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Abstract
This document is a pedagogical introduction to statistics for particle physics.
Emphasis is placed on the terminology, concepts, and methods being used at
the Large Hadron Collider. The document addresses both the statistical tests
applied to a model of the data and the modeling itself. I expect to release
updated versions of this document in the future.

1 Introduction
It is often said that the language of science is mathematics. It could well be said that the language of
experimental science is statistics. It is through statistical concepts that we quantify the correspondence
between theoretical predictions and experimental observations. While the statistical analysis of the data
is often treated as a final subsidiary step to an experimental physics result, a more direct approach would
be quite the opposite. In fact, thinking through the requirements for a robust statistical statement is an
excellent way to organize an analysis strategy.

In these lecture notes1 I will devote significant attention to the strategies used in high-energy
physics for developing a statistical model of the data. This modeling stage is where you inject your
understanding of the physics. I like to think of the modeling stage in terms of a conversation. When
your colleague asks you over lunch to explain your analysis, you tell a story. It is a story about the signal
and the backgrounds – are they estimated using Monte Carlo simulations, a side-band, or some data-
driven technique? Is the analysis based on counting events or do you use some discriminating variable,
like an invariant mass or perhaps the output of a multivariate discriminant? What are the dominant
uncertainties in the rate of signal and background events and how do you estimate them? What are the
dominant uncertainties in the shape of the distributions and how do you estimate them? The answer to
these questions forms a scientific narrative; the more convincing this narrative is the more convincing
your analysis strategy is. The statistical model is the mathematical representation of this narrative and
you should strive for it to be as faithful a representation as possible.

Once you have constructed a statistical model of the data, the actual statistical procedures should
be relatively straight forward. In particular, the statistical tests can be written for a generic statistical
model without knowledge of the physics behind the model. The goal of the RooStats project was
precisely to provide statistical tools based on an arbitrary statistical model implemented with the RooFit
modeling language. While the formalism for the statistical procedures can be somewhat involved, the
logical justification for the procedures is based on a number of abstract properties for the statistical
procedures. One can follow the logical argument without worrying about the detailed mathematical
proofs that the procedures have the required properties. Within the last five years there has been a
significant advance in the field’s understanding of certain statistical procedures, which has led to to some
commonalities in the statistical recommendations by the major LHC experiments. I will review some of
the most common statistical procedures and their logical justification.

1These notes borrow significantly from other documents that I am writing contemporaneously; specifically Ref. [1], docu-
mentation for HistFactory [2] and the ATLAS Higgs combination.
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2 Conceptual building blocks for modeling
2.1 Probability densities and the likelihood function
This section specifies my notations and conventions, which I have chosen with some care.2 Our statistical
claims will be based on the outcome of an experiment. When discussing frequentist probabilities, one
must consider ensembles of experiments, which may either be real, based on computer simulations, or
mathematical abstraction.

Figure 1 establishes a hierarchy that is fairly general for the context of high-energy physics. Imag-
ine the search for the Higgs boson, in which the search is composed of several “channels” indexed by c.
Here a channel is defined by its associated event selection criteria, not an underlying physical process.
In addition to the number of selected events, nc, each channel may make use of some other measured
quantity, xc, such as the invariant mass of the candidate Higgs boson. The quantities will be called “ob-
servables” and will be written in roman letters e.g. xc. The notation is chosen to make manifest that the
observable x is frequentist in nature. Replication of the experiment many times will result in different
values of x and this ensemble gives rise to a probability density function (pdf) of x, written f(x), which
has the important property that it is normalized to unity

∫
f(x) dx = 1 .

In the case of discrete quantities, such as the number of events satisfying some event selection, the
integral is replaced by a sum. Often one considers a parametric family of pdfs

f(x|α) ,

read “f of x given α” and, henceforth, referred to as a probability model or just model. The parameters
of the model typically represent parameters of a physical theory or an unknown property of the detector’s
response. The parameters are not frequentist in nature, thus any probability statement associated with α
is Bayesian.3 In order to make their lack of frequentist interpretation manifest, model parameters will be
written in greek letters, e.g.: µ, θ, α, ν.4 From the full set of parameters, one is typically only interested
in a few: the parameters of interest. The remaining parameters are referred to as nuisance parameters,
as we must account for them even though we are not interested in them directly.

While f(x) describes the probability density for the observable x for a single event, we also need
to describe the probability density for a dataset with many events, D = {x1, . . . , xn}. If we consider the
events as independently drawn from the same underlying distribution, then clearly the probability density
is just a product of densities for each event. However, if we have a prediction that the total number of
events expected, call it ν, then we should also include the overall Poisson probability for observing n
events given ν expected. Thus, we arrive at what statisticians call a marked Poisson model,

f(D|ν, α) = Pois(n|ν)

n∏

e=1

f(xe|α) , (1)

where I use a bold f to distinguish it from the individual event probability density f(x). In prac-
tice, the expectation is often parametrized as well and some parameters simultaneously modify the ex-
pected rate and shape, thus we can write ν → ν(α). In RooFit both f and f are implemented with
a RooAbsPdf; where RooAbsPdf::getVal(x) always provides the value of f(x) and depending on
RooAbsPdf::extendMode() the value of ν is accessed via RooAbsPdf::expectedEvents().

2As in the case of relativity, notational conventions can make some properties of expressions manifest and help identify
mistakes. For example, gµνxµyν is manifestly Lorentz invariant and xµ + yν is manifestly wrong.

3Note, one can define a conditional distribution f(x|y) when the joint distribution f(x, y) is defined in a frequentist sense.
4While it is common to write s and b for the number of expected signal and background, these are parameters not observ-

ables, so I will write νS and νB . This is one of few notational differences to Ref. [1].
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The likelihood function L(α) is numerically equivalent to f(x|α) with x fixed – or f(D|α) with
D fixed. The likelihood function should not be interpreted as a probability density for α. In particular,
the likelihood function does not have the property that it normalizes to unity

���
���

��:Not True!∫
L(α) dα = 1 .

It is common to work with the log-likelihood (or negative log-likelihood) function. In the case of a
marked Poisson, we have what is commonly referred to as an extended likelihood [3]

− lnL(α) = ν(α)− n ln ν(α)︸ ︷︷ ︸
extended term

−
n∑

e=1

ln f(xe) + lnn!︸ ︷︷ ︸
constant

.

To reiterate the terminology, probability density function refers to the value of f as a function of x given
a fixed value of α; likelihood function refers to the value of f as a function of α given a fixed value of x;
and model refers to the full structure of f(x|α).

Probability models can be constructed to simultaneously describe several channels, that is several
disjoint regions of the data defined by the associated selection criteria. I will use e as the index over
events and c as the index over channels. Thus, the number of events in the cth channel is nc and the
value of the eth event in the cth channel is xce. In this context, the data is a collection of smaller datasets:
Dsim = {D1, . . . ,Dcmax} = {{xc=1,e=1 . . . xc=1,e=nc}, . . . {xc=cmax,e=1 . . . xc=cmax,e=ncmax

}}. In RooFit
the index c is referred to as a RooCategory and it is used to inside the dataset to differentiate events as-
sociated to different channels or categories. The class RooSimultaneous associates the dataset Dc with
the corresponding marked Poisson model. The key point here is that there are now multiple Poisson
terms. Thus we can write the combined (or simultaneous) model

fsim(Dsim|α) =
∏

c∈channels

[
Pois(nc|ν(α))

nc∏

e=1

f(xce|α)

]
, (2)

remembering that the symbol product over channels has implications for the structure of the dataset.

2.2 Auxiliary measurements
Auxiliary measurements or control regions can be used to estimate or reduce the effect of systematic
uncertainties. The signal region and control region are not fundamentally different. In the language that
we are using here, they are just two different channels.

A common example is a simple counting experiment with an uncertain background. In the fre-
quentist way of thinking, the true, unknown background in the signal region is a nuisance parameter,
which I will denote νB .5 If we call the true, unknown signal rate νS and the number of events in the
signal region nSR then we can write the model Pois(nSR|νS + νB). As long as νB is a free parameter,
there is no ability to make any useful inference about νS . Often we have some estimate for the back-
ground, which may have come from some control sample with nCR events. If the control sample has no
signal contamination and is populated by the same background processes as the signal region, then we
can write Pois(nCR|τνB), where nCR is the number of events in the control region and τ is a factor used
to extrapolate the background from the signal region to the control region. Thus the total probability
model can be written fsim(nSR, nCR|νS , νB) = Pois(nSR|νS + νB) · Pois(nCR|τνB). This is a special
case of Eq. 2 and is often referred to as the “on/off’ problem [4].

Based on the control region alone, one would estimate (or ‘measure’) νB = nCR/τ . Intuitively the
estimate comes with an ‘uncertainty’ of

√
nCR/τ . We will make these points more precise in Sec. 3.1, but

5Note, you can think of a counting experiment in the context of Eq. 1 with f(x) = 1, thus it reduces to just the Poisson
term.
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Dashed is optional.

Fig. 1: A schematic diagram of the logical structure of a typical particle physics probability model and dataset
structures.

the important lesson here is that we can use auxiliary measurements (ie. nCR) to describe our uncertainty
on the nuisance parameter νB statistically. Furthermore, we have formed a statistical model that can be
treated in a frequentist formalism – meaning that if we repeat the experiment many times nCR will vary
and so will the estimate of νB . It is common to say that auxiliary measurements ‘constrain’ the nuisance
parameters. In principle the auxiliary measurements can be every bit as complex as the main signal
region, and there is no formal distinction between the various channels.

The use of auxiliary measurements is not restricted to estimating rates as in the case of the on/off
problem above. One can also use auxiliary measurements to constrain other parameters of the model.
To do so, one must relate the effect of some common parameter αp in multiple channels (ie. the signal
region and a control regions). This is implicit in Eq. 2.

2.3 Frequentist and Bayesian reasoning
The intuitive interpretation of measurement of νB to be nCR/τ ±

√
nCR/τ is that the parameter νB has

a distribution centered around nCR/τ with a width of
√
nCR/τ . With some practice you will be able

to immediately identify this type of reasoning as Bayesian. It is manifestly Bayesian because we are
referring to the probability distribution of a parameter. The frequentist notion of probability of an event
is defined as the limit of its relative frequency in a large number of trials. The large number of trials
is referred to as an ensemble. In particle physics the ensemble is formed conceptually by repeating the
experiment many times. The true values of the parameters, on the other hand, are states of nature, not the
outcome of an experiment. The true mass of the Z boson has no frequentist probability distribution. The
existence or non-existence of the Higgs boson has no frequentist probability associated with it. There is
a sense in which one can talk about the probability of parameters, which follows from Bayes’s theorem:

P (A|B) =
P (B|A)P (A)

P (B)
. (3)
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Bayes’s theorem is a theorem, so there’s no debating it. It is not the case that Frequentists dispute whether
Bayes’s theorem is true. The debate is whether the necessary probabilities exist in the first place. If one
can define the joint probability P (A,B) in a frequentist way, then a Frequentist is perfectly happy using
Bayes theorem. Thus, the debate starts at the very definition of probability.

The Bayesian definition of probability clearly can’t be based on relative frequency. Instead, it
is based on a degree of belief. Formally, the probability needs to satisfy Kolmogorov’s axioms for
probability, which both the frequentist and Bayesian definitions of probability do. One can quantify
degree of belief through betting odds, thus Bayesian probabilities can be assigned to hypotheses on
states of nature. In practice human’s bets are not generally not ‘coherent’ (see ‘dutch book’), thus this
way of quantifying probabilities may not satisfy the Kolmogorov axioms.

Moving past the philosophy and accepting the Bayesian procedure at face value, the practical
consequence is that one must supply prior probabilities for various parameter values and/or hypotheses.
In particular, to interpret our example measurement of nCR as implying a probability distribution for νB
we would write

π(νB|nCR) ∝ f(nCR|νB)η(νB) , (4)

where π(νB|nCR) is called the posterior probability density, f(nCR|νB) is the likelihood function, and
η(νB) is the prior probability. Here I have suppressed the somewhat curious term P (nCR), which can
be thought of as a normalization constant and is also referred to as the evidence. The main point here is
that one can only invert ‘the probability of nCR given νB’ to be ‘the probability of νB given nCR’ if one
supplies a prior. Humans are very susceptible to performing this logical inversion accidentally, typically
with a uniform prior on νB . Furthermore, the prior degree of belief cannot be derived in an objective
way. There are several formal rules for providing a prior based on formal rules (see Jefferey’s prior and
Reference priors), though these are not accurately described as representing a degree of belief. Thus,
that style of Bayesian analysis is often referred to as objective Bayesian analysis.

Some useful and amusing quotes on Bayesian and Frequentist reasoning:

“Using Bayes’s theorem doesn’t make you a Bayesian, always using Bayes’s theorem makes
you a Bayesian.” –unknown

“Bayesians address the questions everyone is interested in by using assumptions that no
one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to
anyone.”- Louis Lyons

2.4 Consistent Bayesian and Frequentist modeling of constraint terms
Often a detailed probability model for an auxiliary measurement are not included directly into the model.
If the model for the auxiliary measurement were available, it could and should be included as an addi-
tional channel as described in Sec. 2.2. The more common situation for background and systematic
uncertainties only has an estimate, “central value”, or best guess for a parameter αp and some notion
of uncertainty on this estimate. In this case one typically resorts to including idealized terms into the
likelihood function, here referred to as “constraint terms”, as surrogates for a more detailed model of the
auxiliary measurement. I will denote this estimate for the parameters as ap, to make it manifestly fre-
quentist in nature. In this case there is a single measurement of ap per experiment, thus it is referred to as
a “global observable” in RooStats. The treatment of constraint terms is somewhat ad hoc and discussed
in more detail in Sec. 4.1.6. I make it a point to write constraint terms in a manifestly frequentist form
f(ap|αp).

Probabilities on parameters are legitimate constructs in a Bayesian setting, though they will always
rely on a prior. In order to distinguish Bayesian pdfs from frequentist ones, greek letters will be used for
their distributions. For instance, a generic Bayesian pdf might be written π(α). In the context of a main
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measurement, one might have a prior for αp based on some estimate ap. In this case, the prior π(αp)
is really a posterior from some previous measurement. It is desirable to write with the help of Bayes
theorem

π(αp|ap) ∝ L(αp)η(αp) = f(ap|αp)η(αp) , (5)

where η(αp) is some more fundamental prior.6 By taking the time to undo the Bayesian reasoning into
an objective pdf or likelihood and a prior we are able to write a model that can be used in a frequentist
context. Within RooStats, the care is taken to separately track the frequentist component and the prior;
this is achieved with the ModelConfig class.

If one can identify what auxiliary measurements were performed to provide the estimate of αp and
its uncertainty, then it is not a logical fallacy to approximate it with a constraint term, it is simply a con-
venience. However, not all uncertainties that we deal result from auxiliary measurements. In particular,
some theoretical uncertainties are not statistical in nature. For example, uncertainty associated with the
choice of renormalization and factorization scales and missing higher-order corrections in a theoretical
calculation are not statistical. Uncertainties from parton density functions are a bit of a hybrid as they are
derived from data but require theoretical inputs and make various modeling assumptions. In a Bayesian
setting there is no problem with including a prior on the parameters associated to theoretical uncertain-
ties. In contrast, in a formal frequentist setting, one should not include constraint terms on theoretical
uncertainties that lack a frequentist interpretation. That leads to a very cumbersome presentation of re-
sults, since formally the results should be shown as a function of the uncertain parameter. In practice,
the groups often read Eq. 5 to arrive at an effective frequentist constraint term.

I will denote the set of parameters with constraint terms as S and the global observables G = {ap}
with p ∈ S. By including the constraint terms explicitly (instead of implicitly as an additional channel)
we arrive at the total probability model, which we will not need to generalize any further:

ftot(Dsim,G|α) =
∏

c∈channels

[
Pois(nc|νc(α))

nc∏

e=1

fc(xce|α)

]
·
∏

p∈S
fp(ap|αp) . (6)

3 Physics questions formulated in statistical language
3.1 Measurement as parameter estimation
One of the most common tasks of the working physicist is to estimate some model parameter. We do it
so often, that we often don’t realize it. For instance, the sample mean x̄ =

∑n
e=1 xe/n is an estimate for

the mean, µ, of a Gaussian probability density f(x|µ, σ) = Gauss(x|µ, σ). More generally, an estimator
α̂(D) is some function of the data and its value is used to estimate the true value of some parameter α.
There are various abstract properties such as variance, bias, consistency, efficiency, robustness, etc [5].
The bias of an estimator is defined as B(α̂) = E[α̂] − α, where E means the expectation value of
E[α̂] =

∫
α̂(x)f(x)dx or the probability-weighted average. Clearly one would like an unbiased estima-

tor. The variance of an estimator is defined as var[α̂] = E[(α − E[α̂])2]; and clearly one would like
an estimator with the minimum variance. Unfortunately, there is a tradeoff between bias and variance.
Physicists tend to be allergic to biased estimators, and within the class of unbiased estimators, there is
a well defined minimum variance bound referred to as the Cramér-Rao bound (that is the inverse of the
Fisher information, which we will refer to again later).

The most widely used estimator in physics is the maximum likelihood estimator (MLE). It is
defined as the value of α which maximizes the likelihood function L(α). Equivalently this value, α̂,
maximizes logL(α) and minimizes − logL(α). The most common tool for finding the maximum likeli-
hood estimator is Minuit, which conventionally minimizes − logL(α) (or any other function) [6]. The
jargon is that one ‘fits’ the function and the maximum likelihood estimate is the ‘best fit value’.

6Glen Cowan has referred to this more fundamental prior as an ’urprior’, which is based on the German use of ’ur’ for
forming words with the sense of ‘proto-, primitive, original’.
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When one has a multi-parameter likelihood function L(α), then the situation is slightly more
complicated. The maximum likelihood estimate for the full parameter list, α̂, is clearly defined. The
various components α̂p are referred to as the unconditional maximum likelihood estimates. In the physics
jargon, one says all the parameters are ‘floating’. One can also ask about maximum likelihood estimate
of αp is with some other parameters αo fixed; this is called the conditional maximum likelihood estimate
and is denoted ˆ̂αp(αo). These are important quantities for defining the profile likelihood ratio, which
we will discuss in more detail later. The concept of variance of the estimates is also generalized to
the covariance matrix cov[αp, αp′ ] = E[(α̂p − αp)(α̂p′ − αp′)] and is often denoted Σpp′ . Note, the
diagonal elements of the covariance matrix are the same as the variance for the individual parameters, ie.
cov[αp, αp] = var[αp].

In the case of a Poisson model Pois(n|ν) the maximum likelihood estimate of ν is simply ν̂ = n.
Thus, it follows that the variance of the estimator is var[ν̂] = var[n] = ν. Thus if the true rate is ν one
expects to find estimates ν̂ with a characteristic spread around ν; it is in this sense that the measurement
has a estimate has some uncertainty or ‘error’ of

√
n. We will make this statement of uncertainty more

precise when we discuss frequentist confidence intervals.

When the number of events is large, the distribution of maximum likelihood estimates approaches
a Gaussian or normal distribution.7 This does not depend on the pdf f(x) having a Gaussian form. For
small samples this isn’t the case, but this limiting distribution is often referred to as an asymptotic dis-
tribution. Furthermore, under most circumstances in particle physics, the maximum likelihood estimate
approaches the minimum variance or Cramér-Rao bound. In particular, the inverse of the covariance
matrix for the estimates is asymptotically given by

Σ−1
pp′(α) = E

[
−∂

2 log f(x|α)

∂αp∂p′

∣∣∣∣ α
]
, (7)

where I have written explicitly that the expectation, and thus the covariance matrix itself, depend on the
true value α. The right side of Eq. 7 is called the (expected) Fisher information matrix. Remember
that the expectation involves an integral over the observables. Since that integral is difficult to perform
in general, one often uses the observed Fisher information matrix to approximate the variance of the
estimator by simply taking the matrix of second derivatives based on the observed data

Σ̃−1
pp′(α) = −∂

2 logL(α)

∂αp∂p′
. (8)

This is what Minuit’s Hesse algorithm8 calculates to estimate the covariance matrix of the parameters.

3.2 Discovery as hypothesis tests
Let us examine the statistical statement associated to the claim of discovery for new physics. Typically,
new physics searches are looking for a signal that is additive on top of the background, though in some
cases there are interference effects that need to be taken into account and one cannot really talk about
’signal’ and ’background’ in any meaningful way. Discovery is formulated in terms of a hypothesis
test where the background-only hypothesis plays the role of the null hypothesis and the signal-plus-
background hypothesis plays the roll of the alternative. Roughly speaking, the claim of discovery is a
statement that the data are incompatible with the background-only hypothesis. Consider the simplest
scenario where one is counting events in the signal region, nSR and expects νB events from background
and νS events from the putative signal. Then we have the following hypotheses:

7There are various conditions that must be met for this to be true, but skip the fine print in these lectures. There are two
conditions that are most often violated in particle physics, which will be addressed later.

8The matrix is called the Hessian, hence the name.
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symbol statistical name physics name probability model
H0 null hypothesis background-only Pois(nSR|νB)
H1 alternate hypothesis signal-plus-background Pois(nSR|νS + νB)

In this simple example it’s fairly obvious that evidence for a signal shows up as an excess of events and
a reasonable way to quantify the compatibility of the observed data n0

CR and the null hypothesis is to
calculate the probability that the background-only would produce at least this many events; the p-value

p =
∞∑

n=n0
SR

Pois(n|νB) . (9)

If this p-value is very small, then one might choose to reject the null hypothesis.

Note, the p-value is not a to be interpreted as the probability of the null hypothesis given the data –
that is a manifestly Bayesian statement. Instead, the p-value is a statement about the probability to have
obtained data with a certain property assuming the null hypothesis.

How do we generalize this to more complicated situations? There were really two ingredients in
our simple example. The first was the proposal that we would reject the null hypothesis based on the
probability for it to produce data at least as extreme as the observed data. The second ingredient was
the prescription for what is meant by more discrepant; in this case the possible observations are ordered
according to increasing nSR. One could imagine using difference between observed and expected, nSR−
νB , as the measure of discrepancy. In general, a function that maps the data to a single real number is
called a test statistic: T (D)→ R. How does one choose from the infinite number of test statistics?

Neyman and Pearson provided a framework for hypothesis testing that addresses the choice of
the test statistic. This setup treats the null and the alternate hypotheses in an asymmetric way. First,
one defines an acceptance region in terms of a test statistic, such that if T (D) < kα one accepts the
null hypothesis. One can think of the T (D) = kα as defining a contour in the space of the data, which
is the boundary of this acceptance region. Next, one defines the size of the test, α,9 as the probability
the null hypothesis will be rejected when it is true (a so-called Type-I error). This is equivalent to
the probability under the null hypothesis that the data will not be found in this acceptance region, ie.
α = P (T (D) ≥ kα|H0). Note, it is now clear why there is a subscript on kα, since the contour level is
related to the size of the test. In contrast, if one accepts the null hypothesis when the alternate is true,
it is called a Type-II error. The probability to commit a Type-II error is denoted as β and it is given by
β = P (T (D) < kα|H1). One calls 1 − β the power of the test. With these definitions in place, one
looks for a test statistic that maximizes the power of the test for a fixed test size. This is a problem for
the calculus of variations, and sounds like it might be very difficult for complicated probability models.

It turns out that in the case of two simple hypotheses (probability models without any parameters),
there is a simple solution! In particular, the test statistic leading to the most powerful test is given by the
likelihood ratio TNP (D) = f(D|H1)/f(D|H0). This result is referred to as the Neyman-Pearson lemma,
and I will give an informal proof. We will prove this by considering a small variation to the acceptance
region defined by the likelihood ratio. The solid red contour in Fig. 2 represents the rejection region
(the complement to the acceptance region) based on the likelihood ratio and the dashed blue contour
represents a small perturbation. If we can say that any variation to the likelihood ratio has less power,
then we will have proved the Neyman-Pearson lemma. The variation adds (the left, blue wedge) and
removes (the right, red wedge) rejection regions. Because the Neyman-Pearson setup requires that both
tests have the same size, we know that the probability for the data to be found in the two wedges must be
the same under the null hypothesis. Because the two regions are on opposite sides of the contour defined
by f(D|H1)/f(D|H0), then we know that the data is less likely to be found in the small region that we
added than the small region we subtracted assuming the alternate hypothesis. In other words, there is

9Note, α is the conventional notation for the size of the test, and has nothing to do with a model parameter in Eq. 2.
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less probability to reject the null when the alternate is true; thus the test based on the new contour is less
powerful.

P (x|H1)

P (x|H0)
< k�

P (x|H1)

P (x|H0)
> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

Fig. 2: A graphical proof of the Neyman-Pearson lemma.

How does this generalize for our most general model in Eq. 6 with many free parameters? First
one must still define the null and the alternate hypotheses. Typically is done by saying some parameters
– the parameters of interest αpoi – take on specific values takes on a particular value for the signal-
plus-background hypothesis and a different value for the background-only hypothesis. For instance,
the signal production cross-section might be singled out as the parameter of interest and it would take
on the value of zero for the background-only and some reference value for the signal-plus-background.
The remainder of the parameters are called the nuisance parameters αnuis. Unfortunately, there is no
equivalent to the Neyman-Pearson lemma for models with several free parameters – so called, composite
models. Nevertheless, there is a natural generalization based on the profile likelihood ratio.

Remembering that the test statistic T is a real-valued function of the data, then any particular
probability model ftot(D|α) implies a distribution for the test statistic f(T |α). Note, the distribution for
the test statistic depends on the value of α. Below we will discuss how one constructs this distribution,
but lets take it as given for the time being. Once one has the distribution, then one can calculate the
p-value is given by

p(α) =

∫ ∞

T0

f(T |α)dT =

∫
f(D|α) θ(T (D)− T0) dD = P (T ≥ T0|α) , (10)

where T0 is the value of the test statistic based on the observed data and θ(·) is the Heaviside function.10

Usually the p-value is just written as p, but I have written it as p(α) to make its α-dependence explicit.

Given that the p-value depends on α, how does one decide to accept or reject the null hypothesis?
Remembering that αpoi takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of αnuis or take

10The integral
∫
dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events

and an integral over the values of xe for each of those events.
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its maximal (or supremum) value

psup(αpoi) = sup
αnuis

p(αnuis) . (11)

As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5σ
criterion – which is a conventional way to refer to α = 2.87 · 10−7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5σ criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3.3 Excluded and allowed regions as confidence intervals
Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical
parameters are allowed or excluded given available data. Figure 3 shows two examples. Figure 3(a)
shows an example withαpoi = (σ/σSM ,MH), where σ/σSM is the ratio of the production cross-section
for the Higgs boson with respect to its prediction in the standard model and MH is the unknown Higgs
mass parameter in the standard model. All the parameter points above the solid black curve correspond
to scenarios for the Higgs boson that are considered ‘excluded at the 95% confidence level’. Figure 3(b)
shows an example with αpoi = (mW ,mt) where mW is the mass of the W -boson and mt is the mass
of the top quark. We have discovered the W -boson and the top quark and measured their masses. The
blue ellipse ‘is the 68% confidence level contour’ and all the parameter points inside it are considered
‘consistent with data at the 1σ level’. What is the precise meaning of these statements?
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Fig. 3: Two examples of confidence intervals.

In a frequentist setting, these allowed regions are called confidence intervals or confidence regions,
and the parameter points outside them are considered excluded. Associated with a confidence interval
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is a confidence level, i.e. the 95% and 68% confidence level in the two examples. If we repeat the
experiments and obtain different data, then these confidence intervals will change. It is useful to think of
the confidence intervals as being random in the same way the data are random. The defining property of
a 95% confidence interval is that it covers the true value 95% of the time.

How can one possibly construct a confidence interval has the desired property, that it covers the
true value with a specified probability, given that we don’t know the true value? The procedure for
building confidence intervals is called the Neyman Construction [7], and it is based on ‘inverting’ a
series of hypothesis tests (as described in Sec. 3.2). In particular, for each value of α in the parameter
space one performs a hypothesis test based on some test statistic where the null hypothesis is α. Note,
that in this context, the null hypothesis is changing for each test and generally is not the background-
only. If one wants a 95% confidence interval, then one constructs a series of hypothesis test with a size
of 5%. The confidence interval I(D) is constructed by taking the set of parameter points where the null
hypothesis is accepted.

I(D) = {α|P (T (D) > kα |α) < α} , (12)

where the final α and the subscript kα refer to the size of the test. Since a hypothesis test with a size
of 5% should accept the null hypothesis 95% of the time if it is true, confidence intervals constructed in
this way satisfy the defining property. This same property is usually formulated in terms of coverage.
Coverage is the probability that the interval will contain (cover) the parameter α when it is true,

coverage(α) = P (α ∈ I |α) . (13)

The equation above can easily be mis-interpreted as the probability the parameter is in a fixed interval
I; but one must remember that in evaluating the probability above the data D, and, thus, the corre-
sponding intervals produced by the procedure I(D), are the random quantities. Note, that coverage is a
property that can be quantified for any procedure that produces the confidence intervals I . Intervals pro-
duced using the Neyman Construction procedure are said to “cover by construction”; however, one can
consider alternative procedures that may either under-cover or over-cover. Undercoverage means that
P (α ∈ I |α) is smaller than desired and over-coverage means that P (α ∈ I |α) is larger than desired.
Note that in general coverage depends on the assumed true value α.

Since one typically is only interested in forming confidence intervals on the parameters of interest,
then one could use the supremum p-value of Eq. 11. This procedure ensures that the coverage is at least
the desired level, though for some values of α it may over-cover (perhaps significantly). This procedure,
which I call the ‘full construction’, is also computationally very intensive when α has many parameters
as it require performing many hypothesis tests. In the naive approach where each αp is scanned in a
regular grid, the number of parameter points tested grows exponentially in the number of parameters.
There is an alternative approach, which I call the ‘profile construction’ [8, 9] and which statisticians call
an ‘hybrid resampling technique’ [10, 11] that is approximate to the full construction, but typically has
good coverage properties. We return to the procedures and properties for the different types of Neyman
Constructions later.

Figure 4 provides an overview of the classic Neyman construction corresponding to the left panel
of Fig. 5. The left panel of Fig. 5 is taken from the Feldman and Cousins’s paper [12] where the parameter
of the model is denoted µ instead of θ. For each value of the parameter µ, the acceptance region in x
is illustrated as a horizontal bar. Those regions are the ones that satisfy T (D) < kα, and in the case of
Feldman-Cousins the test statistic is the one of Eq. 53. This presentation of the confidence belt works
well for a simple model in which the data consists of a single measurement D = {x}. Once one has the
confidence belt, then one can immediately find the confidence interval for a particular measurement of x
simply by taking drawing a vertical line for the measured value of x and finding the intersection with the
confidence belt.

Unfortunately, this convenient visualization doesn’t generalize to complicated models with many
channels or even a single channel marked Poisson model where D = {x1, . . . , xn}. In those more
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Fig. 4: A schematic visualization of the Neyman Construction. For each value of θ one finds a region in x

that satisfies
∫
f(x|θ)dx (blue). Together these regions form a confidence belt (green). The intersection of the

observation x0 (red) with the confidence belt defines the confidence interval [θ1, θ2].

complicated cases, the confidence belt can still be visualized where the observable x is replaced with T ,
the test statistic itself. Thus, the boundary of the belt is given by kα vs. µ as in the right panel of Fig. 5.
The analog to the vertical line in the left panel is now a curve showing how the observed value of the test
statistic depends on µ. The confidence interval still corresponds to the intersection of the observed test
statistic curve and the confidence belt, which clearly satisfies T (D) < kα. For more complicated models
with many parameters the confidence belt will have one axis for the test statistic and one axis for each
model parameter.

Note, a 95% confidence interval does not mean that there is a 95% chance that the true value of the
parameter is inside the interval – that is a manifestly Bayesian statement. One can produce a Bayesian
credible interval with that interpretation; however, that requires a prior probability distribution over the
parameters. Similarly, for any fixed interval I one can compute the Bayesian credibility of the interval

P (α ∈ I|D) =

∫
I f(D|α)π(α)dα∫
f(D|α)π(α)dα

. (14)

4 Modeling and the Scientific Narrative
Now that we have established a general form for a probability model (Eq. 2) and we have translated
the basic questions of measurement, discovery, and exclusion into the statistical language we are ready
to address the heart of the statistical challenge – building the model. It is difficult to overestimate how
important the model building stage is. So many of the questions that are addressed to the statistical
experts in the major particle physics collaborations are not really about statistics per se, but about model
building. In fact, the first question that you are likely to be asked by one of the statistical experts is “what
is your model?”

Often people are confused by the question “what is your model?” or simply have not written it
down. You simply can’t make much progress on any statistical questions if you haven’t written down a
model. Of course, people do usually have some idea for what it is that they want to do The process of
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In many analyses, the contribution of the signal process to the mean number of events is
assumed to be non-negative. This condition e�ectively implies that any physical estimator
for µ must be non-negative. Even if we regard this to be the case, however, it is convenient
to define an e�ective estimator µ̂ as the value of µ that maximizes the likelihood, even this
gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This
will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can
determine the distributions of the test statistics that we consider. Therefore in the following
we will always regard µ̂ as an e�ective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = �2 ln�(µ)

From the definition of ⇥(µ) in Eq. (7), one can see that 0 ⇥ ⇥ ⇥ 1, with ⇥ near 1 implying good
agreement between the data and the hypothesized value of µ. Equivalently it is convenient
to use the statistic

tµ = �2 ln⇥(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-
ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly
as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute
the p-value,

pµ =

� �

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the
pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and
other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed
tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ⇧(x) = (1/
⌅
2⌅) exp(�x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:
the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a
specified threshold � may lie to either side of those values not rejected, i.e., one may obtain
a two-sided confidence interval for µ.
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Fig. 5: Two presentations of a confidence belt (see text). Left panel taken from Ref. [12]. Right panel shows a
presentation that generalizes to more complicated models.

writing down the model often obviates the answer to the question, reveals some fundamental confusion
or assumption in the analysis strategy, or both. As mentioned in the introduction, writing down the model
is intimately related with the analysis strategy and it is a good way to organize an analysis effort.

I like to think of the modeling stage in terms of a scientific narrative. I find that there are three
main narrative elements, though many analyses use a mixture of these elements when building the model.
Below I will discuss these narrative elements, how they are translated into a mathematical formulation,
and their relative pros and cons.

4.1 Simulation Narrative
The simulation narrative is probably the easiest to explain and produces statistical models with the
strongest logical connection to physical theory being tested. We begin with an relation that every particle
physicists should know for the rate of events expected from a specific physical process

rate = (flux)× (cross section)× (efficiency)× (acceptance) , (15)

where the cross section is predicted from the theory, the flux is controlled by the accelerator11, and the
efficiency and acceptance are properties of the detector and event selection criteria. It is worth not-
ing that the equation above is actually a repackaging of a more fundamental relationship. In fact the
fundamental quantity that is predicted from first principles in quantum theory is the scattering proba-
bility P (i→ f) = |〈i|f〉|2/(〈i|i〉〈f |f〉) inside a box of size V over some time interval T , which is then
repackaged into the Lorentz invariant form above.

In the simulation narrative the efficiency and acceptance are estimated with computer simulations
of the detector. Typically, a large sample of events is generated using Monte Carlo techniques. The
Monte Carlo sampling is performed separately for the hard (perturbative) interaction (e.g. MadGraph),
the parton shower and hadronization process (e.g. Pythia and Herwig), and the interaction of particles
with the detector (e.g. Geant). Note, the efficiency and acceptance depend on the physical process
considered, and I will refer to each such process as a sample (in reference to the corresponding sample
of events generated with Monte Carlo techniques).

11In some cases, like cosmic rays, the flux must be estimated since the accelerator is quite far away.
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To simplify the notation, I will define the effective cross section, σeff. to be the product of the total
cross section, efficiency, and acceptance. Thus, the total number of events expected to be selected for
a given scattering process, ν, is the product of the time-integrated flux or time-integrated luminosity, λ,
and the effective cross section

ν = λσeff. . (16)

I use λ here instead of the more common L to avoid confusion with the likelihood function and because
when we incorporate uncertainty on the time-integrated luminosity it will be a parameter of the model
for which I have chosen to use greek letters.

If we did not need to worry about detector effects and we could measure the final state perfectly,
then the distribution for any observable x would be given by

(idealized) f(x) =
1

σeff.

dσeff.

dx
. (17)

Of course, we do need to worry about detector effects and we incorporate them with the detector sim-
ulation discussed above. From the Monte Carlo sample of events12 {x1, . . . , xN} we can estimate the
underlying distribution f(x) simply by creating a histogram. If we want we can write the histogram
based on B bins centered at xb with bin width wb explicitly as

(histogram) f(x) ≈ h(x) =

N∑

i=1

B∑

b=1

θ(|xi − xb|/wb)
N

θ(|x− xb|/wb)
wb

, (18)

where the first Heaviside function accumulates simulated events in the bin and the second selects the bin
containing the value of x in question. Histograms are the most common way to estimate a probability
density function based on a finite sample, but there are other possibilities. The downsides of histograms
as an estimate for the distribution f(x) is that they are discontinuous and have dependence on the location
of the bin boundaries. A particularly nice alternative is called kernel estimation [13]. In this approach,
one places a kernel of probability K(x) centered around each event in the sample:

(kernel estimate) f(x) ≈ f̂0(x) =
1

N

N∑

i=1

K

(
x− xi
h

)
. (19)

The most common choice of the kernel is a Gaussian distribution, and there are results for the optimal
width of the kernel h. Equation 19 is referred to as the fixed kernel estimate since h is common for all the
events in the sample. A second order estimate or adaptive kernel estimation provides better performance
when the distribution is multimodal or has both narrow and wide features [13].

4.1.1 The multi-sample mixture model
So far we have only considered a single interaction process, or sample. How do we form a model
when there are several scattering processes contributing to the total rate and distribution of x? From
first principles of quantum mechanics we must add these different processes together. Since there is no
physical meaning to label individual processes that interfere quantum mechanically, I will consider all
such processes as a single sample. Thus the remaining set of samples that do not interfere simply add
incoherently. The total rate is simply the sum of the individual rates

νtot =
∑

s∈samples

νs (20)

12Here I only consider unweighted Monte Carlo samples, but the discussion below can be generalized for weighted Monte
Carlo samples.
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and the total distribution is a weighted sum called a mixture model

f(x) =
1

νtot

∑

s∈samples

νsfs(x) , (21)

where the subscript s has been added to the equations above for each such sample. With these two
ingredients we can construct our marked Poisson model of Eq. 1 for a single channel, and we can simply
repeat this for several disjoint event selection requirements to form a multi-channel simultaneous model
like Eq. 2. In the multi-channel case we will give the additional subscript c ∈ channels to νcs, fcs(x),
νc,tot, and fc(x). However, at this point, our model has no free parameters α.

4.1.2 Incorporating physics parameters into the model
Now we want to parametrize our model interns of some physical parameters α, such as those that appear
in the Lagrangian of a some theory. Changing the parameters in the Lagrangian of a theory will in
general change both the total rate ν and the shape of the distributions f(x). In principle, we can repeat
the procedure above for each value of these parameters α to form νcs(α) and fcs(x|α) for each sample
and selection channel, and, thus, from fsim(D|α). In practice, we need to resort to some interpolation
strategy over the individual parameter points {αi} where we have Monte Carlo samples. We will return
to these interpolation strategies later.

In some case the only effect of the parameter is to scale the rate of some scattering process νs(α)
without changing its distribution fs(x|α). Furthermore, the scaling is often known analytically, for
instance, a coupling constants produce a linear relationship like ν(αp) = ξαp + ν0. In such cases,
interpolation is not necessary and the parametrization of the likelihood function is straightforward.

Note, not all physics parameters need be considered parameters of interest. There may be a free
physics parameter that is not directly of interest, and as such it would be considered a nuisance parameter.

4.1.2.1 An example, the search for the standard model Higgs boson

In the case of searches for the standard model Higgs boson, the only free parameter in the Lagrangian is
mH . Once mH is specified the rates and the shapes for each of the scattering processes (combinations of
production and decay modes) are specified by the theory. Of course, as the Higgs boson mass changes
the distributions do change so we do need to worry about interpolating the shapes f(x|mH). However
the results are often presented as a raster scan overmH , where one fixesmH and then asks about the rate
of signal events from the Higgs boson scattering process. With mH fixed this is really a simple hypoth-
esis test between background-only and signal-plus-background13, but we usually choose to construct a
parametrized model that does not directly correspond to any theory. In this case the parameter of interest
is some scaling of the rate with respect to the standard model prediction, µ = σ/σSM, such that µ = 0 is
the background-only situation and µ = 1 is the standard model prediction. Furthermore, we usually use
this global µ factor for each of the production and decay modes even though essentially all theories of
physics beyond the standard model would modify the rates of the various scattering processes differently.
Figure 3 shows confidence intervals on µ for fixed values of mH . Values below the solid black curve
are not excluded (since an arbitrarily small signal rate cannot be differentiated from the background-only
and this is a one-sided confidence interval).

4.1.3 Incorporating systematic effects
The parton shower, hadronization, and detector simulation components of the simulation narrative are
based on phenomenological models that have many adjustable parameters. These parameters are nui-

13Note thatH →WW interferes with “background-only”WW scattering process. For low Higgs boson masses, the narrow
Higgs width means this interference is negligible. However, at high masses the interference effect is significant and we should
really treat these two processes together as a single sample.
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sance parameters included in our master list of parameters α. The changes in the rates ν(α) and shapes
f(x|α) due to these parameters lead to systematic uncertainties14. We have already eluded to how one
can deal with the presence of nuisance parameters in hypothesis testing and confidence intervals, but here
we are focusing on the modeling stage. In principle, we deal with modeling of these nuisance parameters
in the same way as the physics parameters, which is to generate Monte Carlo samples for several choices
of the parameters {αi} and then use some interpolation strategy to form a continuous parametrization
for ν(α), f(x|α), and fsim(D|α). In practice, there are many nuisance parameters associated to the
parton shower, hadronization, and detector simulation so this becomes a multi-dimensional interpolation
problem15. This is one of the most severe challenges for the simulation narrative.

Typically, we don’t map out the correlated effect of changing multiple αp simultaneously. Instead,
we have some nominal settings for these parameters α0 and then vary each individual parameter ‘up’
and ‘down’ by some reasonable amount α±p . So if we have NP parameters we typically have 1 + 2NP

variations of the Monte Carlo sample from which we try to form fsim(D|α). This is clearly not an ideal
situation and it is not hard to imagine cases where the combined effect on the rate and shapes cannot be
factorized in terms of changes from the individual parameters.

What is meant by “vary each individual parameter ‘up’ and ‘down’ by some reasonable amount” in
the paragraph above? The nominal choice of the parametersα0 is usually based on experience, test beam
studies, Monte Carlo ‘tunings’, etc.. These studies correspond to auxiliary measurements in the language
used in Sec. 2.2 and Sec. 2.4. Similarly, these parameters typically have some maximum likelihood
estimates and standard uncertainties from the auxiliary measurements as described in Sec. 3.1. Thus our
complete model ftot(D|α) of Eq. 6 should not only deal with parametrizing the effect of changing each
αp but also include either a constraint term fp(ap|αp) or an additional channel that describes a more
complete probability model for the auxiliary measurement.

Below we will consider a specific interpolation strategy and a few of the most popular conventions
for constraint terms. However, before moving on it is worth emphasizing that while, naively, the matrix
element associated to a perturbative scattering amplitude has no free parameters (beyond the physics
parameters discussed above), fixed order perturbative calculations do have residual scale dependence.
This type of theoretical uncertainty has no auxiliary measurement associated with it even in principle,
thus it really has no frequentist description. This was discussed briefly in Sec. 2.4. In contrast, the parton
density functions are the results of auxiliary measurements and the groups producing the parton density
function sets spend time providing sensible multivariate constraint terms for those parameters. However,
those measurements also have uncertainties due to parametrization choices and theoretical uncertainties,
which are not statistical in nature. In short we must take care in ascribing constraint terms to theoretical
uncertainties and measurements that have theoretical uncertainties16.

4.1.4 Tabulating the effect of varying sources of uncertainty
The treatment of systematic uncertainties is subtle, particularly when one wishes to take into account
the correlated effect of multiple sources of systematic uncertainty across many signal and background
samples. The most important conceptual issue is that we separate the source of the uncertainty (for
instance the uncertainty in the calorimeter’s response to jets) from its effect on an individual signal or
background sample (eg. the change in the acceptance and shape of a W+jets background). In particular,
the same source of uncertainty has a different effect on the various signal and background samples.
The effect of these ‘up’ and ‘down’ variations about the nominal predictions νs(α0) and fsb(x|α0) is
quantified by dedicated studies. The result of these studies can be arranged in tables like those below.
The main purpose of the HistFactory XML schema is to represent these tables. And HistFactory is a
tool that can convert these tables into our master model ftot(D|α) of Eq. 6 implemented as a RooAbsPdf

14Systematic uncertainty is arguably a better term than systematic error.
15This is sometimes referred to as ‘template morphing’
16“Note that I deliberately called them theory errors, not uncertainties.” – Tilman Plehn

16

K. CRANMER

262



with a ModelConfig to make it compatible with RooStats tools. The convention used by HistFactory
is related to our notation via

νs(α)fs(x|α) = ηs(α)σs(x|α) (22)

where ηs(α) represents relative changes in the overall rate ν(α) and σs(x|α) includes both changes
to the rate and the shape f(x|α). This choice is one of convenience because histograms are often not
normalized to unity, but instead in code rate information. As the name implies, HistFactory works
with histograms, so instead of writing σs(x|α) the table is written as σsb(α), where b is a bin index.
To compress the notation further, η+

p=1,s=1 and σ±psb represent the value of when αp = α±p and all other
parameters are fixed to their nominal values. Thus we arrive at the following tabular form for models
built on the simulation narrative based on histograms with individual nuisance parameters varied one at
a time:

Syst Sample 1 . . . Sample N
Nominal Value η0

s=1 = 1 . . . η0
s=N = 1

p=OverallSys 1 η+
p=1,s=1, η−p=1,s=1 . . . η+

p=1,s=N , η−p=1,s=N
...

...
. . .

...
p=OverallSys M η+

p=M,s=1, η−p=M,s=1 . . . η+
p=M,s=N , η−p=M,s=N

Net Effect ηs=1(α) . . . ηs=N (α)

Table 1: Tabular representation of sources of uncertainties that produce a correlated effect in the normalization
individual samples (eg. OverallSys). The η+ps represent histogram when αs = 1 and are inserted into the High
attribute of the OverallSys XML element. Similarly, the η−ps represent histogram when αs = −1 and are inserted
into the Low attribute of the OverallSys XML element. Note, this does not imply that η+ > η−, the± superscript
correspond to the variation in the source of the systematic, not the resulting effect.

Syst Sample 1 . . . Sample N
Nominal Value σ0

s=1,b . . . σ0
s=N,b

p=HistoSys 1 σ+
p=1,s=1,b, σ

−
p=1,s=1,b . . . σ+

p=1,s=N,b, σ
−
p=1,s=N,b

...
...

. . .
...

p=HistoSys M σ+
p=M,s=1,b, σ−p=M,s=1,b . . . σ+

p=M,s=N,b, σ−p=M,s=N,b

Net Effect σs=1,b(α) . . . σs=N,b(α)

Table 2: Tabular representation of sources of uncertainties that produce a correlated effect in the normalization
and shape individual samples (eg. HistoSys ). The σ+

psb represent histogram when αs = 1 and are inserted into
the HighHist attribute of the HistoSys XML element. Similarly, the σ−

psb represent histogram when αs = −1

and are inserted into the LowHist attribute of the HistoSys XML element.

4.1.5 Interpolation Conventions
For each sample, one can interpolate and extrapolate from the nominal prediction η0

s = 1 and the vari-
ations η±ps to produce a parametrized ηs(α). Similarly, one can interpolate and extrapolate from the
nominal shape σ0

sb and the variations σ±psb to produce a parametrized σsb(α). We choose to parametrize
αp such that αp = 0 is the nominal value of this parameter, αp = ±1 are the “±1σ variations”. Need-
less to say, there is a significant amount of ambiguity in these interpolation and extrapolation proce-
dures and they must be handled with care. Bellow are some of the interpolation strategies supported by
HistFactory. These are all ’vertical’ style interpolation treated independently per-bin. Four interpola-
tion strategies are described below and can be compared in Fig 6. The interested reader is invited to look
at alternative ’horizontal’ interpolation strategies, such as the one developed by Alex Read in Ref. [14]
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(the RooFit implementation is called RooIntegralMorph) and Max Baak’s RooMomentMorph. These
horizontal interpolation strategies are better suited for features moving, such as the location of an invari-
ant mass bump changing with the hypothesized mass of a new particle..

Piecewise Linear (InterpCode=0)
The piecewise-linear interpolation strategy is defined as

ηs(α) = 1 +
∑

p∈Syst

Ilin.(αp; 1, η+
sp, η

−
sp) (23)

and for shape interpolation it is

σsb(α) = σ0
sb +

∑

p∈Syst

Ilin.(αp;σ
0
sb, σ

+
psb, σ

−
psb) (24)

with

Ilin.(α; I0, I+, I−) =

{
α(I+ − I0) α ≥ 0

α(I0 − I−) α < 0
(25)

PROS: This approach is the most straightforward of the interpolation strategies.

CONS: It has two negative features. First, there is a kink (discontinuous first derivative) at α = 0
(see Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
Second, the interpolation factor can extrapolate to negative values. For instance, if η− = 0.5 then we
have η(α) < 0 when α < −2 (see Fig 6(c)).

Note that one could have considered the simultaneous variation of αp and αp′ in a multiplicative
way. The multiplicative accumulation is not an option currently.

Note that this is the default convention for σsb(α) (ie. HistoSys ).

Piecewise Exponential (InterpCode=1)
The piecewise exponential interpolation strategy is defined as

ηs(α) =
∏

p∈Syst

Iexp.(αp; 1, η+
sp, η

−
sp) (26)

and for shape interpolation it is

σsb(α) = σ0
sb

∏

p∈Syst

Iexp.(αp;σ
0
sb, σ

+
psb, σ

−
psb) (27)

with

Iexp.(α; I0, I+, I−) =

{
(I+/I0)α α ≥ 0

(I−/I0)−α α < 0
(28)

PROS: This approach ensures that η(α) ≥ 0 (see Fig 6(c)) and for small response to the uncer-
tainties it has the same linear behavior near α ∼ 0 as the piecewise linear interpolation (see Fig 6(a)).

CONS: It has two negative features. First, there is a kink (discontinuous first derivative) at α = 0,
which can cause some difficulties for numerical minimization packages such as Minuit. Second, for
large uncertainties it develops a different linear behavior compared to the piecewise linear interpolation.
In particular, even if the systematic has a symmetric response (ie. η+ − 1 = 1 − η−) the interpolated
response will develop a kink for large response to the uncertainties (see Fig 6(c)).

Note that the one could have considered the simultaneous variation of αp and αp′ in an additive
way, but this is not an option currently.
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Note, that when paired with a Gaussian constraint on α this is equivalent to linear interpolation and
a log-normal constraint in ln(α). This is the default strategy for normalization uncertainties ηs(α) (ie.
OverallSys ) and is the standard convention for normalization uncertainties in the LHC Higgs Com-
bination Group. In the future, the default may change to the Polynomial Interpolation and Exponential
Extrapolation described below.

Polynomial Interpolation and Exponential Extrapolation (InterpCode=4)
The strategy of this interpolation option is to use the piecewise exponential extrapolation as above

with a polynomial interpolation that matches η(α = ±α0), dη/dα|α=±α0 , and d2η/dα2|α=±α0 and the
boundary ±α0 is defined by the user (with default α0 = 1).

ηs(α) =
∏

p∈Syst

Ipoly|exp.(αp; 1, η+
sp, η

−
sp, α0) (29)

with

Ipoly|exp.(α; I0, I+, I−, α0) =





(I+/I0)α α ≥ α0

1 +
∑6

i=1 aiα
i |α| < α0

(I−/I0)−α α ≤ −α0

(30)

and the ai are fixed by the boundary conditions described above.

PROS: This approach avoids the kink (discontinuous first and second derivatives) at α = 0 (see
Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
This approach ensures that η(α) ≥ 0 (see Fig 6(c)).

Note: This option is not available in ROOT 5.32.00, but is available for normalization uncertainties
(OverallSys) in the subsequent patch releases. In future releases, this may become the default.

4.1.6 Consistent Bayesian and Frequentist modeling
The variational estimates η± and σ± typically correspond to so called “±1σ variations” in the source of
the uncertainty. Here we are focusing on the source of the uncertainty, not its affect on rates and shapes.
For instance, we might say that the jet energy scale has a 10% uncertainty. 17 This is common jargon,
but what does it mean? The most common interpretation of this statement is that the uncertain parameter
αp (eg. the jet energy scale) has a Gaussian distribution. However, this way of thinking is manifestly
Bayesian. If the parameter was estimated from an auxiliary measurement, then it is the PDF for that
measurement that we wish to include into our probability model. In the frequentist way of thinking, the
jet energy scale has an unknown true value and upon repeating the experiment many times the auxiliary
measurements estimating the jet energy scale would fluctuate randomly about this true value. To aid in
this subtle distinction, we use greek letters for the parameters (eg. αp) and roman letters for the auxiliary
measurements ap. Furthermore, we interpret the “±1σ” variation in the frequentist sense, which leads to
the constraint term fp(ap|αp). Then, we can pair the resulting likelihood with some prior on αp to form
a Bayesian posterior if we wish according to Eq. 5.

It is often advocated that a “log-normal” or “gamma” distribution for αp is more appropriate
than a gaussian constraint [15]. This is particularly clear in the case of bounded parameters and large
uncertainties. Here we must take some care to build a probability model that can maintain a consistent
interpretation in Bayesian a frequentist settings. Table 3 summarizes a few consistent treatments of the
frequentist pdf, the likelihood function, a prior, and the resulting posterior.

Finally, it is worth mentioning that the uncertainty on some parameters is not the result of an auxil-
iary measurement – so the constraint term idealization, it is not just a convenience, but a real conceptual

17Without loss of generality, we choose to parametrize αp such that αp = 0 is the nominal value of this parameter, αp = ±1
are the “±1σ variations”.
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Fig. 6: Comparison of the three interpolation options for different η±. (a) η− = 0.8, η+ = 1.2, (b) η− = 1.1,
η+ = 1.5, (c) η− = 0.2, η+ = 1.8, and (d) η− = 0.95, η+ = 1.5

PDF Likelihood ∝ Prior π0 Posterior π
G(ap|αp, σp) G(αp|ap, σp) π0(αp) ∝ const G(αp|ap, σp)
Pois(np|τpβp) P Γ(βp|A = τp;B = 1 + np) π0(βp) ∝ const P Γ(βp|A = τp;B = 1 + np)
PLN(np|βp, σp) βp · PLN(βp|np, σp) π0(βp) ∝ const PLN(βp|np, σp)
PLN(np|βp, σp) βp · PLN(βp|np, σp) π0(βp) ∝ 1/βp PLN(βp|np, σp)

Table 3: Table relating consistent treatments of PDF, likelihood, prior, and posterior for nuisance parameter con-
straint terms.

leap. This is particularly true for theoretical uncertainties from higher-order corrections or renormal-
izaiton and factorization scale dependence. In these cases a formal frequentist analysis would not include
a constraint term for these parameters, and the result would simply depend on their assumed values. As
this is not the norm, we can think of reading Table 3 from right-to-left with a subjective Bayesian prior
π(α) being interpreted as coming from a fictional auxiliary measurement.
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4.1.6.1 Gaussian Constraint

The Gaussian constraint for αp corresponds to the familiar situation. It is a good approximation of
the auxiliary measurement when the likelihood function for αp from that auxiliary measurement has a
Gaussian shape. More formally, it is valid when the maximum likelihood estimate of αp (eg. the best fit
value of αp) has a Gaussian distribution. Here we can identify the maximum likelihood estimate of αp
with the global observable ap, remembering that it is a number that is extracted from the data and thus
its distribution has a frequentist interpretation.

G(ap|αp, σp) =
1√

2πσ2
p

exp

[
−(ap − αp)2

2σ2
p

]
(31)

with σp = 1 by default. Note that the PDF of ap and the likelihood for αp are positive for all values.

4.1.6.2 Poisson (“Gamma”) constraint

When the auxiliary measurement is actually based on counting events in a control region (eg. a Poisson
process), a more accurate to describe the auxiliary measurement with a Poisson distribution. It has been
shown that the truncated Gaussian constraint can lead to undercoverage (overly optimistic) results, which
makes this issue practically relevant [4]. Table 3 shows that a Poisson PDF together with a uniform prior
leads to a gamma posterior, thus this type of constraint is often called a “gamma” constraint. This is a
bit unfortunate since the gamma distribution is manifestly Bayesian and with a different choice of prior,
one might not arrive at a gamma posterior. When dealing with the Poisson constraint, it is no longer
convenient to work with our conventional scaling for αp which can be negative. Instead, it is more
natural to think of the number of events measured in the auxiliary measurement np and the mean of the
Poisson parameter. This information is not usually available, instead one usually has some notion of the
relative uncertainty in the parameter σrel

p (eg. a the jet energy scale is known to 10%). In order to give
some uniformity to the different uncertainties of this type and think of relative uncertainty, the nominal
rate is factored out into a constant τp and the mean of the Poisson is given by τpαp.

Pois(np|τpαp) =
(τpαp)

np e−τpαp

np!
(32)

Here we can use the fact that Var[np] =
√
τpαp and reverse engineer the nominal auxiliary measurement

n0
p = τp = (1/σrel

p )2 . (33)

where the superscript 0 is to remind us that np will fluctuate in repeated experiments but n0
p is the value

of our measured estimate of the parameter.

One important thing to keep in mind is that there is only one constraint term per nuisance pa-
rameter, so there must be only one σrelp per nuisance parameter. This σrelp is related to the fundamental
uncertainty in the source and we cannot infer this from the various response terms η±ps or σ±pub.

Another technical difficulty is that the Poisson distribution is discrete. So if one were to say the
relative uncertainty was 30%, then we would find n0

p = 11.11..., which is not an integer. Rounding np
to the nearest integer while maintaining τp = (1/σrel

p )2 will bias the maximum likelihood estimate of αp
away from 1. To avoid this, one can use the gamma distribution, which generalizes more continuously
with

P Γ(αp|A = τp, B = np − 1) = A(Aαp)
Be−Aαp/Γ(B) . (34)

This approach works fine for likelihood fits, Bayesian calculations, and frequentist techniques based on
asymptotic approximations, but it does not offer a consistent treatment of the pdf for the global observable
np that is needed for techniques based on Monte Carlo sampling.
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4.1.6.3 Log-normal constraint

From Eadie et al., “The log-normal distribution represents a random variable whose logarithm follows a
normal distribution. It provides a model for the error of a process involving many small multiplicative
errors (from the Central Limit Theorem). It is also appropriate when the value of an observed variable is a
random proportion of the previous observation.” [15,16]. This logic of multiplicative errors applies to the
the measured value, not the parameter. Thus, it is natural to say that there is some auxiliary measurement
(global observable) with a log-normal distribution. As in the gamma/Poisson case above, let us again say
that the global observable is np with a nominal value

n0
p = τp = (1/σrel

p )2 . (35)

Then the conventional choice for the corresponding log-normal distribution is

PLN(np|αp, κp) =
1√

2π lnκ

1

np
exp

[
− ln(np/αp)

2

2(lnκp)2

]
(36)

while the likelihood function is (blue curve in Fig. 7(a)).

L(αp) =
1√

2π lnκ

1

np
exp

[
− ln(np/αp)

2

2(lnκp)2

]
; . (37)

To get to the posterior for αp given np we need an ur-prior η(αp)

π(αp) ∝ η(αp)
1√

2π lnκ

1

np
exp

[
− ln(np/αp)

2

2(lnκp)2

]
(38)

If η(αp) is uniform, then the posterior looks like the red curve in Fig. 7(b). However, when paired with
an “ur-prior” η(αp) ∝ 1/αp (green curve in Fig. 7(b)), this results in a posterior distribution that is also
of a log-normal form for αp (blue curve in Fig. 7(b)).
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Fig. 7: The lognormal constraint term: (left) the pdf for the global observable ap and (right) the likelihood function,
the posterior based on a flat prior on αp, and the posterior based on a 1/αp prior.

4.1.7 Incorporating Monte Carlo statistical uncertainty on the histogram templates
The histogram based approach described above are based Monte Carlo simulations of full detector sim-
ulation. These simulations are very computationally intensive and often the histograms are sparsely
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populated. In this case the histograms are not good descriptions of the underlying distribution, but are
estimates of that distribution with some statistical uncertainty. Barlow and Beeston outlined a treatment
of this situation in which each bin of each sample is given a nuisance parameter for the true rate, which
is then fit using both the data measurement and the Monte Carlo estimate [17]. This approach would
lead to several hundred nuisance parameters in the current analysis. Instead, the HistFactory employs
a lighter weight version in which there is only one nuisance parameter per bin associated with the total
Monte Carlo estimate and the total statistical uncertainty in that bin. If we focus on an individual bin
with index b the contribution to the full statistical model is the factor

Pois(nb|νb(α) + γbν
MC
b (α)) Pois(mb|γbτb) , (39)

where nb is the number of events observed in the bin, νb(α) is the number of events expected in the
bin where Monte Carlo statistical uncertainties need not be included (either because the estimate is
data driven or because the Monte Carlo sample is sufficiently large), νMC

b (α) is the number of events
estimated using Monte Carlo techniques where the statistical uncertainty needs to be taken into account.
Both expectations include the dependence on the parameters α. The factor γb is the nuisance parameter
reflecting that the true rate may differ from the Monte Carlo estimate νMC

b (α) by some amount. If
the total statistical uncertainty is δb, then the relative statistical uncertainty is given by νMC

b /δb. This
corresponds to a total Monte Carlo sample in that bin of sizemb = (δb/ν

MC
b )2. Treating the Monte Carlo

estimate as an auxiliary measurement, we arrive at a Poisson constraint term Pois(mb|γbτb), where mb

would fluctuate about γbτb if we generated a new Monte Carlo sample. Since we have scaled γ to be a
factor about 1, then we also have τb = (νMC

b /δb)
2; however, τb is treated as a fixed constant and does not

fluctuate when generating ensembles of pseudo-experiments.

It is worth noting that the conditional maximum likelihood estimate ˆ̂γb(α) can be solved analyti-
cally with a simple quadratic expression.

ˆ̂γb(α) =
−B +

√
B2 − 4AC

2A
, (40)

with
A = νMC

b (α)2 + τbν
MC
b (α) (41)

B = νb(α)τ + νb(α)νMC
b (α)− nbνMC

b (α)−mbν
MC
b (α) (42)

C = mbνb(α) . (43)

In a Bayesian technique with a flat prior on γb, the posterior distribution is a gamma distribution.
Similarly, the distribution of γ̂b will take on a skew distribution with an envelope similar to the gamma
distribution, but with features reflecting the discrete values of mb. Because the maximum likelihood
estimate of γb will also depend on nb and α̂, the features from the discrete values of mb will be smeared.
This effect will be more noticeable for large statistical uncertainties where τb is small and the distribution
of γ̂b will have several small peaks. For smaller statistical uncertainties where τb is large the distribution
of γ̂b will be approximately Gaussian.

4.2 Data-Driven Narrative
The strength of the simulation narrative lies in its direct logical link from the underlying theory to the
modeling of the experimental observations. The weakness of the simulation narrative derives from the
weaknesses in the simulation itself. Data-driven approaches are more motivated when they address
specific deficiencies in the simulation. Before moving to a more abstract or general discussion of the
data-driven narrative, let us first consider a few examples.

The first example we have already considered in Sec. 2.2 in the context of the “on/off” problem.
There we introduced an auxiliary measurement that counted nCR events in a control region to estimate
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the background νB in the signal region. In order to do this we needed to understand the ratio of the num-
ber of events from the background process in the control and signal regions, τ . This ratio τ either comes
from some reasonable assumption or simulation. For example, if one wanted to estimate the background
due to jets faking muons j → µ for a search selecting µ+µ− , then one might use a sample of µ±µ±

events as a control region. Here the motivation for using a data-driven approach is that modeling the
processes that lead to j → µ rely heavily on the tails of fragmentation functions and detector response,
which one might reasonably have some skepticism. If one assumes that control region is expected to
have negligible signal in it, that backgrounds that produce µ+µ− other than the jets faking muons, and
that the rate for j → µ− is the same18 as the rate for j → µ+, then one can assume τ = 1. Thus, this
background estimate is as trustworthy as the assumptions that went into it. In practice, several of these
assumptions may be violated. Another approach is to use simulation of these background processes to
estimate the ratio τ ; a hybrid of the data-driven and simulation narratives.

Let us now consider the search forH → γγ shown in Fig. 8 [18,19]. The right plot of Fig. 8 shows
the composition of the backgrounds in this search, including the continuum production of pp → γγ,
the γ+jets process with a jet faking a photon j → γ, and the multi jet process with two jets faking
photons. The continuum production of γγ has a theoretical uncertainty that is much larger than the
statistical fluctuations one would expect in the data. Similarly, the rate of jets faking photons is sensitive
to fragmentation and the detector simulation. These uncertainties are large compared to the statistical
fluctuations in the data itself. Thus we can use the distribution in Fig. 8 to measure the total background
rate. Of course, the signal would also be in this distribution, so one either needs to apply a mass window
around the signal and consider the region outside of the window as a sideband control sample or model
the signal and background contributions to the distribution. In the case of the H → γγ shown in
Fig. 8 [18, 19] the modeling of the distribution signal and background distributions is not based on
histograms from simulation, but instead a continuous function is used as an effective model. I will
discuss this effective modeling narrative below, but point out that here this is another example of a
hybrid narrative.
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Fig. 8: Distribution of diphoton invariant mass distributions in the ATLAS H → γγ search. The left plot shows a
fit of a an effective model to the data and the right plot shows an estimate of the γγ, γ+jet, and diet contributions.

The final example to consider is an extension of the ‘on/off’ model, often referred to as the ‘ABCD’
method. Let us start with the ‘on/off’ model: Pois(nSR|νS + νB) · Pois(nCR|τνB). As mentioned
above, this requires that one estimate τ either from simulation or through some assumptions. The ABCD
method aims to estimate introduce two new control regions that can be used to measure τ . To see this,
let us imagine that the signal and control regions correspond to requiring some continuous variable x

18Given that the LHC collides pp and not pp̄, there is clearly a reason to worry if this assumption is valid.
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being greater than or less than some threshold value xc. If we could introduce a second discriminating
variable y such that the distribution for background factorizes fB(x, y) = fB(x)fB(y), then we have a
handle to measure the factor τ . Typically, one introduces a threshold yc so that the signal contribution
is small below this threshold19. Figure 9 shows an example where xc = yc = 5. With this we these
two thresholds we have four regions that we can schematically refer to as A, B, C, and D. In the case of
simply counting events in these regions we can write the total expectation as

νA = 1 · µ+ νMC
A + 1 · νA (44)

νB = εBµ + νMC
B + τBνA

νC = εCµ + νMC
C + τCνA

νD = εDµ + νMC
D + τBτCνA

where µ is the signal rate in region A, εi is the ratio of the signal in the regions B, C, D with respect to the
signal in region A, νMC

i is the rate of background in each of the regions being estimated from simulation,
νi is the rate of the background being estimated with the data driven technique in the signal region, and τi
are the ratios of the background rates in the regions B, C, and D with respect to the background in region
A. The key is that we have used the factorization fB(x, y) = fB(x)fB(y) to write τD = τBτC . The right
panel of Fig. 9 shows a more complicated extension of the ABCD method from a recent ATLAS SUSY
analysis [20].

An alternative parametrization, which can be more numerically stable is

νA = 1 · µ+ νMC
A + ηCηBνD (45)

νB = εBµ + νMC
B + ηBνD

νC = εCµ + νMC
C + ηCνD

νD = εDµ + νMC
D + 1 · νD

ATLAS statistics forum
Draft 0.0, January 25, 2012

ABCD method in searches

1 Introduction

The ABCD method [1] allows the data-driven estimation of a background rate when events
are selected by a pair of cuts in a plane of two uncorrelated variables such that both of
the cuts enhance the signal to background ratio, as illustrated in Fig. 1. The basic idea is

x
0 1 2 3 4 5 6 7 8 9 10

y

0

1

2

3

4

5

6

7

8

9

10

D

C

B

A

Figure 1: Illustration of di↵erent regions in the ABCD method in the plane of two variables
x, y. The points are simulated events from a background distribution with no correlation in
the x�y plane and the color density illustrates a bivariate gaussian distribution of hypothet-
ical signal in the search region (A) with some leakage into the background sideband regions
B, C and D.

that there are su�cient background statistics in sideband (or control) regions B, C and D
to estimate the small background rate in the signal region A: µA = µBµC/µD. This formula
makes several assumptions:

1. There are enough events in regions B, C and D to propagate the statistical uncertainty
linearly to A (and for convenience the uncertainty on µA is propagated to a measurement
or search as if it is sampled from a Gaussian probability distribution).

2. There is no signal leakage to regions B, C, and D.
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Fig. 9: An example of ABCD (from Alex Read) in the x − y plane of two observables x and y (left). A more
complex example with several regions in the MW

T − Emiss
T plane [20].

4.3 Effective Model Narrative
In the simulation narrative the model of discriminating variable distributions f(x|α) is derived from
discrete samples of simulated events {x1, . . . , xN}. We discussed above how one can use histograms or

19The relative sign of the cut is not important, but has been chosen for consistency with Fig 9.
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kernel estimation to approximate the underlying distribution and interpolation strategies to incorporate
systematic effects. Another approach is to assume some parametric form for the distribution to serve as an
effective model. For example, in the H → γγ analysis shown in Fig. 8 a simple exponential distribution
was used to model the background. The state-of-the-art theoretical predictions for the continuum γγ
background process do not predict exactly an exponentially falling distribution, and the analysis must
(and does) incorporate the systematic associated to the effective model. Similarly, it is common to use
a polynomial in some limited sideband region to estimate backgrounds under a peak. These effective
models can range from very ad hoc 20 to more motivated. For instance, one might use knowledge of
kinematics and phase space and/or detector resolution to construct an effective model that captures the
relevant physics. The advantage of a well motivated effective model is that few nuisance parameters
may describe well the relevant family of probability densities, which is the challenge for generic (and
relatively unsophisticated) interpolation strategies usually employed in the simulation narrative.

4.4 The Matrix Element Method
Ideally, one would not use a single discriminating variable to distinguish the process of interest from
the other background processes, but instead would use as much discriminating power as possible. This
implies forming a probability model over a multi-dimensional discriminating variable (ie. a multivariate
analysis technique). In principle, both the histogram-based and kernel-based approach generalize to
distributions of multi-dimensional discriminating variables; however, in practice, they are limited to only
a few dimensions. In the case of histograms this is particularly severe unless one employs clever binning
choices, while in the kernel-based approach one can model up to about 5-dimensional distributions with
reasonable Monte Carlo sample sizes. In practice, one often uses multivariate algorithms like Neural
Networks or boosted decision trees21 to map the multiple variables into a single discriminating variable.
Often these multivariate techniques are seen as somewhat of a black-box. If we restrict ourselves to
discriminating variables associated with the kinematics of final state particles (as opposed to the more
detailed signature of particles in the detector), then we can often approximate he detailed simulation of
the detector with a parametrized detector response. If we denote the kinematic configuration of all the
final state particles in the Lorentz invariant phase space as Φ, the initial state as i, the matrix element
(potentially averaged over unmeasured spin configurations) asM(i,Φ), and the probability due to parton
density functions for the initial state i going into the hard scattering as f(i), then we can write that the
distribution of the, possibly multi-dimensional, discriminating variable x as

f(x) ∝
∫
dΦ f(i)|M(i,Φ)|2W (x|Φ) , (46)

where W (x|Φ) is referred to as the transfer function of x given the final state configuration Φ. It is
natural to think of W (x|Φ) as a conditional distribution, but here I let W encode the efficiency and
acceptance so that we have

σeff.

σ
=

∫
dx
∫
dΦ |M(i,Φ)|2W (x|Φ)∫
dΦ |M(i,Φ)|2 . (47)

Otherwise, the equation above looks like another application one Bayes’s theorem where W (x|Φ) plays
the role of the pdf/likelihood function and M(i,Φ) plays the role of the prior over the Φ. It is worth
pointing out that this is a frequentist use of Bayes’s theorem since dΦ is the Lorentz invariant phase space
which explicitly has a measure associated with it.

20For instance, the modeling of H → ZZ(∗) → 4l described in [21] (see Eq. 2 of the corresponding section)
21A useful toolkit for high-energy physics is TMVA, which is packaged with ROOT [22].
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4.5 Event-by-event resolution, conditional modeling, and Punzi factors
In some cases one would like to provide a distribution for the discriminating variable x based conditional
on some other observable in the event y: f(x|α, y). For instance, one might want to say that the en-
ergy resolution for electrons depends on the energy itself through a well-known calorimeter resolution
parametrization like σ(E)/E = A/

√
E ⊕ B. These types of conditional distributions can be built in

RooFit. A subtle point studied by Punzi is that if f(y|α) depends on α the inference on α can be bi-
ased [23]. In particular, if one is trying to estimate the amount of signal in a sample and the distribution
of y for the signal is different than for the background, the estimate of the signal fraction will be biased.
This can be remedied by including terms related to f(y|α), colloquially called ‘Punzi Factors’. Impor-
tantly, this means one cannot build conditional models like this without knowing or assuming something
about f(y|α).

5 Frequentist Statistical Procedures
Here I summarize the procedure used by the LHC Higgs combination group for computing frequentist
p-values uses for quantifying the agreement with the background-only hypothesis and for determining
exclusion limits. The procedures are based on the profile likelihood ratio test statistic.

The parameter of interest is the overall signal strength factor µ, which acts as a scaling to the total
rate of signal events. We often write µ = σ/σSM , where σSM is the standard model production cross-
section; however, it should be clarified that the same µ factor is used for all production modes and could
also be seen as a scaling on the branching ratios. The signal strength is called so that µ = 0 corresponds
to the background-only model and µ = 1 is the standard model signal. It is convenient to separate the
full list of parameters α into the parameter of interest µ and the nuisance parameters θ: α = (µ,θ).

For a given data set Dsim and values for the global observables G there is an associated likelihood
function over µ and θ derived from combined model over all the channels including all the constraint
terms in Eq. 6

L(µ,θ;Dsim,G) = ftot(Dsim,G|µ,θ) . (48)

The notation L(µ,θ) leaves the dependence on the data implicit, which can lead to confusion. Thus, we
will explicitly write the dependence on the data when the identity of the dataset is important and only
suppress Dsim,G when the statements about the likelihood are generic.

We begin with the definition of the procedure in the abstract and then describe three implementa-
tions of the method based on asymptotic distributions, ensemble tests (Toy Monte Carlo), and importance
sampling.

5.1 The test statistics and estimators of µ and θ
This definitions in this section are all relative to a given dataset Dsim and value of the global observables
G, thus we will suppress their appearance. The nomenclature follows from Ref. [1].

The maximum likelihood estimates (MLEs) µ̂ and θ̂ and the values of the parameters that max-
imize the likelihood function L(µ,θ) or, equivalently, minimize − lnL(µ,θ). The dependence of the
likelihood function on the data propagates to the values of the MLEs, so when needed the MLEs will
be given subscripts to indicate the data set used. For instance, θ̂obs is the MLE of θ derived from the
observed data and global observables.

The conditional maximum likelihood estimate (CMLEs) ˆ̂
θ(µ) is the value of θ that maximizes

the likelihood function with µ fixed; it can be seen as a multidimensional function of the single variable
µ. Again, the dependence on Dsim and G is implicit. This procedure for choosing specific values of the
nuisance parameters for a given value of µ, Dsim, and G is often referred to as “profiling”. Similarly,
ˆ̂
θ(µ) is often called “the profiled value of θ”.
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Given these definitions, we can construct the profile likelihood ratio

λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
, (49)

which depends explicitly on the parameter of interest µ, implicitly on the data Dsim and global observ-
ables G, and is independent of the nuisance parameters θ (which have been eliminated via “profiling”).

(a) (b)

(c) (d)

Fig. 10: Visualization of a two dimensional likelihood function−2 lnL(µ, θ). The blue line in the plane represents

the profiling operation ˆ̂
θ(µ) and the blue curve along the likelihood surface represents −2 lnλ(µ). Note it is was

to show that the blue line exits the contours of −2 lnL(µ, θ) when they are perpendicular to the µ axis, which
provides the correspondence between the profile likelihood ratio and the description of the Minos algorithm.

In any physical theory the rate of signal events is non-negative, thus µ ≥ 0. However, it is often
convenient to allow µ < 0 (as long as the pdf fc(xc|µ,θ) ≥ 0 everywhere). In particular, µ̂ < 0 indicates
a deficit of events signal-like with respect to the background only and the boundary at µ = 0 complicates
the asymptotic distributions. Ref. [1] uses a trick that is equivalent to requiring µ ≥ 0 while avoiding
the formal complications of a boundary, which is to allow µ < 0 and impose the constraint in the test
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statistic itself. In particular, one defines λ̃(µ)

λ̃(µ) =





L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0

(50)

This is not necessary when ensembles of pseudo-experiments are generated with “Toy” Monte Carlo
techniques, but since they are equivalent we will write λ̃ to emphasize the boundary at µ = 0.

For discovery the test statistic q̃0 is used to differentiate the background-only hypothesis µ = 0
from the alternative hypothesis µ > 0:

q̃0 =

{
−2 ln λ̃(µ) µ̂ > 0

0 µ̂ ≤ 0
(51)

Note that q̃0 is test statistic for a one-sided alternative. Note also that if we consider the parameter of
interest µ ≥ 0, then it is equivalent to the two-sided test (because there are no values of µ less than
µ = 0.

For limit setting the test statistic q̃µ is used to differentiate the hypothesis of signal being produced
at a rate µ from the alternative hypothesis of signal events being produced at a lesser rate µ′ < µ:

q̃µ =

{
−2 ln λ̃(µ) µ̂ ≤ µ
0 µ̂ > µ

=





−2 ln L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0 ,

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(52)

Note that q̃µ is a test statistic for a one-sided alternative; it is a test statistic for a one-sided upper limit.

The test statistic t̃µ is used to differentiate signal being produced at a rate µ from the alternative
hypothesis of signal events being produced at a lesser or greater rate µ′ 6= µ.

t̃µ = −2 ln λ̃(µ) . (53)

Note that t̃µ is a test statistic for a two-sided alternative (as in the case of the Feldman-Cousins technique,
though this is more general as it incorporates nuisance parameters). Note that if we consider the parame-
ter of interest µ ≥ 0 and we the test at µ = 0 then there is no “other side” and we have t̃µ=0 = q̃0. Finally,
if one relaxes the constraint µ ≥ 0 then the two-sided test statistic is written tµ or, simply, −2 lnλ(µ).

5.2 The distribution of the test statistic and p-values
The test statistic should be interpreted as a single real-valued number that represents the outcome of the
experiment. More formally, it is a mapping of the data to a single real-valued number: q̃µ : Dsim,G → R.
For the observed data the test statistic has a given value, eg. q̃µ,obs. If one were to repeat the experiment
many times the test statistic would take on different values, thus, conceptually, the test statistic has
a distribution. Similarly, we can use our model to generate pseudo-experiments using Monte Carlo
techniques or more abstractly consider the distribution. Since the number of expected events ν(µ,θ) and
the distributions of the discriminating variables fc(xc|µ,θ) explicitly depend on θ the distribution of the
test statistic will also depend on θ. Let us denote this distribution

f(q̃µ|µ,θ) , (54)

and we have analogous expressions for each of the test statistics described above.
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The p-value for a given observation under a particular hypothesis (µ,θ) is the probability for an
equally or more ‘extreme’ outcome than observed assuming that hypothesis

pµ,θ =

∫ ∞

q̃µ,obs

f(q̃µ|µ,θ) dq̃µ . (55)

The logic is that small p-values are evidence against the corresponding hypothesis. In Toy Monte Carlo
approaches, the integral above is really carried out in the space of the data

∫
dDsimdG.

The immediate difficulty is that we are interested in µ but the p-values depend on both µ and θ. In
the frequentist approach the hypothesis µ = µ0 would not be rejected unless the p-value is sufficiently
small for all values of θ. Equivalently, one can use the supremum p-value for over all θ to base the
decision to accept or reject the hypothesis at µ = µ0.

psup
µ = sup

θ
pµ,θ (56)

The key conceptual reason for choosing the test statistics based on the profile likelihood ratio
is that asymptotically (ie. when there are many events) the distribution of the profile likelihood ratio
λ(µ = µtrue) is independent of the values of the nuisance parameters. This follows from Wilks’s theo-
rem. In that limit psup

µ = pµ,θ for all θ.

The asymptotic distributions f(λ(µ)|µ,θ) and f(λ(µ)|µ′,θ) are known and described in Sec. 5.5.
For results based on generating ensembles of pseudo-experiements using Toy Monte Carlo techniques
does not assume the form of the distribution f(q̃µ|µ,θ), but knowing that it is approximately independent
of θ means that one does not need to calculate p-values for all θ (which is not computationally feasible).
Since there may still be some residual dependence of the p-values on the choice of θ we would like
to know the specific value of θsup that produces the supremum p-value over θ. Since larger p-values

indicate better agreement of the data with the model, it is not surprising that choosing θsup =
ˆ̂
θ(µ)

is a good estimate of θsup. This has been studied in detail by statisticians, and is called the Hybrid
Resampling method and is referred to in physics as the ‘profile construction’ [8, 11, 24].

Based on the discussion above, the following p-value is used to quantify consistency with the
hypothesis of a signal strength of µ:

pµ =

∫ ∞

q̃µ,obs

f(q̃µ|µ, ˆ̂θ(µ, obs)) dq̃µ . (57)

A standard 95% confidence-level, one-sided frequentist confidence interval (upper limit) is obtained by
solving for p′µup = 5%. For downward fluctuations the upper limit of the confidence interval can be
arbitrarily small, though it will always include µ = 0. This feature is considered undesirable since a
physicist would not claim sensitivity to an arbitrarily small signal rate. The feature was the motivation
for the modified frequentist method called CLs [25–27]. and the alternative approach called power-
constrained limits [28].

To calculate the CLs upper limit, we define p′µ as a ratio of p-values,

p′µ =
pµ

1− pb
, (58)

where pb is the p-value derived from the same test statistic under the background-only hypothesis

pb = 1−
∫ ∞

q̃µ,obs

f(q̃µ|0, ˆ̂θ(µ = 0, obs))dq̃µ . (59)

The CLs upper-limit on µ is denoted µup and obtained by solving for p′µup = 5%. It is worth noting
that while confidence intervals produced with the “CLs” method over cover, a value of µ is regarded
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as excluded at the 95% confidence level if µ < µup. The amount of over coverage is not immediately
obvious; however, for small values of µ the coverage approaches 100% and for large values of µ the
coverage is near the nominal 95% (due to 〈pb〉 ≈ 0).

For the purposes discovery one is interested in compatibility of the data with the background-only
hypothesis. Statistically, a discovery corresponds to rejecting the background-only hypothesis. This
compatibility is based on the following p-value

p0 =

∫ ∞

q̃0,obs

f(q̃0|0, ˆ̂θ(µ = 0, obs))dq̃0 . (60)

This p-value is also based on the background-only hypothesis, but the test statistic q̃0 is suited for testing
the background-only while the test statistic q̃µ in Eq. 59 is suited for testing a hypothesis with signal.

It is customary to convert the background-only p-value into the quantile (or “sigma”) of a unit
Gaussian. This conversion is purely conventional and makes no assumption that the test statistic q0 is
Gaussian distributed. The conversion is defined as:

Z = Φ−1(1− p0); (61)

where Φ−1 is the inverse of the cumulative distribution for a unit Gaussian. One says the significance of
the result is Zσ and the standard discovery convention is 5σ, corresponding to p0 = 2.87 · 10−7.

5.3 Expected sensitivity and bands
The expected sensitivity for limits and discovery are useful quantities, though subject to some degree
of ambiguity. Intuitively, the expected upper limit is the upper limit one would expect to obtain if
the background-only hypothesis is true. Similarly, the expected significance is the significance of the
observation assuming the standard model signal rate (at some mH ). To find the expected limit one
needs a distribution f(µup|µ = 0,θ). To find the expected significance one needs the distribution
f(Z|µ = 1,θ) or, equivalently, f(p0|µ = 1,θ). We use the median instead of the mean, as it is invariant
to the choice of Z or p0. More importantly, is that the expected limit and significance depend on the
value of the nuisance parameters θ, for which we do not know the true values. Thus, the expected limit
and significance will depend on some convention for choosing θ. While many nuisance parameters have
a nominal estimate (i.e. the global observables in the constraint terms), others do not (eg. the exponent in
theH → γγ background model). Thus, we choose a convention that treats all of the nuisance parameters
consistently, which is the profiled value based on the observed data. Thus for the expected limit we use

f(µup|0, ˆ̂θ(µ = 0, obs)) and for the expected significance we use f(p0|µ = 1,
ˆ̂
θ(µ = 1, obs)). An

unintuitive and possibly undesirable feature of this choice is that the expected limit and significance
depend on the observed data through the conventional choice for θ.

With these distributions we can also define bands around the median upper limit. Our standard
limit plot shows a dark green band corresponding to µ±1 defined by

∫ µ±1

0
f(µup|0, ˆ̂θ(µ = 0, obs))dµup = Φ−1(±1) (62)

and a light yellow band corresponding to µ±2 defined by
∫ µ±2

0
f(µup|0, ˆ̂θ(µ = 0, obs))dµup = Φ−1(±2) (63)

5.4 Ensemble of pseudo-experiments generated with “Toy” Monte Carlo
The p-values in the procedure described above require performing several integrals. In the case of the
asymptotic approach, the distributions for q̃µ and q̃0 are known and the integral is performed directly.
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When the distributions are not assumed to take on their asymptotic form, then they must be constructed
using Monte Carlo methods. In the “toy Monte Carlo” approach one generates pseudo-experiments in
which the number of events in each channel nc, the values of the discriminating variables {xec} for each
of those events, and the auxiliary measurements (global observables) ap are all randomized according to
ftot. We denote the resulting data Dtoy and global observables Gtoy. By doing this several times one can
build an ensemble of pseudo-experiments and evaluate the necessary integrals. Recall that Monte Carlo
techniques can be viewed as a form of numerical integration.

The fact that the auxiliary measurements ap are randomized is unfamiliar in particle physics. The
more familiar approach for toy Monte Carlo is that the nuisance parameters are randomized. This re-
quires a distribution for the nuisance parameters, and thus corresponds to a Bayesian treatment of the
nuisance parameters. The resulting p-values are a hybrid Bayesian-Frequentist quantity with no consis-
tent definition of probability. To maintain a strictly frequentist procedure, the corresponding operation is
to randomize the auxiliary measurements.

While formally this procedure is well motivated, as physicists we also know that our models
can have deficiencies and we should check that the distribution of the auxiliary measurements does not
deviate too far from our expectations.

Technically, the pseudo-experiments are generated with the RooStats ToyMCSampler, which is
used by the higher-level tool FrequentistCalculator, which is in turn used by HypoTestInverter.

5.5 Asymptotic Formulas
The following has been extracted from Ref. [1] and has been reproduced here for convenience. The
primary message of Ref. [1] is that for a sufficiently large data sample the distributions of the likelihood
ratio based test statistics above converge to a specific form. In particular, Wilks’s theorem [29] can be
used to obtain the distribution f(λ(µ)|µ), that is the distribution of the test statistic λ(µ) when µ is true.
Note that the asymptotic distribution is independent of the value of the nuisance parameters. Wald’s
theorem [30] provides the generalization to f(λ(µ)|µ′,θ), that is when the true value is not the same as
the tested value. The various formulae listed below are corollaries of Wilks’s and Wald’s theorems for
the likelihood ratio test statistics described above. The Asimov data described immediately below was a
novel result of Ref. [1].

5.5.1 The Asimov data and σ = var(µ̂)
The asymptotic formulae below require knowing the variance of the maximum likelihood estimate of µ

σ = var[µ̂] . (64)

One result of Ref. [1] is that σ can be estimated with an artificial dataset referred to as the Asimov dataset.
The Asimov dataset is defined as a binned dataset, where the number of events in bin b is exactly the
number of events expected in bin b. Note, this means that the dataset generally has non-integer number
of events in each bin. For our general model one can write

nb,A =

∫

x∈bin b
ν(α)f(x|α)dx (65)

where the subscript A denotes that this is the Asimov data. Note, that the dataset depends on the value of
α implicitly. For an model of unbinned data, one can simply take the limit of narrow bin widths for the
Asimov data. We denote the likelihood evaluated with the Asimov data as LA(µ). The important result
is that one can calculate the expected Fisher information of Eq. 7 by computing the observed Fisher
information on the likelihood function based on this special Asimov dataset.

A related and convenient way to calculate the variance of µ̂ is

σ ∼ µ√
q̃µ,A

. (66)
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where q̃µ,A is the to use the q̃µ test statistic based on a background-only Asimov data (ie. the one
withµ = 0 in Eq. 65). It is worth noting that higher-order corrections to the formulae below are being
developed to address the case when the variance of µ̂ depends strongly on µ.

5.5.2 Asymptotic Formulas for q̃0
For a sufficiently large data sample, the pdf f(q̃0|µ′) is found to approach

f(q0|µ′) =

(
1− Φ

(
µ′

σ

))
δ(q0) +

1

2

1√
2π

1√
q0

exp

[
−1

2

(√
q0 −

µ′

σ

)2
]
. (67)

For the special case of µ′ = 0, this reduces to

f(q0|0) =
1

2
δ(q0) +

1

2

1√
2π

1√
q0
e−q0/2 . (68)

That is, one finds a mixture of a delta function at zero and a chi-square distribution for one degree of
freedom, with each term having a weight of 1/2. In the following we will refer to this mixture as a half
chi-square distribution or 1

2χ
2
1.

From Eq. (67) the corresponding cumulative distribution is found to be

F (q0|µ′) = Φ

(√
q0 −

µ′

σ

)
. (69)

The important special case µ′ = 0 is therefore simply

F (q0|0) = Φ
(√

q0

)
. (70)

The p-value of the µ = 0 hypothesis is

p0 = 1− F (q0|0) , (71)

and therefore for the significance gives the simple formula

Z = Φ−1(1− p0) =
√
q0 . (72)

5.5.3 Asymptotic Formulas for q̃µ
For a sufficiently large data sample, the pdf f(q̃µ|µ) is found to approach

f(q̃µ|µ′) = Φ

(
µ′ − µ
σ

)
δ(q̃µ)

+





1
2

1√
2π

1√
q̃µ

exp

[
−1

2

(√
q̃µ − µ−µ′

σ

)2
]

0 < q̃µ ≤ µ2/σ2

1√
2πσ

exp
[
−1

2
(q̃µ−(µ2−2µµ′)/σ2)2

(2µ/σ)2

]
q̃µ > µ2/σ2

. (73)

The special case µ = µ′ is therefore

f(q̃µ|µ) =
1

2
δ(q̃µ) +





1
2

1√
2π

1√
q̃µ
e−q̃µ/2 0 < q̃µ ≤ µ2/σ2

1√
2πσ

exp
[
−1

2
(q̃µ+µ2/σ2)2

(2µ/σ)2

]
q̃µ > µ2/σ2 .

(74)
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The corresponding cumulative distribution is

F (q̃µ|µ′) =





Φ
(√

q̃µ − µ−µ′
σ

)
0 < q̃µ ≤ µ2/σ2 ,

Φ
(
q̃µ−(µ2−2µµ′)/σ2

2µ/σ

)
q̃µ > µ2/σ2 .

(75)

The special case µ = µ′ is

F (q̃µ|µ) =





Φ
(√

q̃µ

)
0 < q̃µ ≤ µ2/σ2 ,

Φ
(
q̃µ+µ2/σ2

2µ/σ

)
q̃µ > µ2/σ2 .

(76)

The p-value of the hypothesized µ is as before given by one minus the cumulative distribution,

pµ = 1− F (q̃µ|µ) . (77)

As when using qµ, the upper limit on µ at confidence level 1 − α is found by setting pµ = α and
solving for µ, which reduces to the same result as found when using qµ, namely,

µup = µ̂+ σΦ−1(1− α) . (78)

Note that because σ depends in general on µ, Eq. (78) must be solved numerically.

5.5.4 Expected CLs Limit and Bands
For the CLs method we need distributions for q̃µ for the hypothesis at µ and µ = 0. We find

p′µ =
1− Φ(

√
qµ)

Φ(
√
qµ,A −√qµ)

(79)

The median and expected error bands will therefore be

µup+N = σ(Φ−1(1− αΦ(N)) +N) (80)

with

σ2 =
µ2

qµ,A
(81)

α = 0.05, µ can be taken as µmedup in the calculation of σ. Note that for N = 0 we find the median limit

µmedup = σΦ−1(1− 0.5α) (82)

The fact that σ (the variance of µ̂) defined in Eq. 66 in general depends on µ complicates situations
and can lead to some discrepancies between the correct value of the bands and those obtained with the
equation above. The bands tend to be too narrow. A modified treatment of the bands taking into account
the µ dependence of σ is under development.
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5.6 Importance Sampling
[The following section has been adapted from text written primarily by Sven Kreiss, Alex Read, and
myself for the ATLAS Higgs combination. It is reproduced here for convenience. ]

To claim a discovery, it is necessary to populate a small tail of a test statistic distribution. Toy
Monte-Carlo techniques use the model ftot to generate toy data Dtoy. For every pseudo-experiment
(toy), the test statistic is calculated and added to the test statistic distribution. Building this distribution
from toys is independent of the assumptions that go into the asymptotic calculation that describes this
distribution with an analytic expression. Recently progress has been made using Importance Sampling to
populate the extreme tails of the test statistic distribution, which is much more computationally intensive
with standard methods. The presented algorithms are implemented in RooStats ToyMCSampler.

5.6.1 Naive Importance Sampling
An ensemble of "standard toys" is generated from a model representing the Null hypothesis with µ = 0
and the nuisance parameters θ fixed at their profiled values to the observed data θobs, written
ftot(Dsim,G|µ = 0,θobs). With importance sampling however, the underlying idea is to generate toys
from a different model, called the importance density. A valid importance density is for example the
same model with a non-zero value of µ. The simple Likelihood ratio is calculated for each toy and used
as a weight.

weight =
ftot(Dtoy,Gtoy|µ = 0,θobs)

ftot(Dtoy,Gtoy|µ = µ′,θobs)

The weighted distribution is equal to a distribution of unweighted toys generated from the Null.
The choice of the importance density is a delicate issue. Michael Woodroofe presented a prescription for
creating a well behaved importance density [31]. Unfortunately, this method is impractical for models as
large as the combined Higgs models. An alternative approach is shown below.

5.6.2 Phase Space Slicing
The first improvement from naive importance sampling is the idea of taking toys from both, the null
density and the importance density. There are various ways to do that. Simply stitching two test statistic
distributions together at an arbitrary point has the disadvantage that the normalizations of both distribu-
tions have to be known.

Instead, it is possible to select toys according to their weights. First, toys are generated from the
Null and the simple Likelihood ratio is calculated. If it is larger than one, the toy is kept and otherwise
rejected. Next, toys from the importance density are generated. Here again, the simple Likelihood ratio
is calculated but this time the toy is rejected when the Likelihood ratio is larger than one and kept when
it is smaller than one. If kept, the toy’s weight is the simple Likelihood ratio which is smaller than one
by this prescription.

In the following section, this idea is restated such that it generalizes to multiple importance densi-
ties.

5.6.3 Multiple Importance Densities
The above procedure for selecting and reweighting toys that were generated from both densities can be
phrased in the following way:

– A toy is generated from a density with µ = µ′ and the Likelihoods ftot(Dtoy,Gtoy|µ = 0,θobs)
and ftot(Dtoy,Gtoy|µ = µ′,θobs) are calculated.

– The toy is veto-ed when the Likelihood with µ = µ′ is not the largest. Otherwise, the toy is used
with a weight that is the ratio of the Likelihoods.
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This can be generalized to any number of densities with µi = {0, µ′, µ′′, . . .}. For the toys generated
from model i:

veto: if ftot(Dtoy,Gtoy|µ = µi,θobs) 6= max
{
ftot(Dtoy,Gtoy|µ = µj ,θobs) : µj = {0, µ′, µ′′, . . .}

}

(83)

weight =
ftot(Dtoy,Gtoy|µ = 0,θobs)

ftot(Dtoy,Gtoy|µ = µi,θobs)
(84)

The number of importance densities has to be known when applying the vetos. It should not be
too small to cover the parameter space appropriately and it should not be too large, because too many
importance densities lead to too many vetoed toys which decreases overall efficiency. The value and
error of µ̂ from a fit to data can be used to estimate the required number of importance densities for a
given target overlap of the distributions.

The sampling efficiency in the tail can be further improved by generating a larger number of toys
for densities with larger values of µ. For example, for n densities, one can generate 2k/2n = 2k−n

of the overall toys per density k with k = 0, . . . , n − 1. The toys have to be re-weighted for example
by 2n−1/2k resulting in a minimum re-weight factor of one. The current implementation of the error
calculation for the p-value is independent of an overall scale in the weights.

The method using multiple importance densities is similar to Michael Woodroofe’s [31] prescrip-
tion of creating a suitable importance density with an integral over µ. In the method presented here, the
integral is approximated by a sum over discrete values of µ. Instead of taking the sum, a mechanism that
allows for multiple importance densities is introduced.
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Fig. 11: An example sampling of a test statistic distribution using three densities, the original null density and two
importance densities.

5.7 Look-elsewhere effect, trials factor, Bonferoni
Future versions of this document will discuss the so-called look-elsewhere effect in more detail. Here
we point to the primary development recently: [32, 33].

5.8 One-sided intervals, CLs, power-constraints, and Negatively Biased Relevant Subsets
Particle physicists regularly set upper-limits on cross sections and other parameters that are bounded to
be non-negative. Standard frequentist confidence intervals should nominally cover at the stated value.
The implication that a 95% confidence level upper-limit covers the true value 95% of the time is that it
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doesn’t cover the true value 5% of the time. This is true no matter how small the cross section is. That
means that if there is no signal present, 5% of the time we would be excluding any positive value of
the cross-section. Experimentalists do not like this since we would not consider ourselves sensitive to
arbitrarily small signals.

Two main approaches have been proposed to protect from excluding signals to which we do not
consider ourselves sensitive. The first is the CLs procedure introduced by Read and described above [25–
27]. The CLs procedure produce intervals that over-cover – meaning that the intervals cover the true
value more than the desired level. The coverage for small values of the cross-section approaches 100%,
while for large values of the cross section, where the experiment does have sensitivity, the coverage
converges to the nominal level (see Fig. 12). Unfortunately, the coverage for intermediate values is
not immediately accessible without more detailed studies. Interestingly, the modified frequentist CLs
procedure reproduces the one-sided upper limit from a Bayesian procedure with a uniform prior on the
cross section for simple models like number counting analyses. Even in very complicated models we see
very good numerical agreement between CLs and the Bayesian approach, even though the interpretation
of the numbers is different.

An alternate approach called power-constrained limits (PCL) is to leave the standard frequentist
procedure unchanged while adding an additional requirement for a parameter point to be considered
‘excluded’. The additional requirement is directly a measure of the sensitivity of to that parameter point
based on the notion of power (or Type II error). This approach makes the coverage of the procedure
manifest [28].

Surprisingly, one-sided upper limits on a bounded parameter are a subtle topic that has led to
debates among the experts of statistics in the collaborations and a string of interesting articles from
statisticians. The discussion is beyond the scope of the current version of these notes, but the interested
reader is invited and encouraged to read [34] and the responses from notable statisticians on the topic.
More recently Cousins tried to formalize the sensitivity problem in terms of a concept called Negatively
Biased Relevant Subsets (NBRS) [35]. While the power-constrained limits do not formally emit NBRS,
it is an interesting insight. Even more recently, Vitells has found interesting connections with CLs and
the work of Birnbaum [27,36]. This connection is significant since statisticians have primarily seen CLs
as an ad hoc procedure mixing the notion of size and power with no satisfying properties.
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deviation. (b) The corresponding coverage probabilities as a function of µ.
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6 Bayesian Procedures
[This section is far from complete. Some key practical issues and references to other literature are given.]

Unsurprisingly, Bayesian procedures are based on Bayes’s theorem as in Eq. 3 and Eq. 5. The
Bayesian approach requires one to provide a prior over the parameters, which can be seen either as
an advantage or a disadvantage [37, 38]. In practical terms, one typically wants to build the posterior
distribution for the parameter of interest. This typically requires integrating, or marginalizing, over all
the nuisance parameters as in Eq. 14. These integrals can be over very high dimensional posteriors
with complicated structure. One of the most powerful algorithms for this integration is Markov Chain
Monte Carlo, described below. In terms of the prior one can either embrace the subjective Bayesian
approach [39] or take a more ’objective’ approach in which the prior is derived from formal rules. For
instance, Jeffreys’s Prior [40] or their generalization in terms of Reference Priors [41].

Given the logical importance of the choice of prior, it is generally recommended to try a few
options to see how the result numerically depends on the choice of priors (i.e.. sensitivity analysis). This
leads me to a few great quotes from prominent statisticians:

“Sensitivity analysis is at the heart of scientific Bayesianism” –Michael Goldstein

“Perhaps the most important general lesson is that the facile use of what appear to be uninformative
priors is a dangerous practice in high dimensions” -Brad Efron

“Meaningful prior specification of beliefs in probabilistic form over very large possibility spaces
is very difficult and may lead to a lot of arbitrariness in the specification” – Michael Goldstein

“Objective Bayesian analysis is the best frequentist tool around” –Jim Berger

6.1 Hybrid Bayesian-Frequentist methods
It is worth mentioning that in particle physics there has been widespread use of a hybrid Bayesian-
Frequentist approach in which one marginalizes nuisance parameters. Perhaps the most well known
example is due to a paper by Cousins and Highland [42]. In some instances one obtains a Bayesian-
averaged model that depends only on the parameters of interest

f̄(D|αpoi) =

∫
ftot(D|α)η(αnuis) dαnuis (85)

and then proceeds with the typical frequentist methodology for calculating p-values and constructing
confidence intervals. Note, in this approach the constraint terms that are appended to fsim of Eq. 2 to
obtain ftot of Eq. 6 are interpreted as in Eq. 5 and η(αnuts) is usually a uniform prior. Furthermore, the
global observables or auxiliary measurements ap are typically left fixed to their nominal or observed val-
ues and not randomized. In other variants the full model without constraints fsim(D|α) is used to define
the test statistic but the distribution of the test statistic is obtained by marginalizing (or randomizing) the
nuisance parameters as in Eq. 5. See the following references for more details [4, 43–49].

The shortcomings of this approach are that the coverage is not guaranteed and the method uses an
inconsistent notion of probability. Thus it is hard to define exactly what the p-values and intervals mean
in a formal sense.

6.2 Markov Chain Monte Carlo and the Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is used to construct a Markov chain {αi}, where the samples αi
are proportional to the target posterior density or likelihood function. The algorithm requires a proposal
function Q(α|α′) that gives the probability density to propose the point α given that the last point in
the chain is α′. Note, the density only depends on the last step in the chain, thus it is considered a
Markov process. At each step in the algorithm, a new point in parameter space is proposed and possibly
appended to the chain based on its likelihood relative to the current point in the chain. Even when

38

K. CRANMER

284



the proposal density function is not symmetric, Metropolis Hastings maintains ‘detailed balance’ when
constructing the Markov chain by counterbalancing the relative likelihood between the two points with
the relative proposal density. That is, given the current point α, proposed point α′, likelihood function
L, and proposal density function Q, we visit α′ if and only if

L(α′)
L(α)

Q(α|α′)
Q(α′|α)

≥ Rand[0, 1] (86)

Note, if the proposal density is symmetric, Q(α|α′) = Q(α′|α), then the ratio of the proposal densities
can be neglected (which can be computationally expensive). Above we have written the algorithm to
sample the likelihood function L(α), but typically one would use the posterior π(α). Within RooStats
the Metropolis-Hastings algorithm is implemented with the MetropolisHastings class, which returns
a MarkovChain. Another powerful tool is the Bayesian Analysis Toolkit (BAT) [50]. Note, one can use
a RooFit / RooStats model in the BAT environment.

Note, an alternative to Markov Chain Monte Carlo is the nested sampling approach of Skilling [51]
and the MultiNest implementation [52].

Lastly, we mention that sampling algorithms associated to Bayesian belief networks and graphical
models may offer enormous advantages to both MCMC and nested sampling due to the fact that they can
take advantage of the conditional dependencies in the model.

6.3 Jeffreys’s and Reference Prior
One of the great advances in Bayesian methodology was the introduction of Jeffreys’s rule for selecting
a prior based on a formal rule [40]. The rule selects a prior that is invariant under reparametrization of
the observables and covariant with reparametrization of the parameters. The rule is based on information
theoretic arguments and the prior is given by the square root of the determinant of the Fisher information
matrix, which we first encountered in Eq. 7.

π(α) =
√

det Σ−1
pp′(α) =

√
det

[∫
ftot(D|α)

−∂2 log ftot(D|α)

∂αpαp′
dD
]

(87)

While the right-most form of the prior looks daunting with complex integrals over partial derivatives,
the Asimov data described in Sec. 5.5.1 and Ref. [1] provide a convenient way to calculate the Fisher
information. Fig. 13 and 14 show examples of RooStats numerical algorithm for calculating Jeffreys’s
prior compared to analytic results on a simple Gaussian and a Poisson model.

Unfortunately, Jeffreys’s prior does not behave well in multidimensional problems. Based on a
similar information theoretic approach, Bernardo and Berger have developed the Reference priors [53–
56] and the associated Reference analysis. While attractive in many ways, the approach is fairly difficult
to implement. Recently, there has been some progress within the particle physics context in deriving the
reference prior for problems relevant to particle physics [41, 57].

6.4 Likelihood Principle
For those interested in the deeper and more philosophical aspects of statistical inference, the likelihood
principle is incredibly interesting. This section will be expanded in the future, but for now I simply
suggest searching on the internet, the Wikipedia article, and Ref. [36]. In short the principle says that
all inference should be based on the likelihood function of the observed data. Frequentist procedures
violate the likelihood principle since p-values are tail probabilities associated to hypothetical outcomes
(not the observed data). Generally, Bayesian procedures and those based on the asymptotic properties of
likelihood tests do obey the likelihood principle. Somewhat ironically, the objective Bayesian procedures
such as Reference priors and Jeffreys’s prior can violate the likelihood principle since the prior is based
on expectations over hypothetical outcomes.

39

PRACTICAL STATISTICS FOR THE LHC

285



 RooWorkspace w("w");
  w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,0,10])");
  w.factory("n[10,.1,200]");
  w.factory("ExtendPdf::p(g,n)");
  w.var("n")->setConstant();

  w.var("sigma")->setConstant();
  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
  

Analytic
RooStats numerical

Fig. 13: Example code making a Gaussian distribution (with 10 events expected) and the Jeffreys Prior for µ and
σ calculated numerically in RooStats and compared to the analytic result.

  RooWorkspace w("w");
  w.factory("Uniform::u(x[0,1])");
  w.factory("mu[100,1,200]");
  w.factory("ExtendPdf::p(u,mu)");

  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  //  w.defineSet("obs2","n");

  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

Analytic
RooStats numerical

Fig. 14: Example code making a Poisson distribution (with 100 replications expected) and the Jeffreys Prior for µ
calculated numerically in RooStats and compared to the analytic result.

7 Unfolding
Another topic for the future. The basic aim of unfolding is to try to correct distributions back to the true
underlying distribution before detector ’smearing’. For now, see [58–65].

8 Conclusions
It was a pleasure to lecture at the 2011 ESHEP school in Cheile Gradistei and the 2013 CLASHEP school
in Peru. Quite a bit of progress has been made in the last few years in terms of statistical methodology, in
particular the formalization of a fully frequentist approach to incorporating systematics, a deeper under-
standing of the look-elsewhere effect, the development of asymptotic approximations of the distributions
important for particle physics, and in roads to Bayesian reference analysis. Furthermore, most of these
developments are general purpose and can be applied across diverse models. While those developments
are interesting, the most important area for most physicists to devote their attention in terms of statistics
is to improve the modeling of the data for his or her individual analysis.

40

K. CRANMER

286



References
[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells. Asymptotic formulae for likelihood-based tests of

new physics. Eur. Phys. J., C71:1554, 2011.
[2] K Cranmer and G. Lewis. The histfactory users guide. https://twiki.cern.ch/twiki/pub/RooStats,

2011.
[3] R. Barlow. Extended maximum likelihood. Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 297(3):496 – 506,
1990.

[4] R. D. Cousins, J. T. Linnemann, and J. Tucker. Evaluation of three methods for calculating statis-
tical significance when incorporating a systematic uncertainty into a test of the background-only
hypothesis for a Poisson process. Nucl. Instrum. Meth., A595:480–501, 2008.

[5] F. James and M. Roos. Errors on ratios of small numbers of events. Nuclear Physics B, 172:475,
1980.

[6] F. James and M. Roos. Minuit: A System for Function Minimization and Analysis of the Parameter
Errors and Correlations. Comput. Phys. Commun., 10:343–367, 1975.

[7] J. Neyman. Outline of a theory of statistical estimation based on the classical theory of probability.
Phil. Trans. Royal Soc. London, Series A, 236, 1937.

[8] G. Feldman. Multiple measurements and parameters in the unified approach. Technical report,
2000. Talk at the FermiLab Workshop on Confidence Limits.

[9] K. Cranmer. Statistical challenges for searches for new physics at the LHC, pp. 112–123, 2005.
[10] C. Chuang and T. L. Lai. Hybrid resampling methods for confidence intervals. Statist. Sinica,

10:1–50, 2000. http://www3.stat.sinica.edu.tw/statistica/oldpdf/A10n11.pdf.
[11] M. Walker, B. Sen and M. Woodroofe. On the unified method with nuisance parameters.

Statist. Sinica, 19:301–314., 2009. http://www3.stat.sinica.edu.tw/statistica/oldpdf/
A19n116.pdf.

[12] G. J. Feldman and R. D. Cousins. A Unified approach to the classical statistical analysis of small
signals. Phys. Rev., D57:3873–3889, 1998.

[13] K. S. Cranmer. Kernel estimation in high-energy physics. Comput. Phys. Commun., 136:198–207,
2001.

[14] A. L. Read. Linear interpolation of histograms. Nucl. Instrum. Meth., A425:357–360, 1999.
[15] R. Cousins. Probability density functions for positive nuisance parameters. http://www.

physics.ucla.edu/~cousins/stats/cousins_lognormal_prior.pdf.
[16] W. T. Eadie, D. Drijard, F. E. James, M. Roos, and B. Sadoulet. Statistical methods in experimental

physics,. American Elsevier Pub. Co, 1st edition.
[17] R. J. Barlow and C. Beeston. Fitting using finite Monte Carlo samples. Comput.Phys.Commun.,

77:219–228, 1993.
[18] ATLAS Collaboration. Search for the standard model higgs boson in the diphoton decay channel

with 4.9 fb-1 of atlas data at sqrt(s)=7tev. (ATLAS-CONF-2011-161), Dec 2011.
[19] G. Aad et al. Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9

fb-1 of pp collisions at sqrt(s)=7 TeV with ATLAS. Phys.Rev.Lett., 108:111803, 2012.
[20] G. Aad et al. Search for supersymmetry in final states with jets, missing transverse momentum

and one isolated lepton in sqrts = 7 TeV pp collisions using 1 fb−1 of ATLAS data. Phys.Rev.,
D85:012006, 2012.

[21] G. Aad et al. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics.
2009.

[22] A. Hocker, J. Stelzer, F. Tegenfeldt, H. Voss, K. Voss, et al. TMVA - Toolkit for Multivariate Data
Analysis. PoS, ACAT:040, 2007. TMVA Users Guide: 74 pages, 13 Figures, many code examples

41

PRACTICAL STATISTICS FOR THE LHC

287



Report-no: CERN-OPEN-2007-007 Subj-class: Data Analysis, Statistics and Probability.
[23] G. Punzi. Comments on likelihood fits with variable resolution. eConf, C030908:WELT002, 2003.
[24] K. Cranmer. in Proceedings of the PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics,

Geneva, Switzerland, 27 - 29 June, edited by L. Lyons and H. Prosper, CERN-2008-001 (CERN,
Geneva, 2008), pp. 47–60, http://dx.doi.org/10.5170/CERN-2008-001.47.

[25] A. L. Read. Modified frequentist analysis of search results (the CLs method). 2000.
[26] A. L. Read. Presentation of search results: the CLs technique. J. Phys. G: Nucl. Part. Phys., 28,

2002.
[27] CLs upper limits. http://en.wikipedia.org/wiki/CLs_upper_limits.
[28] G. Cowan, K. Cranmer, E. Gross, and O. Vitells. Power-Constrained Limits. ArXiv e-prints, 2011.
[29] S. S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses.

Ann. Math. Statist., 9:60–2, 1938.
[30] A. Wald. Tests of statistical hypotheses concerning several parameters when the number of obser-

vations is large. Transactions of the American Mathematical Society, 54, No. 3:426–482, 1943.
[31] M. Woodroofe. http://people.stat.sfu.ca/ lockhart/richard/banff2010/woodroofe.pdf, 2010.
[32] E. Gross and O. Vitells. Trial factors for the look elsewhere effect in high energy physics. The

European Physical Journal C - Particles and Fields, 70:525–530, 2010. 10.1140/epjc/s10052-010-
1470-8.

[33] Procedure for the lhc higgs boson search combination in summer 2011. Technical Report ATL-
PHYS-PUB-2011-011, CERN, Geneva, 2011.

[34] M. Mandelkern. Setting confidence intervals for bounded parameters. Statistical Science, 17(2):pp.
149–159, 2002.

[35] R. D. Cousins. Negatively Biased Relevant Subsets Induced by the Most-Powerful One-Sided
Upper Confidence Limits for a Bounded Physical Parameter. ArXiv e-prints, September 2011.

[36] A. Birnbaum. On the foundations of statistical inference. Journal of the American Statistical
Association, 57(298):pp. 269–306, 1962.

[37] G. D’Agostini. Bayesian inference in processing experimental data: principles and basic applica-
tions. Reports on Progress in Physics, 66(9):1383, 2003.

[38] R. D. Cousins. Why isn’t every physicist a Bayesian? Am. J. Phys., 63:398, 1995.
[39] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, 2003.
[40] H. Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings of the

Royal Society of London. Series A, Mathematical and Physical Sciences, 186(1007):pp. 453–461,
1946.

[41] L. Demortier, S. Jain, and H. B. Prosper. Reference priors for high energy physics. Phys. Rev.,
D82:034002, 2010.

[42] R. D. Cousins and V. L. Highland. Incorporating systematic uncertainties into an upper limit. Nucl.
Instrum. Meth., A320:331–335, 1992. Revised version.

[43] J. Conrad and F. Tegenfeldt. Likelihood ratio intervals with Bayesian treatment of uncertainties:
Coverage, power and combined experiments, , pp. 93–96, 2005.

[44] F. Tegenfeldt and J. Conrad. On Bayesian treatement of systematic uncertainties in confidence
interval calculations. Nucl. Instrum. Meth., A539:407–413, 2005.

[45] J. Conrad, O. Botner, A. Hallgren, and C. P. de los Heros. Coverage of confidence intervals for
Poisson statistics in presence of systematic uncertainties, pp. 58–63, 2002.

[46] J. Conrad, O. Botner, A. Hallgren, and C. P. de los Heros. Including systematic uncertainties in
confidence interval construction for Poisson statistics. Phys.Rev., D67:012002, 2003.

[47] W. A. Rolke, A. M. Lopez, and J. Conrad. Limits and confidence intervals in the presence of

42

K. CRANMER

288



nuisance parameters. Nucl. Instrum. Meth., A551:493–503, 2005.
[48] G. C. Hill. Comment on “including systematic uncertainties in confidence interval construction for

poisson statistics”. Phys. Rev. D, 67:118101, Jun 2003.
[49] L. Demortier. P values and nuisance parameters. pages 23–33, 2007.
[50] A. Caldwell, D. Kollar, and K. Kroeninger. Bayesian analysis toolkit. Comput. Phys. Commun.,

180, 2009.
[51] J. Skilling. Nested sampling. AIP Conference Proceedings, 735(1):395–405, 2004.
[52] F. Feroz, M. P. Hobson, and M. Bridges. MultiNest: an efficient and robust Bayesian inference tool

for cosmology and particle physics. Mon. Not. Roy. Astron. Soc., 398:1601–1614, 2009.
[53] J. O. Berger and J. M. Bernardo. Bayesian Statistics 4. Oxford University Press, 1992.
[54] J. O. Berger and J. M. Bernardo. Biometrika, 79:25, 1992.
[55] J. O. Berger and J. M. Bernardo. Journal of the American Statistical Association, 84:200, 1989.
[56] J. M. Bernardo. J. R. Statist. Soc. B, 41:113, 1979.
[57] D. Casadei. Reference analysis of the signal + background model in counting experiments. JINST,

7:P01012, 2012.
[58] Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in

Search Experiments and Unfolding, Geneva, Switzerland, 17–20 January 2011, edited by H. B.
Prosper and L. Lyons, CERN-2011-006 (CERN, Geneva, 2011), http://dx.doi.org/10.5170/CERN-
2011-006.

[59] G. D’Agostini. A multidimensional unfolding method based on bayes’ theorem. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 362(2-3):487 – 498, 1995.

[60] T. Adye. Unfolding algorithms and tests using RooUnfold. 2011.
[61] B. Malaescu. An Iterative, Dynamically Stabilized(IDS) Method of Data Unfolding.

[arxiv:1106.3107], 2011.
[62] V. Blobel. An Unfolding method for high-energy physics experiments. [hep-ex/0208022], 2002.
[63] A. Hocker and V. Kartvelishvili. SVD approach to data unfolding. Nucl. Instrum. Meth., A372:469–

481, 1996.
[64] G. Choudalakis. Fully Bayesian Unfolding. page 24, January 2012.
[65] A. N. Tikhonov. On the solution of improperly posed problems and the method of regularization.

Sov. Math., 5:1035, 1963.

43

PRACTICAL STATISTICS FOR THE LHC

289


