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Abstract
We present an informal discussion of some aspects of strong interactionsunder
extreme conditions of temperature and density at an elementary level. This
summarizes lectures delivered at the 2013 CERN – Latin-American School of
High-Energy Physics and is aimed at students working in experimental high-
energy physics.

1 Introduction and motivation: why, where and how

Quantum Chromodynamics (QCD) is an extremely successful theory of strong interactions that has
passed numerous tests in particle accelerators over more than 40 years [1]. This corresponds to the
behavior of hadrons in the vacuum, including not only the spectrum but also all sorts of dynamical pro-
cesses. More recently strong interactions, and therefore QCD, has also started being probed in a medium,
under conditions that become more and more extreme [2]. Although quite involved theoretically, this is
not just an academic problem. In order to make it clear, one should consider three very basic questions,
that should always be asked in the beginning: why? where? how?

1.1 Why?

It was realized since the very beginning that strong interactions exhibit tworemarkable features that are
related but represent properties of complementary sectors of the energy scale. The first one is asymptotic
freedom [3], which can be perturbatively demonstrated by an explicit computation of the beta function
to a give loop order in QCD [4]. The second, which is consistent with the first but should be seen as
totally independent, since it is a property of the nonperturbative vacuum of strong interactions, is color
confinement [5]. Even though reality constantly shows that confinement isa property of strong interac-
tions, and therefore should somehow be built in QCD, this proof remains a theoretical open problem so
far. Even for the pure Yang-Mills theory, where the bound states correspond to glueballs, the existence
of a mass gap is still to be shown after more than half a century of the original paper on nonabelian gauge
theories [6]. For this reason, confinement is ranked in the Clay MathematicsInstitute list of unsolved
Millennium problems [7].

Much more than a cute (and very tough) mathematical problem, this is certainly among the most
important theoretical and phenomenological problems in particle physics, since hidden there is the real
origin of mass, as we feel in our everyday lives and experience with ordinary (and not so ordinary) matter.
Although the Higgs mechanism provides a way to give mass to elementary particles in the Standard
Model [8], most of what constitutes the masses of hadrons come from interactions. For instance, more
than90% of the proton mass originates in quark and gluon condensates [9]. So, in spite of the fantastic
success of the Standard Model [8], we do not understand a few essential mechanisms.

Extremely high temperatures and densities bring us to an energy scale that facilitates deconfine-
ment, and matter under such extreme conditions can behave in unexpected ways due to collective effects.
This is, of course, a way to study the mechanism of confinement (by perturbing or modifying this state of
matter). This leads us also to a deeper yet childish motivation, that of understanding what happens if we
keep making things hotter and hotter, or keep squeezing things harder andharder [10]. These questions
can be reformulated in a more technical fashion as ’what is the inner structure of matter and the nature
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of strong interactions under extreme conditions of temperature and density?’. In experiments, one needs
to “squeeze”, “heat” and “break”. From the theoretical point of view,one needs a good formulation of
in-medium quantum field theory, using QCD or effective theories.

It is clear that the challenge is enormous. Although confinement seems to be akey feature of
hadrons, and manifests also in relevant scales such asfπ or ΛQCD, it only seemsto be present in QCD.
So far, controlled lattice simulations show strong evidence of confinement in the pure gauge theory
[11]. As hinted previously, however, the theory is nonperturbative atthe relevant scales, so that analytic
methods are very constrained. And, although lattice simulations have developed to provide solid results
in several scenarios, they are not perfect. And, more important, they are not Nature. To make progress
in understanding, or at least collecting important facts, one needs it all: experiments and observations,
lattice simulations, the full theory in specific (solvable to some extent) limits and effective models. And
also combinations, whenever possible, to diminish the drawbacks of each approach.
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Fig. 1: Cartoon of a phase diagram for strong interactions. Extracted from Ref. [12]

Whichever the framework chosen, collective phenomena will play a major role. Although some-
what put aside in the so-called microscopic “fundamental” particle physics,collective effects can affect
dramatically the behavior of elementary particles in a medium under certain conditions. Besides the
well-known examples of BCS and BEC phases in condensed matter systems [13], and also in dense
quark matter [14], it was recently found that photons can form a Bose-Einstein condensate [15]. In fact,
the textbook case of water and its different phases is quite illustrative of therichness that comes from col-
lective phenomena that would hardly be guessed from the case of very few or non-interacting elementary
particles.

In terms of the thermodynamics, or many-body problem, the basic idea is to perturb the (confined)
vacuum to study confinement by heating (temperature), squeezing or unbalancing species (chemical
potentials for baryon number, isospin, strangeness, etc) and using classical external fields (magnetic,
electric, etc), so that the system is taken away from the confined phase and back. One can also relate
(or not) confinement to other key properties of strong interactions, suchas chiral symmetry. And, from
the theorist standpoint, draw all possible phase diagrams of QCD and its “cousin theories” (realizations
of QCD with parameters, such as the number of colors or flavors, or the values of masses, that are not
realized in Nature) to learn basic facts. There are several examples, one well-known being the ‘Columbia
plot’, where one studies the nature of the phase transitions and critical lineson the(mu = md,ms)
plane. Nevertheless, if one draws a cartoon of the phase diagram in the temperature vs. quark chemical
potential, for instance Fig. 1, and compares it to computations from effective models, lattice simulations
and freeze-out points extracted from high-energy heavy ion collision data, one sees that the points still
scatter in a large area [16]. So, there is still a long way ahead.
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1.2 Where?

According to the Big Bang picture and the current description of the evolution of the early universe [17],
we expect that at about10−5s after the Big Bang a soup of quark-gluon plasma (in the presence of
electrons, photons, etc) has undergone a phase transition to confined hadrons. This was, of course, the
first realization of a QCD transition. This process was thermally driven andhappened at very low baryon
chemical potential.

It is quite remarkable that the scales of strong interactions allow for the experimental reproduction
of analogous conditions in high-energy ultra-relativistic heavy ion collisions in the laboratory [18]. In
a picture by T. D. Lee, these collisions are seen as heavy bulls that collide and generate new states of
matter [19]. Such experiments are under way at BNL-RHIC [20] and CERN-LHC [21], and will be part
of the future heavy ion programs at FAIR-GSI [22] and NICA [23].

For obvious reasons, it is common to refer to such experiments as “Little Bangs”. However, one
should be cautious with this point. In spite of the fact that the typical energy scales involved need to
be the same, as well as the state of matter created, the so-called quark-gluonplasma [24], the relevant
space-time scales differ by several orders of magnitude. Using a simple approximation for the equation
of state,

3p ≈ ǫ ≈ π2

30
N(T )T 4 , (1)

wherep is the pressure,ǫ the energy density andN(T ) the number of relevant degrees of freedom, we
can easily estimate the typical sizes involved. The radius of the universe atthe QCD phase transition
epoch, as given by the particle horizon in a Robertson-Walker space-time[25], where the scale factor
grows asa(t) ∼ tn, is given by (n = 1/2 andN(T ) ∼ 50 at this time for QCD)

Luniv(T ) ≈
1

4π

(
1

1− n

)(
45

πN(T )

)1/2 MPl

T 2
=

1.45× 1018

(T/GeV)2
√
N(T )

fm . (2)

HereMPl is the Planck mass, and it is clear that the system is essentially in the thermodynamiclimit.

Fig. 2: Cartoon representing non-central heavy ion collisions andhow they affect the size of the system.

On the other hand, in heavy ion collisions the typical length scale of the systemis LQGP .
10− 15 fm, so that the system can be very small, especially if one considers non-central collisions [26]
(see Fig. 2). One can develop analogous arguments for the time scales given by the expansion rates,
finding that the whole process in the early universe happens adiabatically, whereas in heavy ions it is
not even clear whether the system can achieve thermal equilibrium, given the explosive nature of the
evolution in this case. So, there are certainly large differences (in time and length scales) between Big
and Little Bangs...

Keeping this caveat in mind, heavy ion experiments have been investigating new phases of matter
at very high energies for more than a decade, producing an awesome amount of interesting data and a
richer picture of strong interactions (see Ref. [27] for a review).

In the realization of the Big and Little Bangs one is always in the high temperatureand low
density (small baryon chemical potential) sector of the phase diagram of strong interactions. However,
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high densities (at very low temperatures) can also probe new states of hadronic matter, and that is what
is expected to be found in the core of compact stars [28]. There, new phases, condensates and even color
superconductivity may be present. In particular, the deconfinement andchiral transitions might affect
significantly the explosion mechanism in supernovae [28] via modifications in the equation of state.

After a neutron (or hybrid) star is formed, densities in its core can in principle reach several times
the nuclear saturation densityn0 = 0.16 fm−3 = 3× 1014g/cm3, which corresponds to squeezing∼ 2
solar masses into a sphere of∼ 10 km of radius. To describe these objects, one needs General Relativity
besides in-medium quantum field theory.

1.3 How?

The reader is hopefully already convinced that, in order to describe the phenomenology of the phase
structure and dynamics of strong interactions under extreme conditions, one needs all possibilities at
disposal: theory, effective modeling, etc. We do not have one problem ahead, but a myriad of different
problems. So, one has to make a choice. Our focus here will be the equationof state, of which we will
discuss a few aspects.

At this point, we are lead again to the “why” question. And the answer is because, besides carry-
ing all the thermodynamic equilibrium information we may be interested in, it is also thebasic crucial
ingredient for dynamics, structure, etc. In fact, the phase diagram topology is determined in every detail
by the full knowledge of the pressurep(T, µ,B, . . . ). This will determine all phases present as we dial
different knobs, or control parameters, such as temperature or chemical potentials.

The structure of a compact star, for instance, is given by the solution of the Tolman-Oppenheimer-
Volkov (TOV) equations [28], which encode Einstein’s General Relativity field equations in hydrostatic
equilibrium for a spherical geometry:

dp

dr
= − GM(r)ǫ(r)

r2
[
1− 2GM(r)

r

]
[
1 +

p(r)

ǫ(r)

] [
1 +

4πr3p(r)

M(r)

]
, (3)

dM
dr

= 4πr2ǫ(r) ; M(R) = M . (4)

Given the equation of statep = p(ǫ), one can integrate the TOV equations from the origin until the
pressure vanishes,p(R) = 0. Different equations of state define different types of stars (white dwarfs,
neutron stars, strange stars, quark stars, etc) and curves on the mass-radius diagram for the families of
stars.

Furthermore, to describe the evolution of the hot plasma created in high-energy heavy ion colli-
sions, one need to make use of hydrodynamics, whose fundamental equations encode the conservation
of energy-momentum (∂µTµν = 0) and of baryon number (or different charges) (∂µnBv

µ = 0, with
vµvµ = 1). These represent only five equations for six unknown functions, theadditional constraint
provided by the equation of state. Hence, it is clear that we really need the equation of state to make any
progress.

In principle, we have all the building blocks to compute the equation of state. The Lagrangian of
QCD is given, so one would have “simply” to compute the thermodynamic potential,from which one can
extract all relevant thermodynamic functions. The fact that the vacuum of QCD is highly nonperturbative,
as discussed previously, makes it way more complicated from the outset. As we know, QCD matter
becomes simpler at very high temperatures and densities,T andµ playing the role of the momentum
scale in a plasma, but very complicated in the opposite limit. On top of that,T andµ are, unfortunately,
not high enough in the interesting cases, so that the physically relevant region is way before asymptotic
freedom really kicks in. Perturbative calculations are still an option, but then one has to recall that finite-
temperature perturbative QCD is very sick in the infrared, and its naïve formulation breaks down at a
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Equation of state - naïve field map !

Fig. 3: Cartoon of the naïve field map for the equation of state for strong interactions.

scale given byg2T [29]. This is known as Linde’s problem: at this scale, for a(ℓ+ 1)-loop diagram for
the pressure, forℓ > 3 all loops contribute to the term of orderg6 even for weak coupling [29].

The situation does not look very promising, as illustrated by the cartoon of Fig. 3 which shows
that there is no appropriate formalism to tackle with the problem in the physically relevant region for the
phase structure, namely the critical regions. However, there are several ways out. Some popular examples
being: very intelligent and sophisticated “brute force” (lattice QCD), intensive use of symmetries (ef-
fective field theory models), redefining degrees of freedom (quasiparticle models), “moving down” from
very high-energy perturbative QCD, “moving up” from hadronic low-energy (nuclear) models. And we
can and should also combine these possibilities, as discussed previously.

2 Symmetries of QCD and effective model building

2.1 The simplest approach: the bag model

Before discussing the building of effective models based on the symmetries,or rather approximate sym-
metries, of QCD, let us consider a very simple description: the MIT bag model [29] applied to describe
the thermodynamics of strong interactions.

The model incorporates two basic ingredients, asymptotic freedom and confinement, in the sim-
plest and crudest fashion: bubbles (bags) of perturbative vacuumin a confining medium, including even-
tual O(αs) corrections. Asymptotic freedom is implemented by considering free quarksand gluons
inside color singlet bags, whereas confinement is realized by imposing thatthe vector current vanishes
on the boundary.

Then, confinement is achieved by assuming a constant energy density for the vacuum (negative
pressure), encoded in the so-called bag constantB, a phenomenological parameter extracted from fits
to hadron masses.B can also be viewed as the difference in energy density between the QCD and the
perturbative vacua. A hadron energy (for a spherical bag) receives contributions from the vacuum and
the kinetic energy, so that its minimum yields

Emin
h =

16

3
πR3

hB , (5)
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and the hadron pressure (at equilibrium)

ph =
∂Eh

∂V
= −B +

const

4πR4
= 0 . (6)

Assuming the existence of a deconfining transition, the pressure in the quark-gluon plasma phase
within this model is given by

pQGP =

(
νb +

7

4
νf

)
π2T 4

90
−B , (7)

whereas the pressure in the hadronic phase (taking, for simplicity, a pion gas) is given by

pπ = νπ
π2T 4

90
, (8)

neglecting masses. Here, we have the following numbers of degrees of freedom:νπ = 3, νb = 2(N2
c −1)

andνf = 2NcNf for pions, gluons and quarks, respectively.

For instance, forNc = 3 , Nf = 2 andB1/4 = 200 MeV, we obtain the following critical
temperature:

Tc =

(
45B

17π2

)
≈ 144 MeV (9)

and a first-order phase transition as is clear from Fig. 4. The value of thecritical temperature is actually
very good as compared to recent lattice simulations [30], considering that this is a very crude model. On
the other hand the nature of the transition, a crossover, is almost by construction missed in this approach.
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Fig. 4: Pressures in the bag model description.

2.2 Basics of effective model building in QCD

To go beyond in the study of the phases of QCD, one needs to know its symmetries, and how they are
broken spontaneously or explicitly. But QCD is very involved. First, it is a non-abelianSU(Nc) gauge
theory, with gluons living in the adjoint representation. Then, there areNf dynamical quarks who live in
the fundamental representation. On top of that, these quarks have masseswhich are all different, which
is very annoying from the point of view of symmetries. So, in studying the phases of QCD, we should
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do it by parts, and consider many “cousin theories” which are very similar toQCD but simpler (more
symmetric). In so doing, we can also study the dependence of physics on parameters which are fixed in
Nature.

Fig. 5 illustrates the step-by-step process one can follow in assembling the symmetry features
present in QCD and learning from simpler theories, as well as cousin theories. Notice that the full
theory, whose parameters are given by comparison to the experimental measurements, has essentially no
symmetry left. Yet, some symmetries are mildly broken so that a “memory” of them remains. This fact
allows us to use “approximate order parameters”, for instance, a concept that is very useful in practice to
characterize the chiral and deconfinement transitions.

Fig. 5: Basic hierarchy in the step-by-step approach to QCD.

2.3 SU(Nc), Z(Nc) and the Polyakov loop

In the QCD Lagrangian with massless quarks,

L =
1

2
TrFµνF

µν + q̄iγµDµq , (10)

Dµ ≡ (∂µ − igAµ) , (11)

Fµν =
i

g
[Dµ(A), Dν(A)] , (12)

we have invariance under localSU(Nc). In particular, we have invariance under elements of the center
groupZ(Nc) (for a review, see Ref. [31])

Ωc = ei
2nπ
Nc 1 . (13)

At finite temperature, one has also to impose the following boundary conditions:

Aµ(~x, β) = +Aµ(~x, 0) , (14)

q(~x, β) = −q(~x, 0) . (15)

Any gauge transformation that is periodic inτ will do it. However, ‘t Hooft noticed that the class of
possible transformations is more general. They are such that

Ω(~x, β) = Ωc , Ω(~x, 0) = 1 , (16)
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keeping the gauge fields invariant but not the quarks.

For pure glue thisZ(Nc) symmetry is exact and we can define an order parameter - the Polyakov
loop:

L(~x) =
1

Nc
Tr P exp

[
ig

∫ β

0
dτ τaAa

0(~x, τ)

]
, (17)

with L transforming as

L(~x) 7→ Ωc L(~x) 1 = ei
2nπ
Nc L(~x) . (18)

At very high temperatures,g ∼ 0, andβ 7→ 0, so that

〈ℓ〉 = ei
2nπ
Nc ℓ0 , ℓ0 ∼ 1 , (19)

and we have aN -fold degenerate vacuum, signaling spontaneous symmetry breaking of globalZ(Nc).
At T = 0, confinement implies thatℓ0 = 0. Then,ℓ0 = 0 can be used as an order parameter for the
deconfining transition:

ℓ0 = 0 , T < Tc ; ℓ0 > 0 , T > Tc . (20)

Usually the Polyakov loop is related to the free energy of an infinitely heavy test quark via (confinement:
no free quark)

〈ℓ〉 = e−Ftest/T . (21)

See, however, the critical discussion in Ref. [31].

Fig. 6: Effective potential for the Polyakov loop forT < Tc (upper) andT > Tc (lower). Extracted from Ref. [32].

The analysis above is valid only for pure glue, i.e. with no dynamical quarks. However, we can still
ask whetherZ(3) is an approximate symmetry in QCD. On the lattice, in full QCD, one sees a remarkable
variation ofℓ aroundTc, so that it plays the role of an approximate order parameter [33]. Notice, however,
thatZ(3) is broken at high, not lowT , just the opposite of what is found in the analogous description of
spin systems, such as Ising, Potts, etc [13]. The effective potential forthe Polyakov loop is illustrated in
Fig. 6.
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2.4 Adding quarks: chiral symmetry

In the limit of massless quarks, QCD is invariant under global chiral rotationsU(Nf )L×U(Nf )R of the
quark fields. One can rewrite this symmetry in terms of vector (V = R + L) and axial (A = R − L)
rotations

U(Nf )L × U(Nf )R ∼ U(Nf )V × U(Nf )A . (22)

AsU(N) ∼ SU(N)× U(1), one finds

U(Nf )L × U(Nf )R ∼ SU(Nf )L × SU(Nf )R × U(1)V × U(1)A , (23)

where we see theU(1)V from quark number conservation and theU(1)A broken by instantons.

In QCD, the remainingSU(Nf )L×SU(Nf )R is explicitly broken by a nonzero mass term. Take,
for simplicity,Nf = 2. Then,

L =
1

4
F a
µνF

aµν + ψLγ
µDµψL + ψRγ

µDµψR −mu(uLuR + uRuL)−md(dLdR + dRdL) , (24)

so that, for non-vanishingmu = md, the only symmetry that remains is the vector isospinSU(2)V .
In the light quark sector of QCD, chiral symmetry is just approximate. Then,for massless QCD, one
should find parity doublets in the vacuum, which is not confirmed in the hadronic spectrum. Thus, chiral
symmetry must be broken in the vacuum by the presence of a quark chiral condensate, so that

SU(Nf )L × SU(Nf )R 7→ SU(Nf )V , (25)

and the broken generators allow for the existence of pions, kaons, etc.

Hence, for massless QCD, we can define an order parameter for the spontaneous breaking of chiral
symmetry in the vacuum - the chiral condensate:

〈0|ψψ|0〉 = 〈0|ψLψR|0〉+ 〈0|ψRψL|0〉 , (26)

so that this vacuum expectation value couples together theL andR sectors, unless in the case it vanishes.
For very high temperatures or densities (lowαs), one expects to restore chiral symmetry, melting the
condensate that is a function ofT and quark masses and plays the role of an order parameter for the
chiral transition in QCD.

Again, the analysis above is valid only for massless quarks. However, wecan still ask whether
QCD is approximately chiral in the light quark sector. On the lattice (full massive QCD), one sees a
remarkable variation of the chiral condensate aroundTc, so that the condensate plays the role of an
approximate order parameter [33].

In summary, there are two relevant phase transitions in QCD, associated withspontaneous symme-
try breaking mechanisms for different symmetries of the action: (i) an approximateZ(Nc) symmetry and
deconfinement, which is exact for pure gaugeSU(Nc) with an order parameter given by the Polyakov
loop; (ii) an approximate chiral symmetry and chiral transition, which is exactfor massless quarks, with
an order parameter given by the chiral condensate.

One can try to investigate these phase transitions by building effective modelsbased on such
symmetries of the QCD action. Then, the basic rules would be: (i) keeping all relevant symmetries
of the action; (ii) trying to include in the effective action all terms allowed by the chosen symmetries;
(iii) developing a mimic of QCD at low energy using a simpler field theory; (iv) providing, whenever
possible, analytic results at least for estimates and qualitative behavior. Well-known examples are the
linear sigma model, the Nambu-Jona-Lasinio model, Polyakov loop models and soon [24]. Although
they represent just part of the story, combined with lattice QCD they may provide good insight.
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3 A final comment

Instead of conclusions, just a final comment on a point we have already made in the discussion above.
To make progress in understanding, or at least in collecting facts about, (de)confinement and chiral sym-
metry, we need it all: experiments and observations, lattice simulations, theory developments, effective
models, and also combinations whenever possible. In that vein, it is absolutely crucial to have theorists
and experimentalists working and discussing together.
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