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Abstract

In these lectures we present a few topics in quantum field theory in detail.
Some of them are conceptual and some more practical. They have been se-
lected because they appear frequently in current applications to pahidiep

and string theory.

1 Introduction

These notes summarize lectures presented at the 2005 CERN-CLAF Sctivalargiie (Argentina),
the 2009 CERN-CLAF School in Medellin (Colombia), the 2011 CERN-CLARG®I in Natal (Brazil),
the 2012 Asia-Europe-Pacific School of High Energy Physics in Fkk@dapan), and the 2013 CERN-
Latin-American School of High-Energy Physics in Arequipa (Peru)e @bdience in all occasions was
composed to a large extent by students in experimental High Energy Piwti@n important minority
of theorists. In nearly ten hours it is quite difficult to give a reasonablediiction to a subject as vast as
quantum field theory. For this reason the lectures were intended to pevelgew of those parts of the
subject to be used later by other lecturers. Although a cursory acqcaidth th subject of quantum
field theory is helpful, the only requirement to follow the lectures it is a workimgwledge of Quantum
Mechanics and Special Relativity.

The guiding principle in choosing the topics presented (apart to serveraduntions to later
courses) was to present some basic aspects of the theory that masesgptual subtleties. Those topics
one often is uncomfortable with after a first introduction to the subject. Among the have selected:

- The need to introduce quantum fields, with the great complexity this implies.

- Quantization of gauge theories and the réle of topology in quantum pher@omé have included
a brief study of the Aharonov-Bohm effect and Dirac’s explanatiohef quantization of the
electric charge in terms of magnetic monopoles.

Quantum aspects of global and gauge symmetries and their breaking.
Anomalies.
The physical idea behind the process of renormalization of quantuntfirdtdies.

- Some more specialized topics, like the creation of particle by classical fietHtha very basics
of supersymmetry.

These notes have been written following closely the original presentatithnwmerous clarifi-
cations. Sometimes the treatment given to some subjects has been extendeit;ufapthe discussion
of the Casimir effect and particle creation by classical backgroundse &imgroup theory was assumed
we have included an Appendix with a review of the basics concepts.

By lack of space and purpose, few proofs have been included.athstery often we illustrate a
concept or property by describing a physical situation where it arisegery much expanded version
of these lectures, following the same philosophy but including many otherstdpas appeared in book
form in [1]. For full details and proofs we refer the reader to the mantbteks in the subject, and in
particular in the ones provided in the bibliography [2—11]. Specially modegaentations, very much
in the spirit of these lectures, can be found in references [5, 6, LOW should nevertheless warn the
reader that we have been a bit cavalier about references. Our aifpelka to provide mostly a (not
exhaustive) list of reference for further reading. We apologize tedfamthors who feel misrepresented
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A note about notation

Before starting it is convenient to review the notation used. Through thetes we will be using the
metricn,, = diag(1,—1,—-1,—1). Derivatives with respect to the four-vectot = (ct, ) will be
denoted by the shorthand

0 10 =
oh=—=-= ) 1
B e (c ot’ V) @)
As usual space-time indices will be labelled by Greek letters (... = 0, 1, 2, 3) while Latin indices
will be used for spatial directions,(j,... = 1,2,3). In many expressions we will use the notatior

ot = (1,0") whereo® are the Pauli matrices

Pe(Ua) =) el ) @

Sometimes we use of the Feynman'’s slash notatiery*a,,. Finally, unless stated otherwise, we work
in natural unitsh = ¢ = 1.

2 Why do we need quantum field theory after all?

In spite of the impressive success of Quantum Mechanics in describimgcgpbysics, it was immedi-
ately clear after its formulation that its relativistic extension was not free btdifies. These problems
were clear already to Schrédinger, whose first guess for a waatieqwf a free relativistic particle was
the Klein-Gordon equation

0? 2 2 -
(W—v +m>w<t,m>:0. @)

This equation follows directly from the relativistic “mass-shell” identify = > 4+ m? using the corre-
spondence principle

p — —iV. 4
Plane wave solutions to the wave equation (3) are readily obtained

Y(t, ) = e”Putt = oTIBHIDE with E = 4w, = +/p2 + m2. (5)

In order to have a complete basis of functions, one must include planewitéiMeoth £ > 0 andE < 0.
This implies that given the conserved current

ju - %(Wk ,lﬂvb - @ﬂb* 7/1)7 (6)

its time-component ig° = E and therefore does not define a positive-definite probability density.

A complete, properly normalized, continuous basis of solutions of the Kleir@h equation (3)
labelled by the momentumican be defined as

1 o
fp(t> T) = 3 e—zwpt—&-zpw’

(2m)2 /2w,
1

. eiwptfiﬁ-f. (7)
(2m)2 /2w,

f-p(t,7)
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Fig. 1: Spectrum of the Klein-Gordon wave equation

Given the inner product

(h1lih2) = i/d333< 1002 — Ooy)y 1#2)
the states (7) form an orthonormal basis

(folfy) = o(@—9p"),
(foplfep) = —0(F—7"), (8)
(folf-p) = 0. 9)

The wave functiong, (¢, z) describes states with momentrand energy given by, = \/p'2 + m?2.
On the other hand, the statgs.,,) not only have a negative scalar product but they actually correspo
to negative energy states

100 f-p(t,T) = —/P2+m? f_,(t, ). (10)

Therefore the energy spectrum of the theory satisfigs> m and is unbounded from below (see Fig.
1). Although in a case of a free theory the absence of a ground statengcessarily a fatal problem,
once the theory is coupled to the electromagnetic field this is the source of ddl &frdisasters, since
nothing can prevent the decay of any state by emission of electromagtitaa.

The problem of the instability of the “first-quantized” relativistic wave equatian be heuristi-
cally tackled in the case of spi@particles, described by the Dirac equation

<—iﬁ +a-v-— m> W(t, &) =0, (11)

whered ands are4 x 4 matrices

=) e=( ) 12)
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Fig. 2: Creation of a particle-antiparticle pair in the Dirac seetynie

with ¢ the Pauli matrices, and the wave functio(t, #) has four components. The wave equation (11
can be thought of as a kind of “square root” of the Klein-Gordon eqondt®), since the latter can be
obtained as

T 2
(—zﬂgt +a-v-— m) (—iﬁgt +a-v-— m) Y(t,7) = <88152 - V4 m2> o(t, 7).  (13)
An analysis of Eq. (11) along the lines of the one presented above f&li¢ie Gordon equation

leads again to the existence of negative energy states and a spectroumdedh from below as in Fig.
1. Dirac, however, solved the instability problem by pointing out that nowptmticles are fermions
and therefore they are subject to Pauli’s exclusion principle. Hench, state in the spectrum can be
occupied by at most one patrticle, so the states Witk m can be made stable if we assume thiathe
negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a staddeum where all
negative energy states are occupied, the so-called Dirac sea, it @sallesctly to the conclusion that a
single-patrticle interpretation of the Dirac equation is not possible. Indegkoton with enough energy
(E > 2m) can excite one of the electrons filling the negative energy states, leagimgdoa “hole” in
the Dirac see (see Fig. 2). This hole behaves as a particle with equal nthspposite charge that
is interpreted as a positron, so there is no escape to the conclusion thattiotes will produce pairs
particle-antiparticle out of the vacuum.

In spite of the success of the heuristic interpretation of negative eniigyg $n the Dirac equation
this is not the end of the story. In 1929 Oskar Klein stumbled into an apppagatox when trying to
describe the scattering of a relativistic electron by a square potentialDsangs wave equation [12] (for
pedagogical reviews see [13, 14]). In order to capture the essditice problem without entering into
unnecessary complication we will study Klein’s paradox in the context oKtem-Gordon equation.

Let us consider a square potential with height> 0 of the type showed in Fig. 3. A solution to
the wave equation in regions | and Il is given by
w[(t, .’17) — efiEt+ip1m + ];zefiEtfiplac7
Yrr(t,z) = Te iBttree (14)
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Fig. 3: lllustration of the Klein paradox.

where the mass-shell condition implies that

p = VE2—-m2, P2 =/ (E = Vp)2 —m2. (15)

The constantf? andT" are computed by matching the two solutions across the boundaryd. The
conditionsy(t,0) = ¢r7(t,0) andd 1 (t,0) = 0xv11(t, 0) imply that

2 _
T — P1 ’ R:pl p2'
p1+ P2 p1+ p2

(16)

At first sight one would expect a behavior similar to the one encounterédteimonrelativistic
case. If the kinetic energy is bigger th&m both a transmitted and reflected wave are expected, where
when the kinetic energy is smaller th& one only expect to find a reflected wave, the transmitted wa
being exponentially damped within a distance of a Compton wavelength insidertier.ba

Indeed this is what happens# — m > V4. In this case botly; andp, are real and we have a
partly reflected, and a partly transmitted wave. In the same waj, i 2m < E — m < Vj thenp, is
imaginary and there is total reflection.

However, in the case whevy > 2m and the energy is in the rangle< F — m < Vy — 2m
a completely different situation arises. In this case one finds thatjhodindp, are real and therefore
the incoming wave function is partially reflected and partially transmitted acressatrier. This is a
shocking result, since it implies that there is a nonvanishing probability oinfinthe particle at any
point across the barrier with negative kinetic enerffy« m — Vy < 0)! This weird result is known as
Klein’s paradox.

As with the negative energy states, the Klein paradox results from outeinsesin giving a single-
particle interpretation to the relativistic wave function. Actually, a multiparticldyeaimof the paradox
[13] shows that what happens whén< E — m < Vy — 2m is that the reflection of the incoming
particle by the barrier is accompanied by the creation of pairs particle-aitipaut of the energy of
the barrier (notice that for this to happen it is required fat>- 2m, the threshold for the creation of a
particle-antiparticle pair).
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Fig. 4: Two regionsR;, R, that are causally disconnected.

Actually, this particle creation can be understood by noticing that the symtatential step in Fig.
3 localizes the incoming particle with massin distances smaller than its Compton wavelength %
This can be seen by replacing the square potential by another one tlubgretential varies smoothly
from0toVj > 2m in distances scales larger thefm. This case was worked out by Sauter shortly afte
Klein pointed out the paradox [15]. He considered a situation where ¢ienewith = 0 andV = 1}
are connected by a region of lengtlwith a linear potential’ (z) = %. Whend > % he found that
the transmission coefficient is exponentially srhall

The creation of particles is impossible to avoid whenever one tries to locarticdeoaf massn
within its Compton wavelength. Indeed, from Heisenberg uncertainty relesgofind that if Az ~ %
the fluctuations in the momentum will be of ord&p ~ m and fluctuations in the energy of order

AE ~m (17)

can be expected. Therefore, in a relativistic theory, the fluctuationseadribrgy are enough to allow
the creation of particles out of the vacuum. In the case of a§|qn'article, the Dirac sea picture shows
clearly how, when the energy fluctuations are of omeelectrons from the Dirac sea can be excited t:
positive energy states, thus creating electron-positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us hijvistie invariance.
In non-relativistic Quantum Mechanics observables are representeelfbadjoint operator that in the
Heisenberg picture depend on time. Therefore measurements are logalize@ but are global in
space. The situation is radically different in the relativistic case. Beqaus@gnal can propagate faster
than the speed of light, measurements have to be localized both in time and Gpasality demands
then that two measurements carried out in causally-disconnected refjispece-time cannot interfere
with each other. In mathematical terms this means thé@gf andOr, are the observables associatec
with two measurements localized in two causally-disconnected re@ionB: (see Fig. 4), they satisfy

[OR17OR2] = 0, if (.731 — x2)2 < 0, for all 1 € Ry, 20 € Rs. (18)

1In section (9.1) we will see how, in the case of the Dirac field, this exptiaddrehavior can be associated with the creatior
of electron-positron pairs due to a constant electric field (Schwingectgff



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

Hence, in a relativistic theory, the basic operators in the Heisenbergittust depend on the
space-time position*. Unlike the case in non-relativistic quantum mechanics, here the pogitonot
an observable, but just a label, similarly to the case of time in ordinary quantamamies. Causality is
then imposed microscopically by requiring

[O(2), O(y)] =0, if (z—y)* <0. (19)
A smeared operata®y over a space-time regiaoR can then be defined as
On = / d'z O(x) fr(x) 20)
wherefr(z) is the characteristic function associated wih
1 r€R
@ ={ g TSR 1)

Eq. (18) follows now from the microcausality condition (19).

Therefore, relativistic invariance forces the introduction of quantutddielt is only when we
insist in keeping a single-particle interpretation that we crash againsaligiugolations. To illustrate
the point, let us consider a single particle wave funciign ) that initially is localized in the position
=0

$(0,7) = 6(7). (22)

Evolving this wave function using the Hamiltonidh = +/—V?2 + m?2 we find that the wave function
can be written as

(2m)?

Integrating over the angular variables, the wave function can be riedast form

W(t, @) = e VIV (F) = / Ih_ ik e—id/Fm? (23)

1 oo o
w(t,f):m / k dk ™17 =it VEitm? (24)

The resulting integral can be evaluated using the complex integration catiteliown in Fig. 5. The
result is that, for any > 0, one finds that)(t, ¥) # 0 for any Z. If we insist in interpreting the wave
function (¢, ¥) as the probability density of finding the particle at the location the timet we find
that the probability leaks out of the light cone, thus violating causality.

3 From classical to quantum fields

We have learned how the consistency of quantum mechanics with spéaiwityeforces us to abandon
the single-particle interpretation of the wave function. Instead we havenidgr quantum fields whose
elementary excitations are associated with particle states, as we will see below.

In any scattering experiment, the only information available to us is the setapitgu number
associated with the set of free particles in the initial and final states. Ignéoimthe moment other
quantum numbers like spin and flavor, one-particle states are labelled byrédgemomentuny and
span the single-particle Hilbert spati

P) € Ha, (plp’) = o(p—p"). (25)

The stateq|p)} form a basis of{; and therefore satisfy the closure relation

/fmmm=1 (26)
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Fig. 5: Complex contour” for the computation of the integral in Eq. (24).

The group of spatial rotations acts unitarily on the stafés This means that for every rotatidR €
SO(3) there is a unitary operatdf(R) such that

U(R)|p) = |Rp) (27)

whereRj represents the action of the rotation on the vegtdiRp)’ = R’ ;k7. Using a spectral decom-
position, the momentum operatéﬁ“‘ can be written as

pi— / | p' (] (28)

With the help of Eq. (27) it is straightforward to check that the momentum tmet@ansforms as a
vector under rotations:

UR) " P'UR) = /d?’pleﬁ) p (R7'p| = R, P, (29)

where we have used that the integration measure is invariant ungaj.SO

Since, as we argued above, we are forced to deal with multiparticle states;ahvenient to
introduce creation-annihilation operators associated with a single-pattitdecs momentuny

[a(p), a’(7")] = 6(7 — §"), [a(p), a(p")] = [a' (), a' (5")] = 0, (30)

such that the statg) is created out of the Fock space vacujiim(normalized such tha0|0) = 1) by
the action of a creation operate¥(j)

7) = al(p)0), a(p)|0) =0 V. (31)

Covariance under spatial rotations is all we need if we are interested inralativistic theory.
However in a relativistic quantum field theory we must preserve more thét)S@ctually we need
the expressions to be covariant under the full Poincaré groupll8pconsisting in spatial rotations,
boosts and space-time translations. Therefore, in order to build the pack sf the theory we need
two key ingredients: first an invariant normalization for the states, sinceamt a normalized state in
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one reference frame to be normalized in any other inertial frame. AnddBca relativistic invariant
integration measure in momentum space, so the spectral decomposition atbopé covariant under
the full Poincaré group.

Let us begin with the invariant measure. Given an invariant funcfign of the four-momentum

pH of a particle of mass: with positive energy > 0, there is an integration measure which is invarian
under proper Lorentz transformatiéns

4
/ (;ij;’ (2m)3(% — m?) 0°) £(p), (32)

whered(x) represent the Heaviside step function. The integration p¥ean be easily done using the
é-function identity

Wa= Y i), (33)

x;=zeros of f

which in our case implies that
1 = 1 -
Mﬁ—%ﬁ):iﬁécﬁ—\ﬁﬂ+nﬂ)+256@p+\ﬁﬂ+nﬁ>. (34)

The second term in the previous expression correspond to states wattiveegnergy and therefore does
not contribute to the integral. We can write then

4 3
/é&w%w_wwwﬁ@z/&&2£¥Wf(w+wﬂ. (35)

Hence, the relativistic invariant measure is given by

3p 1
/'dp with  w, = /P2 + m2. (36)

(27)3 2w,

Once we have an invariant measure the next step is to find an invariamalzation for the states.
We work with a basig|p)} of eigenstates of the four-momentum operdtér

POlp) = wplp), Pilp) = p|p). (37)

Since the statelp) are eigenstates of the three-momentum operator we can express them ioftdrens
non-relativistic state®) that we introduced in Eq. (25)

lp) = N(p)[p) (38)

with N (p) a normalization to be determined now. The stdtg$} form a complete basis, so they should
satisfy the Lorentz invariant closure relation

4
/ (371;4 (2m)8(p* —m?) 0(p°) [p) (p| = 1 (39)

At the same time, this closure relation can be expressed, using Eq. (38mmaéthe nonrelativistic
basis of state§|p)} as

4 3
| G @t =m0 ) 0l = [ ST NG ) (5 (40)

2The factors oPr are introduced for later convenience.
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Using now Eq. (28) for the nonrelativistic states, expression (39) feliorevided

IN@)I” = (27)° (2wp). (41)
Taking the overall phase in Eq. (38) so th¥éfp) is real, we define the Lorentz invariant stafglsas
3
p) = (2m)> /2wy ), (42)
and given the normalization ¢f) we find the normalization of the relativistic states to be
(plp') = (27)° (2wp)0 (5 — ). (43)

Although not obvious at first sight, the previous normalization is Lorentariamt. Although it
is not difficult to show this in general, here we consider the simpler caselflimnensions where the
two component$p®, p') of the on-shell momentum can be parametrized in terms of a single hyperb:
angle) as

p° =mcosh ), p' = msinh \. (44)
Now, the combinatiorw,d(p! — pl’) can be written as
2wp5(p1 — pll) = 2mcosh A §(msinh A — msinh ') = 26(A — ), (45)

where we have made use of the property (33) ofdfenction. Lorentz transformations in+ 1 di-
mensions are labelled by a parametet R and act on the momentum by shifting the hyperbolic angl
A — A+ & However, Eq. (45) is invariant under a common shifdand\’, so the whole expression is
obviously invariant under Lorentz transformations.

To summarize what we did so far, we have succeed in constructing atzarevariant basis of
states for the one-particle Hilbert spake. The generators of the Poincaré group act on the sfgites
the basis as

P¥|p) = pIp), UN)|p) = A%, p") = |Ap)  with A €SO(1,3). (46)
This is compatible with the Lorentz invariance of the normalization that we hasekeld above
(plp") = (pIU(N) U [p') = (Ap|Ap'). (47)

On#H, the operatoﬁ“ admits the following spectral representation

~ dBp 1
Pt = —|p) p* (p]. 48
| G o o (49)
Using (47) and the fact that the measure is invariant under LorentZdraretion, one can easily show
that P#* transform covariantly under SO, 3)
U P = [ 38U a7 = P (49)
(27)3 2w, v

A set of covariant creation-annihilation operators can be constructedimterms of the operators

a(p), a'(p) introduced above

a(p) = (27r)%\/2wpa(m, ol (p) = (QW)%\/2wpaT(ﬁ) (50)
with the Lorentz invariant commutation relations
(), o' ()] = (2m)*(2wp)d(F — "),

10
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[(p), a(p”)] = [ (@), al(F")] = 0. (51)

Particle states are created by acting with any number of creation opetéfrsn the Poincaré invariant
vacuum staté0) satisfying

(0]0) =1, P*|0) = 0, U(N)]0) =|0), VA e SO(1,3). (52)
A general one-particle stat¢) € #; can be then written as
dp 1
Y B T
1= [ G f@al@10) (53)
while an-particle statef) € HY™ can be expressed as
dp; 1 . - -
/H s P Bl ()0l ()l0). (54)

That this states are Lorentz invariant can be checked by noticing tmatlf@ definition of the creation-
annihilation operators follows the transformation

UN)a(@UN)T = a(Ap) (55)
and the corresponding one for creation operators.

As we have argued above, the very fact that measurements have taabeeldémplies the ne-
cessity of introducing quantum fields. Here we will consider the simplestafa scalar quantum field
¢(x) satisfying the following properties:

Hermiticity.

o'(2) = 6(w). (°6)

- Microcausality. Since measurements cannot interfere with each other when performedcailga
disconnected points of space-time, the commutator of two fields have to vansitieothe relative

ligth-cone
[6(), o(y)] = 0, (z—y)* <0. (57)
- Translation invariance.
e ag(z)e=iPe = (z — a). (58)
- Lorentz invariance.
UN)To(@)U(A) = 6(A™ ). (59)

- Linearity. To simplify matters we will also assume thatx) is linear in the creation-annihilation
operatorsy(p), af (p)

dp 1
- | £ - s s il
o) = [ g [fE D0 + (i)l (). (60)
Since¢(x) should be hermitian we are forced to takey, z)* = g(p, «). Moreover,p(x) satisfies
the equations of motion of a free scalar figld, 0" +m?)¢(x) = 0, only if f(5, x) is a complete
basis of solutions of the Klein-Gordon equation. These consideratiots fedhe expansion

*p 1 —iwpt+ip-T iwpt—ip-T
o) = [ g [ + el (). 6)

11



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

Given the expansion of the scalar field in terms of the creation-annihilatieratips it can be
checked that () ando,¢(x) satisfy the equal-time canonical commutation relations

[0(t, T), 0:9(t, )] = 16(Z — ) (62)
The general commutatds(z), ¢(y)] can be also computed to be
[6(2), ¢(a)] = iA(x — 2’). (63)
The functionA(x — y) is given by
d3p 1 . Nz (77
. - _ —iwp (t—t")+ip (Z—Z7)
iA(x —y) Im /(277)3 20dpe
d4p 2 2 0\, —ip-(x—z')
= (2m)d(p” —m7)e(p e , (64)
(2m)!

wheree(x) is defined as

1 z>0

-1 z<0 ° (65)

e(x)=0(x) —0(—x) = {

Using the last expression in Eq. (64) it is easy to show thdt: — «’) vanishes when: and«’
are space-like separated. Indeedyif- 2')? < 0 there is always a reference frame in which both even
are simultaneous, and sintA(x — z’) is Lorentz invariant we can compute it in this reference frame
In this case = ¢’ and the exponential in the second line of (64) does not depepd.crherefore, the
integration ovek? gives

[ a5 ) = [ |00 — ) + 50900+ )
—0o0 —00 p p
1 1

S S — 66
2wp 2wy 0 (66)
So we have concluded thah (z — 2/) = 0 if (x — 2’)? < 0, as required by microcausality. Notice that

the situation is completely different whém — /)2 > 0, since in this case the exponential depends ¢
p° and the integration over this component of the momentum does not vanish.

3.1 Canonical quantization

So far we have contented ourselves with requiring a number of propasttee quantum scalar field:
existence of asymptotic states, locality, microcausality and relativistic invaiafith these only ingre-
dients we have managed to go quite far. The previous can also be obtaingaanonical quantization.
One starts with a classical free scalar field theory in Hamiltonian formalism biaing the quantum
theory by replacing Poisson brackets by commutators. Since this quantigetdimedure is based on the
use of the canonical formalism, which gives time a privileged r6le, it is impottacheck at the end of
the calculation that the resulting quantum theory is Lorentz invariant. In tleeviag we will briefly
overview the canonical quantization of the Klein-Gordon scalar field.

The starting point is the action functiong¢(z)] which, in the case of a free real scalar field of
massm is given by

Slo(x)] = / d*z L(¢,0,0) = % / d*z (0,00"¢ — m?¢?). (67)

12
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The equations of motion are obtained, as usual, from the Euler-Lageapggions
oL oL
)

56.5| 9 =

2 _
56,5 0 — (9,0" +m2)¢ = 0. (68)

The momentum canonically conjugated to the fig(d) is given by

oc ¢
0(0op) Ot

m(x) (69)
In the Hamiltonian formalism the physical system is described not in terms oétterglized coordinates
and their time derivatives but in terms of the generalized coordinates aindaéme@nically conjugated
momenta. This is achieved by a Legendre transformation after which theniysaf the system is
determined by the Hamiltonian function

H= /dSm <7T(Zf — £> = ;/dgm [772 + (ﬁgb)Q + mz} . (70)

The equations of motion can be written in terms of the Poisson rackets. Gigefuhetional
Alo, 7], B¢, =] of the canonical variables

Aol = [(Eaa@). Bl = [ o) (71)
Their Poisson bracket is defined by
_ 3 [0A0B 0AB

where% denotes the functional derivative defined as

JA  0A 0A
— = - — 73
5= 9~ 36,6 79
Then, the canonically conjugated fields satisfy the following equal time Rolestkets
{¢(t, f),gﬁ(t,f/)} = {ﬂ-(tv f)vﬂ'(tvf,)} =0,

Canonical quantization proceeds now by replacing classical fields wihatgrs and Poisson
brackets with commutators according to the rule

In the case of the scalar field, a general solution of the field equatiohs46&e obtained by working
with the Fourier transform

(8,0" + m*)p(z) =0 = (—p* +m?)o(p) =0, (76)

whose general solution can be writter} as

4 A |
o@) = [ G Cmi? = m06") o™ + alp)e]

3In momentum space, the general solution to this equatigrip$ = f(p)d(p> — m?), with f(p) a completely general
function of p*. The solution in position space is obtained by inverse Fourier transform.
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Pp 1 o\ —iwpt+E ok iwpt— T
= [ @) T oy et )
p

and we have required(z) to be real. The conjugate momentum is

{ dgp SN\ —iwpt+pE S\* iwpt—p-E
w<x>=—2/ Gy Q)T ap) e T (78)

Now ¢(z) and7(z) are promoted to operators by replacing the functiog), «(p)* by the
corresponding operators

a(p) — a(p), a(p)" — a' (7). (79)

=1/

Moreover, demandingy(t, Z), n(t,z')] = i6(Z — Z') forces the operator&(p), a(p)' to have the
commutation relations found in Eq. (51). Therefore they are identified as@ sreation-annihilation
operators creating states with well-defined momenglouat of the vacuun0). In the canonical quanti-
zation formalism the concept of particle appears as a result of the quantinha classical field.

Knowing the expressions g@fandr in terms of the creation-annihilation operators we can procet
to evaluate the Hamiltonian operator. After a simple calculation one arrives &xginession

i = [ @ w900 + 3,00 (80)

The first term has a simple physical interpretation siaitgy)a(p) is the number operator of particles
with momentumgp. The second divergent term can be eliminated if we defined the normereatd
Hamiltonian: H: with the vacuum energy subtracted

~

di= 1 - 01710) = [ #pe,a'(7)a() (81)

It is interesting to try to make sense of the divergent term in Eq. (80). Timshave two sources
of divergence. One is associated with the delta function evaluated ataeriag from the fact that we
are working in a infinite volume. It can be regularized for large but finitewe by replacin@(ﬁ) ~ V.
Hence, it is of infrared origin. The second one comes from the integrafiay, at large values of
the momentum and it is then an ultraviolet divergence. The infrared dimeggcan be regularized by
considering the scalar field to be living in a box of finite voluieln this case the vacuum energy is

-~ 1
Evae = (0[H[0) = ) - (82)
P

Written in this way the interpretation of the vacuum energy is straightforwarttee scalar quantum
field can be seen as a infinite collection of harmonic oscillators per unit voleawd, one labelled by
p. Even if those oscillators are not excited, they contribute to the vacuurgyenéth their zero-point
energy, given by%wp. This vacuum contribution to the energy add up to infinity even if we work i
finite volume, since even then there are modes with arbitrary high momentunibatingy to the sum,
pi = ”L” with L, the sides of the box of volum& andn; an integer. Hence, this divergence is ol
ultraviolet origin.

Our discussion leads us to the conclusion that the vacuum in quantum fiely ikeradically
different from the classical idea of the vacuum as “empty space”.elthd@e have seen that a quantun
field can be regarded as a set of an infinite number of harmonic oscillatdrhat the ground state of
the system is obtained wheaifl oscillators are in their respective ground states. This being so, we kn
from elementary quantum mechanics that a harmonic oscillator in its groundsstade“at rest”, but
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Region | Region Il Region llI
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VWV

S

Conducting plates

Fig. 6: lllustration of the Casimir effect. In regions | and Il theesfum of modes of the momentum,_ is
continuous, while in the space between the plates (regjanisl quantized in units of;.

fluctuate with an energy given by its zero-point energy. When transtatgdantum field theory, this
means that the vacuum can be picture as a medium where virtual particlemnéreiously created and
annihilated. As we will see, this nontrivial character of the vacuum hgsigél consequences ranging
from the Casimir effect (see below) to the screening or antiscreeninganfes in gauge theories (see
Section 8.2).

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic of the sc#daifiie also present in other cases,
in particular in quantum electrodynamics. Although one might be tempted to disgathis infinite
contribution to the energy of the vacuum as unphysical, it has obser@idequences. In 1948 Hendrik
Casimir pointed out [16] that although a formally divergent vacuum gn&agld not be observable, any
variation in this energy would be (see [17] for comprehensive reviews)

To show this he devised the following experiment. Consider a couple of infjetéectly con-
ducting plates placed parallel to each other at a distdiisee Fig. 6). Because the conducting plates fi
the boundary condition of the vacuum modes of the electromagnetic fielddheskiscrete in between
the plates (region II), while outside there is a continuous spectrum of nfcegens | and I11). In order
to calculate the force between the plates we can take the vacuum energy aeléttromagnetic field
as given by the contribution of two scalar fields corresponding to the tharipations of the photon.
Therefore we can use the formulas derived above.

A naive calculation of the vacuum energy in this system gives a divergsalt. This infinity can
be removed, however, by substracting the vacuum energy cordiggdn the situation where the plates
are removed

E(d)reg = E(d)vac — E(00)vac (83)

This substraction cancels the contribution of the modes outside the plateaudgesf the boundary
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conditions imposed by the plates the momentum of the modes perpendicular totésegpiaquantized
according top; = “F, with n a non-negative integer. If we consider that the size of the plates is mt
larger than their separatiefwe can take the momenta parallel to the plateas continuous. For > 0
we have two polarizations for each vacuum mode of the electromagneticdaaiti, contributing like

p” + p? to the vacuum energy. On the other hand, when= 0 the corresponding modes of the

fleld are effectively (2+1)-dimensional and therefore there is onlypaterization. Keeping this in mind,
we can write

2
d”p)

3
— 280 [ B (84
(27
where S is the area of the plates. The factors of 2 take into account the two ptimagiegrees of

freedom of the electromagnetic field, as discussed above. In ordesuoecthe convergence of integrals
and infinite sums we can introduce an exponential damping factor

Bld)eeg = 25/(dp)L A|p’p”+52/ p” RV CEY b + (%)2

d Pp| —1 P2
= Sd/ pl/ e AVIITL [ 4 pd (85)

whereA is an ultraviolet cutoff. It is now stralghtfonNard to see that if we defineftimetion

F(a:)z;w/:oydyeX\/W\/W:417T/(::’W)2dze_f\/g @6)

the regularized vacuum energy can be written as

E(d)eg = S 0)+ Y F(n)— / dz F(z) (87)
n=1 0
This expression can be evaluated using the Euler-MacLaurin formula [19
> o 1 1
S Fm) - [ deF@) =~ [FO)+ Fe)] + 35 [F(e0) - F0)]
n=1 0
i " . n
- o0 [F"(00) — F"(0)] + ... (88)

Since for our functionF'(oco) = F'(o00) = F"(c0) = 0 and F'(0) = 0, the value ofE(d),eg IS
determined byF"”(0). Computing this term and removing the ultraviolet cutdff.— oo we find the
result

S w2S
E(d)eg = —F"(0) = — .
()reg 720 (0) 72043 (89)
Then, the force per unit area between the plates is given by
w1
PCasirnir — *%@ (90)

The minus sign shows that the force between the plates is attractive. This-tiadled Casimir effect.
It was experimentally measured in 1958 by Sparnaay [18] and since theDatsimir effect has been
checked with better and better precission in a variety of situations [17].

“Actually, one could introduce any cutoff functigh(p? + pﬁ) going to zero fast enough as , p; — oo. The resultis
independent of the particular function used in the calculation.
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4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate our discussion of tuetigation procedure.
However, nature is richer than that and it is necessary to considerfiasrwith more complicated be-
havior under Lorentz transformations. Before considering other fieddgause and study the properties
of the Lorentz group.

4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generators. Three of tieeraspond to the generators
of the group of rotations in three dimensions SO(3). In terms of the gemnetitof the group a finite
rotation of anglep with respect to an axis determined by a unitary veétoan be written as

R J1
R(E, p) = e~ &I J=1 5 |. (91)
J3

The other three generators of the Lorentz group are associated witslidpalong the three spatial
directions. A boost with rapidity. along a directioni is given by

. T Ml
B(i, \) = e M, M=| M |. (92)
M3
These six generators satisfy the algebra
i, ;] = i€,
[Ji, My] = €My, (93)
(M, Mj] = —iejnd,

The first line corresponds to the commutation relations of SO(3), while tldeme implies that the
generators of the boosts transform like a vector under rotations.

At first sight, to find representations of the algebra (93) might seem ultfficThe problem is
greatly simplified if we consider the following combination of the generators

1 )
Ty = 5 (Ji £ iMy). (94)

Using (93) it is easy to prove that the new generalg‘fsatisfy the algebra

5T = ey
EANY A ] (95)

Then the Lorentz algebra (93) is actually equivalent to two copies of thebedgfSU(2) ~ SO(3).
Therefore the irreducible representations of the Lorentz group cahthaed from the well-known rep-
resentations of SU(2). Since the latter ones are labelled by thesspirk + %, k (with & € N), any
representation of the Lorentz algebra can be identified by specifying_ ), the spins of the represen-
tations of the two copies of SU(2) that made up the algebra (93).

To get familiar with this way of labelling the representations of the Lorentzgvea study some
particular examples. Let us start with the simplest Gng s_) = (0,0). This state is a singlet under
Ji* and therefore also under rotations and boosts. Therefore we hautaa s

The next interesting cases a(@, 0) and (0, %). They correspond respectively to a right-hande:
and a left-handed Weyl spinor. Their properties will be studied in moraldetlow. In the case of
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Representation| Type of field
(0,0) Scalar
(3.0) Right-handed spinor
(0,1) Left-handed spinor
(1.1 Vector
(1,0) Selfdual antisymmetric 2-tensor
(0,1) Anti-selfdual antisymmetric 2-tensar

Table 1: Representations of the Lorentz group

(1, %), since from Eq. (94) we see thdt = J;" + J; the rules of addition of angular momentum
tell us that there are two states, one of them transforming as a vector atietiaone as a scalar under
three-dimensional rotations. Actually, a more detailed analysis shows thsittjlet state corresponds

to the time component of a vector and the states combine to form a vector uad@rémtz group.

There are also more “exotic” representations. For example we can eotis&(1,0) and(0,1)
representations corresponding respectively to a selfdual and aredfdiial rank-two antisymmetric
tensor. In Table 1 we summarize the previous discussion.

To conclude our discussion of the representations of the Lorentz gveupotice that under a
parity transformation the generators of SO(1,3) transform as
P: Ji — Ji, P: Mi — _Mi (96)

this means thaP : J;= — JF and therefore a representatien, s2) is transformed intdsz, s1 ). This
means that, for example, a vect@f, %) is invariant under parity, whereas a left-handed Wey! spinc
(,0) transforms into a right-handed of@, 1) and vice versa.

4.2 Spinors

Weyl spinors. Let us go back to the two spinor representations of the Lorentz groumlpl:{i%, 0) and
(0, %). These representations can be explicitly constructed using the Pauli maisice

1.
Jr = 501, J7 =0 for (1,0),

1.
JF =0, Iy =50 for  (0,3). (97)

We denote by: a complex two-component object that transforms in the represeng-},;i@ﬂ% of Ji.
If we definecs!. = (1, +0*) we can construct the following vector quantities

uiaim, ul ofu_. (98)

Notice that sincé.J:5)" = JT the hermitian conjugated fieldd_are in the(0, 1) and(%, 0) respectively.
To construct a free Lagrangian for the fields we have to look for quadratic combinations of the
fields that are Lorentz scalars. If we also demand invariance undealglbhse rotations

ur — ePuy (99)
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we are left with just one possibility up to a sign
E\j,cveyl = zul ((“)t +o- ﬁ) Uy = iulai@uui. (100)

This is the Weyl Lagrangian. In order to grasp the physical meaning ofgh®rsu, we write the
equations of motion

(ao +5- 6) us = 0. (101)
Multiplying this equation on the left b(@o Fo- ﬁ) and applying the algebraic properties of the Pau
matrices we conclude that. satisfies the massless Klein-Gordon equation
0,0M ug = 0, (102)
whose solutions are:
us () = us(k)e *2, with &% = |k|. (103)

Plugging these solutions back into the equations of motion (101) we find

Qa;gﬁy&:a (104)
which implies
gk
Ug : —— =1,
||
u_ : ok_ (105)
||

Since the spin operator is definedsas %8, the previous expressions give the chirality of the states wi
wave functioru, i.e. the projection of spin along the momentum of the particle. Therefore maume
thatu. is a Weyl spinor of positive helicity = %, while u_ has negative helicity = —3. This agrees
with our assertion that the representat@) 0) corresponds to a right-handed Weyl fermion (positive
chirality) whereago, %) is a left-handed Weyl fermion (negative chirality). For example, in the stahd
model neutrinos are left-handed Weyl spinors and therefore transfothe representatiofo, %) of the
Lorentz group.

Nevertheless, it is possible that we were too restrictive in constructing #yéMgrangian (100).
There we constructed the invariants from the vector bilinears (98) smoneling to the product repre-
sentations

(3:3)=(3,00®(0,3) and (3,3)=(0,3)®(5,0). (106)

In particular our insistence in demanding the Lagrangian to be invariargruthd global symmetry
ut+ — e%uq rules out the scalar term that appears in the product representations

(1.0)@ (,0)=(1,0)& (0,0), (0.3)®(0,3) = (0.1) @ (0,0). (107)
The singlet representations corresponds to the antisymmetric combinations
Captiful, (108)

wheree,;, is the antisymmetric symbels = —ey = 1.
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At first sight it might seem that the term (108) vanishes identically becalige antisymmetry
of the e-symbol. However we should keep in mind that the spin-statistic theorem (nmotfeiolater)
demands that fields with half-integer spin have to satisfy the Fermi-Dirac statstittherefore satisfy
anticommutation relations, whereas fields of integer spin follow the statistic af-Bosstein and, as a
consequence, quantization replaces Poisson brackets by commutéaisiisnflies that the components
of the Weyl fermions.4. are anticommuting Grassmann fields

ubub, +ubul = 0. (109)

It is important to realize that, strictly speaking, fermions (i.e., objects that g#tisfFermi-Dirac statis-
tics) do not exist classically. The reason is that they satisfy the Pauligaolprinciple and therefore
each quantum state can be occupied, at most, by one fermion. Thetefaraive definition of the clas-
sical limit as a limit of large occupation numbers cannot be applied. Fermion fiefedreally make

sense classically.

Since the combination (108) does not vanish and we can construct aagrarigian
Loy = oty — Geanud, +h 110
Weyl — U3 040Ut — Eeabuiui + n.c. ( )

This mass term, called of Majorana type, is allowed if we do not worry abaaking the global U(1)
symmetryuy — eu. Thisis not the case, for example, of charged chiral fermions, sinddajwana
mass violates the conservation of electric charge or any other gaugeha{tje. In the standard model,
however, there is no such a problem if we introduce Majorana massgglithanded neutrinos, since
they are singlet under all standard model gauge groups. Such a terioneai, however, the global U(1)
lepton number charge because the oper@mufjétyji2 changes the lepton number by two units

Dirac spinors. We have seen that parity interchanges the represent&%ons and(0, %), ie. it
changes right-handed with left-handed fermions

P:uy — ug. (111)

An obvious way to build a parity invariant theory is to introduce a pair or Weyhionsu, andu...
Actually, these two fields can be combined in a single four-component spinor

b = ( ty ) (112)

U—

transforming in the reducible representatidn0) & (0, 3 ).
Since now we have both, andu_ simultaneously at our disposal the equations of motion fc
U, iaiaﬂui = 0 can be modified, while keeping them linear, to

ioh Opuq = mu— "
— i(UJF Oﬂ>8u¢:m<0 1>¢. (113)

. 1
io" Oyu_ = muy 0 @ 0

These equations of motion can be derived from the Lagrangian density

. ot 0 01
Lirac = i) ( 0 o >8w — myf ( 10 )w. (114)
To simplify the notation it is useful to define the Diraematrices as
0 o
oi 0
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and the Dirac conjugate spingr

p=u=vt (] 5 ). (116)
Now the Lagrangian (114) can be written in the more compact form
Lpirac = ¥ (in" 0y —m) . (117)
The associated equations of motion give the Dirac equation (11) with the idatitifis
0 = B, At =ial. (118)

In addition, they-matrices defined in (115) satisfy the Clifford algebra
{97} =2, (119)

In D dimensions this algebra admits representations of dimer®ioh When D is even the Dirac
fermionsty transform in a reducible representation of the Lorentz group. In treafasterest,D = 4
this is easy to prove by defining the matrix

, ‘ 1 0
7° = -’y = ( 0 1 ) : (120)

We see that® anticommutes with all othey-matrices. This implies that

PP =0, with oM =], (121)
Because of Schur's lemma (see Appendix) this implies that the representétibe Lorentz group
provided by is reducible into subspaces spanned by the eigenvectorsvaith the same eigenvalue.

If we define the projectorgy. = %(1 + +%) these subspaces correspond to

P+w:(“g>, P_w=<u°_ ) (122)

which are precisely the Weyl spinors introduced before.

Our next task is to quantize the Dirac Lagrangian. This will be done alongjrteég used for
the Klein-Gordon field, starting with a general solution to the Dirac equationr@noducing the cor-
responding set of creation-annihilation operators. Therefore wielstémoking for a complete basis of
solutions to the Dirac equation. In the case of the scalar field the elementshzfdisavere labelled by
their four-momentunk*. Now, however, we have more degrees of freedom since we are gl@atim
a spinor which means that we have to add extra labels. Looking back &tlBf) we can define the
helicity operator for a Dirac spinor as

1. k /1 0
27 \kl<0 1) (123)

Hence, each element of the basis of functions is labelled by its four-mométitand the corresponding
eigenvalues of the helicity operator. For positive energy solutions we then proposanibetz

. 1
u(k, s)e” s = :|:§, (124)
whereu, (k, s) (o« = 1,...,4) is a four-component spinor. Substituting in the Dirac equation we obta
(f —m)u(k,s) = 0. (125)
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In the same way, for negative energy solutions we have

1
v(k,s)e*® s =45, (126)

wherev(k, s) has to satisfy
(k+ m)v(k,s) =0. (127)

Multiplying Eqgs. (125) and (127) on the left respectively @+ m) we find that the momentum is
on the mass shelk? = m?. Because of this, the wave function for both positive- and negatieeggn
solutions can be labeled as well using the three-mome#tofithe particleu(k, s), v(k, s).

A detailed analysis shows that the functia(&, s), v(k, s) satisfy the properties

b, 5)u(k, 5) = 2m ok, 5)o
s u(k,s) = 2k ok, s)y* ok,
ua<E,s>uﬁ<E,s>=<;fa+m>aﬁ, va(k, 5)0s (K,

i1
s=%3

with £ = w, = Vk2+m?2. Then, a general solution to the Dirac equation including creation a
annihilation operators can be written as:

o Pk 1 2N —iwpt+ik-E PN o iwet—ikT
D7) = / e 21 [u(F,5) B(F, s)e™ 57 4 o(F, )@l (F, s)e—F7] - (129)
sle:g
The operator%*(l?, s), 3(12) respectively create and annihilate a séirparticle (for example, an
electron) out of the vacuum with momentunand helicitys. Because we are dealing with half-integer
spin fields, the spin-statistics theorem forces canonical anticommutation mel&ioyy which means

that the creation-annihilation operators satisfy the algebra

{b(k ) (k’ )} = {bl(%, )bT(k/asl)}ZO' (130)

In the case ofi(k, s), d' (k, s) we have a set of creation-annihilation operators for the correspor
ing antiparticles (for example positrons). This is clear if we notice thék, s) can be seen as the
annihilation operator of a negative energy state of the Dirac equation wita mactionva(E, s). As
we saw, in the Dirac sea picture this corresponds to the creation of anréintgpaut of the vacuum (see
Fig. 2). The creation-annihilation operators for antiparticles also satisffetimionic algebra

-

{d(k,s),d"(k",s)} = 6(k—k")ds,
{d(k,s),d(k' s} = {di(k,s),d(k’,5)} =0. (131)
All other anticommutators betweé(k, s), b'(k, s) andd(k, s), d' (k, s) vanish.
The Hamiltonian operator for the Dirac field is

R 3 ~ . . -
i :% _%:l/(;f)g [b*(k,s)b(k,s) fd(k:,s)dT(k,s)]. (132)

At this point we realize again of the necessity of quantizing the theory usitigpanmutators instead
of commutators. Had we use canonical commutation relations, the second & time integral in

5To simplify notation, and since there is no risk of confusion, we drop fnom on the hat to indicate operators.
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(132) would give the number operatabTr(E, s)d(E, s) with a minus sign in front. As a consequence the
Hamiltonian would be unbounded from below and we would be facing againgtebility of the theory
already noticed in the context of relativistic quantum mechanics. Howeeeause of thanticommuta-
tion relations (131), the Hamiltonian (132) takes the form

27)3 2wy,

H=Y" / (d% L (bt (E, $)b(E, ) + wid! (F, )d(F, 5)| 2 / Blwps(0).  (133)
s:i%

As with the scalar field, we find a divergent vacuum energy contributientd the zero-point energy
of the infinite number of harmonic oscillators. Unlike the Klein-Gordon field, wheuum energy is
negative. In section 9.2 we will see that in certain type of theories callegrsypmetric, where the
number of bosonic and fermionic degrees of freedom is the same, thecanseallation of the vacuum
energy. The divergent contribution can be removed by the normat prdscription

Z/ 27T32wk ka(Ejs)b(lg’s)+wde(l¥,s)d(E,s) . (134)

Finally, let us mention that using the Dirac equation it is easy to prove that ihareonserved
four-current given by

" =Py, " = 0. (135)

As we will explain further in sec. 6 this current is associated to the invagiahthe Dirac Lagrangian
under the global phase shift— ¢*?1). In electrodynamics the associated conserved charge

Q=e / d*x j° (136)

is identified with the electric charge.

4.3 Gauge fields

In classical electrodynamics the basic quantities are the electric and ma@détﬁfié. These can be
expressed in terms of the scalar and vector potefitiall)

, . 0A
E = —Vo——
Ve G
B = VxA. (137)

From these equations it follows that there is an ambiguity in the definition of temals given by the
gauge transformations

o(t, T) — o(t, ) + gte(t,f), A(t,7) — A(t, &) — Ve(t, T). (138)

Classically(¢, ) are seen as only a convenient way to solve the Maxwell equations, boutjthysical
relevance.

The equations of electrodynamics can be recast in a manifestly Lorentamvéorm using the
four-vector gauge potential” = (¢, A) and the antisymmetric rank-two tensdt,, = 9,4, — 0, A,.
Maxwell’'s equations become

o = gk,
o, Foy = 0, (139)

23



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

where the four-curren = (p, 7) contains the charge density and the electric current. The field stren
tensorF),,, and the Maxwell equations are invariant under gauge transformatidas, (&hich in covari-
ant form read

Ay — Ay + Ope. (140)
Finally, the equations of motion of charged particles are given, in cotddan, by

dut
m% — eFHy,, (141)

wheree is the charge of the particle andt (1) its four-velocity as a function of the proper time.

The physical role of the vector potential becomes manifest only in Quanteohahics. Using
the prescription of minimal substitutigh— p'— e A, the Schrédinger equation describing a particle witl
chargee moving in an electromagnetic field is

1 . N2
i0,0 = [—2 (v - ieA) + egp} . (142)
m

Because of the explicit dependence on the electromagnetic poteptithsl A, this equation seems
to change under the gauge transformations (138). This is physicallptabde only if the ambiguity
does not affect the probability density given pl(¢, z)|?. Therefore, a gauge transformation of the
electromagnetic potential should amount to a change in the (unobservhabk® pf the wave function.
This is indeed what happens: the Schrédinger equation (142) is invaridar the gauge transformations
(138) provided the phase of the wave function is transformed at the samadaosling to

U(t,7) — e GOy, 7). (143)

Aharonov-Bohm effect. This interplay between gauge transformations and the phase of the w
function give rise to surprising phenomena. The first evidence of tbeptdyed by the electromagnetic
potentials at the quantum level was pointed out by Yakir Aharonov andi®Bahm [20]. Let us consider
a double slit experiment as shown in Fig. 7, where we have placed a shisdtenoid just behind the
first screen. Although the magnetic field is confined to the interior of the simletne vector potentlal is
nonvanishing also outside. Of course the valud alutside the solenoid is a pure gauge, Vex A =0,
however because the region outside the solenoid is not simply connectegttbe potential cannot be
gauged to zero everywhere. If we denotelli)(}) and\I/g)) the wave functions for each of the two electror
beams in the absence of the solenoid, the total wave function once the mdigheiscswitched on can
be written as

oie e, E-d;qugo) 1 el /Y.df\lléo)

eie fr1 A-dz [\Ilgm 4 RE #n /Y.df\Il(QO) ’ (144)

wherel'; andl's are two curves surrounding the solenoid from different sidesaisdany closed loop
surrounding it. Therefore the relative phase between the two beamagetsaterm depending on the
value of the vector potential outside the solenoid as

U = exp [ie 7{ A- df} . (145)
r

Because of the change in the relative phase of the electron wave fig)dtienpresence of the vector
potential becomes observable even if the electrons do not feel the mafieleticlf we perform the
double-slit experiment when the magnetic field inside the solenoid is switclegafill observe the
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Electron = . S

source

Screen

Fig. 7: lllustration of an interference experiment to show the Almav-Bohm effect.S represent the solenoid in
whose interior the magnetic field is confined.

usual interference pattern on the second screen. However if now tgeetmafield is switched on,
because of the phase (144), a change in the interference patternpeiiraf his is the Aharonov-Bohm
effect.

The first question that comes up is what happens with gauge invariaitee \Be said thatd
can be changed by a gauge transformation it seems that the resultingranteef@atters might depend
on the gauge used. Actually, the phdgen (145) is independent of the gauge although, unlike othe
gauge-invariant quantities lik€ and B, is nonlocal. Notice that, sincé x A = 0 outside the solenoid,
the value ofU does not change under continuous deformations of the closed Euseelong as it does
not cross the solenoid.

The Dirac monopole.ltis very easy to check that the vacuum Maxwell equations remain intarie
under the transformation

E—iB — ¢Y(E —iB), 0 € [0, 27] (146)

which, in particular, ford = 3 interchanges the electric and the magnetic fields B, B - —E.
This duality symmetry is however broken in the presence of electric soudes®rtheless the Maxwell
equations can be “completed” by introducing sources for the magnetid figld,,,) in such a way that
the duality (146) is restored when supplemented by the transformation

p — ipm — ei@(p - ipm)7 j_ Z.jm — eie(j_ ij) (147)

Again for6 = m /2 the electric and magnetic sources get interchanged.

In 1931 Dirac [21] studied the possibility of finding solutions of the completedWell equation
with a magnetic monopoles of chargei.e. solutions to

=

V- B =g6(Z). (148)

Away from the position of the monopok_:z" . B = 0 and the magnetic field can be still derived locally
from a vector potentiall according toB = V x A. However, the vector potential cannot be regula
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o

Dirac string

Fig. 8: The Dirac monopole.

everywhere since otherwise Gauss law would imply that the magnetic fluxdihgea closed surface
around the monopole should vanish, contradicting (148).

We look now for solutions to Eq. (148). Working in spherical coordinatesind
g
B, = =, B, = By = 0. 149
Away from the position of the monopole? (£ 0) the magnetic field can be derived from the vecto
potential

A, = Lanl A =0 (150)
[z 2

As expected we find that this vector potential is actually singular aroundatfdifre 6 = 7 (see Fig.

8). This singular line starting at the position of the monopole is called the Dirag stnd its position

changes with a change of gauge but cannot be eliminated by any gangi®mmaation. Physically we

can see it as an infinitely thin solenoid confining a magnetic flux entering into tiyeetia monopole

from infinity that equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it sesrtigethbresence of
monopoles introduces an ambiguity. This would be rather strange, since@daquations are gauge
invariant also in the presence of magnetic sources. The solution to thissapgddle lies in the fact that
the Dirac string does not pose any consistency problem as far as ihdbpsoduce any physical effect,
i.e. if its presence turns out to be undetectable. From our discussion Ahdrenov-Bohm effect we
know that the wave function of charged particles pick up a phase (14&) wurrounding a region where
magnetic flux is confined (for example the solenoid in the Aharonov-Botpararent). As explained
above, the Dirac string associated with the monopole can be seen as a infimiitedglenoid. Therefore
the Dirac string will be unobservabile if the phase picked up by the wawiumof a charged patrticle is
equal to one. A simple calculation shows that this happens if

et =1 — eg = 2mn with n € Z. (151)
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Interestingly, this discussion leads to the conclusion that the presencsirgfla magnetic monopoles
somewhere in the Universe implies for consistency the quantization of the@tdwarge in units O%,
whereg the magnetic charge of the monopole.

Quantization of the electromagnetic field. We now proceed to the quantization of the electro
magnetic field in the absence of sourges: 0, 7= 0. In this case the Maxwell equations (139) can b
derived from the Lagrangian density

1 v 1 2 D2

['Maxwell = _ZFMVFH = 5 (E - B ) . (152)
Although in general the procedure to quantize the Maxwell Lagrangiantisery different from the
one used for the Klein-Gordon or the Dirac field, here we need to dealamittw ingredient: gauge
invariance. Unlike the cases studied so far, here the photon Aiglés not unambiguously defined
because the action and the equations of motion are insensitive to the gansfertrationsd,, — A, +
due. Afirst consequence of this symmetry is that the theory has less physigades of freedom than
one would expect from the fact that we are dealing with a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom iosig the electro-
magnetic potential before quantization. This can be done in several feagxample by imposing the
Lorentz gauge fixing condition

9, A" = 0. (153)

Notice that this condition does not fix completely the gauge freedom sinc€153) is left invariant
by gauge transformations satisfyingo*s = 0. One of the advantages, however, of the Lorentz gaug
is that it is covariant and therefore does not pose any danger to tleatzdnvariance of the quantum
theory. Besides, applying it to the Maxwell equati@F*” = 0 one finds

0= 9,0"A” — 8, (9, A") = ,0" A", (154)

which means that sincg,, satisfies the massless Klein-Gordon equation the photon, the quantum ol
electromagnetic field, has zero mass.

Once gauge invariance is fixet], is expanded in a complete basis of solutions to (154) and tl
canonical commutation relations are imposed

d3k 1 - o . L
=y (k,A)a(k,)\)e_”k't“k'x—i—e (k,A)*at (k, A)ellklt=ikZ ] (155)

2v<:| g
A==+1

where) = +1 represent the helicity of the photon, aqg{fc', ) are solutions to the equations of motion
with well defined momentum an helicity. Because of (153) the polarization rgelctve to be orthogonal
to k,

ke, (K, \) = kte, (K, \)* = 0. (156)
The canonical commutation relations imply that

) A), l:{’yX)] = (2m)*(2 “
@k, \),a(k’, N = [af(k,\),af (k'

2[k[)d(k — k' m
X)) = (157)

Therefored(k, ), af(k, A) form a set of creation-annihilation operators for photons with momertum
and helicity\.

Behind the simple construction presented above there are a number difesutdiated with gauge
invariance. In particular the gauge freedom seem to introduce statesliilltieet space with negative
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probability. A careful analysis shows that when gauge invariance [fgrtp handled these spurious states
decouple from physical states and can be eliminated. The details canaEificstandard textbooks [1]-
[11].

Coupling gauge fields to matter. Once we know how to quantize the electromagnetic field w
consider theories containing electrically charged particles, for examplgais. To couple the Dirac
Lagrangian to electromagnetism we use as guiding principle what we leabwed the Schrodinger
equation for a charged particle. There we saw that the gauge ambiguity elettiromagnetic potential
is compensated with a U(1) phase shift in the wave function. In the case Biithc equation we know
that the Lagrangian is invariant under— e“<, with £ a constant. However this invariance is broker
as soon as one identifieswith the gauge transformation parameter of the electromagnetic field wh
depends on the position.

Looking at the Dirac Lagrangian (117) it is easy to see that in order tmgt® the global U(1)
symmetry into a local one; — e~=(*)y), it suffices to replace the ordinary derivatiig by a covariant
oneD,, satisfying

-Du [efies(m)w} — e*ies(I)Dlﬂ/}' (158)
This covariant derivative can be constructed in terms of the gaugetjabtdp as
D, =0, +ieA,. (159)

The Lagrangian of a spié-ﬁeld coupled to electromagnetism is written as

1 —,.
EQED = _EFMVFHV + T/J(ZE) - m)l/% (160)
invariant under the gauge transformations
e S Ay — Ay + 0ue(2). (161)

Unlike the theories we have seen so far, the Lagrangian (160) desariloéeracting theory. By
plugging (159) into the Lagrangian we find that the interaction between fag@ond photons to be

LI = —eA . (162)

As advertised above, in the Dirac theory the electric current four-véstpven byj* = ey 4.

The quantization of interacting field theories poses new problems that wedideet in the case
of the free theories. In particular in most cases it is not possible to solvubebey exactly. When this
happens the physical observables have to be computed in perturbationithpowers of the coupling
constant. An added problem appears when computing quantum coreeietitive classical result, since
in that case the computation of observables are plagued with infinities thdtidbetaken care of. We
will go back to this problem in section 8.

Nonabelian gauge theoriesQuantum electrodynamics (QED) is the simplest example of a gau
theory coupled to matter based in the abelian gauge symmetry of local Udg pdtations. However, it
is possible also to construct gauge theories based on nonabelian.ghatyesly, our knowledge of the
strong and weak interactions is based on the use of such nonabeliaalgatiens of QED.

Let us consider a gauge groGpwith generator§™®, a = 1, ..., dim G satisfying the Lie algebPa

[T, T = ifobere, (163)

®Some basics facts about Lie groups have been summarized in Apgendix
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A gauge field taking values on the Lie algebragotan be introduced!,, = AjT“ which transforms
under a gauge transformations as

1 s a
A, — —QU(?MU* +UA, U, U = eX"@T (164)

whereg is the coupling constant. The associated field strength is defined as
Ff, = 0,A% — 0,A% + g™ A AL (165)

Notice that this definition of thé’}, reduces to the one used in QED in the abelian case vithsn= 0.
In general, however, unlike the case of QED the field strength is noegaugriant. In terms of,, =
Fg,T* it transforms as

F,, — UF, U (166)

The coupling of matter to a nonabelian gauge field is done by introducing agawagant deriva-
tive. For a field in a representation gf

d—UD (167)
the covariant derivative is given by
D,® = 9,0 — igALT"®. (168)
With the help of this we can write a generic Lagrangian for a nonabelianegiéeld coupled to scalars

¢ and spinors) as

L=~ LF5 0P + Dug D — B [Ma(9) +ins Ma(@)] & — V(9). (169)

In order to keep the theory renormalizable we have to restfidtp) and M, (¢) to be at most linear i
wheread/ (¢) have to be at most of quartic order. The Lagrangian of the standard msaxfehe form
(169).

4.4 Understanding gauge symmetry

In classical mechanics the use of the Hamiltonian formalism starts with the reqgatef generalized
velocities by momenta

pi = 5o = 4 = ¢i(q,p). (170)

qi

Most of the times there is no problem in inverting the relatipns- p;(q, ¢). However in some systems
these relations might not be invertible and result in a number of constraitite dfpe

falap) =0,  a=1,...,Ny. (171)

These systems are called degenerate or constrained [23, 24].

The presence of constraints of the type (171) makes the formulation ofimdtanian formalism
more involved. The first problem is related to the ambiguity in defining the Hamithorsimce the
addition of any linear combination of the constraints do not modify its valueor&ty, one has to make
sure that the constraints are consistent with the time evolution in the system.ldmgluage of Poisson
brackets this means that further constraints have to be imposed in the form

{fa H} =~ 0. (172)
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Following [23] we use the symbeck to indicate a “weak” equality that holds when the constraint
fa(gq,p) = 0 are satisfied. Notice however that since the computation of the Poissdeetsrémvolves
derivatives, the constraints can be used only after the bracket is ¢edapim principle the conditions
(172) can give rise to a new set of constraiggés,p) = 0, b = 1,..., No. Again these constraints
have to be consistent with time evolution and we have to repeat the procé&taetually this finishes
when a set of constraints is found that do not require any furthetradmisto be preserved by the time
evolutior'.

Once we find all the constraints of a degenerate system we considertadlexbfirst class con-
straints¢,(¢,p) = 0,a = 1,..., M, which are those whose Poisson bracket vanishes weakly

{Bas Pv} = Cabetpe = 0. (173)

The constraints that do not satisfy this condition, called second clasgaiots can be eliminated by
modifying the Poisson bracket [23]. Then the total Hamiltonian of the theatgfised by

M

Hr =pigi— L+ _ A(t)a. (174)
a=1

What has all this to do with gauge invariance? The interesting answer isttasingular system
the first class constraints, generate gauge transformations. Indeed, becgbises,} ~ 0 ~ {¢,, H}
the transformations

M
g — ¢+ Y cat){a da},

pi — pit > cat){pi,da} (175)

leave invariant the state of the system. This ambiguity in the description of thensys terms of
the generalized coordinates and momenta can be traced back to the equathmti®o in Lagrangian
language. Writing them in the form

O*L . 9L OL

N 4 O 176
9306, = " 94,00,9 T o’ (176)

we find that order to determine the accelerations in terms of the positions lacities the matrlxa aq
has to be invertible. However, the existence of constraints (171) pkeaisglies that the determlnant
of this matrix vanishes and therefore the time evolution is not uniquely deterriminedns of the initial
conditions.

Let us apply this to Maxwell electrodynamics described by the Lagrangian
1 4
L=-7 / a3 F, F'. (177)

The generalized momentum conjugatedgis given by

oL
= _ = = On
T 500 A, PR, (178)

In particular for the time component we find the constrafht= 0. The Hamiltonian is given by

H= /d% (7100 A, — L] = /d3 [2 (E2 + B ) + 7090 Ao + AoV - B . (179)

’In principle it is also possible that the procedure finishes because sathefknconsistent identity is found. In this case
the system itself is inconsistent as it is the case with the Lagradgian;) = q.
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Requiring the consistency of the constraifit= 0 we find a second constraint
{n°, H} ~ 97’ + V- E = 0. (180)

Together with the first constraimt’ = 0 this one implies Gauss'’ laW - E = 0. These two constrains
have vanishing Poisson bracket and therefore they are first clageefdre the total Hamiltonian is given

by
Hy=H + / a [Al(x)ﬂo F a(2)V - E} : (181)

where we have absorbet}) in the definition of the arbitrary functionk; (z) and \2(z). Actually, we
can fix part of the ambiguity taking; = 0. Notice that, becausé, has been included in the multipliers,
fixing Ay amounts to fixing the value ofy and therefore it is equivalent to taking a temporal gauge. |
this case the Hamiltonian is

1/~ L o
Hp = /d?’:c [2 <E2 + BQ) +e(x)V - E} (182)
and we are left just with Gauss’ law as the only constraint. Using the cadamimmutation relations
{Ai(tvf)an(tvf,)} = 5235(5_5,) (183)

we find that the remaining gauge transformations are generated by Gauss’
5A; = {A;, | P2 eV -E} = e, (184)

while leaving A invariant, so for consistency with the general gauge transformationsiticédne ()
should be independent of time. Notice that the constfint = 0 can be implemented by demanding
V - A = 0 which reduces the three degrees of freedom ¢ the two physical degrees of freedom of
the photon.

So much for the classical analysis. In the quantum theory the consWait = 0 has to be
imposed on the physical statgshys). This is done by defining the following unitary operator on the
Hilbert space

U(e) = exp (Z / Bre(Z)V - E> . (185)

By definition, physical states should not change when a gauge treratfons is performed. This is
implemented by requiring that the operatff=) acts trivially on a physical state

U(e)|phys) = |phys) — (V - E)|phys) = 0. (186)

In the presence of charge densjtythe condition that physical states are annihilated by Gauss’ le
changes t¢V - E — p)|phys) = 0.

The role of gauge transformations in the quantum theory is very illuminatingdarstanding the
real réle of gauge invariance [25]. As we have learned, the exishaegauge symmetry in a theory
reflects a degree of redundancy in the description of physical statesria ¢t the degrees of freedom
appearing in the Lagrangian. In Classical Mechanics, for example,tdie of a system is usually
determined by the value of the canonical coordinége%;). We know, however, that this is not the case
for constrained Hamiltonian systems where the transformations generathkd figst class constraints
change the value @f andp; withoug changing the physical state. In the case of Maxwell theory fyev
physical configuration determined by the gauge invariant quanﬁjé there is an infinite number of
possible values of the vector potential that are related by gauge tranagfonsé A, = 0.
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Fig. 9: Compactification of the real line (a) into the circumferesideg(b) by adding the point at infinity.

In the quantum theory this means that the Hilbert space of physical statfisdias the result of
identifying all states related by the operatff) with any gauge functioa(z) into a single physical state
|phys). In other words, each physical state corresponds to a whole orhiatessthat are transformed
among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redayda the states a further
condition can be given that selects one single state on each orbit. In thefddaxwell electrodynamics
the conditions4y = 0, V - A = 0 selects a value of the gauge potential among all possible ones giv
the same value for the electric and magnetic fields.

Since states have to be identified by gauge transformations the topologygafuge group plays
an important physical r6le. To illustrate the point let us first deal with a toy iadgeU(1) gauge theory
in 1+1 dimensions. Later we will be more general. In the Hamiltonian formalisrgegaransformations
g(Z) are functions defined dR with values on the gauge group U(1)

g:R—U(). (187)

We assume thaf(x) is regular at infinity. In this case we can add to the real Rnthe point at infinity
to compactify it into the circumferencg' (see Fig. 9). Once this is dogéz) are functions defined on
St with values onlJ (1) = S* that can be parametrized as

g: St —s U(l), g(x) = em(x), (188)

with = € [0, 27].
BecauseS! does have a nontrivial topology(x) can be divided into topological sectors. These
sectors are labelled by an integer numbet 7 and are defined by

a2m) = a(0) + 27 n . (189)

Geometricallyn gives the number of times that the spatsdlwinds around thes® defining the gauge
group U(1). This winding number can be written in a more sophisticated way as

y{ g(x) " dg(x) = 2mn (190)
Sl

where the integral is along the spatl.

In R? a similar situation happens with the gauge gfo8p)(2). If we demangd(z) € SU(2) to be
regular at infinity|Z| — oo we can compactifiR? into a three-dimensional sphe$é, exactly as we did
in 1+1 dimensions. On the other hand, the funcyéf) can be written as

g(%) = a(2)1 +d(x) - & (191)

8Although we present for simplicity only the case of SU(2), similar argusapply to any simple group.
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and the conditiong(z)Tg(z) = 1, detg = 1 implies that(a®)? + @2 = 1. Therefore SU(2) is a
three-dimensional sphere ap(r) defines a function

g: 8% — S (192)

As it was the case in 1+1 dimensions here the gauge transformatiepare also divided into topolog-
ical sectors labelled this time by the winding number

1 - — —
n = 9472 /83 deGijkTr [(g 181-9) (g 1319) (g 131'9)] c . (193)

In the two cases analyzed we find that due to the nontrivial topology ofethgeggroup manifold
the gauge transformations are divided into different sectors labelled yegern. Gauge transforma-
tions with different values of cannot be smoothly deformed into each other. The sectorwith 0
corresponds to those gauge transformations that can be connectedendaritity.

Now we can be a bit more formal. Let us consider a gauge theory in 3+1 diomwith gauge
groupG and let us denote by the set of all gauge transformatiogis= {g : S* — G}. At the same
time we defingj, as the set of transformationsdhthat can be smoothly deformed into the identity. Ou
theory will have topological sectors if

G/Go # 1. (194)

In the case of the electromagnetism we have seen that Gauss’ law annipiiggsal states. For a
nonabelian theory the analysis is similar and leads to the condition

U(go)|phys) = exp [z / &Pz x*(Z)V - E“] Iphys) = |phys), (195)

wheregy(Z) = X" (T is in the connected component of the idengty The important point to realize
here is that only the elements @f can be written as exponentials of the infinitesimal generators. Sin
this generators annihilate the physical states this implieg4fat) |phys) = |phys) only wheng, € Gy.

What happens then with the other topological sectorg?dfG /G, there is still a unitary operator
U(g) that realizes gauge transformations on the Hilbert space of the theamgvdosincey is not in the
connected component of the identity, it cannot be written as the exponeh@aluss’ law. Still gauge
invariance is preserveddf(g) only changes the overall global phase of the physical states. For &xam
if g1 is a gauge transformation with winding numbe= 1

U(g1)|phys) = e’|phys). (196)

It is easy to convince oneself that all transformations with winding number1 have the same value
of  modulo2x. This can be shown by noticing thatgfz) has winding numben = 1 theng(#) ! has
opposite winding numbet = —1. Since the winding number is additive, given two transformatipns
g2 With winding number 1g1_192 has winding number = 0. This implies that

Iphys) = U(g7 g2)|phys) = U(g1)TU(g2)|phys) = /2~ |phys) (197)

and we conclude th# = 6, mod27. Once we know this it is straightforward to conclude that a gaug
transformationy,, () with winding numbem has the following action on physical states

U(gn)|phys) = ™ |phys), n € Z. (198)

To find a physical interpretation of this result we are going to look for similargthin other
physical situations. One of then is borrowed from condensed matteicgteysd refers to the quantum
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states of electrons in the periodic potential produced by the ion lattice in a détidsimplicity we
discuss the one-dimensional case where the minima of the potential aratedgar a distance. When
the barrier between consecutive degenerate vacua is high enouganweeglect tunneling between
different vacua and consider the ground state of the potential near the minimum locatedrat= na
(n € 7Z) as possible vacua of the theory. This vacuum state is, however, rastant’ under lattice
translations

¢P|na) = |(n + 1)a). (199)

However, it is possible to define a new vacuum state

k) = e *|na), (200)

neZ

which underei®? transforms by a global phase

eiaﬁ’k> _ Z e—ikna’(n + 1)a> _ eika’k>. (201)
ne”L

This ground state is labelled by the momentumand corresponds to the Bloch wave function.

This looks very much the same as what we found for nonabelian gaugeethedhe vacuum
state labelled by plays a role similar to the Bloch wave function for the periodic potential with tF
identification ofg with the momentuni. To make this analogy more precise let us write the Hamiltonie
for nonabelian gauge theories

1 — — 1 — — — —
H:2/d3x (ﬁa-ﬁa+Ba-Ba) :2/d3x (Ea-Ea+Ba-Ba), (202)
where we have used the expression of the canonical moméraad we assume that the Gauss’ lan
constraint is satisfied. Looking at this Hamiltonian we can interpret the firstwathin the brackets as

the kinetic energyl” = 37, -7, and the second term as the potential endfgy 1 B, - B,. SinceV’ > 0

we can identify the vacua of the theory as thasier which V' = 0, modulo gauge transformations. This
happens wherevef is a pure gauge. However, since we know that the gauge transformatolabelled
by the winding number we can have an infinite number of vacua which caeramintinuously connected
with one another using trivial gauge transformations. Taking a repia@sengauge transformatiap, ()
in the sector with winding number, these vacua will be associated with the gauge potentials

S 1 =

A= 2 on(@Vgu(@ ", (203)
modulo topologically trivial gauge transformations. Therefore the theathasacterized by an infinite
number of vacuan) labelled by the winding number. These vacua are not gauge invariargednd
gauge transformation with = 1 will change the winding number of the vacua in one unit

U(gr)n) = [n+1). (204)

Nevertheless a gauge invariant vacuum can be defined as

16) =) e n), with 0 € R (205)
nez
satisfying
U(91)(0) = (). (206)
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We have concluded that the nontrivial topology of the gauge group Yenyeimportant physi-
cal consequences for the quantum theory. In particular it implies an aitybiguhe definition of the
vacuum. Actually, this can also be seen in a Lagrangian analysis. In goinsty the Lagrangian for
the nonabelian version of Maxwell theory we only consider the tefg¥“. However this is not the
only Lorentz and gauge invariant term that contains just two derivatiidescan write the more general
Lagrangian

1 09> ~
= ——F§ FWe— = _Fd Fpme 207
£ 4w 3272 H ’ (207)
whereﬁ;}u is the dual of the field strength defined by
a 1 2
F,uz/ = §€,u1/a)\F . (208)

The extra term in (207), proportional 0 - B9, is actually a total derivative and does not change th
equations of motion or the quantum perturbation theory. Nevertheless sekiagal important physical
consequences. One of them is that it violates both p&tignd the combination of charge conjugatior
and parityC'P. This means that since strong interactions are described by a nonalmalige theory
with group SU(3) there is an extra source(dP violation which puts a strong bound on the valuedof
One of the consequences of a term like (207) in the QCD Lagrangian isvamishing electric dipole
moment for the neutron [26]. The fact that this is not observed imposeyastreng bound on the value
of thef#-parameter

6] < 107° (209)

From a theoretical point of view it is still to be fully understood whgither vanishes or has a very small
value.

Finally, thef#-vacuum structure of gauge theories that we found in the Hamiltonian formeés
be also obtained using path integral techniques form the Lagrangian @@¥second term in Eq. (207)
gives then a contribution that depends on the winding number of the porrdisig gauge configuration.

5 Towards computational rules: Feynman diagrams

As the basic tool to describe the physics of elementary particles, the finaifajorantum field theory
is the calculation of observables. Most of the information we have abouplilisics of subatomic
particles comes from scattering experiments. Typically, these experimergsicof arranging two or
more particles to collide with a certain energy and to setup an array of detestdficiently far away
from the region where the collision takes place, that register the outgoaulygts of the collision and
their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed from quantiiemnical amplitudes
and how these amplitudes themselves can be evaluated in perturbativengfiatdtheory. We keep our
discussion rather heuristic and avoid technical details that can be fowstanidard texts [2]- [11]. The
techniques described will be illustrated with the calculation of the cross sdoti@ompton scattering
at low energies.

5.1 Cross sections and S-matrix amplitudes

In order to fix ideas let us consider the simplest case of a collision expenmnene two particles collide

to produce again two particles in the final state. The aim of such an expésimendirect measurement
of the number of particles per unit tirrf’%(&, ) registered by the detector flying within a solid angle
d§2 in the direction specified by the polar angtgsy (see Fig. 10). On general grounds we know tha
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detector

detector

Fig. 10: Schematic setup of a two-to-two-particles single scattpeivent in the center of mass reference frame.

this quantity has to be proportional to the flux of incoming partflgs,. The proportionality constant
defines the differential cross section

dN do

In natural unitsf;, has dimensions of (lengthj, and then the differential cross section has dimensior
of (length¥. It depends, apart from the directi¢f ), on the parameters of the collision (energy, impac
parameter, etc.) as well as on the masses and spins of the incoming particles.

Differential cross sections measure the angular distribution of the piodtithe collision. It is
also physically interesting to quantify how effective the interaction betweepalticles is to produce
a nontrivial dispersion. This is measured by the total cross section, whadftained by integrating the
differential cross section over all directions

1 21 do
o= / d(cos 9)/ dp —(0, ). (211)
1 0 dQ2
To get some physical intuition of the meaning of the total cross section we tdndhthe classical
scattering of a point particle off a sphere of radiisThe particle undergoes a collision only when the
impact parameter is smaller than the radius of the sphere and a calculationatitloeoss section yields
o = wR?. This is precisely the cross area that the sphere presents to incominggpartic

In Quantum Mechanics in general and in quantum field theory in particugasttrting point for
the calculation of cross sections is the probability amplitude for the corrdsmpprocess. In a scattering
experiment one prepares a system with a given number of particles witltelefiomenta, . . ., p,. In
the Heisenberg picture this is described by a time independent state labetleel ingoming momenta
of the particles (to keep things simple we consider spinless particles) thatvatedby

D1, - -+, Pn;in). (212)

This is defined as the number of particles that enter the interaction regiamipéime and per unit area perpendicular to
the direction of the beam.
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On the other hand, as a result of the scattering experiment a numbgparticles with momenta
p1’,...,px are detected. Thus, the system is now in the “out” Heisenberg picture state

’ﬁlla o aﬁk/; OUt> (213)

labelled by the momenta of the particles detected at late times. The probability ampfitdetectingk
particles in the final state with momenid, . .., p,’ in the collision ofn particles with initial momenta
1, - - -, D, defines theS-matrix amplitude

S(in — out) = (p1', ..., px ;s out|py, ..., Pn;in). (214)

It is very important to keep in mind that both the (212) and (213) are time-gmgnt states in
the Hilbert space of a very complicated interacting theory. However, bioiteat early and late times the
incoming and outgoing particles are well apart from each other, the “id™aut” states can be thought
as two state§r, ..., p,,) and|py’, ..., pi’) of the Fock space of the corresponding free theory in whic
the coupling constants are zero. Then, the overlaps (214) can be vimiterms of the matrix elements
of an.S-matrix operato@ acting on the free Fock space

=/

<p1 7'"7ﬁk5,;OUt|ﬁ17"‘7ﬁn;in> = <ﬁ1/” * '7ﬁk/‘§‘ﬁl7' "7ﬁn>' (215)

The operato@ is unitary,§T = §-1, and its matrix elements are analytic in the external momenta.

In any scattering experiment there is the possibility that the particles do ndht all and the
system is left in the same initial state. Then it is useful to writethmatrix operator as

S=1+iT, (216)

wherel represents the identity operator. In this way, all nontrivial interactiomgacoded in the matrix
elements of th@-operator(py/, ..., pi'|«T|p1, . - ., Pn). Since momentum has to be conserved, a glob.
delta function can be factored out from these matrix elements to define thimimvecattering amplitude
M

<ﬁlla---aﬁk/|iT|ﬁla"'aﬁn> - 27T 46 4)< Z bi — pr> pl""vﬁn;ﬁlla-"aﬁk,) (217)
initial final

Total and differential cross sections can be now computed from théamtamplitudes. Here we
consider the most common situation in which two particles with momgntadp, collide to produce
a number of particles in the final state with momegita In this case the total cross section is given by

1 d3/
= ~ M; (2m)46™ +py — tl, (218
(e ez [Q(z )32wr]‘ o] e (pl p2 Zp) (218)

final

states states

wherevy, is the relative velocity of the two scattering particles. The correspondifereliftial cross
section can be computed by dropping the integration over the directions faifdhenomenta. We will
use this expression later in Section 5.3 to evaluate the cross section of Cauoatt@ming.

We seen how particle cross sections are determined by the invariant amfditulie correspond-
ing proccess, i.eS-matrix amplitudes. In general, in quantum field theory it is not possible to ctampt
exactly these amplitudes. However, in many physical situations it can bedatbat interactions are
weak enough to allow for a perturbative evaluation. In what follows we a@bcribe howS-matrix
elements can be computed in perturbation theory using Feynman diagramsesidThese are very
convenient bookkeeping techniques allowing both to keep track of atfibations to a process at a
given order in perturbation theory, and computing the different contaibs.
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5.2 Feynman rules

The basic quantities to be computed in quantum field theory are vacuumatipewalues of products
of the operators of the theory. Particularly useful are time-orderedrZranctions,

<Q]T[(’)1 (21) ... Onlan) | 1), (219)
where|Q?) is the the ground state of the theory and the time ordered product is defined
T|0i(2)0;(y)] = 02 ~ 1) 0i(@)O; (y) + 03" — 2°)O; (1) O (). (220)

The generalization to products with more than two operators is straightidrwgerators are always
multiplied in time order, those evaluated at earlier times always to the right. Theshtérthese kind of
correlation functions lies in the fact that they can be relatesttnatrix amplitudes through the so-called
reduction formula. To keep our discussion as simple as possible we willenved it or even write
it down in full detail. Its form for different theories can be found in anytib@ok. Here it suffices to
say that the reduction formula simply states that &ayatrix amplitude can be written in terms of the
Fourier transform of a time-ordered correlation function. Morally spepk

—

<p1/7 ey _’mIQ Ouﬂﬁla o 7ﬁna lIl>

\ (221)
/d4$1 ... /d4yn<Q|T [(Z)(:CI)T .. gb(:cm)Tqﬁ(yl) o O(yn) | €2) eip’ T .e—ipn'yn,

whereg(x) is the field whose elementary excitations are the particles involved in the sagtterin

The reduction formula reduces the problem of compufingatrix amplitudes to that of evaluating
time-ordered correlation functions of field operators. These quantitesaay to compute exactly in the
free theory. For an interacting theory the situation is more complicated, leowesging path integrals,
the vacuum expectation value of the time-ordered product of a numbeeddiors can be expressed as

/ DDt O1(21) ... Op () €519:2']
(QIT|O1(21) ... Onln) |12) = ’
/ DDt £516:9]

For an theory with interactions, neither the path integral in the numerator og tethiominator is Gaus-
sian and they cannot be calculated exactly. However, Eq. (222) is sgllugeful. The actiors|[¢, ¢']
can be split into the free (quadratic) piece and the interaction part

S[é, '] = Sol¢, ¢'] + Sine[e, 671 (223)

All dependence in the coupling constants of the theory comes from thed@oece. Expanding now
exp[iSint] IN power series of the coupling constant we find that each term in the s&pasasion of both
the numerator and the denominator has the structure

/ P69 [ . .}eiso[@‘f”], (224)

where “ ..” denotes certain monomial of fields. The important point is that now the integraeasure
only involves the free action, and the path integral in (224) is Gaussiathanefore can be computed
exactly. The same conclusion can be reached using the operator formialithis case the correlation
function (219) can be expressed in terms of correlation functions ahtps in the interaction picture.
The advantage of using this picture is that the fields satisfy the free equafiomstion and therefore

(222)
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can be expanded in creation-annihilation operators. The correlatinodus are then easily computed
using Wick’s theorem.

Putting together all the previous ingredients we can calc@atetrix amplitudes in a perturbative
series in the coupling constants of the field theory. This can be done usymgnan diagrams and rules,
a very economical way to compute each term in the perturbative exparfsiba §-matrix amplitude
for a given process. We will not detail the the construction of Feynmées out just present them
heuristically.

For the sake of concreteness we focus on the case of QED first. Gadhgtd Eq. (160) we
expand the covariant derivative to write the action

Saen = [ d's {—iFWFW F ) — )+ ey pA, | (225)

The action contains two types of particles, photons and fermions, thajpresent by straight and wavy
lines respectively

The arrow in the fermion line does not represent the direction of the momedmittiine flux of (negative)
charge. This distinguishes particles form antiparticles: if the fermion getpa from left to right (i.e.
in the direction of the charge flux) it represents a particle, whereas witkres from right to left it
corresponds to an antiparticle. Photons are not charged and tleenefay lines do not have orientation.

Next we turn to the interaction part of the action containing a photon fieldnarsgnd its conju-
gate. In a Feynman diagram this corresponds to the vertex

Now, in order to compute afi-matrix amplitude to a given order in the coupling constafar a process
with certain number of incoming and outgoing asymptotic states one only hasiatlnaossible dia-
grams with as many vertices as the order in perturbation theory, and tlsgonding number and type
of external legs. It is very important to keep in mind that in joining the fermiorslamong the different
building blocks of the diagram one has to respect their orientation. Thestethe conservation of the
electric charge. In addition one should only consider diagrams that astogigally non-equivalent, i.e.
that they cannot be smoothly deformed into one another keeping the éxegmtixed®.

To show in a practical way how Feynman diagrams are drawn, we coritidéaha scattering, i.e.
the elastic dispersion of an electron and a positron:

et +e” — et e,

Our problem is to compute th&-matrix amplitude to the leading order in the electric charge. Becau
the QED vertex contains a photon line and our process does not hawmplaither in the initial or the

19From the point of view of the operator formalism, the requirement obictering only diagrams that are topologically
nonequivalent comes from the fact that each diagram represerggaancWick contraction in the correlation function of
interaction-picture operators.
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final states we find that drawing a Feynman diagram requires at leaskettioes. In fact, the leading
contribution is of order? and comes from the following two diagrams, each containing two vertices:

et et et et

(& (& e (&
Incoming and outgoing particles appear respectively on the left and thedafighis diagram. Notice
how the identification of electrons and positrons is done comparing the divextibe charge flux with
the direction of propagation. For electrons the flux of charges goes iditeetion of propagation,
whereas for positrons the two directions are opposite. These are théwanlgiagrams that can be
drawn at this order in perturbation theory. It is important to include a relatinus sign between
the two contributions. To understand the origin of this sign we have to remeimdiein the operator
formalism Feynman diagrams are just a way to encode a particular Wick cootraf field operators
in the interaction picture. The factor efl reflects the relative sign in Wick contractions represented t

the two diagrams, due to the fermionic character of the Dirac field.

We have learned how to draw Feynman diagrams in QED. Now one needsfutmthe con-
tribution of each one to the corresponding amplitude using the so-calledr@ayrules. The idea is
simple: given a diagram, each of its building blocks (vertices as well asnatend internal lines) has
an associated contribution that allows the calculation of the corresponidigigach. In the case of QED
in the Feynman gauge, we have the following correspondence for \&esatickinternal propagators:

o > B = !
| Ve Ve Ve Ve Ve Ve Ve Wil /4 — ;mufj
p° +e
p
—iev" (2 45(4)
z = i€750/(2m)°0" (p1 + p2 + p3).-
o

A change in the gauge would reflect in an extra piece in the photon prmgpagehe delta function
implementing conservation of momenta is written using the convention that all monergataring the
vertex. In addition, one has to perform an integration over all momentangiminternal lines with the

measure
ddp
/ 7(27)4 , (226)

and introduce a factor of 1 for each fermion loop in the diagrét

"The contribution of each diagram comes also multiplied by a degeneretoy that takes into account in how many ways
a given Wick contraction can be done. In QED, however, these faatersqual to 1 for many diagrams.
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In fact, some of the integrations over internal momenta can actually be dongths delta func-
tion at the vertices, leaving just a global delta function implementing the total momeataservation in
the diagram [cf. Eq. (217)]. It is even possible that all integrationsbeagliminated in this way. This is
the case when we have tree level diagrams, i.e. those without closed liodips.case of diagrams with
loops there will be as many remaining integrations as the number of indepiéooes in the diagram.

The need to perform integrations over internal momenta in loop diagrams hagamipconse-
guences in Quantum Field Theory. The reason is that in many casesuhimgaategrals are ill-defined,
i.e. are divergent either at small or large values of the loop momenta. Ir¢shedse one speaks iof
frared divergenceand usually they cancel once all contributions to a given process desladgether.
More profound, however, are the divergences appearing at iatgaal momenta. Thesdtraviolet
divergencegannot be cancelled and have to be dealt through the renormalizaticedprec We will
discuss this problem in some detail in Section 8.

Were we computing time-ordered (amputated) correlation function of opsy#tes would be all.
However, in the case af-matrix amplitudes this is not the whole story. In addition to the previot
rules here one needs to attach contributions also to the external legs indrentdlid hese are the wave
functions of the corresponding asymptotic states containing informatiort #isepin and momenta of
the incoming and outgoing particles. In the case of QED these contributiens ar

Incoming fermion: « —»@ = Ua (P, )

Incoming antifermion: « —4—@ — Ua (P, s)

Outgoing fermion: @—»— o' — Un (P, S)

Outgoing antifermion: @—4— a = va(p, 5)

Incoming photon: p¢ W\,@ — e”(lg, A)

Outgoing photon: @'W\» Iz = eM(E, A)*
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Here we have assumed that the momenta for incoming (resp. outgoing) astielentering (resp.
leaving) the diagram. Itis important also to keep in mind that in the computatiSmedtrix amplitudes
all external states are on-shell. In Section 5.3 we illustrate the use of tmengeyrules for QED with
the case of the Compton scattering.

The application of Feynman diagrams to carry out computations in perturkthtony is ex-
tremely convenient. It provides a very useful bookkeeping technigaedount for all contributions to
a process at a given order in the coupling constant. This does not nadhdtcalculation of Feynman
diagrams is an easy task. The number of diagrams contributing to the pgvoessvery fast with the
order in perturbation theory and the integrals that appear in calculatingllagpams also get very com-
plicated. This means that, generically, the calculation of Feynman diagramsdthe first few orders
very often requires the use of computers.

Above we have illustrated the Feynman rules with the case of QED. Similar rafebec com-
puted for other interacting quantum field theories with scalar, vector oosfigids. In the case of the
nonabelian gauge theories introduced in Section 4.3 we have:

i
)1 > g = R 0ij
a1 B] <I$_m+25>5a ]

1 Q000000000 b = e
p? +1e

B.Jj

wa = —ig’yga f”j
Qa,
o,c

wa = g f I (p — pg) + permutation}s
v,b
o,c A d

— —i92 |:fabefcde (nuanu)\ _ nu)\nua) + pel’mutation}s

M, a v, b

It is not our aim here to give a full and detailed description of the Feynmkas for nonabelian
gauge theories. It suffices to point out that, unlike the case of QER®,thergauge fields can interact
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among themselves. Indeed, the three and four gauge field vertices ansexjuence of the cubic and
quartic terms in the action

1
§=-1 / d*z F, P, (227)

where the nonabelian gauge field streng}) is given in Eq. (165). The self-interaction of the non-
abelian gauge fields has crucial dynamical consequences and its @&ryhieeart of its success in de-
scribing the physics of elementary particles.

5.3 An example: Compton scattering

To illustrate the use of Feynman diagrams and Feynman rules we compute $sesemion for the
dispersion of photons by free electrons, the so-called Compton scattering

Yk, A) + e (pys) — (K X)) +e” (0, 8).

In brackets we have indicated the momenta for the different particles, laasuwhe polarizations and
spins of the incoming and outgoing photon and electrons respectivelyfirshetep is to identify all
the diagrams contributing to the process at leading order. Taking into mictt@i the vertex of QED
contains two fermion and one photon leg, it is straightforward to realize tiyadiagram contributing to
the process at hand must contain at least two vertices. Hence the leadingution is of ordee?. A
first diagram we can draw is:

b,s p,s
k, by ]{:/, N
This is, however, not the only possibility. Indeed, there is a secondip@ssagram:
p,s KN
k, )\ p, s

Itis important to stress that these two diagrams are topologically nonequtivsitece deforming one into
the other would require changing the label of the external legs. Thertfe leading)(e?) amplitude
has to be computed adding the contributions from both of them.

Using the Feynman rules of QED we find

(N2l NI V% ¢+}é+m€ = R
H + X = (ie)*u(p’, s")¢'(k', X m;{(k,)\)u(p,s)

+ (ie)%u(p’, s')d(k, )\)m¢/(1§/7 MY u(p, s). (228)

Because the leading order contributions only involve tree-level diagrirese is no integration over
internal momenta and therefore we are left with a purely algebraic expnefes the amplitude. To get
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an explicit expression we begin by simplifying the numerators. The followiimgle identity turns out
to be very useful for this task

@ = =Pt + 2(a - b)1. (229)

Indeed, looking at the first term in Eq. (228) we have

P+ k+ me)d(k, Nu(@,s) = —¢(k, \)(p— me)u(P, s) + kg(k, Nu(p, )
S Au(ps), (230)

where we have applied the identity (229) on the first term inside the passsith&he first term on
the right-hand side of this equation vanishes identically because of E§). (TRe expression can be
further simplified if we restrict our attention to the Compton scattering at longgnehen electrons are
nonrelativistic. This means that all spatial momenta are much smaller than therleetss

121, 1R, [57], 1] < me. (231)
In this approximation we have thgt, p’* ~ (m., 0) and therefore
p-e(k,\)=0. (232)

This follows from the absence of temporal photon polarization. Then welede that at low energies

(B + -+ me)d(k, Nu(B, s) = k(k, Nu(p, ) (233)
and similarly for the second term in Eq. (228)
(b= K +me)f' (K N u(@,s) = —K'¢' (K, N) u(p,s). (234)

Next, we turn to the denominators in Eq. (228). As it was explained in Secthinscomputing
scattering amplitudes incoming and outgoing particles should have on-shellntegme

p?=m? = p? and  k*=0=Fk" (235)
Then, the two denominator in Eqg. (228) simplify respectively to
p+k)2—m2=p*+ k2 +2p-k—m?=2p-k =2wlk| —25-k (236)
and
(=K —m2=p*+K?+2p- kK —m? = —2p -k = 2w, |k'| + 275 k' (237)
Working again in the low energy approximation (231) these two expressiomsify to
(p+k)* = mg = 2me|kl, (p—K)? —md~ —2mc|k'|. (238)
Putting together all these expressions we find that at low energies
oK
(ie)_

S/ /*//*ﬁe“ 6_» }éill_'”*u“s
005 [¢ FXY el + BN e N ulpis). (229)
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Using now again the identity (229) a number of times as well as the transversaifitiition of the
polarization vectors (156) we end up with a handier equation

e2r -
>_>_< + X R~ p— e(k,\) - (k: )\)] u(p ,s/)mU(ﬁ,S)

P
S N R N ("’—” u(ps).  (240)
2, R

With a little bit of effort we can show that the second term on the right-harel wthishes. First we
notice that in the low energy limjk| ~ |k’|. If in addition we make use the conservation of momentur
k — k' = p’ — p and the identity (125)

= 7 S ARNAY ] % k, =
u(p’, s )¢k, )¢ (k" X - — = | u(p,s
(07, s)¢(k, \)g" (K", X) (Vfl ‘k,‘) (D, s)
~ L%I u(p’, ")k, V' (k' N) (= me)u(p, s). (241)

Next we use the identity (229) to take the tefph— m.) to the right. Taking into account that in the low
energy limit the electron four-momenta are orthogonal to the photon polanizaiors [see Eq. (232)]
we conclude that

al, )N (RN (@ = me (7o)
— ()P~ mf(F N (BN u(fs) = 0 (242)

where the last identity follows from the equation satisfied by the conjugatiéiveesnergy spinor,
u(p’, s") (P —me) =0

After all these lengthy manipulations we have finally arrived at the exipress the invariant
amplitude for the Compton scattering at low energies

2
iM = el A) - RN a8 = £ ou(.s). (243)
Me &

The calculation of the cross section involves computing the modulus squiaited quantity. For many
physical applications, however, one is interested in the dispersion ¢dmhwvith a given polarization
by electrons that are not polarized, i.e. whose spins are randomly distfibun addition in many
situations either we are not interested, or there is no way to measure thmolewdtation of the outgoing
electron. This is for example the situation in cosmology, where we do notdrgvenformation about
the polarization of the free electrons in the primordial plasma before ortaftescattering with photons
(although we have ways to measure the polarization of the scattered photons

To describe this physical situations we have to average over initial elgodtarization (since we
do not know them) and sum over all possible final electron polarizaticza(ls® our detector is blind to
this quantum number),

2
1 e ,
iME= - | £ ‘ek,/\-e’k'
M 2<me|k|) (k.

The factor of% comes from averaging over the two possible polarizations of the incomingaisc
The sums in this expression can be calculated without much difficulty. Expatioe absolute value
explicitly

2 Z (" )| = Y Z () K )| [0, ) ku(zis)|. (245)

sil— sil—

2 > > ‘ﬂ(ﬁ/’S')KU(ﬁ,S) gy (244)

41 41
s=x3 s'==%3

45



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

using thaty*T = ~%4#40 and after some manipulation one finds that
— (=l ! — 2 — — — =/ I\ =/ ./
S [ k)| = | Y walBusEs) | B | Y uels a0 ) | K)o

s:i% s’:i% s:i% s'=+
= Tr (B4 mk( +mok|, (246)

where the final expression has been computed using the completenéeaseataEqg. (128). The final
evaluation of the trace can be done using the standard Dirac matrices idertiges we compute it
applying again the relation (229) to commgiteand#. Using thatk? = 0 and that we are working in the
low energy limit we hav¥

[NIES

Te (6 + mo)k(P + mo]| =20+ )@ - k) Te 1~ Sm2|2. (247)

This gives the following value for the invariant amplitude

2

M2 = 464‘6(/25, A) - (RN (248)
Plugging|iM |? into the formula for the differential cross section we get
do 1 - e2 2 - N L2
6 = sima MP = <47Tme> ‘e(k’, A) RN (249)

The prefactor of the last equation is precisely the square of the so-cidiegical electron radius;. In
fact, the previous differential cross section can be rewritten as

do _ 3 7 1 s
a0 - S?UT)E(I‘?;)‘) ek, N) (250)
whereor is the total Thomson cross section
et 8T o
= = — . 2 1
or 6mm?2 3 el (251)

The result (250) is relevant in many areas of Physics, but its importapaedasmount in the study
of the cosmological microwave background (CMB). Just before reguatibn the universe is filled by
a plasma of electrons interacting with photons via Compton scattering, with tetumgsraf the order of
1 keV. Electrons are then nonrelativistia{ ~ 0.5 MeV) and the approximations leading to Eq. (250!
are fully valid. Because we do not know the polarization state of the phsiase being scattered by
electrons we have to consider the cross section averaged over incanaitog polarizations. From Eq.
(250) we see that this is proportional to

2

1 - - 1 - - . o
3 > ‘e(k;,k)-e’(k’,)\’)* 3 > ek, Ne(k, A | 65 (R, X)ea(k', ). (252)
A=1,2 A=1,2

The suminside the brackets can be computed using the normalization of tHeqiaa vectors|e (k, \)|2 =
1, and the transversality conditidn €(k, A) = 0

2_1 B kikj PO NN (T Y E
= 2<6z]_ ‘E|2>6j(kﬂ)\)€l(k7)\)

1

ek, \) - € (k' N)*

12\We use also the fact that the trace of the product of an odd numberaf Biatrices is always zero.
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1 I
= Sp-1g-EE P, (253)

wherel = £ 7 is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppriégsdarizations parallel to
the direction of the incoming photcﬁﬁwhereas the differential cross section reaches the maximum in:
plane normal td. If photons would collide with the electrons in the plasma with the same intensity frc
all directions, the result would be an unpolarized CMB radiation. Thetfattpolarization is actually
measured in the CMB carries crucial information about the physics of tisenplédefore recombination
and, as a consequence, about the very early universe (seafopkx|[22] for a throughout discussion).

6 Symmetries

6.1 Noether's theorem

In Classical Mechanics and Classical Field Theory there is a basic thatltelates symmetries and
conserved charges. This is called Noether's theorem and statesrtbatfocontinuous symmetry of the
system there is conserved current. In its simplest version in Classicéldfies it can be easily proved.
Let us consider a Lagrangidi{g;, ¢;) which is invariant under a transformatigit) — ¢.(¢, ) labelled
by a parameter. This means thak(q’, ¢') = L(q, ¢) without using the equations of motibh If € < 1
we can consider an infinitesimal variation of the coordinategt) and the invariance of the Lagrangian
implies

oL oL oL d 0L d (0L
:eL ia.iziei 7-6.1': a. " 1 a- -~ 0eqi | - 254
0=0dcL(gi &) 6%‘5q * 8%5(] [6%‘ dtaqz‘] Ot ¥ G dt (3 5q> (254)

Whend.q; is applied on a solution to the equations of motion the term inside the squaretzraahkishes
and we conclude that there is a conserved quantity

) L
O=0 with Q=2%Lsq. (255)
0q;

Notice that in this derivation it is crucial that the symmetry depends on a continparameter since
otherwise the infinitesimal variation of the Lagrangian in Eq. (254) doesagt sense.

In Classical Field Theory a similar result holds. Let us consider for simplécityeory of a single
field ¢(z). We say that the variationk¢ depending on a continuous parametare a symmetry of the
theory if, without using the equations of motion, the Lagrangian densitygesalny

S L =0, K" (256)

If this happens then the action remains invariant and so do the equations o nWiadking out now the
variation of £ underd.¢ we find

oL oL oL oL oL
OuK! = ———=0,0c¢0 + -0 = O < e(b) [ -0 <>]5Eqﬁ. 257
W= 80,0 0 g 5(9,9) 06~ "\ 9,9 (257
If ¢(x) is a solution to the equations of motion the last terms disappears, and we fintdtais a
conserved current
oL
9(00)

13The following result can be also derived a more general situationsawher_agrangian changes by a total time derivative

9, Jh =0 with J*= Setp — K. (258)
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Actually a conserved current implies the existence of a charge

Q= / B I, 7) (259)

which is conserved

aQ _

yr 3z JO(t, %) = — / d3x 0;J(t, T) = 0, (260)

provided the fields vanish at infinity fast enough. Moreover, the goedecharge) is a Lorentz scalar.
After canonical quantization the char@edefined by Eq. (259) is promoted to an operator that generat
the symmetry on the fields

6¢ = i[¢, Q. (261)

As an example we can consider a scalar figld) which under a coordinate transformation- z’
changes a8/ (z’) = ¢(z). In particular performing a space-time translatioh = 2/ + o we have

¢ (z) — p(z) = -9, + O(a*) = ¢ = —a"0,0. (262)
Since the Lagrangian density is also a scalar quantity, it transforms uadslations as
0L = —al0,L. (263)
Therefore the corresponding conserved charge is

oL
9(0ug)

where we introduced the energy-momentum tensor

JH =

a’0,¢ + a'L = —a, TH, (264)

oL

™ = 0"p — M L. (265)
9(8,0)
We find that associated with the invariance of the theory with respect t@4jpae translations there
are four conserved currents defined By’ with v = 0,..., 3, each one associated with the translatiol

along a space-time direction. These four currents form a rank-twortansler Lorentz transformations
satisfying

9T = 0. (266)

The associated conserved charges are given by
PY = / 3z T (267)

and correspond to the total energy-momentum content of the field cceatfigur Therefore the energy
density of the field is given b§* while 7" is the momentum density. In the quantum theory ftte
are the generators of space-time translations.

Another example of a symmetry related with a physically relevant consehasde is the global
phase invariance of the Dirac Lagrangian (1%7):- e'%4p. For smallg this corresponds to variations
o = 16, dgyp = —iby which by Noether’s theorem result in the conserved charge

" =y, " = 0. (268)
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Thus implying the existence of a conserved charge
Q= [ s = [ @iy, (269)

In physics there are several instances of global U(1) symmetries thasgthase shifts on spinors.
This is the case, for example, of the baryon and lepton number conserimtice standard model. A
more familiar case is the U(1) local symmetry associated with electromagnetisme Nuaicalthough
in this case we are dealing with a local symmetry;» ea(x), the invariance of the Lagrangian holds
in particular for global transformations and therefore there is a coederurrentj” = ey*1). In
Eg. (162) we saw that the spinor is coupled to the photon field preciselyghrihis current. Its time
component is the electric charge dengityvhile the spatial components are the current density vector

This analysis can be carried over also to nonabelian unitary global symsnttiag as
Wi — Ui, Uty =1 (270)

and leaving invariant the Dirac Lagrangian when we have several fasmibwe write the matripU in
terms of the hermitian group generat@ré as

U = exp (ia,T?) , (T =717, (271)
we find the conserved current
G = TN ), dug" = 0. (272)

This is the case, for example of the approximate flavor symmetries in hadyasicgh The simplest
example is the isospin symmetry that mixes the quar&add

<Z>—>M(Z), M € SU(2). (273)

Since the proton is a bound state of two quarkand one quarkl while the neutron is made out of
one quarky and two quarksl, this isospin symmetry reduces at low energies to the well known isosy
transformations of nuclear physics that mixes protons and neutrons.

6.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conserved ch@fgassociated to symmetries by
Noether's theorem are operators implementing the symmetry at the quantunSieee the charges are
conserved they must commute with the Hamiltonian

[Q*, H]=0. (274)

There are several possibilities in the quantum mechanical realization ofrastyy:

Wigner-Weyl realization. In this case the ground state of the the@y is invariant under the
symmetry. Since the symmetry is generated}$ythis means that

U(Q)]0) = ' Q|0) = 0) =  Q%0)=0. (275)

At the same time the fields of the theory have to transform according to sordediioée representation
of the group generated by tlig. From Eqg. (261) it is easy to prove that

Ula)pild (o)™ = Usj(@) gy, (276)
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whereU;;(«a) is an element of the representation in which the figldransforms. If we consider now
the quantum state associated with the operator

|7) = ¢il0) (277)
we find that because of the invariance of the vacuum (275) the $tatesnsform in the same represen-
tation asp;

U(@)li) = U(a)gid (@)~ U (@) 0) = Uyj(a)¢;]0) = Uii(a)lj). (278)

Therefore the spectrum of the theory is classified in multiplets of the symmetmp gin addition, since
[H,U(«)] = 0 all states in the same multiplet have the same energy. If we consider ondepstetes,
then going to the rest frame we conclude that all states in the same multipletdaatly the same mass.

Nambu-Goldstone realization. In our previous discussion the result that the spectrum of tt
theory is classified according to multiplets of the symmetry group dependeidiéywon the invariance
of the ground state. However this condition is not mandatory and one Eanitréo consider theories
where the vacuum state is not left invariant by the symmetry

e @0y £[0) = Q"]0) # 0. (279)

In this case it is also said that the symmetry is spontaneously broken by thewac

To illustrate the consequences of (279) we consider the example of a nsoddar fields,y’
(i=1,...,N)whose dynamics is governed by the Lagrangian

1 . v
L=35 L't =V (), (280)

where we assume th&t(¢) is bounded from below. This theory is globally invariant under the transfc
mations

S = e (T*)h¢?, (281)
with 7% a = 1,..., 1N (N — 1) the generators of the group $0).
To analyze the structure of vacua of the theory we construct the Hamiltonian
3 (1 1le i o
H= | d’x o +§ch V' +V(p) (282)
and look for the minimum of

V(p) = /d3:1: Bﬁapz V' + V(cp)} . (283)

Since we are interested in finding constant field configurati®igs= ( to preserve translational invari-
ance, the vacua of the potentidi{,) coincides with the vacua df (¢). Therefore the minima of the
potential correspond to the vacuum expectation vafues

ov
0yt

= 0. (284)
i=(p?)

We divide the generatofE® of SO(NV) into two groups: Those denoted B* (o« = 1,...,h)
that satisfy

(H*)’(¢") = 0. (285)

¥For simplicity we consider that the minima &f(¢) occur at zero potential.
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This means that the vacuum configuratign) is left invariant by the transformation generated§.
For this reason we call theombroken generatordNotice that the commutator of two unbroken genera
tors also annihilates the vacuum expectation vdlHe, H”];;(¢?) = 0. Therefore the generatof#/*}
form a subalgebra of the algebra of the generators ofNA9O(The subgroup of the symmetry group
generated by them is realized a la Wigner-Weyl.

The remaining generatods”, with A = 1,..., 2N(N — 1) — h, by definition do not preserve
the vacuum expectation value of the field
(K1) # 0. (286)

These will be called thbroken generatorsNext we prove a very important result concerning the broke
generators known as the Goldstone theorem: for each generatonlimpkee vacuum expectation value
there is a massless excitation.

The mass matrix of the excitations around the vacyyf is determined by the quadratic part of
the potential. Since we assumed that(p)) = 0 and we are expanding around a minimum, the firs
term in the expansion of the potentidly) around the vacuum expectation values is given by

0%V . . . .
Vip) = ——— o) (= () + O (o — 3 287
(0) = 50, - (@ = (N = (") + O [(0 = (9))°] (287)
and the mass matrix is:
0*V
MZ?A = S . 288
R P 2%

In order to avoid a cumbersome notation we do not show explicitly the depeadd the mass matrix
on the vacuum expectation valugs’).

To extract some information about the possible zero modes of the mass matwixjtesdown the
conditions that follow from the invariance of the potential unélgtr = €*(7)’’. At first order ine®

. OV

= e (T =0 (289)

SV (p)

Differentiating this expression with respectgb we arrive at

0?V

19)%
Otk (

Ot

T5¢7 + 5 (T, = 0. (290)

Now we evaluate this expression in the vacugim= (©?). Then the derivative in the second term cancel
while the second derivative in the first one gives the mass matrix. Henfiadve
MG (T)i(¢’) = 0. (291)

Now we can write this expression for both broken and unbroken gemerdor the unbroken ones, since
(Ha)§~<g0j> = 0, we find a trivial identityd0 = 0. On the other hand for the broken generators we have

Mi(KYie) = 0. (292)

Since(KA)§<¢j) # 0 this equation implies that the mass matrix has as many zero modes as br¢
generators. Therefore we have proven Goldstone’s theorem: igssbwith each broken symmetry
there is a massless mode in the theory. Here we have presented a classitaf the theorem. In the
quantum theory the proof follows the same lines as the one presentedut@nmebhas to consider the
effective action containing the effects of the quantum corrections to thsicié Lagrangian.
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As an example to illustrate this theorem, we consider a SO(3) invariant sedthttfeory with a
“mexican hat” potential

V(@) = 2 (32 —a?). (293)

The vacua of the theory correspond to the configurations satisfying = a. In field space this equa-
tion describes a two-dimensional sphere and each solution is just a poiat ispthere. Geometrically
it is easy to visualize that a given vacuum field configuration, i.e. a pointdrsginere, is preserved
by SO(2) rotations around the axis of the sphere that passes throughothe Hence the vacuum
expectation value of the scalar field breaks the symmetry according to

(B):  SO(3) — SO(2). (294)

Since SO(3) has three generators and SO(2) only one we see thatriematges are broken and there-
fore there are two massless Goldstone bosons. Physically this masslessaaodes thought of as
corresponding to excitations along the surface of the spli@ré = a.

Once a minimum of the potential has been chosen we can proceed to quaatectiations
around it. Since the vacuum only leaves invariant a SO(2) subgroupedairtpinal SO(3) symmetry
group it seems that the fact that we are expanding around a particalaunseexpectation value of the
scalar field has resulted in a lost of symmetry. This is however not the ddsefull quantum theory
is symmetric under the whole symmetry group SO(3). This is reflected in thdéhaicthe physical
properties of the theory do not depend on the particular point of thereglg? = o that we have
chosen. Different vacua are related by the full SO(3) symmetry anéftirershould give the same
physics.

It is very important to realize that given a theory with a vacuum determinedzbyall other
possible vacua of the theory are unaccessible in the infinite volume limit. Thissniegntwo vacuum
states0;), |02) corresponding to different vacuum expectation values of the scaldfie orthogonal
(01]02) = 0 and cannot be connected by any local observaijle), (0;|®(x)|02) = 0. Heuristically
this can be understood by noticing that in the infinite volume limit switching fromw@oeium into
another one requires changing the vacuum expectation value of theviéelduwbere in space at the same
time, something that cannot be done by any local operator. Notice that thidicalty different to our
expectations based on the Quantum Mechanics of a system with a finite nofhalegirees of freedom.

In High Energy Physics the typical example of a Goldstone boson is the gssociated with
the spontaneous breaking of the global chiral isosfii2) , x SU(2), symmetry. This symmetry acts
independently in the left- and right-handed spinors as

UL,R — My R UL,R , My g € SU(?)L R (295)
d1.n \d ’ ’

)

Presumably since the quarks are confined at low energies this symmetontarspously broken down
to the diagonal SU(2) acting in the same way on the left- and right-handedocmmis of the spinors.
Associated with this symmetry breaking there is a Goldstone mode which is identifidge pion. No-
tice, nevertheless, that the SU{XSU(2)z would be an exact global symmetry of the QCD Lagrangia
only in the limit when the masses of the quarks are zefom,; — 0. Since these quarks have nonzerc
masses the chiral symmetry is only approximate and as a consequenceaé¢spaading Goldstone bo-
son is not massless. That is why pions have masses, although they ardtbst [garticle among the
hadrons.

Symmetry breaking appears also in many places in condensed matter. Fmpiexahen a solid
crystallizes from a liquid the translational invariance that is present in thalighuase is broken to a
discrete group of translations that represent the crystal lattice. This syynmeaking has Goldstone
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bosons associated which are identified with phonons which are the quamtitation modes of the
vibrational degrees of freedom of the lattice.

The Higgs mechanism.Gauge symmetry seems to prevent a vector field from having a ma
This is obvious once we realize that a term in the Lagrangiandike, A* is incompatible with gauge
invariance.

However certain physical situations seem to require massive vector. figlis happened for
example during the 1960s in the study of weak interactions. The Glashow gedea common de-
scription of both electromagnetic and weak interactions based on a gaogg\hta group SU(2xU(1)
but, in order to reproduce Fermi’s four-fermion theory of thelecay it was necessary that two of the
vector fields involved would be massive. Also in condensed matter physissivaasector fields are
required to describe certain systems, most notably in superconductivity.

The way out to this situation is found in the concept of spontaneous symmmettkibg discussed
previously. The consistency of the quantum theory requires gaugeainga, but this invariance can be
realized a la Nambu-Goldstone. When this is the case the full gauge symmaeityiglicitly present in
the effective action constructed around the particular vacuum chgstie bheory. This makes possible
the existence of mass terms for gauge fields without jeopardizing the coryistehe full theory, which
is still invariant under the whole gauge group.

To illustrate the Higgs mechanism we study the simplest example, the Abelian Higlg: nao
U(1) gauge field coupled to a self-interacting charged complex scaladfiglith Lagrangian

1 _ A
L=~ FuwF" + DSD"® — 7 (30 u?)?, (296)

where the covariant derivative is given by Eqg. (159). This theorysariant under the gauge transfor-
mations

P — @, A, — Ay + Opa(2). (297)

The minimum of the potential is defined by the equati®h = n. We have a continuum of different
vacua labelled by the phase of the scalar field. None of these vacuayépus invariant under the
gauge symmetry

<¢)> — /LGWO N Meiﬁo+io¢(x) (298)

and therefore the symmetry is spontaneously broken Let us study nowethy #round one of these
vacua, for examplé®) = p, by writing the field® in terms of the excitations around this particula
vacuum

O(x) = [u + \}ia(m)} V@), (299)
Independently of whether we are expanding around a particular raéauthe scalar field we should
keep in mind that the whole Lagrangian is still gauge invariant under (ZB7s means that perform-
ing a gauge transformation with parametér:) = —J(z) we can get rid of the phase in Eq. (299).
Substituting them (z) = 1 + %a(x) in the Lagrangian we find

1 1 1
L = _ZFWFW + eQuQA“A“ + 58“08“0 — §Au202
A
— o’ — 104 +e2pA, Alo + €2 A, Ao, (300)

What are the excitation of the theory around the vacy@n= p? First we find a massive real scalar
field o(z). The important point however is that the vector fidld now has a mass given by

m,2y = 2e%12. (301)
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The remarkable thing about this way of giving a mass to the photon is thatptinbwe have given up
gauge invariance. The symmetry is only hidden. Therefore in quantizirtgeloey we can still enjoy all
the advantages of having a gauge theory but at the same time we have thamggeerate a mass for
the gauge field.

It is surprising, however, that in the Lagrangian (300) we did not doamy massless mode. Since
the vacuum chosen by the scalar field breakslfiie) generator of U(1) we would have expected one
masless particle from Goldstone’s theorem. To understand the fate of thagr&sdstone boson we
have to revisit the calculation leading to Eq. (300). Were we dealing with aabld{l) theory, the
Goldstone boson would correspond to excitation of the scalar field alonglieg of the potential and
the phase}(z) would be the massless Goldstone boson. However we have to keep in minddbat-
puting the Lagrangian we managed to get rid/0f) by shifting it into A, using a gauge transformation.
Actually by identifying the gauge parameter with the Goldstone excitation wedwawpletely fixed the
gauge and the Lagrangian (300) does not have any gauge symmetry left.

A massive vector field has three polarizations: two transverselonggk, +1) = 0 plus a longi-
tudinal onegy, (k) ~ k. In gauging away the massless Goldstone bakaf we have transformed it into
the longitudinal polarization of the massive vector field. In the literature thisually expressed saying
that the Goldstone mode is “eaten up” by the longitudinal component of thgeedaald. It is important
to realize that in spite of the fact that the Lagrangian (300) looks pretgrdiit from the one we started
with we have not lost any degrees of freedom. We started with the two patiariz of the photon plus
the two degrees of freedom associated with the real and imaginary comparig¢he complex scalar
field. After symmetry breaking we end up with the three polarizations of theimeagsctor field and the
degree of freedom of the real scalar fielgr).

We can also understand the Higgs mechanism in the light of our discussgaugé symmetry
in section 4.4. In the Higgs mechanism the invariance of the theory undeitésiinal gauge trans-
formations is not explicitly broken, and this implies that Gauss’ law is satisfiadtgm mechanically,
V - E,|phys) = 0. The theory remains invariant under gauge transformations in the dednesm-
ponent of the identity,, the ones generated by Gauss’ law. This does not pose any restriotitve o
possible breaking of the invariance of the theory with respect to tranatayns that cannot be continu-
ously deformed to the identity. Hence in the Higgs mechanism the invarianee gawdge transformation
that are not in the connected component of the idergitg,, can be broken. Let us try to put it in more
precise terms. As we learned in section 4.4, in the Hamiltonian formulation of tbeytfieite energy
gauge field configurations tend to a pure gauge at spatial infinity

—

Ai)— = Lo@ V@ 1 o (302)
The set transformationg (Z) € Gy that tend to the identity at infinity are the ones generated by Gau:
law. However, one can also consider in general gauge transformatiénahich, asz| — oo, approach
any other elemenj € G. The quotieny,, = G/Gy gives a copy of the gauge group at infinity. There
is no reason, however, why this group should not be broken, andhierglet is if the gauge symmetry
is spontaneously broken. Notice that this is not a threat to the consistéiiog theory. Properties
like the decoupling of unphysical states are guaranteed by the fact #hugsQaw is satisfied quantum
mechanically and are not affected by the breaking of

In condensed matter physics the symmetry breaking described by thdativigtic version of
the Abelian Higgs model can be used to characterize the onset of a sugecting phase in the BCS
theory, where the complex scalar fidids associated with the Cooper pairs. In this case the parapreter
depends on the temperature. Above the critical temperdtyye’ (7)) > 0 and there is only a symmetric
vacuum(®) = 0. When, on the other hand, < T, thenu?(T) < 0 and symmetry breaking takes place.
The onset of a nonzero mass of the photon (301) below the critical tetapeexplains the Meissner
effect: the magnetic fields cannot penetrate inside superconductansdaylistance of the ord%%.
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The Abelian Higgs model discussed here can be regarded as a toy mdtel Bxfout-Englert-
Higgs mechanism responsible for giving mass tollié¢ and Z° gauge bosons in the standard model
Giving mass to these three bosons requires the introduction of a two-cempoomplex scalar field
transforming as a doublet under SU(2). Three of its four degreeseetflébm are incorporated as the
longitudinal components of the three massive gauge fields, whereasutitle éme remains as a scalar
propagating degree of freedom. Its elementary excitations are spineetralparticles known as Higgs
bosons.

The Higgs boson couples to the massive gauge fields, as well as to gurarksptons. More-
over, its coupling to the fermions is proportional to the fermion masses anefthevery weak for
light fermions. This, together with the fact that Higgs productions prasekave large standard model
backgrounds, complicates its experimental detection. After decadearchss in various experiments,
a Higgs boson candidate was finally detected at the ATLAS and CMS cdditanas at the Large Hadron
Collider (LHC) in 2012 with a mass of approximately 125 GeV. At the time of writialdj evidences
point to the fact that this new particle is indeed the so much coveted standded Higgs.

7 Anomalies

So far we did not worry too much about how classical symmetries of a trerergarried over to the
quantum theory. We have implicitly assumed that classical symmetries areveckgethe process of
guantization, so they are also realized in the quantum theory.

This, however, does not have to be necessarily the case. Quantizingeeacting field theory
is a very involved process that requires regularization and renormaltizaitio sometimes, it does not
matter how hard we try, there is no way for a classical symmetry to survigatigation. When this
happens one says that the theory haarmmmaly(for reviews see [28]). It is important to avoid here the
misconception that anomalies appear due to a bad choice of the way a thegyi#sized in the process
of quantization. When we talk about anomalies we mean a classical symmetrgimatbe realized in
the quantum theory, no matter how smart we are in choosing the regularipatioedure.

In the following we analyze some examples of anomalies associated with globédeal sym-
metries of the classical theory. In Section 8 we will encounter yet anodaen@e of an anomaly, this
time associated with the breaking of classical scale invariance in the quargang.th

7.1 Axial anomaly

Probably the best known examples of anomalies appear when we coagidesymmetries. If we
consider a theory of two Weyl spinots.

U—

L =iy = il om0 uy + il " d,u_ with W = et (303)
+9+0u 1

the Lagrangian is invariant under two types of global U(1) transformatibmthe first one both helicities
transform with the same phase, this igeztortransformation:

U@y : ur — eu, (304)
whereas in the second one, the aXidl ), the signs of the phases are different for the two chiralities

U, : usr — ey, (305)
Using Noether’s theorem, there are two conserved currents, a veictent

I =y = ulohus +ulotu. = 90 =0 (306)
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and an axial vector current

Jh = Ppytas = ulaiu+ —ul oty = o, J4 = 0. (307)

The theory described by the Lagrangian (303) can be coupled to theoetagnetic field. The
resulting classical theory is still invariant under the vector and axial Bfjmetries (304) and (305).
Surprisingly, upon quantization it turns out that the conservation of tta exrrent (307) is spoiled by
quantum effects

8, J% ~hE-B. (308)

To understand more clearly how this result comes about we study first desimgalel in two
dimensions that captures the relevant physics involved in the four-dinmethgiase [29]. We work in
Minkowski space in two dimensions with coordinate$, z') = (¢, ) and where the spatial direction
is compactified to a circl&™. In this setup we consider a fermion coupled to the electromagnetic fie
Notice that since we are living in two dimensions the field stredgthonly has one independent com-
ponent that corresponds to the electric field along the spatial direétfdns £ (in two dimensions there
are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representafitiee algebra of
~y-matrices

(VA =29" with n= ( (1) _(1) ) : (309)

In two dimensions the dimension of the representation oftheatrices i3] = 2. Here take

0 1 0 1
0_ 1 _ 1.2
v =0 (10>, v =io <_10>. (310)
This is a chiral representation since the matixs diagonal®
— 0.1 o 1 0
Vs = 77—(0 1 (311)
Writing the two-component spinar as
_ [ U+
v=(u) (312)

and defining as usual the projectdts = %(H:%) we find that the components. of ¢ are respectively
a right- and left-handed Weyl spinor in two dimensions.

Once we have a representation of thenatrices we can write the Dirac equation. Expressing it i
terms of the components; of the Dirac spinor we find

(0o — O1)ug =0, (0o + O1)u— = 0. (313)
The general solution to these equations can be immediately written as
uy = uy (20 + zt), u_ =u_(z° — zh). (314)

Henceuy are two wave packets moving along the spatial dimension respectively to the Jeéfand
to the right(u_). Notice that according to our convention the left-moving is a right-handed spinor
(positive helicity) whereas the right-moving. is a left-handed spinor (negative helicity).

¥In any even number of dimensions is defined to satisfy the conditiong = 1 and{ys,v*} = 0.
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V+ VvV _

Fig. 11: Spectrum of the massless two-dimensional Dirac field.

If we want to interpret (313) as the wave equation for two-dimension#sl ¥fenors we have the
following wave functions for free particles with well defined momenim= (E, p).

B0 1y _ L B +a)) : _
uy (x” £x) = e with =FF. 315
As it is always the case with the Dirac equation we have both positive aradiveegnergy solutions. For
uy, SinceE = —p, we see that the solutions with positive energy are those with negative maomen

p < 0, whereas the negative energy solutions are plane wave®with. For the left-handed spinar_
the situation is reversed. Besides, since the spatial direction is compact mgth lethe momentunmp
is quantized according to

_— n € Z. (316)

The spectrum of the theory is represented in Fig. 11.

Once we have the spectrum of the theory the next step is to obtain the vaésumith the Dirac
equation in four dimensions we fill all the states wih< 0 (Fig. 12). Exciting of a particle in the Dirac
see produces a positive energy fermion plus a hole that is interpretedaasiparticle. This gives us the
clue on how to quantize the theory. In the expansion of the opeatdm terms of the modes (315) we
associate positive energy states with annihilation operators whereasttdtevgith negative energy are
associated with creation operators for the corresponding antiparticle

us(@) = Y e (B @) + L ()l (@)"] . (317)
E>0

The operator.+ (E) acting on the vacuurfo, +) annihilates a particle with positive energyand mo-
mentum=*E. In the same waﬂ(E) creates out of the vacuum an antiparticle with positive enérgy
and spatial momentungE. In the Dirac sea picture the operatar(E)! is originally an annihilation
operator for a state of the sea with negative enerd@y As in the four-dimensional case the problem o
the negative energy states is solved by interpreting annihilation operatangdative energy states as
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o Y
oY

|0,+> 10,

Fig. 12: Vacuum of the theory.

creation operators for the corresponding antiparticle with positive griangl vice versa). The operators
appearing in the expansion of. in Eq. (317) satisfy the usual algebra

{axn(B),al,(E)} = {bA(E), b\ (E)} = 05, proy (318)

where we have introduced the label\' = +. Also, a)(E), aJ[\(E) anticommute withb,/ (E’), bi,(E’).
The Lagrangian of the theory

£ = iul (9o + 0)uy +iul (9o — )u_ (319)
is invariant under both U(3), Eq. (304), and U(1), Eq. (305). The associated Noether currents are

this case
T T T ot
J"j _ ( uﬂu+ —HLTU_ > 7 Jh— ( quTqu u,Tu_ ) . (320)
—Uy U4 FU_U— —U LUy —U_U_
The associated conserved charges are given, for the vectontchyre
L
Qv = / dat (uiu_i_ + uiu_> (321)
0
and for the axial current
L
Q= / da? (uz_qu — uT_u,> . (322)
0
Using the orthonormality relations for the modg)(x)
L E E’
|t ) o w) = b (523)
0
we find for the conserved charges:

Qv = >, [GL(E)M(E) — b (E)by(E) +a! (E)a_(E) — bi(E)b_(E)} :
E>0
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Fig. 13: Effect of the electric field.

Qs = > |ah(B)ay(B) = bl (B) — ol (B)a_(B) + bl (B)b-(B)| . (324)
E>0

We see thaf)y counts the net number (particles minus antiparticles) of positive helicity stieshe
net number of states with negative helicity. The axial charge, on the cdinel; bounts the net number of
positive helicity states minus the number of negative helicity ones. In the €#ise wector current we
have subtracted a formally divergent vacuum contribution to the chtlrgédharge of the Dirac sea”).

In the free theory there is of course no problem with the conservatidtheiré),, or ) 4, since the
occupation numbers do not change. What we want to study is the efffiemtipling the theory to electric
field £. We work in the gaugely = 0. Instead of solving the problem exactly we are going to simula
the electric field by adiabatically varying in a long timgthe vector potentiald; from zero value to
—&79. From our discussion in section 4.3 we know that the effect of the electoatia coupling in the
theory is a shift in the momentum according to

p—p— e, (325)

wheree is the charge of the fermions. Since we assumed that the vector poteniga &diabatically,
we can assume it to be approximately constant at each time.

Then, we have to understand what is the effect of (325) on the vadepiuoted in Fig. (12). What
we find is that the two branches move as shown in Fig. (13) resulting in sothe ofegative energy
states of the), branch acquiring positive energy while the same number of the empty pasitargy
states of the other braneh. will become empty negative energy states. Physically this means that
external electric fiel& creates a number of particle-antiparticle pairs out of the vacuum. Denating
N ~ e€ the number of such pairs created by the electric field per unit time, the fil@ss/af the charges
Qv andQ 4 are

Qa(ro) = (N—-0)+ (0~

Qv(r) = (N-0)—(0— N. (326)
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Therefore we conclude that the coupling to the electric field producedatigioin the conservation of
the axial charge per unit time given ByQ 4 ~ e£. This implies that

0, JH ~ ehE, (327)

where we have restorgdto make clear that the violation in the conservation of the axial current is
quantum effect. At the same tim®(Q);, = 0 guarantees that the vector current remains conserved a
quantum mechanicallyl, J{; = 0.

We have just studied a two-dimensional example of the Adler-Bell-Jackiw ar@maly [30].
The heuristic analysis presented here can be made more precise by cgntipaiguantity

CH = (0|T [J4(2)J3(0)] |0) = (328)
Jh v

The anomaly is given then &y, C*”. A careful calculation yields the numerical prefactor missing in Ec
(327) leading to the result

eh
o Jly = %EVUFW, (329)
with 01 = —¢10 =1,
The existence of an anomaly in the axial symmetry that we have illustrated in twosions is
present in all even dimensional of space-times. In particular in four dimesnithe axial anomaly it is
given by

2

W ——

16W25W”“EQVP}A. (330)

This result has very important consequences in the physics of stromgatbas as we will see in what
follows

7.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is based on the thEQuyantum Chromodynamics
(QCD) [32]. This is a nonabelian gauge theory with gauge group\g)J¢oupled to a numbeN of

quarks. These are sp%wparticles@if labelled by two quantum numbers: coloe 1, ..., N. and flavor
f=1,...,Ny. The interaction between them is mediated by Affe— 1 gauge bosons, the gluors,
a=1,...,N? — 1. In the real worldN. = 3 and the number of flavors is six, corresponding to th

number of different quarks: up), down (), charm ¢), strange £), top () and bottom ).

For the time being we are going to study a general theory of QCD Mjtbolors andV flavors.
Also, for reasons that will be clear later we are going to work in the limit ofisling quark masses,
my — 0. In this cases the Lagrangian is given by

Ny
1 — —
gQa,:_ZF;fum¢+§:PQQ@Q{+ZQ§mQ§y (331)
f=1

where the subscripts and R indicate respectively left and right-handed spind}é,R = P.Qf,and the
field strengthr;, and the covariant derivativ@,, are respectively defined in Egs. (165) and (168). Apa

60



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

from the gauge symmetry, this Lagrangian is also invariant under a glaqa$)dxU(Ny)r acting on
the flavor indices and defined by

Qf = Y, (UL QL - @
U(Ny), : UNf) g : , (332)
Qh — Q& Qr = pUr)srQk
with U, Ur € U(Ny). Actually, since U(V)=U(1)xSU(N) this global symmetry group can be written

as SUNVy), x SUWNy) , x U(1), xU(1)g. The abelian subgroup U@ x U(1)x can be now decomposed
into their vector U(1} and axial U(1) subgroups defined by the transformations

Q) — €°Q] Q) — €°Q)

UQ)g: ‘ Ul),: ‘ (333)
Qé _> eza@{% Qé _> e—laQé

According to Noether’s theorem, associated with these two abelian symmegrieawe two conserved

currents:

Ny Ny
="', =30 vl (334)
f=1 f=1

The conserved charge associated with vector chdfges actually the baryon number defined as the
number of quarks minus number of antiquarks.

The nonabelian part of the global symmetry group S, xSU(N)r can also be decomposed
into its vector and axial subgroups, SU),, x SU(Ny) ,, defined by the following transformations of
the quarks fields

Q = UL QL Qf = UL QY
SUWVy),, , SUWVY) , (335)
Qh — X, (U)srQh QF = X p(URYrQk

Again, the application of Noether’s theorem shows the existence of thevfnjononabelian conserved
charges

Tt = Z QM (T Q" Tyt = Z Q7 ys(Th) Q7. (336)
fif'=1 f.f=1

To summarize, we have shown that the initial chiral symmetry of the QCD Lg@mar(331) can be
decomposed into its chiral and vector subgroups according to

U(Ny), x UNy)p, = SUWVy),, x SUWVy) , x U(L)p x U(1)4. (337)
The question to address now is which part of the classical global symmeitrgdsrved by the quantum
theory.

As argued in section 7.1, the conservation of the axial curréftand J3" can in principle be
spoiled due to the presence of an anomaly. In the case of the abelianuawéaitd’, the relevant quantity
is the correlation function

Ny

O = (OIT [ T4 () e ()b (0)] 10) = S
f=1

(338)

4 symmetric
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Here jgiuge iS the nonabelian conserved current coupling to the gluon field

Ny
Jelee = Q' rreQ, (339)

f=1
where, to avoid confusion with the generators of the global symmetry we devoted by-* the gen-
erators of the gauge group SN{). The anomaly can be read now fradpC*"“. If we impose Bose
symmetry with respect to the interchange of the two outgoing gluons and gawagiance of the whole
expressiong, C*? = 0 = 0,C*7, we find that the axial abelian global current has an anomaly givt
by16

2
o Jh = —%EWMF[}VF“ s (340)

In the case of the nonabelian axial global symmetry B}J( the calculation of the anomaly is
made as above. The result, however, is quite different since in this @asenglude that the nonabelian
axial current/" is not anomalous. This can be easily seen by noticing that associated witkiahe ¢
current vertex we have a generafbf of SU(Vy), whereas for the two gluon vertices we have the
generators“ of the gauge group SW{.). Therefore, the triangle diagram is proportional to the groug

theoretic factor

~trThtr {7, 7%} =0 (341)

4 symmetric

which vanishes because the generators offgJ@re traceless.

From here we would conclude that the nonabelian axial symmetryWg)(is nonanomalous.
However this is not the whole story since quarks are charged particteisbaouple to photons. Hence
there is a second potential source of an anomaly coming from the the gn&ibowle diagram coupling
J4" to two photons

Y
Ny
O [J4(@) a2V 75 (0] 10) = 3 Q' (342)
= | JiE
Q7 g
L 4 symmetric
wherejt, is the electromagnetic current
Ny
it =", Q' Q7 (343)
f=1

with ¢, the electric charge of thg-th quark flavor. A calculation of the diagram in (342) shows th
existence of an Adler-Bell-Jackiw anomaly given by

Ny
S (THsra}| €7 FuFon, (344)

N,
1672

At = —

'®The normalization of the generatdf¥ of the global SUV;) is given bytr (T'T7) = 1577.

62



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

whereF),, is the field strength of the electromagnetic field coupling to the quarks. Thechalyce for
the anomaly to cancel is that the factor between brackets in this equatiomiieatlg zero.

Before proceeding let us summarize the results found so far. Bechilsepyesence of anomalies
the axial part of the global chiral symmetry, SU() 4 and U(1), are not realized quantum mechanically
in general. We found that U(})is always affected by an anomaly. However, because the right-he
side of the anomaly equation (340) is a total derivative, the anomalouaatbaof./y does not explain
the absence of U(%) multiplets in the hadron spectrum, since a new current can be construcied wl
is conserved. In addition, the nonexistence of candidates for a Goddbtmson associated with the
right quantum numbers indicates that U(1¥ not spontaneously broken either, so it has be explicitl
broken somehow. This is the so-called U(1)-problem which was solvedHbyoft [33], who showed
how the contribution of quantum transitions between vacua with topologicatyria@al gauge field
configurations (instantons) results in an explicit breaking of this symmetry.

Due to the dynamics of the S¥(.) gauge theory the axial nonabelian symmetry is spontaneou:
broken due to the presence at low energies of a vacuum expectatierfeatbe fermion biIinea@fo

010”7 Q7 10) £ 0 (No summation inf!). (345)

This nonvanishing vacuum expectation value for the quark bilinear actbedigks chiral invariance
spontaneously to the vector subgroup 84)y, so the only subgroup of the original global symmetry
that is realized by the full theory at low energy is

U(Ny), x U(Ny) , — SUWVy),, x U(1)p. (346)

Associated with this breaking a Goldstone boson should appear with theuquanmbers of the broken
nonabelian current. For example, in the case of QCD the Goldstone bassmsated with the sponta-
neously symmetry breaking induced by the vacuum expectation v@iugs(dd) and((ud — du)) have
been identified as the pions, 7. These bosons are not exactly massless because of the nonvanis
mass of the, andd quarks. Since the global chiral symmetry is already slightly broken by mamss te
the Lagrangian, the associated Goldstone bosons also have masseghahiegware very light compared
to the masses of other hadrons.

In order to have a better physical understanding of the role of anomaliee jphysics of strong
interactions we particularize now our analysis of the case of real QCReSiven andd quarks are
much lighter than the other four flavors, QCD at low energies can be wsdridbed by including only
these two flavors and ignoring heavier quarks. In this approximatiom &or previous discussion we
know that the low energy global symmetry of the theory is SU¢Y(1)z, where now the vector group
SU(2), is the well-known isospin symmetry. The axial Uglgurrent is anomalous due to Eq. (340)
with Ny = 2. In the case of the nonabelian axial symmetry SY(2aking into account that, = %e
andgq = —%e and that the three generators of SU(2) can be written in terms of the Paulcesadss
TX = 1o% we find

2

S (@srai= Y (THraf =0, > (T)srq7 = %- (347)

f=u,d f=u,d f=u,d

Therefores " is anomalous.

Physically, the anomaly in the axial curremﬁ“ has an important consequence. In the quar
model, the wave function of the neutral piefi is given in terms of those for theandd quark by

%) = ¢1§ (8)lu) — |d)[d)) (348)
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The isospin quantum numbers|af’) are those of the generatdr. Actually the analogy goes further
sinceaujf’l“ is the operator creating a piarY out of the vacuum

|70) ~ 8, J3H10). (349)

This leads to the physical interpretation of the triangle diagram (342)&%1‘?95 the one loop contribu-
tion to the decay of a neutral pion into two photons

a— (350)

This is an interesting piece of physics. In 1967 Sutherland and Veltmarp{84¢nted a calcula-
tion, using current algebra techniques, according to which the dedhag pfon into two photons should
be suppressed. This however contradicted the experimental evidemsddiwed the existence of such &
decay. The way out to this paradox, as pointed out in [30], is the axtahaly. What happens is that the
current algebra analysis overlooks the ambiguities associated with tHariegtion of divergences in
quantum field theory. A QED evaluation of the triangle diagram leads to agdiméintegral that has to
be regularized somehow. It is in this process that the Adler-Bell-JackaV @axomaly appears resulting
in a nonvanishing value for the” — 2~ amplitudé”’.

The existence of anomalies associated with global currents does nesaglyemean difficulties
for the theory. On the contrary, as we saw in the case of the axial anomialytst existence what
allows for a solution of the Sutherland-Veltman paradox and an explandtibae electromagnetic decay
of the pion. The situation, however, is very different if we deal with loeghmetries. A quantum
mechanical violation of gauge symmetry leads to all kinds of problems, frakofa@normalizability to
nondecoupling of negative norm states. This is because the predemrcarmomaly in the theory implies
that the Gauss’ law constraiRt - £, = p, cannot be consistently implemented in the quantum theor
As a consequence states that classically are eliminated by the gauge synenetnelpropagating fields
in the quantum theory, thus spoiling the consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories wtieenderight-
handed fermions transform in different representations of the gaugg g Physically, the most inter-
esting example of such theories is the electroweak sector of the standartwhede, for example, left
handed fermions transform as doublets under SU(2) whereas rigietidermions are singlets. On the
other hand, QCD is free of gauge anomalies since both left- and righetamearks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

1
ﬁZ_ZFaMVFa +ZZw+lD(+)w++ZZ¢ @ (351)

7=1
where the chiral fermiong. transform according to the representatiotls of the gauge groufg-
(e =1,...,dim G). The covariant derlvatlveQ(i) are then defined by

DBy = i, +igAK T g (352)

As for global symmetries, anomalies in the gauge symmetry appear in the tridagtard with one
axial and two vector gauge current vertices

W

(Ol |75 @)t (@)% )] 10) = | Q9 (353)
Ja )
v

L 4 symmetric

17An early computation of the triangle diagram for the electromagnetic defdhg pion was made by Steinberger in [31].

64



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

where gauge vector and axial curreft$, j9/ are given by

Ny N_ ‘
W= DT 4 Y Uity

i=1 Jj=1
Ny N_ ‘
J = DT, = > gyt (354)

i=1 i=1

Luckily, we do not have to compute the whole diagram in order to find an alyaaacellation condition,
it is enough if we calculate the overall group theoretical factor. In the oashe diagram in Eq. (353)
for every fermion species running in the loop this factor is equal to

tr [Ti‘fi{Tﬁi, T;i}:| ) (355)

where the signt corresponds respectively to the generators of the representation gdidige group for
the left and right-handed fermions. Hence the anomaly cancellation conditids

Ny N_
Ztr {Ti‘f+{72-l:+, Tif+}] — Z tr {Tﬁ_{T;_, Tﬁ_ } =0. (356)
i=1 Jj=1

Knowing this we can proceed to check the anomaly cancellation in the standded SU(3x SU(2)x
Left handed fermions (both leptons and quarks) transform as douwtitbtsespect to the SU(2) factor
whereas the right-handed components are singlets. The charge wiglstrasthe U(1) part, the hyper-
chargeY’, is determined by the Gell-Mann-Nishijima formula

Q="T;+Y, (357)

where( is the electric charge of the corresponding particle ‘&nd the eigenvalue with respect to the
third generator of the SU(2) group in the corresponding representdfios %03 for the doublets and
T5 = 0 for the singlets. For the first family of quarks,(d) and leptonsd, v.) we have the following
field content

(&7
. U « (e}
quarks: < 4o >L1 Up,2 d 2
5

leptons: < Ve > 1 eRr—1 (358)
-1

(&
72
wherea = 1,2, 3 labels the color quantum number and the subscript indicates the value okttie w
hyperchargey”. Denoting the representations of SWHU(2)xU(1) by (n., ny)y, With n. andn,,
the representations of SU(3) and SU(2) respectively Brttie hypercharge, the matter content of the
standard model consists of a three family replication of the representations:

left-handed fermions: (3,2)% (1,2)F,
6 2
(359)
right-handed fermions: (3,1)% (3, 1), (1, 1)%,.
3 3

In computing the triangle diagram we have 10 possibilities depending on wagtdr of the gauge group
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SU(B)xSU(2)xU(1) couples to each vertex:

Su(3y SuEy U@y
SU(3Y SU(2) SURfU@)

SU(3Y U(1) SU(2) U(1¥

SU(3) SU(2}

SU(3) SU(2) U(1)

SU(3) U(1y

It is easy to check that some of them do not give rise to anomalies. For &x#mepanomaly for the
SU(3) case cancels because left and right-handed quarks transform iantieerepresentation. In the
case of SU(2) the cancellation happens term by term because of the Pauli matrices idefatity=
59 + je®oe that leads to

tr |:0'a{0'b,0'c}] =2(tro®) 6" = 0. (360)

However the hardest anomaly cancellation condition to satisfy is the one wéth thi)'s. In this case
the absence of anomalies within a single family is guaranteed by the nontremitid

DV VP = 3x2x (é)3+2>< (—;)3—3x (g)g—gx (_;>3_(_1)3

left right
3 3
S Z)=o0. 361

It is remarkable that the anomaly exactly cancels between leptons andsgudakice that this result
holds even if a right-handed sterile neutrino is added since such a part&ckdnglet under the whole
standard model gauge group and therefore does not contribute to tisdarithagram. Therefore we see
how the matter content of the standard model conspires to yield a consisgettum field theory.

In all our discussion of anomalies we only considered the computation efoopediagrams.
It may happen that higher loop orders impose additional conditions. Faeynthis is not so: the
Adler-Bardeen theorem [35] guarantees that the axial anomaly ordiwesccontributions from one loop
diagrams. Therefore, once anomalies are canceled (if possible) &amere know that there will be
no new conditions coming from higher-loop diagrams in perturbation theory.

The Adler-Bardeen theorem, however, only applies in perturbationythiéds nonetheless possi-
ble that nonperturbative effects can result in the quantum violation aigeggymmetry. This is precisely
the case pointed out by Witten [36] with respect to the SU(2) gauge symnieting standard model.
In this case the problem lies in the nontrivial topology of the gauge grouf2)SUrhe invariance of
the theory with respect to gauge transformations which are not in the c@eheomponent of the iden-
tity makes all correlation functions equal to zero. Only when the number tefitafded SU(2) fermion
doublets is even gauge invariance allows for a nontrivial theory. Itagnagmarkable that the family
structure of the standard model makes this anomaly to cancel

3 % < Z ) +1x ( ”e ) = 4 SU(2)-doublets (362)
L L

where the factor of 3 comes from the number of colors.
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8 Renormalization
8.1 Removing infinities

From its very early stages, quantum field theory was faced with infinitiesy €merged in the calcula-
tion of most physical quantities, such as the correction to the charge détiteoa due to the interactions
with the radiation field. The way these divergences where handled in #@s1Starting with Kramers,
was physically very much in the spirit of the Quantum Theory emphasis imadide quantities: since
the observed magnitude of physical quantities (such as the charge déth@me) is finite, this number

should arise from the addition of a “bare” (unobservable) value anduhatum corrections. The fact
that both of these quantities were divergent was not a problem physisialte only its finite sum was
an observable quantity. To make thing mathematically sound, the handling dfi@sfirequires the in-

troduction of some regularization procedure which cuts the divergergraiteoff at some momentum
scaleA. Morally speaking, the physical value of an observab|gy .. is given by

Ophysical = Alggo [O(A)bare + AO(A)h] ’ (363)

whereAO(A); represents the regularized quantum corrections.

To make this qualitative discussion more precise we compute the correctioessietkric charge
in Quantum Electrodynamics. We consider the process of annihilation deatran-positron pair to
create a muon-antimuon pare™ — ptu~. To lowest order in the electric chargehe only diagram
contributing is

In order to compute the renormalization of the charge we consider theifiggiath which takes
into account the first correction to the propagator of the virtual photoncimged between the pairs
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due to vacuum polarization. We begin by evaluating

—inhe _mﬁv
= 364
W\I\Q(\M q2—i—’i€ aOﬁ q2—|—7;€’ ( )

where the diagram between brackets is given by

. d*k  Tr Me )Y me)yP
“Qﬁ W00 = Aot [ G G r g e e 9

Physically this diagram includes the correction to the propagator due to kugzation of the vacuum,
i.e. the creation of virtual electron-positron pairs by the propagating phoftbe momentuny is the
total momentum of the electron-positron pair in the intermediate channel.

It is instructive to look at this diagram from the point of view of perturbatio@ory in nonrela-
tivistic Quantum Mechanics. In each vertex the interaction consists of thibiktion (resp. creation)
of a photon and the creation (resp. annihilation) of an electron-posittion this can be implemented
by the interaction Hamiltonian

Hip =e / Bz pytapA,. (366)

All fields inside the integral can be expressed in terms of the corresmgpod#ation-annihilation oper-
ators for photons, electrons and positrons. In Quantum Mechanicehémge in the wave function at
first order in the perturbatioH;,; is given by

n’Hlnt|/Y71n

VN %1n) (367)

[v,in) = |, in)o + Z
and similarly for|~, out), where we have denoted symbolically by) all the possible states of the
electron-positron pair. Since these states are orthogomglito)o, |y, out)o, we find tordere?

ln’Hmt‘n> <n‘H1nt|'7 7OUt>
(Eln - En)(Eout - En)

(y,inly’,out) = o(y, in|y’, out) o+z o, +0(e*).  (368)

Hence, we see that the diagram of Eq. (364) really corresponds todbeed correction to the photon
propagatoKy, in|y’, out)

AN — 0<% inh//,out>0

C) (v, in|Hint [n) {n|Hine|7', out)
— . 369
Y "}// ; (Ein - En)(Eout - En) ( )
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Once we understood the physical meaning of the Feynman diagram to beteohwe proceed
to its evaluation. In principle there is no problem in computing the integral in B§4)(for nonzero
values of the electron mass. However since here we are going to be mostésiatein seeing how
the divergence of the integral results in a scale-dependent renortitalizd the electric charge, we
will set m, = 0. This is something safe to do, since in the case of this diagram we are notrigdu
new infrared divergences in taking the electron as massless. Implemeatigg mvariance and using
standard techniques in the computation of Feynman diagrams (see regefg¢11]) the polarization
tensorll,,, (¢) defined in Eq. (365) can be written as

H/W(Q) = (q277;w - quV) H(q2) (370)
with
B ! d*k z(1—x)
M) = 862/0 dw/ IR —m? 1 2(1— )¢ + i (371)

To handle this divergent integral we have to figure out some proceéduender it finite. This can be
done in several ways, but here we choose to cut the integrals offighahergy scalé\, where new
physics might be at workp| < A. This gives the result
9 e? q2 -
II(g*) ~ Wlog <A2> + finite terms (372)
If we would send the cutoff to infinitA — oo the divergence blows up and something has to be dol
about it.

If we want to make sense out of this, we have to go back to the physicatignéhat led us to
compute Eq. (364). Our primordial motivation was to compute the correctighge @annihilation of two
electrons into two muons. Including the correction to the propagator of theal/photon we have

o

= 7Nag (Ve ue) H v#’y “u + Nap (VY Ue) 4 q ylﬂﬁu#)
B 2 2 e -
= Nag (Ve ue) {47rq2 [1 + 153 log <A2ﬂ } (v,ﬁﬁu“) . (373)

Now let us imagine that we are performingae* — .~ u™ with a center of mass energy From the
previous result we can identify the effective charge of the particlessaéttergy scale(.) as

= Nap (U7 e) [Z(:q);] (@7%,&. (374)

This chargeg(p), is the quantity that is physically measurable in our experiment. Now we can mi
sense of the formally divergent result (373) by assuming that the efzgogearing in the classical La-
grangian of QED is just a “bare” value that depends on the stad which we cut off the theory,
e = e(A)pare- In order to reconcile (373) with the physical results (374) we mustrasdhat the
dependence of the bare (unobservable) chafdé... on the cutoffA is determined by the identity

A2 2
(07 = e |1+ e 10 (1) (375)
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If we still insist in removing the cutoffA — oo we have to send the bare charge to z&W)y,,;e — 0

in such a way that the effective coupling has the finite value given by theriment at the energy scale
u. Itis not a problem, however, that the bare charge is small for largesaltithe cutoff, since the
only measurable quantity is the effective charge that remains finite. Tinerall observable quantities
should be expressed in perturbation theory as a power series in theghysiplinge(x)? and not in
the unphysical bare couplingA)pare.

8.2 The beta-function and asymptotic freedom

We can look at the previous discussion, an in particular Eq. (375), d&rdiffierent point of view. In order

to remove the ambiguities associated with infinities we have been forced to ioéreddependence of
the coupling constant on the energy scale at which a process takes place the expression of the
physical coupling in terms of the bare charge (375) we can actually elimiratutbff A, whose value

after all should not affect the value of physical quantities. Taking intmaet that we are working in
perturbation theory im(y)?, we can express the bare chaege)? _in terms ofe(u)? as

bare

o(1)2 2
e(A)? = e(p)? [1 + 1(2/:32 log (XQH + Ole(p)®]. (376)

This expression allow us to eliminate all dependence in the cutoff in the esxpmnesf the effective charge
at a scaleu by replacinge(A)pare In EQ. (375) by the one computed using (376) at a given referen
energy scale

e(1)* = e(uo)? [1 - ef;‘fr)f log (Z;)] . (377)

From this equation we can compute, at this order in perturbation theoryffétotivee value of the
coupling constant at an energyonce we know its value at some reference energy $galn the case
of the electron charge we can use as a reference Thompson’s scastieenergies of the order of the
electron massi. ~ 0.5 MeV, at where the value of the electron charge is given by the well kn@alre

1
e(me)2 ~ 7 (378)

With this we can compute(z:)? at any other energy scale applying Eq. (377), for example at the alect
massy = m. ~ 0.5 MeV. However, in computing the electromagnetic coupling constant at amy otl
scale we must take into account the fact that other charged particlesiicam the loop in Eq. (373).
Suppose, for example, that we want to calculate the fine structure cbastae mass of th&°-boson

uw = Mz = 92 GeV. Then we should include in Eq. (377) the effect of other fermioniedsted model
fields with masses below/. Doing this, we find?®

Me 2 2
1+ eiw) (Z qg> log <J‘nf§>] , (379)

whereg; is the charge in units of the electron charge of #ik fermionic species running in the loop
and we sum over all fermions with masses below the mass dftH#son. This expression shows how
the electromagnetic coupling grows with energy. However, in order to cammith the experimental
value ofe(My)? it is not enough with including the effect of fermionic fields, since alsolifie bosons

e(Mz)* = e(me)?

18| the first version of these notes the argument used to show the grofvthg electromagnetic coupling constant could
have led to confusion to some readers. To avoid this potential problemalslénin the equation for the running coupling
e(u)? the contribution of all fermions with masses beldy,. We thank Lubos Motl for bringing this issue to our attention.
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can run in the loop Xy < Mz). Taking this into account, as well as threshold effects, the value of t
electron charge at the scalé; is found to be [37]

e(Mg)? ~ —— . (380)

This growing of the effective fine structure constant with energy camroierstood heuristically
by remembering that the effect of the polarization of the vacuum shown ididggam of Eq. (364)
amounts to the creation of a plethora of electron-positron pairs aroundddugolo of the charge. These
virtual pairs behave as dipoles that, as in a dielectric medium, tend to screehahje and decreasing
its value at long distances (i.e. lower energies).

The variation of the coupling constant with energy is usually encoded intgoefield theory in
thebeta functiordefined by

Blg) = uZZ- (381)
In the case of QED the beta function can be computed from Eq. (377) witlesié
63
Be)qEp = 192" (382)
The fact that the coefficient of the leading term in the beta-function is pesii = 6% > 0 gives

us the overall behavior of the coupling as we change the scale. Eq) rt&&ihs that, if we start at an
energy where the electric coupling is small enough for our perturbagaétent to be valid, the effective
charge grows with the energy scale. This growing of the effectivelsmuponstant with energy means
that QED is infrared safe, since the perturbative approximation givésrlaad better results as we go to
lower energies. Actually, because the electron is the lighter electricallgetigrarticle and has a finite
nonvanishing mass the running of the fine structure constant stops atalleers in the well-known
valuelzl,)—T Would other charged fermions with masses belowbe present in Nature, the effective value
of the fine structure constant in the interaction between these particles wouldrther to lower values

at energies below the electron mass.

On the other hand if we increase the energy se@l¢? grows until at some scale the coupling is of
order one and the perturbative approximation breaks down. In QED tkiowen as the problem of the
Landau pole but in fact it does not pose any serious threat to the reliadfiieD perturbation theory:
a simple calculation shows that the energy scale at which the theory wowdbestrongly coupled is
Afandau ~ 10277 GeV. However, we know that QED does not live that long! At much loveates we
expect electromagnetism to be unified with other interactions, and even if thig the case we will
enter the uncharted territory of quantum gravity at energies of the ofdér® GeV.

So much for QED. The next question that one may ask at this stage is witethpossible to
find quantum field theories with a behavior opposite to that of QED, i.e. sathitey become weakly
coupled at high energies. This is not a purely academic question. In th#960s a series of deep-
inelastic scattering experiments carried out at SLAC showed that thegjbhahave essentially as free
particles inside hadrons. The apparent problem was that no theorkneas at that time that would
become free at very short distances: the example set by QED seenvitobed by all the theories that
were studied. This posed a very serious problem for quantum fieldyths@ way to describe subnuclear
physics, since it seemed that its predictive power was restricted to elgeammits but failed miserably
when applied to describe strong interactions.

Nevertheless, this critical time for quantum field theory turned out to be itstfiraur. In 1973
David Gross and Frank Wilczek [38] and David Politzer [39] showedribatbelian gauge theories can
actually display the required behavior. For the QCD Lagrangian in EdL) {(B@ beta function is given
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Fig. 14: Beta function for a hypothetical theory with three fixed gsig;, g5 andg;. A perturbative analysis
would capture only the regions shown in the boxes.

by19
Blg) = —-L [HLn, — 2y (383)
V=962 |37 37"
In particular, for real QCD ¢ = 3, Ny = 6) we have thai3(g) = —1769:2 < 0. This means that

for a theory that is weakly coupled at an energy sgal¢he coupling constant decreases as the ener
increaseg: — oo. This explain the apparent freedom of quarks inside the hadronsn thileequarks
are very close together their effective color charge tend to zero. Tieisgmenon is calledsymptotic
freedom

Asymptotic free theories display a behavior that is opposite to that founceab@®ED. At high
energies their coupling constant approaches zero whereas at layiesntbey become strongly coupled
(infrared slavery). This features are at the heart of the succ&3d€Dfas a theory of strong interactions,
since this is exactly the type of behavior found in quarks: they are quesphirticles inside the hadrons
but the interaction potential potential between them increases at largeceistan

Although asymptotic free theories can be handled in the ultraviolet, they bezxneenely com-
plicated in the infrared. In the case of QCD it is still to be understood (at adytically) how the
theory confines color charges and generates the spectrum of badsomell as the breaking of the chiral
symmetry (345).

In general, the ultraviolet and infrared properties of a theory are altedrby the fixed points of
the beta function, i.e. those values of the coupling congtémt which it vanishes

B(g*) = 0. (384)

Using perturbation theory we have seen that for both QED and QCD ogsecbhf fixed points occurs
at zero couplingg® = 0. However, our analysis also showed that the two theories presenaligdic
different behavior at high and low energies. From the point of view eftbta function, the difference
lies in the energy regime at which the coupling constant approaches itsloréloa. This is in fact
governed by the sign of the beta function around the critical coupling.

1%The expression of the beta function of QCD was also known to 't Ho®f [Fhere are even earlier computations in the
russian literature [41].
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We have seen above that when the beta function is negative close to th@dixe (the case of
QCD) the coupling tends to its critical valugt = 0, as the energy is increased. This means that tt
critical point isultraviolet stable i.e. it is an attractor as we evolve towards higher energies. If, on t
contrary, the beta function is positive (as it happens in QED) the coupbimgtant approaches the critical
value as the energy decreases. This is the caseinfraned stablefixed point.

This analysis that we have motivated with the examples of QED and QCD is compgleteral
and can be carried out for any quantum field theory. In Fig. 14 we teggresented the beta function for
a hypothetical theory with three fixed points located at couplyjgg; andg;. The arrows in the line
below the plot represent the evolution of the coupling constant as thgyenereases. From the analysis
presented above we see that= 0 andg; are ultraviolet stable fixed points, while the fixed pajitis
infrared stable.

In order to understand the high and low energy behavior of a quantichttfeory it is then crucial
to know the structure of the beta functions associated with its couplings. @hibe a very difficult
task, since perturbation theory only allows the study of the theory araurl” fixed points, i.e. those
that occur at zero coupling like the casegfin Fig. 14. On the other hand, any “nontrivial” fixed
point occurring in a theory (likgs andg;) cannot be captured in perturbation theory and requires a fi
nonperturbative analysis.

The moral to be learned from our discussion above is that dealing with tleiolgt divergences
in a quantum field theory has the consequence, among others, of iritrg@ucenergy dependence in
the measured value of the coupling constants of the theory (for exampléettigcecharge in QED).
This happens even in the case of renormalizable theories without mass Tdrese theories are scale
invariant at the classical level because the action does not containraapsionful parameter. In this
case the running of the coupling constants can be seen as resulting fueemtaim breaking of classical
scale invariance: different energy scales in the theory are distingliighdifferent values of the coupling
constants. Remembering what we learned in Section 7, we conclude tlsatalasale invariance is an
anomalous symmetry. One heuristic way to see how the conformal anomaly ebmetsis to notice
that the regularization of an otherwise scale invariant field theory regjthieeintroduction of an energy
scale (e.g. a cutoff). This breaking of scale invariance cannot bareelsafter renormalization.

Nevertheless, scale invariance is not lost forever in the quantum thétoiy recovered at the
fixed points of the beta function where, by definition, the coupling doesurot To understand how
this happens we go back to a scale invariant classical field theory wieddesfic) transform under
coordinate rescalings as

aH —s Azt d(x) — N PN 1), (385)

whereA is called the canonical scaling dimension of the field. An example of such gytisemassless
¢* theory in four dimensions

1
L=20,00"6 %&, (386)
where the scalar field has canonical scaling dimendica 1. The Lagrangian density transforms as

L — \"1L[¢] (387)

and the classical action remains invarfant
If scale invariance is preserved under quantization, the Green'idusdransform as

(QUT[¢ (1) ... ¢/ (2a)]|2) = XM QTGN 1) ... H(A )] |2). (388)

2 a D-dimensional theory the canonical scaling dimensions of the fields ceindith its engineering dimensiom\ =
% for bosonic fields and\ = % for fermionic ones. For a Lagrangian with no dimensionful paramefessical scale
invariance follows then from dimensional analysis.
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Fig. 15: Systems of spins in a two-dimensional square lattice.

This is precisely what happens in a free theory. In an interacting theeryuttming of the coupling
constant destroys classical scale invariance at the quantum levelitddesihis, at the fixed points of
the beta function the Green'’s functions transform again according 8) {@®ereA is replaced by

Aanom =A + ’Y*- (389)

The canonical scaling dimension of the fields are correctegbwhich is called the anomalous dimen-
sion. They carry the dynamical information about the high-energy behaithe theory.

8.3 The renormalization group

In spite of its successes, the renormalization procedure presentezlabolie seen as some kind of pre
scription or recipe to get rid of the divergences in an ordered way.digt®mfort about renormalization
was expressed in occasions by comparing it with “sweeping the infinitiess timelrug”. However thanks
to Ken Wilson to a large extent [42] the process of renormalization is nowrstabd in a very profound
way as a procedure to incorporate the effects of physics at highiesdrg modifying the value of the
parameters that appear in the Lagrangian.

Statistical mechanics Wilson's ideas are both simple and profound and consist in thinking abc
quantum field theory as the analog of a thermodynamical description of disthtystem. To be more
precise, let us consider an Ising spin system in a two-dimensional slgtiéze as the one depicted in
Fig 15. In terms of the spin variables = i%, where: labels the lattice site, the Hamiltonian of the
system is given by

H=-7]) sis, (390)
(i.d)

where(i, j) indicates that the sum extends over nearest neighborg artthe coupling constant between
neighboring spins (here we consider that there is no external magnkt)c Tibe starting point to study
the statistical mechanics of this system is the partition function defined as

Z=Y e, (391)
{s:)

where the sum is over all possible configurations of the spinsGard % is the inverse temperature.
For J > 0 the Ising model presents spontaneous magnetization below a critical ternp&iatin any
dimension higher than one. Away from this temperature correlations bespé@fhdecay exponentially
at large distances

_lzig

(sisj) ~e €, (392)
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Fig. 16: Decimation of the spin lattice. Each block in the upper ¢atlis replaced by an effective spin computec
according to the rule (394). Notice also that the size of #itiick spacing is doubled in the process.

with |z;;| the distance between the spins located inittieand j-th sites of the lattice. This expression
serves as a definition of the correlation lengtivhich sets the characteristic length scale at which spir
can influence each other by their interaction through their nearest regyhb

Suppose now that we are interested in a macroscopic description of thisyspem. We can
capture the relevant physics by integrating out somehow the physicsrasshles. A way in which this
can be done was proposed by Leo Kadanoff [43] and consists inmlivair spin system in spin-blocks
like the ones showed in Fig 16. Now we can construct another spin systene wach spin-block of the
original lattice is replaced by an effective spin calculated according to saem&om the spins contained
in each blockB,

{si:ie B} — s, M. (393)

a

For example we can define the effective spin associated with the Iilpdky taking the majority rule
with an additional prescription in case of a draw

y 1
sa( ) = 5s8n Z si |, (394)

1€Bq

where we have used the sign functieign(z) = I%I with the additional definitiosgn(0) = 1. This
procedure is called decimation and leads to a new spin system with a doublexidptice.
The idea now is to rewrite the partition function (391) only in terms of the neectffe spins

sa(l). Then we start by splitting the sum over spin configurations into two nestesd, sine over the spin
blocks and a second one over the spins within each block

Z = Ze_BH[Si] = Z Z 0 [sa(l) — gign (Z sl>] e PHIsi, (395)

{5} {§(M}{5eBa} i€Bq
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The interesting point now is that the sum over spins inside each block caritben as the exponential
of a new effective Hamiltonian depending only on the effective sgi$) [sa(l)]

{SEBQ} ZeBa

The new Hamiltonian is of course more complicated

HY = g3 sy (397)
(4,3)
where the dots stand for other interaction terms between the effectivedpotk This new terms appear
because in the process of integrating out short distance physics weeiimdaractions between the new
effective degrees of freedom. For example the interaction betweenithblepk variabIeSBZ(” will in
general not be restricted to nearest neighbors in the new lattice. Thetamppoint is that we have

managed to rewrite the partition function solely in terms of this new (renormalsped)variabless (1)
interacting through a new Hamiltonidii(!)

2= 3 etV (398)
(s}

Let us now think about the space of all possible Hamiltonians for our statisyiseem including
all kinds of possible couplings between the individual spins compatible withytimmetries of the sys-
tem. If denote byR the decimation operation, our previous analysis showsRhdefines a map in this
space of Hamiltonians

R:H— HWY. (399)

At the same time the operatidR replaces a lattice with spacirgby another one with double spacing
2a. As a consequence the correlation length in the new lattice measured in uthigslattice spacing is
divided by two,R : ¢ — §.

Now we can iterate the operatidd an indefinite number of times. Eventually we might reach
HamiltonianH, that is not further modified by the operatiéh

HEg®h Rog®e R Rog (400)
The fixed point Hamiltoniarf,, is scale invariantbecause it does not changefass performed. Notice
that because of this invariance the correlation length of the system atedepidint do not change under
R. This fact is compatible with the transformation— % only if £ = 0 or £ = oo. Here we will focus
in the case of nontrivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifying the valuesadupling constants
associated with all possible interaction terms between individual spins ofttiee lalf we denote by
O.s:] these (possibly infinite) interaction terms, the most general Hamiltonian fopthewstem under
study can be written as

Hisi] =) XaOqlsil, (401)
a=1

where), € R are the coupling constants for the corresponding operators. Thes&nts can be thought
of as coordinates in the space of all Hamiltonians. Therefore the opefatiteiines a transformation in
the set of coupling constants

R Aa — AW, (402)
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For example, in our case we started with a Hamiltonian in which only one of thglinguconstants
is different from zero (say, = —J). As a result of the decimatiok; = —J — —J@) while some
of the originally vanishing coupling constants will take a nonzero value.oDfse, for the fixed point
Hamiltonian the coupling constants do not change under the scale transfor®a

Physically the transformatioR integrates out short distance physics. The consequence for phy:
at long distances is that we have to replace our Hamiltonian by a new one vigredifvalues for the
coupling constants. That is, our ignorance of the details of the physieg gao at short distances result
in arenormalizationof the coupling constants of the Hamiltonian that describes the long rangecphy
processes. It is important to stress that althogis sometimes called a renormalization group trans
formation in fact this is a misnomer. Transformations between Hamiltonians ddéfin® do not form
a group: since these transformations proceed by integrating out degfrffeedom at short scales they
cannot be inverted.

In statistical mechanics fixed points under renormalization group transfiormawith & = oo
are associated with phase transitions. From our previous discussioanveonclude that the space
of Hamiltonians is divided in regions corresponding to the basins of attraofidhe different fixed
points. We can ask ourselves now about the stability of those fixed pounipoSe we have a statistical
system described by a fixed-point Hamiltonielp and we perturb it by changing the coupling constar
associated with an interaction tekph This is equivalent to replacH, by the perturbed Hamiltonian

H=H,+5)\0, (403)

whered A is the perturbation of the coupling constant corresponding {we can also consider pertur-
bations in more than one coupling constant). At the same time thinking of te&s coordinates in the
space of all Hamiltonians this corresponds to moving slightly away from thégrosf the fixed point.

The question to decide now is in which direction the renormalization group flibvtake the
perturbed system. Working at first orderdih there are three possibilities:

— The renormalization group flow takes the system back to the fixed point.islicdke the corre-
sponding interactio® is calledirrelevant

— R takes the system away from the fixed point. If this is what happens thedtiteras called
relevant

— Itis possible that the perturbation actually does not take the system eovaytie fixed point at
first order ind \. In this case the interaction is said torbarginaland it is necessary to go to higher
orders ind A\ in order to decide whether the system moves to or away the fixed point, ahevhe
we have a family of fixed points.

Therefore we can picture the action of the renormalization group tranafan as a flow in the
space of coupling constants. In Fig. 17 we have depicted an exampletofsilow in the case of a
system with two coupling constants and A,. In this example we find two fixed points, one at the
origin O and another aF’ for a finite value of the couplings. The arrows indicate the direction in whic
the renormalization group flow acts. The free theorhat= Ay = 0 is a stable fix point since any
perturbationd A1, 5 A2 > 0 makes the theory flow back to the free theory at long distances. On !
other hand, the fixed poinft is stable with respect to certain type of perturbations (along the line wi
incoming arrows) whereas for any other perturbations the system flithnes & the free theory at the
origin or to a theory with infinite values for the couplings.

Quantum field theory. Let us see now how these ideas of the renormalization group apply
Field Theory. Let us begin with a quantum field theory defined by the lragaa

L[¢a] = Lo[da] + Z 9:0i[Ba), (404)
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Fig. 17: Example of a renormalization group flow.

whereLy[¢,] is the kinetic part of the Lagrangian apdare the coupling constants associated with th
operatorsD;[¢,]. In order to make sense of the quantum theory we introduce a cutoff in ntathemn
principle we include all operatoK§; compatible with the symmetries of the theory.

In section 8.2 we saw how in the cases of QED and QCD, the value of thdirpuonstant
changed with the scale from its value at the scal&/e can understand now this behavior along the line
of the analysis presented above for the Ising model. If we would like to ctarpa effective dynamics
of the theory at an energy scale< A we only have to integrate out all physical models with energie
between the cutofA and the scale of interegt This is analogous to what we did in the Ising model by
replacing the original spins by the block spins. In the case of field theergftactive actiort[¢,, ] at
scaleu can be written in the language of functional integration as

oS00 / [[ D0 eSl9eA, (405)
u<p<A ",

HereS[¢,, A] is the action at the cutoff scale

S¢a, A = / d'z {Eo[%] + Zgz’(A>Oi[¢a]} (406)

and the functional integral in Eq. (405) is carried out only over the fieldaaagith momenta in the
rangep < p < A. The action resulting from integrating out the physics at the intermediatessce
betweenA and . depends not on the original field variablg but on some renormalized fiel],. At
the same time the couplings(y:) differ from their values at the cutoff scadg(A). This is analogous to
what we learned in the Ising model: by integrating out short distance ghy&ended up with a new
Hamiltonian depending on renormalized effective spin variables and witrmedized values for the
coupling constants. Therefore the resulting effective action at sced® be written as

Sl 1] = /d493 {ﬁo[%] + Zgi(ﬂ)oi[%]} : (407)

This Wilsonian interpretation of renormalization sheds light to what in sectiom&ht have looked

just a smart way to get rid of the infinities. The running of the coupling comstéh the energy scale
can be understood now as a way of incorporating into an effective aatiscale. the effects of field

excitations at higher energiés > ..
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As in statistical mechanics there are also quantum field theories that ar@dixed of the renor-
malization group flow, i.e. whose coupling constants do not change with afe $%e have encountered
them already in Section 8.2 when studying the properties of the beta funttienmost trivial example
of such theories are massless free quantum field theories, but thatemexamples of four-dimensional
interacting quantum field theories which are scale invariant. Again we ¢athasjuestion of what hap-
pens when a scale invariant theory is perturbed with some operatoménaj¢he perturbed theory is not
scale invariant anymore but we may wonder whether the perturbed thiewsyat low energies towards
or away the theory at the fixed point.

In quantum field theory this can be decided by looking at the canonical giored O] of the
operatorO[¢,] used to perturb the theory at the fixed point. In four dimensions the thes#hildies are
defined by:

— d[O] > 4: irrelevant perturbation. The running of the coupling constants takethéuey back to
the fixed point.

— d[O] < 4: relevant perturbation. At low energies the theory flows away from thaéesnvariant
theory.

— d|O] = 4: marginal deformation. The direction of the flow cannot be decided ondjimmensional
grounds.

As an example, let us consider first a massless fermion theory pertuyksetbbr-fermion inter-

action term
— I —
L=y — 55 W)° (408)

This is indeed a perturbation by an irrelevant operator, since in fourrdiimes|y] = % Interactions
generated by the extra te2rm are suppressed at low energies sincdlyiytpieia effects are weighted by
the dimensionless factcf-, where E is the energy scale of the process. This means that as we
to capture the relevant physics at lower and lower energies the effdw perturbation is weaker and
weaker rendering in the infrared lim — 0 again a free theory. Hence, the irrelevant perturbation i
(408) makes the theory flow back to the fixed point.

On the other hand relevant operators dominate the physics at low energieds the case, for
example, of a mass term. As we lower the energy the mass becomes more imgadtante the energy
goes below the mass of the field its dynamics is completely dominated by the mass tasnis, Tor
example, how Fermi's theory of weak interactions emerges from the sthnuadel at energies below
the mass of th&/’* boson

At energies belowMy, = 80.4 GeV the dynamics of th&/* boson is dominated by its mass term anc
therefore becomes nonpropagating, giving rise to the effectiveféwarion Fermi theory.

To summarize our discussion so far, we found that while relevant opsigaminate the dynamics
in the infrared, taking the theory away from the fixed point, irrelevanipleations become suppressec
in the same limit. Finally we consider the effect of marginal operators. As ampbe we take the
interaction term in massless QED, = 1) A,. Taking into account that id = 4 the dimension of
the electromagnetic potential id,,] = 1 the operatol© is a marginal perturbation. In order to decide
whether the fixed point theory

1 _
Lo = I F F" +ipD (409)
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is restored at low energies or not we need to study the perturbed theorgrandetail. This we have
done in section 8.1 where we learned that the effective coupling in QEl@aees at low energies. Then
we conclude that the perturbed theory flows towards the fixed point in ttazéd.

As an example of a marginal operator with the opposite behavior we can weiteairangian for
a SU(V,.) gauge theoryl = _ipﬁupa . as

1 v v pa abc ga cv
L= 5 (AL~ ,A5) (9" A% — 0V AW) — dgfele A5 AL 91 A
+ g2fab6fadeAZAlc/AduAez/ = »CO + Og, (410)

i.e. a marginal perturbation of the free theory described pywhich is obviously a fixed point under
renormalization group transformations. Unlike the case of QED we knowitibdull theory is asymp-
totically free, so the coupling constant grows at low energies. This implie¢shtha@aperato®, becomes
more and more important in the infrared and therefore the theory flows tiwdixed point in this limit.

It is very important to notice here that in the Wilsonian view the cutoff is noesearily regarded
as just some artifact to remove infinities but actually has a physical originexémple in the case of
Fermi’s theory of3-decay there is a natural cutaff= My, at which the theory has to be replaced by the
standard model. In the case of the standard model itself the cutoff candreatRlanck scal& ~ 10
GeV or the Grand Unification scale ~ 10'6 GeV, where new degrees of freedom are expected
become relevant. The cutoff serves the purpose of cloaking the rdmgeies at which new physics
has to be taken into account.

Provided that in the Wilsonian approach the quantum theory is alwaysedefiith a physical
cutoff, there is no fundamental difference between renormalizable @ameémormalizable theories. Ac-
tually, a renormalizable field theory, like the standard model, can genenatenarmalizable operators
at low energies such as the effective four-fermion interaction of Fetim¥ery. They are not sources
of any trouble if we are interested in the physics at scales much below thi§ diitex A, since their
contribution to the amplitudes will be suppressed by power%.of

9 Special topics
9.1 Creation of particles by classical fields

Particle creation by a classical source.ln a free quantum field theory the total number of particle
contained in a given state of the field is a conserved quantity. For examples gase of the quantum
scalar field studied in section 3 we have that the number operator commutesenithrtiltonian

i= [ h Lt @a®, ) =0 (@11)

n = T o ,nj=~4uU.
(27‘()3 ka ’

This means that any states with a well-defined number of particle excitationsregkgve this number

at all times. The situation, however, changes as soon as interactiongradeioed, since in this case

particles can be created and/or destroyed as a result of the dynamics.

Another case in which the number of particles might change is if the quantuwryttsecoupled
to a classical source. The archetypical example of such a situation is hlaénger effect, in which a
classical strong electric field produces the creation of electron-posgiicnout of the vacuum. However,
before plunging into this more involved situation we can illustrate the relevaysigghinvolved in the
creation of particles by classical sources with the help of the simplest exaanipée scalar field theory
coupled to a classical external soutber). The action for such a theory can be written as

m2
5= [ s 30,600 0(0) - "3 0(a? + T(@)o(w)] . (412
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whereJ(x) is a real function of the coordinates. Its identification with a classical sdarabvious once
we calculate the equations of motion

(V2 +m?) ¢(z) = J(). (413)

Our plan is to quantize this theory but, unlike the case analyzed in sectiom3hegresence of the
source/(x) makes the situation a bit more involved. The general solution to the equatioratioh can
be written in terms of the retarded Green function for the Klein-Gordontemuas

8(0) = dula) + 1 [ s’ Gl — ) I(), (414)
whereg(z) is a general solution to the homogeneous equation and
= d4k i —ik-x
Grlt,7) = / (2m)* k2 — m? + iesign(kO)
k1 e
— - —iwpt+k T _ lwgt—ip-&
i0(t) / 2775 2 (e e ) ) (415)

with 6(z) the Heaviside step function. The integration contour to evaluate the integrai®osurrounds
the poles ap’ = +w;, from above. Sinc&' (¢, ¥) = 0 for t < 0, the functiongo(z) corresponds to the
solution of the field equation at— —oo, before the interaction with the external soufce

To make the argument simpler we assume that) is switched on at = 0, and only last for a
time 7, that is

J(t,2)=0 ift<Oort>r. (416)

We are interested in a solution of (413) for times after the external soascbden switched off,> 7.
In this case the expression (415) can be written in terms of the Fourier mi¢des) of the source as

Bk 1

=) . 7 P —iwgtrikd T P\x iwt—ik-Z
dj(tv ‘T) ¢0($) + Z/ (27’[’)3 2wy, |:J(O.)k7 k)e J(wkv k) e . (417)
On the other hand, the general solutipy(z) has been already computed in Eq. (77). Combining th
result with Eq. (417) we find the following expression for the late time gérsalation to the Klein-

Gordon equation in the presence of the source

o(t,z) = / k1 {{a(EHiJ(wk,z;’)] ¢t ik E

(27)3 /2w V2wi,
x (1 i T x| dwpt—ikeZ
+ [a (k) — mJ(wk,k) } e } (418)

We should not forget that this is a solution valid for tintes 7, i.e. once the external source has bee
disconnected. On the other hand, for. 0 we find from Egs. (414) and (415) that the general solutio
is given by Eq. (77).

Now we can proceed to quantize the theory. The conjugate momentuim= 0y¢(x) can be
computed from Eqgs. (77) and (418). Imposing the canonical equal timencdation relations (74) we
find thata(E), aT(E) satisfy the creation-annihilation algebra (51). From our previous cdicolave
find that fort > 7 the expansion of the operatgfx) in terms of the creation-annihilation operators
a(k), o' (k) can be obtained from the one fok 0 by the replacement

~ .

alk) — k) = alk) + J (wp, ),

7
v 2wy
Zlwe could have taken instead the advanced propagaidr:) in which casep, () would correspond to the solution to the
equation at large times, after the interaction wiifx).
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k) — BIE) = al (k) — ——J(wr k)" 419
Oé() ﬁ() (X() \/m(wka) ( )
Actually, sinceJ (wy, k) is a c-number, the operataggk), 31 (k) satisfy the same algebraagk), of (k)
and therefore can be interpreted as well as a set of creation-annihitg@ators. This means that we
can define two vacuum state8, ), |0,) associated with both sets of operators

a(k)[0_) =0

—

v k. (420)
B(k)|04) =0
For an observer at < 0, (k) and a(k) are the natural set of creation-annihilation operator
in terms of which to expand the field operatifxr). After the usual zero-point energy subtraction the
Hamiltonian is given by

~ 3 = =
=2 / (;rk)gaT(k)a(k) (421)

and the ground state of the spectrum for this observer is the vaffuum At the same time, a second
observer at > 7 will also see a free scalar quantum field (the source has been switdlad ef ) and
consequently will expand in terms of the second set of creation-annihilation operﬂ@%, 5T(E). In
terms of this operators the Hamiltonian is written as

a0 =1 [ 5 g@mem (422)
2 ) (2m)3 '
Then for this late-time observer the ground state of the Hamiltonian is the seaondm staté0_ ).

In our analysis we have been working in the Heisenberg picture, wtses sare time-independent
and the time dependence comes in the operators. Therefore the statethebtiyeare globally defined.
Suppose now that the system is in the “in” ground sfate. An observer at < 0 will find that there
are no particles

a)o_) =o. (423)

However the late-time observer will find that the sti@ite) contains an average number of particles give
by

dk 1 -
O 102) = [ 55 [T B (424)
Moreover,|0_) is no longer the ground state for the “out” observer. On the contrarystate have a
vacuum expectation value faéf (t)

~ 3 ~ -
O AOp) = / gf)s B

The key to understand what is going on here lies in the fact that the eiktenmae breaks the
invariance of the theory under space-time translations. In the particsameahave studied here where
J(x) has support over a finite time interv@dl< ¢ < , this implies that the vacuum is not invariant
under time translations, so observers at different times will make diffetastes of vacuum that will
not necessarily agree with each other. This is clear in our example. Amassnt < = will choose the
vacuum to be the lowest energy state of her Hamiltorjian). On the other hand, the second observe
at late timest > 7 will naturally choos€0,.) as the vacuum. However, for this second observer, tt

(425)
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E

A

Fig. 18: Pair creation by a electric field in the Dirac sea picture.

state|0_) is not the vacuum of his Hamiltonian, but actually an excited state that is apsigitgon of
states with well-defined number of particles. In this sense it can be said ¢haxtigrnal source has the
effect of creating particles out of the “in” vacuum. Besides, this brepkirtime translation invariance
produces a violation in the energy conservation as we see from Eq). @&28icles are actually created
from the energy pumped into the system by the external source.

The Schwinger effect.A classical example of creation of particles by a external field was point
out by Schwinger [44] and consists of the creation of electron-pogiaims by a strong electric field. In
order to illustrate this effect we are going to follow a heuristic argumentcbasehe Dirac sea picture
and the WKB approximation.

In the absence of an electric field the vacuum state of a%‘,ﬂiiald is constructed by filling all the

negative energy states as depicted in Fig. 2. Let us now connecttacpelgctric fieldf = £, in the
range0 < x < L created by a electrostatic potential

0 z <0
V(ir)=¢ —& O<z<lL (426)
—-&L x>1L

After the field has been switched on, the Dirac sea looks like in Fig. 18. riicpkar we find that if
eEL > 2m there are negative energy states:at L with the same energy as the positive energy statt
in the regionz < 0. Therefore it is possible for an electron filling a negative energy stateamiingy
close to—2m to tunnel through the forbidden region into a positive energy state. Theiatation of
such a process is the production of an electron-positron pair out ofdbie field.

We can compute the rate at which such pairs are produced by using the api@ximation.
Focusing for simplicity on an electron on top of the Fermi surface near L with energyEy, the
transmission coefficient in this approximation is giveddy

%(Eo—h/mz-i-ﬁqg
/elg (Eo—\/m)

ZNotice that the electron satisfy the relativistic dispersion relafios /52 + m2 + V and therefore-p2 = m? — (E —
V)? + p2. The integration limits are set by those values: @t whichp, = 0.

Twk = exp [—2 ) dx \/m2 — [Eo — e&(z — x0))* + P2
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= exp [—l (ﬁT2 + mQ)] , (427)
e€

wherep?. = p2 4 p2. This gives the transition probability per unit time and per unit cross sedfjdn

for an electron in the Dirac sea with transverse momerngrand energyEy. To get the total probability

per unit time and per unit volume we have to integrate over all possible valygsand Ey. Actually,

in the case of the energy, because of the relation betéigeand the coordinate at which the particle

penetrates into the barrier we can Wrﬂi%;Q = %d:p and the total probability per unit time and per unit

volume for the creation of a pair is given by

e d2pT 7 (752 282 _nm?
W =22 o~ e (Fr+m?) _ e 428
(27T> / (2m)2 o rrea (428)

where the factor o2 accounts for the two polarizations of the electron.

Then production of electron-positron pairs is exponentially suppremsedt is only sizeable for
strong electric fields. To estimate its order of magnitude it is useful to restengativers of: and# in
(428)

e2E?  _am?B
= m he& (429)

The exponential suppression of the pair production disappears whetetttric field reaches the critical
value&.;; at which the exponent is of order one

m2c?

he

This is indeed a very strong field which is extremely difficult to produce. A smaféect, however,
takes place also in a time-varying electric field [45] and there is the hopeairginoduction could be
observed in the presence of the alternating electric field produced bgra las

The heuristic derivation that we followed here can be made more precideln There the decay
of the vacuum into electron-positron pairs can be computed from the imagaainof the effective
actionI'[A,] in the presence of a classical gauge potenijal

@wombw

1
= log det [1—1644 7=
i m

This determinant can be computed using the standard heat kernel tezhniGioe probability of pair
production is proportional to the imaginary partibfA,,| and gives

Eerit = ~1.3x 10 Vem. (430)

iT[A,]

(431)

202 1 2
W:iZ—e_" Gl (432)

Our simple argument based on tunneling in the Dirac sea gave only the leaumgft8chwinger’s result
(432). The remaining terms can be also captured in the WKB approximatiorkioyg tato account the
probability of production of several pairs, i.e. the tunneling of more thanebectron through the barrier.

Here we have illustrated the creation of particles by semiclassical sourgaaritum field theory
using simple examples. Nevertheless, what we learned has important apptida the study of quan-
tum fields in curved backgrounds. In quantum field theory in Minkowpkice-time the vacuum state
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is invariant under the Poincaré group and this, together with the covar@rhbe theory under Lorentz
transformations, implies that all inertial observers agree on the numbartifles contained in a quan-
tum state. The breaking of such invariance, as happened in the camgptihg to a time-varying source
analyzed above, implies that it is not possible anymore to define a state whidtl e recognized as
the vacuum by all observers.

This is precisely the situation when fields are quantized on curved backdgo In particular, if
the background is time-dependent (as it happens in a cosmological sébup collapsing star) different
observers will identify different vacuum states. As a consequeneg¢avie observer call the vacuum will
be full of particles for a different observer. This is precisely whatkibd the phenomenon of Hawking
radiation [46]. The emission of particles by a physical black hole formemi fyravitational collapse of
a star is the consequence of the fact that the vacuum state in the asympgbtioqgain particles for an
observer in the asymptotic future. As a consequence, a detector loeataddy from the black hole
detects a stream of thermal radiation with temperature

3
THaWking = m (433)
whereM is the mass of the black holé&y is Newton’s constant ankl is Boltzmann'’s constant. There
are several ways in which this results can be obtained. A more heuristisvpgyhaps to think of this
particle creation as resulting from quantum tunneling of particles acrogsoteatial barrier posed by
gravity [47].

9.2 Supersymmetry

One of the things that we have learned in our journey around the larele¢apuantum field theory
is that our knowledge of the fundamental interactions in Nature is basedddega of symmetry, and
in particular gauge symmetry. The Lagrangian of the standard model camtben just including all
possible renormalizable terms (i.e. with canonical dimension smaller o equattatible with the
gauge symmetry SU(3)SU(2)x U(1) and Poincaré invariance. All attempts to go beyond start with tt
guestion of how to extend the symmetries of the standard model.

As explained in Section 5.1, in a quantum field theoretical description of thatien of elemen-
tary particles the basic observable quantity to compute is the scatterfhigratrix giving the probability
amplitude for the scattering of a number of incoming particles with a certain momentorsome final
products

A(in — out) = (py’,...;outlp, ... ;in). (434)

An explicit symmetry of the theory has to be necessarily a symmetry of thmatrix. Hence it is fair to
ask what is the largest symmetry of tHematrix.

Let us ask this question in the simple case of the scattering of two particles witimimmentap,
andp, in thet-channel

b2 Ph

P pfl
We will make the usual assumptions regarding positivity of the energy aalgtanity. Invariance of the
theory under the Poincaré group implies that the amplitude can only depethé soattering anglé
through

t=P —p)?=2(mi—pip}) =2(mi— E1E] + |p1]|p/| cos ) . (435)
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If there would be any extra bosonic symmetry of the theory it would restricstiattering angle to a set
of discrete values. In this case tBematrix cannot be analytic since it would vanish everywhere exce
for the discrete values selected by the extra symmetry.

Actually, the only way to extend the symmetry of the theory without renouncitigetanalyticity
of the scattering amplitudes is to introduce “fermionic” symmetries, i.e. symmetriesengenerators
are anticommuting objects [48]. This means that in addition to the generators Bbthcaré groufd
Pr M# and the ones for the internal gauge symmetes/e can introduce a number of fermionic gen-
eratorsQl, Q,; (I = 1,...,N), whereQ, ; = (QL). The most general algebra that these generatc
satisfy is the\ -extended supersymmetry algebra [49]

{Qéa@bj} = 2055Pu51J,

{QLQ]} = 2e42", (436)

— —J —=1J

{Qa: @i} = 2427, (437)
whereZ/” € C commute with any other generator and satisfidd = —Z//. Besides we have the

commutators that determine the Poincaré transformations of the fermioniateEser., Q,

(@4 P = [Qar, P" =0,
QLM = S(0™)lql, (439)
@ M™) =~ @Gy,
whereo” = —io?, 0¥ = k¥ anda* = (o#*)I. These identities simply mean th@{, Q, ,

transform respectively in the}, 0) and(0, ) representations of the Lorentz group.

We know that the presence of a global symmetry in a theory implies that th&'gpecan be
classified in multiplets with respect to that symmetry. In the case of supersymstatryvith the case
caseN = 1 in which there is a single pair of supercharggs Q,, satisfying the algebra

{(QuQi} =20"Pu  {Qu @} ={Qs @3} =0. (439)

Notice that in the\ = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry algebra (438jhgsteith the massless
case. Given a staté) satisfyingk? = 0, we can always find a reference frame where the four-véétor
takes the formk* = (E, 0,0, E). Since the theory is Lorentz covariant we can obtain the representat
of the supersymmetry algebra in this frame where the expressions are siinpgbarticular, the right-
hand side of the first anticommutator in Eq. (439) is given by

0 0
L po_ 0 3p3y _
20" P, = 2(P o—P)_<0 4E). (440)

Therefore the algebra of supercharges in the massless case reduces

{@.ol} = {Quej} =0,
{@,Q} = 4F. (441)

The commutatof @1, Q{} = 0 implies that the action af); on any state gives a zero-norm state of thu
Hilbert space|Q:|¥)| = 0. If we want the theory to preserve unitarity we must eliminate these ni

ZThe generatord/*” are related with the ones for boost and rotations introduced in sectiory4ll b M°, M' =
1Y% M7% . In this section we also use the “dotted spinor” notation, in which spinors in4he) and(0, %) representations

of the Lorentz group are indicated respectively by undotted,( . .) and dottedd, b, . . .) indices.
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states from the spectrum. This is equivalent to setfiag= 0. On the other hand, in terms of the seconc
generator), we can define the operators

1 1
_ P i
a=—=092, a' = —=Q),
2\/EQ2 2\/EQ2

which satisfy the algebra of a pair of fermionic creation-annihilation opesafa,a’} = 1, a®> =
(a")? = 0. Starting with a vacuum statg\) = 0 with helicity A we can build the massless multiplet

(442)

IA), A+ 3) =al|n). (443)
Here we consider two important cases:

— Scalar multiplet: we take the vacuum state to have zero helitityso the multiplet consists of a
scalar and a heIicit%— state

0F), |3) =aljoh). (444)

However, this multiplet is not invariant under the CPT transformation whicérses the sign of
the helicity of the states. In order to have a CPT-invariant theory we haagddo this multiplet
its CPT-conjugate which can be obtain from a vacuum state with helcit —%

07), | —3)- (445)

Putting them together we can combine the two zero helicity states with the two ferroisdnto
the degrees of freedom of a complex scalar field and a Weyl (or Majpsginor.

— Vector multiplet: now we take the vacuum state to have helikity % so the multiplet contains
also a massless state with helicky= 1

As with the scalar multiplet we add the CPT conjugated obtained from a vadatewsth helicity
A=-—1

), 1) = af| 3). (446)

N[

’ - %)7 | - 1>7 (447)
which together with (446) give the propagating states of a gauge field sqmié gaugino.

In both cases we see the trademark of supersymmetric theories: the nunbosooic and fermionic
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeat the prevaysisifor each supersym-
metry charge. At the end, we hayé sets of fermionic creation-annihilation operatéeg , a}} =6,
(ar)® = (a})2 = 0. Let us work out the case df = 8 supersymmetry. Since for several reasons we ¢
not want to have states with helicity larger tiamwe start with a vacuum state- 2) of helicity A = —2.
The rest of the states of the supermultiplet are obtained by applying thedédfghént creation operators
a! to the vacuum:

A=2: ai...ag\—2> <Z>:18tate
3 8

A=3: af ...al|—2) <7> — 8 states

A=1: af ...af|-2 ®) = 28 stat
=1: ap...ap|—2) ) = 28states
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1
A= 3 a}l : ..az)\ -2) (i) = 56 states
A=0: af..a}|-2) (i) = 70 states (448)
1 8
A= 5 ajl a}2a}3| —2) (3) = 56 states
A= —1: GL a}2| —2) <2> = 28 states
A= —g : a}l\ —2) (?) = 8 states
A=-2: [-2) 1 state

Putting together the states with opposite helicity we find that the theory contains:

1 spin-2 fieldg,,,, (a graviton),
8 spin3 gravitino fieldsy!,
28 gauge fieldslg‘ﬂ,

56 spind fermionsyl!/ K],

70 scalarg)l/ /KL

where by[IJ...] we have denoted that the indices are antisymmetrized. We see that, unlike glessias
multiplets of V' = 1 supersymmetry studied above, this multiplet is CPT invariant by itself. As in tl
case of the masslesg = 1 multiplet, here we also find as many bosonic as fermionic states:

bosons: 1+28+470+28+1 =128 states
fermions: 8 + 56+ 56+ 8 =128 states

Now we study briefly the case of massive representationg:> = M?2. Things become simpler
if we work in the rest frame wherB? = M and the spatial components of the momentum vanish. The
the supersymmetry algebra becomes:

(QLQ; ,} =2M6 ;6" (449)
We proceed now in a similar way to the massless case by defining the operators
1 1
I_ I T
a, = y a. = ——=W4r- 450
“V2M “ oI aM Qar (430)

The multiplets are found by choosing a vacuum state with a definite spin. Borpge, forAV = 1 and
taking a spin-0 vacuurjt) we find three states in the multiplet transforming irreducibly with respect
the Lorentz group:

10), al|o), etbalal|0), (451)

which, once transformed back from the rest frame, correspond tdwsegal states of two spin-0 bosons
and one spin} fermion. ForN-extended supersymmetry the corresponding multiplets can be worl
out in a similar way.

The equality between bosonic and fermionic degrees of freedom is abohet many of the
interesting properties of supersymmetric theories. For example, in sectiercdmputed the divergent
vacuum energy contributions for each real bosonic or fermionic atpay degree of freedom?ts

1 -
Fuae = 155(0) / d*pwp, (452)

%4For a boson, this can be read off Eq. (80). In the case of fermiorsieshult of Eq. (134) gives the vacuum energy
contribution of the four real propagating degrees of freedom of acBipanor.
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where the signt corresponds respectively to bosons and fermions. Hence, foreasympmetric the-
ory the vacuum energy contribution exactly cancels between bosorfermmdns. This boson-fermion
degeneracy is also responsible for supersymmetric quantum field thbenigsless divergent than non-
supersymmetric ones.

Appendix: A crash course in Group Theory

In this Appendix we summarize some basic facts about Group Theoryn@igeoupG a representation
of G is a correspondence between the elements ahd the set of linear operators acting on a vectc
spaceV/, such that for each element of the grapp G there is a linear operatdp(g)

D(g):V —V (453)
satisfying the group operations

D(g1)D(g2) = D(g192), D(g;") = D(g1)7 Y, 91,92 € G. (454)

The representatioP(g) is irreducible if and only if the only operators : V' — V' commuting with all
the elements of the representatibrig) are the ones proportional to the identity

[D(g), A] = 0, Vg — A=), )reC (455)

More intuitively, we can say that a representation is irreducible if there isroper subspact C V
(i.e.U # V andU # ) such thatD(g)U C U for every elemeny € G.

Here we are specially interested in Lie groups whose elements are labeledurgber of con-
tinuous parameters. In mathematical terms this means that a Lie group is a maviftidether with
an operationM x M — M that we will call multiplication that satisfies the associativity propert
g1 - (g2 - g3) = (91 - g2) - g3 together with the existence of unitd = 1g = g,for everyg € M and
inversegg—! = g7 1g = 1.

The simplest example of a Lie group is SO(2), the group of rotations in the pEach element
R(#) is labelled by the rotation angl with the multiplication acting a&(6;)R(62) = R(61 + 62).
Because the angteis defined only modul@r, the manifold of SO(2) is a circumferenéé.

One of the interesting properties of Lie groups is that in a neighborhottiieatientity element

they can be expressed in terms of a set of generdtofs = 1,...,dim G) as
e G L . .
D(g) = exp(—ia,T%) = Z ( n!> gy o O, T T, (456)
n=0

wherea, € C are a set of coordinates @¢#1 in a neighborhood ol. Because of the general Baker-
Campbell-Haussdorf formula, the multiplication of two group elements is encodénd value of the
commutator of two generators, that in general has the form

[T, T% = ifeere, (457)

wheref®¢ ¢ C are called the structure constants. The set of generators with the comnupttation
form the Lie algebra associated with the Lie group. Hence, given asemiaion of the Lie algebra
of generators we can construct a representation of the group byexjation (at least locally near the
identity).

We illustrate these concept with some particular examples. For SU(2) eaap glement is
labelled by three real numbet, i = 1,2, 3. We have two basic representations: one is the fundamen
representation (or spii;) defined by

() =e¢ 7 (458)
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with o% the Pauli matrices. The second one is the adjoint (or spin 1) represemdticimcan be written
as

Di(ay) = e, (459)

where
0 0 0 00 —1 0 10
Jb=10 0 1], J=100 0 |, JB=|-100]. (460)
0 -1 0 10 0 0 0 0

Actually, J* (i = 1,2, 3) generate rotations around they andz axis respectively. Representations of
spinj € N+ % can be also constructed with dimension

dim D;(g) = 2j + 1. (461)

As a second example we consider SU(3). This group has two basicdimeesional representa-
tions denoted by and3 which in QCD are associated with the transformation of quarks and antigua
under the color gauge symmetry SU(3). The elements of these representatiobe written as

D3(a®) = 030" Na Dg(a®) = e 3AT (a=1,...,8), (462)
where)\, are the eight hermitian Gell-Mann matrices
010 0 — O 1 0 O
AN = 100 |, N=1|4i 0 0], =0 -1 0|,
0 00 0 0 O 0 0 0
0 01 0 0 — 0 00
AN = 000 |, =00 0 |, =001/, (463)
1 00 i 0 0 010
1
00 0 5 0 0
A = 00 —i |, M=| 0 % o2
0 7 0 0 O v
Hence the generators of the representat®asd3 are given by
a 1 a(q 1 T

Irreducible representations can be classified in three groups: regbl@oand pseudoreal.

— Real representations: a representation is said to be real if thesgrismaetric matrixS which acts
as intertwiner between the generators and their complex conjugates

T" = —81°871, ST =3 (465)

This is for example the case of the adjoint representation of SU(2) geddrpthe matrices (460)
— Pseudoreal representations: are the ones for whiciiniisymmetric matrixS exists with the
property

T" = —81°S871, ST = 8. (466)

As an example we can mention the séimepresentation of SU(2) generated .
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— Complex representations: finally, a representation is complex if the derseaand their complex
conjugate are not related by a similarity transformation. This is for instancease of the two
three-dimensional representatighand3 of SU(3).

There are a number of invariants that can be constructed associatedwitbdaucible represen-

tation R of a Lie groupG and that can be used to label such a representatidfi; &re the generators
in a certain representatidh of the Lie algebra, it is easy to see that the mafA%™“ T%T% commutes

with every generatdrl';. Therefore, because of Schur’s lemma, it has to be proportional toahtid®.
This defines the Casimir invariatk(R) as

dim G
> THTH = Co(R)1. (467)

a=1

A second invarianfs ( R) associated with a representatiBrcan also be defined by the identity
Tr TETY = To(R)5. (468)

Actually, taking the trace in Eq. (467) and combining the result with (468) makthiat both invariants
are related by the identity

Cy(R)dim R = Ty(R) dim G, (469)

with dim R the dimension of the representatifin

These two invariants appear frequently in quantum field theory calculatitimgonabelian gauge
fields. For exampld;(R) comes about as the coefficient of the one-loop calculation of the bettidnn
for a Yang-Mills theory with gauge grou@. In the case of SU(N), for the fundamental representatiol
we find the values

N2 -1
2N
whereas for the adjoint representation the results are

Ch(fund) = Ty (fund) — % (470)

Cy(adj) = N, Ty(adj) = N. (471)

A third invariantA(R) is specially important in the calculation of anomalies. As discussed in s¢
tion (7), the chiral anomaly in gauge theories is proportional to the groemrétical factoflr [TI%{T,%, Tg}}
This leads us to defind(R) as

Tr [Tg{Tg,TE}} = A(R)d™, (472)

whered®* is symmetric in its three indices and does not depend on the representatienefora, the
cancellation of anomalies in a gauge theory with fermions transformed in thesergation? of the
gauge group is guaranteed if the corresponding invaridft) vanishes.

It is not difficult to prove thatd (R) = 0 if the representatio® is either real or pseudoreal. Indeed,
if this is the case, then there is a matlxsymmetric or antisymmetric) that intertwins the generator

T% and their complex conjugatéisqEE = —ST}%S‘l. Then, using the hermiticity of the generators we ca
write

Tr [Tg{Tg,Tg}} _ [Tg{Tg,Tg}}T =Ty [T‘}%{T‘}%,T;}] . (473)

35chur's lemma states that if there is a matfithat commutes with all elements of an irreducible representation of a L
algebra, them = A1, for some\ € C.

91



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

Now, using (465) or (466) we have
Tr [T“R{TE,T;}} = Tt [STI%S‘l{ST}%S_l,STI%S‘l}] = Tt [Tg{Tg,Tg}} . (474)

which proves thalr [Tg{Tb , Tf%}] and therefored(R) = 0 whenever the representation is real or pset
doreal. Since the gauge anomaly in four dimensions is proportion&{ &) this means that anomalies
appear only when the fermions transform in a complex representation gatige group.
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