a square potential with heightV0 > 0 of the type showed in Fig. 3. A solution to
the wave equation in regions I and II is given by

ψI(t, x) = e−iEt+ip1x +Re−iEt−ip1x,

ψII(t, x) = Te−iEt+p2x, (14)
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Fig. 3: Illustration of the Klein paradox.

where the mass-shell condition implies that

p1 =
√
E2 −m2, p2 =

√
(E − V0)2 −m2. (15)

The constantsR andT are computed by matching the two solutions across the boundaryx = 0. The
conditionsψI(t, 0) = ψII(t, 0) and∂xψI(t, 0) = ∂xψII(t, 0) imply that

T =
2p1

p1 + p2
, R =

p1 − p2
p1 + p2

. (16)

At first sight one would expect a behavior similar to the one encountered inthe nonrelativistic
case. If the kinetic energy is bigger thanV0 both a transmitted and reflected wave are expected, whereas
when the kinetic energy is smaller thanV0 one only expect to find a reflected wave, the transmitted wave
being exponentially damped within a distance of a Compton wavelength inside the barrier.

Indeed this is what happens ifE − m > V0. In this case bothp1 andp2 are real and we have a
partly reflected, and a partly transmitted wave. In the same way, ifV0 − 2m < E −m < V0 thenp2 is
imaginary and there is total reflection.

However, in the case whenV0 > 2m and the energy is in the range0 < E − m < V0 − 2m
a completely different situation arises. In this case one finds that bothp1 andp2 are real and therefore
the incoming wave function is partially reflected and partially transmitted across the barrier. This is a
shocking result, since it implies that there is a nonvanishing probability of finding the particle at any
point across the barrier with negative kinetic energy (E −m − V0 < 0)! This weird result is known as
Klein’s paradox.

As with the negative energy states, the Klein paradox results from our insistence in giving a single-
particle interpretation to the relativistic wave function. Actually, a multiparticle analysis of the paradox
[13] shows that what happens when0 < E − m < V0 − 2m is that the reflection of the incoming
particle by the barrier is accompanied by the creation of pairs particle-antiparticle out of the energy of
the barrier (notice that for this to happen it is required thatV0 > 2m, the threshold for the creation of a
particle-antiparticle pair).
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Fig. 4: Two regionsR1, R2 that are causally disconnected.

Actually, this particle creation can be understood by noticing that the suddenpotential step in Fig.
3 localizes the incoming particle with massm in distances smaller than its Compton wavelengthλ = 1

m .
This can be seen by replacing the square potential by another one wherethe potential varies smoothly
from 0 toV0 > 2m in distances scales larger than1/m. This case was worked out by Sauter shortly after
Klein pointed out the paradox [15]. He considered a situation where the regions withV = 0 andV = V0

are connected by a region of lengthd with a linear potentialV (x) = V0x
d . Whend > 1

m he found that
the transmission coefficient is exponentially small1.

The creation of particles is impossible to avoid whenever one tries to locate a particle of massm
within its Compton wavelength. Indeed, from Heisenberg uncertainty relationwe find that if∆x ∼ 1

m ,
the fluctuations in the momentum will be of order∆p ∼ m and fluctuations in the energy of order

∆E ∼ m (17)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are enough to allow
the creation of particles out of the vacuum. In the case of a spin-1

2 particle, the Dirac sea picture shows
clearly how, when the energy fluctuations are of orderm, electrons from the Dirac sea can be excited to
positive energy states, thus creating electron-positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by relativistic invariance.
In non-relativistic Quantum Mechanics observables are represented by self-adjoint operator that in the
Heisenberg picture depend on time. Therefore measurements are localizedin time but are global in
space. The situation is radically different in the relativistic case. Becauseno signal can propagate faster
than the speed of light, measurements have to be localized both in time and space.Causality demands
then that two measurements carried out in causally-disconnected regions of space-time cannot interfere
with each other. In mathematical terms this means that ifOR1 andOR2 are the observables associated
with two measurements localized in two causally-disconnected regionsR1, R2 (see Fig. 4), they satisfy

[OR1 ,OR2 ] = 0, if (x1 − x2)
2 < 0, for all x1 ∈ R1, x2 ∈ R2. (18)

1In section (9.1) we will see how, in the case of the Dirac field, this exponential behavior can be associated with the creation
of electron-positron pairs due to a constant electric field (Schwinger effect).
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Hence, in a relativistic theory, the basic operators in the Heisenberg picture must depend on the
space-time positionxµ. Unlike the case in non-relativistic quantum mechanics, here the position~x is not
an observable, but just a label, similarly to the case of time in ordinary quantum mechanics. Causality is
then imposed microscopically by requiring

[O(x),O(y)] = 0, if (x− y)2 < 0. (19)

A smeared operatorOR over a space-time regionR can then be defined as

OR =

∫
d4xO(x) fR(x) (20)

wherefR(x) is the characteristic function associated withR,

fR(x) =

{
1 x ∈ R
0 x /∈ R

. (21)

Eq. (18) follows now from the microcausality condition (19).

Therefore, relativistic invariance forces the introduction of quantum fields. It is only when we
insist in keeping a single-particle interpretation that we crash against causality violations. To illustrate
the point, let us consider a single particle wave functionψ(t, ~x) that initially is localized in the position
~x = 0

ψ(0, ~x) = δ(~x). (22)

Evolving this wave function using the HamiltonianH =
√
−∇2 +m2 we find that the wave function

can be written as

ψ(t, ~x) = e−it
√
−∇2+m2

δ(~x) =

∫
d3k

(2π)3
ei
~k·~x−it

√
k2+m2

. (23)

Integrating over the angular variables, the wave function can be recastin the form

ψ(t, ~x) =
1

2π2|~x|

∫ ∞

−∞
k dk eik|~x| e−it

√
k2+m2

. (24)

The resulting integral can be evaluated using the complex integration contourC shown in Fig. 5. The
result is that, for anyt > 0, one finds thatψ(t, ~x) 6= 0 for any~x. If we insist in interpreting the wave
functionψ(t, ~x) as the probability density of finding the particle at the location~x in the timet we find
that the probability leaks out of the light cone, thus violating causality.

3 From classical to quantum fields

We have learned how the consistency of quantum mechanics with special relativity forces us to abandon
the single-particle interpretation of the wave function. Instead we have to consider quantum fields whose
elementary excitations are associated with particle states, as we will see below.

In any scattering experiment, the only information available to us is the set of quantum number
associated with the set of free particles in the initial and final states. Ignoring for the moment other
quantum numbers like spin and flavor, one-particle states are labelled by thethree-momentum~p and
span the single-particle Hilbert spaceH1

|~p〉 ∈ H1, 〈~p|~p ′〉 = δ(~p− ~p ′) . (25)

The states{|~p〉} form a basis ofH1 and therefore satisfy the closure relation
∫

d3p |~p〉〈~p| = 1 (26)
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Fig. 5: Complex contourC for the computation of the integral in Eq. (24).

The group of spatial rotations acts unitarily on the states|~p〉. This means that for every rotationR ∈
SO(3) there is a unitary operatorU(R) such that

U(R)|~p〉 = |R~p〉 (27)

whereR~p represents the action of the rotation on the vector~k, (R~p)i = Ri
jk

j . Using a spectral decom-

position, the momentum operator̂P i can be written as

P̂ i =

∫
d3p |~p〉 pi 〈~p| (28)

With the help of Eq. (27) it is straightforward to check that the momentum operator transforms as a
vector under rotations:

U(R)−1 P̂ i U(R) =

∫
d3p |R−1~p〉 pi 〈R−1~p| = Ri

jP̂
j , (29)

where we have used that the integration measure is invariant under SO(3).

Since, as we argued above, we are forced to deal with multiparticle states, itis convenient to
introduce creation-annihilation operators associated with a single-particle state of momentum~p

[a(~p), a†(~p ′)] = δ(~p− ~p ′), [a(~p), a(~p ′)] = [a†(~p), a†(~p ′)] = 0, (30)

such that the state|~p〉 is created out of the Fock space vacuum|0〉 (normalized such that〈0|0〉 = 1) by
the action of a creation operatora†(~p)

|~p〉 = a†(~p)|0〉, a(~p)|0〉 = 0 ∀~p. (31)

Covariance under spatial rotations is all we need if we are interested in a nonrelativistic theory.
However in a relativistic quantum field theory we must preserve more that SO(3), actually we need
the expressions to be covariant under the full Poincaré group ISO(1, 3) consisting in spatial rotations,
boosts and space-time translations. Therefore, in order to build the Fock space of the theory we need
two key ingredients: first an invariant normalization for the states, since wewant a normalized state in
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one reference frame to be normalized in any other inertial frame. And secondly a relativistic invariant
integration measure in momentum space, so the spectral decomposition of operators is covariant under
the full Poincaré group.

Let us begin with the invariant measure. Given an invariant functionf(p) of the four-momentum
pµ of a particle of massm with positive energyp0 > 0, there is an integration measure which is invariant
under proper Lorentz transformations2

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) f(p), (32)

whereθ(x) represent the Heaviside step function. The integration overp0 can be easily done using the
δ-function identity

δ[f(x)] =
∑

xi=zeros of f

1

|f ′(xi)|
δ(x− xi), (33)

which in our case implies that

δ(p2 −m2) =
1

2p0
δ
(
p0 −

√
~p 2 +m2

)
+

1

2p0
δ
(
p0 +

√
~p 2 +m2

)
. (34)

The second term in the previous expression correspond to states with negative energy and therefore does
not contribute to the integral. We can write then

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) f(p) =

∫
d3p

(2π)3
1

2
√

~p 2 +m2
f
(√

~p 2 +m2, ~p
)
. (35)

Hence, the relativistic invariant measure is given by

∫
d3p

(2π)3
1

2ωp
with ωp ≡

√
~p 2 +m2. (36)

Once we have an invariant measure the next step is to find an invariant normalization for the states.
We work with a basis{|p〉} of eigenstates of the four-momentum operatorP̂µ

P̂ 0|p〉 = ωp|p〉, P̂ i|p〉 = p i|p〉. (37)

Since the states|p〉 are eigenstates of the three-momentum operator we can express them in termsof the
non-relativistic states|~p〉 that we introduced in Eq. (25)

|p〉 = N(~p)|~p〉 (38)

with N(~p) a normalization to be determined now. The states{|p〉} form a complete basis, so they should
satisfy the Lorentz invariant closure relation

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) |p〉 〈p| = 1 (39)

At the same time, this closure relation can be expressed, using Eq. (38), in terms of the nonrelativistic
basis of states{|~p〉} as

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) |p〉 〈p| =

∫
d3p

(2π)3
1

2ωp
|N(p)|2 |~p〉 〈~p|. (40)

2The factors of2π are introduced for later convenience.
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Using now Eq. (28) for the nonrelativistic states, expression (39) follows provided

|N(~p)|2 = (2π)3 (2ωp). (41)

Taking the overall phase in Eq. (38) so thatN(p) is real, we define the Lorentz invariant states|p〉 as

|p〉 = (2π)
3
2

√
2ωp |~p〉, (42)

and given the normalization of|~p〉 we find the normalization of the relativistic states to be

〈p|p′〉 = (2π)3(2ωp)δ(~p− ~p ′). (43)

Although not obvious at first sight, the previous normalization is Lorentz invariant. Although it
is not difficult to show this in general, here we consider the simpler case of 1+1 dimensions where the
two components(p0, p1) of the on-shell momentum can be parametrized in terms of a single hyperbolic
angleλ as

p0 = m coshλ, p1 = m sinhλ. (44)

Now, the combination2ωpδ(p
1 − p1′) can be written as

2ωpδ(p
1 − p1′) = 2m coshλ δ(m sinhλ−m sinhλ′) = 2δ(λ− λ′), (45)

where we have made use of the property (33) of theδ-function. Lorentz transformations in1 + 1 di-
mensions are labelled by a parameterξ ∈ R and act on the momentum by shifting the hyperbolic angle
λ → λ+ ξ. However, Eq. (45) is invariant under a common shift ofλ andλ′, so the whole expression is
obviously invariant under Lorentz transformations.

To summarize what we did so far, we have succeed in constructing a Lorentz covariant basis of
states for the one-particle Hilbert spaceH1. The generators of the Poincaré group act on the states|p〉 of
the basis as

P̂µ|p〉 = pµ|p〉, U(Λ)|p〉 = |Λµ
ν p

ν〉 ≡ |Λp〉 with Λ ∈ SO(1, 3). (46)

This is compatible with the Lorentz invariance of the normalization that we have checked above

〈p|p′〉 = 〈p|U(Λ)−1U(Λ)|p′〉 = 〈Λp|Λp′〉. (47)

OnH1 the operator̂Pµ admits the following spectral representation

P̂µ =

∫
d3p

(2π)3
1

2ωp
|p〉 pµ 〈p| . (48)

Using (47) and the fact that the measure is invariant under Lorentz transformation, one can easily show
thatP̂µ transform covariantly under SO(1, 3)

U(Λ)−1P̂µU(Λ) =
∫

d3p

(2π)3
1

2ωp
|Λ−1p〉 pµ 〈Λ−1p| = Λµ

νP̂
ν . (49)

A set of covariant creation-annihilation operators can be constructed now in terms of the operators
a(~p), a†(~p) introduced above

α(~p) ≡ (2π)
3
2

√
2ωpa(~p), α†(~p) ≡ (2π)

3
2

√
2ωpa

†(~p) (50)

with the Lorentz invariant commutation relations

[α(~p), α†(~p ′)] = (2π)3(2ωp)δ(~p− ~p ′),

10
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[α(~p), α(~p ′)] = [α†(~p), α†(~p ′)] = 0. (51)

Particle states are created by acting with any number of creation operatorsα(~p) on the Poincaré invariant
vacuum state|0〉 satisfying

〈0|0〉 = 1, P̂µ|0〉 = 0, U(Λ)|0〉 = |0〉, ∀Λ ∈ SO(1, 3). (52)

A general one-particle state|f〉 ∈ H1 can be then written as

|f〉 =
∫

d3p

(2π)3
1

2ωp
f(~p)α†(~p)|0〉, (53)

while an-particle state|f〉 ∈ H⊗n
1 can be expressed as

|f〉 =
∫ n∏

i=1

d3pi
(2π)3

1

2ωpi

f(~p1, . . . , ~pn)α
†(~p1) . . . α†(~pn)|0〉. (54)

That this states are Lorentz invariant can be checked by noticing that from the definition of the creation-
annihilation operators follows the transformation

U(Λ)α(~p)U(Λ)† = α(Λ~p) (55)

and the corresponding one for creation operators.

As we have argued above, the very fact that measurements have to be localized implies the ne-
cessity of introducing quantum fields. Here we will consider the simplest case of a scalar quantum field
φ(x) satisfying the following properties:

- Hermiticity.

φ†(x) = φ(x). (56)

- Microcausality. Since measurements cannot interfere with each other when performed in causally
disconnected points of space-time, the commutator of two fields have to vanish outside the relative
ligth-cone

[φ(x), φ(y)] = 0, (x− y)2 < 0. (57)

- Translation invariance.

ei
bP ·aφ(x)e−i bP ·a = φ(x− a). (58)

- Lorentz invariance.

U(Λ)†φ(x)U(Λ) = φ(Λ−1x). (59)

- Linearity. To simplify matters we will also assume thatφ(x) is linear in the creation-annihilation
operatorsα(~p), α†(~p)

φ(x) =

∫
d3p

(2π)3
1

2ωp

[
f(~p, x)α(~p) + g(~p, x)α†(~p)

]
. (60)

Sinceφ(x) should be hermitian we are forced to takef(~p, x)∗ = g(~p, x). Moreover,φ(x) satisfies
the equations of motion of a free scalar field,(∂µ∂

µ +m2)φ(x) = 0, only if f(~p, x) is a complete
basis of solutions of the Klein-Gordon equation. These considerations leads to the expansion

φ(x) =

∫
d3p

(2π)3
1

2ωp

[
e−iωpt+i~p·~xα(~p) + eiωpt−i~p·~xα†(~p)

]
. (61)
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Given the expansion of the scalar field in terms of the creation-annihilation operators it can be
checked thatφ(x) and∂tφ(x) satisfy the equal-time canonical commutation relations

[φ(t, ~x), ∂tφ(t, ~y)] = iδ(~x− ~y) (62)

The general commutator[φ(x), φ(y)] can be also computed to be

[φ(x), φ(x′)] = i∆(x− x′). (63)

The function∆(x− y) is given by

i∆(x− y) = −Im

∫
d3p

(2π)3
1

2ωp
e−iωp(t−t′)+i~p·(~x−~x ′)

=

∫
d4p

(2π)4
(2π)δ(p2 −m2)ε(p0)e−ip·(x−x′), (64)

whereε(x) is defined as

ε(x) ≡ θ(x)− θ(−x) =

{
1 x > 0

−1 x < 0
. (65)

Using the last expression in Eq. (64) it is easy to show thati∆(x − x′) vanishes whenx andx′

are space-like separated. Indeed, if(x− x′)2 < 0 there is always a reference frame in which both events
are simultaneous, and sincei∆(x − x′) is Lorentz invariant we can compute it in this reference frame.
In this caset = t′ and the exponential in the second line of (64) does not depend onp0. Therefore, the
integration overk0 gives

∫ ∞

−∞
dp0ε(p0)δ(p2 −m2) =

∫ ∞

−∞
dp0

[
1

2ωp
ε(p0)δ(p0 − ωp) +

1

2ωp
ε(p0)δ(p0 + ωp)

]

=
1

2ωp
− 1

2ωp
= 0. (66)

So we have concluded thati∆(x− x′) = 0 if (x− x′)2 < 0, as required by microcausality. Notice that
the situation is completely different when(x − x′)2 ≥ 0, since in this case the exponential depends on
p0 and the integration over this component of the momentum does not vanish.

3.1 Canonical quantization

So far we have contented ourselves with requiring a number of propertiesto the quantum scalar field:
existence of asymptotic states, locality, microcausality and relativistic invariance. With these only ingre-
dients we have managed to go quite far. The previous can also be obtained using canonical quantization.
One starts with a classical free scalar field theory in Hamiltonian formalism and obtains the quantum
theory by replacing Poisson brackets by commutators. Since this quantizationprocedure is based on the
use of the canonical formalism, which gives time a privileged rôle, it is important to check at the end of
the calculation that the resulting quantum theory is Lorentz invariant. In the following we will briefly
overview the canonical quantization of the Klein-Gordon scalar field.

The starting point is the action functionalS[φ(x)] which, in the case of a free real scalar field of
massm is given by

S[φ(x)] ≡
∫

d4xL(φ, ∂µφ) =
1

2

∫
d4x

(
∂µφ∂

µφ−m2φ2
)
. (67)
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The equations of motion are obtained, as usual, from the Euler-Lagrangeequations

∂µ

[
∂L

∂(∂µφ)

]
− ∂L

∂φ
= 0 =⇒ (∂µ∂

µ +m2)φ = 0. (68)

The momentum canonically conjugated to the fieldφ(x) is given by

π(x) ≡ ∂L
∂(∂0φ)

=
∂φ

∂t
. (69)

In the Hamiltonian formalism the physical system is described not in terms of the generalized coordinates
and their time derivatives but in terms of the generalized coordinates and their canonically conjugated
momenta. This is achieved by a Legendre transformation after which the dynamics of the system is
determined by the Hamiltonian function

H ≡
∫

d3x

(
π
∂φ

∂t
− L

)
=

1

2

∫
d3x

[
π2 + (~∇φ)2 +m2

]
. (70)

The equations of motion can be written in terms of the Poisson rackets. Given two functional
A[φ, π], B[φ, π] of the canonical variables

A[φ, π] =

∫
d3xA(φ, π), B[φ, π] =

∫
d3xB(φ, π). (71)

Their Poisson bracket is defined by

{A,B} ≡
∫

d3x

[
δA

δφ

δB

δπ
− δA

δπ

δB

δφ

]
, (72)

where δ
δφ denotes the functional derivative defined as

δA

δφ
≡ ∂A

∂φ
− ∂µ

[
∂A

∂(∂µφ)

]
(73)

Then, the canonically conjugated fields satisfy the following equal time Poisson brackets

{φ(t, ~x), φ(t, ~x ′)} = {π(t, ~x), π(t, ~x ′)} = 0,

{φ(t, ~x), π(t, ~x ′)} = δ(~x− ~x ′). (74)

Canonical quantization proceeds now by replacing classical fields with operators and Poisson
brackets with commutators according to the rule

i{·, ·} −→ [·, ·]. (75)

In the case of the scalar field, a general solution of the field equations (68) can be obtained by working
with the Fourier transform

(∂µ∂
µ +m2)φ(x) = 0 =⇒ (−p2 +m2)φ̃(p) = 0, (76)

whose general solution can be written as3

φ(x) =

∫
d4p

(2π)4
(2π)δ(p2 −m2)θ(p0)

[
α(p)e−ip·x + α(p)∗eip·x

]

3In momentum space, the general solution to this equation iseφ(p) = f(p)δ(p2 − m2), with f(p) a completely general
function ofpµ. The solution in position space is obtained by inverse Fourier transform.
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=

∫
d3p

(2π)3
1

2ωp

[
α(~p )e−iωpt+~p·~x + α(~p )∗eiωpt−~p·~x

]
(77)

and we have requiredφ(x) to be real. The conjugate momentum is

π(x) = − i

2

∫
d3p

(2π)3

[
α(~p )e−iωpt+~p·~x + α(~p )∗eiωpt−~p·~x

]
. (78)

Now φ(x) andπ(x) are promoted to operators by replacing the functionsα(~p), α(~p)∗ by the
corresponding operators

α(~p ) −→ α̂(~p ), α(~p )∗ −→ α̂†(~p ). (79)

Moreover, demanding[φ(t, ~x), π(t, ~x ′)] = iδ(~x − ~x ′) forces the operatorŝα(~p), α̂(~p)† to have the
commutation relations found in Eq. (51). Therefore they are identified as a set of creation-annihilation
operators creating states with well-defined momentum~p out of the vacuum|0〉. In the canonical quanti-
zation formalism the concept of particle appears as a result of the quantization of a classical field.

Knowing the expressions of̂φ andπ̂ in terms of the creation-annihilation operators we can proceed
to evaluate the Hamiltonian operator. After a simple calculation one arrives to theexpression

Ĥ =

∫
d3p

[
ωpα̂

†(~p)α̂(~p) +
1

2
ωp δ(~0)

]
. (80)

The first term has a simple physical interpretation sinceα̂†(~p)α̂(~p) is the number operator of particles
with momentum~p. The second divergent term can be eliminated if we defined the normal-ordered
Hamiltonian:Ĥ: with the vacuum energy subtracted

:Ĥ:≡ Ĥ − 〈0|Ĥ|0〉 =
∫

d3pωp α̂
†(~p ) α̂(~p ) (81)

It is interesting to try to make sense of the divergent term in Eq. (80). This term have two sources
of divergence. One is associated with the delta function evaluated at zerocoming from the fact that we
are working in a infinite volume. It can be regularized for large but finite volume by replacingδ(~0) ∼ V .
Hence, it is of infrared origin. The second one comes from the integrationof ωp at large values of
the momentum and it is then an ultraviolet divergence. The infrared divergence can be regularized by
considering the scalar field to be living in a box of finite volumeV . In this case the vacuum energy is

Evac ≡ 〈0|Ĥ|0〉 =
∑

~p

1

2
ωp. (82)

Written in this way the interpretation of the vacuum energy is straightforward.A free scalar quantum
field can be seen as a infinite collection of harmonic oscillators per unit volume,each one labelled by
~p. Even if those oscillators are not excited, they contribute to the vacuum energy with their zero-point
energy, given by12ωp. This vacuum contribution to the energy add up to infinity even if we work at
finite volume, since even then there are modes with arbitrary high momentum contributing to the sum,
pi = niπ

Li
, with Li the sides of the box of volumeV andni an integer. Hence, this divergence is of

ultraviolet origin.

Our discussion leads us to the conclusion that the vacuum in quantum field theory is radically
different from the classical idea of the vacuum as “empty space”. Indeed, we have seen that a quantum
field can be regarded as a set of an infinite number of harmonic oscillators and that the ground state of
the system is obtained whenall oscillators are in their respective ground states. This being so, we know
from elementary quantum mechanics that a harmonic oscillator in its ground stateis not “at rest”, but
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Region I Region II

Conducting plates

Region III

d

Fig. 6: Illustration of the Casimir effect. In regions I and II the spetrum of modes of the momentump⊥ is
continuous, while in the space between the plates (region II) it is quantized in units ofπd .

fluctuate with an energy given by its zero-point energy. When translatedto quantum field theory, this
means that the vacuum can be picture as a medium where virtual particles arecontinuously created and
annihilated. As we will see, this nontrivial character of the vacuum has physical consequences ranging
from the Casimir effect (see below) to the screening or antiscreening of charges in gauge theories (see
Section 8.2).

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic of the scalar field. It is also present in other cases,
in particular in quantum electrodynamics. Although one might be tempted to discarding this infinite
contribution to the energy of the vacuum as unphysical, it has observableconsequences. In 1948 Hendrik
Casimir pointed out [16] that although a formally divergent vacuum energy would not be observable, any
variation in this energy would be (see [17] for comprehensive reviews).

To show this he devised the following experiment. Consider a couple of infinite, perfectly con-
ducting plates placed parallel to each other at a distanced (see Fig. 6). Because the conducting plates fix
the boundary condition of the vacuum modes of the electromagnetic field theseare discrete in between
the plates (region II), while outside there is a continuous spectrum of modes(regions I and III). In order
to calculate the force between the plates we can take the vacuum energy of the electromagnetic field
as given by the contribution of two scalar fields corresponding to the two polarizations of the photon.
Therefore we can use the formulas derived above.

A naive calculation of the vacuum energy in this system gives a divergent result. This infinity can
be removed, however, by substracting the vacuum energy corresponding to the situation where the plates
are removed

E(d)reg = E(d)vac − E(∞)vac (83)

This substraction cancels the contribution of the modes outside the plates. Because of the boundary
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conditions imposed by the plates the momentum of the modes perpendicular to the plates are quantized
according top⊥ = nπ

d , with n a non-negative integer. If we consider that the size of the plates is much
larger than their separationd we can take the momenta parallel to the plates~p‖ as continuous. Forn > 0
we have two polarizations for each vacuum mode of the electromagnetic field,each contributing like
1
2

√
~p 2
‖ + p2⊥ to the vacuum energy. On the other hand, whenp⊥ = 0 the corresponding modes of the

field are effectively (2+1)-dimensional and therefore there is only onepolarization. Keeping this in mind,
we can write

E(d)reg = S

∫
d2p‖
(2π)2

1

2
|~p‖|+ 2S

∫
d2p‖
(2π)2

∞∑

n=1

1

2

√
~p 2
‖ +

(nπ
d

)2

− 2Sd

∫
d3p

(2π)3
1

2
|~p | (84)

whereS is the area of the plates. The factors of 2 take into account the two propagating degrees of
freedom of the electromagnetic field, as discussed above. In order to ensure the convergence of integrals
and infinite sums we can introduce an exponential damping factor4

E(d)reg =
1

2
S

∫
d2p⊥
(2π)2

e−
1
Λ
|~p‖ ||~p‖ |+ S

∞∑

n=1

∫
d2p‖
(2π)2

e
− 1

Λ

q

~p 2
‖+(

nπ
d )

2
√

~p 2
‖ +

(nπ
d

)2

− Sd

∫ ∞

−∞

dp⊥
2π

∫
d2p‖
(2π)2

e
− 1

Λ

q

~p 2
‖+p2⊥

√
~p 2
‖ + p2⊥ (85)

whereΛ is an ultraviolet cutoff. It is now straightforward to see that if we define thefunction

F (x) =
1

2π

∫ ∞

0
y dy e−

1
Λ

q

y2+(xπ
d )

2
√
y2 +

(xπ
d

)2
=

1

4π

∫ ∞

(xπ
d )

2
dz e−

√
z

Λ
√
z (86)

the regularized vacuum energy can be written as

E(d)reg = S

[
1

2
F (0) +

∞∑

n=1

F (n)−
∫ ∞

0
dxF (x)

]
(87)

This expression can be evaluated using the Euler-MacLaurin formula [19]
∞∑

n=1

F (n)−
∫ ∞

0
dxF (x) = −1

2
[F (0) + F (∞)] +

1

12

[
F ′(∞)− F ′(0)

]

− 1

720

[
F ′′′(∞)− F ′′′(0)

]
+ . . . (88)

Since for our functionF (∞) = F ′(∞) = F ′′′(∞) = 0 andF ′(0) = 0, the value ofE(d)reg is
determined byF ′′′(0). Computing this term and removing the ultraviolet cutoff,Λ → ∞ we find the
result

E(d)reg =
S

720
F ′′′(0) = − π2S

720d3
. (89)

Then, the force per unit area between the plates is given by

PCasimir = − π2

240

1

d4
. (90)

The minus sign shows that the force between the plates is attractive. This is theso-called Casimir effect.
It was experimentally measured in 1958 by Sparnaay [18] and since then the Casimir effect has been
checked with better and better precission in a variety of situations [17].

4Actually, one could introduce any cutoff functionf(p2⊥ + p2‖) going to zero fast enough asp⊥, p‖ → ∞. The result is
independent of the particular function used in the calculation.
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4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate our discussion of the quantization procedure.
However, nature is richer than that and it is necessary to consider otherfields with more complicated be-
havior under Lorentz transformations. Before considering other fieldswe pause and study the properties
of the Lorentz group.

4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generators. Three of themcorrespond to the generators
of the group of rotations in three dimensions SO(3). In terms of the generators Ji of the group a finite
rotation of angleϕ with respect to an axis determined by a unitary vector~e can be written as

R(~e, ϕ) = e−iϕ~e· ~J , ~J =




J1
J2
J3


 . (91)

The other three generators of the Lorentz group are associated with boostsMi along the three spatial
directions. A boost with rapidityλ along a direction~u is given by

B(~u, λ) = e−iλ ~u· ~M , ~M =




M1

M2

M3


 . (92)

These six generators satisfy the algebra

[Ji, Jj ] = iǫijkJk,

[Ji,Mk] = iǫijkMk, (93)

[Mi,Mj ] = −iǫijkJk,

The first line corresponds to the commutation relations of SO(3), while the second one implies that the
generators of the boosts transform like a vector under rotations.

At first sight, to find representations of the algebra (93) might seem difficult. The problem is
greatly simplified if we consider the following combination of the generators

J±
k =

1

2
(Jk ± iMk). (94)

Using (93) it is easy to prove that the new generatorsJ±
k satisfy the algebra

[J±
i , J±

j ] = iǫijkJ
±
k ,

[J+
i , J−

j ] = 0. (95)

Then the Lorentz algebra (93) is actually equivalent to two copies of the algebra ofSU(2) ≈ SO(3).
Therefore the irreducible representations of the Lorentz group can beobtained from the well-known rep-
resentations of SU(2). Since the latter ones are labelled by the spins = k + 1

2 , k (with k ∈ N), any
representation of the Lorentz algebra can be identified by specifying(s+, s−), the spins of the represen-
tations of the two copies of SU(2) that made up the algebra (93).

To get familiar with this way of labelling the representations of the Lorentz group we study some
particular examples. Let us start with the simplest one(s+, s−) = (0,0). This state is a singlet under
J±
i and therefore also under rotations and boosts. Therefore we have a scalar.

The next interesting cases are(12 ,0) and(0, 12). They correspond respectively to a right-handed
and a left-handed Weyl spinor. Their properties will be studied in more detail below. In the case of

17

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

17



Representation Type of field

(0,0) Scalar

(12 ,0) Right-handed spinor

(0, 12) Left-handed spinor

(12 ,
1
2) Vector

(1,0) Selfdual antisymmetric 2-tensor

(0,1) Anti-selfdual antisymmetric 2-tensor

Table 1: Representations of the Lorentz group

(12 ,
1
2), since from Eq. (94) we see thatJi = J+

i + J−
i the rules of addition of angular momentum

tell us that there are two states, one of them transforming as a vector and another one as a scalar under
three-dimensional rotations. Actually, a more detailed analysis shows that thesinglet state corresponds
to the time component of a vector and the states combine to form a vector under the Lorentz group.

There are also more “exotic” representations. For example we can consider the(1,0) and(0,1)
representations corresponding respectively to a selfdual and an anti-selfdual rank-two antisymmetric
tensor. In Table 1 we summarize the previous discussion.

To conclude our discussion of the representations of the Lorentz groupwe notice that under a
parity transformation the generators of SO(1,3) transform as

P : Ji −→ Ji, P : Mi −→ −Mi (96)

this means thatP : J±
i −→ J∓

i and therefore a representation(s1, s2) is transformed into(s2, s1). This
means that, for example, a vector(12 ,

1
2) is invariant under parity, whereas a left-handed Weyl spinor

(12 ,0) transforms into a right-handed one(0, 12) and vice versa.

4.2 Spinors

Weyl spinors. Let us go back to the two spinor representations of the Lorentz group, namely (12 ,0) and
(0, 12). These representations can be explicitly constructed using the Pauli matrices as

J+
i =

1

2
σi, J−

i = 0 for (12 ,0),

J+
i = 0, J−

i =
1

2
σi for (0, 12). (97)

We denote byu± a complex two-component object that transforms in the representations± = 1
2 of J i

±.
If we defineσµ

± = (1,±σi) we can construct the following vector quantities

u†+σ
µ
+u+, u†−σ

µ
−u−. (98)

Notice that since(J±
i )† = J∓

i the hermitian conjugated fieldsu†± are in the(0, 12) and(12 ,0) respectively.

To construct a free Lagrangian for the fieldsu± we have to look for quadratic combinations of the
fields that are Lorentz scalars. If we also demand invariance under global phase rotations

u± −→ eiθu± (99)
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we are left with just one possibility up to a sign

L±
Weyl = iu†±

(
∂t ± ~σ · ~∇

)
u± = iu†±σ

µ
±∂µu±. (100)

This is the Weyl Lagrangian. In order to grasp the physical meaning of thespinorsu± we write the
equations of motion

(
∂0 ± ~σ · ~∇

)
u± = 0. (101)

Multiplying this equation on the left by
(
∂0 ∓ ~σ · ~∇

)
and applying the algebraic properties of the Pauli

matrices we conclude thatu± satisfies the massless Klein-Gordon equation

∂µ∂
µ u± = 0, (102)

whose solutions are:

u±(x) = u±(k)e−ik·x, with k0 = |~k|. (103)

Plugging these solutions back into the equations of motion (101) we find
(
|~k| ∓ ~k · ~σ

)
u± = 0, (104)

which implies

u+ :
~σ · ~k
|~k|

= 1,

u− :
~σ · ~k
|~k|

= −1. (105)

Since the spin operator is defined as~s = 1
2~σ, the previous expressions give the chirality of the states with

wave functionu±, i.e. the projection of spin along the momentum of the particle. Therefore we conclude
thatu+ is a Weyl spinor of positive helicityλ = 1

2 , whileu− has negative helicityλ = −1
2 . This agrees

with our assertion that the representation(12 ,0) corresponds to a right-handed Weyl fermion (positive
chirality) whereas(0, 12) is a left-handed Weyl fermion (negative chirality). For example, in the standard
model neutrinos are left-handed Weyl spinors and therefore transform in the representation(0, 12) of the
Lorentz group.

Nevertheless, it is possible that we were too restrictive in constructing the Weyl Lagrangian (100).
There we constructed the invariants from the vector bilinears (98) corresponding to the product repre-
sentations

(12 ,
1
2) = (12 ,0)⊗ (0, 12) and (12 ,

1
2) = (0, 12)⊗ (12 ,0). (106)

In particular our insistence in demanding the Lagrangian to be invariant under the global symmetry
u± → eiθu± rules out the scalar term that appears in the product representations

(12 ,0)⊗ (12 ,0) = (1,0)⊕ (0,0), (0, 12)⊗ (0, 12) = (0,1)⊕ (0,0). (107)

The singlet representations corresponds to the antisymmetric combinations

ǫabu
a
±u

b
±, (108)

whereǫab is the antisymmetric symbolǫ12 = −ǫ21 = 1.
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At first sight it might seem that the term (108) vanishes identically becauseof the antisymmetry
of the ǫ-symbol. However we should keep in mind that the spin-statistic theorem (more on this later)
demands that fields with half-integer spin have to satisfy the Fermi-Dirac statistics and therefore satisfy
anticommutation relations, whereas fields of integer spin follow the statistic of Bose-Einstein and, as a
consequence, quantization replaces Poisson brackets by commutators. This implies that the components
of the Weyl fermionsu± are anticommuting Grassmann fields

ua±u
b
± + ub±u

a
± = 0. (109)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy the Fermi-Dirac statis-
tics) do not exist classically. The reason is that they satisfy the Pauli exclusion principle and therefore
each quantum state can be occupied, at most, by one fermion. Thereforethe naïve definition of the clas-
sical limit as a limit of large occupation numbers cannot be applied. Fermion field do not really make
sense classically.

Since the combination (108) does not vanish and we can construct a new Lagrangian

L±
Weyl = iu†±σ

µ
±∂µu± − m

2
ǫabu

a
±u

b
± + h.c. (110)

This mass term, called of Majorana type, is allowed if we do not worry about breaking the global U(1)
symmetryu± → eiθu±. This is not the case, for example, of charged chiral fermions, since theMajorana
mass violates the conservation of electric charge or any other gauge U(1)charge. In the standard model,
however, there is no such a problem if we introduce Majorana masses forright-handed neutrinos, since
they are singlet under all standard model gauge groups. Such a term willbreak, however, the global U(1)
lepton number charge because the operatorǫabν

a
Rν

b
R changes the lepton number by two units

Dirac spinors. We have seen that parity interchanges the representations(12 ,0) and(0, 12), i.e. it
changes right-handed with left-handed fermions

P : u± −→ u∓. (111)

An obvious way to build a parity invariant theory is to introduce a pair or Weylfermionsu+ andu+.
Actually, these two fields can be combined in a single four-component spinor

ψ =

(
u+
u−

)
(112)

transforming in the reducible representation(12 ,0)⊕ (0, 12).

Since now we have bothu+ andu− simultaneously at our disposal the equations of motion for
u±, iσµ

±∂µu± = 0 can be modified, while keeping them linear, to

iσµ
+∂µu+ = mu−

iσµ
−∂µu− = mu+



 =⇒ i

(
σµ
+ 0
0 σµ

−

)
∂µψ = m

(
0 1
1 0

)
ψ. (113)

These equations of motion can be derived from the Lagrangian density

LDirac = iψ†
(

σµ
+ 0
0 σµ

−

)
∂µψ −mψ†

(
0 1
1 0

)
ψ. (114)

To simplify the notation it is useful to define the Diracγ-matrices as

γµ =

(
0 σµ

−
σµ
+ 0

)
(115)
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and the Dirac conjugate spinorψ

ψ ≡ ψ†γ0 = ψ†
(

0 1
1 0

)
. (116)

Now the Lagrangian (114) can be written in the more compact form

LDirac = ψ (iγµ∂µ −m)ψ. (117)

The associated equations of motion give the Dirac equation (11) with the identifications

γ0 = β, γi = iαi. (118)

In addition, theγ-matrices defined in (115) satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (119)

In D dimensions this algebra admits representations of dimension2[
D
2
]. WhenD is even the Dirac

fermionsψ transform in a reducible representation of the Lorentz group. In the case of interest,D = 4
this is easy to prove by defining the matrix

γ5 = −iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (120)

We see thatγ5 anticommutes with all otherγ-matrices. This implies that

[γ5, σµν ] = 0, with σµν = − i

4
[γµ, γν ]. (121)

Because of Schur’s lemma (see Appendix) this implies that the representationof the Lorentz group
provided byσµν is reducible into subspaces spanned by the eigenvectors ofγ5 with the same eigenvalue.
If we define the projectorsP± = 1

2(1± γ5) these subspaces correspond to

P+ψ =

(
u+
0

)
, P−ψ =

(
0
u−

)
, (122)

which are precisely the Weyl spinors introduced before.

Our next task is to quantize the Dirac Lagrangian. This will be done along thelines used for
the Klein-Gordon field, starting with a general solution to the Dirac equation and introducing the cor-
responding set of creation-annihilation operators. Therefore we start by looking for a complete basis of
solutions to the Dirac equation. In the case of the scalar field the elements of thebasis were labelled by
their four-momentumkµ. Now, however, we have more degrees of freedom since we are dealing with
a spinor which means that we have to add extra labels. Looking back at Eq.(105) we can define the
helicity operator for a Dirac spinor as

λ =
1

2
~σ ·

~k

|~k|

(
1 0
0 1

)
. (123)

Hence, each element of the basis of functions is labelled by its four-momentumkµ and the corresponding
eigenvalues of the helicity operator. For positive energy solutions we then propose theansatz

u(k, s)e−ik·x, s = ±1

2
, (124)

whereuα(k, s) (α = 1, . . . , 4) is a four-component spinor. Substituting in the Dirac equation we obtain

(/k −m)u(k, s) = 0. (125)
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In the same way, for negative energy solutions we have

v(k, s)eik·x, s = ±1

2
, (126)

wherev(k, s) has to satisfy

(/k +m)v(k, s) = 0. (127)

Multiplying Eqs. (125) and (127) on the left respectively by(/k ∓ m) we find that the momentum is
on the mass shell,k2 = m2. Because of this, the wave function for both positive- and negative-energy
solutions can be labeled as well using the three-momentum~k of the particle,u(~k, s), v(~k, s).

A detailed analysis shows that the functionsu(~k, s), v(~k, s) satisfy the properties

u(~k, s)u(~k, s) = 2m, v(~k, s)v(~k, s) = −2m,

u(~k, s)γµu(~k, s) = 2kµ, v(~k, s)γµv(~k, s) = 2kµ, (128)∑

s=± 1
2

uα(~k, s)uβ(~k, s) = (/k +m)αβ ,
∑

s=± 1
2

vα(~k, s)vβ(~k, s) = (/k −m)αβ ,

with k0 = ωk =
√
~k 2 +m2. Then, a general solution to the Dirac equation including creation and

annihilation operators can be written as:

ψ̂(t, ~x) =

∫
d3k

(2π)3
1

2ωk

∑

s=± 1
2

[
u(~k, s) b̂(~k, s)e−iωkt+i~k·~x + v(~k, s) d̂†(~k, s)eiωkt−i~k·~x

]
. (129)

The operatorŝb†(~k, s), b̂(~k) respectively create and annihilate a spin-1
2 particle (for example, an

electron) out of the vacuum with momentum~k and helicitys. Because we are dealing with half-integer
spin fields, the spin-statistics theorem forces canonical anticommutation relations for ψ̂ which means
that the creation-annihilation operators satisfy the algebra5

{b(~k, s), b†(~k ′, s′)} = δ(~k − ~k ′)δss′ ,

{b(~k, s), b(~k ′, s′)} = {b†(~k, s), b†(~k ′, s′)} = 0. (130)

In the case ofd(~k, s), d†(~k, s) we have a set of creation-annihilation operators for the correspond-
ing antiparticles (for example positrons). This is clear if we notice thatd†(~k, s) can be seen as the
annihilation operator of a negative energy state of the Dirac equation with wave functionvα(~k, s). As
we saw, in the Dirac sea picture this corresponds to the creation of an antiparticle out of the vacuum (see
Fig. 2). The creation-annihilation operators for antiparticles also satisfy the fermionic algebra

{d(~k, s), d†(~k ′, s′)} = δ(~k − ~k ′)δss′ ,

{d(~k, s), d(~k ′, s′)} = {d†(~k, s), d†(~k ′, s′)} = 0. (131)

All other anticommutators betweenb(~k, s), b†(~k, s) andd(~k, s), d†(~k, s) vanish.

The Hamiltonian operator for the Dirac field is

Ĥ =
1

2

∑

s=± 1
2

∫
d3k

(2π)3

[
b†(~k, s)b(~k, s)− d(~k, s)d†(~k, s)

]
. (132)

At this point we realize again of the necessity of quantizing the theory using anticommutators instead
of commutators. Had we use canonical commutation relations, the second term inside the integral in

5To simplify notation, and since there is no risk of confusion, we drop fromnow on the hat to indicate operators.
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(132) would give the number operatord†(~k, s)d(~k, s) with a minus sign in front. As a consequence the
Hamiltonian would be unbounded from below and we would be facing again theinstability of the theory
already noticed in the context of relativistic quantum mechanics. However,because of theanticommuta-
tion relations (131), the Hamiltonian (132) takes the form

Ĥ =
∑

s=± 1
2

∫
d3k

(2π)3
1

2ωk

[
ωkb

†(~k, s)b(~k, s) + ωkd
†(~k, s)d(~k, s)

]
− 2

∫
d3k ωkδ(~0). (133)

As with the scalar field, we find a divergent vacuum energy contribution due to the zero-point energy
of the infinite number of harmonic oscillators. Unlike the Klein-Gordon field, thevacuum energy is
negative. In section 9.2 we will see that in certain type of theories called supersymmetric, where the
number of bosonic and fermionic degrees of freedom is the same, there is acancellation of the vacuum
energy. The divergent contribution can be removed by the normal order prescription

:Ĥ:=
∑

s=± 1
2

∫
d3k

(2π)3
1

2ωk

[
ωkb

†(~k, s)b(~k, s) + ωkd
†(~k, s)d(~k, s)

]
. (134)

Finally, let us mention that using the Dirac equation it is easy to prove that thereis a conserved
four-current given by

jµ = ψγµψ, ∂µj
µ = 0. (135)

As we will explain further in sec. 6 this current is associated to the invariance of the Dirac Lagrangian
under the global phase shiftψ → eiθψ. In electrodynamics the associated conserved charge

Q = e

∫
d3x j0 (136)

is identified with the electric charge.

4.3 Gauge fields

In classical electrodynamics the basic quantities are the electric and magnetic fields ~E, ~B. These can be
expressed in terms of the scalar and vector potential(ϕ, ~A)

~E = −~∇ϕ− ∂ ~A

∂t
,

~B = ~∇× ~A. (137)

From these equations it follows that there is an ambiguity in the definition of the potentials given by the
gauge transformations

ϕ(t, ~x) → ϕ(t, ~x) +
∂

∂t
ǫ(t, ~x), ~A(t, ~x) → ~A(t, ~x)− ~∇ǫ(t, ~x). (138)

Classically(ϕ, ~A) are seen as only a convenient way to solve the Maxwell equations, but without physical
relevance.

The equations of electrodynamics can be recast in a manifestly Lorentz invariant form using the
four-vector gauge potentialAµ = (ϕ, ~A) and the antisymmetric rank-two tensor:Fµν = ∂µAν − ∂νAµ.
Maxwell’s equations become

∂µF
µν = jµ,

ǫµνση∂νFση = 0, (139)
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where the four-currentjµ = (ρ,~) contains the charge density and the electric current. The field strength
tensorFµν and the Maxwell equations are invariant under gauge transformations (138), which in covari-
ant form read

Aµ −→ Aµ + ∂µǫ. (140)

Finally, the equations of motion of charged particles are given, in covariant form, by

m
duµ

dτ
= eFµνuν , (141)

wheree is the charge of the particle anduµ(τ) its four-velocity as a function of the proper time.

The physical rôle of the vector potential becomes manifest only in Quantum Mechanics. Using
the prescription of minimal substitution~p → ~p−e ~A, the Schrödinger equation describing a particle with
chargee moving in an electromagnetic field is

i∂tΨ =

[
− 1

2m

(
~∇− ie ~A

)2
+ eϕ

]
Ψ. (142)

Because of the explicit dependence on the electromagnetic potentialsϕ and ~A, this equation seems
to change under the gauge transformations (138). This is physically acceptable only if the ambiguity
does not affect the probability density given by|Ψ(t, ~x)|2. Therefore, a gauge transformation of the
electromagnetic potential should amount to a change in the (unobservable) phase of the wave function.
This is indeed what happens: the Schrödinger equation (142) is invariant under the gauge transformations
(138) provided the phase of the wave function is transformed at the same timeaccording to

Ψ(t, ~x) −→ e−ie ǫ(t,~x)Ψ(t, ~x). (143)

Aharonov-Bohm effect.This interplay between gauge transformations and the phase of the wave
function give rise to surprising phenomena. The first evidence of the rôle played by the electromagnetic
potentials at the quantum level was pointed out by Yakir Aharonov and David Bohm [20]. Let us consider
a double slit experiment as shown in Fig. 7, where we have placed a shielded solenoid just behind the
first screen. Although the magnetic field is confined to the interior of the solenoid, the vector potential is
nonvanishing also outside. Of course the value of~A outside the solenoid is a pure gauge, i.e.~∇× ~A = ~0,
however because the region outside the solenoid is not simply connected thevector potential cannot be
gauged to zero everywhere. If we denote byΨ

(0)
1 andΨ(0)

2 the wave functions for each of the two electron
beams in the absence of the solenoid, the total wave function once the magneticfield is switched on can
be written as

Ψ = e
ie

R

Γ1
~A·d~x

Ψ
(0)
1 + e

ie
R

Γ2
~A·d~x

Ψ
(0)
2

= e
ie

R

Γ1
~A·d~x

[
Ψ

(0)
1 + eie

H

Γ
~A·d~xΨ(0)

2

]
, (144)

whereΓ1 andΓ2 are two curves surrounding the solenoid from different sides, andΓ is any closed loop
surrounding it. Therefore the relative phase between the two beams gets an extra term depending on the
value of the vector potential outside the solenoid as

U = exp

[
ie

∮

Γ

~A · d~x
]
. (145)

Because of the change in the relative phase of the electron wave functions, the presence of the vector
potential becomes observable even if the electrons do not feel the magneticfield. If we perform the
double-slit experiment when the magnetic field inside the solenoid is switched off we will observe the
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Electron S
source

Fig. 7: Illustration of an interference experiment to show the Aharonov-Bohm effect.S represent the solenoid in
whose interior the magnetic field is confined.

usual interference pattern on the second screen. However if now the magnetic field is switched on,
because of the phase (144), a change in the interference pattern will appear. This is the Aharonov-Bohm
effect.

The first question that comes up is what happens with gauge invariance. Since we said that~A
can be changed by a gauge transformation it seems that the resulting interference patters might depend
on the gauge used. Actually, the phaseU in (145) is independent of the gauge although, unlike other
gauge-invariant quantities like~E and ~B, is nonlocal. Notice that, since~∇× ~A = ~0 outside the solenoid,
the value ofU does not change under continuous deformations of the closed curveΓ, so long as it does
not cross the solenoid.

The Dirac monopole.It is very easy to check that the vacuum Maxwell equations remain invariant
under the transformation

~E − i ~B −→ eiθ( ~E − i ~B), θ ∈ [0, 2π] (146)

which, in particular, forθ = π
2 interchanges the electric and the magnetic fields:~E → ~B, ~B → − ~E.

This duality symmetry is however broken in the presence of electric sources. Nevertheless the Maxwell
equations can be “completed” by introducing sources for the magnetic field(ρm,~m) in such a way that
the duality (146) is restored when supplemented by the transformation

ρ− iρm −→ eiθ(ρ− iρm), ~− i~m −→ eiθ(~− i~m). (147)

Again forθ = π/2 the electric and magnetic sources get interchanged.

In 1931 Dirac [21] studied the possibility of finding solutions of the completed Maxwell equation
with a magnetic monopoles of chargeg, i.e. solutions to

~∇ · ~B = g δ(~x). (148)

Away from the position of the monopole~∇ · ~B = 0 and the magnetic field can be still derived locally
from a vector potential~A according to~B = ~∇ × ~A. However, the vector potential cannot be regular
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Dirac string

Γ

g

Fig. 8: The Dirac monopole.

everywhere since otherwise Gauss law would imply that the magnetic flux threading a closed surface
around the monopole should vanish, contradicting (148).

We look now for solutions to Eq. (148). Working in spherical coordinateswe find

Br =
g

|~x|2 , Bϕ = Bθ = 0. (149)

Away from the position of the monopole (~x 6= ~0) the magnetic field can be derived from the vector
potential

Aϕ =
g

|~x| tan
θ

2
, Ar = Aθ = 0. (150)

As expected we find that this vector potential is actually singular around the half-line θ = π (see Fig.
8). This singular line starting at the position of the monopole is called the Dirac string and its position
changes with a change of gauge but cannot be eliminated by any gauge transformation. Physically we
can see it as an infinitely thin solenoid confining a magnetic flux entering into the magnetic monopole
from infinity that equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it seems that the presence of
monopoles introduces an ambiguity. This would be rather strange, since Maxwell equations are gauge
invariant also in the presence of magnetic sources. The solution to this apparent riddle lies in the fact that
the Dirac string does not pose any consistency problem as far as it doesnot produce any physical effect,
i.e. if its presence turns out to be undetectable. From our discussion of theAharonov-Bohm effect we
know that the wave function of charged particles pick up a phase (145) when surrounding a region where
magnetic flux is confined (for example the solenoid in the Aharonov-Bohm experiment). As explained
above, the Dirac string associated with the monopole can be seen as a infinitelythin solenoid. Therefore
the Dirac string will be unobservable if the phase picked up by the wave function of a charged particle is
equal to one. A simple calculation shows that this happens if

ei e g = 1 =⇒ e g = 2πn with n ∈ Z. (151)
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Interestingly, this discussion leads to the conclusion that the presence of asingle magnetic monopoles
somewhere in the Universe implies for consistency the quantization of the electric charge in units of2πg ,
whereg the magnetic charge of the monopole.

Quantization of the electromagnetic field.We now proceed to the quantization of the electro-
magnetic field in the absence of sourcesρ = 0, ~ = ~0. In this case the Maxwell equations (139) can be
derived from the Lagrangian density

LMaxwell = −1

4
FµνF

µν =
1

2

(
~E 2 − ~B 2

)
. (152)

Although in general the procedure to quantize the Maxwell Lagrangian is not very different from the
one used for the Klein-Gordon or the Dirac field, here we need to deal witha new ingredient: gauge
invariance. Unlike the cases studied so far, here the photon fieldAµ is not unambiguously defined
because the action and the equations of motion are insensitive to the gauge transformationsAµ → Aµ +
∂µε. A first consequence of this symmetry is that the theory has less physical degrees of freedom than
one would expect from the fact that we are dealing with a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing the electro-
magnetic potential before quantization. This can be done in several ways,for example by imposing the
Lorentz gauge fixing condition

∂µA
µ = 0. (153)

Notice that this condition does not fix completely the gauge freedom since Eq.(153) is left invariant
by gauge transformations satisfying∂µ∂µε = 0. One of the advantages, however, of the Lorentz gauge
is that it is covariant and therefore does not pose any danger to the Lorentz invariance of the quantum
theory. Besides, applying it to the Maxwell equation∂µF

µν = 0 one finds

0 = ∂µ∂
µAν − ∂ν (∂µA

µ) = ∂µ∂
µAν , (154)

which means that sinceAµ satisfies the massless Klein-Gordon equation the photon, the quantum of the
electromagnetic field, has zero mass.

Once gauge invariance is fixedAµ is expanded in a complete basis of solutions to (154) and the
canonical commutation relations are imposed

Âµ(t, ~x) =
∑

λ=±1

∫
d3k

(2π)3
1

2|~k|

[
ǫµ(~k, λ)â(~k, λ)e

−i|~k|t+i~k·~x + ǫµ(~k, λ)
∗ â†(~k, λ)ei|

~k|t−i~k·~x
]

(155)

whereλ = ±1 represent the helicity of the photon, andǫµ(~k, λ) are solutions to the equations of motion
with well defined momentum an helicity. Because of (153) the polarization vectors have to be orthogonal
to kµ

kµǫµ(~k, λ) = kµǫµ(~k, λ)
∗ = 0. (156)

The canonical commutation relations imply that

[â(~k, λ), â†(~k ′, λ′)] = (2π)3(2|~k|)δ(~k − ~k ′)δλλ′

[â(~k, λ), â(~k ′, λ′)] = [â†(~k, λ), â†(~k ′, λ′)] = 0. (157)

Thereforêa(~k, λ), â†(~k, λ) form a set of creation-annihilation operators for photons with momentum~k
and helicityλ.

Behind the simple construction presented above there are a number of subleties related with gauge
invariance. In particular the gauge freedom seem to introduce states in theHilbert space with negative
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probability. A careful analysis shows that when gauge invariance if properly handled these spurious states
decouple from physical states and can be eliminated. The details can be found in standard textbooks [1]-
[11].

Coupling gauge fields to matter.Once we know how to quantize the electromagnetic field we
consider theories containing electrically charged particles, for example electrons. To couple the Dirac
Lagrangian to electromagnetism we use as guiding principle what we learnedabout the Schrödinger
equation for a charged particle. There we saw that the gauge ambiguity of the electromagnetic potential
is compensated with a U(1) phase shift in the wave function. In the case of the Dirac equation we know
that the Lagrangian is invariant underψ → eieεψ, with ε a constant. However this invariance is broken
as soon as one identifiesε with the gauge transformation parameter of the electromagnetic field which
depends on the position.

Looking at the Dirac Lagrangian (117) it is easy to see that in order to promote the global U(1)
symmetry into a local one,ψ → e−ieε(x)ψ, it suffices to replace the ordinary derivative∂µ by a covariant
oneDµ satisfying

Dµ

[
e−ieε(x)ψ

]
= e−ieε(x)Dµψ. (158)

This covariant derivative can be constructed in terms of the gauge potential Aµ as

Dµ = ∂µ + ieAµ. (159)

The Lagrangian of a spin-12 field coupled to electromagnetism is written as

LQED = −1

4
FµνF

µν + ψ(i/D −m)ψ, (160)

invariant under the gauge transformations

ψ −→ e−ieε(x)ψ, Aµ −→ Aµ + ∂µε(x). (161)

Unlike the theories we have seen so far, the Lagrangian (160) describean interacting theory. By
plugging (159) into the Lagrangian we find that the interaction between fermions and photons to be

L(int)
QED = −eAµ ψγ

µψ. (162)

As advertised above, in the Dirac theory the electric current four-vector is given byjµ = eψγµψ.

The quantization of interacting field theories poses new problems that we did not meet in the case
of the free theories. In particular in most cases it is not possible to solve thetheory exactly. When this
happens the physical observables have to be computed in perturbation theory in powers of the coupling
constant. An added problem appears when computing quantum corrections to the classical result, since
in that case the computation of observables are plagued with infinities that should be taken care of. We
will go back to this problem in section 8.

Nonabelian gauge theories.Quantum electrodynamics (QED) is the simplest example of a gauge
theory coupled to matter based in the abelian gauge symmetry of local U(1) phase rotations. However, it
is possible also to construct gauge theories based on nonabelian groups. Actually, our knowledge of the
strong and weak interactions is based on the use of such nonabelian generalizations of QED.

Let us consider a gauge groupG with generatorsT a, a = 1, . . . ,dimG satisfying the Lie algebra6

[T a, T b] = ifabcT c. (163)

6Some basics facts about Lie groups have been summarized in AppendixA.
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A gauge field taking values on the Lie algebra ofG can be introducedAµ ≡ Aa
µT

a which transforms
under a gauge transformations as

Aµ −→ − 1

ig
U∂µU

−1 + UAµU
−1, U = eiχ

a(x)Ta
, (164)

whereg is the coupling constant. The associated field strength is defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (165)

Notice that this definition of theF a
µν reduces to the one used in QED in the abelian case whenfabc = 0.

In general, however, unlike the case of QED the field strength is not gauge invariant. In terms ofFµν =
F a
µνT

a it transforms as

Fµν −→ UFµνU
−1. (166)

The coupling of matter to a nonabelian gauge field is done by introducing again acovariant deriva-
tive. For a field in a representation ofG

Φ −→ UΦ (167)

the covariant derivative is given by

DµΦ = ∂µΦ− igAa
µT

aΦ. (168)

With the help of this we can write a generic Lagrangian for a nonabelian gauge field coupled to scalars
φ and spinorsψ as

L = −1

4
F a
µνF

µν a + iψ/Dψ +DµφD
µφ− ψ [M1(φ) + iγ5M2(φ)]ψ − V (φ). (169)

In order to keep the theory renormalizable we have to restrictM1(φ) andM2(φ) to be at most linear inφ
whereasV (φ) have to be at most of quartic order. The Lagrangian of the standard model is of the form
(169).

4.4 Understanding gauge symmetry

In classical mechanics the use of the Hamiltonian formalism starts with the replacement of generalized
velocities by momenta

pi ≡
∂L

∂q̇i
=⇒ q̇i = q̇i(q, p). (170)

Most of the times there is no problem in inverting the relationspi = pi(q, q̇). However in some systems
these relations might not be invertible and result in a number of constraints ofthe type

fa(q, p) = 0, a = 1, . . . , N1. (171)

These systems are called degenerate or constrained [23,24].

The presence of constraints of the type (171) makes the formulation of the Hamiltonian formalism
more involved. The first problem is related to the ambiguity in defining the Hamiltonian, since the
addition of any linear combination of the constraints do not modify its value. Secondly, one has to make
sure that the constraints are consistent with the time evolution in the system. In thelanguage of Poisson
brackets this means that further constraints have to be imposed in the form

{fa, H} ≈ 0. (172)
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Following [23] we use the symbol≈ to indicate a “weak” equality that holds when the constraints
fa(q, p) = 0 are satisfied. Notice however that since the computation of the Poisson brackets involves
derivatives, the constraints can be used only after the bracket is computed. In principle the conditions
(172) can give rise to a new set of constraintsgb(q, p) = 0, b = 1, . . . , N2. Again these constraints
have to be consistent with time evolution and we have to repeat the procedure. Eventually this finishes
when a set of constraints is found that do not require any further constraint to be preserved by the time
evolution7.

Once we find all the constraints of a degenerate system we consider the so-called first class con-
straintsφa(q, p) = 0, a = 1, . . . ,M , which are those whose Poisson bracket vanishes weakly

{φa, φb} = cabcφc ≈ 0. (173)

The constraints that do not satisfy this condition, called second class constraints, can be eliminated by
modifying the Poisson bracket [23]. Then the total Hamiltonian of the theory isdefined by

HT = piqi − L+
M∑

a=1

λ(t)φa. (174)

What has all this to do with gauge invariance? The interesting answer is that for a singular system
the first class constraintsφa generate gauge transformations. Indeed, because{φa, φb} ≈ 0 ≈ {φa, H}
the transformations

qi −→ qi +
M∑

a

εa(t){qi, φa},

pi −→ pi +
M∑

a

εa(t){pi, φa} (175)

leave invariant the state of the system. This ambiguity in the description of the system in terms of
the generalized coordinates and momenta can be traced back to the equations of motion in Lagrangian
language. Writing them in the form

∂2L

∂q̇i∂q̇j
q̈j = − ∂2L

∂q̇i∂qj
q̇j +

∂L

∂qi
, (176)

we find that order to determine the accelerations in terms of the positions and velocities the matrix ∂2L
∂q̇i∂q̇j

has to be invertible. However, the existence of constraints (171) precisely implies that the determinant
of this matrix vanishes and therefore the time evolution is not uniquely determinedin terms of the initial
conditions.

Let us apply this to Maxwell electrodynamics described by the Lagrangian

L = −1

4

∫
d3 FµνF

µν . (177)

The generalized momentum conjugate toAµ is given by

πµ =
δL

δ(∂0Aµ)
= F 0µ. (178)

In particular for the time component we find the constraintπ0 = 0. The Hamiltonian is given by

H =

∫
d3x [πµ∂0Aµ − L] =

∫
d3x

[
1

2

(
~E 2 + ~B 2

)
+ π0∂0A0 +A0

~∇ · ~E
]
. (179)

7In principle it is also possible that the procedure finishes because some kind of inconsistent identity is found. In this case
the system itself is inconsistent as it is the case with the LagrangianL(q, q̇) = q.

30

L. ÁLVAREZ-GAUMÉ AND M.A. VÁZQUEZ-MOZO

30



Requiring the consistency of the constraintπ0 = 0 we find a second constraint

{π0, H} ≈ ∂0π
0 + ~∇ · ~E = 0. (180)

Together with the first constraintπ0 = 0 this one implies Gauss’ law~∇ · ~E = 0. These two constrains
have vanishing Poisson bracket and therefore they are first class. Therefore the total Hamiltonian is given
by

HT = H +

∫
d3x

[
λ1(x)π

0 + λ2(x)~∇ · ~E
]
, (181)

where we have absorbedA0 in the definition of the arbitrary functionsλ1(x) andλ2(x). Actually, we
can fix part of the ambiguity takingλ1 = 0. Notice that, becauseA0 has been included in the multipliers,
fixing λ1 amounts to fixing the value ofA0 and therefore it is equivalent to taking a temporal gauge. In
this case the Hamiltonian is

HT =

∫
d3x

[
1

2

(
~E 2 + ~B 2

)
+ ε(x)~∇ · ~E

]
(182)

and we are left just with Gauss’ law as the only constraint. Using the canonical commutation relations

{Ai(t, ~x), Ej(t, ~x
′)} = δijδ(~x− ~x ′) (183)

we find that the remaining gauge transformations are generated by Gauss’law

δAi = {Ai,

∫
d3x′ ε ~∇ · ~E} = ∂iε, (184)

while leavingA0 invariant, so for consistency with the general gauge transformations the functionε(x)
should be independent of time. Notice that the constraint~∇ · ~E = 0 can be implemented by demanding
~∇ · ~A = 0 which reduces the three degrees of freedom of~A to the two physical degrees of freedom of
the photon.

So much for the classical analysis. In the quantum theory the constraint~∇ · ~E = 0 has to be
imposed on the physical states|phys〉. This is done by defining the following unitary operator on the
Hilbert space

U(ε) ≡ exp

(
i

∫
d3x ε(~x) ~∇ · ~E

)
. (185)

By definition, physical states should not change when a gauge transformations is performed. This is
implemented by requiring that the operatorU(ε) acts trivially on a physical state

U(ε)|phys〉 = |phys〉 =⇒ (~∇ · ~E)|phys〉 = 0. (186)

In the presence of charge densityρ, the condition that physical states are annihilated by Gauss’ law
changes to(~∇ · ~E − ρ)|phys〉 = 0.

The role of gauge transformations in the quantum theory is very illuminating in understanding the
real rôle of gauge invariance [25]. As we have learned, the existenceof a gauge symmetry in a theory
reflects a degree of redundancy in the description of physical states in terms of the degrees of freedom
appearing in the Lagrangian. In Classical Mechanics, for example, the state of a system is usually
determined by the value of the canonical coordinates(qi, pi). We know, however, that this is not the case
for constrained Hamiltonian systems where the transformations generated bythe first class constraints
change the value ofqi andpi withoug changing the physical state. In the case of Maxwell theory for every
physical configuration determined by the gauge invariant quantities~E, ~B there is an infinite number of
possible values of the vector potential that are related by gauge transformationsδAµ = ∂µε.
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Fig. 9: Compactification of the real line (a) into the circumferenceS1 (b) by adding the point at infinity.

In the quantum theory this means that the Hilbert space of physical states is defined as the result of
identifying all states related by the operatorU(ε) with any gauge functionε(x) into a single physical state
|phys〉. In other words, each physical state corresponds to a whole orbit of states that are transformed
among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redundancy in the states a further
condition can be given that selects one single state on each orbit. In the case of Maxwell electrodynamics
the conditionsA0 = 0, ~∇ · ~A = 0 selects a value of the gauge potential among all possible ones giving
the same value for the electric and magnetic fields.

Since states have to be identified by gauge transformations the topology of thegauge group plays
an important physical rôle. To illustrate the point let us first deal with a toy model of a U(1) gauge theory
in 1+1 dimensions. Later we will be more general. In the Hamiltonian formalism gauge transformations
g(~x) are functions defined onR with values on the gauge group U(1)

g : R −→ U(1). (187)

We assume thatg(x) is regular at infinity. In this case we can add to the real lineR the point at infinity
to compactify it into the circumferenceS1 (see Fig. 9). Once this is doneg(x) are functions defined on
S1 with values onU(1) = S1 that can be parametrized as

g : S1 −→ U(1), g(x) = eiα(x), (188)

with x ∈ [0, 2π].

BecauseS1 does have a nontrivial topology,g(x) can be divided into topological sectors. These
sectors are labelled by an integer numbern ∈ Z and are defined by

α(2π) = α(0) + 2π n . (189)

Geometricallyn gives the number of times that the spatialS1 winds around theS1 defining the gauge
group U(1). This winding number can be written in a more sophisticated way as

∮

S1

g(x)−1dg(x) = 2πn , (190)

where the integral is along the spatialS1.

In R3 a similar situation happens with the gauge group8 SU(2). If we demandg(~x) ∈ SU(2) to be
regular at infinity|~x| → ∞ we can compactifyR3 into a three-dimensional sphereS3, exactly as we did
in 1+1 dimensions. On the other hand, the functiong(~x) can be written as

g(~x) = a0(x)1+ ~a(x) · ~σ (191)

8Although we present for simplicity only the case of SU(2), similar arguments apply to any simple group.
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and the conditionsg(x)†g(x) = 1, det g = 1 implies that(a0)2 + ~a 2 = 1. Therefore SU(2) is a
three-dimensional sphere andg(x) defines a function

g : S3 −→ S3. (192)

As it was the case in 1+1 dimensions here the gauge transformationsg(x) are also divided into topolog-
ical sectors labelled this time by the winding number

n =
1

24π2

∫

S3

d3x ǫijkTr
[(
g−1∂ig

) (
g−1∂ig

) (
g−1∂ig

)]
∈ Z. (193)

In the two cases analyzed we find that due to the nontrivial topology of the gauge group manifold
the gauge transformations are divided into different sectors labelled by an integern. Gauge transforma-
tions with different values ofn cannot be smoothly deformed into each other. The sector withn = 0
corresponds to those gauge transformations that can be connected with the identity.

Now we can be a bit more formal. Let us consider a gauge theory in 3+1 dimensions with gauge
groupG and let us denote byG the set of all gauge transformationsG = {g : S3 → G}. At the same
time we defineG0 as the set of transformations inG that can be smoothly deformed into the identity. Our
theory will have topological sectors if

G/G0 6= 1. (194)

In the case of the electromagnetism we have seen that Gauss’ law annihilatesphysical states. For a
nonabelian theory the analysis is similar and leads to the condition

U(g0)|phys〉 ≡ exp

[
i

∫
d3xχa(~x)~∇ · ~Ea

]
|phys〉 = |phys〉, (195)

whereg0(~x) = eiχ
a(~x)Ta

is in the connected component of the identityG0. The important point to realize
here is that only the elements ofG0 can be written as exponentials of the infinitesimal generators. Since
this generators annihilate the physical states this implies thatU(g0)|phys〉 = |phys〉 only wheng0 ∈ G0.

What happens then with the other topological sectors? Ifg ∈ G/G0 there is still a unitary operator
U(g) that realizes gauge transformations on the Hilbert space of the theory. However sinceg is not in the
connected component of the identity, it cannot be written as the exponentialof Gauss’ law. Still gauge
invariance is preserved ifU(g) only changes the overall global phase of the physical states. For example,
if g1 is a gauge transformation with winding numbern = 1

U(g1)|phys〉 = eiθ|phys〉. (196)

It is easy to convince oneself that all transformations with winding numbern = 1 have the same value
of θ modulo2π. This can be shown by noticing that ifg(~x) has winding numbern = 1 theng(~x)−1 has
opposite winding numbern = −1. Since the winding number is additive, given two transformationsg1,
g2 with winding number 1,g−1

1 g2 has winding numbern = 0. This implies that

|phys〉 = U(g−1
1 g2)|phys〉 = U(g1)†U(g2)|phys〉 = ei(θ2−θ1)|phys〉 (197)

and we conclude thatθ1 = θ2 mod2π. Once we know this it is straightforward to conclude that a gauge
transformationgn(~x) with winding numbern has the following action on physical states

U(gn)|phys〉 = einθ|phys〉, n ∈ Z. (198)

To find a physical interpretation of this result we are going to look for similar things in other
physical situations. One of then is borrowed from condensed matter physics and refers to the quantum
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states of electrons in the periodic potential produced by the ion lattice in a solid.For simplicity we
discuss the one-dimensional case where the minima of the potential are separated by a distancea. When
the barrier between consecutive degenerate vacua is high enough we can neglect tunneling between
different vacua and consider the ground state|na〉 of the potential near the minimum located atx = na
(n ∈ Z) as possible vacua of the theory. This vacuum state is, however, not invariant under lattice
translations

eia
bP |na〉 = |(n+ 1)a〉. (199)

However, it is possible to define a new vacuum state

|k〉 =
∑

n∈Z
e−ikna|na〉, (200)

which undereia bP transforms by a global phase

eia
bP |k〉 =

∑

n∈Z
e−ikna|(n+ 1)a〉 = eika|k〉. (201)

This ground state is labelled by the momentumk and corresponds to the Bloch wave function.

This looks very much the same as what we found for nonabelian gauge theories. The vacuum
state labelled byθ plays a rôle similar to the Bloch wave function for the periodic potential with the
identification ofθ with the momentumk. To make this analogy more precise let us write the Hamiltonian
for nonabelian gauge theories

H =
1

2

∫
d3x

(
~πa · ~πa + ~Ba · ~Ba

)
=

1

2

∫
d3x

(
~Ea · ~Ea + ~Ba · ~Ba

)
, (202)

where we have used the expression of the canonical momentaπi
a and we assume that the Gauss’ law

constraint is satisfied. Looking at this Hamiltonian we can interpret the first term within the brackets as
the kinetic energyT = 1

2~πa ·~πa and the second term as the potential energyV = 1
2
~Ba · ~Ba. SinceV ≥ 0

we can identify the vacua of the theory as those~A for whichV = 0, modulo gauge transformations. This
happens wherever~A is a pure gauge. However, since we know that the gauge transformationsare labelled
by the winding number we can have an infinite number of vacua which cannotbe continuously connected
with one another using trivial gauge transformations. Taking a representative gauge transformationgn(~x)
in the sector with winding numbern, these vacua will be associated with the gauge potentials

~A = − 1

ig
gn(~x)~∇gn(~x)

−1, (203)

modulo topologically trivial gauge transformations. Therefore the theory ischaracterized by an infinite
number of vacua|n〉 labelled by the winding number. These vacua are not gauge invariant. Indeed, a
gauge transformation withn = 1 will change the winding number of the vacua in one unit

U(g1)|n〉 = |n+ 1〉. (204)

Nevertheless a gauge invariant vacuum can be defined as

|θ〉 =
∑

n∈Z
e−inθ|n〉, with θ ∈ R (205)

satisfying

U(g1)|θ〉 = eiθ|θ〉. (206)
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We have concluded that the nontrivial topology of the gauge group havevery important physi-
cal consequences for the quantum theory. In particular it implies an ambiguity in the definition of the
vacuum. Actually, this can also be seen in a Lagrangian analysis. In constructing the Lagrangian for
the nonabelian version of Maxwell theory we only consider the termF a

µνF
µν a. However this is not the

only Lorentz and gauge invariant term that contains just two derivatives. We can write the more general
Lagrangian

L = −1

4
F a
µνF

µν a − θg2

32π2
F a
µνF̃

µν a, (207)

whereF̃ a
µν is the dual of the field strength defined by

F̃ a
µν =

1

2
ǫµνσλF

σλ. (208)

The extra term in (207), proportional to~E a · ~B a, is actually a total derivative and does not change the
equations of motion or the quantum perturbation theory. Nevertheless it hasseveral important physical
consequences. One of them is that it violates both parityP and the combination of charge conjugation
and parityCP . This means that since strong interactions are described by a nonabelian gauge theory
with group SU(3) there is an extra source ofCP violation which puts a strong bound on the value ofθ.
One of the consequences of a term like (207) in the QCD Lagrangian is a nonvanishing electric dipole
moment for the neutron [26]. The fact that this is not observed impose a very strong bound on the value
of theθ-parameter

|θ| < 10−9 (209)

From a theoretical point of view it is still to be fully understood whyθ either vanishes or has a very small
value.

Finally, theθ-vacuum structure of gauge theories that we found in the Hamiltonian formalism can
be also obtained using path integral techniques form the Lagrangian (207). The second term in Eq. (207)
gives then a contribution that depends on the winding number of the corresponding gauge configuration.

5 Towards computational rules: Feynman diagrams

As the basic tool to describe the physics of elementary particles, the final aimof quantum field theory
is the calculation of observables. Most of the information we have about thephysics of subatomic
particles comes from scattering experiments. Typically, these experiments consist of arranging two or
more particles to collide with a certain energy and to setup an array of detectors, sufficiently far away
from the region where the collision takes place, that register the outgoing products of the collision and
their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed from quantum mechanical amplitudes
and how these amplitudes themselves can be evaluated in perturbative quantum field theory. We keep our
discussion rather heuristic and avoid technical details that can be found instandard texts [2]- [11]. The
techniques described will be illustrated with the calculation of the cross sectionfor Compton scattering
at low energies.

5.1 Cross sections and S-matrix amplitudes

In order to fix ideas let us consider the simplest case of a collision experiment where two particles collide
to produce again two particles in the final state. The aim of such an experiments is a direct measurement
of the number of particles per unit timedNdt (θ, ϕ) registered by the detector flying within a solid angle
dΩ in the direction specified by the polar anglesθ, ϕ (see Fig. 10). On general grounds we know that
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Fig. 10: Schematic setup of a two-to-two-particles single scattering event in the center of mass reference frame.

this quantity has to be proportional to the flux of incoming particles9, fin. The proportionality constant
defines the differential cross section

dN

dt
(θ, ϕ) = fin

dσ

dΩ
(θ, ϕ). (210)

In natural unitsfin has dimensions of (length)−3, and then the differential cross section has dimensions
of (length)2. It depends, apart from the direction(θ, ϕ), on the parameters of the collision (energy, impact
parameter, etc.) as well as on the masses and spins of the incoming particles.

Differential cross sections measure the angular distribution of the products of the collision. It is
also physically interesting to quantify how effective the interaction between the particles is to produce
a nontrivial dispersion. This is measured by the total cross section, whichis obtained by integrating the
differential cross section over all directions

σ =

∫ 1

−1
d(cos θ)

∫ 2π

0
dϕ

dσ

dΩ
(θ, ϕ). (211)

To get some physical intuition of the meaning of the total cross section we can think of the classical
scattering of a point particle off a sphere of radiusR. The particle undergoes a collision only when the
impact parameter is smaller than the radius of the sphere and a calculation of thetotal cross section yields
σ = πR2. This is precisely the cross area that the sphere presents to incoming particles.

In Quantum Mechanics in general and in quantum field theory in particular the starting point for
the calculation of cross sections is the probability amplitude for the corresponding process. In a scattering
experiment one prepares a system with a given number of particles with definite momenta~p1, . . . , ~pn. In
the Heisenberg picture this is described by a time independent state labelled bythe incoming momenta
of the particles (to keep things simple we consider spinless particles) that we denote by

|~p1, . . . , ~pn; in〉. (212)

9This is defined as the number of particles that enter the interaction region per unit time and per unit area perpendicular to
the direction of the beam.

36

L. ÁLVAREZ-GAUMÉ AND M.A. VÁZQUEZ-MOZO

36



On the other hand, as a result of the scattering experiment a numberk of particles with momenta
~p1

′, . . . , ~pk ′ are detected. Thus, the system is now in the “out” Heisenberg picture state

|~p1′, . . . , ~pk ′; out〉 (213)

labelled by the momenta of the particles detected at late times. The probability amplitudeof detectingk
particles in the final state with momenta~p1′, . . . , ~pk ′ in the collision ofn particles with initial momenta
~p1, . . . , ~pn defines theS-matrix amplitude

S(in → out) = 〈~p1′, . . . , ~pk ′; out|~p1, . . . , ~pn; in〉. (214)

It is very important to keep in mind that both the (212) and (213) are time-independent states in
the Hilbert space of a very complicated interacting theory. However, sinceboth at early and late times the
incoming and outgoing particles are well apart from each other, the “in” and “out” states can be thought
as two states|~p1, . . . , ~pn〉 and|~p1′, . . . , ~pk ′〉 of the Fock space of the corresponding free theory in which
the coupling constants are zero. Then, the overlaps (214) can be writtenin terms of the matrix elements
of anS-matrix operator̂S acting on the free Fock space

〈~p1′, . . . , ~pk ′; out|~p1, . . . , ~pn; in〉 = 〈~p1′, . . . , ~pk ′|Ŝ|~p1, . . . , ~pn〉. (215)

The operator̂S is unitary,Ŝ† = Ŝ−1, and its matrix elements are analytic in the external momenta.

In any scattering experiment there is the possibility that the particles do not interact at all and the
system is left in the same initial state. Then it is useful to write theS-matrix operator as

Ŝ = 1+ iT̂ , (216)

where1 represents the identity operator. In this way, all nontrivial interactions are encoded in the matrix
elements of theT -operator〈~p1′, . . . , ~pk ′|iT̂ |~p1, . . . , ~pn〉. Since momentum has to be conserved, a global
delta function can be factored out from these matrix elements to define the invariant scattering amplitude
iM

〈~p1′, . . . , ~pk ′|iT̂ |~p1, . . . , ~pn〉 = (2π)4δ(4)

( ∑

initial

pi −
∑

final

p′f

)
iM(~p1, . . . , ~pn; ~p1

′, . . . , ~pk
′) (217)

Total and differential cross sections can be now computed from the invariant amplitudes. Here we
consider the most common situation in which two particles with momenta~p1 and~p2 collide to produce
a number of particles in the final state with momenta~pi

′. In this case the total cross section is given by

σ =
1

(2ωp1)(2ωp2)|~v12|

∫ [ ∏

final
states

d3p′i
(2π)3

1

2ωp′i

]∣∣∣Mi→f

∣∣∣
2
(2π)4δ(4)

(
p1 + p2 −

∑

final
states

p′i

)
, (218)

where~v12 is the relative velocity of the two scattering particles. The corresponding differential cross
section can be computed by dropping the integration over the directions of thefinal momenta. We will
use this expression later in Section 5.3 to evaluate the cross section of Comptonscattering.

We seen how particle cross sections are determined by the invariant amplitudefor the correspond-
ing proccess, i.e.S-matrix amplitudes. In general, in quantum field theory it is not possible to compute
exactly these amplitudes. However, in many physical situations it can be argued that interactions are
weak enough to allow for a perturbative evaluation. In what follows we willdescribe howS-matrix
elements can be computed in perturbation theory using Feynman diagrams and rules. These are very
convenient bookkeeping techniques allowing both to keep track of all contributions to a process at a
given order in perturbation theory, and computing the different contributions.
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5.2 Feynman rules

The basic quantities to be computed in quantum field theory are vacuum expectation values of products
of the operators of the theory. Particularly useful are time-ordered Green functions,

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉, (219)

where|Ω〉 is the the ground state of the theory and the time ordered product is defined

T
[
Oi(x)Oj(y)

]
= θ(x0 − y0)Oi(x)Oj(y) + θ(y0 − x0)Oj(y)Oi(x). (220)

The generalization to products with more than two operators is straightforward: operators are always
multiplied in time order, those evaluated at earlier times always to the right. The interest of these kind of
correlation functions lies in the fact that they can be related toS-matrix amplitudes through the so-called
reduction formula. To keep our discussion as simple as possible we will not derived it or even write
it down in full detail. Its form for different theories can be found in any textbook. Here it suffices to
say that the reduction formula simply states that anyS-matrix amplitude can be written in terms of the
Fourier transform of a time-ordered correlation function. Morally speaking

〈~p1′, . . . , ~pm′; out|~p1, . . . , ~pn; in〉

⇓ (221)
∫
d4x1 . . .

∫
d4yn〈Ω|T

[
φ(x1)

† . . . φ(xm)†φ(y1) . . . φ(yn)
]
|Ω〉 eip1′·x1 . . . e−ipn·yn ,

whereφ(x) is the field whose elementary excitations are the particles involved in the scattering.

The reduction formula reduces the problem of computingS-matrix amplitudes to that of evaluating
time-ordered correlation functions of field operators. These quantities are easy to compute exactly in the
free theory. For an interacting theory the situation is more complicated, however. Using path integrals,
the vacuum expectation value of the time-ordered product of a number of operators can be expressed as

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉 =

∫
DφDφ†O1(x1) . . .On(xn) e

iS[φ,φ†]

∫
DφDφ† eiS[φ,φ

†]
. (222)

For an theory with interactions, neither the path integral in the numerator or in the denominator is Gaus-
sian and they cannot be calculated exactly. However, Eq. (222) is still very useful. The actionS[φ, φ†]
can be split into the free (quadratic) piece and the interaction part

S[φ, φ†] = S0[φ, φ
†] + Sint[φ, φ

†]. (223)

All dependence in the coupling constants of the theory comes from the second piece. Expanding now
exp[iSint] in power series of the coupling constant we find that each term in the seriesexpansion of both
the numerator and the denominator has the structure

∫
DφDφ†

[
. . .

]
eiS0[φ,φ†], (224)

where “. . .” denotes certain monomial of fields. The important point is that now the integration measure
only involves the free action, and the path integral in (224) is Gaussian andtherefore can be computed
exactly. The same conclusion can be reached using the operator formalism.In this case the correlation
function (219) can be expressed in terms of correlation functions of operators in the interaction picture.
The advantage of using this picture is that the fields satisfy the free equationsof motion and therefore
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can be expanded in creation-annihilation operators. The correlations functions are then easily computed
using Wick’s theorem.

Putting together all the previous ingredients we can calculateS-matrix amplitudes in a perturbative
series in the coupling constants of the field theory. This can be done using Feynman diagrams and rules,
a very economical way to compute each term in the perturbative expansion of the S-matrix amplitude
for a given process. We will not detail the the construction of Feynman rules but just present them
heuristically.

For the sake of concreteness we focus on the case of QED first. Going back to Eq. (160) we
expand the covariant derivative to write the action

SQED =

∫
d4x

[
−1

4
FµνF

µν + ψ(i/∂ −m)ψ + eψγµψAµ

]
. (225)

The action contains two types of particles, photons and fermions, that we represent by straight and wavy
lines respectively

� �
The arrow in the fermion line does not represent the direction of the momentumbut the flux of (negative)
charge. This distinguishes particles form antiparticles: if the fermion propagates from left to right (i.e.
in the direction of the charge flux) it represents a particle, whereas whenit does from right to left it
corresponds to an antiparticle. Photons are not charged and therefore wavy lines do not have orientation.

Next we turn to the interaction part of the action containing a photon field, a spinor and its conju-
gate. In a Feynman diagram this corresponds to the vertex

�
Now, in order to compute anS-matrix amplitude to a given order in the coupling constante for a process
with certain number of incoming and outgoing asymptotic states one only has to draw all possible dia-
grams with as many vertices as the order in perturbation theory, and the corresponding number and type
of external legs. It is very important to keep in mind that in joining the fermion lines among the different
building blocks of the diagram one has to respect their orientation. This reflects the conservation of the
electric charge. In addition one should only consider diagrams that are topologically non-equivalent, i.e.
that they cannot be smoothly deformed into one another keeping the external legs fixed10.

To show in a practical way how Feynman diagrams are drawn, we considerBhabha scattering, i.e.
the elastic dispersion of an electron and a positron:

e+ + e− −→ e+ + e−.

Our problem is to compute theS-matrix amplitude to the leading order in the electric charge. Because
the QED vertex contains a photon line and our process does not have photons either in the initial or the

10From the point of view of the operator formalism, the requirement of considering only diagrams that are topologically
nonequivalent comes from the fact that each diagram represents a certain Wick contraction in the correlation function of
interaction-picture operators.
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final states we find that drawing a Feynman diagram requires at least two vertices. In fact, the leading
contribution is of ordere2 and comes from the following two diagrams, each containing two vertices:

�
e−

e+

e−

e+

+ (−1)×�
e−

e+

e−

e+

Incoming and outgoing particles appear respectively on the left and the right of this diagram. Notice
how the identification of electrons and positrons is done comparing the direction of the charge flux with
the direction of propagation. For electrons the flux of charges goes in thedirection of propagation,
whereas for positrons the two directions are opposite. These are the onlytwo diagrams that can be
drawn at this order in perturbation theory. It is important to include a relative minus sign between
the two contributions. To understand the origin of this sign we have to rememberthat in the operator
formalism Feynman diagrams are just a way to encode a particular Wick contraction of field operators
in the interaction picture. The factor of−1 reflects the relative sign in Wick contractions represented by
the two diagrams, due to the fermionic character of the Dirac field.

We have learned how to draw Feynman diagrams in QED. Now one needs to compute the con-
tribution of each one to the corresponding amplitude using the so-called Feynman rules. The idea is
simple: given a diagram, each of its building blocks (vertices as well as external and internal lines) has
an associated contribution that allows the calculation of the corresponding diagram. In the case of QED
in the Feynman gauge, we have the following correspondence for vertices and internal propagators:

�α β =⇒
(

i

/p−m+ iε

)

βα

�µ ν =⇒ −iηµν
p2 + iε

�
α

β

µ =⇒ −ieγµβα(2π)
4δ(4)(p1 + p2 + p3).

A change in the gauge would reflect in an extra piece in the photon propagator. The delta function
implementing conservation of momenta is written using the convention that all momenta are entering the
vertex. In addition, one has to perform an integration over all momenta running in internal lines with the
measure

∫
ddp

(2π)4
, (226)

and introduce a factor of−1 for each fermion loop in the diagram11.
11The contribution of each diagram comes also multiplied by a degeneracy factor that takes into account in how many ways

a given Wick contraction can be done. In QED, however, these factorsare equal to 1 for many diagrams.
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In fact, some of the integrations over internal momenta can actually be done using the delta func-
tion at the vertices, leaving just a global delta function implementing the total momentum conservation in
the diagram [cf. Eq. (217)]. It is even possible that all integrations canbe eliminated in this way. This is
the case when we have tree level diagrams, i.e. those without closed loops.In the case of diagrams with
loops there will be as many remaining integrations as the number of independent loops in the diagram.

The need to perform integrations over internal momenta in loop diagrams has important conse-
quences in Quantum Field Theory. The reason is that in many cases the resulting integrals are ill-defined,
i.e. are divergent either at small or large values of the loop momenta. In the first case one speaks ofin-
frared divergencesand usually they cancel once all contributions to a given process are added together.
More profound, however, are the divergences appearing at largeinternal momenta. Theseultraviolet
divergencescannot be cancelled and have to be dealt through the renormalization procedure. We will
discuss this problem in some detail in Section 8.

Were we computing time-ordered (amputated) correlation function of operators, this would be all.
However, in the case ofS-matrix amplitudes this is not the whole story. In addition to the previous
rules here one needs to attach contributions also to the external legs in the diagram. These are the wave
functions of the corresponding asymptotic states containing information about the spin and momenta of
the incoming and outgoing particles. In the case of QED these contributions are:

Incoming fermion:	α =⇒ uα(~p, s)

Incoming antifermion:
α =⇒ vα(~p, s)

Outgoing fermion:� α =⇒ uα(~p, s)

Outgoing antifermion:� α =⇒ vα(p, s)

Incoming photon:
µ =⇒ ǫµ(~k, λ)

Outgoing photon:Æ µ =⇒ ǫµ(~k, λ)
∗
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Here we have assumed that the momenta for incoming (resp. outgoing) particles are entering (resp.
leaving) the diagram. It is important also to keep in mind that in the computation ofS-matrix amplitudes
all external states are on-shell. In Section 5.3 we illustrate the use of the Feynman rules for QED with
the case of the Compton scattering.

The application of Feynman diagrams to carry out computations in perturbationtheory is ex-
tremely convenient. It provides a very useful bookkeeping technique toaccount for all contributions to
a process at a given order in the coupling constant. This does not mean that the calculation of Feynman
diagrams is an easy task. The number of diagrams contributing to the processgrows very fast with the
order in perturbation theory and the integrals that appear in calculating loopdiagrams also get very com-
plicated. This means that, generically, the calculation of Feynman diagrams beyond the first few orders
very often requires the use of computers.

Above we have illustrated the Feynman rules with the case of QED. Similar rules can be com-
puted for other interacting quantum field theories with scalar, vector or spinor fields. In the case of the
nonabelian gauge theories introduced in Section 4.3 we have:

�α, i β, j =⇒
(

i

/p−m+ iε

)

βα

δij

�µ, a ν, b =⇒ −iηµν
p2 + iε

δab

�
α, i

β, j

µ, a =⇒ −igγµβαt
a
ij

�
ν, b

σ, c

µ, a =⇒ g fabc
[
ηµν(pσ1 − pσ2 ) + permutations

]

�
µ, a

σ, c

ν, b

λ, d

=⇒ −ig2
[
fabef cde

(
ηµσηνλ − ηµληνσ

)
+ permutations

]

It is not our aim here to give a full and detailed description of the Feynman rules for nonabelian
gauge theories. It suffices to point out that, unlike the case of QED, here the gauge fields can interact
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among themselves. Indeed, the three and four gauge field vertices are a consequence of the cubic and
quartic terms in the action

S = −1

4

∫
d4xF a

µνF
µν a, (227)

where the nonabelian gauge field strengthF a
µν is given in Eq. (165). The self-interaction of the non-

abelian gauge fields has crucial dynamical consequences and its at the very heart of its success in de-
scribing the physics of elementary particles.

5.3 An example: Compton scattering

To illustrate the use of Feynman diagrams and Feynman rules we compute the cross section for the
dispersion of photons by free electrons, the so-called Compton scattering:

γ(k, λ) + e−(p, s) −→ γ(k′, λ′) + e−(p′, s′).

In brackets we have indicated the momenta for the different particles, as well as the polarizations and
spins of the incoming and outgoing photon and electrons respectively. Thefirst step is to identify all
the diagrams contributing to the process at leading order. Taking into account that the vertex of QED
contains two fermion and one photon leg, it is straightforward to realize that any diagram contributing to
the process at hand must contain at least two vertices. Hence the leading contribution is of ordere2. A
first diagram we can draw is:

�
k, λ

p, s

k′, λ′

p′, s′

This is, however, not the only possibility. Indeed, there is a second possible diagram:

�
k, λ

p, s

p′, s′

k′, λ′

It is important to stress that these two diagrams are topologically nonequivalent, since deforming one into
the other would require changing the label of the external legs. Therefore the leadingO(e2) amplitude
has to be computed adding the contributions from both of them.

Using the Feynman rules of QED we find� +� = (ie)2u(~p ′, s′)/ǫ ′(~k ′, λ′)∗
/p+ /k +me

(p+ k)2 −m2
e

/ǫ(~k, λ)u(~p, s)

+ (ie)2u(~p ′, s′)/ǫ(~k, λ)
/p− /k′ +me

(p− k′)2 −m2
e

/ǫ ′(~k ′, λ′)∗u(~p, s). (228)

Because the leading order contributions only involve tree-level diagrams,there is no integration over
internal momenta and therefore we are left with a purely algebraic expression for the amplitude. To get
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an explicit expression we begin by simplifying the numerators. The following simple identity turns out
to be very useful for this task

/a/b = −/b/a+ 2(a · b)1. (229)

Indeed, looking at the first term in Eq. (228) we have

(/p+ /k +me)/ǫ(~k, λ)u(~p, s) = −/ǫ(~k, λ)(/p−me)u(~p, s) + /k/ǫ(~k, λ)u(~p, s)

+ 2p · ǫ(~k, λ)u(~p, s), (230)

where we have applied the identity (229) on the first term inside the parenthesis. The first term on
the right-hand side of this equation vanishes identically because of Eq. (125). The expression can be
further simplified if we restrict our attention to the Compton scattering at low energy when electrons are
nonrelativistic. This means that all spatial momenta are much smaller than the electron mass

|~p|, |~k|, |~p ′|, |~k ′| ≪ me. (231)

In this approximation we have thatpµ, p′µ ≈ (me,~0) and therefore

p · ǫ(~k, λ) = 0. (232)

This follows from the absence of temporal photon polarization. Then we conclude that at low energies

(/p+ /k +me)/ǫ(~k, λ)u(~p, s) = /k/ǫ(~k, λ)u(~p, s) (233)

and similarly for the second term in Eq. (228)

(/p− /k′ +me)/ǫ
′(~k′, λ′)∗u(~p, s) = −/k′/ǫ ′(~k′, λ′)∗u(~p, s). (234)

Next, we turn to the denominators in Eq. (228). As it was explained in Section 5.2, in computing
scattering amplitudes incoming and outgoing particles should have on-shell momenta,

p2 = m2
e = p′2 and k2 = 0 = k′2. (235)

Then, the two denominator in Eq. (228) simplify respectively to

(p+ k)2 −m2
e = p2 + k2 + 2p · k −m2

e = 2p · k = 2ωp|~k| − 2~p · ~k (236)

and

(p− k′)2 −m2
e = p2 + k′2 + 2p · k′ −m2

e = −2p · k′ = −2ωp|~k ′|+ 2~p · ~k ′. (237)

Working again in the low energy approximation (231) these two expressionssimplify to

(p+ k)2 −m2
e ≈ 2me|~k|, (p− k′)2 −m2

e ≈ −2me|~k ′|. (238)

Putting together all these expressions we find that at low energies� +�
≈ (ie)2

2me
u(~p ′, s′)

[
/ǫ ′(~k ′λ′)∗

/k

|~k|
ǫ(~k, λ) + ǫ(~k, λ)

/k′

|~k ′|
/ǫ ′(~k ′λ′)∗

]
u(~p, s). (239)
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Using now again the identity (229) a number of times as well as the transversalitycondition of the
polarization vectors (156) we end up with a handier equation� +� ≈ e2

me

[
ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

]
u(~p ′, s′)

/k

|~k|
u(~p, s)

+
e2

2me
u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗

(
/k

|~k|
− /k′

|~k ′|

)
u(~p, s). (240)

With a little bit of effort we can show that the second term on the right-hand side vanishes. First we
notice that in the low energy limit|~k| ≈ |~k ′|. If in addition we make use the conservation of momentum
k − k ′ = p ′ − p and the identity (125)

u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗
(

/k

|~k|
− /k′

|~k ′|

)
u(~p, s)

≈ 1

|~k|
u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗(/p′ −me)u(~p, s). (241)

Next we use the identity (229) to take the term(/p′−me) to the right. Taking into account that in the low
energy limit the electron four-momenta are orthogonal to the photon polarization vectors [see Eq. (232)]
we conclude that

u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗(/p′ −me)u(~p, s)

= u(~p ′, s′)(/p′ −me)/ǫ(~k, λ)/ǫ
′(~k ′, λ′)∗u(~p, s) = 0 (242)

where the last identity follows from the equation satisfied by the conjugate positive-energy spinor,
u(~p ′, s′)(/p′ −me) = 0.

After all these lengthy manipulations we have finally arrived at the expression of the invariant
amplitude for the Compton scattering at low energies

iM =
e2

me

[
ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

]
u(~p ′, s′)

/k

|~k|
u(~p, s). (243)

The calculation of the cross section involves computing the modulus squared of this quantity. For many
physical applications, however, one is interested in the dispersion of photons with a given polarization
by electrons that are not polarized, i.e. whose spins are randomly distributed. In addition in many
situations either we are not interested, or there is no way to measure the finalpolarization of the outgoing
electron. This is for example the situation in cosmology, where we do not haveany information about
the polarization of the free electrons in the primordial plasma before or afterthe scattering with photons
(although we have ways to measure the polarization of the scattered photons).

To describe this physical situations we have to average over initial electronpolarization (since we
do not know them) and sum over all possible final electron polarization (because our detector is blind to
this quantum number),

|iM|2 = 1

2

(
e2

me|~k|

)2 ∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2 ∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2
. (244)

The factor of 12 comes from averaging over the two possible polarizations of the incoming electrons.
The sums in this expression can be calculated without much difficulty. Expanding the absolute value
explicitly

∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2
=

∑

s=± 1
2

∑

s′=± 1
2

[
u(~p, s)†/k†u(~p ′, s′)†

][
u(~p ′, s′)/ku(~p, s)

]
, (245)
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using thatγµ† = γ0γµγ0 and after some manipulation one finds that

∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2

=




∑

s=± 1
2

uα(~p, s)uβ(~p, s)


 (/k)βσ




∑

s′=± 1
2

uσ(~p
′, s′)uρ(~p ′, s′)


 (/k)ρα

= Tr
[
(/p+me)/k(/p

′ +me)/k
]
, (246)

where the final expression has been computed using the completeness relations in Eq. (128). The final
evaluation of the trace can be done using the standard Dirac matrices identities. Here we compute it
applying again the relation (229) to commute/p′ and/k. Using thatk2 = 0 and that we are working in the
low energy limit we have12

Tr
[
(/p+me)/k(/p

′ +me)/k
]
= 2(p · k)(p′ · k)Tr1 ≈ 8m2

e|~k|2. (247)

This gives the following value for the invariant amplitude

|iM|2 = 4e4
∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

∣∣∣
2

(248)

Plugging|iM|2 into the formula for the differential cross section we get

dσ

dΩ
=

1

64π2m2
e

|iM|2 =
(

e2

4πme

)2 ∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
. (249)

The prefactor of the last equation is precisely the square of the so-calledclassical electron radiusrcl. In
fact, the previous differential cross section can be rewritten as

dσ

dΩ
=

3

8π
σT

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
, (250)

whereσT is the total Thomson cross section

σT =
e4

6πm2
e

=
8π

3
r2cl. (251)

The result (250) is relevant in many areas of Physics, but its importance isparamount in the study
of the cosmological microwave background (CMB). Just before recombination the universe is filled by
a plasma of electrons interacting with photons via Compton scattering, with temperatures of the order of
1 keV. Electrons are then nonrelativistic (me ∼ 0.5 MeV) and the approximations leading to Eq. (250)
are fully valid. Because we do not know the polarization state of the photonsbefore being scattered by
electrons we have to consider the cross section averaged over incoming photon polarizations. From Eq.
(250) we see that this is proportional to

1

2

∑

λ=1,2

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
=


1

2

∑

λ=1,2

ǫi(~k, λ)ǫj(~k, λ)
∗


 ǫj(~k

′, λ′)ǫi(~k ′, λ′)∗. (252)

The sum inside the brackets can be computed using the normalization of the polarization vectors,|~ǫ (~k, λ)|2 =
1, and the transversality condition~k · ~ǫ(~k, λ) = 0

1

2

∑

λ=1,2

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2

=
1

2

(
δij −

kikj

|~k|2

)
ǫ′j(~k

′, λ′)ǫ′i(~k
′, λ′)∗

12We use also the fact that the trace of the product of an odd number of Dirac matrices is always zero.
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=
1

2

[
1− |~ℓ · ~ǫ ′(~k ′, λ′)|2

]
, (253)

where~ℓ =
~k

|~k| is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all polarizations parallel to
the direction of the incoming photon~ℓ, whereas the differential cross section reaches the maximum in the
plane normal to~ℓ. If photons would collide with the electrons in the plasma with the same intensity from
all directions, the result would be an unpolarized CMB radiation. The factthat polarization is actually
measured in the CMB carries crucial information about the physics of the plasma before recombination
and, as a consequence, about the very early universe (see for example [22] for a throughout discussion).

6 Symmetries

6.1 Noether’s theorem

In Classical Mechanics and Classical Field Theory there is a basic resultthat relates symmetries and
conserved charges. This is called Noether’s theorem and states that for each continuous symmetry of the
system there is conserved current. In its simplest version in Classical Mechanics it can be easily proved.
Let us consider a LagrangianL(qi, q̇i) which is invariant under a transformationqi(t) → q′i(t, ǫ) labelled
by a parameterǫ. This means thatL(q′, q̇′) = L(q, q̇) without using the equations of motion13. If ǫ ≪ 1
we can consider an infinitesimal variation of the coordinatesδǫqi(t) and the invariance of the Lagrangian
implies

0 = δǫL(qi, q̇i) =
∂L

∂qi
δǫqi +

∂L

∂q̇i
δǫq̇i =

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δǫqi +

d

dt

(
∂L

∂q̇i
δǫqi

)
. (254)

Whenδǫqi is applied on a solution to the equations of motion the term inside the square brackets vanishes
and we conclude that there is a conserved quantity

Q̇ = 0 with Q ≡ ∂L

∂q̇i
δǫqi. (255)

Notice that in this derivation it is crucial that the symmetry depends on a continuous parameter since
otherwise the infinitesimal variation of the Lagrangian in Eq. (254) does notmake sense.

In Classical Field Theory a similar result holds. Let us consider for simplicitya theory of a single
field φ(x). We say that the variationsδǫφ depending on a continuous parameterǫ are a symmetry of the
theory if, without using the equations of motion, the Lagrangian density changes by

δǫL = ∂µK
µ. (256)

If this happens then the action remains invariant and so do the equations of motion. Working out now the
variation ofL underδǫφ we find

∂µK
µ =

∂L
∂(∂µφ)

∂µδǫφ+
∂L
∂φ

δǫφ = ∂µ

(
∂L

∂(∂µφ)
δǫφ

)
+

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
δǫφ. (257)

If φ(x) is a solution to the equations of motion the last terms disappears, and we find thatthere is a
conserved current

∂µJ
µ = 0 with Jµ =

∂L
∂(∂µφ)

δǫφ−Kµ. (258)

13The following result can be also derived a more general situations where the Lagrangian changes by a total time derivative.
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Actually a conserved current implies the existence of a charge

Q ≡
∫

d3xJ0(t, ~x) (259)

which is conserved

dQ

dt
=

∫
d3x ∂0J

0(t, ~x) = −
∫

d3x ∂iJ
i(t, ~x) = 0, (260)

provided the fields vanish at infinity fast enough. Moreover, the conserved chargeQ is a Lorentz scalar.
After canonical quantization the chargeQ defined by Eq. (259) is promoted to an operator that generates
the symmetry on the fields

δφ = i[φ,Q]. (261)

As an example we can consider a scalar fieldφ(x)which under a coordinate transformationx → x′

changes asφ′(x′) = φ(x). In particular performing a space-time translationxµ
′
= xµ + aµ we have

φ′(x)− φ(x) = −aµ∂µφ+O(a2) =⇒ δφ = −aµ∂µφ. (262)

Since the Lagrangian density is also a scalar quantity, it transforms under translations as

δL = −aµ∂µL. (263)

Therefore the corresponding conserved charge is

Jµ = − ∂L
∂(∂µφ)

aν∂νφ+ aµL ≡ −aνT
µν , (264)

where we introduced the energy-momentum tensor

Tµν =
∂L

∂(∂µφ)
∂νφ− ηµνL. (265)

We find that associated with the invariance of the theory with respect to space-time translations there
are four conserved currents defined byTµν with ν = 0, . . . , 3, each one associated with the translation
along a space-time direction. These four currents form a rank-two tensor under Lorentz transformations
satisfying

∂µT
µν = 0. (266)

The associated conserved charges are given by

P ν =

∫
d3xT 0ν (267)

and correspond to the total energy-momentum content of the field configuration. Therefore the energy
density of the field is given byT 00 while T 0i is the momentum density. In the quantum theory thePµ

are the generators of space-time translations.

Another example of a symmetry related with a physically relevant conserved charge is the global
phase invariance of the Dirac Lagrangian (117),ψ → eiθψ. For smallθ this corresponds to variations
δθψ = iθψ, δθψ = −iθψ which by Noether’s theorem result in the conserved charge

jµ = ψγµψ, ∂µj
µ = 0. (268)
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Thus implying the existence of a conserved charge

Q =

∫
d3xψγ0ψ =

∫
d3xψ†ψ. (269)

In physics there are several instances of global U(1) symmetries that act as phase shifts on spinors.
This is the case, for example, of the baryon and lepton number conservation in the standard model. A
more familiar case is the U(1) local symmetry associated with electromagnetism. Notice that although
in this case we are dealing with a local symmetry,θ → eα(x), the invariance of the Lagrangian holds
in particular for global transformations and therefore there is a conserved currentjµ = eψγµψ. In
Eq. (162) we saw that the spinor is coupled to the photon field precisely through this current. Its time
component is the electric charge densityρ, while the spatial components are the current density vector~.

This analysis can be carried over also to nonabelian unitary global symmetries acting as

ψi −→ Uijψj , U †U = 1 (270)

and leaving invariant the Dirac Lagrangian when we have several fermions. If we write the matrixU in
terms of the hermitian group generatorsT a as

U = exp (iαaT
a) , (T a)† = T a, (271)

we find the conserved current

jµa = ψiT
a
ijγ

µψj , ∂µj
µ = 0. (272)

This is the case, for example of the approximate flavor symmetries in hadron physics. The simplest
example is the isospin symmetry that mixes the quarksu andd

(
u
d

)
−→ M

(
u
d

)
, M ∈ SU(2). (273)

Since the proton is a bound state of two quarksu and one quarkd while the neutron is made out of
one quarku and two quarksd, this isospin symmetry reduces at low energies to the well known isospin
transformations of nuclear physics that mixes protons and neutrons.

6.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conserved chargesQa associated to symmetries by
Noether’s theorem are operators implementing the symmetry at the quantum level. Since the charges are
conserved they must commute with the Hamiltonian

[Qa, H] = 0. (274)

There are several possibilities in the quantum mechanical realization of a symmetry:

Wigner-Weyl realization. In this case the ground state of the theory|0〉 is invariant under the
symmetry. Since the symmetry is generated byQa this means that

U(α)|0〉 ≡ eiαaQa |0〉 = |0〉 =⇒ Qa|0〉 = 0. (275)

At the same time the fields of the theory have to transform according to some irreducible representation
of the group generated by theQa. From Eq. (261) it is easy to prove that

U(α)φiU(α)−1 = Uij(α)φj , (276)
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whereUij(α) is an element of the representation in which the fieldφi transforms. If we consider now
the quantum state associated with the operatorφi

|i〉 = φi|0〉 (277)

we find that because of the invariance of the vacuum (275) the states|i〉 transform in the same represen-
tation asφi

U(α)|i〉 = U(α)φiU(α)−1U(α)|0〉 = Uij(α)φj |0〉 = Uij(α)|j〉. (278)

Therefore the spectrum of the theory is classified in multiplets of the symmetry group. In addition, since
[H,U(α)] = 0 all states in the same multiplet have the same energy. If we consider one-particle states,
then going to the rest frame we conclude that all states in the same multiplet have exactly the same mass.

Nambu-Goldstone realization. In our previous discussion the result that the spectrum of the
theory is classified according to multiplets of the symmetry group depended crucially on the invariance
of the ground state. However this condition is not mandatory and one can relax it to consider theories
where the vacuum state is not left invariant by the symmetry

eiαaQa |0〉 6= |0〉 =⇒ Qa|0〉 6= 0. (279)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.

To illustrate the consequences of (279) we consider the example of a number scalar fieldsϕi

(i = 1, . . . , N ) whose dynamics is governed by the Lagrangian

L =
1

2
∂µϕ

i∂µϕi − V (ϕ), (280)

where we assume thatV (φ) is bounded from below. This theory is globally invariant under the transfor-
mations

δϕi = ǫa(T a)ijϕ
j , (281)

with T a, a = 1, . . . , 12N(N − 1) the generators of the group SO(N).

To analyze the structure of vacua of the theory we construct the Hamiltonian

H =

∫
d3x

[
1

2
πiπi +

1

2
~∇ϕi · ~∇ϕi + V (ϕ)

]
(282)

and look for the minimum of

V(ϕ) =
∫

d3x

[
1

2
~∇ϕi · ~∇ϕi + V (ϕ)

]
. (283)

Since we are interested in finding constant field configurations,~∇ϕ = ~0 to preserve translational invari-
ance, the vacua of the potentialV(ϕ) coincides with the vacua ofV (ϕ). Therefore the minima of the
potential correspond to the vacuum expectation values14

〈ϕi〉 : V (〈ϕi〉) = 0,
∂V

∂ϕi

∣∣∣∣
ϕi=〈ϕi〉

= 0. (284)

We divide the generatorsT a of SO(N ) into two groups: Those denoted byHα (α = 1, . . . , h)
that satisfy

(Hα)ij〈ϕj〉 = 0. (285)

14For simplicity we consider that the minima ofV (φ) occur at zero potential.
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This means that the vacuum configuration〈ϕi〉 is left invariant by the transformation generated byHα.
For this reason we call themunbroken generators. Notice that the commutator of two unbroken genera-
tors also annihilates the vacuum expectation value,[Hα, Hβ ]ij〈ϕj〉 = 0. Therefore the generators{Hα}
form a subalgebra of the algebra of the generators of SO(N ). The subgroup of the symmetry group
generated by them is realized à la Wigner-Weyl.

The remaining generatorsKA, with A = 1, . . . , 12N(N − 1) − h, by definition do not preserve
the vacuum expectation value of the field

(KA)ij〈ϕj〉 6= 0. (286)

These will be called thebroken generators. Next we prove a very important result concerning the broken
generators known as the Goldstone theorem: for each generator broken by the vacuum expectation value
there is a massless excitation.

The mass matrix of the excitations around the vacuum〈ϕi〉 is determined by the quadratic part of
the potential. Since we assumed thatV (〈ϕ〉) = 0 and we are expanding around a minimum, the first
term in the expansion of the potentialV (ϕ) around the vacuum expectation values is given by

V (ϕ) =
∂2V

∂ϕi∂ϕj

∣∣∣∣
ϕ=〈ϕ〉

(ϕi − 〈ϕi〉)(ϕj − 〈ϕj〉) +O
[
(ϕ− 〈ϕ〉)3

]
(287)

and the mass matrix is:

M2
ij ≡

∂2V

∂ϕi∂ϕj

∣∣∣∣
ϕ=〈ϕ〉

. (288)

In order to avoid a cumbersome notation we do not show explicitly the dependence of the mass matrix
on the vacuum expectation values〈ϕi〉.

To extract some information about the possible zero modes of the mass matrix, we write down the
conditions that follow from the invariance of the potential underδϕi = ǫa(T a)ijϕ

j . At first order inǫa

δV (ϕ) = ǫa
∂V

∂ϕi
(T a)ijϕ

j = 0. (289)

Differentiating this expression with respect toϕk we arrive at

∂2V

∂ϕi∂ϕk
(T a)ijϕ

j +
∂V

∂ϕi
(T a)ik = 0. (290)

Now we evaluate this expression in the vacuumϕi = 〈ϕi〉. Then the derivative in the second term cancels
while the second derivative in the first one gives the mass matrix. Hence wefind

M2
ik(T

a)ij〈ϕj〉 = 0. (291)

Now we can write this expression for both broken and unbroken generators. For the unbroken ones, since
(Hα)ij〈ϕj〉 = 0, we find a trivial identity0 = 0. On the other hand for the broken generators we have

M2
ik(K

A)ij〈ϕj〉 = 0. (292)

Since(KA)ij〈ϕj〉 6= 0 this equation implies that the mass matrix has as many zero modes as broken
generators. Therefore we have proven Goldstone’s theorem: associated with each broken symmetry
there is a massless mode in the theory. Here we have presented a classical proof of the theorem. In the
quantum theory the proof follows the same lines as the one presented here but one has to consider the
effective action containing the effects of the quantum corrections to the classical Lagrangian.
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As an example to illustrate this theorem, we consider a SO(3) invariant scalar field theory with a
“mexican hat” potential

V (~ϕ) =
λ

4

(
~ϕ 2 − a2

)2
. (293)

The vacua of the theory correspond to the configurations satisfying〈~ϕ〉 2 = a2. In field space this equa-
tion describes a two-dimensional sphere and each solution is just a point in that sphere. Geometrically
it is easy to visualize that a given vacuum field configuration, i.e. a point in the sphere, is preserved
by SO(2) rotations around the axis of the sphere that passes through that point. Hence the vacuum
expectation value of the scalar field breaks the symmetry according to

〈~ϕ〉 : SO(3) −→ SO(2). (294)

Since SO(3) has three generators and SO(2) only one we see that two generators are broken and there-
fore there are two massless Goldstone bosons. Physically this massless modescan be thought of as
corresponding to excitations along the surface of the sphere〈~ϕ〉 2 = a2.

Once a minimum of the potential has been chosen we can proceed to quantize the excitations
around it. Since the vacuum only leaves invariant a SO(2) subgroup of the original SO(3) symmetry
group it seems that the fact that we are expanding around a particular vacuum expectation value of the
scalar field has resulted in a lost of symmetry. This is however not the case.The full quantum theory
is symmetric under the whole symmetry group SO(3). This is reflected in the factthat the physical
properties of the theory do not depend on the particular point of the sphere 〈~ϕ〉 2 = a2 that we have
chosen. Different vacua are related by the full SO(3) symmetry and therefore should give the same
physics.

It is very important to realize that given a theory with a vacuum determined by〈~ϕ〉 all other
possible vacua of the theory are unaccessible in the infinite volume limit. This means that two vacuum
states|01〉, |02〉 corresponding to different vacuum expectation values of the scalar field are orthogonal
〈01|02〉 = 0 and cannot be connected by any local observableΦ(x), 〈01|Φ(x)|02〉 = 0. Heuristically
this can be understood by noticing that in the infinite volume limit switching from onevacuum into
another one requires changing the vacuum expectation value of the field everywhere in space at the same
time, something that cannot be done by any local operator. Notice that this is radically different to our
expectations based on the Quantum Mechanics of a system with a finite numberof degrees of freedom.

In High Energy Physics the typical example of a Goldstone boson is the pion,associated with
the spontaneous breaking of the global chiral isospinSU(2)L × SU(2)R symmetry. This symmetry acts
independently in the left- and right-handed spinors as

(
uL,R
dL,R

)
−→ ML,R

(
uL,R
dL,R

)
, ML,R ∈ SU(2)L,R (295)

Presumably since the quarks are confined at low energies this symmetry is spontaneously broken down
to the diagonal SU(2) acting in the same way on the left- and right-handed components of the spinors.
Associated with this symmetry breaking there is a Goldstone mode which is identifiedas the pion. No-
tice, nevertheless, that the SU(2)L×SU(2)R would be an exact global symmetry of the QCD Lagrangian
only in the limit when the masses of the quarks are zeromu,md → 0. Since these quarks have nonzero
masses the chiral symmetry is only approximate and as a consequence the corresponding Goldstone bo-
son is not massless. That is why pions have masses, although they are the lightest particle among the
hadrons.

Symmetry breaking appears also in many places in condensed matter. For example, when a solid
crystallizes from a liquid the translational invariance that is present in the liquid phase is broken to a
discrete group of translations that represent the crystal lattice. This symmetry breaking has Goldstone
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bosons associated which are identified with phonons which are the quantumexcitation modes of the
vibrational degrees of freedom of the lattice.

The Higgs mechanism.Gauge symmetry seems to prevent a vector field from having a mass.
This is obvious once we realize that a term in the Lagrangian likem2AµA

µ is incompatible with gauge
invariance.

However certain physical situations seem to require massive vector fields. This happened for
example during the 1960s in the study of weak interactions. The Glashow model gave a common de-
scription of both electromagnetic and weak interactions based on a gauge theory with group SU(2)×U(1)
but, in order to reproduce Fermi’s four-fermion theory of theβ-decay it was necessary that two of the
vector fields involved would be massive. Also in condensed matter physics massive vector fields are
required to describe certain systems, most notably in superconductivity.

The way out to this situation is found in the concept of spontaneous symmetry breaking discussed
previously. The consistency of the quantum theory requires gauge invariance, but this invariance can be
realized à la Nambu-Goldstone. When this is the case the full gauge symmetry is not explicitly present in
the effective action constructed around the particular vacuum chosen by the theory. This makes possible
the existence of mass terms for gauge fields without jeopardizing the consistency of the full theory, which
is still invariant under the whole gauge group.

To illustrate the Higgs mechanism we study the simplest example, the Abelian Higgs model: a
U(1) gauge field coupled to a self-interacting charged complex scalar fieldΦ with Lagrangian

L = −1

4
FµνF

µν +DµΦD
µΦ− λ

4

(
ΦΦ− µ2

)2
, (296)

where the covariant derivative is given by Eq. (159). This theory is invariant under the gauge transfor-
mations

Φ → eiα(x)Φ, Aµ → Aµ + ∂µα(x). (297)

The minimum of the potential is defined by the equation|Φ| = µ. We have a continuum of different
vacua labelled by the phase of the scalar field. None of these vacua, however, is invariant under the
gauge symmetry

〈Φ〉 = µeiϑ0 → µeiϑ0+iα(x) (298)

and therefore the symmetry is spontaneously broken Let us study now the theory around one of these
vacua, for example〈Φ〉 = µ, by writing the fieldΦ in terms of the excitations around this particular
vacuum

Φ(x) =

[
µ+

1√
2
σ(x)

]
eiϑ(x). (299)

Independently of whether we are expanding around a particular vacuum for the scalar field we should
keep in mind that the whole Lagrangian is still gauge invariant under (297).This means that perform-
ing a gauge transformation with parameterα(x) = −ϑ(x) we can get rid of the phase in Eq. (299).
Substituting thenΦ(x) = µ+ 1√

2
σ(x) in the Lagrangian we find

L = −1

4
FµνF

µν + e2µ2AµA
µ +

1

2
∂µσ∂

µσ − 1

2
λµ2σ2

− λµσ3 − λ

4
σ4 + e2µAµA

µσ + e2AµA
µσ2. (300)

What are the excitation of the theory around the vacuum〈Φ〉 = µ? First we find a massive real scalar
field σ(x). The important point however is that the vector fieldAµ now has a mass given by

m2
γ = 2e2µ2. (301)
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The remarkable thing about this way of giving a mass to the photon is that at nopoint we have given up
gauge invariance. The symmetry is only hidden. Therefore in quantizing thetheory we can still enjoy all
the advantages of having a gauge theory but at the same time we have managed to generate a mass for
the gauge field.

It is surprising, however, that in the Lagrangian (300) we did not found any massless mode. Since
the vacuum chosen by the scalar field breaks theU(1) generator of U(1) we would have expected one
masless particle from Goldstone’s theorem. To understand the fate of the missing Goldstone boson we
have to revisit the calculation leading to Eq. (300). Were we dealing with a global U(1) theory, the
Goldstone boson would correspond to excitation of the scalar field along thevalley of the potential and
the phaseϑ(x) would be the massless Goldstone boson. However we have to keep in mind thatin com-
puting the Lagrangian we managed to get rid ofϑ(x) by shifting it intoAµ using a gauge transformation.
Actually by identifying the gauge parameter with the Goldstone excitation we havecompletely fixed the
gauge and the Lagrangian (300) does not have any gauge symmetry left.

A massive vector field has three polarizations: two transverse ones~k · ~ǫ (~k,±1) = 0 plus a longi-
tudinal one~ǫL(~k) ∼ ~k. In gauging away the massless Goldstone bosonϑ(x) we have transformed it into
the longitudinal polarization of the massive vector field. In the literature this is usually expressed saying
that the Goldstone mode is “eaten up” by the longitudinal component of the gauge field. It is important
to realize that in spite of the fact that the Lagrangian (300) looks pretty different from the one we started
with we have not lost any degrees of freedom. We started with the two polarizations of the photon plus
the two degrees of freedom associated with the real and imaginary components of the complex scalar
field. After symmetry breaking we end up with the three polarizations of the massive vector field and the
degree of freedom of the real scalar fieldσ(x).

We can also understand the Higgs mechanism in the light of our discussion ofgauge symmetry
in section 4.4. In the Higgs mechanism the invariance of the theory under infinitesimal gauge trans-
formations is not explicitly broken, and this implies that Gauss’ law is satisfied quantum mechanically,
~∇ · ~Ea|phys〉 = 0. The theory remains invariant under gauge transformations in the connected com-
ponent of the identityG0, the ones generated by Gauss’ law. This does not pose any restriction on the
possible breaking of the invariance of the theory with respect to transformations that cannot be continu-
ously deformed to the identity. Hence in the Higgs mechanism the invariance under gauge transformation
that are not in the connected component of the identity,G/G0, can be broken. Let us try to put it in more
precise terms. As we learned in section 4.4, in the Hamiltonian formulation of the theory finite energy
gauge field configurations tend to a pure gauge at spatial infinity

~Aµ(~x)−→− 1

ig
g(~x)~∇g(~x)−1, |~x| → ∞ (302)

The set transformationsg0(~x) ∈ G0 that tend to the identity at infinity are the ones generated by Gauss’
law. However, one can also consider in general gauge transformationsg(~x) which, as|~x| → ∞, approach
any other elementg ∈ G. The quotientG∞ ≡ G/G0 gives a copy of the gauge group at infinity. There
is no reason, however, why this group should not be broken, and in general it is if the gauge symmetry
is spontaneously broken. Notice that this is not a threat to the consistency of the theory. Properties
like the decoupling of unphysical states are guaranteed by the fact that Gauss’ law is satisfied quantum
mechanically and are not affected by the breaking ofG∞.

In condensed matter physics the symmetry breaking described by the nonrelativistic version of
the Abelian Higgs model can be used to characterize the onset of a superconducting phase in the BCS
theory, where the complex scalar fieldΦ is associated with the Cooper pairs. In this case the parameterµ2

depends on the temperature. Above the critical temperatureTc, µ2(T ) > 0 and there is only a symmetric
vacuum〈Φ〉 = 0. When, on the other hand,T < Tc thenµ2(T ) < 0 and symmetry breaking takes place.
The onset of a nonzero mass of the photon (301) below the critical temperature explains the Meissner
effect: the magnetic fields cannot penetrate inside superconductors beyond a distance of the order1mγ

.
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The Abelian Higgs model discussed here can be regarded as a toy model ofthe Brout-Englert-
Higgs mechanism responsible for giving mass to theW± andZ0 gauge bosons in the standard model.
Giving mass to these three bosons requires the introduction of a two-component complex scalar field
transforming as a doublet under SU(2). Three of its four degrees of freedom are incorporated as the
longitudinal components of the three massive gauge fields, whereas the fourth one remains as a scalar
propagating degree of freedom. Its elementary excitations are spin zero neutral particles known as Higgs
bosons.

The Higgs boson couples to the massive gauge fields, as well as to quarksand leptons. More-
over, its coupling to the fermions is proportional to the fermion masses and therefore very weak for
light fermions. This, together with the fact that Higgs productions processes have large standard model
backgrounds, complicates its experimental detection. After decades of searches in various experiments,
a Higgs boson candidate was finally detected at the ATLAS and CMS collaborations at the Large Hadron
Collider (LHC) in 2012 with a mass of approximately 125 GeV. At the time of writing,all evidences
point to the fact that this new particle is indeed the so much coveted standard model Higgs.

7 Anomalies

So far we did not worry too much about how classical symmetries of a theoryare carried over to the
quantum theory. We have implicitly assumed that classical symmetries are preserved in the process of
quantization, so they are also realized in the quantum theory.

This, however, does not have to be necessarily the case. Quantizing aninteracting field theory
is a very involved process that requires regularization and renormalization and sometimes, it does not
matter how hard we try, there is no way for a classical symmetry to survive quantization. When this
happens one says that the theory has ananomaly(for reviews see [28]). It is important to avoid here the
misconception that anomalies appear due to a bad choice of the way a theory isregularized in the process
of quantization. When we talk about anomalies we mean a classical symmetry thatcannotbe realized in
the quantum theory, no matter how smart we are in choosing the regularizationprocedure.

In the following we analyze some examples of anomalies associated with global and local sym-
metries of the classical theory. In Section 8 we will encounter yet another example of an anomaly, this
time associated with the breaking of classical scale invariance in the quantum theory.

7.1 Axial anomaly

Probably the best known examples of anomalies appear when we consideraxial symmetries. If we
consider a theory of two Weyl spinorsu±

L = iψ∂/ψ = iu†+σ
µ
+∂µu+ + iu†−σ

µ
−∂µu− with ψ =

(
u+
u−

)
(303)

the Lagrangian is invariant under two types of global U(1) transformations. In the first one both helicities
transform with the same phase, this is avectortransformation:

U(1)V : u± −→ eiαu±, (304)

whereas in the second one, the axialU(1), the signs of the phases are different for the two chiralities

U(1)A : u± −→ e±iαu±. (305)

Using Noether’s theorem, there are two conserved currents, a vector current

Jµ
V = ψγµψ = u†+σ

µ
+u+ + u†−σ

µ
−u− =⇒ ∂µJ

µ
V = 0 (306)
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and an axial vector current

Jµ
A = ψγµγ5ψ = u†+σ

µ
+u+ − u†−σ

µ
−u− =⇒ ∂µJ

µ
A = 0. (307)

The theory described by the Lagrangian (303) can be coupled to the electromagnetic field. The
resulting classical theory is still invariant under the vector and axial U(1)symmetries (304) and (305).
Surprisingly, upon quantization it turns out that the conservation of the axial current (307) is spoiled by
quantum effects

∂µJ
µ
A ∼ ~ ~E · ~B. (308)

To understand more clearly how this result comes about we study first a simple model in two
dimensions that captures the relevant physics involved in the four-dimensional case [29]. We work in
Minkowski space in two dimensions with coordinates(x0, x1) ≡ (t, x) and where the spatial direction
is compactified to a circleS1. In this setup we consider a fermion coupled to the electromagnetic field.
Notice that since we are living in two dimensions the field strengthFµν only has one independent com-
ponent that corresponds to the electric field along the spatial direction,F 01 ≡ E (in two dimensions there
are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representationof the algebra of
γ-matrices

{γµ, γν} = 2ηµν with η =

(
1 0
0 −1

)
. (309)

In two dimensions the dimension of the representation of theγ-matrices is2[
2
2
] = 2. Here take

γ0 ≡ σ1 =

(
0 1
1 0

)
, γ1 ≡ iσ2 =

(
0 1

−1 0

)
. (310)

This is a chiral representation since the matrixγ5 is diagonal15

γ5 ≡ −γ0γ1 =

(
1 0
0 −1

)
(311)

Writing the two-component spinorψ as

ψ =

(
u+
u−

)
(312)

and defining as usual the projectorsP± = 1
2(1±γ5) we find that the componentsu± of ψ are respectively

a right- and left-handed Weyl spinor in two dimensions.

Once we have a representation of theγ-matrices we can write the Dirac equation. Expressing it in
terms of the componentsu± of the Dirac spinor we find

(∂0 − ∂1)u+ = 0, (∂0 + ∂1)u− = 0. (313)

The general solution to these equations can be immediately written as

u+ = u+(x
0 + x1), u− = u−(x0 − x1). (314)

Henceu± are two wave packets moving along the spatial dimension respectively to the left (u+) and
to the right(u−). Notice that according to our convention the left-movingu+ is a right-handed spinor
(positive helicity) whereas the right-movingu− is a left-handed spinor (negative helicity).

15In any even number of dimensionsγ5 is defined to satisfy the conditionsγ2
5 = 1 and{γ5, γµ} = 0.
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Fig. 11: Spectrum of the massless two-dimensional Dirac field.

If we want to interpret (313) as the wave equation for two-dimensional Weyl spinors we have the
following wave functions for free particles with well defined momentumpµ = (E, p).

u
(E)
± (x0 ± x1) =

1√
L
e−iE(x0±x1) with p = ∓E. (315)

As it is always the case with the Dirac equation we have both positive and negative energy solutions. For
u+, sinceE = −p, we see that the solutions with positive energy are those with negative momentum
p < 0, whereas the negative energy solutions are plane waves withp > 0. For the left-handed spinoru−
the situation is reversed. Besides, since the spatial direction is compact with lengthL the momentump
is quantized according to

p =
2πn

L
, n ∈ Z. (316)

The spectrum of the theory is represented in Fig. 11.

Once we have the spectrum of the theory the next step is to obtain the vacuum.As with the Dirac
equation in four dimensions we fill all the states withE ≤ 0 (Fig. 12). Exciting of a particle in the Dirac
see produces a positive energy fermion plus a hole that is interpreted as an antiparticle. This gives us the
clue on how to quantize the theory. In the expansion of the operatoru± in terms of the modes (315) we
associate positive energy states with annihilation operators whereas the states with negative energy are
associated with creation operators for the corresponding antiparticle

u±(x) =
∑

E>0

[
a±(E)v

(E)
± (x) + b†±(E)v

(E)
± (x)∗

]
. (317)

The operatora±(E) acting on the vacuum|0,±〉 annihilates a particle with positive energyE and mo-
mentum∓E. In the same wayb†±(E) creates out of the vacuum an antiparticle with positive energyE
and spatial momentum∓E. In the Dirac sea picture the operatorb±(E)† is originally an annihilation
operator for a state of the sea with negative energy−E. As in the four-dimensional case the problem of
the negative energy states is solved by interpreting annihilation operators for negative energy states as
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Fig. 12: Vacuum of the theory.

creation operators for the corresponding antiparticle with positive energy (and vice versa). The operators
appearing in the expansion ofu± in Eq. (317) satisfy the usual algebra

{aλ(E), a†λ′(E
′)} = {bλ(E), b†λ′(E

′)} = δE,E′δλλ′ , (318)

where we have introduced the labelλ, λ′ = ±. Also,aλ(E), a†λ(E) anticommute withbλ′(E′), b†λ′(E′).

The Lagrangian of the theory

L = iu†+(∂0 + ∂1)u+ + iu†−(∂0 − ∂1)u− (319)

is invariant under both U(1)V , Eq. (304), and U(1)A, Eq. (305). The associated Noether currents are in
this case

Jµ
V =

(
u†+u+ + u†−u−
−u†+u+ + u†−u−

)
, Jµ

A =

(
u†+u+ − u†−u−
−u†+u+ − u†−u−

)
. (320)

The associated conserved charges are given, for the vector current by

QV =

∫ L

0
dx1

(
u†+u+ + u†−u−

)
(321)

and for the axial current

QA =

∫ L

0
dx1

(
u†+u+ − u†−u−

)
. (322)

Using the orthonormality relations for the modesv
(E)
± (x)

∫ L

0
dx1 v

(E)
± (x) v

(E′)
± (x) = δE,E′ (323)

we find for the conserved charges:

QV =
∑

E>0

[
a†+(E)a+(E)− b†+(E)b+(E) + a†−(E)a−(E)− b†−(E)b−(E)

]
,
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p

E

Fig. 13: Effect of the electric field.

QA =
∑

E>0

[
a†+(E)a+(E)− b†+(E)b+(E)− a†−(E)a−(E) + b†−(E)b−(E)

]
. (324)

We see thatQV counts the net number (particles minus antiparticles) of positive helicity states plus the
net number of states with negative helicity. The axial charge, on the other hand, counts the net number of
positive helicity states minus the number of negative helicity ones. In the case of the vector current we
have subtracted a formally divergent vacuum contribution to the charge (the “charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of eitherQV orQA, since the
occupation numbers do not change. What we want to study is the effect of coupling the theory to electric
field E . We work in the gaugeA0 = 0. Instead of solving the problem exactly we are going to simulate
the electric field by adiabatically varying in a long timeτ0 the vector potentialA1 from zero value to
−Eτ0. From our discussion in section 4.3 we know that the effect of the electromagnetic coupling in the
theory is a shift in the momentum according to

p −→ p− eA1, (325)

wheree is the charge of the fermions. Since we assumed that the vector potential varies adiabatically,
we can assume it to be approximately constant at each time.

Then, we have to understand what is the effect of (325) on the vacuumdepicted in Fig. (12). What
we find is that the two branches move as shown in Fig. (13) resulting in some ofthe negative energy
states of thev+ branch acquiring positive energy while the same number of the empty positiveenergy
states of the other branchv− will become empty negative energy states. Physically this means that the
external electric fieldE creates a number of particle-antiparticle pairs out of the vacuum. Denoting by
N ∼ eE the number of such pairs created by the electric field per unit time, the final values of the charges
QV andQA are

QA(τ0) = (N − 0) + (0−N) = 0,

QV (τ0) = (N − 0)− (0−N) = 2N. (326)
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Therefore we conclude that the coupling to the electric field produces a violation in the conservation of
the axial charge per unit time given by∆QA ∼ eE . This implies that

∂µJ
µ
A ∼ e~E , (327)

where we have restored~ to make clear that the violation in the conservation of the axial current is a
quantum effect. At the same time∆QV = 0 guarantees that the vector current remains conserved also
quantum mechanically,∂µJ

µ
V = 0.

We have just studied a two-dimensional example of the Adler-Bell-Jackiw axial anomaly [30].
The heuristic analysis presented here can be made more precise by computing the quantity

Cµν = 〈0|T
[
Jµ
A(x)J

ν
V (0)

]
|0〉 =�Jµ

A
γ

(328)

The anomaly is given then by∂µCµν . A careful calculation yields the numerical prefactor missing in Eq.
(327) leading to the result

∂µJ
µ
A =

e~
2π

ενσFνσ, (329)

with ε01 = −ε10 = 1.

The existence of an anomaly in the axial symmetry that we have illustrated in two dimensions is
present in all even dimensional of space-times. In particular in four dimensions the axial anomaly it is
given by

∂µJ
µ
A = − e2

16π2
εµνσλFµνFσλ. (330)

This result has very important consequences in the physics of strong interactions as we will see in what
follows

7.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theoryof Quantum Chromodynamics
(QCD) [32]. This is a nonabelian gauge theory with gauge group SU(Nc) coupled to a numberNf of
quarks. These are spin-1

2 particlesQi f labelled by two quantum numbers: colori = 1, . . . , Nc and flavor
f = 1, . . . , Nf . The interaction between them is mediated by theN2

c − 1 gauge bosons, the gluonsAa
µ,

a = 1, . . . , N2
c − 1. In the real worldNc = 3 and the number of flavors is six, corresponding to the

number of different quarks: up (u), down (d), charm (c), strange (s), top (t) and bottom (b).

For the time being we are going to study a general theory of QCD withNc colors andNf flavors.
Also, for reasons that will be clear later we are going to work in the limit of vanishing quark masses,
mf → 0. In this cases the Lagrangian is given by

LQCD = −1

4
F a
µνF

aµν +

Nf∑

f=1

[
iQ

f
LD/ Qf

L + iQ
f
RD/ Qf

R

]
, (331)

where the subscriptsL andR indicate respectively left and right-handed spinors,Qf
L,R ≡ P±Qf , and the

field strengthF a
µν and the covariant derivativeDµ are respectively defined in Eqs. (165) and (168). Apart
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from the gauge symmetry, this Lagrangian is also invariant under a global U(Nf )L×U(Nf )R acting on
the flavor indices and defined by

U(Nf )L :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → Qf

R

U(Nf )R :





Qf
L → Qf

L

Qr
R → ∑

f ′(UR)ff ′Qf ′
R

(332)

with UL, UR ∈ U(Nf ). Actually, since U(N )=U(1)×SU(N ) this global symmetry group can be written
as SU(Nf )L×SU(Nf )R×U(1)L×U(1)R. The abelian subgroup U(1)L×U(1)R can be now decomposed
into their vector U(1)B and axial U(1)A subgroups defined by the transformations

U(1)B :





Qf
L → eiαQf

L

Qf
R → eiαQf

R

U(1)A :





Qf
L → eiαQf

L

Qf
R → e−iαQf

R

(333)

According to Noether’s theorem, associated with these two abelian symmetries we have two conserved
currents:

Jµ
V =

Nf∑

f=1

Q
f
γµQf , Jµ

A =

Nf∑

f=1

Q
f
γµγ5Q

f . (334)

The conserved charge associated with vector chargeJµ
V is actually the baryon number defined as the

number of quarks minus number of antiquarks.

The nonabelian part of the global symmetry group SU(Nf )L×SU(Nf )R can also be decomposed
into its vector and axial subgroups, SU(Nf )V × SU(Nf )A, defined by the following transformations of
the quarks fields

SU(Nf )V :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → ∑

f ′(UL)ff ′Qf ′
R

SU(Nf )A :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → ∑

f ′(U
−1
R )ff ′Qf ′

R

(335)

Again, the application of Noether’s theorem shows the existence of the following nonabelian conserved
charges

JI µ
V ≡

Nf∑

f,f ′=1

Q
f
γµ(T I)ff ′Qf ′

, JI µ
A ≡

Nf∑

f,f ′=1

Q
f
γµγ5(T

I)ff ′Qf ′
. (336)

To summarize, we have shown that the initial chiral symmetry of the QCD Lagrangian (331) can be
decomposed into its chiral and vector subgroups according to

U(Nf )L × U(Nf )R = SU(Nf )V × SU(Nf )A × U(1)B × U(1)A. (337)

The question to address now is which part of the classical global symmetry ispreserved by the quantum
theory.

As argued in section 7.1, the conservation of the axial currentsJµ
A andJaµ

A can in principle be
spoiled due to the presence of an anomaly. In the case of the abelian axial currentJµ

A the relevant quantity
is the correlation function

Cµνσ ≡ 〈0|T
[
Jµ
A(x)j

a ν
gauge(x

′)jb σgauge(0)
]
|0〉 =

Nf∑

f=1


�Jµ

A

Qf g

Qf

g

Qf



symmetric

(338)

61

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

61



Herejaµgauge is the nonabelian conserved current coupling to the gluon field

jaµgauge ≡
Nf∑

f=1

Q
f
γµτaQf , (339)

where, to avoid confusion with the generators of the global symmetry we have denoted byτa the gen-
erators of the gauge group SU(Nc). The anomaly can be read now from∂µCµνσ. If we impose Bose
symmetry with respect to the interchange of the two outgoing gluons and gaugeinvariance of the whole
expression,∂νCµνσ = 0 = ∂σC

µνσ, we find that the axial abelian global current has an anomaly given
by16

∂µJ
µ
A = −g2Nf

32π2
εµνσλF a

µνF
aµν . (340)

In the case of the nonabelian axial global symmetry SU(Nf )A the calculation of the anomaly is
made as above. The result, however, is quite different since in this case we conclude that the nonabelian
axial currentJaµ

A is not anomalous. This can be easily seen by noticing that associated with the axial
current vertex we have a generatorT I of SU(Nf ), whereas for the two gluon vertices we have the
generatorsτa of the gauge group SU(Nc). Therefore, the triangle diagram is proportional to the group-
theoretic factor


�JIµ

A
Qf g

Qf

g

Qf



symmetric

∼ trT I tr {τa, τ b} = 0 (341)

which vanishes because the generators of SU(Nf ) are traceless.

From here we would conclude that the nonabelian axial symmetry SU(Nf )A is nonanomalous.
However this is not the whole story since quarks are charged particles that also couple to photons. Hence
there is a second potential source of an anomaly coming from the the one-loop triangle diagram coupling
JI µ
A to two photons

〈0|T
[
JI µ
A (x)jνem(x

′)jσem(0)
]
|0〉 =

Nf∑

f=1


�JIµ

A
Qf γ

Qf

γ

Qf



symmetric

(342)

wherejµem is the electromagnetic current

jµem =

Nf∑

f=1

qf Q
f
γµQf , (343)

with qf the electric charge of thef -th quark flavor. A calculation of the diagram in (342) shows the
existence of an Adler-Bell-Jackiw anomaly given by

∂µJ
I µ
A = − Nc

16π2




Nf∑

f=1

(T I)ff q
2
f


 εµνσλFµνFσλ, (344)

16The normalization of the generatorsT I of the global SU(Nf ) is given bytr (T IT J) = 1
2
δIJ .
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whereFµν is the field strength of the electromagnetic field coupling to the quarks. The onlychance for
the anomaly to cancel is that the factor between brackets in this equation be identically zero.

Before proceeding let us summarize the results found so far. Because of the presence of anomalies
the axial part of the global chiral symmetry, SU(Nf )A and U(1)A are not realized quantum mechanically
in general. We found that U(1)A is always affected by an anomaly. However, because the right-hand
side of the anomaly equation (340) is a total derivative, the anomalous character ofJµ

A does not explain
the absence of U(1)A multiplets in the hadron spectrum, since a new current can be constructed which
is conserved. In addition, the nonexistence of candidates for a Goldstone boson associated with the
right quantum numbers indicates that U(1)A is not spontaneously broken either, so it has be explicitly
broken somehow. This is the so-called U(1)-problem which was solved by’t Hooft [33], who showed
how the contribution of quantum transitions between vacua with topologically nontrivial gauge field
configurations (instantons) results in an explicit breaking of this symmetry.

Due to the dynamics of the SU(Nc) gauge theory the axial nonabelian symmetry is spontaneously

broken due to the presence at low energies of a vacuum expectation value for the fermion bilinearQ
f
Qf

〈0|Qf
Qf |0〉 6= 0 (No summation inf !). (345)

This nonvanishing vacuum expectation value for the quark bilinear actuallybreaks chiral invariance
spontaneously to the vector subgroup SU(Nf )V , so the only subgroup of the original global symmetry
that is realized by the full theory at low energy is

U(Nf )L × U(Nf )R −→ SU(Nf )V × U(1)B. (346)

Associated with this breaking a Goldstone boson should appear with the quantum numbers of the broken
nonabelian current. For example, in the case of QCD the Goldstone bosonsassociated with the sponta-
neously symmetry breaking induced by the vacuum expectation values〈uu〉, 〈dd〉 and〈(ud− du)〉 have
been identified as the pionsπ0, π±. These bosons are not exactly massless because of the nonvanishing
mass of theu andd quarks. Since the global chiral symmetry is already slightly broken by mass terms in
the Lagrangian, the associated Goldstone bosons also have masses although they are very light compared
to the masses of other hadrons.

In order to have a better physical understanding of the role of anomalies inthe physics of strong
interactions we particularize now our analysis of the case of real QCD. Since theu andd quarks are
much lighter than the other four flavors, QCD at low energies can be well described by including only
these two flavors and ignoring heavier quarks. In this approximation, from our previous discussion we
know that the low energy global symmetry of the theory is SU(2)V ×U(1)B, where now the vector group
SU(2)V is the well-known isospin symmetry. The axial U(1)A current is anomalous due to Eq. (340)
with Nf = 2. In the case of the nonabelian axial symmetry SU(2)A, taking into account thatqu = 2

3e
andqd = −1

3e and that the three generators of SU(2) can be written in terms of the Pauli matrices as
TK = 1

2σ
K we find

∑

f=u,d

(T 1)ff q
2
f =

∑

f=u,d

(T 1)ff q
2
f = 0,

∑

f=u,d

(T 3)ff q
2
f =

e2

6
. (347)

ThereforeJ3µ
A is anomalous.

Physically, the anomaly in the axial currentJ3µ
A has an important consequence. In the quark

model, the wave function of the neutral pionπ0 is given in terms of those for theu andd quark by

|π0〉 = 1√
2

(
|ū〉|u〉 − |d̄〉|d〉

)
. (348)
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The isospin quantum numbers of|π0〉 are those of the generatorT 3. Actually the analogy goes further
since∂µJ

3µ
A is the operator creating a pionπ0 out of the vacuum

|π0〉 ∼ ∂µJ
3µ
A |0〉. (349)

This leads to the physical interpretation of the triangle diagram (342) withJ3µ
A as the one loop contribu-

tion to the decay of a neutral pion into two photons

π0 −→ 2γ . (350)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [34]presented a calcula-
tion, using current algebra techniques, according to which the decay ofthe pion into two photons should
be suppressed. This however contradicted the experimental evidence that showed the existence of such a
decay. The way out to this paradox, as pointed out in [30], is the axial anomaly. What happens is that the
current algebra analysis overlooks the ambiguities associated with the regularization of divergences in
quantum field theory. A QED evaluation of the triangle diagram leads to a divergent integral that has to
be regularized somehow. It is in this process that the Adler-Bell-Jackiw axial anomaly appears resulting
in a nonvanishing value for theπ0 → 2γ amplitude17.

The existence of anomalies associated with global currents does not necessarily mean difficulties
for the theory. On the contrary, as we saw in the case of the axial anomaly itis its existence what
allows for a solution of the Sutherland-Veltman paradox and an explanation of the electromagnetic decay
of the pion. The situation, however, is very different if we deal with localsymmetries. A quantum
mechanical violation of gauge symmetry leads to all kinds of problems, from lack of renormalizability to
nondecoupling of negative norm states. This is because the presence of an anomaly in the theory implies
that the Gauss’ law constraint~∇ · ~Ea = ρa cannot be consistently implemented in the quantum theory.
As a consequence states that classically are eliminated by the gauge symmetry become propagating fields
in the quantum theory, thus spoiling the consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left and right-
handed fermions transform in different representations of the gauge group. Physically, the most inter-
esting example of such theories is the electroweak sector of the standard model where, for example, left
handed fermions transform as doublets under SU(2) whereas right-handed fermions are singlets. On the
other hand, QCD is free of gauge anomalies since both left- and right-handed quarks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

L = −1

4
F aµνF a

µν + i

N+∑

i=1

ψ
i
+D/

(+)ψi
+ + i

N−∑

j=1

ψ
j
−D/

(−)ψj
−, (351)

where the chiral fermionsψi
± transform according to the representationsτai,± of the gauge groupG

(a = 1, . . . ,dimG). The covariant derivativesD(±)
µ are then defined by

D(±)
µ ψi

± = ∂µψ
i
± + igAK

µ τKi,±ψ
i
±. (352)

As for global symmetries, anomalies in the gauge symmetry appear in the triangle diagram with one
axial and two vector gauge current vertices

〈0|T
[
jaµA (x)jb νV (x′)jc σV (0)

]
|0〉 =


 jaµA jbνV

jcσV



symmetric

(353)

17An early computation of the triangle diagram for the electromagnetic decay of the pion was made by Steinberger in [31].
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where gauge vector and axial currentsjaµV , jaµA are given by

jaµV =

N+∑

i=1

ψ
i
+τ

a
+γ

µψi
+ +

N−∑

j=1

ψ
j
−τ

a
−γ

µψj
−,

jaµA =

N+∑

i=1

ψ
i
+τ

a
+γ

µψi
+ −

N−∑

i=1

ψ
j
−τ

a
−γ

µψj
−. (354)

Luckily, we do not have to compute the whole diagram in order to find an anomaly cancellation condition,
it is enough if we calculate the overall group theoretical factor. In the case of the diagram in Eq. (353)
for every fermion species running in the loop this factor is equal to

tr
[
τai,±{τ bi,±, τ ci,±}

]
, (355)

where the sign± corresponds respectively to the generators of the representation of the gauge group for
the left and right-handed fermions. Hence the anomaly cancellation conditionreads

N+∑

i=1

tr
[
τai,+{τ bi,+, τ ci,+}

]
−

N−∑

j=1

tr
[
τaj,−{τ bj,−, τ cj,−}

]
= 0. (356)

Knowing this we can proceed to check the anomaly cancellation in the standardmodel SU(3)×SU(2)×U(1).
Left handed fermions (both leptons and quarks) transform as doubletswith respect to the SU(2) factor
whereas the right-handed components are singlets. The charge with respect to the U(1) part, the hyper-
chargeY , is determined by the Gell-Mann-Nishijima formula

Q = T3 + Y, (357)

whereQ is the electric charge of the corresponding particle andT3 is the eigenvalue with respect to the
third generator of the SU(2) group in the corresponding representation: T3 = 1

2σ
3 for the doublets and

T3 = 0 for the singlets. For the first family of quarks (u, d) and leptons (e, νe) we have the following
field content

quarks:

(
uα

dα

)

L, 1
6

uα
R, 2

3

dα
R, 2

3

leptons:

(
νe
e

)

L,− 1
2

eR,−1 (358)

whereα = 1, 2, 3 labels the color quantum number and the subscript indicates the value of the weak
hyperchargeY . Denoting the representations of SU(3)×SU(2)×U(1) by (nc, nw)Y , with nc andnw

the representations of SU(3) and SU(2) respectively andY the hypercharge, the matter content of the
standard model consists of a three family replication of the representations:

left-handed fermions: (3, 2)L1
6

(1, 2)L− 1
2

(359)

right-handed fermions: (3, 1)R2
3

(3, 1)R− 1
3

(1, 1)R−1.

In computing the triangle diagram we have 10 possibilities depending on which factor of the gauge group
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SU(3)×SU(2)×U(1) couples to each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)2 U(1)

SU(3)2 U(1) SU(2) U(1)2

SU(3) SU(2)2

SU(3) SU(2) U(1)

SU(3) U(1)2

It is easy to check that some of them do not give rise to anomalies. For example the anomaly for the
SU(3)3 case cancels because left and right-handed quarks transform in the same representation. In the
case of SU(2)3 the cancellation happens term by term because of the Pauli matrices identityσaσb =
δab + iεabcσc that leads to

tr
[
σa{σb, σc}

]
= 2 (trσa) δbc = 0. (360)

However the hardest anomaly cancellation condition to satisfy is the one with three U(1)’s. In this case
the absence of anomalies within a single family is guaranteed by the nontrivial identity

∑

left

Y 3
+ −

∑

right

Y 3
− = 3× 2×

(
1

6

)3

+ 2×
(
−1

2

)3

− 3×
(
2

3

)3

− 3×
(
−1

3

)3

− (−1)3

=

(
−3

4

)
+

(
3

4

)
= 0. (361)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice that this result
holds even if a right-handed sterile neutrino is added since such a particle isa singlet under the whole
standard model gauge group and therefore does not contribute to the triangle diagram. Therefore we see
how the matter content of the standard model conspires to yield a consistent quantum field theory.

In all our discussion of anomalies we only considered the computation of one-loop diagrams.
It may happen that higher loop orders impose additional conditions. Fortunately this is not so: the
Adler-Bardeen theorem [35] guarantees that the axial anomaly only receives contributions from one loop
diagrams. Therefore, once anomalies are canceled (if possible) at oneloop we know that there will be
no new conditions coming from higher-loop diagrams in perturbation theory.

The Adler-Bardeen theorem, however, only applies in perturbation theory. It is nonetheless possi-
ble that nonperturbative effects can result in the quantum violation of a gauge symmetry. This is precisely
the case pointed out by Witten [36] with respect to the SU(2) gauge symmetry of the standard model.
In this case the problem lies in the nontrivial topology of the gauge group SU(2). The invariance of
the theory with respect to gauge transformations which are not in the connected component of the iden-
tity makes all correlation functions equal to zero. Only when the number of left-handed SU(2) fermion
doublets is even gauge invariance allows for a nontrivial theory. It is again remarkable that the family
structure of the standard model makes this anomaly to cancel

3×
(

u
d

)

L

+ 1×
(

νe
e

)

L

= 4 SU(2)-doublets, (362)

where the factor of 3 comes from the number of colors.
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8 Renormalization

8.1 Removing infinities

From its very early stages, quantum field theory was faced with infinities. They emerged in the calcula-
tion of most physical quantities, such as the correction to the charge of the electron due to the interactions
with the radiation field. The way these divergences where handled in the 1940s, starting with Kramers,
was physically very much in the spirit of the Quantum Theory emphasis in observable quantities: since
the observed magnitude of physical quantities (such as the charge of the electron) is finite, this number
should arise from the addition of a “bare” (unobservable) value and thequantum corrections. The fact
that both of these quantities were divergent was not a problem physically, since only its finite sum was
an observable quantity. To make thing mathematically sound, the handling of infinities requires the in-
troduction of some regularization procedure which cuts the divergent integrals off at some momentum
scaleΛ. Morally speaking, the physical value of an observableOphysical is given by

Ophysical = lim
Λ→∞

[O(Λ)bare +∆O(Λ)~] , (363)

where∆O(Λ)~ represents the regularized quantum corrections.

To make this qualitative discussion more precise we compute the corrections to the electric charge
in Quantum Electrodynamics. We consider the process of annihilation of an electron-positron pair to
create a muon-antimuon paire−e+ → µ+µ−. To lowest order in the electric chargee the only diagram
contributing is

!e− µ+

e+

γ

µ−

However, the corrections at ordere4 to this result requires the calculation of seven more diagrams

"e− µ+

e+ µ−

+#e− µ+

e+

µ−

+$µ+e−

µ−e+

+%e− µ+

e+ µ−

+&e− µ+

e+

µ−
+'µ+

e+

µ−
e−

+(µ+e+

µ−e−

In order to compute the renormalization of the charge we consider the first diagram which takes
into account the first correction to the propagator of the virtual photon interchanged between the pairs

67

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

67



due to vacuum polarization. We begin by evaluating

) =
−iηµα

q2 + iǫ


*α β




−iηβν

q2 + iǫ
, (364)

where the diagram between brackets is given by

+α β ≡ Παβ(q) = i2(−ie)2(−1)

∫
d4k

(2π)4
Tr (/k +me)γ

α(/k + /q +me)γ
β

[k2 −m2
e + iǫ] [(k + q)2 −m2

e + iǫ]
. (365)

Physically this diagram includes the correction to the propagator due to the polarization of the vacuum,
i.e. the creation of virtual electron-positron pairs by the propagating photon. The momentumq is the
total momentum of the electron-positron pair in the intermediate channel.

It is instructive to look at this diagram from the point of view of perturbationtheory in nonrela-
tivistic Quantum Mechanics. In each vertex the interaction consists of the annihilation (resp. creation)
of a photon and the creation (resp. annihilation) of an electron-positron pair. This can be implemented
by the interaction Hamiltonian

Hint = e

∫
d3xψγµψAµ. (366)

All fields inside the integral can be expressed in terms of the corresponding creation-annihilation oper-
ators for photons, electrons and positrons. In Quantum Mechanics, thechange in the wave function at
first order in the perturbationHint is given by

|γ, in〉 = |γ, in〉0 +
∑

n

〈n|Hint|γ, in〉0
Ein − En

|n〉 (367)

and similarly for |γ, out〉, where we have denoted symbolically by|n〉 all the possible states of the
electron-positron pair. Since these states are orthogonal to|γ, in〉0, |γ, out〉0, we find tordere2

〈γ, in|γ′, out〉 = 0〈γ, in|γ′, out〉0 +
∑

n

0〈γ, in|Hint|n〉 〈n|Hint|γ′, out〉0
(Ein − En)(Eout − En)

+O(e4). (368)

Hence, we see that the diagram of Eq. (364) really corresponds to the order-e2 correction to the photon
propagator〈γ, in|γ′, out〉

,γ γ′
−→ 0〈γ, in|γ′, out〉0

-γ γ′
−→

∑

n

〈γ, in|Hint|n〉 〈n|Hint|γ′, out〉
(Ein − En)(Eout − En)

. (369)
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Once we understood the physical meaning of the Feynman diagram to be computed we proceed
to its evaluation. In principle there is no problem in computing the integral in Eq. (364) for nonzero
values of the electron mass. However since here we are going to be mostly interested in seeing how
the divergence of the integral results in a scale-dependent renormalization of the electric charge, we
will set me = 0. This is something safe to do, since in the case of this diagram we are not inducing
new infrared divergences in taking the electron as massless. Implementing gauge invariance and using
standard techniques in the computation of Feynman diagrams (see references [1]- [11]) the polarization
tensorΠµν(q) defined in Eq. (365) can be written as

Πµν(q) =
(
q2ηµν − qµqν

)
Π(q2) (370)

with

Π(q) = 8e2
∫ 1

0
dx

∫
d4k

(2π)4
x(1− x)

[k2 −m2 + x(1− x)q2 + iǫ]2
(371)

To handle this divergent integral we have to figure out some procedureto render it finite. This can be
done in several ways, but here we choose to cut the integrals off at a high energy scaleΛ, where new
physics might be at work,|p| < Λ. This gives the result

Π(q2) ≃ e2

12π2
log

(
q2

Λ2

)
+ finite terms. (372)

If we would send the cutoff to infinityΛ → ∞ the divergence blows up and something has to be done
about it.

If we want to make sense out of this, we have to go back to the physical question that led us to
compute Eq. (364). Our primordial motivation was to compute the corrections tothe annihilation of two
electrons into two muons. Including the correction to the propagator of the virtual photon we have

. =/ +0
= ηαβ (veγ

αue)
e2

4πq2

(
vµγ

βuµ

)
+ ηαβ (veγ

αue)
e2

4πq2
Π(q2)

(
vµγ

βuµ

)

= ηαβ (veγ
αue)

{
e2

4πq2

[
1 +

e2

12π2
log

(
q2

Λ2

)]}(
vµγ

βuµ

)
. (373)

Now let us imagine that we are performing ae− e+ → µ−µ+ with a center of mass energyµ. From the
previous result we can identify the effective charge of the particles at this energy scalee(µ) as

1 = ηαβ (veγ
αue)

[
e(µ)2

4πq2

](
vµγ

βuµ

)
. (374)

This charge,e(µ), is the quantity that is physically measurable in our experiment. Now we can make
sense of the formally divergent result (373) by assuming that the charge appearing in the classical La-
grangian of QED is just a “bare” value that depends on the scaleΛ at which we cut off the theory,
e ≡ e(Λ)bare. In order to reconcile (373) with the physical results (374) we must assume that the
dependence of the bare (unobservable) chargee(Λ)bare on the cutoffΛ is determined by the identity

e(µ)2 = e(Λ)2bare

[
1 +

e(Λ)2bare
12π2

log

(
µ2

Λ2

)]
. (375)
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If we still insist in removing the cutoff,Λ → ∞ we have to send the bare charge to zeroe(Λ)bare → 0
in such a way that the effective coupling has the finite value given by the experiment at the energy scale
µ. It is not a problem, however, that the bare charge is small for large values of the cutoff, since the
only measurable quantity is the effective charge that remains finite. Therefore all observable quantities
should be expressed in perturbation theory as a power series in the physical couplinge(µ)2 and not in
the unphysical bare couplinge(Λ)bare.

8.2 The beta-function and asymptotic freedom

We can look at the previous discussion, an in particular Eq. (375), froma different point of view. In order
to remove the ambiguities associated with infinities we have been forced to introduce a dependence of
the coupling constant on the energy scale at which a process takes place. From the expression of the
physical coupling in terms of the bare charge (375) we can actually eliminate the cutoffΛ, whose value
after all should not affect the value of physical quantities. Taking into account that we are working in
perturbation theory ine(µ)2, we can express the bare chargee(Λ)2bare in terms ofe(µ)2 as

e(Λ)2 = e(µ)2
[
1 +

e(µ)2

12π2
log

(
µ2

Λ2

)]
+O[e(µ)6]. (376)

This expression allow us to eliminate all dependence in the cutoff in the expression of the effective charge
at a scaleµ by replacinge(Λ)bare in Eq. (375) by the one computed using (376) at a given reference
energy scaleµ0

e(µ)2 = e(µ0)
2

[
1 +

e(µ0)
2

12π2
log

(
µ2

µ2
0

)]
. (377)

From this equation we can compute, at this order in perturbation theory, the effective value of the
coupling constant at an energyµ, once we know its value at some reference energy scaleµ0. In the case
of the electron charge we can use as a reference Thompson’s scattering at energies of the order of the
electron massme ≃ 0.5 MeV, at where the value of the electron charge is given by the well knownvalue

e(me)
2 ≃ 1

137
. (378)

With this we can computee(µ)2 at any other energy scale applying Eq. (377), for example at the electron
massµ = me ≃ 0.5MeV. However, in computing the electromagnetic coupling constant at any other
scale we must take into account the fact that other charged particles can run in the loop in Eq. (373).
Suppose, for example, that we want to calculate the fine structure constant at the mass of theZ0-boson
µ = MZ ≡ 92 GeV. Then we should include in Eq. (377) the effect of other fermionic standard model
fields with masses belowMZ . Doing this, we find18

e(MZ)
2 = e(me)

2

[
1 +

e(me)
2

12π2

(∑

i

q2i

)
log

(
M2

Z

m2
e

)]
, (379)

whereqi is the charge in units of the electron charge of thei-th fermionic species running in the loop
and we sum over all fermions with masses below the mass of theZ0 boson. This expression shows how
the electromagnetic coupling grows with energy. However, in order to compare with the experimental
value ofe(MZ)

2 it is not enough with including the effect of fermionic fields, since also theW± bosons

18In the first version of these notes the argument used to show the growingof the electromagnetic coupling constant could
have led to confusion to some readers. To avoid this potential problem we include in the equation for the running coupling
e(µ)2 the contribution of all fermions with masses belowMZ . We thank Lubos Motl for bringing this issue to our attention.
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can run in the loop (MW < MZ). Taking this into account, as well as threshold effects, the value of the
electron charge at the scaleMZ is found to be [37]

e(MZ)
2 ≃ 1

128.9
. (380)

This growing of the effective fine structure constant with energy can beunderstood heuristically
by remembering that the effect of the polarization of the vacuum shown in thediagram of Eq. (364)
amounts to the creation of a plethora of electron-positron pairs around the location of the charge. These
virtual pairs behave as dipoles that, as in a dielectric medium, tend to screen thischarge and decreasing
its value at long distances (i.e. lower energies).

The variation of the coupling constant with energy is usually encoded in quantum field theory in
thebeta functiondefined by

β(g) = µ
dg

dµ
. (381)

In the case of QED the beta function can be computed from Eq. (377) with theresult

β(e)QED =
e3

12π2
. (382)

The fact that the coefficient of the leading term in the beta-function is positive β0 ≡ 1
6π > 0 gives

us the overall behavior of the coupling as we change the scale. Eq. (382) means that, if we start at an
energy where the electric coupling is small enough for our perturbative treatment to be valid, the effective
charge grows with the energy scale. This growing of the effective coupling constant with energy means
that QED is infrared safe, since the perturbative approximation gives better and better results as we go to
lower energies. Actually, because the electron is the lighter electrically charged particle and has a finite
nonvanishing mass the running of the fine structure constant stops at the scaleme in the well-known
value 1

137 . Would other charged fermions with masses belowme be present in Nature, the effective value
of the fine structure constant in the interaction between these particles wouldrun further to lower values
at energies below the electron mass.

On the other hand if we increase the energy scalee(µ)2 grows until at some scale the coupling is of
order one and the perturbative approximation breaks down. In QED this isknown as the problem of the
Landau pole but in fact it does not pose any serious threat to the reliabilityof QED perturbation theory:
a simple calculation shows that the energy scale at which the theory would become strongly coupled is
ΛLandau ≃ 10277 GeV. However, we know that QED does not live that long! At much lower scales we
expect electromagnetism to be unified with other interactions, and even if this isnot the case we will
enter the uncharted territory of quantum gravity at energies of the orderof 1019 GeV.

So much for QED. The next question that one may ask at this stage is whetherit is possible to
find quantum field theories with a behavior opposite to that of QED, i.e. such that they become weakly
coupled at high energies. This is not a purely academic question. In the late1960s a series of deep-
inelastic scattering experiments carried out at SLAC showed that the quarks behave essentially as free
particles inside hadrons. The apparent problem was that no theory wasknown at that time that would
become free at very short distances: the example set by QED seem to be followed by all the theories that
were studied. This posed a very serious problem for quantum field theory as a way to describe subnuclear
physics, since it seemed that its predictive power was restricted to electrodynamics but failed miserably
when applied to describe strong interactions.

Nevertheless, this critical time for quantum field theory turned out to be its finest hour. In 1973
David Gross and Frank Wilczek [38] and David Politzer [39] showed thatnonabelian gauge theories can
actually display the required behavior. For the QCD Lagrangian in Eq. (331) the beta function is given
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Fig. 14: Beta function for a hypothetical theory with three fixed points g∗1 , g∗2 andg∗3 . A perturbative analysis
would capture only the regions shown in the boxes.

by19

β(g) = − g3

16π2

[
11

3
Nc −

2

3
Nf

]
. (383)

In particular, for real QCD (NC = 3, Nf = 6) we have thatβ(g) = − 7g3

16π2 < 0. This means that
for a theory that is weakly coupled at an energy scaleµ0 the coupling constant decreases as the energy
increasesµ → ∞. This explain the apparent freedom of quarks inside the hadrons: when the quarks
are very close together their effective color charge tend to zero. This phenomenon is calledasymptotic
freedom.

Asymptotic free theories display a behavior that is opposite to that found above in QED. At high
energies their coupling constant approaches zero whereas at low energies they become strongly coupled
(infrared slavery). This features are at the heart of the success ofQCD as a theory of strong interactions,
since this is exactly the type of behavior found in quarks: they are quasi-free particles inside the hadrons
but the interaction potential potential between them increases at large distances.

Although asymptotic free theories can be handled in the ultraviolet, they becomeextremely com-
plicated in the infrared. In the case of QCD it is still to be understood (at least analytically) how the
theory confines color charges and generates the spectrum of hadrons, as well as the breaking of the chiral
symmetry (345).

In general, the ultraviolet and infrared properties of a theory are controlled by the fixed points of
the beta function, i.e. those values of the coupling constantg for which it vanishes

β(g∗) = 0. (384)

Using perturbation theory we have seen that for both QED and QCD one ofsuch fixed points occurs
at zero coupling,g∗ = 0. However, our analysis also showed that the two theories present radically
different behavior at high and low energies. From the point of view of the beta function, the difference
lies in the energy regime at which the coupling constant approaches its critical value. This is in fact
governed by the sign of the beta function around the critical coupling.

19The expression of the beta function of QCD was also known to ’t Hooft [40]. There are even earlier computations in the
russian literature [41].
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We have seen above that when the beta function is negative close to the fixed point (the case of
QCD) the coupling tends to its critical value,g∗ = 0, as the energy is increased. This means that the
critical point isultraviolet stable, i.e. it is an attractor as we evolve towards higher energies. If, on the
contrary, the beta function is positive (as it happens in QED) the coupling constant approaches the critical
value as the energy decreases. This is the case of aninfrared stablefixed point.

This analysis that we have motivated with the examples of QED and QCD is completely general
and can be carried out for any quantum field theory. In Fig. 14 we haverepresented the beta function for
a hypothetical theory with three fixed points located at couplingsg∗1, g∗2 andg∗3. The arrows in the line
below the plot represent the evolution of the coupling constant as the energy increases. From the analysis
presented above we see thatg∗1 = 0 andg∗3 are ultraviolet stable fixed points, while the fixed pointg∗2 is
infrared stable.

In order to understand the high and low energy behavior of a quantum field theory it is then crucial
to know the structure of the beta functions associated with its couplings. This can be a very difficult
task, since perturbation theory only allows the study of the theory around “trivial" fixed points, i.e. those
that occur at zero coupling like the case ofg∗1 in Fig. 14. On the other hand, any “nontrivial” fixed
point occurring in a theory (likeg∗2 andg∗3) cannot be captured in perturbation theory and requires a full
nonperturbative analysis.

The moral to be learned from our discussion above is that dealing with the ultraviolet divergences
in a quantum field theory has the consequence, among others, of introducing an energy dependence in
the measured value of the coupling constants of the theory (for example the electric charge in QED).
This happens even in the case of renormalizable theories without mass terms.These theories are scale
invariant at the classical level because the action does not contain any dimensionful parameter. In this
case the running of the coupling constants can be seen as resulting from aquantum breaking of classical
scale invariance: different energy scales in the theory are distinguished by different values of the coupling
constants. Remembering what we learned in Section 7, we conclude that classical scale invariance is an
anomalous symmetry. One heuristic way to see how the conformal anomaly comesabout is to notice
that the regularization of an otherwise scale invariant field theory requires the introduction of an energy
scale (e.g. a cutoff). This breaking of scale invariance cannot be restored after renormalization.

Nevertheless, scale invariance is not lost forever in the quantum theory. It is recovered at the
fixed points of the beta function where, by definition, the coupling does notrun. To understand how
this happens we go back to a scale invariant classical field theory whose field φ(x) transform under
coordinate rescalings as

xµ −→ λxµ, φ(x) −→ λ−∆φ(λ−1x), (385)

where∆ is called the canonical scaling dimension of the field. An example of such a theory is a massless
φ4 theory in four dimensions

L =
1

2
∂µφ∂µφ− g

4!
φ4, (386)

where the scalar field has canonical scaling dimension∆ = 1. The Lagrangian density transforms as

L −→ λ−4L[φ] (387)

and the classical action remains invariant20.

If scale invariance is preserved under quantization, the Green’s functions transform as

〈Ω|T [φ′(x1) . . . φ′(xn)]|Ω〉 = λnΛ〈Ω|T [φ(λ−1x1) . . . φ(λ
−1xn)]|Ω〉. (388)

20In aD-dimensional theory the canonical scaling dimensions of the fields coincide with its engineering dimension:∆ =
D−2
2

for bosonic fields and∆ = D−1
2

for fermionic ones. For a Lagrangian with no dimensionful parametersclassical scale
invariance follows then from dimensional analysis.
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Fig. 15: Systems of spins in a two-dimensional square lattice.

This is precisely what happens in a free theory. In an interacting theory the running of the coupling
constant destroys classical scale invariance at the quantum level. Despite of this, at the fixed points of
the beta function the Green’s functions transform again according to (388) where∆ is replaced by

∆anom = ∆+ γ∗. (389)

The canonical scaling dimension of the fields are corrected byγ∗, which is called the anomalous dimen-
sion. They carry the dynamical information about the high-energy behavior of the theory.

8.3 The renormalization group

In spite of its successes, the renormalization procedure presented above can be seen as some kind of pre-
scription or recipe to get rid of the divergences in an ordered way. Thisdiscomfort about renormalization
was expressed in occasions by comparing it with “sweeping the infinities under the rug”. However thanks
to Ken Wilson to a large extent [42] the process of renormalization is now understood in a very profound
way as a procedure to incorporate the effects of physics at high energies by modifying the value of the
parameters that appear in the Lagrangian.

Statistical mechanics.Wilson’s ideas are both simple and profound and consist in thinking about
quantum field theory as the analog of a thermodynamical description of a statistical system. To be more
precise, let us consider an Ising spin system in a two-dimensional squarelattice as the one depicted in
Fig 15. In terms of the spin variablessi = ±1

2 , wherei labels the lattice site, the Hamiltonian of the
system is given by

H = −J
∑

〈i,j〉
si sj , (390)

where〈i, j〉 indicates that the sum extends over nearest neighbors andJ is the coupling constant between
neighboring spins (here we consider that there is no external magnetic field). The starting point to study
the statistical mechanics of this system is the partition function defined as

Z =
∑

{si}
e−βH , (391)

where the sum is over all possible configurations of the spins andβ = 1
T is the inverse temperature.

For J > 0 the Ising model presents spontaneous magnetization below a critical temperature Tc, in any
dimension higher than one. Away from this temperature correlations betweenspins decay exponentially
at large distances

〈sisj〉 ∼ e
− |xij |

ξ , (392)
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Fig. 16: Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective spin computed
according to the rule (394). Notice also that the size of the lattice spacing is doubled in the process.

with |xij | the distance between the spins located in thei-th andj-th sites of the lattice. This expression
serves as a definition of the correlation lengthξ which sets the characteristic length scale at which spins
can influence each other by their interaction through their nearest neighbors.

Suppose now that we are interested in a macroscopic description of this spinsystem. We can
capture the relevant physics by integrating out somehow the physics at short scales. A way in which this
can be done was proposed by Leo Kadanoff [43] and consists in dividing our spin system in spin-blocks
like the ones showed in Fig 16. Now we can construct another spin system where each spin-block of the
original lattice is replaced by an effective spin calculated according to somerule from the spins contained
in each blockBa

{si : i ∈ Ba} −→ s (1)
a . (393)

For example we can define the effective spin associated with the blockBa by taking the majority rule
with an additional prescription in case of a draw

s (1)
a =

1

2
sgn

(∑

i∈Ba

si

)
, (394)

where we have used the sign function,sign(x) ≡ x
|x| , with the additional definitionsgn(0) = 1. This

procedure is called decimation and leads to a new spin system with a doubled lattice space.

The idea now is to rewrite the partition function (391) only in terms of the new effective spins
s

(1)
a . Then we start by splitting the sum over spin configurations into two nested sums, one over the spin

blocks and a second one over the spins within each block

Z =
∑

{~s}
e−βH[si] =

∑

{~s (1)}

∑

{~s∈Ba}
δ

[
s (1)
a − sign

(∑

i∈Ba

si

)]
e−βH[si]. (395)
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The interesting point now is that the sum over spins inside each block can bewritten as the exponential
of a new effective Hamiltonian depending only on the effective spins,H(1)[s

(1)
a ]

∑

{s∈Ba}
δ

[
s (1)
a − sign

(∑

i∈Ba

si

)]
e−βH[si] = e−βH(1)[s

(1)
a ]. (396)

The new Hamiltonian is of course more complicated

H(1) = −J (1)
∑

〈i,j〉
s
(1)
i s

(1)
j + . . . (397)

where the dots stand for other interaction terms between the effective blockspins. This new terms appear
because in the process of integrating out short distance physics we induce interactions between the new
effective degrees of freedom. For example the interaction between the spin block variabless(1)i will in
general not be restricted to nearest neighbors in the new lattice. The important point is that we have
managed to rewrite the partition function solely in terms of this new (renormalized)spin variabless (1)

interacting through a new HamiltonianH(1)

Z =
∑

{s (1)}
e−βH(1)[s

(1)
a ]. (398)

Let us now think about the space of all possible Hamiltonians for our statistical system including
all kinds of possible couplings between the individual spins compatible with thesymmetries of the sys-
tem. If denote byR the decimation operation, our previous analysis shows thatR defines a map in this
space of Hamiltonians

R : H → H(1). (399)

At the same time the operationR replaces a lattice with spacinga by another one with double spacing
2a. As a consequence the correlation length in the new lattice measured in units ofthe lattice spacing is
divided by two,R : ξ → ξ

2 .

Now we can iterate the operationR an indefinite number of times. Eventually we might reach a
HamiltonianH⋆ that is not further modified by the operationR

H
R−→ H(1) R−→ H(2) R−→ . . .

R−→ H⋆. (400)

The fixed point HamiltonianH⋆ is scale invariantbecause it does not change asR is performed. Notice
that because of this invariance the correlation length of the system at the fixed point do not change under
R. This fact is compatible with the transformationξ → ξ

2 only if ξ = 0 or ξ = ∞. Here we will focus
in the case of nontrivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifying the values of the coupling constants
associated with all possible interaction terms between individual spins of the lattice. If we denote by
Oa[si] these (possibly infinite) interaction terms, the most general Hamiltonian for the spin system under
study can be written as

H[si] =
∞∑

a=1

λaOa[si], (401)

whereλa ∈ R are the coupling constants for the corresponding operators. These constants can be thought
of as coordinates in the space of all Hamiltonians. Therefore the operationR defines a transformation in
the set of coupling constants

R : λa −→ λ(1)
a . (402)
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For example, in our case we started with a Hamiltonian in which only one of the coupling constants
is different from zero (sayλ1 = −J). As a result of the decimationλ1 ≡ −J → −J (1) while some
of the originally vanishing coupling constants will take a nonzero value. Of course, for the fixed point
Hamiltonian the coupling constants do not change under the scale transformationR.

Physically the transformationR integrates out short distance physics. The consequence for physics
at long distances is that we have to replace our Hamiltonian by a new one with different values for the
coupling constants. That is, our ignorance of the details of the physics going on at short distances result
in a renormalizationof the coupling constants of the Hamiltonian that describes the long range physical
processes. It is important to stress that althoughR is sometimes called a renormalization group trans-
formation in fact this is a misnomer. Transformations between Hamiltonians defined byR do not form
a group: since these transformations proceed by integrating out degrees of freedom at short scales they
cannot be inverted.

In statistical mechanics fixed points under renormalization group transformations with ξ = ∞
are associated with phase transitions. From our previous discussion we can conclude that the space
of Hamiltonians is divided in regions corresponding to the basins of attractionof the different fixed
points. We can ask ourselves now about the stability of those fixed points. Suppose we have a statistical
system described by a fixed-point HamiltonianH⋆ and we perturb it by changing the coupling constant
associated with an interaction termO. This is equivalent to replaceH⋆ by the perturbed Hamiltonian

H = H⋆ + δλO, (403)

whereδλ is the perturbation of the coupling constant corresponding toO (we can also consider pertur-
bations in more than one coupling constant). At the same time thinking of theλa’s as coordinates in the
space of all Hamiltonians this corresponds to moving slightly away from the position of the fixed point.

The question to decide now is in which direction the renormalization group flow will take the
perturbed system. Working at first order inδλ there are three possibilities:

– The renormalization group flow takes the system back to the fixed point. In this case the corre-
sponding interactionO is calledirrelevant.

– R takes the system away from the fixed point. If this is what happens the interaction is called
relevant.

– It is possible that the perturbation actually does not take the system away from the fixed point at
first order inδλ. In this case the interaction is said to bemarginaland it is necessary to go to higher
orders inδλ in order to decide whether the system moves to or away the fixed point, or whether
we have a family of fixed points.

Therefore we can picture the action of the renormalization group transformation as a flow in the
space of coupling constants. In Fig. 17 we have depicted an example of such a flow in the case of a
system with two coupling constantsλ1 andλ2. In this example we find two fixed points, one at the
origin O and another atF for a finite value of the couplings. The arrows indicate the direction in which
the renormalization group flow acts. The free theory atλ1 = λ2 = 0 is a stable fix point since any
perturbationδλ1, δλ2 > 0 makes the theory flow back to the free theory at long distances. On the
other hand, the fixed pointF is stable with respect to certain type of perturbations (along the line with
incoming arrows) whereas for any other perturbations the system flows either to the free theory at the
origin or to a theory with infinite values for the couplings.

Quantum field theory. Let us see now how these ideas of the renormalization group apply to
Field Theory. Let us begin with a quantum field theory defined by the Lagrangian

L[φa] = L0[φa] +
∑

i

giOi[φa], (404)
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Fig. 17: Example of a renormalization group flow.

whereL0[φa] is the kinetic part of the Lagrangian andgi are the coupling constants associated with the
operatorsOi[φa]. In order to make sense of the quantum theory we introduce a cutoff in momentaΛ. In
principle we include all operatorsOi compatible with the symmetries of the theory.

In section 8.2 we saw how in the cases of QED and QCD, the value of the coupling constant
changed with the scale from its value at the scaleΛ. We can understand now this behavior along the lines
of the analysis presented above for the Ising model. If we would like to compute the effective dynamics
of the theory at an energy scaleµ < Λ we only have to integrate out all physical models with energies
between the cutoffΛ and the scale of interestµ. This is analogous to what we did in the Ising model by
replacing the original spins by the block spins. In the case of field theory the effective actionS[φa, µ] at
scaleµ can be written in the language of functional integration as

eiS[φ
′
a,µ] =

∫

µ<p<Λ

∏

a

Dφa e
iS[φa,Λ]. (405)

HereS[φa,Λ] is the action at the cutoff scale

S[φa,Λ] =

∫
d4x

{
L0[φa] +

∑

i

gi(Λ)Oi[φa]

}
(406)

and the functional integral in Eq. (405) is carried out only over the field modes with momenta in the
rangeµ < p < Λ. The action resulting from integrating out the physics at the intermediate scales
betweenΛ andµ depends not on the original field variableφa but on some renormalized fieldφ′

a. At
the same time the couplingsgi(µ) differ from their values at the cutoff scalegi(Λ). This is analogous to
what we learned in the Ising model: by integrating out short distance physics we ended up with a new
Hamiltonian depending on renormalized effective spin variables and with renormalized values for the
coupling constants. Therefore the resulting effective action at scaleµ can be written as

S[φ′
a, µ] =

∫
d4x

{
L0[φ

′
a] +

∑

i

gi(µ)Oi[φ
′
a]

}
. (407)

This Wilsonian interpretation of renormalization sheds light to what in section 8.1might have looked
just a smart way to get rid of the infinities. The running of the coupling constant with the energy scale
can be understood now as a way of incorporating into an effective actionat scaleµ the effects of field
excitations at higher energiesE > µ.
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As in statistical mechanics there are also quantum field theories that are fixedpoints of the renor-
malization group flow, i.e. whose coupling constants do not change with the scale. We have encountered
them already in Section 8.2 when studying the properties of the beta function.The most trivial example
of such theories are massless free quantum field theories, but there arealso examples of four-dimensional
interacting quantum field theories which are scale invariant. Again we can ask the question of what hap-
pens when a scale invariant theory is perturbed with some operator. In general the perturbed theory is not
scale invariant anymore but we may wonder whether the perturbed theoryflows at low energies towards
or away the theory at the fixed point.

In quantum field theory this can be decided by looking at the canonical dimension d[O] of the
operatorO[φa] used to perturb the theory at the fixed point. In four dimensions the three possibilities are
defined by:

– d[O] > 4: irrelevant perturbation. The running of the coupling constants takes thetheory back to
the fixed point.

– d[O] < 4: relevant perturbation. At low energies the theory flows away from the scale-invariant
theory.

– d[O] = 4: marginal deformation. The direction of the flow cannot be decided only ondimensional
grounds.

As an example, let us consider first a massless fermion theory perturbed by a four-fermion inter-
action term

L = iψ∂/ψ − 1

M2
(ψψ)2. (408)

This is indeed a perturbation by an irrelevant operator, since in four-dimensions[ψ] = 3
2 . Interactions

generated by the extra term are suppressed at low energies since typically their effects are weighted by
the dimensionless factorE

2

M2 , whereE is the energy scale of the process. This means that as we try
to capture the relevant physics at lower and lower energies the effect of the perturbation is weaker and
weaker rendering in the infrared limitE → 0 again a free theory. Hence, the irrelevant perturbation in
(408) makes the theory flow back to the fixed point.

On the other hand relevant operators dominate the physics at low energies. This is the case, for
example, of a mass term. As we lower the energy the mass becomes more importantand once the energy
goes below the mass of the field its dynamics is completely dominated by the mass term. This is, for
example, how Fermi’s theory of weak interactions emerges from the standard model at energies below
the mass of theW± boson

2u e+

d

W+

νe
=⇒3u

e+

d

νe

At energies belowMW = 80.4 GeV the dynamics of theW+ boson is dominated by its mass term and
therefore becomes nonpropagating, giving rise to the effective four-fermion Fermi theory.

To summarize our discussion so far, we found that while relevant operators dominate the dynamics
in the infrared, taking the theory away from the fixed point, irrelevant perturbations become suppressed
in the same limit. Finally we consider the effect of marginal operators. As an example we take the
interaction term in massless QED,O = ψγµψAµ. Taking into account that ind = 4 the dimension of
the electromagnetic potential is[Aµ] = 1 the operatorO is a marginal perturbation. In order to decide
whether the fixed point theory

L0 = −1

4
FµνF

µν + iψD/ ψ (409)
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is restored at low energies or not we need to study the perturbed theory inmore detail. This we have
done in section 8.1 where we learned that the effective coupling in QED decreases at low energies. Then
we conclude that the perturbed theory flows towards the fixed point in the infrared.

As an example of a marginal operator with the opposite behavior we can write the Lagrangian for
a SU(Nc) gauge theory,L = −1

4F
a
µνF

aµν , as

L = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAa ν − ∂νAaµ)− 4gfabcAa

µA
b
ν ∂

µAc ν

+ g2fabcfadeAb
µA

c
νA

dµAe ν ≡ L0 +Og, (410)

i.e. a marginal perturbation of the free theory described byL0, which is obviously a fixed point under
renormalization group transformations. Unlike the case of QED we know thatthe full theory is asymp-
totically free, so the coupling constant grows at low energies. This implies that the operatorOg becomes
more and more important in the infrared and therefore the theory flows awaythe fixed point in this limit.

It is very important to notice here that in the Wilsonian view the cutoff is not necessarily regarded
as just some artifact to remove infinities but actually has a physical origin. For example in the case of
Fermi’s theory ofβ-decay there is a natural cutoffΛ = MW at which the theory has to be replaced by the
standard model. In the case of the standard model itself the cutoff can be taken at Planck scaleΛ ≃ 1019

GeV or the Grand Unification scaleΛ ≃ 1016 GeV, where new degrees of freedom are expected to
become relevant. The cutoff serves the purpose of cloaking the range of energies at which new physics
has to be taken into account.

Provided that in the Wilsonian approach the quantum theory is always defined with a physical
cutoff, there is no fundamental difference between renormalizable and nonrenormalizable theories. Ac-
tually, a renormalizable field theory, like the standard model, can generate nonrenormalizable operators
at low energies such as the effective four-fermion interaction of Fermi’stheory. They are not sources
of any trouble if we are interested in the physics at scales much below the cutoff, E ≪ Λ, since their
contribution to the amplitudes will be suppressed by powers ofE

Λ .

9 Special topics

9.1 Creation of particles by classical fields

Particle creation by a classical source.In a free quantum field theory the total number of particles
contained in a given state of the field is a conserved quantity. For example, inthe case of the quantum
scalar field studied in section 3 we have that the number operator commutes with the Hamiltonian

n̂ ≡
∫

d3k

(2π)3
1

2ωk
α†(~k)α(~k), [Ĥ, n̂] = 0. (411)

This means that any states with a well-defined number of particle excitations will preserve this number
at all times. The situation, however, changes as soon as interactions are introduced, since in this case
particles can be created and/or destroyed as a result of the dynamics.

Another case in which the number of particles might change is if the quantum theory is coupled
to a classical source. The archetypical example of such a situation is the Schwinger effect, in which a
classical strong electric field produces the creation of electron-positronpairs out of the vacuum. However,
before plunging into this more involved situation we can illustrate the relevant physics involved in the
creation of particles by classical sources with the help of the simplest example: a free scalar field theory
coupled to a classical external sourceJ(x). The action for such a theory can be written as

S =

∫
d4x

[
1

2
∂µφ(x)∂

µφ(x)− m2

2
φ(x)2 + J(x)φ(x)

]
, (412)
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whereJ(x) is a real function of the coordinates. Its identification with a classical source is obvious once
we calculate the equations of motion

(
∇2 +m2

)
φ(x) = J(x). (413)

Our plan is to quantize this theory but, unlike the case analyzed in section 3, now the presence of the
sourceJ(x) makes the situation a bit more involved. The general solution to the equations ofmotion can
be written in terms of the retarded Green function for the Klein-Gordon equation as

φ(x) = φ0(x) + i

∫
d4x′GR(x− x′)J(x′), (414)

whereφ0(x) is a general solution to the homogeneous equation and

GR(t, ~x) =

∫
d4k

(2π)4
i

k2 −m2 + iǫ sign(k0)
e−ik·x

= i θ(t)

∫
d3k

(2π)3
1

2ωk

(
e−iωkt+~k·~x − eiωkt−i~p·~x

)
, (415)

with θ(x) the Heaviside step function. The integration contour to evaluate the integral overp0 surrounds
the poles atp0 = ±ωk from above. SinceGR(t, ~x) = 0 for t < 0, the functionφ0(x) corresponds to the
solution of the field equation att → −∞, before the interaction with the external source21

To make the argument simpler we assume thatJ(x) is switched on att = 0, and only last for a
time τ , that is

J(t, ~x) = 0 if t < 0 or t > τ. (416)

We are interested in a solution of (413) for times after the external source has been switched off,t > τ .
In this case the expression (415) can be written in terms of the Fourier modesJ̃(ω,~k) of the source as

φ(t, ~x) = φ0(x) + i

∫
d3k

(2π)3
1

2ωk

[
J̃(ωk,~k)e

−iωkt+i~k·~x − J̃(ωk,~k)
∗eiωkt−i~k·~x

]
. (417)

On the other hand, the general solutionφ0(x) has been already computed in Eq. (77). Combining this
result with Eq. (417) we find the following expression for the late time general solution to the Klein-
Gordon equation in the presence of the source

φ(t, x) =

∫
d3k

(2π)3
1√
2ωk

{[
α(~k) +

i√
2ωk

J̃(ωk,~k)

]
e−iωkt+i~k·~x

+

[
α∗(~k)− i√

2ωk
J̃(ωk,~k)

∗
]
eiωkt−i~k·~x

}
. (418)

We should not forget that this is a solution valid for timest > τ , i.e. once the external source has been
disconnected. On the other hand, fort < 0 we find from Eqs. (414) and (415) that the general solution
is given by Eq. (77).

Now we can proceed to quantize the theory. The conjugate momentumπ(x) = ∂0φ(x) can be
computed from Eqs. (77) and (418). Imposing the canonical equal time commutation relations (74) we
find thatα(~k), α†(~k) satisfy the creation-annihilation algebra (51). From our previous calculation we
find that for t > τ the expansion of the operatorφ(x) in terms of the creation-annihilation operators
α(~k), α†(~k) can be obtained from the one fort < 0 by the replacement

α(~k) −→ β(~k) ≡ α(~k) +
i√
2ωk

J̃(ωk,~k),

21We could have taken instead the advanced propagatorGA(x) in which caseφ0(x) would correspond to the solution to the
equation at large times, after the interaction withJ(x).
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α†(~k) −→ β†(~k) ≡ α†(~k)− i√
2ωk

J̃(ωk,~k)
∗. (419)

Actually, sinceJ̃(ωk,~k) is a c-number, the operatorsβ(~k), β†(~k) satisfy the same algebra asα(~k), α†(~k)
and therefore can be interpreted as well as a set of creation-annihilationoperators. This means that we
can define two vacuum states,|0−〉, |0+〉 associated with both sets of operators

α(~k)|0−〉 = 0

β(~k)|0+〉 = 0



 ∀ ~k. (420)

For an observer att < 0, α(~k) andα(~k) are the natural set of creation-annihilation operators
in terms of which to expand the field operatorφ(x). After the usual zero-point energy subtraction the
Hamiltonian is given by

Ĥ(−) =
1

2

∫
d3k

(2π)3
α†(~k)α(~k) (421)

and the ground state of the spectrum for this observer is the vacuum|0−〉. At the same time, a second
observer att > τ will also see a free scalar quantum field (the source has been switched off at t = τ ) and
consequently will expandφ in terms of the second set of creation-annihilation operatorsβ(~k), β†(~k). In
terms of this operators the Hamiltonian is written as

Ĥ(+) =
1

2

∫
d3k

(2π)3
β†(~k)β(~k). (422)

Then for this late-time observer the ground state of the Hamiltonian is the secondvacuum state|0+〉.
In our analysis we have been working in the Heisenberg picture, where states are time-independent

and the time dependence comes in the operators. Therefore the states of thetheory are globally defined.
Suppose now that the system is in the “in” ground state|0−〉. An observer att < 0 will find that there
are no particles

n̂(−)|0−〉 = 0. (423)

However the late-time observer will find that the state|0−〉 contains an average number of particles given
by

〈0−|n̂(+)|0−〉 =
∫

d3k

(2π)3
1

2ωk

∣∣∣J̃(ωk,~k)
∣∣∣
2
. (424)

Moreover,|0−〉 is no longer the ground state for the “out” observer. On the contrary, thisstate have a
vacuum expectation value for̂H(+)

〈0−|Ĥ(+)|0−〉 =
1

2

∫
d3k

(2π)3

∣∣∣J̃(ωk,~k)
∣∣∣
2
. (425)

The key to understand what is going on here lies in the fact that the external source breaks the
invariance of the theory under space-time translations. In the particular case we have studied here where
J(x) has support over a finite time interval0 < t < τ , this implies that the vacuum is not invariant
under time translations, so observers at different times will make differentchoices of vacuum that will
not necessarily agree with each other. This is clear in our example. An observer int < τ will choose the
vacuum to be the lowest energy state of her Hamiltonian,|0−〉. On the other hand, the second observer
at late timest > τ will naturally choose|0+〉 as the vacuum. However, for this second observer, the
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Fig. 18: Pair creation by a electric field in the Dirac sea picture.

state|0−〉 is not the vacuum of his Hamiltonian, but actually an excited state that is a superposition of
states with well-defined number of particles. In this sense it can be said that the external source has the
effect of creating particles out of the “in” vacuum. Besides, this breaking of time translation invariance
produces a violation in the energy conservation as we see from Eq. (425). Particles are actually created
from the energy pumped into the system by the external source.

The Schwinger effect.A classical example of creation of particles by a external field was pointed
out by Schwinger [44] and consists of the creation of electron-positronpairs by a strong electric field. In
order to illustrate this effect we are going to follow a heuristic argument based on the Dirac sea picture
and the WKB approximation.

In the absence of an electric field the vacuum state of a spin-1
2 field is constructed by filling all the

negative energy states as depicted in Fig. 2. Let us now connect a constant electric field~E = E~ux in the
range0 < x < L created by a electrostatic potential

V (~r) =





0 x < 0
−Ex 0 < x < L
−EL x > L

(426)

After the field has been switched on, the Dirac sea looks like in Fig. 18. In particular we find that if
eEL > 2m there are negative energy states atx > L with the same energy as the positive energy states
in the regionx < 0. Therefore it is possible for an electron filling a negative energy state withenergy
close to−2m to tunnel through the forbidden region into a positive energy state. The interpretation of
such a process is the production of an electron-positron pair out of the electric field.

We can compute the rate at which such pairs are produced by using the WKBapproximation.
Focusing for simplicity on an electron on top of the Fermi surface nearx = L with energyE0, the
transmission coefficient in this approximation is given by22

TWKB = exp

[
−2

∫ 1
eE

“

E0+
√

m2+~p 2
T

”

1
eE

“

E0−
√

m2+~p 2
T

”

dx

√
m2 − [E0 − eE(x− x0)]

2 + ~p 2
T

]

22Notice that the electron satisfy the relativistic dispersion relationE =
p

~p 2 +m2 + V and therefore−p2x = m2 − (E −
V )2 + ~p 2

T . The integration limits are set by those values ofx at whichpx = 0.
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= exp
[
− π

eE
(
~p 2
T +m2

)]
, (427)

wherep2T ≡ p2y + p2z. This gives the transition probability per unit time and per unit cross sectiondydz
for an electron in the Dirac sea with transverse momentum~pT and energyE0. To get the total probability
per unit time and per unit volume we have to integrate over all possible values of ~pT andE0. Actually,
in the case of the energy, because of the relation betweenE0 and the coordinatex at which the particle
penetrates into the barrier we can writedE0

2π = eE
2πdx and the total probability per unit time and per unit

volume for the creation of a pair is given by

W = 2

(
eE
2π

)∫
d2pT
(2π)2

e−
π
eE (~p

2
T +m2) =

e2E2

4π3
e−

πm2

eE , (428)

where the factor of2 accounts for the two polarizations of the electron.

Then production of electron-positron pairs is exponentially suppressedand it is only sizeable for
strong electric fields. To estimate its order of magnitude it is useful to restore the powers ofc and~ in
(428)

W =
e2E2

4π3c~2
e−

πm2c3

~eE (429)

The exponential suppression of the pair production disappears when the electric field reaches the critical
valueEcrit at which the exponent is of order one

Ecrit =
m2c3

~e
≃ 1.3× 1016V cm−1. (430)

This is indeed a very strong field which is extremely difficult to produce. A similar effect, however,
takes place also in a time-varying electric field [45] and there is the hope that pair production could be
observed in the presence of the alternating electric field produced by a laser.

The heuristic derivation that we followed here can be made more precise in QED. There the decay
of the vacuum into electron-positron pairs can be computed from the imaginarypart of the effective
actionΓ[Aµ] in the presence of a classical gauge potentialAµ

iΓ[Aµ] ≡4+5 +6 + . . .

= log det

[
1− ie/A

1

i∂/−m

]
. (431)

This determinant can be computed using the standard heat kernel techniques. The probability of pair
production is proportional to the imaginary part ofiΓ[Aµ] and gives

W =
e2E2

4π3

∞∑

n=1

1

n2
e−nπm2

eE . (432)

Our simple argument based on tunneling in the Dirac sea gave only the leading term of Schwinger’s result
(432). The remaining terms can be also captured in the WKB approximation by taking into account the
probability of production of several pairs, i.e. the tunneling of more than one electron through the barrier.

Here we have illustrated the creation of particles by semiclassical sources inquantum field theory
using simple examples. Nevertheless, what we learned has important applications to the study of quan-
tum fields in curved backgrounds. In quantum field theory in Minkowski space-time the vacuum state
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is invariant under the Poincaré group and this, together with the covariance of the theory under Lorentz
transformations, implies that all inertial observers agree on the number of particles contained in a quan-
tum state. The breaking of such invariance, as happened in the case of coupling to a time-varying source
analyzed above, implies that it is not possible anymore to define a state which would be recognized as
the vacuum by all observers.

This is precisely the situation when fields are quantized on curved backgrounds. In particular, if
the background is time-dependent (as it happens in a cosmological setup or for a collapsing star) different
observers will identify different vacuum states. As a consequence what one observer call the vacuum will
be full of particles for a different observer. This is precisely what is behind the phenomenon of Hawking
radiation [46]. The emission of particles by a physical black hole formed from gravitational collapse of
a star is the consequence of the fact that the vacuum state in the asymptotic past contain particles for an
observer in the asymptotic future. As a consequence, a detector located far away from the black hole
detects a stream of thermal radiation with temperature

THawking =
~c3

8πGN kM
(433)

whereM is the mass of the black hole,GN is Newton’s constant andk is Boltzmann’s constant. There
are several ways in which this results can be obtained. A more heuristic wayis perhaps to think of this
particle creation as resulting from quantum tunneling of particles across thepotential barrier posed by
gravity [47].

9.2 Supersymmetry

One of the things that we have learned in our journey around the landscape of quantum field theory
is that our knowledge of the fundamental interactions in Nature is based on the idea of symmetry, and
in particular gauge symmetry. The Lagrangian of the standard model can bewritten just including all
possible renormalizable terms (i.e. with canonical dimension smaller o equal to 4)compatible with the
gauge symmetry SU(3)×SU(2)×U(1) and Poincaré invariance. All attempts to go beyond start with the
question of how to extend the symmetries of the standard model.

As explained in Section 5.1, in a quantum field theoretical description of the interaction of elemen-
tary particles the basic observable quantity to compute is the scattering orS-matrix giving the probability
amplitude for the scattering of a number of incoming particles with a certain momentuminto some final
products

A(in −→ out) = 〈~p1′, . . . ;out|~p1, . . . ; in〉. (434)

An explicit symmetry of the theory has to be necessarily a symmetry of theS-matrix. Hence it is fair to
ask what is the largest symmetry of theS-matrix.

Let us ask this question in the simple case of the scattering of two particles with four-momentap1
andp2 in thet-channel

7p1p2

p′1

p′2

We will make the usual assumptions regarding positivity of the energy and analyticity. Invariance of the
theory under the Poincaré group implies that the amplitude can only depend onthe scattering angleϑ
through

t = (p′1 − p1)
2 = 2

(
m2

1 − p1 · p′1
)
= 2

(
m2

1 − E1E
′
1 + |~p1||~p1′| cosϑ

)
. (435)
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If there would be any extra bosonic symmetry of the theory it would restrict the scattering angle to a set
of discrete values. In this case theS-matrix cannot be analytic since it would vanish everywhere except
for the discrete values selected by the extra symmetry.

Actually, the only way to extend the symmetry of the theory without renouncing tothe analyticity
of the scattering amplitudes is to introduce “fermionic” symmetries, i.e. symmetries whose generators
are anticommuting objects [48]. This means that in addition to the generators of the Poincaré group23

Pµ,Mµν and the ones for the internal gauge symmetriesG, we can introduce a number of fermionic gen-
eratorsQI

a, Qȧ I (I = 1, . . . ,N ), whereQȧ I = (QI
a)

†. The most general algebra that these generators
satisfy is theN -extended supersymmetry algebra [49]

{QI
a, Qḃ J} = 2σµ

aḃ
Pµδ

I
J ,

{QI
a, Q

J
b } = 2εabZIJ , (436)

{QI
ȧ, Q

J
ḃ } = 2εȧḃZ

IJ
, (437)

whereZIJ ∈ C commute with any other generator and satisfiesZIJ = −ZJI . Besides we have the
commutators that determine the Poincaré transformations of the fermionic generatorsQI

a, Qȧ J

[QI
a, P

µ] = [Qȧ I , P
µ] = 0,

[QI
a,M

µν ] =
1

2
(σµν) b

a QI
b , (438)

[Qa I ,M
µν ] = −1

2
(σµν) ḃ

ȧ Qḃ I ,

whereσ0i = −iσi, σij = εijkσk andσµν = (σµν)†. These identities simply mean thatQI
a, Qȧ J

transform respectively in the(12 ,0) and(0, 12) representations of the Lorentz group.

We know that the presence of a global symmetry in a theory implies that the spectrum can be
classified in multiplets with respect to that symmetry. In the case of supersymmetrystart with the case
caseN = 1 in which there is a single pair of superchargesQa, Qȧ satisfying the algebra

{Qa, Qḃ} = 2σµ

aḃ
Pµ, {Qa, Qb} = {Qȧ, Qḃ} = 0. (439)

Notice that in theN = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry algebra (439), starting with the massless
case. Given a state|k〉 satisfyingk2 = 0, we can always find a reference frame where the four-vectorkµ

takes the formkµ = (E, 0, 0, E). Since the theory is Lorentz covariant we can obtain the representation
of the supersymmetry algebra in this frame where the expressions are simpler. In particular, the right-
hand side of the first anticommutator in Eq. (439) is given by

2σµ

aḃ
Pµ = 2(P 0 − σ3P 3) =

(
0 0
0 4E

)
. (440)

Therefore the algebra of supercharges in the massless case reducesto

{Q1, Q
†
1} = {Q1, Q

†
2} = 0,

{Q2, Q
†
2} = 4E. (441)

The commutator{Q1, Q
†
1} = 0 implies that the action ofQ1 on any state gives a zero-norm state of the

Hilbert space||Q1|Ψ〉|| = 0. If we want the theory to preserve unitarity we must eliminate these null

23The generatorsMµν are related with the ones for boost and rotations introduced in section 4.1 by J i ≡ M0i, M i =
1
2
εijkM jk. In this section we also use the “dotted spinor” notation, in which spinors in the(1

2
,0) and(0, 1

2
) representations

of the Lorentz group are indicated respectively by undotted (a, b, . . .) and dotted (̇a, ḃ, . . .) indices.
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states from the spectrum. This is equivalent to settingQ1 ≡ 0. On the other hand, in terms of the second
generatorQ2 we can define the operators

a =
1

2
√
E
Q2, a† =

1

2
√
E
Q†

2, (442)

which satisfy the algebra of a pair of fermionic creation-annihilation operators, {a, a†} = 1, a2 =
(a†)2 = 0. Starting with a vacuum statea|λ〉 = 0 with helicity λ we can build the massless multiplet

|λ〉, |λ+ 1
2〉 ≡ a†|λ〉. (443)

Here we consider two important cases:

– Scalar multiplet: we take the vacuum state to have zero helicity|0+〉 so the multiplet consists of a
scalar and a helicity-12 state

|0+〉, | 12〉 ≡ a†|0+〉. (444)

However, this multiplet is not invariant under the CPT transformation which reverses the sign of
the helicity of the states. In order to have a CPT-invariant theory we have toadd to this multiplet
its CPT-conjugate which can be obtain from a vacuum state with helicityλ = −1

2

|0−〉, | −1
2〉. (445)

Putting them together we can combine the two zero helicity states with the two fermionicones into
the degrees of freedom of a complex scalar field and a Weyl (or Majorana) spinor.

– Vector multiplet: now we take the vacuum state to have helicityλ = 1
2 , so the multiplet contains

also a massless state with helicityλ = 1

| 12〉, |1〉 ≡ a†| 12〉. (446)

As with the scalar multiplet we add the CPT conjugated obtained from a vacuum state with helicity
λ = −1

| − 1
2〉, | − 1〉, (447)

which together with (446) give the propagating states of a gauge field and aspin-12 gaugino.

In both cases we see the trademark of supersymmetric theories: the number of bosonic and fermionic
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeat the previous analysis for each supersym-
metry charge. At the end, we haveN sets of fermionic creation-annihilation operators{aI , a†I} = δIJ ,

(aI)
2 = (a†I)

2 = 0. Let us work out the case ofN = 8 supersymmetry. Since for several reasons we do
not want to have states with helicity larger than2, we start with a vacuum state|−2〉 of helicityλ = −2.
The rest of the states of the supermultiplet are obtained by applying the eightdifferent creation operators
a†I to the vacuum:

λ = 2 : a†1 . . . a
†
8| − 2〉

(
8

8

)
= 1 state,

λ =
3

2
: a†I1 . . . a

†
I7
| − 2〉

(
8

7

)
= 8 states,

λ = 1 : a†I1 . . . a
†
I6
| − 2〉

(
8

6

)
= 28 states,
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λ =
1

2
: a†I1 . . . a

†
I5
| − 2〉

(
8

5

)
= 56 states,

λ = 0 : a†I1 . . . a
†
I4
| − 2〉

(
8

4

)
= 70 states, (448)

λ = −1

2
: a†I1a

†
I2
a†I3 | − 2〉

(
8

3

)
= 56 states,

λ = −1 : a†I1a
†
I2
| − 2〉

(
8

2

)
= 28 states,

λ = −3

2
: a†I1 | − 2〉

(
8

1

)
= 8 states,

λ = −2 : | − 2〉 1 state.

Putting together the states with opposite helicity we find that the theory contains:

– 1 spin-2 fieldgµν (a graviton),

– 8 spin-32 gravitino fieldsψI
µ,

– 28 gauge fieldsA[IJ ]
µ ,

– 56 spin-12 fermionsψ[IJK],

– 70 scalarsφ[IJKL],

where by[IJ...] we have denoted that the indices are antisymmetrized. We see that, unlike the massless
multiplets ofN = 1 supersymmetry studied above, this multiplet is CPT invariant by itself. As in the
case of the masslessN = 1 multiplet, here we also find as many bosonic as fermionic states:

bosons: 1 + 28 + 70 + 28 + 1 = 128 states,
fermions: 8 + 56 + 56 + 8 = 128 states.

Now we study briefly the case of massive representations|k〉, k2 = M2. Things become simpler
if we work in the rest frame whereP 0 = M and the spatial components of the momentum vanish. Then,
the supersymmetry algebra becomes:

{QI
a, Qḃ J} = 2Mδaḃδ

I
J . (449)

We proceed now in a similar way to the massless case by defining the operators

aIa ≡ 1√
2M

QI
a, a†ȧ I ≡ 1√

2M
Qȧ I . (450)

The multiplets are found by choosing a vacuum state with a definite spin. For example, forN = 1 and
taking a spin-0 vacuum|0〉 we find three states in the multiplet transforming irreducibly with respect to
the Lorentz group:

|0〉, a†ȧ|0〉, εȧḃa†ȧa
†
ḃ
|0〉, (451)

which, once transformed back from the rest frame, correspond to the physical states of two spin-0 bosons
and one spin-12 fermion. ForN -extended supersymmetry the corresponding multiplets can be worked
out in a similar way.

The equality between bosonic and fermionic degrees of freedom is at the root of many of the
interesting properties of supersymmetric theories. For example, in section 4 we computed the divergent
vacuum energy contributions for each real bosonic or fermionic propagating degree of freedom is24

Evac = ±1

2
δ(~0)

∫
d3pωp, (452)

24For a boson, this can be read off Eq. (80). In the case of fermions, the result of Eq. (134) gives the vacuum energy
contribution of the four real propagating degrees of freedom of a Dirac spinor.
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where the sign± corresponds respectively to bosons and fermions. Hence, for a supersymmetric the-
ory the vacuum energy contribution exactly cancels between bosons andfermions. This boson-fermion
degeneracy is also responsible for supersymmetric quantum field theoriesbeing less divergent than non-
supersymmetric ones.

Appendix: A crash course in Group Theory

In this Appendix we summarize some basic facts about Group Theory. Given a groupG a representation
of G is a correspondence between the elements ofG and the set of linear operators acting on a vector
spaceV , such that for each element of the groupg ∈ G there is a linear operatorD(g)

D(g) : V −→ V (453)

satisfying the group operations

D(g1)D(g2) = D(g1g2), D(g−1
1 ) = D(g1)

−1, g1, g2 ∈ G. (454)

The representationD(g) is irreducible if and only if the only operatorsA : V → V commuting with all
the elements of the representationD(g) are the ones proportional to the identity

[D(g), A] = 0, ∀g ⇐⇒ A = λ1, λ ∈ C (455)

More intuitively, we can say that a representation is irreducible if there is noproper subspaceU ⊂ V
(i.e. U 6= V andU 6= ∅) such thatD(g)U ⊂ U for every elementg ∈ G.

Here we are specially interested in Lie groups whose elements are labelled bya number of con-
tinuous parameters. In mathematical terms this means that a Lie group is a manifoldM together with
an operationM × M −→ M that we will call multiplication that satisfies the associativity property
g1 · (g2 · g3) = (g1 · g2) · g3 together with the existence of unityg1 = 1g = g,for everyg ∈ M and
inversegg−1 = g−1g = 1.

The simplest example of a Lie group is SO(2), the group of rotations in the plane. Each element
R(θ) is labelled by the rotation angleθ, with the multiplication acting asR(θ1)R(θ2) = R(θ1 + θ2).
Because the angleθ is defined only modulo2π, the manifold of SO(2) is a circumferenceS1.

One of the interesting properties of Lie groups is that in a neighborhood ofthe identity element
they can be expressed in terms of a set of generatorsT a (a = 1, . . . ,dimG) as

D(g) = exp(−iαaT
a) ≡

∞∑

n=0

(−i)n

n!
αa1 . . . αanT

a1 . . . T an , (456)

whereαa ∈ C are a set of coordinates ofM in a neighborhood of1. Because of the general Baker-
Campbell-Haussdorf formula, the multiplication of two group elements is encodedin the value of the
commutator of two generators, that in general has the form

[T a, T b] = ifabcT c, (457)

wherefabc ∈ C are called the structure constants. The set of generators with the commutatoroperation
form the Lie algebra associated with the Lie group. Hence, given a representation of the Lie algebra
of generators we can construct a representation of the group by exponentiation (at least locally near the
identity).

We illustrate these concept with some particular examples. For SU(2) each group element is
labelled by three real numberαi, i = 1, 2, 3. We have two basic representations: one is the fundamental
representation (or spin12 ) defined by

D 1
2
(αi) = e−

i
2
αiσ

i
, (458)

89

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

89



with σi the Pauli matrices. The second one is the adjoint (or spin 1) representationwhich can be written
as

D1(αi) = e−iαiJ
i
, (459)

where

J1 =




0 0 0
0 0 1
0 −1 0


 , J2 =




0 0 −1
0 0 0
1 0 0


 , J3 =




0 1 0
−1 0 0
0 0 0


 . (460)

Actually, J i (i = 1, 2, 3) generate rotations around thex, y andz axis respectively. Representations of
spinj ∈ N+ 1

2 can be also constructed with dimension

dimDj(g) = 2j + 1. (461)

As a second example we consider SU(3). This group has two basic three-dimensional representa-
tions denoted by3 and3 which in QCD are associated with the transformation of quarks and antiquarks
under the color gauge symmetry SU(3). The elements of these representations can be written as

D3(α
a) = e

i
2
αaλa , D3(α

a) = e−
i
2
αaλT

a (a = 1, . . . , 8), (462)

whereλa are the eight hermitian Gell-Mann matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , (463)

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =




1√
3

0 0

0 1√
3

0

0 0 − 2√
3


 .

Hence the generators of the representations3 and3 are given by

T a(3) =
1

2
λa, T a(3) = −1

2
λT
a . (464)

Irreducible representations can be classified in three groups: real, complex and pseudoreal.

– Real representations: a representation is said to be real if there is asymmetric matrixS which acts
as intertwiner between the generators and their complex conjugates

T
a
= −ST aS−1, ST = S. (465)

This is for example the case of the adjoint representation of SU(2) generated by the matrices (460)

– Pseudoreal representations: are the ones for which anantisymmetric matrixS exists with the
property

T
a
= −ST aS−1, ST = −S. (466)

As an example we can mention the spin-1
2 representation of SU(2) generated by1

2σ
i.
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– Complex representations: finally, a representation is complex if the generators and their complex
conjugate are not related by a similarity transformation. This is for instance thecase of the two
three-dimensional representations3 and3 of SU(3).

There are a number of invariants that can be constructed associated with an irreducible represen-
tationR of a Lie groupG and that can be used to label such a representation. IfT a

R are the generators
in a certain representationR of the Lie algebra, it is easy to see that the matrix

∑dimG
a=1 T a

RT
a
R commutes

with every generatorT a
R. Therefore, because of Schur’s lemma, it has to be proportional to the identity25.

This defines the Casimir invariantC2(R) as

dimG∑

a=1

T a
RT

a
R = C2(R)1. (467)

A second invariantT2(R) associated with a representationR can also be defined by the identity

TrT a
RT

b
R = T2(R)δab. (468)

Actually, taking the trace in Eq. (467) and combining the result with (468) we find that both invariants
are related by the identity

C2(R) dimR = T2(R) dimG, (469)

with dimR the dimension of the representationR.

These two invariants appear frequently in quantum field theory calculationswith nonabelian gauge
fields. For exampleT2(R) comes about as the coefficient of the one-loop calculation of the beta-function
for a Yang-Mills theory with gauge groupG. In the case of SU(N), for the fundamental representation,
we find the values

C2(fund) =
N2 − 1

2N
, T2(fund) =

1

2
, (470)

whereas for the adjoint representation the results are

C2(adj) = N, T2(adj) = N. (471)

A third invariantA(R) is specially important in the calculation of anomalies. As discussed in sec-
tion (7), the chiral anomaly in gauge theories is proportional to the group-theoretical factorTr

[
T a
R{T b

R, T
c
R}

]
.

This leads us to defineA(R) as

Tr
[
T a
R{T b

R, T
c
R}

]
= A(R)dabc, (472)

wheredabc is symmetric in its three indices and does not depend on the representation. Therefore, the
cancellation of anomalies in a gauge theory with fermions transformed in the representationR of the
gauge group is guaranteed if the corresponding invariantA(R) vanishes.

It is not difficult to prove thatA(R) = 0 if the representationR is either real or pseudoreal. Indeed,
if this is the case, then there is a matrixS (symmetric or antisymmetric) that intertwins the generators
T a
R and their complex conjugatesT

a
R = −ST a

RS
−1. Then, using the hermiticity of the generators we can

write

Tr
[
T a
R{T b

R, T
c
R}

]
= Tr

[
T a
R{T b

R, T
c
R}

]T
= Tr

[
T
a
R{T

b
R, T

c
R}

]
. (473)

25Schur’s lemma states that if there is a matrixA that commutes with all elements of an irreducible representation of a Lie
algebra, thenA = λ1, for someλ ∈ C.
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Now, using (465) or (466) we have

Tr
[
T
a
R{T

b
R, T

c
R}

]
= −Tr

[
ST a

RS
−1{ST b

RS
−1, ST c

RS
−1}

]
= −Tr

[
T a
R{T b

R, T
c
R}

]
, (474)

which proves thatTr
[
T a
R{T b

R, T
c
R}

]
and thereforeA(R) = 0 whenever the representation is real or pseu-

doreal. Since the gauge anomaly in four dimensions is proportional toA(R) this means that anomalies
appear only when the fermions transform in a complex representation of thegauge group.
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