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Abstract

The CERN-Latin-American School of High-Energy Physics is intended to give young physicists an introduc-
tion to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain
lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, flavour physics,
quantum chromodynamics under extreme conditions, cosmic-ray physics, cosmology, recent highlights of LHC
results, practical statistics for particle physicists and a short introduction to the principles of particle physics
instrumentation.
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Preface

The seventh School in the series of Latin-American Schools of High-Energy Physics took place from 6 to 19
March 2013 in Arequipa, Peru. It was organized by CERN with the support of local colleagues from several
universities in Peru (PUCP, UNI and UNSA), with PUCP playing a leading role.

The School received financial support from: CERN; CIEMAT, Spain; RENAFAE, Brazil; and PUCP in
Peru. Our sincere thanks go to all of these sponsors for making it possible to organize the School with many
young participants from Latin-American countries who otherwise would not have been able to attend.

The School was hosted in the comfortable Estelar Hotel El Lago on the outskirts of the city of Arequipa. We
are indebted to the hotel and its friendly staff for their help in making the event such a success. In particular, we
would like to mention the hotel’s general manager, Hugo Avila, who helped us greatly in preparing the School
as well as during the event itself.

Professor Alberto Gago from PUCP acted as local director for the School, assisted by members of the local
organising committee. We are extremely grateful to Alberto and his colleagues for their excellent work in
organizing the School and for creating such a wonderful atmosphere for the participants. We would also like
to mention the team from the physics department of the local university, UNSA, especially David Pacheco and
Rolando Perca who helped with numerous practical arrangements.

Sixty-five students of 18 different nationalities attended the School. Following the tradition of the School
the students shared twin rooms mixing nationalities, and in particular the Europeans mixed with Latin Ameri-
cans.

The 11 lecturers came from Europe, Israel, Latin America and the USA. The lectures, which were given in
English, were complemented by daily discussion sessions led by five physicists coming from Latin America.
The lectures and the discussion sessions were all held using the conference facilities of the hotel. The students
displayed their own research work in the form of posters in a special evening session during the first week. The
posters were left on display until the end of the School. The students from each discussion group also performed
a project, studying in detail the analysis of a published paper from an LHC experiment. A representative of each
group presented a brief summary talk during a special evening session during the second week of the School.

Our thanks are due to the lecturers and discussion leaders for their active participation in the School and for
making the scientific programme so stimulating. The students who in turn manifested their good spirits during
two intense weeks undoubtedly appreciated their personal contributions in answering questions and explaining
points of theory.

We are very grateful to Hélene Haller and Kate Ross, the Administrators for the CERN Schools of Physics,
for their efforts in the lengthy preparations for the School and during the event itself. Their efficient work,
friendly attitude, and continuous care of the participants and their needs were highly appreciated.

The participants will certainly remember the two interesting excursions, an afternoon tour of the city of
Arequipa, and, particularly, a spectacular full-day excursion to the Colca Canyon for many of the participants,
or to the Pacific coast for the others. They also greatly appreciated the excellent social and leisure programme,
including horse riding and evenings spent together in the hotel, as well as the farewell party on the last night.

The success of the School was to a large extent due to the students themselves. Their poster session and
group projects were very well prepared and highly appreciated, and throughout the School they participated
actively during the lectures, in the discussion sessions, and in the different activities and excursions.

Nick Ellis
(On behalf of the Organizing Committee)
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Introductory Lectures on Quantum Field Theory

L. Alvarez-Gaumé and M. A. Vazquez-MoZo
¢ CERN, Geneva, Switzerland
b Universidad de Salamanca, Salamanca, Spain

Abstract

In these lectures we present a few topics in quantum field theory in detail.
Some of them are conceptual and some more practical. They have been se-
lected because they appear frequently in current applications to particle physics
and string theory.

1 Introduction

These notes summarize lectures presented at the 2005 CERN-CLAF School in Malargie (Arger
the 2009 CERN-CLAF School in Medellin (Colombia), the 2011 CERN-CLAF School in Natal (Braz
the 2012 Asia-Europe-Pacific School of High Energy Physics in Fukuoka (Japan), and the 2013 CE
Latin-American School of High-Energy Physics in Arequipa (Peru). The audience in all occasions
composed to a large extent by students in experimental High Energy Physics with an important mir
of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as va
quantum field theory. For this reason the lectures were intended to provide a review of those parts
subject to be used later by other lecturers. Although a cursory acquaitance with th subject of qua
field theory is helpful, the only requirement to follow the lectures it is a working knowledge of Quant
Mechanics and Special Relativity.

The guiding principle in choosing the topics presented (apart to serve as introductions to
courses) was to present some basic aspects of the theory that present conceptual subtleties. Thos
one often is uncomfortable with after a first introduction to the subject. Among them we have selec

- The need to introduce quantum fields, with the great complexity this implies.

- Quantization of gauge theories and the réle of topology in quantum phenomena. We have incl
a brief study of the Aharonov-Bohm effect and Dirac’s explanation of the quantization of -
electric charge in terms of magnetic monopoles.

Quantum aspects of global and gauge symmetries and their breaking.
Anomalies.
The physical idea behind the process of renormalization of quantum field theories.

- Some more specialized topics, like the creation of particle by classical fields and the very b
of supersymmetry.

These notes have been written following closely the original presentation, with numerous cle
cations. Sometimes the treatment given to some subjects has been extended, in particular the dist
of the Casimir effect and particle creation by classical backgrounds. Since no group theory was ass
we have included an Appendix with a review of the basics concepts.

By lack of space and purpose, few proofs have been included. Instead, very often we illustr
concept or property by describing a physical situation where it arises. A very much expanded ve
of these lectures, following the same philosophy but including many other topics, has appeared in
form in [1]. For full details and proofs we refer the reader to the many textbooks in the subject, ar
particular in the ones provided in the bibliography [2—11]. Specially modern presentations, very n
in the spirit of these lectures, can be found in references [5, 6,10, 11]. We should nevertheless wa
reader that we have been a bit cavalier about references. Our aim has been to provide mostly
exhaustive) list of reference for further reading. We apologize to those authors who feel misreprese
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L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

A note about notation

Before starting it is convenient to review the notation used. Through these notes we will be using
metricn,, = diag(1,—1,—-1,—1). Derivatives with respect to the four-vectot = (ct, ) will be
denoted by the shorthand

0 10 =
oh=—=-= ) 1
B e (c ot’ V) @)
As usual space-time indices will be labelled by Greek letters (... = 0, 1, 2, 3) while Latin indices
will be used for spatial directions,(j,... = 1,2,3). In many expressions we will use the notatior

ot = (1,0") whereo® are the Pauli matrices

fe(Va) =) =l ) @

Sometimes we use of the Feynman'’s slash notatiem*a,,. Finally, unless stated otherwise, we work
in natural unitsh = ¢ = 1.

2 Why do we need quantum field theory after all?

In spite of the impressive success of Quantum Mechanics in describing atomic physics, it was imr
ately clear after its formulation that its relativistic extension was not free of difficulties. These proble
were clear already to Schrodinger, whose first guess for a wave equation of a free relativistic particls
the Klein-Gordon equation

0? 2 2 -
(W—v +m>w<t,m>:0. @3)

This equation follows directly from the relativistic “mass-shell” identify = > + m? using the corre-
spondence principle

p — —iV. 4
Plane wave solutions to the wave equation (3) are readily obtained

U(t, T) = e”Put! = oTiBHIDE with E = 4w, = +/p2 + m2. (5)

In order to have a complete basis of functions, one must include plane wave with bethandE' < 0.
This implies that given the conserved current

ju - %(Wk Mw - @ﬂb* 7/1)7 (6)

its time-component ig° = E and therefore does not define a positive-definite probability density.

A complete, properly normalized, continuous basis of solutions of the Klein-Gordon equation
labelled by the momentumican be defined as

1 o
fp(t> T) = 3 e—zwpt—&-zpw’

(2m)2 /2w,
1

5 eiwptfiﬁ-f. (7)
(2m)2 /2w,

f-p(t,7)
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Energy

-m

Fig. 1: Spectrum of the Klein-Gordon wave equation

Given the inner product

(h1lih2) = i/d333< 1002 — Ooy)y 1#2)
the states (7) form an orthonormal basis

(folfy) = o(@—9p"),
(foplfep) = —0(F—7"), (8)
(folf-p) = 0. 9)

The wave functiong, (¢, z) describes states with momentwrand energy given by, = \/p' 2 + m?2.
On the other hand, the statg5 ) not only have a negative scalar product but they actually correspo
to negative energy states

100 f-p(t,T) = —/P2+m? f_,(t, ). (10)

Therefore the energy spectrum of the theory satisfigs> m and is unbounded from below (see Fig.
1). Although in a case of a free theory the absence of a ground state is not necessarily a fatal prc
once the theory is coupled to the electromagnetic field this is the source of all kinds of disasters,
nothing can prevent the decay of any state by emission of electromagnetic radiation.

The problem of the instability of the “first-quantized” relativistic wave equation can be heurit
cally tackled in the case of spi@particles, described by the Dirac equation

<—iﬁ +a-v-— m> W(t, &) =0, (11)

wherea ands are4 x 4 matrices

=( ) e=( ) 12)
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Energy

photon e particle

S

Fig. 2: Creation of a particle-antiparticle pair in the Dirac see picture

with ¢ the Pauli matrices, and the wave functio(t, #) has four components. The wave equation (11
can be thought of as a kind of “square root” of the Klein-Gordon equation (3), since the latter ca
obtained as

T 2
(—zﬂgt +a-v-— m) (—iﬁgt +a-v-— m) U(t,T) = <88152 - V4 m2> o(t, 7).  (13)
An analysis of Eq. (11) along the lines of the one presented above for the Klein-Gordon equ
leads again to the existence of negative energy states and a spectrum unbounded from below as
1. Dirac, however, solved the instability problem by pointing out that now the particles are fermi
and therefore they are subject to Pauli’s exclusion principle. Hence, each state in the spectrum ¢
occupied by at most one particle, so the states Witk m can be made stable if we assume thiathe
negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum where
negative energy states are occupied, the so-called Dirac sea, it also leads directly to the conclusior
single-particle interpretation of the Dirac equation is not possible. Indeed, a photon with enough er
(F > 2m) can excite one of the electrons filling the negative energy states, leaving behind a “hole
the Dirac see (see Fig. 2). This hole behaves as a particle with equal mass and opposite chart
is interpreted as a positron, so there is no escape to the conclusion that interactions will produce
particle-antiparticle out of the vacuum.

In spite of the success of the heuristic interpretation of negative energy states in the Dirac eqL
this is not the end of the story. In 1929 Oskar Klein stumbled into an apparent paradox when tryir
describe the scattering of a relativistic electron by a square potential using Dirac’s wave equation [12
pedagogical reviews see [13, 14]). In order to capture the essence of the problem without enterin
unnecessary complication we will study Klein’s paradox in the context of the Klein-Gordon equatiot

Let us consider a square potential with height> 0 of the type showed in Fig. 3. A solution to
the wave equation in regions | and Il is given by
wf(t .’L‘) — efiEt+ip1m + RefiEtfiplm

Ur(t,x) = Te Ptpae (14)
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V(x)

Transmited

—

Reflected
—

Incoming Vo
T

Fig. 3: llustration of the Klein paradox.

where the mass-shell condition implies that

p =V E2—m2, P2 =/ (E —Vp)2 —m2. (15)

The constantf? andT” are computed by matching the two solutions across the boundary. The
conditionsy(t,0) = ¢r7(t,0) andd 1 (t,0) = 0xv11(t, 0) imply that

2 _
T — P1 ’ R:pl p2'
p1+ P2 p1+ p2

(16)

At first sight one would expect a behavior similar to the one encountered in the nonrelativi
case. If the kinetic energy is bigger th&m both a transmitted and reflected wave are expected, where
when the kinetic energy is smaller th& one only expect to find a reflected wave, the transmitted wa
being exponentially damped within a distance of a Compton wavelength inside the barrier.

Indeed this is what happens# — m > V;. In this case botlpy; andp, are real and we have a
partly reflected, and a partly transmitted wave. In the same waj, i 2m < E — m < Vj thenp, is
imaginary and there is total reflection.

However, in the case whel, > 2m and the energy is in the rangle< F — m < Vy — 2m
a completely different situation arises. In this case one finds thatihatindp, are real and therefore
the incoming wave function is partially reflected and partially transmitted across the barrier. This
shocking result, since it implies that there is a nonvanishing probability of finding the particle at
point across the barrier with negative kinetic enerffy« m — V < 0)! This weird result is known as
Klein’s paradox.

As with the negative energy states, the Klein paradox results from our insistence in giving a sir
particle interpretation to the relativistic wave function. Actually, a multiparticle analysis of the para¢
[13] shows that what happens whén< E — m < Vy — 2m is that the reflection of the incoming
particle by the barrier is accompanied by the creation of pairs particle-antiparticle out of the energ
the barrier (notice that for this to happen it is required fat> 2m, the threshold for the creation of a
particle-antiparticle pair).
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Fig. 4: Two regionsR;, R, that are causally disconnected.

Actually, this particle creation can be understood by noticing that the sudden potential step in
3 localizes the incoming particle with massin distances smaller than its Compton wavelength %
This can be seen by replacing the square potential by another one where the potential varies sm
from0toVj > 2m in distances scales larger thefm. This case was worked out by Sauter shortly afte
Klein pointed out the paradox [15]. He considered a situation where the regiong with andV =
are connected by a region of lengtlwith a linear potential’ (x) = %. Whend > % he found that
the transmission coefficient is exponentially srhall

The creation of particles is impossible to avoid whenever one tries to locate a particle afuma:
within its Compton wavelength. Indeed, from Heisenberg uncertainty relation we find that 4 %
the fluctuations in the momentum will be of ord&p ~ m and fluctuations in the energy of order

AE ~m (17)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are enough to
the creation of particles out of the vacuum. In the case of a%m’anicle, the Dirac sea picture shows
clearly how, when the energy fluctuations are of omerelectrons from the Dirac sea can be excited t
positive energy states, thus creating electron-positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by relativistic invariar
In non-relativistic Quantum Mechanics observables are represented by self-adjoint operator that
Heisenberg picture depend on time. Therefore measurements are localized in time but are glo
space. The situation is radically different in the relativistic case. Because no signal can propagate
than the speed of light, measurements have to be localized both in time and space. Causality de
then that two measurements carried out in causally-disconnected regions of space-time cannot in
with each other. In mathematical terms this means thé@gf andOr, are the observables associatec
with two measurements localized in two causally-disconnected regionB: (see Fig. 4), they satisfy

[OR17OR2] =0, if (.731 — x2)2 <0, forallz; € Ry, 22 € Rs. (18)

!In section (9.1) we will see how, in the case of the Dirac field, this exponential behavior can be associated with the cri
of electron-positron pairs due to a constant electric field (Schwinger effect).
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Hence, in a relativistic theory, the basic operators in the Heisenberg piotusedepend on the
space-time positiom*. Unlike the case in non-relativistic guantum mechanics, here the positonot
an observable, but just a label, similarly to the case of time in ordinary quantum mechanics. Causa
then imposed microscopically by requiring

[O(2), O(y)] =0, if (z—y)* <0. (19)
A smeared operata®y over a space-time regiaoR can then be defined as
Or = / d'z O(x) fr(x) 20)
wherefr(z) is the characteristic function associated wih
1 r€R
@ ={ g TSR 1)

Eq. (18) follows now from the microcausality condition (19).

Therefore, relativistic invariance forces the introduction of quantum fields. It is only when
insist in keeping a single-particle interpretation that we crash against causality violations. To illus
the point, let us consider a single particle wave funciign ) that initially is localized in the position
=0

$(0,7) = 6(7). (22)

Evolving this wave function using the Hamiltonidh = +/—V?2 + m?2 we find that the wave function
can be written as

(2m)?

Integrating over the angular variables, the wave function can be recast in the form

W(t, @) = eV (3) = / Ih_ ik e—i/Fm? (23)

1 oo o
w(t,f):m / k dk ™17 =it VEitm? (24)

The resulting integral can be evaluated using the complex integration catiteliown in Fig. 5. The
result is that, for any > 0, one finds that)(t, ¥) # 0 for any Z. If we insist in interpreting the wave
function (¢, ¥) as the probability density of finding the particle at the location the timet we find
that the probability leaks out of the light cone, thus violating causality.

3 From classical to quantum fields

We have learned how the consistency of quantum mechanics with special relativity forces us to abs
the single-particle interpretation of the wave function. Instead we have to consider quantum fields w
elementary excitations are associated with particle states, as we will see below.

In any scattering experiment, the only information available to us is the set of quantum nun
associated with the set of free particles in the initial and final states. Ignoring for the moment ¢
quantum numbers like spin and flavor, one-particle states are labelled by the three-mormpertdm
span the single-particle Hilbert spati

p) € Ha, (plp’) = 0(p—p"). (25)

The stateq|p)} form a basis of{; and therefore satisfy the closure relation

/fmmm=1 (26)
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&

Y et Y et

Fig. 5: Complex contoulC' for the computation of the integral in Eq. (24).

The group of spatial rotations acts unitarily on the stafés This means that for every rotatidR €
SO(3) there is a unitary operatdf(R) such that

U(R)|p) = |Rp) (27)

whereRj represents the action of the rotation on the vegtdiRp): = R’ ;k7. Using a spectral decom-
position, the momentum operatl?ﬂé can be written as

pi— / &) p' (] (28)

With the help of Eq. (27) it is straightforward to check that the momentum operator transforms
vector under rotations:

UR) " P'UR) = /d?’pleﬁ) p (R7'p| = R, P, (29)

where we have used that the integration measure is invariant under.SO(3)

Since, as we argued above, we are forced to deal with multiparticle states, it is convenie
introduce creation-annihilation operators associated with a single-particle state of mongentum

[a(p), a’(7")] = 6(7 — "), [a(p), a(p")] = [a' (), a' (5")] = 0, (30)

such that the statg) is created out of the Fock space vacujiim(normalized such tha0|0) = 1) by
the action of a creation operate¥(j)

7) = al(p)0), a(p)|0) =0 V. (31)

Covariance under spatial rotations is all we need if we are interested in a nonrelativistic the
However in a relativistic quantum field theory we must preserve more that S@ally we need
the expressions to be covariant under the full Poincaré group ISQ¢bnsisting in spatial rotations,
boosts and space-time translations. Therefore, in order to build the Fock space of the theory we
two key ingredients: first an invariant normalization for the states, since we want a normalized ste
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one reference frame to be normalized in any other inertial frame. And dlycamelativistic invariant
integration measure in momentum space, so the spectral decomposition of operators is covariant
the full Poincaré group.

Let us begin with the invariant measure. Given an invariant funcfign of the four-momentum

pH of a particle of mass: with positive energy? > 0, there is an integration measure which is invarian
under proper Lorentz transformatiéns

4
/ (;if;’ (2m)3(% — m?) 0°) £(p), (32)

whered(x) represent the Heaviside step function. The integration p¥ean be easily done using the
é-function identity

Wa= Y ). (33)

x;=zeros of f

which in our case implies that
1 = 1 -
Mﬁ—%ﬁ):iﬁécﬁ—\ﬁﬂ+nﬂ)+25609+\ﬁﬂ+nﬁ>. (34)

The second term in the previous expression correspond to states with negative energy and therefol
not contribute to the integral. We can write then

4 3
/é&wﬁ%_wwwﬁ@z/&&2£¥Wf(w+wﬂ. (35)

Hence, the relativistic invariant measure is given by

3p 1
/'dp with  w, = /P2 + m2. (36)

(27)3 2w,

Once we have an invariant measure the next step is to find an invariant normalization for the s
We work with a basig|p)} of eigenstates of the four-momentum operdttr

POlp) = wplp), Pilp) = p|p). (37)

Since the statelp) are eigenstates of the three-momentum operator we can express them in terms «
non-relativistic state®) that we introduced in Eq. (25)

lp) = N(p)[p) (38)

with N (p) a normalization to be determined now. The stdtg$} form a complete basis, so they should
satisfy the Lorentz invariant closure relation

4
/ (371;4 (2m)8(p* —m?) 0(°) [p) (p| = 1 (39)

At the same time, this closure relation can be expressed, using Eg. (38), in terms of the nonrelati
basis of state§|p)} as

4 3
| G @m0 ) 0l = [ ST NG ) (5 (40)

2The factors oPr are introduced for later convenience.
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Using now Eq. (28) for the nonrelativistic states, expression (39) folfmweided

IN@)I* = (27)° (2wp). (41)
Taking the overall phase in Eq. (38) so th¥éfp) is real, we define the Lorentz invariant stafglsas
3
p) = (2m)> /2wy ), (42)
and given the normalization ¢f) we find the normalization of the relativistic states to be
(plp') = (27)° (2wp)0 (5 — ). (43)

Although not obvious at first sight, the previous normalization is Lorentz invariant. Althougt
is not difficult to show this in general, here we consider the simpler case of 1+1 dimensions wher
two component$p®, p') of the on-shell momentum can be parametrized in terms of a single hyperb:
angle) as

p° =mcosh ), p' = msinh \. (44)
Now, the combinatiorw,d(p! — pl’) can be written as
2wp5(p1 — pll) = 2mcosh A §(msinh A — msinh ') = 26(\ — ), (45)

where we have made use of the property (33) ofdenction. Lorentz transformations in+ 1 di-
mensions are labelled by a parametet R and act on the momentum by shifting the hyperbolic angl
A — A+ & However, Eq. (45) is invariant under a common shifAand)\’, so the whole expression is
obviously invariant under Lorentz transformations.

To summarize what we did so far, we have succeed in constructing a Lorentz covariant bas
states for the one-particle Hilbert spake. The generators of the Poincaré group act on the sfgites
the basis as

P¥|p) = pIp), UA)[p) = A%, p") = |Ap)  with A €SO(1,3). (46)
This is compatible with the Lorentz invariance of the normalization that we have checked above
(plp") = (pIU(N) U [p') = (Ap|Ap'). (47)

On#H, the operatoﬁ“ admits the following spectral representation

~ dBp 1
Pt = —|p) p* (p]. 48
| G o o (49)
Using (47) and the fact that the measure is invariant under Lorentz transformation, one can easily
that P transform covariantly under SO(3)
U P = [ 38D a7 = P (49)
(27)3 2w, v

A set of covariant creation-annihilation operators can be constructed now in terms of the oper

a(p), a'(p) introduced above

a(p) = (QW)%\/QWPCL(@, ol (p) = (271')%\/2(,01)(”(]5») (50)
with the Lorentz invariant commutation relations
(), o' ()] = (2m)*(2wp)d(F — "),

10
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[(p),a(p”)] = [ (@), al(F")] = 0. (51)

Particle states are created by acting with any number of creation opetéfrsn the Poincaré invariant
vacuum staté0) satisfying

(0]0) =1, P*|0) = 0, U(A)]0) =|0), VA e SO(1,3). (52)
A general one-particle stat¢) € #; can be then written as
dp 1
Y B T
1= [ g f@al@0) (53)
while an-particle statef) € HY™ can be expressed as
dp; 1 . - -
/H e P Bl ()0 ()l0). (54)

That this states are Lorentz invariant can be checked by noticing that from the definition of the cree
annihilation operators follows the transformation

UN)a(@UN)T = a(Ap) (55)
and the corresponding one for creation operators.

As we have argued above, the very fact that measurements have to be localized implies tF
cessity of introducing quantum fields. Here we will consider the simplest case of a scalar quantum
¢(x) satisfying the following properties:

Hermiticity.

o' (x) = ¢(). (56)

- Microcausality. Since measurements cannot interfere with each other when performed in cau:
disconnected points of space-time, the commutator of two fields have to vanish outside the re

ligth-cone
[6(), o(y)] = 0, (x—y)* <0. (57)
- Translation invariance.
e ag(z)e=iPe = (z — a). (58)
- Lorentz invariance.
UN)To(@)U(A) = $(A™ ). (59)

- Linearity. To simplify matters we will also assume thatx) is linear in the creation-annihilation
operatorsy(p), af (p)

dp 1
- | =2 - 5 7 il
o) = [ g [fE 00 +a(in)al (). (60)
Sinceg(z) should be hermitian we are forced to tak@, x)* = g(p, x). Moreover,¢(z) satisfies
the equations of motion of a free scalar figld, 0" +m?)¢(x) = 0, only if f(5, x) is a complete
basis of solutions of the Klein-Gordon equation. These considerations leads to the expansior

*p 1 —iwpt+ip-T iwpt—ip-T
o) = [ g [ + el (). o)

11
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Given the expansion of the scalar field in terms of the creation-annihilatioratopge it can be
checked that () ando,¢(x) satisfy the equal-time canonical commutation relations

[0(t, T), 0:9(t, )] = 16(Z — ) (62)
The general commutatds(z), ¢(y)] can be also computed to be
[b(x), ¢(a)] = iA(x — 2’). (63)
The functionA(x — y) is given by
d3p 1 . Nz (77
. - _ = —twp(t—t')+ip (Z—-F)
iA(x —y) Im /(277)3 20dpe
d4p 2 2 0\, —ip-(x—z')
= (2m)é(p” —m7)e(p e , (64)
(2m)!

wheree(x) is defined as

1 >0

-1 z<0 ° (65)
Using the last expression in Eq. (64) it is easy to show thdt: — 2’) vanishes when: and«’

are space-like separated. Indeedyif- 2')? < 0 there is always a reference frame in which both even

are simultaneous, and sintA(x — z’) is Lorentz invariant we can compute it in this reference frame

In this case = ¢ and the exponential in the second line of (64) does not depepd.crherefore, the

integration ovek? gives

/_OO dp’e(p°)5(p* —m?) = /_OO dp” u}e(poﬁ(po —wp) + %é(po)é(po + wp)

P P
1 1

e o 66
2wp 2wy 0 (66)

So we have concluded thah (z — 2/) = 0 if (x — 2’)? < 0, as required by microcausality. Notice that

the situation is completely different whém — /)2 > 0, since in this case the exponential depends ¢
p° and the integration over this component of the momentum does not vanish.

3.1 Canonical quantization

So far we have contented ourselves with requiring a number of properties to the quantum scalar
existence of asymptotic states, locality, microcausality and relativistic invariance. With these only in
dients we have managed to go quite far. The previous can also be obtained using canonical quanti:
One starts with a classical free scalar field theory in Hamiltonian formalism and obtains the qual
theory by replacing Poisson brackets by commutators. Since this quantization procedure is based
use of the canonical formalism, which gives time a privileged réle, it is important to check at the en
the calculation that the resulting quantum theory is Lorentz invariant. In the following we will brie
overview the canonical quantization of the Klein-Gordon scalar field.

The starting point is the action functiong¢(z)] which, in the case of a free real scalar field of
massm is given by

Slo(x)] = / d*z L(¢,0,0) = % / d*z (000" — m?¢?). (67)

12
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The equations of motion are obtained, as usual, from the Euler-Lagrgongéans
oL oL
)

6.5 " 5s =

2 _
56,5 0 — (9,0 +m2)¢ = 0. (68)

The momentum canonically conjugated to the fig(d) is given by

oc ¢
0(0op) Ot

m(x) (69)

In the Hamiltonian formalism the physical system is described not in terms of the generalized coordil
and their time derivatives but in terms of the generalized coordinates and their canonically conjug
momenta. This is achieved by a Legendre transformation after which the dynamics of the syste
determined by the Hamiltonian function

H= /dSm <7T(Zf — £> = ;/dgzn [772 + (ﬁgb)Q + mz} . (70)

The equations of motion can be written in terms of the Poisson rackets. Given two functic
Alo, 7], B¢, ] of the canonical variables

Aol = [(EaA@). Bl = [daion) (71)
Their Poisson bracket is defined by
_ 3 [0A0B 6AB

where% denotes the functional derivative defined as

JA 0A 0A
— = _— 73
=5 % |55 73
Then, the canonically conjugated fields satisfy the following equal time Poisson brackets
{¢(t, f),gb(t,f/)} - {ﬂ-(tv f)vﬂ'(tvf,)} =0,

Canonical quantization proceeds now by replacing classical fields with operators and Poi
brackets with commutators according to the rule

In the case of the scalar field, a general solution of the field equations (68) can be obtained by wo
with the Fourier transform

(0,0" + m*)p(z) =0 = (—p* +m?)o(p) =0, (76)

whose general solution can be writtes} as

4 A |
p(z) = /(3754(271_)5(292 —m2)9(p0) [a(p)e_’p'w +a(p)*€1p-x]

3In momentum space, the general solution to this equatigriziy = f(p)d(p> — m?), with f(p) a completely general
function of p*. The solution in position space is obtained by inverse Fourier transform.

13
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Pp 1 o\ —iwpt+E ok iwpt— T
= [ @) T oy et )
p

and we have required(z) to be real. The conjugate momentum is

{ dgp SN\ —iwpt+pE S\* iwpt—p-E
w<x>=—2/ Gy Q)T a) e T (78)

Now ¢(z) and 7 (z) are promoted to operators by replacing the functiog), «(p)* by the
corresponding operators

a(p) — a(p), a(p)" — a' (7). (79)

=1/

Moreover, demandingy(t, Z), n(t,z')] = i6(Z — Z') forces the operator&(p), a(p)' to have the
commutation relations found in Eq. (51). Therefore they are identified as a set of creation-annihil:
operators creating states with well-defined momenglouat of the vacuun0). In the canonical quanti-
zation formalism the concept of particle appears as a result of the quantization of a classical field.

Knowing the expressions g@fandr in terms of the creation-annihilation operators we can procet
to evaluate the Hamiltonian operator. After a simple calculation one arrives to the expression

i = [ @ w900 + 30,00 (80)

The first term has a simple physical interpretation siaitgy)a(p) is the number operator of particles
with momentumgp. The second divergent term can be eliminated if we defined the normal-orde
Hamiltonian: H: with the vacuum energy subtracted

~

= 1 - 01710) = [ #pe,a'(5)a() (81)

It is interesting to try to make sense of the divergent term in Eq. (80). This term have two sou
of divergence. One is associated with the delta function evaluated at zero coming from the fact th.
are working in a infinite volume. It can be regularized for large but finite volume by replé(:(ﬁjgw V.
Hence, it is of infrared origin. The second one comes from the integratiay, @t large values of
the momentum and it is then an ultraviolet divergence. The infrared divergence can be regulariz
considering the scalar field to be living in a box of finite voluieln this case the vacuum energy is

-~ 1
Byae = (0[H|0) = > - (82)
P

Written in this way the interpretation of the vacuum energy is straightforward. A free scalar quan
field can be seen as a infinite collection of harmonic oscillators per unit volume, each one labelle
p. Even if those oscillators are not excited, they contribute to the vacuum energy with their zero-f
energy, given by%wp. This vacuum contribution to the energy add up to infinity even if we work
finite volume, since even then there are modes with arbitrary high momentum contributing to the -
pi = ”L” with L; the sides of the box of volum& andn; an integer. Hence, this divergence is of
ultraviolet origin.

Our discussion leads us to the conclusion that the vacuum in quantum field theory is radi
different from the classical idea of the vacuum as “empty space”. Indeed, we have seen that a qui
field can be regarded as a set of an infinite number of harmonic oscillators and that the ground st
the system is obtained wheifl oscillators are in their respective ground states. This being so, we kn
from elementary quantum mechanics that a harmonic oscillator in its ground state is not “at rest”

14
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Region | Region Il Region llI

NN AAVAVAVATAVAVAVAY

VWV

S

Conducting plates

Fig. 6: lllustration of the Casimir effect. In regions | and Il the spetrum of modes of the momentuin
continuous, while in the space between the plates (region Il) it is quantized in udits of

fluctuate with an energy given by its zero-point energy. When translated to quantum field theory.
means that the vacuum can be picture as a medium where virtual particles are continuously creatt
annihilated. As we will see, this nontrivial character of the vacuum has physical consequences ra
from the Casimir effect (see below) to the screening or antiscreening of charges in gauge theorie
Section 8.2).

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic of the scalar field. It is also present in other
in particular in quantum electrodynamics. Although one might be tempted to discarding this infi
contribution to the energy of the vacuum as unphysical, it has observable consequences. In 1948 H
Casimir pointed out [16] that although a formally divergent vacuum energy would not be observable
variation in this energy would be (see [17] for comprehensive reviews).

To show this he devised the following experiment. Consider a couple of infinite, perfectly c
ducting plates placed parallel to each other at a distdrisee Fig. 6). Because the conducting plates fi
the boundary condition of the vacuum modes of the electromagnetic field these are discrete in be
the plates (region 1), while outside there is a continuous spectrum of modes (regions | and Ill). In ¢
to calculate the force between the plates we can take the vacuum energy of the electromagneti
as given by the contribution of two scalar fields corresponding to the two polarizations of the phc
Therefore we can use the formulas derived above.

A naive calculation of the vacuum energy in this system gives a divergent result. This infinity
be removed, however, by substracting the vacuum energy corresponding to the situation where the
are removed

E(d)reg = E(d)vac — E(00)vac (83)

This substraction cancels the contribution of the modes outside the plates. Because of the bot
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conditions imposed by the plates the momentum of the modes perpendicular to tseaptad@antized
according top; = “F, with n a non-negative integer. If we consider that the size of the plates is mt
larger than their separatiefwe can take the momenta parallel to the plakeas continuous. For > 0
we have two polarizations for each vacuum mode of the electromagnetic field, each contributing

p” + p? to the vacuum energy. On the other hand, wpen= 0 the corresponding modes of the

fleld are effectively (2+1)-dimensional and therefore there is only one polarization. Keeping this in m
we can write

2
d”p|

3
— 280 [ B ip) (84
(27
where S is the area of the plates. The factors of 2 take into account the two propagating degre:

freedom of the electromagnetic field, as discussed above. In order to ensure the convergence of in
and infinite sums we can introduce an exponential damping factor

Fld)eeg = 25/(dp)L A|p’p”+52/ p” RV CEY b + (%)2

d e
= Sd/ pl/ e AVIITTPL [ 4 pd (85)

whereA is an ultraviolet cutoff. It is now stralghtfonNard to see that if we define the function

F(a:)z;w/:oydyei\/m\/mz417T/(::’W)2dze_f\/g @6)

the regularized vacuum energy can be written as

E(d)eg = S 0)+ ) F(n) - / dz F(z) (87)
n=1 0
This expression can be evaluated using the Euler-MacLaurin formula [19]
> o 1 1
S Fm) - [ deF@) = <3 [FO)+ Fe) + 35 [F0) - F0)]
n=1 0
i " _m
- o [F"(00) — F"(0)] + ... (88)

Since for our functionf'(oco) = F'(c0) = F"(c0) = 0 and F'(0) = 0, the value ofE(d),eg IS
determined byF"”(0). Computing this term and removing the ultraviolet cutdff,— oo we find the
result

S w2S
E(d)eg = —F"(0) = — .
()reg 720 (0) 72043 (89)
Then, the force per unit area between the plates is given by
w1
PCasirnir — *%@ (90)

The minus sign shows that the force between the plates is attractive. This is the so-called Casimir ¢
It was experimentally measured in 1958 by Sparnaay [18] and since then the Casimir effect has
checked with better and better precission in a variety of situations [17].

“Actually, one could introduce any cutoff functigifp? + pﬁ) going to zero fast enough as , p; — oo. The resultis
independent of the particular function used in the calculation.
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4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate our discussion of the quantization proce:
However, nature is richer than that and it is necessary to consider other fields with more complicate
havior under Lorentz transformations. Before considering other fields we pause and study the prog
of the Lorentz group.

4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generators. Three of them correspond to the gene
of the group of rotations in three dimensions SO(3). In terms of the genetitofghe group a finite
rotation of anglep with respect to an axis determined by a unitary veétoan be written as

R J1
R(E, p) = e~ &7 J=1 J |. (91)
J3

The other three generators of the Lorentz group are associated with Bdpsieng the three spatial
directions. A boost with rapidity. along a directioni is given by

. T Ml
B(i, \) = e M, M=| M |. (92)
M3
These six generators satisfy the algebra
i, Jj] = i€,
[Ji, My] = i€ My, (93)
(M, Mj] = —iejnd,

The first line corresponds to the commutation relations of SO(3), while the second one implies the
generators of the boosts transform like a vector under rotations.

At first sight, to find representations of the algebra (93) might seem difficult. The problen
greatly simplified if we consider the following combination of the generators

1 )
Jp = 5 (Ji £ iMy). (94)

Using (93) it is easy to prove that the new generalg‘fsatisfy the algebra

5T = ey
EANY A ] (95)

Then the Lorentz algebra (93) is actually equivalent to two copies of the algelsia(@j ~ SO(3).
Therefore the irreducible representations of the Lorentz group can be obtained from the well-knowr
resentations of SU(2). Since the latter ones are labelled by thesspirk + %, k (with & € N), any
representation of the Lorentz algebra can be identified by specifying_ ), the spins of the represen-
tations of the two copies of SU(2) that made up the algebra (93).

To get familiar with this way of labelling the representations of the Lorentz group we study sc
particular examples. Let us start with the simplest Gng s_) = (0,0). This state is a singlet under
Ji* and therefore also under rotations and boosts. Therefore we have a scalar.

The next interesting cases a@, 0) and (0, %). They correspond respectively to a right-hande
and a left-handed Weyl spinor. Their properties will be studied in more detail below. In the cas
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Representation| Type of field
(0,0) Scalar
(3.0) Right-handed spinor
(0,1) Left-handed spinor
(2.1 Vector
(1,0) Selfdual antisymmetric 2-tensor
(0,1) Anti-selfdual antisymmetric 2-tensar

Table 1: Representations of the Lorentz group

(1, %), since from Eq. (94) we see thdt = J;" + J; the rules of addition of angular momentum
tell us that there are two states, one of them transforming as a vector and another one as a scala
three-dimensional rotations. Actually, a more detailed analysis shows that the singlet state corres

to the time component of a vector and the states combine to form a vector under the Lorentz group

There are also more “exotic” representations. For example we can considar )eand(0,1)
representations corresponding respectively to a selfdual and an anti-selfdual rank-two antisymr
tensor. In Table 1 we summarize the previous discussion.

To conclude our discussion of the representations of the Lorentz group we notice that unc
parity transformation the generators of SO(1,3) transform as
P: Ji — Ji, P: Mi — _Mi (96)

this means thaP : J;= — JF and therefore a representatien, sz) is transformed intdsz, s1 ). This
means that, for example, a vect@f, %) is invariant under parity, whereas a left-handed Weyl spinc
(,0) transforms into a right-handed of@, 1) and vice versa.

4.2 Spinors

Weyl spinors. Let us go back to the two spinor representations of the Lorentz group, n@)(ﬂy and
(0, %). These representations can be explicitly constructed using the Pauli matrices as

1 .
Jt o= 501, J7 =0 for  (%,0),
1 .
Jr =0, J[zia’ for  (0,3). 97)

We denote by: a complex two-component object that transforms in the represeng-},;i@ﬂ% of Ji.
If we definec!. = (1, +0*) we can construct the following vector quantities

uiaim, ul ofu_. (98)

Notice that sincé.J:5)" = JT the hermitian conjugated fieldd_are in the(0, 1) and (3, 0) respectively.
To construct a free Lagrangian for the fields we have to look for quadratic combinations of the
fields that are Lorentz scalars. If we also demand invariance under global phase rotations

ur — ePuy (99)
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we are left with just one possibility up to a sign
E\j,cveyl = zul ((“)t +o- ﬁ) Uy = iulai@uui. (100)

This is the Weyl Lagrangian. In order to grasp the physical meaning of the spinovee write the
equations of motion

(ao +d- 6) us = 0. (101)
Multiplying this equation on the left b(@o Fo- ﬁ) and applying the algebraic properties of the Pau
matrices we conclude that. satisfies the massless Klein-Gordon equation
9,0M ug = 0, (102)
whose solutions are:
us () = us(k)e *2, with &% = |k|. (103)

Plugging these solutions back into the equations of motion (101) we find

Qa;gﬁy&:a (104)
which implies
gk
Uy : —— =1,
||
u_ : ok_ (105)
||

Since the spin operator is definedsas %8, the previous expressions give the chirality of the states wi
wave functioru, i.e. the projection of spin along the momentum of the particle. Therefore we concli
thatu. is a Weyl spinor of positive helicity = 1, while u_ has negative helicity = —3. This agrees
with our assertion that the representat@) 0) corresponds to a right-handed Weyl fermion (positive
chirality) whereago, %) is a left-handed Weyl fermion (negative chirality). For example, in the stande
model neutrinos are left-handed Weyl spinors and therefore transform in the represe(m;ae}i))nf the
Lorentz group.

Nevertheless, it is possible that we were too restrictive in constructing the Weyl Lagrangian (1
There we constructed the invariants from the vector bilinears (98) corresponding to the product r
sentations

(3.H)=G3.0®0,3) ad (}3)=(03)®(3,0). (106)

In particular our insistence in demanding the Lagrangian to be invariant under the global symn
ut+ — e%uq rules out the scalar term that appears in the product representations

(1.0)@ (%,0)=(1,0) & (0,0), (0.3)®(0,3) = (0.1) @ (0,0). (107)
The singlet representations corresponds to the antisymmetric combinations
captiful, (108)

wheree,;, is the antisymmetric symbels = —ey = 1.
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At first sight it might seem that the term (108) vanishes identically becautbe @ntisymmetry
of the e-symbol. However we should keep in mind that the spin-statistic theorem (more on this le
demands that fields with half-integer spin have to satisfy the Fermi-Dirac statistics and therefore si
anticommutation relations, whereas fields of integer spin follow the statistic of Bose-Einstein and,
consequence, quantization replaces Poisson brackets by commutators. This implies that the comg
of the Weyl fermions.4. are anticommuting Grassmann fields

ubub, +ubul = 0. (109)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy the Fermi-Dirac sti
tics) do not exist classically. The reason is that they satisfy the Pauli exclusion principle and ther:
each quantum state can be occupied, at most, by one fermion. Therefore the naive definition of the
sical limit as a limit of large occupation numbers cannot be applied. Fermion field do not really m
sense classically.

Since the combination (108) does not vanish and we can construct a new Lagrangian
Lo = ikt ~eapuull +h 110
Weyl — 3040 Ut — Eeabuiui + n.c. ( )

This mass term, called of Majorana type, is allowed if we do not worry about breaking the global L
symmetryuy — eu. Thisis not the case, for example, of charged chiral fermions, since the Major:
mass violates the conservation of electric charge or any other gauge U(1) charge. In the standard i
however, there is no such a problem if we introduce Majorana masses for right-handed neutrinos,
they are singlet under all standard model gauge groups. Such a term will break, however, the globa
lepton number charge because the oper@my% changes the lepton number by two units

Dirac spinors. We have seen that parity interchanges the represent&%ons and (0, %), ie. it
changes right-handed with left-handed fermions

P:uy — ug. (111)

An obvious way to build a parity invariant theory is to introduce a pair or Weyl fermionsind ...
Actually, these two fields can be combined in a single four-component spinor

b = ( ty ) (112)

U—

transforming in the reducible representatidn0) & (0, 3).
Since now we have both, andu_ simultaneously at our disposal the equations of motion fc
U, iaiaﬂui = 0 can be modified, while keeping them linear, to

il Opuq = mu_ "
— i(UJF O>au¢=m<0 1>¢. (113)

# 1
ia‘i@uu, = muy 0 o 0

These equations of motion can be derived from the Lagrangian density

. ot 0 01
Lirac = ! ( 0 o >8w — myt ( 10 )w. (114)
To simplify the notation it is useful to define the Dirgematrices as
0 o
oi 0
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and the Dirac conjugate spingr

p=u=vt (] 5 ). (116)
Now the Lagrangian (114) can be written in the more compact form
LDirac = ¥ (in"0p — m) . (117)
The associated equations of motion give the Dirac equation (11) with the identifications
0 = B, A =ial. (118)

In addition, they-matrices defined in (115) satisfy the Clifford algebra
{97} =2 (119)

In D dimensions this algebra admits representations of dimer®ioh When D is even the Dirac
fermionsty transform in a reducible representation of the Lorentz group. In the case of inferest
this is easy to prove by defining the matrix

, ‘ 1 0
7° = -’y = ( 0 1 ) : (120)

We see that® anticommutes with all othey-matrices. This implies that

PP =0, with oM =], (121)
Because of Schur's lemma (see Appendix) this implies that the representation of the Lorentz ¢
provided by is reducible into subspaces spanned by the eigenvectorsvaith the same eigenvalue.

If we define the projectorgy. = %(1 + ~%) these subspaces correspond to

P+w:(“g>, P_w=<u°_ ) (122)

which are precisely the Weyl spinors introduced before.

Our next task is to quantize the Dirac Lagrangian. This will be done along the lines used
the Klein-Gordon field, starting with a general solution to the Dirac equation and introducing the -
responding set of creation-annihilation operators. Therefore we start by looking for a complete ba:
solutions to the Dirac equation. In the case of the scalar field the elements of the basis were labell
their four-momentunk*. Now, however, we have more degrees of freedom since we are dealing v
a spinor which means that we have to add extra labels. Looking back at Eq. (105) we can defin
helicity operator for a Dirac spinor as

1. k /1 0
27 \kl<0 1) (123)

Hence, each element of the basis of functions is labelled by its four-mométitand the corresponding
eigenvalues of the helicity operator. For positive energy solutions we then propose the ansatz

. 1
u(k, s)e” 2 s = :|:§, (124)
whereu, (k, s) (o« = 1,...,4) is a four-component spinor. Substituting in the Dirac equation we obta
(k —m)u(k,s) = 0. (125)
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In the same way, for negative energy solutions we have

1
v(k,s)e*® s =+, (126)

whereuv(k, s) has to satisfy
(k+ m)v(k,s) =0. (127)

Multiplying Egs. (125) and (127) on the left respectively (#+ m) we find that the momentum is
on the mass shelk? = m?. Because of this, the wave function for both positive- and negative-enel
solutions can be labeled as well using the three-mome#tofithe particleu(k, s), v(k, s).

A detailed analysis shows that the functia(&, s), v(k, s) satisfy the properties

b, s)u(k, 5) = 2m ok, 5)o
s u(k,s) = 2k ok, s)y* ok,
ua@,s)uﬁ(i%,s):(;fwm)aﬁ, va(k, 5)0s (K,

i1
s=%t3

with £ = w, = Vk2+m?2. Then, a general solution to the Dirac equation including creation a
annihilation operators can be written as:

~ Bk 1 o~ , o o R . o
2\ —iwpt+ik-T ot iwpt—ik-T
¥(t, T) / (27)° 200r Ei {U(k‘js) b(k, s)e +o(k, s)d'(k, s)e ] . (129)

1
2

The operatorgf(lg, s), 3(12) respectively create and annihilate a séilparticle (for example, an
electron) out of the vacuum with momentunand helicitys. Because we are dealing with half-integet
spin fields, the spin-statistics theorem forces canonical anticommutation relatioﬁS/\fbich means
that the creation-annihilation operators satisfy the algebra

{bE ),
{b(E,5), b

In the case ofi(k, s), d' (k, s) we have a set of creation-annihilation operators for the correspor
ing antiparticles (for example positrons). This is clear if we notice thék, s) can be seen as the
annihilation operator of a negative energy state of the Dirac equation with wave fumgﬁéns). As
we saw, in the Dirac sea picture this corresponds to the creation of an antiparticle out of the vacuun
Fig. 2). The creation-annihilation operators for antiparticles also satisfy the fermionic algebra

—

SN = 0(k—k")os,

k',
bk’ s = {bf(k,s),bl(k" s} =0. (130)

-

{d(k,s),dT (K", ")} = 6(k—k")dsy,
{d(k,s),d(k',s")} = {di(k,s),d(k’,5")} =0. (131)
All other anticommutators betweéfk, s), b'(k, s) andd(k, s), d' (k, s) vanish.
The Hamiltonian operator for the Dirac field is

R 3 ~ . . -
i :% _%:l/(;f)g [b*(k,s)b(k,s) fd(k:,s)dT(k,s)]. (132)

At this point we realize again of the necessity of quantizing the theory using anticommutators ins
of commutators. Had we use canonical commutation relations, the second term inside the integ

5To simplify notation, and since there is no risk of confusion, we drop from now on the hat to indicate operators.
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(132) would give the number operatabTr(E, s)d(E, s) with a minus sign in front. As a consequence the
Hamiltonian would be unbounded from below and we would be facing again the instability of the the
already noticed in the context of relativistic quantum mechanics. However, becausanfitoenmuta-
tion relations (131), the Hamiltonian (132) takes the form

27)3 2wy,

H=Y" / (d% L (bt (R, $)b(E, ) + wpd! (F, )d(F, 5)| 2 / Blwps(0).  (133)
s:i%

As with the scalar field, we find a divergent vacuum energy contribution due to the zero-point en
of the infinite number of harmonic oscillators. Unlike the Klein-Gordon field, the vacuum energy
negative. In section 9.2 we will see that in certain type of theories called supersymmetric, wher:
number of bosonic and fermionic degrees of freedom is the same, there is a cancellation of the va
energy. The divergent contribution can be removed by the normal order prescription

Z/ 27T32wk ka(Ejs)b(lg,s)+wde(l¥,s)d(E,s) . (134)

Finally, let us mention that using the Dirac equation it is easy to prove that there is a conse
four-current given by

" =Pty " = 0. (135)

As we will explain further in sec. 6 this current is associated to the invariance of the Dirac Lagrani
under the global phase shift— ¢*?+). In electrodynamics the associated conserved charge

Q=e / d*x j° (136)

is identified with the electric charge.

4.3 Gauge fields

In classical electrodynamics the basic quantities are the electric and magnetitE‘fieﬁds‘l’hese can be
expressed in terms of the scalar and vector potefitiall)

, . 0A
E = —Vo——
Ve G
B = VxA. (137)

From these equations it follows that there is an ambiguity in the definition of the potentials given by
gauge transformations

— =

o(t, T) — o(t, ) + ;e(t,f), A(t,7) — A(t, ) — Ve(t, T). (138)

Classically(p, ) are seen as only a convenient way to solve the Maxwell equations, but without phys
relevance.

The equations of electrodynamics can be recast in a manifestly Lorentz invariant form using
four-vector gauge potential” = (¢, A) and the antisymmetric rank-two tensdt,, = 9,4, — 0, A,.
Maxwell’'s equations become

o = gk,
o, Foy = 0, (139)
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where the four-curren = (p, 7) contains the charge density and the electric current. The field stren
tensorF),,, and the Maxwell equations are invariant under gauge transformations (138), which in co
ant form read

Ay — A, + e (140)
Finally, the equations of motion of charged particles are given, in covariant form, by

dut
m% — eFHy,, (141)

wheree is the charge of the particle andt (1) its four-velocity as a function of the proper time.

The physical role of the vector potential becomes manifest only in Quantum Mechanics. U
the prescription of minimal substitutigh— p'— e A, the Schrédinger equation describing a particle witl
chargee moving in an electromagnetic field is

1 . N2
i0,0 = [—2 (v - ieA) + egp} . (142)
m

Because of the explicit dependence on the electromagnetic poteptihsl A, this equation seems
to change under the gauge transformations (138). This is physically acceptable only if the ambi
does not affect the probability density given pl(¢, z)|?. Therefore, a gauge transformation of the
electromagnetic potential should amount to a change in the (unobservable) phase of the wave fur
This is indeed what happens: the Schroédinger equation (142) is invariant under the gauge transform
(138) provided the phase of the wave function is transformed at the same time according to

U(t,T) — e GOy, 7). (143)

Aharonov-Bohm effect. This interplay between gauge transformations and the phase of the w
function give rise to surprising phenomena. The first evidence of the réle played by the electromag
potentials at the quantum level was pointed out by Yakir Aharonov and David Bohm [20]. Let us cons
a double slit experiment as shown in Fig. 7, where we have placed a shielded solenoid just behir
first screen. Although the magnetic field is confined to the interior of the solenoid, the vector potent
nonvanishing also outside. Of course the valud @lutside the solenoid is a pure gauge, Vex A =0,
however because the region outside the solenoid is not simply connected the vector potential can
gauged to zero everywhere. If we denotelli)(}) and\I/g)) the wave functions for each of the two electror
beams in the absence of the solenoid, the total wave function once the magnetic field is switched ¢
be written as

oie e, E-d;qugo) 4 etelr, /Y.df\lléo)

eie fr1 A-dz [\Ilgm 4 RE #n g.df\p(QO) : (144)

wherel'; andl's are two curves surrounding the solenoid from different sidesJaisdany closed loop
surrounding it. Therefore the relative phase between the two beams gets an extra term depending
value of the vector potential outside the solenoid as

U = exp [ie f A- df} . (145)
r

Because of the change in the relative phase of the electron wave functions, the presence of the
potential becomes observable even if the electrons do not feel the magnetic field. If we perforn
double-slit experiment when the magnetic field inside the solenoid is switched off we will observe
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Electron = . S

source

Screen

Fig. 7: lllustration of an interference experiment to show the Aharonov-Bohm effestpresent the solenoid in
whose interior the magnetic field is confined.

usual interference pattern on the second screen. However if now the magnetic field is switche
because of the phase (144), a change in the interference pattern will appear. This is the Aharonov-
effect.

The first question that comes up is what happens with gauge invariance. Since we said tt
can be changed by a gauge transformation it seems that the resulting interference patters might ¢
on the gauge used. Actually, the phdgen (145) is independent of the gauge although, unlike othe
gauge-invariant quantities lik€ and B, is nonlocal. Notice that, sincé x A = 0 outside the solenoid,
the value ofU does not change under continuous deformations of the closed Euseelong as it does
not cross the solenoid.

The Dirac monopole.ltis very easy to check that the vacuum Maxwell equations remain invarie
under the transformation

E—iB — ¢Y(E —iB), 0 € [0, 27] (146)

which, in particular, ford = 3 interchanges the electric and the magnetic fields— B, B - —E.
This duality symmetry is however broken in the presence of electric sources. Nevertheless the Ma
equations can be “completed” by introducing sources for the magnetid figld,,,) in such a way that
the duality (146) is restored when supplemented by the transformation

p — ipm — ei@(p - ipm)7 j_ ifm — eie(j_ ij) (147)

Again for6 = x /2 the electric and magnetic sources get interchanged.

In 1931 Dirac [21] studied the possibility of finding solutions of the completed Maxwell equati
with a magnetic monopoles of chargei.e. solutions to

=

V- B=gd). (148)

Away from the position of the monopok_:z" . B = 0 and the magnetic field can be still derived locally
from a vector potentiall according toB = V x A. However, the vector potential cannot be regula
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s

Dirac string

Fig. 8: The Dirac monopole.

everywhere since otherwise Gauss law would imply that the magnetic flux threading a closed su
around the monopole should vanish, contradicting (148).

We look now for solutions to Eq. (148). Working in spherical coordinates we find
g
B, = =, B, = By = 0. 149
Away from the position of the monopole? (£ 0) the magnetic field can be derived from the vecto
potential

A, = Lanl A =0 (150)
[zl 2

As expected we find that this vector potential is actually singular around the half-kner (see Fig.

8). This singular line starting at the position of the monopole is called the Dirac string and its posi

changes with a change of gauge but cannot be eliminated by any gauge transformation. Physica

can see it as an infinitely thin solenoid confining a magnetic flux entering into the magnetic mono

from infinity that equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it seems that the prese
monopoles introduces an ambiguity. This would be rather strange, since Maxwell equations are (
invariant also in the presence of magnetic sources. The solution to this apparent riddle lies in the fac
the Dirac string does not pose any consistency problem as far as it does not produce any physical
i.e. if its presence turns out to be undetectable. From our discussion of the Aharonov-Bohm effe«
know that the wave function of charged particles pick up a phase (145) when surrounding a region v
magnetic flux is confined (for example the solenoid in the Aharonov-Bohm experiment). As explal
above, the Dirac string associated with the monopole can be seen as a infinitely thin solenoid. The
the Dirac string will be unobservable if the phase picked up by the wave function of a charged partic
equal to one. A simple calculation shows that this happens if

eled =1 — eg = 2mn with n € Z. (151)
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Interestingly, this discussion leads to the conclusion that the presencengfl@magnetic monopoles
somewhere in the Universe implies for consistency the quantization of the electric charge in &fnits o
whereg the magnetic charge of the monopole.

Quantization of the electromagnetic field. We now proceed to the quantization of the electro
magnetic field in the absence of sourges: 0, 7= 0. In this case the Maxwell equations (139) can b
derived from the Lagrangian density

1 v 1 2 D2

['Maxwell = _ZFMVFH = 5 (E - B ) . (152)
Although in general the procedure to quantize the Maxwell Lagrangian is not very different from
one used for the Klein-Gordon or the Dirac field, here we need to deal with a new ingredient: g:
invariance. Unlike the cases studied so far, here the photon diglés not unambiguously defined
because the action and the equations of motion are insensitive to the gauge transford)ations,, +
oue. Afirst consequence of this symmetry is that the theory has less physical degrees of freedorr
one would expect from the fact that we are dealing with a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing the elec
magnetic potential before quantization. This can be done in several ways, for example by imposin
Lorentz gauge fixing condition

9, A" = 0. (153)

Notice that this condition does not fix completely the gauge freedom since Eq. (153) is left invai
by gauge transformations satisfyingo*s = 0. One of the advantages, however, of the Lorentz gau
is that it is covariant and therefore does not pose any danger to the Lorentz invariance of the que
theory. Besides, applying it to the Maxwell equati@F*” = 0 one finds

0= 9,0"A” — 8, (9, A") = ,0" A", (154)

which means that sincg,, satisfies the massless Klein-Gordon equation the photon, the quantum ol
electromagnetic field, has zero mass.

Once gauge invariance is fixet], is expanded in a complete basis of solutions to (154) and tl
canonical commutation relations are imposed

d3k 1 - o . L
= > (k,A)a(k,)\)e_”k't“k'x—i—e (k,A\)*at (k, N)ellklt=ikZ ] (155)

2v<:| g
A==+1

where) = +1 represent the helicity of the photon, aqg{fc', A) are solutions to the equations of motion
with well defined momentum an helicity. Because of (153) the polarization vectors have to be orthog
to k,

ke, (K, \) = kte, (K, \)* = 0. (156)
The canonical commutation relations imply that

) A), l:{’yX)] = (2m)*(2 s
a(k,\),a(k’, N = [af(k,\),af (k'

2|k[)d(k — k' m
X)) = (157)

Therefored(k, ), af(k, A) form a set of creation-annihilation operators for photons with momertum
and helicity\.

Behind the simple construction presented above there are a number of subleties related with
invariance. In particular the gauge freedom seem to introduce states in the Hilbert space with nes
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probability. A careful analysis shows that when gauge invariance ifgshppandled these spurious states
decouple from physical states and can be eliminated. The details can be found in standard textboo
[11].

Coupling gauge fields to matter. Once we know how to quantize the electromagnetic field w
consider theories containing electrically charged particles, for example electrons. To couple the |
Lagrangian to electromagnetism we use as guiding principle what we learned about the Schroc
equation for a charged particle. There we saw that the gauge ambiguity of the electromagnetic pot
is compensated with a U(1) phase shift in the wave function. In the case of the Dirac equation we |
that the Lagrangian is invariant under— e, with £ a constant. However this invariance is broker
as soon as one identifieswith the gauge transformation parameter of the electromagnetic field wh
depends on the position.

Looking at the Dirac Lagrangian (117) it is easy to see that in order to promote the global U
symmetry into a local one; — e~=(*)y), it suffices to replace the ordinary derivatiig by a covariant
oneD,, satisfying

DM [efies(z)w} — fzez-: x) ltw (158)
This covariant derivative can be constructed in terms of the gauge potéptas
D, =0, +ieA,. (159)

The Lagrangian of a spié-field coupled to electromagnetism is written as

1 —,.
EQED = _EFMVFHV + T/J(ZE) - m)l/% (160)
invariant under the gauge transformations
P —> e teE@y, Ay — Ay + 0ue(x). (161)

Unlike the theories we have seen so far, the Lagrangian (160) describe an interacting theor
plugging (159) into the Lagrangian we find that the interaction between fermions and photons to be

LI = —eA iy, (162)

As advertised above, in the Dirac theory the electric current four-vector is givet Bye~ 1.

The quantization of interacting field theories poses new problems that we did not meet in the
of the free theories. In particular in most cases it is not possible to solve the theory exactly. Wher
happens the physical observables have to be computed in perturbation theory in powers of the co
constant. An added problem appears when computing quantum corrections to the classical result
in that case the computation of observables are plagued with infinities that should be taken care o
will go back to this problem in section 8.

Nonabelian gauge theoriesQuantum electrodynamics (QED) is the simplest example of a gau
theory coupled to matter based in the abelian gauge symmetry of local U(1) phase rotations. Howe
is possible also to construct gauge theories based on nonabelian groups. Actually, our knowledge
strong and weak interactions is based on the use of such nonabelian generalizations of QED.

Let us consider a gauge groGpwith generator§™®, a = 1, ..., dim G satisfying the Lie algebPa

[Ta Tb} fabcTc (163)

®Some basics facts about Lie groups have been summarized in Appendix A.
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A gauge field taking values on the Lie algebragotan be introducedi,, = AT which transforms
under a gauge transformations as

1 s a
A, — —@U(?MU* +UA, U, U = eX"@T (164)

whereg is the coupling constant. The associated field strength is defined as
Ff, = 0,A% — 0,A% + gf™° AL AL (165)

Notice that this definition of thé’}, reduces to the one used in QED in the abelian case vithsn= 0.
In general, however, unlike the case of QED the field strength is not gauge invariant. In tefins-ef
Fg,T* it transforms as

F,, — UF, U™ (166)

The coupling of matter to a nonabelian gauge field is done by introducing again a covariant de
tive. For a field in a representation gf

d—UD (167)
the covariant derivative is given by
D,® = 9,0 — igALT"®. (168)
With the help of this we can write a generic Lagrangian for a nonabelian gauge field coupled to sc

¢ and spinors) as

L= — L F5 4 iP + Dug D — B [Ma(9) + ins Ma()] & — V(9). (169)

In order to keep the theory renormalizable we have to restfidp) and M, (¢) to be at most linear i
wheread/ (¢) have to be at most of quartic order. The Lagrangian of the standard model is of the f
(169).

4.4 Understanding gauge symmetry

In classical mechanics the use of the Hamiltonian formalism starts with the replacement of generz
velocities by momenta

pi = 5o = 4 = ¢i(q,p). (170)

qi

Most of the times there is no problem in inverting the relatipns- p; (¢, ¢). However in some systems
these relations might not be invertible and result in a number of constraints of the type

falap) =0, a=1,... Ny (171)

These systems are called degenerate or constrained [23, 24].

The presence of constraints of the type (171) makes the formulation of the Hamiltonian forma
more involved. The first problem is related to the ambiguity in defining the Hamiltonian, since
addition of any linear combination of the constraints do not modify its value. Secondly, one hastor
sure that the constraints are consistent with the time evolution in the system. In the language of Pc
brackets this means that further constraints have to be imposed in the form

{fa H} ~ 0. (172)
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Following [23] we use the symbeck to indicate a “weak” equality that holds when the constraint
fa(gq,p) = 0 are satisfied. Notice however that since the computation of the Poisson brackets invc
derivatives, the constraints can be used only after the bracket is computed. In principle the cond
(172) can give rise to a new set of constraiggés,p) = 0, b = 1,..., No. Again these constraints
have to be consistent with time evolution and we have to repeat the procedure. Eventually this fin
when a set of constraints is found that do not require any further constraint to be preserved by the
evolutiort.

Once we find all the constraints of a degenerate system we consider the so-called first clas:
straints¢,(¢,p) = 0,a = 1,..., M, which are those whose Poisson bracket vanishes weakly

{Ba; Pv} = Cabetpe = 0. (a73)

The constraints that do not satisfy this condition, called second class constraints, can be eliminat
modifying the Poisson bracket [23]. Then the total Hamiltonian of the theory is defined by

M

Hr =pigi— L+ _ A(t)a. (174)
a=1

What has all this to do with gauge invariance? The interesting answer is that for a singular sy
the first class constraints, generate gauge transformations. Indeed, becgtises,} ~ 0 ~ {¢4, H}
the transformations

M
g — ¢+ Y cat){ai ba},

pi — pit > cat){pi,da} (175)

leave invariant the state of the system. This ambiguity in the description of the system in term
the generalized coordinates and momenta can be traced back to the equations of motion in Lagr:
language. Writing them in the form

O*L . 9L OL

— 4 O 176
9306, = " 94,00,4 T ag” (176)

we find that order to determine the accelerations in terms of the positions and velocities th%%ﬂ
has to be invertible. However, the existence of constraints (171) precisely implies that the determ
of this matrix vanishes and therefore the time evolution is not uniquely determined in terms of the ir
conditions.

Let us apply this to Maxwell electrodynamics described by the Lagrangian
1 4
L=-; / a3 F, F'. (177)

The generalized momentum conjugatedgis given by

oL
= _ = = Op
T 50 A, PR, (178)

In particular for the time component we find the constrait= 0. The Hamiltonian is given by

H= /d% (7100 A, — L] = /d3 [2 (E2 + B ) + 7090 Ao + AV - B . (179)

’In principle it is also possible that the procedure finishes because some kind of inconsistent identity is found. In this
the system itself is inconsistent as it is the case with the Lagradgian;) = q.
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Requiring the consistency of the constraifit= 0 we find a second constraint
{n°, H} ~ 9pn° + V- E = 0. (180)

Together with the first constraimt® = 0 this one implies Gauss'’ laW - E = 0. These two constrains
have vanishing Poisson bracket and therefore they are first class. Therefore the total Hamiltonian is

by
Hy=H + / a [)q(:t)ﬂo F o(2)V - E} : (181)

where we have absorbet}) in the definition of the arbitrary functionk; (z) and \2(z). Actually, we
can fix part of the ambiguity taking; = 0. Notice that, becausé, has been included in the multipliers,
fixing Ay amounts to fixing the value ofy and therefore it is equivalent to taking a temporal gauge. |
this case the Hamiltonian is

1/~ L o
Hp = /d?’x [2 <E2 + BQ) +e(x)V - E} (182)
and we are left just with Gauss’ law as the only constraint. Using the canonical commutation relatic
{Ai(tvf)an(tvf,)} = 5”5(5_5,) (183)

we find that the remaining gauge transformations are generated by Gauss’ law
§A; ={A;, | P2 eV -E} = e, (184)

while leaving A invariant, so for consistency with the general gauge transformations the fuagtipn
should be independent of time. Notice that the constiint = 0 can be implemented by demanding
V - A = 0 which reduces the three degrees of freedom @b the two physical degrees of freedom of
the photon.

So much for the classical analysis. In the quantum theory the consWaif = 0 has to be
imposed on the physical statgshys). This is done by defining the following unitary operator on the
Hilbert space

U(e) = exp (Z / Bre(Z)V - E> . (185)

By definition, physical states should not change when a gauge transformations is performed. T
implemented by requiring that the operatf(=) acts trivially on a physical state

U(e)|phys) = |phys) — (V- E)|phys) = 0. (186)

In the presence of charge densijtythe condition that physical states are annihilated by Gauss’ le
changes t¢V - E — p)|phys) = 0.

The role of gauge transformations in the quantum theory is very illuminating in understanding
real role of gauge invariance [25]. As we have learned, the existence of a gauge symmetry in a tl
reflects a degree of redundancy in the description of physical states in terms of the degrees of fre
appearing in the Lagrangian. In Classical Mechanics, for example, the state of a system is us
determined by the value of the canonical coordinége;). We know, however, that this is not the case
for constrained Hamiltonian systems where the transformations generated by the first class cons
change the value @f andp; withoug changing the physical state. In the case of Maxwell theory for eve
physical configuration determined by the gauge invariant quanﬁ?tieé there is an infinite number of
possible values of the vector potential that are related by gauge transformatiprs 0,.c.
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o8] [o0)

(@) (b)

Fig. 9: Compactification of the real line (a) into the circumfereiste(b) by adding the point at infinity.

In the quantum theory this means that the Hilbert space of physical states is defined as the re:
identifying all states related by the operatff) with any gauge functioa(z) into a single physical state
|phys). In other words, each physical state corresponds to a whole orbit of states that are transfc
among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redundancy in the states a fu
condition can be given that selects one single state on each orbit. In the case of Maxwell electrodyn
the conditions4y = 0, V - A = 0 selects a value of the gauge potential among all possible ones giv
the same value for the electric and magnetic fields.

Since states have to be identified by gauge transformations the topology of the gauge group
an important physical r6le. To illustrate the point let us first deal with a toy model of a U(1) gauge the
in 1+1 dimensions. Later we will be more general. In the Hamiltonian formalism gauge transformat
g(Z) are functions defined oR with values on the gauge group U(1)

g:R—U(). (187)

We assume that(x) is regular at infinity. In this case we can add to the real Rnthe point at infinity
to compactify it into the circumferencg' (see Fig. 9). Once this is dogéz) are functions defined on
St with values onlJ (1) = S* that can be parametrized as

g: St —s U(l), g(x) = em(x), (188)

with = € [0, 27].
BecauseS! does have a nontrivial topology(x) can be divided into topological sectors. These
sectors are labelled by an integer numbet 7 and are defined by

a2m) = a(0) + 27 n . (189)

Geometricallyn gives the number of times that the spatsdlwinds around thes' defining the gauge
group U(1). This winding number can be written in a more sophisticated way as

y{ g(x) " dg(x) = 2mn (190)
Sl

where the integral is along the spatl.

In R? a similar situation happens with the gauge gfo8p)(2). If we demand(z) € SU(2) to be
regular at infinity|Z| — oo we can compactifiR? into a three-dimensional sphes$é, exactly as we did
in 1+1 dimensions. On the other hand, the funcyéf) can be written as

g(%) =a(2)1 +ad(z) - & (191)

8Although we present for simplicity only the case of SU(2), similar arguments apply to any simple group.
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and the conditiong(z)Tg(z) = 1, detg = 1 implies that(a®)? + @2 = 1. Therefore SU(2) is a
three-dimensional sphere ap@r) defines a function

g: 83— 53 (192)

As it was the case in 1+1 dimensions here the gauge transformatiepare also divided into topolog-
ical sectors labelled this time by the winding number

1
n =
2472

/53 3z €k 1T [(g_l&-g) (g_laig) (g_lﬁig)] € Z. (193)

In the two cases analyzed we find that due to the nontrivial topology of the gauge group man
the gauge transformations are divided into different sectors labelled by an inteGauge transforma-
tions with different values of cannot be smoothly deformed into each other. The sectorwith 0
corresponds to those gauge transformations that can be connected with the identity.

Now we can be a bit more formal. Let us consider a gauge theory in 3+1 dimensions with ge
groupG and let us denote by the set of all gauge transformatiogis= {g : S* — G}. At the same
time we defingj, as the set of transformationsdhthat can be smoothly deformed into the identity. Ou
theory will have topological sectors if

G/Go # 1. (194)

In the case of the electromagnetism we have seen that Gauss’ law annihilates physical states.
nonabelian theory the analysis is similar and leads to the condition

U(go)|phys) = exp [z / &Pz (Z)V - Ea] Iphys) = |phys), (195)

wherego(Z) = X" (T is in the connected component of the identy The important point to realize
here is that only the elements @f can be written as exponentials of the infinitesimal generators. Sin
this generators annihilate the physical states this implieg4fat) |phys) = |phys) only whengg € Gy.

What happens then with the other topological sectorg?dfG /G, there is still a unitary operator
U(g) that realizes gauge transformations on the Hilbert space of the theory. Howevey sme# in the
connected component of the identity, it cannot be written as the exponential of Gauss’ law. Still g
invariance is preserveddf(g) only changes the overall global phase of the physical states. For exam
if g1 is a gauge transformation with winding numbet= 1

U(g1)|phys) = e’|phys). (196)

It is easy to convince oneself that all transformations with winding number1 have the same value
of  modulo2x. This can be shown by noticing thatgfz) has winding numben = 1 theng(#) ! has
opposite winding numbet = —1. Since the winding number is additive, given two transformatigns
g2 With winding number 1g1_192 has winding number = 0. This implies that

Iphys) = U(g7 g2)|phys) = U(g1)TU(g2)|phys) = /2~ |phys) (197)

and we conclude th# = 6, mod2=. Once we know this it is straightforward to conclude that a gaug
transformationy,, () with winding numbem has the following action on physical states

U(gn)|phys) = ™ |phys), n € Z. (198)

To find a physical interpretation of this result we are going to look for similar things in ott
physical situations. One of then is borrowed from condensed matter physics and refers to the qu:
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states of electrons in the periodic potential produced by the ion lattice in a sadidsimplicity we
discuss the one-dimensional case where the minima of the potential are separated by adiStérere
the barrier between consecutive degenerate vacua is high enough we can neglect tunneling be
different vacua and consider the ground state of the potential near the minimum locatedvat= na

(n € 7Z) as possible vacua of the theory. This vacuum state is, however, not invariant under la
translations

¢Plna) = |(n + 1)a). (199)

However, it is possible to define a new vacuum state

k) = e "|na), (200)

ne”

which underei®? transforms by a global phase

eiaﬁ’k> _ Z e—ikna’(n + 1)a> _ eika’k>. (201)
ne”L

This ground state is labelled by the momentumand corresponds to the Bloch wave function.

This looks very much the same as what we found for nonabelian gauge theories. The vac
state labelled by plays a role similar to the Bloch wave function for the periodic potential with tF
identification ofg with the momentuni. To make this analogy more precise let us write the Hamiltonie
for nonabelian gauge theories

1 = A 1 A -
H:2/d3x(ﬁa-ﬁa+Ba-Ba):2/d3x(Ea-EaJrBa-Ba), (202)

where we have used the expression of the canonical moméraad we assume that the Gauss’ lan
constraint is satisfied. Looking at this Hamiltonian we can interpret the first term within the bracket
the kinetic energyl” = 37, - 7, and the second term as the potential endfgy 1 B, - B,. SinceV > 0

we can identify the vacua of the theory as thasier which V' = 0, modulo gauge transformations. This
happens wherevef is a pure gauge. However, since we know that the gauge transformations are lab
by the winding number we can have an infinite number of vacua which cannot be continuously conn:
with one another using trivial gauge transformations. Taking a representative gauge transfogpiaion

in the sector with winding number, these vacua will be associated with the gauge potentials

. 1 e o
A= —ggn(m)Vgn(x) L (203)

modulo topologically trivial gauge transformations. Therefore the theory is characterized by an inf
number of vacuan) labelled by the winding number. These vacua are not gauge invariant. Indee
gauge transformation with = 1 will change the winding number of the vacua in one unit

Ugr)n) = [n+1). (204)

Nevertheless a gauge invariant vacuum can be defined as

16) =) e n), with 0 € R (205)
nez
satisfying
U(91)(0) = ¢”|6). (206)
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We have concluded that the nontrivial topology of the gauge group henyeimportant physi-
cal consequences for the quantum theory. In particular it implies an ambiguity in the definition of
vacuum. Actually, this can also be seen in a Lagrangian analysis. In constructing the Lagrangis
the nonabelian version of Maxwell theory we only consider the tefg¥ . However this is not the
only Lorentz and gauge invariant term that contains just two derivatives. We can write the more ge
Lagrangian

1 09> ~
= ——F4 FmWe— = _Fd Fre 207
£ 4w 32727 M ’ (207)
whereﬁ;}u is the dual of the field strength defined by
a 1 2
F,uz/ = §€,u1/a)\F . (208)

The extra term in (207), proportional 0 - B9, is actually a total derivative and does not change th
equations of motion or the quantum perturbation theory. Nevertheless it has several important ph:
consequences. One of them is that it violates both p&tignd the combination of charge conjugatior
and parityC'P. This means that since strong interactions are described by a nonabelian gauge tl
with group SU(3) there is an extra source(dP violation which puts a strong bound on the valuedof
One of the consequences of a term like (207) in the QCD Lagrangian is a nonvanishing electric d
moment for the neutron [26]. The fact that this is not observed impose a very strong bound on the®
of thef#-parameter

6] <107° (209)

From a theoretical point of view it is still to be fully understood whgither vanishes or has a very small
value.

Finally, thefd-vacuum structure of gauge theories that we found in the Hamiltonian formalism «
be also obtained using path integral techniques form the Lagrangian (207). The second term in Eq.
gives then a contribution that depends on the winding number of the corresponding gauge configur

5 Towards computational rules: Feynman diagrams

As the basic tool to describe the physics of elementary particles, the final aim of quantum field th
is the calculation of observables. Most of the information we have about the physics of subat:
particles comes from scattering experiments. Typically, these experiments consist of arranging t
more particles to collide with a certain energy and to setup an array of detectors, sufficiently far ¢
from the region where the collision takes place, that register the outgoing products of the collision
their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed from quantum mechanical ampl
and how these amplitudes themselves can be evaluated in perturbative quantum field theory. We ke
discussion rather heuristic and avoid technical details that can be found in standard texts [2]- [11].
techniques described will be illustrated with the calculation of the cross section for Compton scattt
at low energies.

5.1 Cross sections and S-matrix amplitudes

In order to fix ideas let us consider the simplest case of a collision experiment where two particles cc
to produce again two particles in the final state. The aim of such an experiments is a direct measur
of the number of particles per unit tim’%(e, ) registered by the detector flying within a solid angle
d§2 in the direction specified by the polar angtesy (see Fig. 10). On general grounds we know tha
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detector

detector

Fig. 10: Schematic setup of a two-to-two-particles single scattering event in the center of mass reference frz

this quantity has to be proportional to the flux of incoming partflgs,. The proportionality constant
defines the differential cross section

dN do

In natural unitsf;, has dimensions of (lengthj, and then the differential cross section has dimensior
of (length¥. It depends, apart from the directi¢f ), on the parameters of the collision (energy, impac
parameter, etc.) as well as on the masses and spins of the incoming particles.

Differential cross sections measure the angular distribution of the products of the collision.
also physically interesting to quantify how effective the interaction between the particles is to proc
a nontrivial dispersion. This is measured by the total cross section, which is obtained by integratin
differential cross section over all directions

1 2w do
o= / d(cos 9)/ dp —(0, ). (211)
1 0 a2
To get some physical intuition of the meaning of the total cross section we can think of the clas
scattering of a point particle off a sphere of radiisThe particle undergoes a collision only when the
impact parameter is smaller than the radius of the sphere and a calculation of the total cross section
o = wR?. This is precisely the cross area that the sphere presents to incoming particles.

In Quantum Mechanics in general and in quantum field theory in particular the starting point
the calculation of cross sections is the probability amplitude for the corresponding process. In a scat
experiment one prepares a system with a given number of particles with definite mgmentagp,,. In
the Heisenberg picture this is described by a time independent state labelled by the incoming moi
of the particles (to keep things simple we consider spinless particles) that we denote by

D1y, Pn;in). (212)

This is defined as the number of particles that enter the interaction region per unit time and per unit area perpendic
the direction of the beam.
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On the other hand, as a result of the scattering experiment a numbkparticles with momenta
p1’,...,px are detected. Thus, the system is now in the “out” Heisenberg picture state

’ﬁlla v aﬁk/; OUt> (213)

labelled by the momenta of the particles detected at late times. The probability amplitude of détect
particles in the final state with momenid, . .., p,’ in the collision ofn particles with initial momenta
1, - - -, Dn, defines theS-matrix amplitude

S(in — out) = (p1', ..., px ;s out|py, . .., Pn;in). (214)

It is very important to keep in mind that both the (212) and (213) are time-independent state
the Hilbert space of a very complicated interacting theory. However, since both at early and late time
incoming and outgoing particles are well apart from each other, the “in” and “out” states can be tho
as two state§r, ..., p,) and|pi’, ..., pi’) of the Fock space of the corresponding free theory in whic
the coupling constants are zero. Then, the overlaps (214) can be written in terms of the matrix elel
of an.S-matrix operato@ acting on the free Fock space

=/

<p1 7'"7ﬁk,;OUt|ﬁ17"‘7ﬁn;in> = <ﬁ1/” * '7ﬁk/‘§‘ﬁl7' "7ﬁn>' (215)

The operato@ is unitary,§T = §-1, and its matrix elements are analytic in the external momenta.

In any scattering experiment there is the possibility that the particles do not interact at all anc
system is left in the same initial state. Then it is useful to writethmatrix operator as

S=1+iT, (216)

wherel represents the identity operator. In this way, all nontrivial interactions are encoded in the mi
elements of th@-operator(py/, ..., pi'|iT|p1, . - ., Pn). Since momentum has to be conserved, a glob.
delta function can be factored out from these matrix elements to define the invariant scattering amp
M

<ﬁlla---aﬁk/|iT|ﬁla"'aﬁn> - 27T 46 4)< Z bi — pr> pl""vﬁn;ﬁlla-"aﬁk,) (217)
initial final

Total and differential cross sections can be now computed from the invariant amplitudes. Her
consider the most common situation in which two particles with momgntadp, collide to produce
a number of particles in the final state with momegita In this case the total cross section is given by

1 d3/
= ~ M; (2m)6™ +py — tl, (218
(e (e[| [Q(z )32wr]‘ o[ @) (pl p2 Zp) (218)

final

states states

wherevy, is the relative velocity of the two scattering particles. The corresponding differential cr
section can be computed by dropping the integration over the directions of the final momenta. We
use this expression later in Section 5.3 to evaluate the cross section of Compton scattering.

We seen how particle cross sections are determined by the invariant amplitude for the corres;
ing proccess, i.eS-matrix amplitudes. In general, in quantum field theory it is not possible to compt
exactly these amplitudes. However, in many physical situations it can be argued that interactior
weak enough to allow for a perturbative evaluation. In what follows we will describe $romatrix
elements can be computed in perturbation theory using Feynman diagrams and rules. These ai
convenient bookkeeping techniques allowing both to keep track of all contributions to a process
given order in perturbation theory, and computing the different contributions.
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5.2 Feynman rules

The basic quantities to be computed in quantum field theory are vacuum expectation values of prc
of the operators of the theory. Particularly useful are time-ordered Green functions,

<Q]T[(’)1 (21) ... Onlan) | 1), (219)
where|Q?) is the the ground state of the theory and the time ordered product is defined
T|0i(2)0;(y)] = 0(a° ~ 1) Oi(@)O; (y) + 04" — 2°)O; (1) O (). (220)

The generalization to products with more than two operators is straightforward: operators are al
multiplied in time order, those evaluated at earlier times always to the right. The interest of these kit
correlation functions lies in the fact that they can be relatestnatrix amplitudes through the so-called
reduction formula. To keep our discussion as simple as possible we will not derived it or even v
it down in full detail. Its form for different theories can be found in any textbook. Here it suffices
say that the reduction formula simply states that &ayatrix amplitude can be written in terms of the
Fourier transform of a time-ordered correlation function. Morally speaking

—

<p1/7 o 7ﬁm,; OUt‘ﬁla R 7ﬁna lIl>
\’ (221)

/d4:n1 . /d4yn<Q|T [d)(xl)T o) o) . by ||Q) P e

whereg(x) is the field whose elementary excitations are the particles involved in the scattering.

The reduction formula reduces the problem of compufingatrix amplitudes to that of evaluating
time-ordered correlation functions of field operators. These quantities are easy to compute exactly
free theory. For an interacting theory the situation is more complicated, however. Using path integ
the vacuum expectation value of the time-ordered product of a number of operators can be expres:

/ DDt O1(21) ... . Op () €519:9']
(QIT|O1(21) ... Onln) |12) = ’
/ DDt £516:9]

For an theory with interactions, neither the path integral in the numerator or in the denominator is C
sian and they cannot be calculated exactly. However, Eq. (222) is still very useful. The $igtian]
can be split into the free (quadratic) piece and the interaction part

S[é, '] = Sol¢, ¢'] + Sine[e, 671 (223)

All dependence in the coupling constants of the theory comes from the second piece. Expanding
exp[iSint] IN power series of the coupling constant we find that each term in the series expansion of
the numerator and the denominator has the structure

/ 2696 [ . .}eisow, (224)

where “. . denotes certain monomial of fields. The important point is that now the integration meas
only involves the free action, and the path integral in (224) is Gaussian and therefore can be com
exactly. The same conclusion can be reached using the operator formalism. In this case the corre
function (219) can be expressed in terms of correlation functions of operators in the interaction pic
The advantage of using this picture is that the fields satisfy the free equations of motion and ther

(222)
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can be expanded in creation-annihilation operators. The correlatiockiding are then easily computed
using Wick’s theorem.

Putting together all the previous ingredients we can calc@atetrix amplitudes in a perturbative
series in the coupling constants of the field theory. This can be done using Feynman diagrams and
a very economical way to compute each term in the perturbative expansion 8frttadrix amplitude
for a given process. We will not detail the the construction of Feynman rules but just present t
heuristically.

For the sake of concreteness we focus on the case of QED first. Going back to Eq. (16C
expand the covariant derivative to write the action

Saen = [ d's {—iFWFW F ) — )+ U pA, | (225)

The action contains two types of particles, photons and fermions, that we represent by straight and
lines respectively

The arrow in the fermion line does not represent the direction of the momentum but the flux of (negs
charge. This distinguishes particles form antiparticles: if the fermion propagates from left to right
in the direction of the charge flux) it represents a patrticle, whereas when it does from right to le
corresponds to an antiparticle. Photons are not charged and therefore wavy lines do not have orien

Next we turn to the interaction part of the action containing a photon field, a spinor and its co
gate. In a Feynman diagram this corresponds to the vertex

Now, in order to compute afi-matrix amplitude to a given order in the coupling constafar a process
with certain number of incoming and outgoing asymptotic states one only has to draw all possible
grams with as many vertices as the order in perturbation theory, and the corresponding number an
of external legs. It is very important to keep in mind that in joining the fermion lines among the differ
building blocks of the diagram one has to respect their orientation. This reflects the conservation ¢
electric charge. In addition one should only consider diagrams that are topologically hon-equivalen
that they cannot be smoothly deformed into one another keeping the external led fixed

To show in a practical way how Feynman diagrams are drawn, we consider Bhabha scatterin
the elastic dispersion of an electron and a positron:

et +e” — et e,

Our problem is to compute th&-matrix amplitude to the leading order in the electric charge. Becau
the QED vertex contains a photon line and our process does not have photons either in the initial «

From the point of view of the operator formalism, the requirement of considering only diagrams that are topologic
nonequivalent comes from the fact that each diagram represents a certain Wick contraction in the correlation funct
interaction-picture operators.
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final states we find that drawing a Feynman diagram requires at least ttizese In fact, the leading
contribution is of order? and comes from the following two diagrams, each containing two vertices:

et + et et

(& € e (&

Incoming and outgoing particles appear respectively on the left and the right of this diagram. N¢
how the identification of electrons and positrons is done comparing the direction of the charge flux
the direction of propagation. For electrons the flux of charges goes in the direction of propaga
whereas for positrons the two directions are opposite. These are the only two diagrams that ¢
drawn at this order in perturbation theory. It is important to include a relative minus sign betw
the two contributions. To understand the origin of this sign we have to remember that in the ope
formalism Feynman diagrams are just a way to encode a particular Wick contraction of field oper:
in the interaction picture. The factor efl reflects the relative sign in Wick contractions represented t
the two diagrams, due to the fermionic character of the Dirac field.

We have learned how to draw Feynman diagrams in QED. Now one needs to compute the
tribution of each one to the corresponding amplitude using the so-called Feynman rules. The ic
simple: given a diagram, each of its building blocks (vertices as well as external and internal lines
an associated contribution that allows the calculation of the corresponding diagram. In the case of
in the Feynman gauge, we have the following correspondence for vertices and internal propagator:

o > B = !
| R eV aVe Ve Ve Ve Ve Ve Wil /4 — _2“7”{/
p°+e
p
—iev” (2 45(4)
z = i€750/(2m)°0" (p1 + p2 + p3).-
o

A change in the gauge would reflect in an extra piece in the photon propagator. The delta fun
implementing conservation of momenta is written using the convention that all momenta are enterin
vertex. In addition, one has to perform an integration over all momenta running in internal lines with

measure
ddp
/ 7(27)4 , (226)

and introduce a factor of 1 for each fermion loop in the diagréth

"The contribution of each diagram comes also multiplied by a degeneracy factor that takes into account in how many
a given Wick contraction can be done. In QED, however, these factors are equal to 1 for many diagrams.
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In fact, some of the integrations over internal momenta can actually be domgthsidelta func-
tion at the vertices, leaving just a global delta function implementing the total momentum conservatis
the diagram [cf. Eq. (217)]. Itis even possible that all integrations can be eliminated in this way. Th
the case when we have tree level diagrams, i.e. those without closed loops. In the case of diagranm
loops there will be as many remaining integrations as the number of independent loops in the diagi

The need to perform integrations over internal momenta in loop diagrams has important cc
guences in Quantum Field Theory. The reason is that in many cases the resulting integrals are ill-de
i.e. are divergent either at small or large values of the loop momenta. In the first case one sj@aks
frared divergenceand usually they cancel once all contributions to a given process are added toge
More profound, however, are the divergences appearing at large internal momenta.ulfizesalet
divergencegannot be cancelled and have to be dealt through the renormalization procedure. We
discuss this problem in some detail in Section 8.

Were we computing time-ordered (amputated) correlation function of operators, this would be
However, in the case af-matrix amplitudes this is not the whole story. In addition to the previot
rules here one needs to attach contributions also to the external legs in the diagram. These are th
functions of the corresponding asymptotic states containing information about the spin and momel
the incoming and outgoing particles. In the case of QED these contributions are:

Incoming fermion: « —»@ = Ua (P, )

Incoming antifermion: « —4—@ = Ua(P, s)

Outgoing fermion: @—»— a = Uo (P, 3)

Outgoing antifermion: @—4— a = va(p, 5)

Incoming photon: ¢ W\,@ — e”(lg, A)

Outgoing photon: @'W\» Iz = eM(E, A)*
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Here we have assumed that the momenta for incoming (resp. outgoing) paatielestering (resp.
leaving) the diagram. Itis important also to keep in mind that in the computatiSmedtrix amplitudes
all external states are on-shell. In Section 5.3 we illustrate the use of the Feynman rules for QED
the case of the Compton scattering.

The application of Feynman diagrams to carry out computations in perturbation theory is
tremely convenient. It provides a very useful bookkeeping technigue to account for all contributior
a process at a given order in the coupling constant. This does not mean that the calculation of Fey
diagrams is an easy task. The number of diagrams contributing to the process grows very fast wi
order in perturbation theory and the integrals that appear in calculating loop diagrams also get very
plicated. This means that, generically, the calculation of Feynman diagrams beyond the first few o
very often requires the use of computers.

Above we have illustrated the Feynman rules with the case of QED. Similar rules can be ¢
puted for other interacting quantum field theories with scalar, vector or spinor fields. In the case o
nonabelian gauge theories introduced in Section 4.3 we have:

1
)0 > i = _— 0ij
a,? B] <I$_m+25>5a 1]

1 Q000000000 b = e
p? +1e

B.Jj

wa = —ig’yga f”j
Qa,
o,c

w,a = g f I (p — pg) + permutation}s
v,b
o,c A d

— —i92 |:fabefcde (nuanu)\ _ nu)\nua) + pel’mutation}s

M, a v, b

It is not our aim here to give a full and detailed description of the Feynman rules for nonabe
gauge theories. It suffices to point out that, unlike the case of QED, here the gauge fields can in
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among themselves. Indeed, the three and four gauge field vertices ansezjagence of the cubic and
quartic terms in the action

1
§=-1 / d*z F, F™e, (227)

where the nonabelian gauge field streng} is given in Eq. (165). The self-interaction of the non-
abelian gauge fields has crucial dynamical consequences and its at the very heart of its success
scribing the physics of elementary particles.

5.3 An example: Compton scattering

To illustrate the use of Feynman diagrams and Feynman rules we compute the cross section f
dispersion of photons by free electrons, the so-called Compton scattering:

Yk, A) + e (pys) — (K, X)) +e” (0, 8).

In brackets we have indicated the momenta for the different particles, as well as the polarization:
spins of the incoming and outgoing photon and electrons respectively. The first step is to identif
the diagrams contributing to the process at leading order. Taking into account that the vertex of
contains two fermion and one photon leg, it is straightforward to realize that any diagram contributir
the process at hand must contain at least two vertices. Hence the leading contribution is ef.ofder
first diagram we can draw is:

b,s p,s
k, by ]{:/, N
This is, however, not the only possibility. Indeed, there is a second possible diagram:
D, s KN
k, A p, s

Itis important to stress that these two diagrams are topologically nonequivalent, since deforming on
the other would require changing the label of the external legs. Therefore the l&gifigamplitude
has to be computed adding the contributions from both of them.

Using the Feynman rules of QED we find

(N2 ol NI V% ¢+}é+m€ = o
H + X = (ie)*u(p’, s")¢'(k', X) m;{(k,)\)u(p,s)

+ (ie)%u(p’, s )d(k, )\)m¢/(1§/7 MY u(p, s). (228)

Because the leading order contributions only involve tree-level diagrams, there is no integration
internal momenta and therefore we are left with a purely algebraic expression for the amplitude. T
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an explicit expression we begin by simplifying the numerators. The followinglsimdpntity turns out
to be very useful for this task

@ = =Pt + 2(a - b)1. (229)

Indeed, looking at the first term in Eq. (228) we have

P+ k+me)d(k, Nu(@,s) = —¢(k, \)(p— me)u(B, s) + kg(k, Nu(p, )
S Au(ps), (230)

where we have applied the identity (229) on the first term inside the parenthesis. The first terr
the right-hand side of this equation vanishes identically because of Eq. (125). The expression ¢
further simplified if we restrict our attention to the Compton scattering at low energy when electrons
nonrelativistic. This means that all spatial momenta are much smaller than the electron mass

121, 1R, [57], 1] < me. (231)
In this approximation we have thgt, p’* ~ (m.,0) and therefore
p-e(k,\)=0. (232)

This follows from the absence of temporal photon polarization. Then we conclude that at low enerc

(B + -+ me)d(k, Nu(B, s) = ke(k, Nu(p, ) (233)
and similarly for the second term in Eq. (228)
(B—F +me)d' (K N u(@,s) = —K'¢' (K, N) u(p,s). (234)

Next, we turn to the denominators in Eq. (228). As it was explained in Section 5.2, in compu
scattering amplitudes incoming and outgoing particles should have on-shell momenta,

p?=m? = p? and  k*=0=k2 (235)
Then, the two denominator in Eq. (228) simplify respectively to
(p+k)?—m2=p*+ k> +2p -k —m? :2p~k::2wp|E| —2]7-E (236)

and

(p—k)Y —m2=p*+K*+2p- K —m?=-2p -k = —2wp|E’| +25- k' (237)

Working again in the low energy approximation (231) these two expressions simplify to
(p+k)* — m2 ~ 2me|k], (p—K)? —md~ —2mc|k'|. (238)

Putting together all these expressions we find that at low energies

b S

Gl ) |g iy £ e ny + B 0K gy | i) (239)
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Using now again the identity (229) a number of times as well as the transversatitijtion of the
polarization vectors (156) we end up with a handier equation

e2r -
>_>_< + X R~ p— e(k,\) - (k: )\)] u(p ,s/)mU(ﬁ,S)

P
N R N ("’—” u(fs).  (240)
2, R

With a little bit of effort we can show that the second term on the right-hand side vanishes. Firsi
notice that in the low energy limjk| ~ |k’|. If in addition we make use the conservation of momentur
k — k' = p’ — p and the identity (125)

— = 7 S ARNAY ] % k, =
u(p’, s )¢k, )¢ (k" X - — = | u(p,s
(07, s)¢(k, \)g" (K", X) (Vfl ‘k,‘) (P, s)
~ L%I a(p’, ")k, V' (k' N) (B = me)u(@, s). (241)

Next we use the identity (229) to take the tefph— m.) to the right. Taking into account that in the low
energy limit the electron four-momenta are orthogonal to the photon polarization vectors [see Eq. (.
we conclude that

al, )N (RN (@ = me (o)
— ()P~ mf(F N (F ) (7 s) = 0 (242)

where the last identity follows from the equation satisfied by the conjugate positive-energy sp
u(p’, s") (P —me) =0

After all these lengthy manipulations we have finally arrived at the expression of the invar
amplitude for the Compton scattering at low energies

2
iM = el A) RN a8 £ ou(.s). (243)
Me &

The calculation of the cross section involves computing the modulus squared of this quantity. For r
physical applications, however, one is interested in the dispersion of photons with a given polariz
by electrons that are not polarized, i.e. whose spins are randomly distributed. In addition in n
situations either we are not interested, or there is no way to measure the final polarization of the out
electron. This is for example the situation in cosmology, where we do not have any information a
the polarization of the free electrons in the primordial plasma before or after the scattering with phc
(although we have ways to measure the polarization of the scattered photons).

To describe this physical situations we have to average over initial electron polarization (sinc
do not know them) and sum over all possible final electron polarization (because our detector is bli
this quantum number),

2
4 e ,
iME == | £ ‘ek,/\-e’k'
M 2<me|k|) (k.

The factor of% comes from averaging over the two possible polarizations of the incoming electrc
The sums in this expression can be calculated without much difficulty. Expanding the absolute \
explicitly

) a7 k)| = 3 ) [up, o) ¥ )] [5(67, (s )], (249)

sil— sil—

2 > > ‘ﬂ(ﬁ/’S')KU(ﬁ,S) g (244)

41 41
s=x3 s'==%3
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using thaty*T = ~%4#40 and after some manipulation one finds that
— (=l ! — 2 — — — =/ I\ =/ ./
SO [ k)| = | Y walB)us@s) | B | Y. uels a0 ) | oo

s:i% s’:i% s:i% s'=+
= Tr (B4 mk(B + k|, (246)

where the final expression has been computed using the completeness relations in Eq. (128). Th
evaluation of the trace can be done using the standard Dirac matrices identities. Here we comy
applying again the relation (229) to commgiteandf. Using thatk? = 0 and that we are working in the
low energy limit we hav¥

[NIES

Te (6 + mo)k( + mo]| =20+ )@ - k) Te 1~ Sm2|J2. (247)

This gives the following value for the invariant amplitude

2

M2 = 464‘6(/25, A) (RN (248)
Plugging|iM|? into the formula for the differential cross section we get
6 = sima MP = <47Tme> ‘e(k’, A) RN (249)

The prefactor of the last equation is precisely the square of the so-called classical electron.rattius
fact, the previous differential cross section can be rewritten as

do _ 3 7 1 s
a0 - S?UT)E(I‘?;)‘) ek, N) (250)
whereor is the total Thomson cross section
et 8T o
= = — . 2 1
or 6mm?2 3 el (251)

The result (250) is relevant in many areas of Physics, but its importance is paramount in the ¢
of the cosmological microwave background (CMB). Just before recombination the universe is filles
a plasma of electrons interacting with photons via Compton scattering, with temperatures of the orc
1 keV. Electrons are then nonrelativistia{ ~ 0.5 MeV) and the approximations leading to Eq. (250
are fully valid. Because we do not know the polarization state of the photons before being scatter:
electrons we have to consider the cross section averaged over incoming photon polarizations. Frg
(250) we see that this is proportional to

2

1 - - 1 - - o o
3 > ‘e(k;,k)-e’(k’,)\’)* 3 > ek, Ne(k, A | 65 (R, X)ea(k', N (252)
A=1,2 A=1,2

The sum inside the brackets can be computed using the normalization of the polarization W@tphslz =
1, and the transversality conditidn €(k, A) = 0

2_1 B kikj PO NN (T NI E
= 2<6z]_ ‘E|2>6j(kﬂ)\)€l(k7)\)

1

ek, \) - € (k' N)*

12\We use also the fact that the trace of the product of an odd number of Dirac matrices is always zero.
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1 I
= S -1 P, (253)

wherel = £ i is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all polarizations par:
the direction of the incoming photcﬁﬁwhereas the differential cross section reaches the maximum in
plane normal td. If photons would collide with the electrons in the plasma with the same intensity frc
all directions, the result would be an unpolarized CMB radiation. The fact that polarization is actu
measured in the CMB carries crucial information about the physics of the plasma before recombin
and, as a consequence, about the very early universe (see for example [22] for a throughout discu

6 Symmetries
6.1 Noether’s theorem

In Classical Mechanics and Classical Field Theory there is a basic result that relates symmetrie
conserved charges. This is called Noether's theorem and states that for each continuous symmetry
system there is conserved current. In its simplest version in Classical Mechanics it can be easily pr
Let us consider a Lagrangidi{g;, ¢;) which is invariant under a transformatig{t) — ¢.(¢, ¢) labelled
by a parameter. This means thak(¢’, ¢') = L(q, ¢) without using the equations of motibh If ¢ < 1
we can consider an infinitesimal variation of the coordinategt) and the invariance of the Lagrangian
implies

oL oL oL d 0L d (0L
:eL ia.iziei 7-6.1': a. " 1 a- -~ 0eqi | - 254
0=0dcLlgi 40 6%‘5q * 8%5(] [6%‘ dtaqz‘] Ot ¥ G dt (3 5q> (254)

Whend.q; is applied on a solution to the equations of motion the term inside the square brackets van
and we conclude that there is a conserved quantity

) L
O=0 with Q=2%Lsq. (255)
0q;

Notice that in this derivation it is crucial that the symmetry depends on a continuous parameter :
otherwise the infinitesimal variation of the Lagrangian in Eq. (254) does not make sense.

In Classical Field Theory a similar result holds. Let us consider for simplicity a theory of a sin
field ¢(z). We say that the variationk¢ depending on a continuous parametare a symmetry of the
theory if, without using the equations of motion, the Lagrangian density changes by

Sl = 0, KM, (256)

If this happens then the action remains invariant and so do the equations of motion. Working out no'
variation of £ underé.¢ we find

oL oL oL oL oL
0Kt = ———=0,0c¢0 + 7-0c¢0 = O < e(b) [ -0 ()]&qﬁ. 257

W= 80,0 0 g 5(9,9) o6~ "\ 99,9 (257
If ¢(x) is a solution to the equations of motion the last terms disappears, and we find that there
conserved current

oL
9(9,0)

13The following result can be also derived a more general situations where the Lagrangian changes by a total time deri

9, J" =0 with J*= Setp — K. (258)
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Actually a conserved current implies the existence of a charge

Q= / & I, 7) (259)

which is conserved

aQ _

yr B3z JO(t, %) = — / d3x 0;J(t, T) = 0, (260)

provided the fields vanish at infinity fast enough. Moreover, the conserved ajdsge Lorentz scalar.
After canonical quantization the char@edefined by Eq. (259) is promoted to an operator that generat
the symmetry on the fields

6p = i[¢, Q. (261)

As an example we can consider a scalar figld) which under a coordinate transformation- z’
changes a8/ (z’) = ¢(z). In particular performing a space-time translatigh = 2/ + o we have

¢ (z) — p(z) = -9, + O(a*) = ¢ = —a"0,0. (262)
Since the Lagrangian density is also a scalar quantity, it transforms under translations as
0L = —al0,L. (263)
Therefore the corresponding conserved charge is

oL
9(0ug)

where we introduced the energy-momentum tensor

JH =

a’0,¢ + a'L = —a, TH, (264)

oL

™ = 0"p — M L. (265)
9(0,0)
We find that associated with the invariance of the theory with respect to space-time translations
are four conserved currents defined By’ with v = 0,.. ., 3, each one associated with the translatiol

along a space-time direction. These four currents form a rank-two tensor under Lorentz transformz
satisfying

9T = 0. (266)

The associated conserved charges are given by
PY = / d3x T (267)

and correspond to the total energy-momentum content of the field configuration. Therefore the el
density of the field is given b§* while 7" is the momentum density. In the quantum theory ftte
are the generators of space-time translations.

Another example of a symmetry related with a physically relevant conserved charge is the gl
phase invariance of the Dirac Lagrangian (1%7). e'%4p. For smallf this corresponds to variations
o = 16, dgyp = —ib which by Noether’s theorem result in the conserved charge

" =y, " = 0. (268)
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Thus implying the existence of a conserved charge
Q= [ s = [ dsviv. (269)

In physics there are several instances of global U(1) symmetries that act as phase shifts on sj
This is the case, for example, of the baryon and lepton number conservation in the standard moc
more familiar case is the U(1) local symmetry associated with electromagnetism. Notice that althi
in this case we are dealing with a local symmetry;» ea(x), the invariance of the Lagrangian holds
in particular for global transformations and therefore there is a conserved cyireat eipy*). In

Eg. (162) we saw that the spinor is coupled to the photon field precisely through this current. Its
component is the electric charge dengityvhile the spatial components are the current density vector

This analysis can be carried over also to nonabelian unitary global symmetries acting as
Wi — Ui, Utu =1 (270)

and leaving invariant the Dirac Lagrangian when we have several fermions. If we write the thatrix
terms of the hermitian group generat@ré as

U = exp (ia,T?), (T =717, (271)
we find the conserved current
G = TN ), dug" = 0. (272)

This is the case, for example of the approximate flavor symmetries in hadron physics. The sim
example is the isospin symmetry that mixes the quar&add

<Z>—>M(Z), M € SU(2). (273)

Since the proton is a bound state of two quarkand one quarkl while the neutron is made out of
one quarky and two quarksl, this isospin symmetry reduces at low energies to the well known isosy
transformations of nuclear physics that mixes protons and neutrons.

6.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conserved ch@fgassociated to symmetries by
Noether’s theorem are operators implementing the symmetry at the quantum level. Since the charc
conserved they must commute with the Hamiltonian

[Q*, H]=0. (274)

There are several possibilities in the quantum mechanical realization of a symmetry:

Wigner-Weyl realization. In this case the ground state of the the@yis invariant under the
symmetry. Since the symmetry is generated}dythis means that

U(Q)]0) = ' Q|0) = 0) =  Q%0)=0. (275)

At the same time the fields of the theory have to transform according to some irreducible represen
of the group generated by tlig. From Eqg. (261) it is easy to prove that

U(a)pild (o)™ = Usj(@) gy, (276)

49



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

whereU;;(«a) is an element of the representation in which the figldransforms. If we consider now
the quantum state associated with the operator

|7) = ¢il0) (277)
we find that because of the invariance of the vacuum (275) the $tatesmnsform in the same represen-
tation asp;

U(@)li) = Ua)gid (@)~ U(@)|0) = Uyj(a)¢;]0) = Uii(a) ). (278)

Therefore the spectrum of the theory is classified in multiplets of the symmetry group. In addition, s
[H,U(«)] = 0 all states in the same multiplet have the same energy. If we consider one-particle st
then going to the rest frame we conclude that all states in the same multiplet have exactly the same

Nambu-Goldstone realization. In our previous discussion the result that the spectrum of tt
theory is classified according to multiplets of the symmetry group depended crucially on the invarii
of the ground state. However this condition is not mandatory and one can relax it to consider the
where the vacuum state is not left invariant by the symmetry

e @0y £[0) = Q"]0) # 0. (279)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.

To illustrate the consequences of (279) we consider the example of a number scalapfielc
(i=1,...,N)whose dynamics is governed by the Lagrangian

1 . v
L=3 L't =V (), (280)

where we assume th&t(¢) is bounded from below. This theory is globally invariant under the transfc
mations

8" = *(T*)h¢?, (281)
with 7% a =1,..., 1N (N — 1) the generators of the group SOJN
To analyze the structure of vacua of the theory we construct the Hamiltonian
3 (1 i 1le i o
H= | d’x o +§ch Vo' +V(p) (282)
and look for the minimum of

V(p) = /d3:1: Bﬁapz V¢ + V(cp)} . (283)

Since we are interested in finding constant field configurati®igs= 0 to preserve translational invari-
ance, the vacua of the potentid{,) coincides with the vacua df (¢). Therefore the minima of the
potential correspond to the vacuum expectation vafues

ov
Oyt

= 0. (284)
i=(p?)

We divide the generatofE® of SO(V) into two groups: Those denoted B* (« = 1,...,h)
that satisfy

(H*)’(¢") = 0. (285)

YFor simplicity we consider that the minima bf(¢) occur at zero potential.
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This means that the vacuum configuratign) is left invariant by the transformation generated 8y .
For this reason we call theombroken generators. Notice that the commutator of two unbroken gene
tors also annihilates the vacuum expectation vdlHe, H”];;(¢?) = 0. Therefore the generatof#/*}
form a subalgebra of the algebra of the generators of O(MWYie subgroup of the symmetry group
generated by them is realized a la Wigner-Weyl.

The remaining generatofs 4, with A = 1,. . ., %N(N — 1) — h, by definition do not preserve
the vacuum expectation value of the field
(K1) # 0. (286)

These will be called thbroken generators. Next we prove a very important result concerning the brol
generators known as the Goldstone theorem: for each generator broken by the vacuum expectatiol
there is a massless excitation.

The mass matrix of the excitations around the vacyuf is determined by the quadratic part of
the potential. Since we assumed that(p)) = 0 and we are expanding around a minimum, the firs
term in the expansion of the potentid(y) around the vacuum expectation values is given by

0%V . . . .
Vip) = ——— o — () + O (o — 3 287
()= 50, - (@' = (NP = (") + O (0 = (9))°] (287)
and the mass matrix is:
0*V
MZ?A = S . 288
R P 259

In order to avoid a cumbersome notation we do not show explicitly the dependence of the mass n
on the vacuum expectation valugs’).

To extract some information about the possible zero modes of the mass matrix, we write dow
conditions that follow from the invariance of the potential unélgtr = €*(7)’’. At first order ine®

. OV

= e (T =0 (289)

SV (p)

Differentiating this expression with respectgb we arrive at

0?V

19)%
Otk (

Ot

T5¢7 + 5 (T, = 0. (290)

Now we evaluate this expression in the vacugim= (©?). Then the derivative in the second term cancel
while the second derivative in the first one gives the mass matrix. Hence we find
MG (T*)i(¢’) = 0. (291)

Now we can write this expression for both broken and unbroken generators. For the unbroken ones.
(H“)§<¢j> = 0, we find a trivial identityd0 = 0. On the other hand for the broken generators we have

M (KYie) = 0. (292)

Since(KA)§<g07) # 0 this equation implies that the mass matrix has as many zero modes as br¢
generators. Therefore we have proven Goldstone’s theorem: associated with each broken sy
there is a massless mode in the theory. Here we have presented a classical proof of the theorem.
quantum theory the proof follows the same lines as the one presented here but one has to consi
effective action containing the effects of the quantum corrections to the classical Lagrangian.
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As an example to illustrate this theorem, we consider a SO(3) invariant scédathiery with a
“mexican hat” potential

V(@) = 2 (32 —a?). (293)

The vacua of the theory correspond to the configurations satisfying = a2. In field space this equa-
tion describes a two-dimensional sphere and each solution is just a point in that sphere. Geomet
it is easy to visualize that a given vacuum field configuration, i.e. a point in the sphere, is prese
by SO(2) rotations around the axis of the sphere that passes through that point. Hence the ve
expectation value of the scalar field breaks the symmetry according to

(B):  SO(3) — SO(2). (294)

Since SO(3) has three generators and SO(2) only one we see that two generators are broken ant
fore there are two massless Goldstone bosons. Physically this massless modes can be thougt
corresponding to excitations along the surface of the spli@ré = a.

Once a minimum of the potential has been chosen we can proceed to quantize the excite
around it. Since the vacuum only leaves invariant a SO(2) subgroup of the original SO(3) symn
group it seems that the fact that we are expanding around a particular vacuum expectation value
scalar field has resulted in a lost of symmetry. This is however not the case. The full guantum tr
is symmetric under the whole symmetry group SO(3). This is reflected in the fact that the phy:
properties of the theory do not depend on the particular point of the sglagre= a? that we have
chosen. Different vacua are related by the full SO(3) symmetry and therefore should give the ¢
physics.

It is very important to realize that given a theory with a vacuum determinedzbyall other
possible vacua of the theory are unaccessible in the infinite volume limit. This means that two vac
states0;), |02) corresponding to different vacuum expectation values of the scalar field are orthog:
(01]02) = 0 and cannot be connected by any local observaijle), (0;|®(x)|02) = 0. Heuristically
this can be understood by noticing that in the infinite volume limit switching from one vacuum i
another one requires changing the vacuum expectation value of the field everywhere in space at the
time, something that cannot be done by any local operator. Notice that this is radically different tc
expectations based on the Quantum Mechanics of a system with a finite number of degrees of free

In High Energy Physics the typical example of a Goldstone boson is the pion, associated
the spontaneous breaking of the global chiral isosfii2), x SU(2), symmetry. This symmetry acts
independently in the left- and right-handed spinors as

dr.r

)

< UL,k > — ML R ( ZL’R ) , My r €SU2)Lr (295)

Presumably since the quarks are confined at low energies this symmetry is spontaneously broken
to the diagonal SU(2) acting in the same way on the left- and right-handed components of the spi
Associated with this symmetry breaking there is a Goldstone mode which is identified as the pion.
tice, nevertheless, that the SU{X)SU(2)r would be an exact global symmetry of the QCD Lagrangia
only in the limit when the masses of the quarks are zefom,; — 0. Since these quarks have nonzerc
masses the chiral symmetry is only approximate and as a consequence the corresponding Goldstc
son is not massless. That is why pions have masses, although they are the lightest particle ama
hadrons.

Symmetry breaking appears also in many places in condensed matter. For example, when ¢
crystallizes from a liquid the translational invariance that is present in the liquid phase is broken
discrete group of translations that represent the crystal lattice. This symmetry breaking has Gold
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bosons associated which are identified with phonons which are the quaxtitatien modes of the
vibrational degrees of freedom of the lattice.

The Higgs mechanism.Gauge symmetry seems to prevent a vector field from having a ma
This is obvious once we realize that a term in the Lagrangiandike, A* is incompatible with gauge
invariance.

However certain physical situations seem to require massive vector fields. This happene
example during the 1960s in the study of weak interactions. The Glashow model gave a commo
scription of both electromagnetic and weak interactions based on a gauge theory with group SU(2) >
but, in order to reproduce Fermi’s four-fermion theory of helecay it was necessary that two of the
vector fields involved would be massive. Also in condensed matter physics massive vector field
required to describe certain systems, most notably in superconductivity.

The way out to this situation is found in the concept of spontaneous symmetry breaking discL
previously. The consistency of the quantum theory requires gauge invariance, but this invariance ¢
realized a la Nambu-Goldstone. When this is the case the full gauge symmetry is not explicitly prese
the effective action constructed around the particular vacuum chosen by the theory. This makes pc
the existence of mass terms for gauge fields without jeopardizing the consistency of the full theory, v
is still invariant under the whole gauge group.

To illustrate the Higgs mechanism we study the simplest example, the Abelian Higgs mode
U(1) gauge field coupled to a self-interacting charged complex scaladfiglith Lagrangian

1 _ A
L=~ FuwP" + DSD"® — 7 (30 - u?)?, (296)

where the covariant derivative is given by Eqg. (159). This theory is invariant under the gauge tran
mations

P — @, Ay — Ay + Opa(x). (297)

The minimum of the potential is defined by the equati®h = n. We have a continuum of different
vacua labelled by the phase of the scalar field. None of these vacua, however, is invariant und:
gauge symmetry

<¢)> — /LGWO N Meiﬂo+io¢(x) (298)

and therefore the symmetry is spontaneously broken Let us study now the theory around one of
vacua, for examplé®) = p, by writing the field® in terms of the excitations around this particula
vacuum

O(x) = [u + \}ia(rﬂ)} V@), (299)
Independently of whether we are expanding around a particular vacuum for the scalar field we sl
keep in mind that the whole Lagrangian is still gauge invariant under (297). This means that perfi

ing a gauge transformation with parametér:) = —dJ(z) we can get rid of the phase in Eq. (299).
Substituting themd (z) = 1 + %a(x) in the Lagrangian we find
1 ©v 2,2 o 1 o 1 2 2
L = _ZFWF +e A AN + 58“08 o— §Au o
A
— o’ — 104 +e2uA, Alo + €2 A, Ao, (300)

What are the excitation of the theory around the vacy@n= pn? First we find a massive real scalar
field o(z). The important point however is that the vector fidld now has a mass given by

m,2y = 2e%12. (301)
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The remarkable thing about this way of giving a mass to the photon is that atimoye have given up
gauge invariance. The symmetry is only hidden. Therefore in quantizing the theory we can still enjc
the advantages of having a gauge theory but at the same time we have managed to generate a n
the gauge field.

It is surprising, however, that in the Lagrangian (300) we did not found any massless mode. £
the vacuum chosen by the scalar field breakslfiie) generator of U(1) we would have expected one
masless particle from Goldstone’s theorem. To understand the fate of the missing Goldstone bos
have to revisit the calculation leading to Eq. (300). Were we dealing with a global U(1) theory,
Goldstone boson would correspond to excitation of the scalar field along the valley of the potentia
the phase}(x) would be the massless Goldstone boson. However we have to keep in mind that in ¢
puting the Lagrangian we managed to get rid/0f) by shifting it into A,, using a gauge transformation.
Actually by identifying the gauge parameter with the Goldstone excitation we have completely fixec
gauge and the Lagrangian (300) does not have any gauge symmetry left.

A massive vector field has three polarizations: two transverse/onggk, +1) = 0 plus a longi-
tudinal oneg;, (k) ~ k. In gauging away the massless Goldstone bakaf we have transformed it into
the longitudinal polarization of the massive vector field. In the literature this is usually expressed se
that the Goldstone mode is “eaten up” by the longitudinal component of the gauge field. It is impol
to realize that in spite of the fact that the Lagrangian (300) looks pretty different from the one we st¢
with we have not lost any degrees of freedom. We started with the two polarizations of the photon
the two degrees of freedom associated with the real and imaginary components of the complex
field. After symmetry breaking we end up with the three polarizations of the massive vector field anc
degree of freedom of the real scalar fielgr).

We can also understand the Higgs mechanism in the light of our discussion of gauge symr
in section 4.4. In the Higgs mechanism the invariance of the theory under infinitesimal gauge ti
formations is not explicitly broken, and this implies that Gauss’ law is satisfied quantum mechanic
V - E,|phys) = 0. The theory remains invariant under gauge transformations in the connected c
ponent of the identity,, the ones generated by Gauss’ law. This does not pose any restriction on
possible breaking of the invariance of the theory with respect to transformations that cannot be cor
ously deformed to the identity. Hence in the Higgs mechanism the invariance under gauge transformn
that are not in the connected component of the idergitg,, can be broken. Let us try to put it in more
precise terms. As we learned in section 4.4, in the Hamiltonian formulation of the theory finite en:
gauge field configurations tend to a pure gauge at spatial infinity

—

Ai)— = Lo@ V@ 1 o (302)
The set transformationg (Z) € Gy that tend to the identity at infinity are the ones generated by Gau:
law. However, one can also consider in general gauge transformati@nahich, asz| — oo, approach
any other elemenj € G. The quotieny,, = G/Gy gives a copy of the gauge group at infinity. There
is no reason, however, why this group should not be broken, and in general it is if the gauge symr
is spontaneously broken. Notice that this is not a threat to the consistency of the theory. Prop
like the decoupling of unphysical states are guaranteed by the fact that Gauss’ law is satisfied qui
mechanically and are not affected by the breaking of

In condensed matter physics the symmetry breaking described by the nonrelativistic versic
the Abelian Higgs model can be used to characterize the onset of a superconducting phase in th:
theory, where the complex scalar fidids associated with the Cooper pairs. In this case the parapreter
depends on the temperature. Above the critical temperdtyye’ (T) > 0 and there is only a symmetric
vacuum(®) = 0. When, on the other hand, < T, thenu?(T) < 0 and symmetry breaking takes place.
The onset of a nonzero mass of the photon (301) below the critical temperature explains the Mei
effect: the magnetic fields cannot penetrate inside superconductors beyond a distance of tﬁl'}bg.order
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The Abelian Higgs model discussed here can be regarded as a toy modelBrout-Englert-
Higgs mechanism responsible for giving mass tollié¢ and Z° gauge bosons in the standard model
Giving mass to these three bosons requires the introduction of a two-component complex scalal
transforming as a doublet under SU(2). Three of its four degrees of freedom are incorporated &
longitudinal components of the three massive gauge fields, whereas the fourth one remains as a
propagating degree of freedom. Its elementary excitations are spin zero neutral particles known as
bosons.

The Higgs boson couples to the massive gauge fields, as well as to quarks and leptons. |
over, its coupling to the fermions is proportional to the fermion masses and therefore very weal
light fermions. This, together with the fact that Higgs productions processes have large standard r
backgrounds, complicates its experimental detection. After decades of searches in various experil
a Higgs boson candidate was finally detected at the ATLAS and CMS collaborations at the Large He
Collider (LHC) in 2012 with a mass of approximately 125 GeV. At the time of writing, all evidenc
point to the fact that this new particle is indeed the so much coveted standard model Higgs.

7 Anomalies

So far we did not worry too much about how classical symmetries of a theory are carried over tc
quantum theory. We have implicitly assumed that classical symmetries are preserved in the proc
guantization, so they are also realized in the quantum theory.

This, however, does not have to be necessarily the case. Quantizing an interacting field t
is a very involved process that requires regularization and renormalization and sometimes, it doe
matter how hard we try, there is no way for a classical symmetry to survive quantization. When
happens one says that the theory haarmamaly(for reviews see [28]). It is important to avoid here the
misconception that anomalies appear due to a bad choice of the way a theory is regularized in the p
of quantization. When we talk about anomalies we mean a classical symmetrginatbe realized in
the quantum theory, no matter how smart we are in choosing the regularization procedure.

In the following we analyze some examples of anomalies associated with global and local ¢
metries of the classical theory. In Section 8 we will encounter yet another example of an anomaly
time associated with the breaking of classical scale invariance in the quantum theory.

7.1 Axial anomaly

Probably the best known examples of anomalies appear when we consider axial symmetries.
consider a theory of two Weyl spinots.

u—

L =ipdyp = il om0 uy + il o"d,u_ with W= et (303)
+9+0u 1

the Lagrangian is invariant under two types of global U(1) transformations. In the first one both helic
transform with the same phase, this igeztortransformation:

Uy : ur — eu, (304)
whereas in the second one, the aXidl ), the signs of the phases are different for the two chiralities

U, : usr — ey, (305)
Using Noether’s theorem, there are two conserved currents, a vector current

I =y = ulotus +ulotu. = 9f =0 (306)
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and an axial vector current

Jh = Py ysth = ulaiu+ —ulofu. = 9, J4 = 0. (307)

The theory described by the Lagrangian (303) can be coupled to the electromagnetic field.
resulting classical theory is still invariant under the vector and axial U(1) symmetries (304) and (3
Surprisingly, upon quantization it turns out that the conservation of the axial current (307) is spoile
quantum effects

8, J% ~hE-B. (308)

To understand more clearly how this result comes about we study first a simple model in
dimensions that captures the relevant physics involved in the four-dimensional case [29]. We wo
Minkowski space in two dimensions with coordinate$, z') = (¢, z) and where the spatial direction
is compactified to a circl&™. In this setup we consider a fermion coupled to the electromagnetic fie
Notice that since we are living in two dimensions the field strerdgthonly has one independent com-
ponent that corresponds to the electric field along the spatial direétfdns £ (in two dimensions there
are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representation of the algebr
~y-matrices

(VA =29" with n= ( (1) _(1) ) : (309)

In two dimensions the dimension of the representation oftheatrices i3] = 2. Here take

0 1 0 1
0_ 1 _ 1.2
vV =0 (10>, v =io <_10>. (310)
This is a chiral representation since the matxs diagonal®
— 0.1 o 1 0
Vs = 77—(0 1 (311)
Writing the two-component spinar as
_ [ U+
v=(u) (312

and defining as usual the projectdts = %(H:%) we find that the components. of ¢ are respectively
a right- and left-handed Weyl spinor in two dimensions.

Once we have a representation of thenatrices we can write the Dirac equation. Expressing it i
terms of the components; of the Dirac spinor we find

(0o — O1)ug =0, (0o + O1)u— = 0. (313)
The general solution to these equations can be immediately written as
uy = uy (20 + 2t), u_ =u_(z% — zt). (314)

Henceuy are two wave packets moving along the spatial dimension respectively to the leéfand
to the right(u_). Notice that according to our convention the left-moving is a right-handed spinor
(positive helicity) whereas the right-moving. is a left-handed spinor (negative helicity).

®In any even number of dimensions is defined to satisfy the conditiong = 1 and{ys,v*} = 0.
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V+ VvV _

Fig. 11: Spectrum of the massless two-dimensional Dirac field.

If we want to interpret (313) as the wave equation for two-dimensional Weyl spinors we have
following wave functions for free particles with well defined momentim= (E, p).

B0 1y _ L B+l : _
uy (20 £x) = ——e with p= FE. 315
As it is always the case with the Dirac equation we have both positive and negative energy solution:s
uy, SinceE = —p, we see that the solutions with positive energy are those with negative momen

p < 0, whereas the negative energy solutions are plane wave®with. For the left-handed spinar_
the situation is reversed. Besides, since the spatial direction is compact with lettgghmomentunp
is quantized according to

n € Z. (316)

The spectrum of the theory is represented in Fig. 11.

Once we have the spectrum of the theory the next step is to obtain the vacuum. As with the [
equation in four dimensions we fill all the states wih< 0 (Fig. 12). Exciting of a particle in the Dirac
see produces a positive energy fermion plus a hole that is interpreted as an antiparticle. This gives
clue on how to quantize the theory. In the expansion of the opeatdm terms of the modes (315) we
associate positive energy states with annihilation operators whereas the states with negative ene
associated with creation operators for the corresponding antiparticle

us(z) = 3 [ (Bl (@) + oL () (2] (317)
E>0

The operator.+ (E) acting on the vacuurfo, +) annihilates a particle with positive energyand mo-
mentum=FE. In the same Waﬂ(E) creates out of the vacuum an antiparticle with positive enérgy
and spatial momentungE. In the Dirac sea picture the operatar(E)! is originally an annihilation
operator for a state of the sea with negative enerd@y As in the four-dimensional case the problem o
the negative energy states is solved by interpreting annihilation operators for negative energy sta
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o Y
<Y

|0,+> 10,

Fig. 12: Vacuum of the theory.

creation operators for the corresponding antiparticle with positive energy (and vice versa). The ope
appearing in the expansion of. in Eq. (317) satisfy the usual algebra

{axn(B), al,(E)} = {bA(E), b\ (E)} = 05, oy (318)

where we have introduced the label\' = +. Also, a)(E), aJ[\(E) anticommute withb,/ (E’), bi,(E’).
The Lagrangian of the theory

£ = iul (9o + 0)uy +iul (9o — 0)u_ (319)
is invariant under both U(3), Eq. (304), and U(1), Eq. (305). The associated Noether currents are

this case
T T T ot
J"j _ ( uﬂu+ —HLTU_ > 7 Jh— ( quTqu u,Tu_ ) . (320)
—U U FU_U— —U LUy —U_U_
The associated conserved charges are given, for the vector current by
L
Qv = / dat (uiu_i_ + uiu_> (321)
0
and for the axial current
L
Qua = / dat (uz_qu — uT_u,> . (322)
0
Using the orthonormality relations for the modg)(x)
L E E’
/ da? vi )(x) UE_L )(x) =0p (323)
0
we find for the conserved charges:

Qv = > [GL(E)M(E) — bl (E)by (E) +a' (E)a_(E) - b (E)b_(E)|,
E>0
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Fig. 13: Effect of the electric field.

Q1 = > [al(B)as(B) — b (B (B) - o (B)a(B) + bl (EYo_(B)] . (324)
E>0

We see tha@)y counts the net number (particles minus antiparticles) of positive helicity states plus
net number of states with negative helicity. The axial charge, on the other hand, counts the net num
positive helicity states minus the number of negative helicity ones. In the case of the vector currel
have subtracted a formally divergent vacuum contribution to the charge (the “charge of the Dirac se

In the free theory there is of course no problem with the conservation of éjther ) 4, since the
occupation numbers do not change. What we want to study is the effect of coupling the theory to el
field £. We work in the gaugely = 0. Instead of solving the problem exactly we are going to simula
the electric field by adiabatically varying in a long timgthe vector potentiald; from zero value to
—&79. From our discussion in section 4.3 we know that the effect of the electromagnetic coupling ir
theory is a shift in the momentum according to

p—p— e, (325)

wheree is the charge of the fermions. Since we assumed that the vector potential varies adiabati
we can assume it to be approximately constant at each time.

Then, we have to understand what is the effect of (325) on the vacuum depicted in Fig. (12). \
we find is that the two branches move as shown in Fig. (13) resulting in some of the negative er
states of the), branch acquiring positive energy while the same number of the empty positive ene
states of the other braneh. will become empty negative energy states. Physically this means that
external electric fiel& creates a number of particle-antiparticle pairs out of the vacuum. Denoting
N ~ e€ the number of such pairs created by the electric field per unit time, the final values of the che
Qv andQ 4 are

Qa(r) = (N-0)+(0-N)=0,
Ov(r) = (N —0)—(0—N)=2N. (326)
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Therefore we conclude that the coupling to the electric field produces digioia the conservation of
the axial charge per unit time given ByQ 4 ~ e£. This implies that

0, JH ~ ehE, (327)

where we have restorgdto make clear that the violation in the conservation of the axial current i<
quantum effect. At the same tim®(Q)y, = 0 guarantees that the vector current remains conserved a
quantum mechanicallyl, J{; = 0.

We have just studied a two-dimensional example of the Adler-Bell-Jackiw axial anomaly [:
The heuristic analysis presented here can be made more precise by computing the quantity

CH = (0|T [J4(2)J3(0)] |0) = (328)
Jh v

The anomaly is given then &y, C*”. A careful calculation yields the numerical prefactor missing in Ec
(327) leading to the result

eh
o Jly = %EVUFW, (329)
with 01 = —¢10 =1,
The existence of an anomaly in the axial symmetry that we have illustrated in two dimensior
present in all even dimensional of space-times. In particular in four dimensions the axial anomaly
given by

2

-

16W25W”“EQVP}A. (330)

This result has very important consequences in the physics of strong interactions as we will see in
follows

7.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of Quantum Chromodyn:
(QCD) [32]. This is a nonabelian gauge theory with gauge group S)¢dupled to a numbeN; of

quarks. These are spi@particles@” labelled by two quantum numbers: coloe 1, ..., N. and flavor
f=1,...,Ny. The interaction between them is mediated by Affe— 1 gauge bosons, the gluors,
a=1,...,N? — 1. In the real worldN. = 3 and the number of flavors is six, corresponding to th

number of different quarks: up Judown (d), charm (c¢), strange (s), top (t) and bottom (b).

For the time being we are going to study a general theory of QCD Mjtbolors andV flavors.
Also, for reasons that will be clear later we are going to work in the limit of vanishing quark mas:
my — 0. In this cases the Lagrangian is given by

Ny
1 — -
gQa,:_ZF;fum¢+§:PQQ@Q{+ZQ§mQ§y (331)
f=1

where the subscripts and R indicate respectively left and right-handed spind}é,R = P.Qf, and the
field strengthr;, and the covariant derivativ@,, are respectively defined in Egs. (165) and (168). Apa
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from the gauge symmetry, this Lagrangian is also invariant under a globaf)Jd¢\U(/Ny)r acting on
the flavor indices and defined by

QL = YpWUn)pQf Q — @
U(Ny), : UWNf) g : , (332)
Qh — Q& Qr = pUr)srQk
with U, Ur € U(Ny). Actually, since U(N=U(1)x SU(N) this global symmetry group can be written

as SU(1y), x SU(Ny) , xU(1), x U(1)g. The abelian subgroup U(@x U(1)x can be now decomposed
into their vector U(1} and axial U(1) subgroups defined by the transformations

Q) — €°Q] Q) — Q)

UQ)g: ‘ U1, : ‘ (333)
QL — Q% QL — e Q%

According to Noether’s theorem, associated with these two abelian symmetries we have two cons

currents:

Ny Ny
="'l =30 vl (334)
f=1 f=1

The conserved charge associated with vector chdfges actually the baryon number defined as the
number of quarks minus number of antiquarks.

The nonabelian part of the global symmetry group SE\/% SU(Ny)r can also be decomposed
into its vector and axial subgroups, SU}Y x SU(Ny) ,, defined by the following transformations of
the quarks fields

Q = UL Q) Qf = UL QY
SU(V),, , SU(Vp) 4 (335)
QF — X, (U)srQh QF = X p(URYsrQk

Again, the application of Noether’s theorem shows the existence of the following nonabelian conse
charges

Tt = Z QM (T Q" Tyt = Z Q5T Q7. (336)
fif'=1 f.f=1

To summarize, we have shown that the initial chiral symmetry of the QCD Lagrangian (331) cal
decomposed into its chiral and vector subgroups according to

U(Ny), x UNy)p = SUVy),, x SU(Np) 4, x U(L)p x U(1)4. (337)
The question to address now is which part of the classical global symmetry is preserved by the que
theory.

As argued in section 7.1, the conservation of the axial curréhtand 3" can in principle be
spoiled due to the presence of an anomaly. In the case of the abelian axial d{jrteetelevant quantity
is the correlation function

Ny

O = (OIT [ T4 () e ()b (0)] 10) = S
f=1

(338)

4 symmetric
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Here jgiuge iS the nonabelian conserved current coupling to the gluon field

Ny
Jelee = Q' rreQ, (339)

f=1
where, to avoid confusion with the generators of the global symmetry we have denotédhs/gen-
erators of the gauge group SU(N The anomaly can be read now fradpC*"“. If we impose Bose
symmetry with respect to the interchange of the two outgoing gluons and gauge invariance of the v
expressiong, C*? = 0 = 0,C*7, we find that the axial abelian global current has an anomaly givt
by16

2
o Jl = —%EWMF[}VF“ af (340)

In the case of the nonabelian axial global symmetry Skj(\the calculation of the anomaly is
made as above. The result, however, is quite different since in this case we conclude that the nona
axial current/" is not anomalous. This can be easily seen by noticing that associated with the ¢
current vertex we have a generafbf of SU(NNy), whereas for the two gluon vertices we have the
generators® of the gauge group SUY. Therefore, the triangle diagram is proportional to the groug

theoretic factor

~tr Tt {7, 7% =0 (341)

4 symmetric

which vanishes because the generators of S)y@ke traceless.

From here we would conclude that the nonabelian axial symmetry $)4(i¢ nonanomalous.
However this is not the whole story since quarks are charged particles that also couple to photons. |
there is a second potential source of an anomaly coming from the the one-loop triangle diagram cot
J4" to two photons

Y
Ny
(O [ (@) (27 (0)] 10) = 3 Q' (342)
= | JiE
Q7 g
L 4 symmetric
wherejt, is the electromagnetic current
Ny
it =", Q' Q7 (343)
f=1

with ¢, the electric charge of thg-th quark flavor. A calculation of the diagram in (342) shows th
existence of an Adler-Bell-Jackiw anomaly given by

Ny
> (THsrd}| € FuFon, (344)

N,
1672

At = —

'®The normalization of the generatdfs of the global SU(JY) is given bytr (T'T7) = 15'”.
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whereF),, is the field strength of the electromagnetic field coupling to the quarks. The only chance
the anomaly to cancel is that the factor between brackets in this equation be identically zero.

Before proceeding let us summarize the results found so far. Because of the presence of anol
the axial part of the global chiral symmetry, SU()Y and U(1), are not realized quantum mechanically
in general. We found that U(})is always affected by an anomaly. However, because the right-he
side of the anomaly equation (340) is a total derivative, the anomalous charadtgdoés not explain
the absence of U(}%) multiplets in the hadron spectrum, since a new current can be constructed wl
is conserved. In addition, the nonexistence of candidates for a Goldstone boson associated wi
right quantum numbers indicates that U(1¥ not spontaneously broken either, so it has be explicitl
broken somehow. This is the so-called U(1)-problem which was solved by 't Hooft [33], who shov
how the contribution of quantum transitions between vacua with topologically nontrivial gauge f
configurations (instantons) results in an explicit breaking of this symmetry.

Due to the dynamics of the SU(Mjauge theory the axial nonabelian symmetry is spontaneou:
broken due to the presence at low energies of a vacuum expectation value for the fermion@ﬁi@éar

010”7 Q7 10) £ 0 (No summation inf!). (345)

This nonvanishing vacuum expectation value for the quark bilinear actually breaks chiral invari
spontaneously to the vector subgroup SYW so the only subgroup of the original global symmetry
that is realized by the full theory at low energy is

U(Vy), x U(Ny) , — SU(Vy),, x U(1)p. (346)

Associated with this breaking a Goldstone boson should appear with the quantum numbers of the b
nonabelian current. For example, in the case of QCD the Goldstone bosons associated with the s
neously symmetry breaking induced by the vacuum expectation v@iugs(dd) and ((ud — du)) have
been identified as the pion$, 7. These bosons are not exactly massless because of the nonvanis
mass of the, andd quarks. Since the global chiral symmetry is already slightly broken by mass term
the Lagrangian, the associated Goldstone bosons also have masses although they are very light co
to the masses of other hadrons.

In order to have a better physical understanding of the role of anomalies in the physics of st
interactions we particularize now our analysis of the case of real QCD. Sineedhdd quarks are
much lighter than the other four flavors, QCD at low energies can be well described by including
these two flavors and ignoring heavier quarks. In this approximation, from our previous discussio
know that the low energy global symmetry of the theory is SU{2Y(1)z, where now the vector group
SU(2), is the well-known isospin symmetry. The axial Uglgurrent is anomalous due to Eq. (340)
with Ny = 2. In the case of the nonabelian axial symmetry SY(2aking into account that, = %e
and ¢ = —%e and that the three generators of SU(2) can be written in terms of the Pauli matrice
TX = 1o% we find

2

S (@srai= Y (THraf =0, > (T)srq7 = %- (347)

f=u,d f=u,d f=u,d

Therefore " is anomalous.

Physically, the anomaly in the axial curremﬁ“ has an important consequence. In the quar
model, the wave function of the neutral piefi is given in terms of those for theandd quark by

%) = ¢1§ (8)lu) — |d)[d)) (348)
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The isospin quantum numbers|af’) are those of the generat@i®. Actually the analogy goes further
sinceaujf’l“ is the operator creating a pierY out of the vacuum

170) ~ 8, J3H10). (349)

This leads to the physical interpretation of the triangle diagram (342)&%1‘?95 the one loop contribu-
tion to the decay of a neutral pion into two photons

a—— (350)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [34] presented a cal
tion, using current algebra techniques, according to which the decay of the pion into two photons sl
be suppressed. This however contradicted the experimental evidence that showed the existence of
decay. The way out to this paradox, as pointed out in [30], is the axial anomaly. What happens is th
current algebra analysis overlooks the ambiguities associated with the regularization of divergenc
quantum field theory. A QED evaluation of the triangle diagram leads to a divergent integral that hi
be regularized somehow. It is in this process that the Adler-Bell-Jackiw axial anomaly appears rest
in a nonvanishing value for the? — 2~ amplitudé’.

The existence of anomalies associated with global currents does not necessarily mean diffic
for the theory. On the contrary, as we saw in the case of the axial anomaly it is its existence '
allows for a solution of the Sutherland-Veltman paradox and an explanation of the electromagnetic ¢
of the pion. The situation, however, is very different if we deal with local symmetries. A quant
mechanical violation of gauge symmetry leads to all kinds of problems, from lack of renormalizabilit
nondecoupling of negative norm states. This is because the presence of an anomaly in the theory i
that the Gauss’ law constraiRt - £, = p, cannot be consistently implemented in the quantum theor
As a consequence states that classically are eliminated by the gauge symmetry become propagatin
in the quantum theory, thus spoiling the consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left and ri
handed fermions transform in different representations of the gauge group. Physically, the most
esting example of such theories is the electroweak sector of the standard model where, for examp
handed fermions transform as doublets under SU(2) whereas right-handed fermions are singlets. !
other hand, QCD is free of gauge anomalies since both left- and right-handed quarks transform i
fundamental representation of SU(3).

We consider the Lagrangian

1
L= FUEL + sz+zD<+>w+ + zzw p- (351)
j=1
where the chiral fermiong. transform according to the representatiotfs of the gauge groupg-

(e =1,...,dim G). The covariant derlvatlveQ(i)

DBy = i, +igAK TS g (352)

As for global symmetries, anomalies in the gauge symmetry appear in the triangle diagram with
axial and two vector gauge current vertices

are then defined by

W

(Ol |75 @)t (@)% )] 10) = | Q9 (353)
Ja )
v

L 4 symmetric

1"An early computation of the triangle diagram for the electromagnetic decay of the pion was made by Steinberger in |
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where gauge vector and axial curreft$, j9/ are given by

Ny N_ ‘
W= DT+ Y Uity

i=1 Jj=1
Ny N_ ‘
J = DT = g (354)

i=1 =1

Luckily, we do not have to compute the whole diagram in order to find an anomaly cancellation condi
it is enough if we calculate the overall group theoretical factor. In the case of the diagram in Eq. (.
for every fermion species running in the loop this factor is equal to

tr [Ti‘fi{Tﬁi, T;i}:| ) (355)

where the signt corresponds respectively to the generators of the representation of the gauge grot
the left and right-handed fermions. Hence the anomaly cancellation condition reads

Ny N_
Ztr {Ti‘f+{72-l:+, Tif+}] — Z tr {Tﬁ_{T;_, Tﬁ_ } =0. (356)
i=1 Jj=1

Knowing this we can proceed to check the anomaly cancellation in the standard model SU(3) x
Left handed fermions (both leptons and quarks) transform as doublets with respect to the SU(2) 1
whereas the right-handed components are singlets. The charge with respect to the U(1) part, the
chargeY’, is determined by the Gell-Mann-Nishijima formula

Q="T;+Y, (357)

where( is the electric charge of the corresponding particle ‘@nd the eigenvalue with respect to the
third generator of the SU(2) group in the corresponding representéfios: %03 for the doublets and
T5 = 0 for the singlets. For the first family of quarks,(d) and leptons (ev.) we have the following
field content

. ua « (e}
quarks: < s >L1 UR,2 dp 2

6

leptons: < Vee > 1 eRr—1 (358)
-1

’ 2

wherea = 1,2, 3 labels the color quantum number and the subscript indicates the value of the w
hyperchargey”. Denoting the representations of SU(3)xSU(2)xU(1)(by, ny)y, with n. andn,,
the representations of SU(3) and SU(2) respectively Brttie hypercharge, the matter content of the
standard model consists of a three family replication of the representations:

left-handed fermions: (3,2)% (1,2)F,
6 2
(359)
right-handed fermions: (3,1)% (3, 1), (1, 1)%,.
3 3

In computing the triangle diagram we have 10 possibilities depending on which factor of the gauge ¢
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SU(3)x3J(2) xU(1) couples to each vertex:

Su(3y SV U@y
SU(3Y SU(2) SURJU@)

SU(3Y U(1) SU(2) U(1Y

SU(3) SU(2}

SU(3) SU(2) U(2)

SU(3) U(1y

It is easy to check that some of them do not give rise to anomalies. For example the anomaly fc
SU(3) case cancels because left and right-handed quarks transform in the same representation.
case of SU(2) the cancellation happens term by term because of the Pauli matrices idefatity=
59 + je®oc that leads to

tr [Ua{Jb,O'C}] =2(tro®) 6" = 0. (360)

However the hardest anomaly cancellation condition to satisfy is the one with three U(1)’s. In this
the absence of anomalies within a single family is guaranteed by the nontrivial identity

DV YE = 3x2x (é)3+2x (—;)3—3x <§)3—3>< (_;)3_(_1)3

left right
3 3
- (-2 Z)=o0. 361

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice that this
holds even if a right-handed sterile neutrino is added since such a particle is a singlet under the \
standard model gauge group and therefore does not contribute to the triangle diagram. Therefore \
how the matter content of the standard model conspires to yield a consistent quantum field theory.

In all our discussion of anomalies we only considered the computation of one-loop diagre
It may happen that higher loop orders impose additional conditions. Fortunately this is not so:
Adler-Bardeen theorem [35] guarantees that the axial anomaly only receives contributions from one
diagrams. Therefore, once anomalies are canceled (if possible) at one loop we know that there v
no new conditions coming from higher-loop diagrams in perturbation theory.

The Adler-Bardeen theorem, however, only applies in perturbation theory. It is nonetheless p
ble that nonperturbative effects can result in the quantum violation of a gauge symmetry. This is prec
the case pointed out by Witten [36] with respect to the SU(2) gauge symmetry of the standard m
In this case the problem lies in the nontrivial topology of the gauge group SU(2). The invarianc
the theory with respect to gauge transformations which are not in the connected component of the
tity makes all correlation functions equal to zero. Only when the number of left-handed SU(2) fern
doublets is even gauge invariance allows for a nontrivial theory. It is again remarkable that the fa
structure of the standard model makes this anomaly to cancel

3 x < u ) +1x ( ve ) = 4 SU(2)-doublets, (362)
d ), € )5

where the factor of 3 comes from the number of colors.

66



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

8 Renormalization
8.1 Removing infinities

From its very early stages, quantum field theory was faced with infinities. They emerged in the cal
tion of most physical quantities, such as the correction to the charge of the electron due to the intera
with the radiation field. The way these divergences where handled in the 1940s, starting with Krar
was physically very much in the spirit of the Quantum Theory emphasis in observable quantities: ¢
the observed magnitude of physical quantities (such as the charge of the electron) is finite, this nt
should arise from the addition of a “bare” (unobservable) value and the quantum corrections. The
that both of these quantities were divergent was not a problem physically, since only its finite sum
an observable quantity. To make thing mathematically sound, the handling of infinities requires th
troduction of some regularization procedure which cuts the divergent integrals off at some mome
scaleA. Morally speaking, the physical value of an observab|gy .. is given by

Ophysical = Alglgo [O(A)bare + AO(A)h] y (363)

whereAO(A); represents the regularized quantum corrections.

To make this qualitative discussion more precise we compute the corrections to the electric cl
in Quantum Electrodynamics. We consider the process of annihilation of an electron-positron pe
create a muon-antimuon pare™ — ptu~. To lowest order in the electric chargehe only diagram
contributing is

In order to compute the renormalization of the charge we consider the first diagram which ti
into account the first correction to the propagator of the virtual photon interchanged between the
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due to vacuum polarization. We begin by evaluating

—inhe _mﬁv
= 364
W\I\Q(\M q2—i—’i€ aOﬁ q2—|—7;€’ ( )

where the diagram between brackets is given by

. d*k Tr Me )Y me)yP
“Qﬁ N0 = i) [ G G e e e 9

Physically this diagram includes the correction to the propagator due to the polarization of the vac
i.e. the creation of virtual electron-positron pairs by the propagating photon. The momeiisutime
total momentum of the electron-positron pair in the intermediate channel.

It is instructive to look at this diagram from the point of view of perturbation theory in nonrel
tivistic Quantum Mechanics. In each vertex the interaction consists of the annihilation (resp. crea
of a photon and the creation (resp. annihilation) of an electron-positron pair. This can be impleme
by the interaction Hamiltonian

Hipy =e / Bz pytapA,. (366)

All fields inside the integral can be expressed in terms of the corresponding creation-annihilation «
ators for photons, electrons and positrons. In Quantum Mechanics, the change in the wave funct
first order in the perturbatioH;,; is given by

n’Hlnt|/Y71n

o %1n) (367)

[v,in) = |y,in)o + Z

and similarly for|~, out), where we have denoted symbolically by) all the possible states of the
electron-positron pair. Since these states are orthogomglit)o, |y, out)o, we find tordere?

ln’Hmt‘n> <n‘H1nt|'7 7OUt>
(Eln - En)(Eout - En)

(y,inly’,out) = o(,in|y’, out) o+z o, +0(e*).  (368)

Hence, we see that the diagram of Eq. (364) really corresponds to the drdeection to the photon
propagatoKy, in|y’, out)

AN — 0<% inh//,out>0

C) (v, in|Hint ) {n|Hine|7', out)
— . 369
Y "}// ; (Ein - En)(Eout - En) ( )
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Once we understood the physical meaning of the Feynman diagram to betedmymiproceed
to its evaluation. In principle there is no problem in computing the integral in Eg. (364) for nonz
values of the electron mass. However since here we are going to be mostly interested in seein
the divergence of the integral results in a scale-dependent renormalization of the electric charg
will set me = 0. This is something safe to do, since in the case of this diagram we are not indut
new infrared divergences in taking the electron as massless. Implementing gauge invariance and
standard techniques in the computation of Feynman diagrams (see references [1]- [11]) the polari
tensorll,,, (¢) defined in Eqg. (365) can be written as

H/W(Q) = (q277;w - quV) H(qQ) (370)
with
B ! d*k z(1—x)
M) = 862/0 dx/ IR —m? 1 2(1— )¢ + i (371)

To handle this divergent integral we have to figure out some procedure to render it finite. This cg
done in several ways, but here we choose to cut the integrals off at a high energy sedlere new
physics might be at workp| < A. This gives the result
9 e? q2 .
II(g*) ~ Wlog <A2> + finite terms. (372)
If we would send the cutoff to infinitA — oo the divergence blows up and something has to be dol
about it.

If we want to make sense out of this, we have to go back to the physical question that led 1
compute Eq. (364). Our primordial motivation was to compute the corrections to the annihilation of
electrons into two muons. Including the correction to the propagator of the virtual photon we have

o

= 1Nag (Ve ue) H v#’y “u + Nap (VY Ue) 4 q U#’Yﬁuu)
B 2 2 e -
= Nag (Ve ue) {47rq2 [1 + 159 log <A2ﬂ } (v,ﬁﬁu“) . (373)

Now let us imagine that we are performingae* — p~ ™ with a center of mass energy From the
previous result we can identify the effective charge of the particles at this energy §cpbes

= Nap (Ve e) [2(7:222] (@7%,&. (374)

This chargeg(p), is the quantity that is physically measurable in our experiment. Now we can mi
sense of the formally divergent result (373) by assuming that the charge appearing in the classic:
grangian of QED is just a “bare” value that depends on the stad which we cut off the theory,
e = e(A)pare- In order to reconcile (373) with the physical results (374) we must assume that
dependence of the bare (unobservable) chafé... on the cutoffA is determined by the identity

A2 2
(07 = (W |1+ e 10 (1) (375)
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If we still insist in removing the cutoffA — oo we have to send the bare charge to z&W)y,,;e — 0

in such a way that the effective coupling has the finite value given by the experiment at the energy
w. Itis not a problem, however, that the bare charge is small for large values of the cutoff, since
only measurable quantity is the effective charge that remains finite. Therefore all observable quar
should be expressed in perturbation theory as a power series in the physical ce(pjihgnd not in
the unphysical bare couplingA)pare-

8.2 The beta-function and asymptotic freedom

We can look at the previous discussion, an in particular Eqg. (375), from a different point of view. In ol
to remove the ambiguities associated with infinities we have been forced to introduce a dependel
the coupling constant on the energy scale at which a process takes place. From the expression
physical coupling in terms of the bare charge (375) we can actually eliminate the &uteiffose value
after all should not affect the value of physical quantities. Taking into account that we are workin
perturbation theory im(x)?, we can express the bare chaege)? _ in terms ofe(u)? as

bare

o(1)2 2
e(A)? = e(p)? [1 + 1(2/:32 log (L)] + Ole(p)®]. (376)

This expression allow us to eliminate all dependence in the cutoff in the expression of the effective cl
at a scaleu by replacinge(A)pare In EQ. (375) by the one computed using (376) at a given referen
energy scaley

e(1)* = e(po)? [1 - ef;‘ff log (Z;)] . (377)

From this equation we can compute, at this order in perturbation theory, the effective value o
coupling constant at an energyonce we know its value at some reference energy $galn the case
of the electron charge we can use as a reference Thompson’s scattering at energies of the ordel
electron massi. ~ 0.5 MeV, at where the value of the electron charge is given by the well known val

1
e(me)2 ~ 7 (378)

With this we can compute(z:)? at any other energy scale applying Eq. (377), for example at the elect
massy = m,. ~ 0.5 MeV. However, in computing the electromagnetic coupling constant at any otl
scale we must take into account the fact that other charged particles can run in the loop in Eq. (
Suppose, for example, that we want to calculate the fine structure constant at the masg'abtisen

uw = Mz = 92 GeV. Then we should include in Eq. (377) the effect of other fermionic standard mo
fields with masses below/. Doing this, we find?®

Me 2 2
1+ eiw) (Z qg> log (%g)] , (379)

whereg; is the charge in units of the electron charge of #ik fermionic species running in the loop
and we sum over all fermions with masses below the mass dftH#son. This expression shows how
the electromagnetic coupling grows with energy. However, in order to compare with the experime
value ofe(My)? it is not enough with including the effect of fermionic fields, since alsolifie bosons

e(Mz)* = e(me)?

18| n the first version of these notes the argument used to show the growing of the electromagnetic coupling constant
have led to confusion to some readers. To avoid this potential problem we include in the equation for the running cot
e(p)? the contribution of all fermions with masses beld . We thank Lubos Motl for bringing this issue to our attention.
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can run in the loop (M, < My). Taking this into account, as well as threshold effects, the value of t
electron charge at the scalé; is found to be [37]

e(Mg)? ~ —— . (380)

This growing of the effective fine structure constant with energy can be understood heuristic
by remembering that the effect of the polarization of the vacuum shown in the diagram of Eq. (¢
amounts to the creation of a plethora of electron-positron pairs around the location of the charge. -
virtual pairs behave as dipoles that, as in a dielectric medium, tend to screen this charge and decr
its value at long distances (i.e. lower energies).

The variation of the coupling constant with energy is usually encoded in quantum field theor
thebeta functiordefined by

g

= . 381
Blg) = n m (381)
In the case of QED the beta function can be computed from Eq. (377) with the result
63
B(e)qQeD = (382)

1272°

The fact that the coefficient of the leading term in the beta-function is positives 6% > 0 gives

us the overall behavior of the coupling as we change the scale. Eq. (382) means that, if we start
energy where the electric coupling is small enough for our perturbative treatment to be valid, the effe
charge grows with the energy scale. This growing of the effective coupling constant with energy m
that QED is infrared safe, since the perturbative approximation gives better and better results as we
lower energies. Actually, because the electron is the lighter electrically charged particle and has a
nonvanishing mass the running of the fine structure constant stops at therscailghe well-known

valuelzl,)—T Would other charged fermions with masses belowbe present in Nature, the effective value
of the fine structure constant in the interaction between these particles would run further to lower vi

at energies below the electron mass.

On the other hand if we increase the energy se@l¢? grows until at some scale the coupling is of
order one and the perturbative approximation breaks down. In QED this is known as the problem ¢
Landau pole but in fact it does not pose any serious threat to the reliability of QED perturbation the
a simple calculation shows that the energy scale at which the theory would become strongly coup
Afandau ~ 10277 GeV. However, we know that QED does not live that long! At much lower scales \
expect electromagnetism to be unified with other interactions, and even if this is not the case we
enter the uncharted territory of quantum gravity at energies of the ordér dfeV.

So much for QED. The next question that one may ask at this stage is whether it is possik
find quantum field theories with a behavior opposite to that of QED, i.e. such that they become we
coupled at high energies. This is not a purely academic question. In the late 1960s a series of
inelastic scattering experiments carried out at SLAC showed that the quarks behave essentially ¢
particles inside hadrons. The apparent problem was that no theory was known at that time that \
become free at very short distances: the example set by QED seem to be followed by all the theorie
were studied. This posed a very serious problem for quantum field theory as a way to describe subn
physics, since it seemed that its predictive power was restricted to electrodynamics but failed mise
when applied to describe strong interactions.

Nevertheless, this critical time for quantum field theory turned out to be its finest hour. In 1!
David Gross and Frank Wilczek [38] and David Politzer [39] showed that nonabelian gauge theorie!
actually display the required behavior. For the QCD Lagrangian in Eq. (331) the beta function is g
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Fig. 14: Beta function for a hypothetical theory with three fixed poigis g5 andg;. A perturbative analysis
would capture only the regions shown in the boxes.

by19
Blg) = —-L [Ln, — 2 (383)
V=962 |37 37"
In particular, for real QCD (¥ = 3, Ny = 6) we have thap3(g) = —1769:2 < 0. This means that

for a theory that is weakly coupled at an energy sgal¢he coupling constant decreases as the ener
increaseg: — oo. This explain the apparent freedom of quarks inside the hadrons: when the qu
are very close together their effective color charge tend to zero. This phenomenon isasgtigatotic
freedom.

Asymptotic free theories display a behavior that is opposite to that found above in QED. At f
energies their coupling constant approaches zero whereas at low energies they become strongly ¢
(infrared slavery). This features are at the heart of the success of QCD as a theory of strong interac
since this is exactly the type of behavior found in quarks: they are quasi-free particles inside the ha
but the interaction potential potential between them increases at large distances.

Although asymptotic free theories can be handled in the ultraviolet, they become extremely ¢
plicated in the infrared. In the case of QCD it is still to be understood (at least analytically) how
theory confines color charges and generates the spectrum of hadrons, as well as the breaking of th
symmetry (345).

In general, the ultraviolet and infrared properties of a theory are controlled by the fixed point
the beta function, i.e. those values of the coupling congtémt which it vanishes

Bg*) = 0. (384)

Using perturbation theory we have seen that for both QED and QCD one of such fixed points oc
at zero couplingg* = 0. However, our analysis also showed that the two theories present radic
different behavior at high and low energies. From the point of view of the beta function, the differe
lies in the energy regime at which the coupling constant approaches its critical value. This is in
governed by the sign of the beta function around the critical coupling.

1The expression of the beta function of QCD was also known to 't Hooft [40]. There are even earlier computations i
russian literature [41].
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We have seen above that when the beta function is negative close to thediredthe case of
QCD) the coupling tends to its critical valugt = 0, as the energy is increased. This means that tt
critical point isultraviolet stable, i.e. it is an attractor as we evolve towards higher energies. If, on
contrary, the beta function is positive (as it happens in QED) the coupling constant approaches the ¢
value as the energy decreases. This is the caseiofraned stablefixed point.

This analysis that we have motivated with the examples of QED and QCD is completely ger
and can be carried out for any quantum field theory. In Fig. 14 we have represented the beta functi
a hypothetical theory with three fixed points located at couplyjgg; andg;. The arrows in the line
below the plot represent the evolution of the coupling constant as the energy increases. From the a1
presented above we see that= 0 andg; are ultraviolet stable fixed points, while the fixed pajitis
infrared stable.

In order to understand the high and low energy behavior of a quantum field theory it is then crt
to know the structure of the beta functions associated with its couplings. This can be a very diff
task, since perturbation theory only allows the study of the theory around “trivial” fixed points, i.e. th
that occur at zero coupling like the casegfin Fig. 14. On the other hand, any “nontrivial” fixed
point occurring in a theory (likgs andg;) cannot be captured in perturbation theory and requires a fi
nonperturbative analysis.

The moral to be learned from our discussion above is that dealing with the ultraviolet diverge!
in a quantum field theory has the consequence, among others, of introducing an energy depende
the measured value of the coupling constants of the theory (for example the electric charge in
This happens even in the case of renormalizable theories without mass terms. These theories ar
invariant at the classical level because the action does not contain any dimensionful parameter. |
case the running of the coupling constants can be seen as resulting from a quantum breaking of cl:
scale invariance: different energy scales in the theory are distinguished by different values of the cot
constants. Remembering what we learned in Section 7, we conclude that classical scale invarianc
anomalous symmetry. One heuristic way to see how the conformal anomaly comes about is to r
that the regularization of an otherwise scale invariant field theory requires the introduction of an er
scale (e.g. a cutoff). This breaking of scale invariance cannot be restored after renormalization.

Nevertheless, scale invariance is not lost forever in the quantum theory. It is recovered a
fixed points of the beta function where, by definition, the coupling does not run. To understand
this happens we go back to a scale invariant classical field theory whosebfieldransform under
coordinate rescalings as

aH —s Aat, d(x) — N PN ), (385)

whereA is called the canonical scaling dimension of the field. An example of such a theory is a mas:
¢* theory in four dimensions

1
L=20,00"6 %&, (386)
where the scalar field has canonical scaling dimendica 1. The Lagrangian density transforms as

L — \"1L[¢] (387)

and the classical action remains invarfant
If scale invariance is preserved under quantization, the Green’s functions transform as

(QUT[¢ (1) ... ¢/ (2a)]|2) = XM QTSN 1) ... H(A )] |2). (388)

21n a D-dimensional theory the canonical scaling dimensions of the fields coincide with its engineering dimension:
% for bosonic fields and\ = % for fermionic ones. For a Lagrangian with no dimensionful parameters classical sc
invariance follows then from dimensional analysis.
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Fig. 15: Systems of spins in a two-dimensional square lattice.

This is precisely what happens in a free theory. In an interacting theory the running of the coug
constant destroys classical scale invariance at the quantum level. Despite of this, at the fixed poi
the beta function the Green'’s functions transform again according to (388) wWhisreeplaced by

Aanom =A + ’Y*- (389)

The canonical scaling dimension of the fields are correctegbwhich is called the anomalous dimen-
sion. They carry the dynamical information about the high-energy behavior of the theory.

8.3 The renormalization group

In spite of its successes, the renormalization procedure presented above can be seen as some kine
scription or recipe to get rid of the divergences in an ordered way. This discomfort about renormalizi
was expressed in occasions by comparing it with “sweeping the infinities under the rug”. However th
to Ken Wilson to a large extent [42] the process of renormalization is now understood in a very profc
way as a procedure to incorporate the effects of physics at high energies by modifying the value «
parameters that appear in the Lagrangian.

Statistical mechanics Wilson's ideas are both simple and profound and consist in thinking abc
quantum field theory as the analog of a thermodynamical description of a statistical system. To be
precise, let us consider an Ising spin system in a two-dimensional square lattice as the one depic
Fig 15. In terms of the spin variables = i%, wheres labels the lattice site, the Hamiltonian of the
system is given by

H=-7]) sis, (390)
(i)

where(i, j) indicates that the sum extends over nearest neighborg artthe coupling constant between
neighboring spins (here we consider that there is no external magnetic field). The starting point to :
the statistical mechanics of this system is the partition function defined as

Z=Y e, (391)
{s:)

where the sum is over all possible configurations of the spinsGard % is the inverse temperature.
For J > 0 the Ising model presents spontaneous magnetization below a critical tempé&iaturany
dimension higher than one. Away from this temperature correlations between spins decay exponel
at large distances

_lzig

(sisj) ~e €, (392)
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Fig. 16: Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective spin comp
according to the rule (394). Notice also that the size of the lattice spacing is doubled in the process.

with |z;;| the distance between the spins located inittieand j-th sites of the lattice. This expression
serves as a definition of the correlation lengtivhich sets the characteristic length scale at which spir
can influence each other by their interaction through their nearest neighbors.

Suppose now that we are interested in a macroscopic description of this spin system. W
capture the relevant physics by integrating out somehow the physics at short scales. A way in whic
can be done was proposed by Leo Kadanoff [43] and consists in dividing our spin system in spin-bl
like the ones showed in Fig 16. Now we can construct another spin system where each spin-block
original lattice is replaced by an effective spin calculated according to some rule from the spins cont:
in each blockB,

{si:ie B} — s,M. (393)

a

For example we can define the effective spin associated with the lilpdky taking the majority rule
with an additional prescription in case of a draw

y 1
sa( ) = 5s8n Z si |, (394)

i€B,
where we have used the sign functieign(z) = I%I with the additional definitiorsgn(0) = 1. This
procedure is called decimation and leads to a new spin system with a doubled lattice space.

The idea now is to rewrite the partition function (391) only in terms of the new effective sp

sa(l). Then we start by splitting the sum over spin configurations into two nested sums, one over the
blocks and a second one over the spins within each block

Z = Ze_BH[Si] = Z Z 0 [sa(l) — gign (Z sl>] e PHIsi, (395)

{5} {§(M}{5eBa} i€Bq
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The interesting point now is that the sum over spins inside each block caritbenvas the exponential
of a new effective Hamiltonian depending only on the effective sgif$)[s," ]

{SEBQ} ZeBa

The new Hamiltonian is of course more complicated

HY = g3 sy (397)
(4,3)
where the dots stand for other interaction terms between the effective block spins. This new terms a
because in the process of integrating out short distance physics we induce interactions between tt
effective degrees of freedom. For example the interaction between the spin block vafjgbwﬁ in
general not be restricted to nearest neighbors in the new lattice. The important point is that we

managed to rewrite the partition function solely in terms of this new (renormalized) spin varidbles
interacting through a new Hamiltonidii(!)

2= 3 etV (398)
(s}

Let us now think about the space of all possible Hamiltonians for our statistical system incluc
all kinds of possible couplings between the individual spins compatible with the symmetries of the
tem. If denote byR the decimation operation, our previous analysis showsRhdefines a map in this
space of Hamiltonians

R:H— HWY. (399)

At the same time the operatidR replaces a lattice with spacirgby another one with double spacing
2a. As a consequence the correlation length in the new lattice measured in units of the lattice spac
divided by two,R : ¢ — §.

Now we can iterate the operatidd an indefinite number of times. Eventually we might reach
HamiltonianH, that is not further modified by the operatiéh

HEpg®h Roge R Rog (400)
The fixed point Hamiltoniar#,, is scale invariantbecause it does not changefass performed. Notice
that because of this invariance the correlation length of the system at the fixed point do not change
R. This fact is compatible with the transformation— % only if £ = 0 or ¢ = oo. Here we will focus
in the case of nontrivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifying the values of the coupling cons
associated with all possible interaction terms between individual spins of the lattice. If we denot
O.s:] these (possibly infinite) interaction terms, the most general Hamiltonian for the spin system u
study can be written as

Hisi] =) XaOqlsil, (401)
a=1

where), € R are the coupling constants for the corresponding operators. These constants can be tr
of as coordinates in the space of all Hamiltonians. Therefore the opefatiteiines a transformation in
the set of coupling constants

R Aa — AW, (402)
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For example, in our case we started with a Hamiltonian in which only one of thdiegumnstants
is different from zero (say, = —J). As a result of the decimatiok, = —J — —J@) while some
of the originally vanishing coupling constants will take a nonzero value. Of course, for the fixed p
Hamiltonian the coupling constants do not change under the scale transforfRation

Physically the transformatioR integrates out short distance physics. The consequence for phy:
at long distances is that we have to replace our Hamiltonian by a new one with different values fo
coupling constants. That is, our ignorance of the details of the physics going on at short distances
in arenormalizationof the coupling constants of the Hamiltonian that describes the long range phys
processes. It is important to stress that althogis sometimes called a renormalization group trans
formation in fact this is a misnomer. Transformations between Hamiltonians definRddaynot form
a group: since these transformations proceed by integrating out degrees of freedom at short scale
cannot be inverted.

In statistical mechanics fixed points under renormalization group transformationg witho
are associated with phase transitions. From our previous discussion we can conclude that the
of Hamiltonians is divided in regions corresponding to the basins of attraction of the different fi
points. We can ask ourselves now about the stability of those fixed points. Suppose we have a stai
system described by a fixed-point Hamiltonilp and we perturb it by changing the coupling constar
associated with an interaction tekth This is equivalent to replacH, by the perturbed Hamiltonian

H=H, +5)\0, (403)

whered A is the perturbation of the coupling constant corresponding {we can also consider pertur-
bations in more than one coupling constant). At the same time thinking of te@s coordinates in the
space of all Hamiltonians this corresponds to moving slightly away from the position of the fixed po

The question to decide now is in which direction the renormalization group flow will take t
perturbed system. Working at first orderdia there are three possibilities:

— The renormalization group flow takes the system back to the fixed point. In this case the c
sponding interactiod is calledirrelevant.

— R takes the system away from the fixed point. If this is what happens the interaction is ce
relevant.

— It is possible that the perturbation actually does not take the system away from the fixed poi
first order ind \. In this case the interaction is said torbarginaland it is necessary to go to higher
orders ind A in order to decide whether the system moves to or away the fixed point, or whet
we have a family of fixed points.

Therefore we can picture the action of the renormalization group transformation as a flow ir
space of coupling constants. In Fig. 17 we have depicted an example of such a flow in the cast
system with two coupling constants and A,. In this example we find two fixed points, one at the
origin O and another aF’ for a finite value of the couplings. The arrows indicate the direction in whic
the renormalization group flow acts. The free theor\at= A2 = 0 is a stable fix point since any
perturbationd A1, A2 > 0 makes the theory flow back to the free theory at long distances. On !
other hand, the fixed poinft is stable with respect to certain type of perturbations (along the line wi
incoming arrows) whereas for any other perturbations the system flows either to the free theory ¢
origin or to a theory with infinite values for the couplings.

Quantum field theory. Let us see now how these ideas of the renormalization group apply
Field Theory. Let us begin with a quantum field theory defined by the Lagrangian

L[¢a] = Lo[da] + Z 9:0i[Ba), (404)
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Fig. 17: Example of a renormalization group flow.

whereLy[¢,] is the kinetic part of the Lagrangian apdare the coupling constants associated with th
operators);[¢,]. In order to make sense of the quantum theory we introduce a cutoff in morhehta
principle we include all operatoK§; compatible with the symmetries of the theory.

In section 8.2 we saw how in the cases of QED and QCD, the value of the coupling cons
changed with the scale from its value at the scal&/e can understand now this behavior along the line
of the analysis presented above for the Ising model. If we would like to compute the effective dyna
of the theory at an energy scale< A we only have to integrate out all physical models with energie
between the cutofA and the scale of interegt This is analogous to what we did in the Ising model by
replacing the original spins by the block spins. In the case of field theory the effective &@tipn.] at
scaleu can be written in the language of functional integration as

¢iS16h / [[ D eSl9eA, (405)
u<p<A =,

HereS[¢,, A] is the action at the cutoff scale

S¢a, A = / d'z {Eo[%] + ZQi(A>Oi[¢a]} (406)

and the functional integral in Eq. (405) is carried out only over the field modes with momenta in
rangep < p < A. The action resulting from integrating out the physics at the intermediate sce
betweenA and . depends not on the original field variablg but on some renormalized fiel],. At
the same time the couplings(y:) differ from their values at the cutoff scadg(A). This is analogous to
what we learned in the Ising model: by integrating out short distance physics we ended up with a
Hamiltonian depending on renormalized effective spin variables and with renormalized values fo
coupling constants. Therefore the resulting effective action at sced® be written as

S 1] = /d493 {ﬁo[%] + ZQi(N)Oi[%]} : (407)

This Wilsonian interpretation of renormalization sheds light to what in section 8.1 might have loo
just a smart way to get rid of the infinities. The running of the coupling constant with the energy s
can be understood now as a way of incorporating into an effective action at;sttaeeffects of field
excitations at higher energiés > ..
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As in statistical mechanics there are also quantum field theories that are dixes @f the renor-
malization group flow, i.e. whose coupling constants do not change with the scale. We have encout
them already in Section 8.2 when studying the properties of the beta function. The most trivial exa
of such theories are massless free quantum field theories, but there are also examples of four-dimel
interacting quantum field theories which are scale invariant. Again we can ask the question of what
pens when a scale invariant theory is perturbed with some operator. In general the perturbed theory
scale invariant anymore but we may wonder whether the perturbed theory flows at low energies to
or away the theory at the fixed point.

In quantum field theory this can be decided by looking at the canonical dimedgiirof the
operatorO[¢,] used to perturb the theory at the fixed point. In four dimensions the three possibilities
defined by:

— d[O] > 4: irrelevant perturbation. The running of the coupling constants takes the theory bac
the fixed point.

— d[O] < 4: relevant perturbation. At low energies the theory flows away from the scale-invari
theory.

— d|O] = 4: marginal deformation. The direction of the flow cannot be decided only on dimensio
grounds.

As an example, let us consider first a massless fermion theory perturbed by a four-fermion i

action term
— I —
L=y — 55 )° (408)

This is indeed a perturbation by an irrelevant operator, since in four-dimengiprs % Interactions
generated by the extra te2rm are suppressed at low energies since typically their effects are weigh
the dimensionless factcf, where E is the energy scale of the process. This means that as we
to capture the relevant physics at lower and lower energies the effect of the perturbation is weake
weaker rendering in the infrared lim — 0 again a free theory. Hence, the irrelevant perturbation i
(408) makes the theory flow back to the fixed point.

On the other hand relevant operators dominate the physics at low energies. This is the cas
example, of a mass term. As we lower the energy the mass becomes more important and once the
goes below the mass of the field its dynamics is completely dominated by the mass term. This i
example, how Fermi's theory of weak interactions emerges from the standard model at energies |
the mass of th&/* boson

At energies belowMy, = 80.4 GeV the dynamics of th&/* boson is dominated by its mass term anc
therefore becomes nonpropagating, giving rise to the effective four-fermion Fermi theory.

To summarize our discussion so far, we found that while relevant operators dominate the dyne
in the infrared, taking the theory away from the fixed point, irrelevant perturbations become suppre
in the same limit. Finally we consider the effect of marginal operators. As an example we take
interaction term in massless QED, = )y A,. Taking into account that id = 4 the dimension of
the electromagnetic potential id,,] = 1 the operatol© is a marginal perturbation. In order to decide
whether the fixed point theory

1 _
Lo = -1 F F" + Dy (409)
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is restored at low energies or not we need to study the perturbed theoryréndetail. This we have
done in section 8.1 where we learned that the effective coupling in QED decreases at low energies.
we conclude that the perturbed theory flows towards the fixed point in the infrared.

As an example of a marginal operator with the opposite behavior we can write the Lagrangia
a SU(V) gauge theoryl = —;F%, F/, as

1 v v pa abc ga cv
L= 5 (A~ ,A5) (9" A% — 0V AW) — dgfele A5 AL 91 A
+ g2fab6fadeAZAlc/AduAez/ = »CO + Og, (410)

i.e. a marginal perturbation of the free theory described pywhich is obviously a fixed point under
renormalization group transformations. Unlike the case of QED we know that the full theory is asy
totically free, so the coupling constant grows at low energies. This implies that the opg@gdiecomes
more and more important in the infrared and therefore the theory flows away the fixed point in this li

It is very important to notice here that in the Wilsonian view the cutoff is not necessarily regar
as just some artifact to remove infinities but actually has a physical origin. For example in the ca
Fermi’s theory of3-decay there is a natural cutaff= My, at which the theory has to be replaced by the
standard model. In the case of the standard model itself the cutoff can be taken at Plandk-sdal€’
GeV or the Grand Unification scalé ~ 10'6 GeV, where new degrees of freedom are expected
become relevant. The cutoff serves the purpose of cloaking the range of energies at which new pl
has to be taken into account.

Provided that in the Wilsonian approach the quantum theory is always defined with a phy:
cutoff, there is no fundamental difference between renormalizable and nonrenormalizable theories
tually, a renormalizable field theory, like the standard model, can generate nonrenormalizable ope
at low energies such as the effective four-fermion interaction of Fermi's theory. They are not sot
of any trouble if we are interested in the physics at scales much below the dtteff, A, since their
contribution to the amplitudes will be suppressed by power%.of

9 Special topics
9.1 Creation of particles by classical fields

Particle creation by a classical source.ln a free quantum field theory the total number of particle
contained in a given state of the field is a conserved quantity. For example, in the case of the que
scalar field studied in section 3 we have that the number operator commutes with the Hamiltonian

i= [ Lt @a®, ) =0 (@11)

n= — « ,n|=20.
(27‘()3 ka ’

This means that any states with a well-defined number of particle excitations will preserve this nui

at all times. The situation, however, changes as soon as interactions are introduced, since in thi

particles can be created and/or destroyed as a result of the dynamics.

Another case in which the number of particles might change is if the quantum theory is cou
to a classical source. The archetypical example of such a situation is the Schwinger effect, in wh
classical strong electric field produces the creation of electron-positron pairs out of the vacuum. How
before plunging into this more involved situation we can illustrate the relevant physics involved in
creation of particles by classical sources with the help of the simplest example: a free scalar field tl
coupled to a classical external soutber). The action for such a theory can be written as

m2
5= [ ds 30,600 0(0) - "y 00 + T(@o(w)] . (412
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whereJ(x) is a real function of the coordinates. Its identification with a classical source is obvious o
we calculate the equations of motion

(V2 +m?) ¢(z) = J(). (413)

Our plan is to quantize this theory but, unlike the case analyzed in section 3, now the presence «
source/(x) makes the situation a bit more involved. The general solution to the equations of motion
be written in terms of the retarded Green function for the Klein-Gordon equation as

8(0) = dula) + 1 [ s’ Gl - ) (@), (414)
whereg(z) is a general solution to the homogeneous equation and
— d4k i —ik-x
Grlt,7) = / (2m)* k2 — m? + iesign(kO)
k1 e
— - —iwEt+k T _ lwgt—ip-&
i0(t) / 2705 2 (e e ) ) (415)

with 6(z) the Heaviside step function. The integration contour to evaluate the integrai®osemrounds
the poles ap’ = +w;, from above. Sincé&' (¢, ¥) = 0 for t < 0, the functiongo(z) corresponds to the
solution of the field equation at— —oo, before the interaction with the external soufce

To make the argument simpler we assume that) is switched on at = 0, and only last for a
time 7, that is

J(t,2)=0 ift<Oort>r. (416)

We are interested in a solution of (413) for times after the external source has been switched off,
In this case the expression (415) can be written in terms of the Fourier mi¢des) of the source as

Bk 1

- : 57 N\ —iwpt+ikE T P\ iwpt—ik-E
Ot 7) = do(x) +i / )iy [Tk RN T — g Ryretnt =] (417)
On the other hand, the general solutipy(z) has been already computed in Eq. (77). Combining th
result with Eq. (417) we find the following expression for the late time general solution to the Kle

Gordon equation in the presence of the source

o(t,zx) = / k1 {{a(EHiJ(wk,z;’)] oot ik E

(27)3 2wy V2w,
* (7 L= k| iwpt—ik-E
+ [a (k) — mJ(wk,k) } e } (418)

We should not forget that this is a solution valid for tintes 7, i.e. once the external source has bee
disconnected. On the other hand, for. 0 we find from Egs. (414) and (415) that the general solutio
is given by Eq. (77).

Now we can proceed to quantize the theory. The conjugate momentuim= 0y¢(x) can be
computed from Eqgs. (77) and (418). Imposing the canonical equal time commutation relations (74
find thata(E), aT(E) satisfy the creation-annihilation algebra (51). From our previous calculation
find that fort > 7 the expansion of the operatgfx) in terms of the creation-annihilation operators
a(k), o' (k) can be obtained from the one fok 0 by the replacement

~ .

J(wg, k),

ak) — 5(15);@(E)+m

Zlwe could have taken instead the advanced propagaidr:) in which casep, () would correspond to the solution to the
equation at large times, after the interaction wiifx).
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(k) — BI(E) = al (k) — ——J(wr k)" 419
Oé() ﬁ() (X() \/m(wka) ( )
Actually, sinceJ (wy, k) is a c-number, the operatasgk), 31 (k) satisfy the same algebraagk), of (k)
and therefore can be interpreted as well as a set of creation-annihilation operators. This means tl
can define two vacuum state8, ), |0,) associated with both sets of operators

a(k)[0_) =0

—

v k. (420)
B(k)[04) =0
For an observer at < 0, (k) anda(k) are the natural set of creation-annihilation operator
in terms of which to expand the field operatifxr). After the usual zero-point energy subtraction the
Hamiltonian is given by

—~ 3 = =
= / (;f)gaT(k)a(k) (421)

and the ground state of the spectrum for this observer is the vaffluum At the same time, a second
observer at > 7 will also see a free scalar quantum field (the source has been switched effgtand
consequently will expand in terms of the second set of creation-annihilation operﬂ@%, 5T(E). In
terms of this operators the Hamiltonian is written as

a0 =1 [ 25 g@mam (422)
2] (2m)3 '
Then for this late-time observer the ground state of the Hamiltonian is the second vacuulistate

In our analysis we have been working in the Heisenberg picture, where states are time-indepe
and the time dependence comes in the operators. Therefore the states of the theory are globally d
Suppose now that the system is in the “in” ground sfate. An observer at < 0 will find that there
are no particles

a)o_) =o. (423)

However the late-time observer will find that the sti@ite) contains an average number of particles give
by

(0_[70_) = / PE L ) (424)

Moreover,|0_) is no longer the ground state for the “out” observer. On the contrary, this state ha
vacuum expectation value faéf (t)

2

0 A0 ) =1 / Ak {J«uk, k) (425)

2) (2m)3

The key to understand what is going on here lies in the fact that the external source break
invariance of the theory under space-time translations. In the particular case we have studied here
J(x) has support over a finite time interv@dl< ¢ < , this implies that the vacuum is not invariant
under time translations, so observers at different times will make different choices of vacuum that
not necessarily agree with each other. This is clear in our example. An obsetveriwill choose the
vacuum to be the lowest energy state of her Hamiltorjian). On the other hand, the second observe
at late timest > 7 will naturally choos€0,.) as the vacuum. However, for this second observer, tt
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E

A

Fig. 18: Pair creation by a electric field in the Dirac sea picture.

state|0_) is not the vacuum of his Hamiltonian, but actually an excited state that is a superpositio
states with well-defined number of particles. In this sense it can be said that the external source h
effect of creating particles out of the “in” vacuum. Besides, this breaking of time translation invaria
produces a violation in the energy conservation as we see from Eq. (425). Particles are actually ci
from the energy pumped into the system by the external source.

The Schwinger effect.A classical example of creation of particles by a external field was point
out by Schwinger [44] and consists of the creation of electron-positron pairs by a strong electric fiel
order to illustrate this effect we are going to follow a heuristic argument based on the Dirac sea pi
and the WKB approximation.

In the absence of an electric field the vacuum state of a%‘,ﬂiield is constructed by filling all the

negative energy states as depicted in Fig. 2. Let us now connect a constant electficHiéld, in the
range0 < x < L created by a electrostatic potential

0 z <0
V(i) =¢ —& O<z<lL (426)
—&L x>1L

After the field has been switched on, the Dirac sea looks like in Fig. 18. In particular we find the
eEL > 2m there are negative energy states:at L with the same energy as the positive energy statt
in the regionz < 0. Therefore it is possible for an electron filling a negative energy state with ene
close to—2m to tunnel through the forbidden region into a positive energy state. The interpretatiol
such a process is the production of an electron-positron pair out of the electric field.

We can compute the rate at which such pairs are produced by using the WKB approxima
Focusing for simplicity on an electron on top of the Fermi surface near L with energyEy, the
transmission coefficient in this approximation is giveddy

%(Eo—h/mz-i-ﬁqg
/elg (Eo—\/m)

ZNotice that the electron satisfy the relativistic dispersion relafios /52 + m2 + V and therefore-p2 = m? — (E —
V)? + p2. The integration limits are set by those values: @t whichp, = 0.

Twk = exp [—2 ) dx \/m2 — [Eo — e&(z — x0))* + P2
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— exp [_% (ﬁjg 4 mQ)] : (427)

wherep?. = p2 4 p2. This gives the transition probability per unit time and per unit cross sedfjdn
for an electron in the Dirac sea with transverse momernigrand energyEy. To get the total probability
per unit time and per unit volume we have to integrate over all possible valygsaid Ey. Actually,

in the case of the energy, because of the relation betégeand the coordinate at which the particle
penetrates into the barrier we can WrﬂiﬁQ = %d:p and the total probability per unit time and per unit
volume for the creation of a pair is given by

6(9 d2pT T (52 2 282 ﬂm2
wW=2[-2Z o~ e (Fr+m?) _ e 428
(27T> / (27)2 o e (428)

where the factor o2 accounts for the two polarizations of the electron.

Then production of electron-positron pairs is exponentially suppressed and it is only sizeabl
strong electric fields. To estimate its order of magnitude it is useful to restore the poweasdh in
(428)

e2E?  _am?B
= m he& (429)

The exponential suppression of the pair production disappears when the electric field reaches the «
value&.;; at which the exponent is of order one

m2c?

he

This is indeed a very strong field which is extremely difficult to produce. A similar effect, howev
takes place also in a time-varying electric field [45] and there is the hope that pair production coul
observed in the presence of the alternating electric field produced by a laser.

gcrit =

~1.3x10%Vem™. (430)

The heuristic derivation that we followed here can be made more precise in QED. There the ¢
of the vacuum into electron-positron pairs can be computed from the imaginary part of the effe
actionI'[A,,] in the presence of a classical gauge potenijal

@wombw

1
= log det [1—1644 7
i m

This determinant can be computed using the standard heat kernel techniques. The probability ¢
production is proportional to the imaginary partibfA,,| and gives

iT[A,]

(431)

202 1 m2
W= iZ—e_" ol (432)

Our simple argument based on tunneling in the Dirac sea gave only the leading term of Schwinger’s
(432). The remaining terms can be also captured in the WKB approximation by taking into accoun
probability of production of several pairs, i.e. the tunneling of more than one electron through the ba

Here we have illustrated the creation of particles by semiclassical sources in quantum field tr
using simple examples. Nevertheless, what we learned has important applications to the study of
tum fields in curved backgrounds. In quantum field theory in Minkowski space-time the vacuum ¢
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is invariant under the Poincaré group and this, together with the covariditice theory under Lorentz
transformations, implies that all inertial observers agree on the number of particles contained in a
tum state. The breaking of such invariance, as happened in the case of coupling to a time-varying ¢
analyzed above, implies that it is not possible anymore to define a state which would be recogniz
the vacuum by all observers.

This is precisely the situation when fields are quantized on curved backgrounds. In particul;
the background is time-dependent (as it happens in a cosmological setup or for a collapsing star) dif
observers will identify different vacuum states. As a consequence what one observer call the vacuui
be full of particles for a different observer. This is precisely what is behind the phenomenon of Haw!
radiation [46]. The emission of particles by a physical black hole formed from gravitational collaps
a star is the consequence of the fact that the vacuum state in the asymptotic past contain particles
observer in the asymptotic future. As a consequence, a detector located far away from the blac}
detects a stream of thermal radiation with temperature

3
THaWking = m (433)
whereM is the mass of the black holé&y is Newton’s constant ankl is Boltzmann’s constant. There
are several ways in which this results can be obtained. A more heuristic way is perhaps to think o
particle creation as resulting from quantum tunneling of particles across the potential barrier pos¢
gravity [47].

9.2 Supersymmetry

One of the things that we have learned in our journey around the landscape of quantum field tt
is that our knowledge of the fundamental interactions in Nature is based on the idea of symmetry
in particular gauge symmetry. The Lagrangian of the standard model can be written just includin
possible renormalizable terms (i.e. with canonical dimension smaller o equal to 4) compatible witt
gauge symmetry SU(3)xSU(2) xU(1) and Poincaré invariance. All attempts to go beyond start witt
guestion of how to extend the symmetries of the standard model.

As explained in Section 5.1, in a quantum field theoretical description of the interaction of elen
tary particles the basic observable quantity to compute is the scatterfhigratrix giving the probability
amplitude for the scattering of a number of incoming particles with a certain momentum into some
products

A(in — out) = (py’,...;outp, .. .;in). (434)

An explicit symmetry of the theory has to be necessarily a symmetry of thmatrix. Hence it is fair to
ask what is the largest symmetry of thematrix.

Let us ask this question in the simple case of the scattering of two particles with four-magment
andp, in thet-channel

P2 Ph

P 4
p1
We will make the usual assumptions regarding positivity of the energy and analyticity. Invariance o
theory under the Poincaré group implies that the amplitude can only depend on the scattering ar
through

t=@ —p)?=2(mi—pip}) =2(mi— E1E] + |p1]|py/| cos ) . (435)
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If there would be any extra bosonic symmetry of the theory it would restricti¢httering angle to a set
of discrete values. In this case tBematrix cannot be analytic since it would vanish everywhere exce
for the discrete values selected by the extra symmetry.

Actually, the only way to extend the symmetry of the theory without renouncing to the analytic
of the scattering amplitudes is to introduce “fermionic” symmetries, i.e. symmetries whose gener:
are anticommuting objects [48]. This means that in addition to the generators of the Poincaré gr«
Pr M™ and the ones for the internal gauge symmetes/e can introduce a number of fermionic gen-
eratorsQl, Q,; (I = 1,...,N), whereQ, ; = (QL). The most general algebra that these generatc
satisfy is the\ -extended supersymmetry algebra [49]

{Qéa@bj} = 2055Pu51J,

{QL.Q]} = 2e42", (436)

—1 —J —=1J

{Qa: @i} = 2427, (437)
whereZ/” € C commute with any other generator and satisfidd = —Z”/!. Besides we have the

commutators that determine the Poincaré transformations of the fermionic gen&rat@s s

(@4 P = [Qa1, P" =0,
QLM = S(0™)lql, (439)
QM) =~ @) Gy,
whereo” = —ig?, 0¥ = ckok anda* = (o#*)I. These identities simply mean th@{, Q, ,

transform respectively in the}, 0) and (0, 1) representations of the Lorentz group.

We know that the presence of a global symmetry in a theory implies that the spectrum ca
classified in multiplets with respect to that symmetry. In the case of supersymmetry start with the
caseN = 1 in which there is a single pair of supercharggs Q,, satisfying the algebra

{QuQi} =20"Pu  {Qu @} ={Qs @3} =0. (439)

Notice that in the\ = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry algebra (439), starting with the mas
case. Given a staté) satisfyingk? = 0, we can always find a reference frame where the four-véétor
takes the formk* = (F, 0,0, E). Since the theory is Lorentz covariant we can obtain the representat
of the supersymmetry algebra in this frame where the expressions are simpler. In particular, the
hand side of the first anticommutator in Eq. (439) is given by

0 0
L po_ 0 3p3y _
20" P, = 2(P o—P)_<0 4E). (440)

Therefore the algebra of supercharges in the massless case reduces to

{@1.ol} = {@uo}} =0,
{@.Q} = 4E. (441)

The commutatof @1, Q{} = 0 implies that the action af); on any state gives a zero-norm state of th
Hilbert space|Q:|¥)| = 0. If we want the theory to preserve unitarity we must eliminate these ni

ZThe generatord/*” are related with the ones for boost and rotations introduced in section 411 by M, M* =
%s”’“Mﬂk. In this section we also use the “dotted spinor” notation, in which spinors i(l%th@) and (0, %) representations

of the Lorentz group are indicated respectively by undotted,( . .) and dottedd, b, . . .) indices.
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states from the spectrum. This is equivalent to setfiag= 0. On the other hand, in terms of the seconc
generator), we can define the operators

1 1
— T f
a=—=9, a = ——=@Q,,
WED WE 2
which satisfy the algebra of a pair of fermionic creation-annihilation operafarsy'} = 1, a®> =
(a")? = 0. Starting with a vacuum statg\) = 0 with helicity A we can build the massless multiplet

(442)

IA), A+ 1) =al|h). (443)
Here we consider two important cases:

— Scalar multiplet: we take the vacuum state to have zero helicityso the multiplet consists of a
scalar and a helicity- state

0F), |3) =aljoT). (444)

However, this multiplet is not invariant under the CPT transformation which reverses the sig
the helicity of the states. In order to have a CPT-invariant theory we have to add to this multi
its CPT-conjugate which can be obtain from a vacuum state with heﬂc&y—%

07), | =3)- (445)

Putting them together we can combine the two zero helicity states with the two fermionic ones
the degrees of freedom of a complex scalar field and a Weyl (or Majorana) spinor.

— Vector multiplet: now we take the vacuum state to have helikity % so the multiplet contains
also a massless state with helicky= 1

As with the scalar multiplet we add the CPT conjugated obtained from a vacuum state with hel
A=-—1

), 1) = af| 3). (446)

D=

’ - %)7 | - 1>7 (447)
which together with (446) give the propagating states of a gauge field and égaiugino.

In both cases we see the trademark of supersymmetric theories: the number of bosonic and ferr
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeat the previous analysis for each supt
metry charge. At the end, we hawé sets of fermionic creation-annihilation operatéeg a}} = 6{,,
(ar)® = (a})2 = 0. Let us work out the case df = 8 supersymmetry. Since for several reasons we ¢
not want to have states with helicity larger tizmwe start with a vacuum state- 2) of helicity A = —2.
The rest of the states of the supermultiplet are obtained by applying the eight different creation ope!
a! to the vacuum:

A=2: ai...ag\—2> <Z>:18tate
3 8
A=3: af ...al|—2) <7> — 8 states,
8
A=1: af ..a}|-2) <6> — 28 states,

87



L. ALVAREZ-GAUME AND M.A. VAZQUEZ-M0Z0O

1 8
A= 3 a}l . a}f)\ -2) <5> = 56 states,
. i t_ 8\ _
A=0: ap...ap|—2) 4 70 states, (448)
1 8
A= —5¢ aL a}2al}3| —2) (3) = 56 states,
. gt 8\ _
A=-1:  apap|—2) <2> = 28 states,
3 ; 8
/\:—5 roap|—2) (1) = 8 states,

A=-2: | —2) 1 state

Putting together the states with opposite helicity we find that the theory contains:

1 spin-2 fieldg,,,, (a graviton),
8 spin3 gravitino fieldsy)!,
28 gauge fieldslg‘ﬂ,

56 spind fermionsyl!/ K],

70 scalarg)l/ /KL

where by[IJ...] we have denoted that the indices are antisymmetrized. We see that, unlike the mas
multiplets of V' = 1 supersymmetry studied above, this multiplet is CPT invariant by itself. As in tl
case of the masslesé = 1 multiplet, here we also find as many bosonic as fermionic states:

bosons: 1428+ 70+ 28+ 1= 128 states,
fermions: 8 + 56+ 56+ 8 =128 states.

Now we study briefly the case of massive representatieng:> = M?2. Things become simpler
if we work in the rest frame wherB® = M and the spatial components of the momentum vanish. The
the supersymmetry algebra becomes:

(QLQ; ,} =2M6 ;6" (449)
We proceed now in a similar way to the massless case by defining the operators
1 1
I_ I T
a, = y a. = ——=W4r- 450
‘T V2M “ o= aM Qar (430)

The multiplets are found by choosing a vacuum state with a definite spin. For examplé,#ot and
taking a spin-0 vacuurjt)) we find three states in the multiplet transforming irreducibly with respect
the Lorentz group:

10), al|o), etalal|0), (451)

which, once transformed back from the rest frame, correspond to the physical states of two spin-0 b
and one spir%— fermion. ForN\ -extended supersymmetry the corresponding multiplets can be worl
out in a similar way.

The equality between bosonic and fermionic degrees of freedom is at the root of many of
interesting properties of supersymmetric theories. For example, in section 4 we computed the dive
vacuum energy contributions for each real bosonic or fermionic propagating degree of fre&tlom is

1~
Eupe = 155(0) / d>pwp, (452)

%4For a boson, this can be read off Eq. (80). In the case of fermions, the result of Eq. (134) gives the vacuum e
contribution of the four real propagating degrees of freedom of a Dirac spinor.
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where the signt corresponds respectively to bosons and fermions. Hence, for a supersymmetric
ory the vacuum energy contribution exactly cancels between bosons and fermions. This boson-fe
degeneracy is also responsible for supersymmetric quantum field theories being less divergent tha
supersymmetric ones.

Appendix: A crash course in Group Theory

In this Appendix we summarize some basic facts about Group Theory. Given a@@ugpresentation
of G is a correspondence between the elements ahd the set of linear operators acting on a vectc
spaceV/, such that for each element of the grapp G there is a linear operatdp(g)

D(g):V —V (453)
satisfying the group operations

D(g1)D(g2) = D(g192), D(g;") = D(g1)7 Y, 91,92 € G. (454)

The representatioP(g) is irreducible if and only if the only operators : V' — V' commuting with all
the elements of the representatibrig) are the ones proportional to the identity

[D(g), A] = 0, Vg — A=), )reC (455)

More intuitively, we can say that a representation is irreducible if there is no proper suli$pacté
(i.e.U # V andU # 0) such thatD(g)U C U for every elemeny € G.

Here we are specially interested in Lie groups whose elements are labelled by a number of
tinuous parameters. In mathematical terms this means that a Lie group is a maviftidether with
an operationM x M — M that we will call multiplication that satisfies the associativity propert
g1 - (g2 - g3) = (91 - 92) - g3 together with the existence of unitd = 1g = g,for everyg € M and
inversegg~! = g7 'g = 1.

The simplest example of a Lie group is SO(2), the group of rotations in the plane. Each eler
R(0) is labelled by the rotation angl with the multiplication acting a(6;)R(62) = R(61 + 62).
Because the angteis defined only modul@r, the manifold of SO(2) is a circumferenéé.

One of the interesting properties of Lie groups is that in a neighborhood of the identity elen

they can be expressed in terms of a set of generdtofs = 1,...,dim G) as
o ()"
D(g) = exp(—ia, 1) = Z Qay - -0, T ... T, (456)
o n!

wherea, € C are a set of coordinates @1 in a neighborhood ol. Because of the general Baker-
Campbell-Haussdorf formula, the multiplication of two group elements is encoded in the value of
commutator of two generators, that in general has the form

(7%, T% = ifeere, (457)

where f?¢ ¢ C are called the structure constants. The set of generators with the commutator oper
form the Lie algebra associated with the Lie group. Hence, given a representation of the Lie alc
of generators we can construct a representation of the group by exponentiation (at least locally ne
identity).

We illustrate these concept with some particular examples. For SU(2) each group eleme
labelled by three real numbet, i = 1,2, 3. We have two basic representations: one is the fundamen
representation (or spii;) defined by

(;) =e 7 (458)
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with o* the Pauli matrices. The second one is the adjoint (or spin 1) representation which can be wi
as

Di(ay) = e, (459)

where
0 0 0 00 —1 0 1 0
Jb=10 0 1], J=100 0 |, JB=|-100]. (460)
0 -1 0 10 0 0 0 0

Actually, J* (i = 1,2, 3) generate rotations around they andz axis respectively. Representations of
spinj € N+ % can be also constructed with dimension

dim D;(g) = 2j + 1. (461)

As a second example we consider SU(3). This group has two basic three-dimensional repre:
tions denoted by and3 which in QCD are associated with the transformation of quarks and antiqua
under the color gauge symmetry SU(3). The elements of these representations can be written as

D3(a®) = 30" Na Dg(a®) = e 30N (a=1,...,8), (462)
where)\, are the eight hermitian Gell-Mann matrices
010 0 — 0 1 0 O
AN = 100 |, N=1|4i 0 0], =0 -1 0|,
0 00 0 O 0 0 0
0 01 0 0 — 0 00
AN = 000 |, =00 0 |, =001/, (463)
1 00 i 0 0 010
1
00 0 5 0 0
A = 00 —i |, M=| O % 0
0 7 0 0o 0 =
3
Hence the generators of the representat®asd3 are given by
a 1 a(q 1 T

Irreducible representations can be classified in three groups: real, complex and pseudoreal.

— Real representations: a representation is said to be real if thesgrisraetric matrixS which acts
as intertwiner between the generators and their complex conjugates

T" = —81°871, ST =3 (465)

This is for example the case of the adjoint representation of SU(2) generated by the matrices
— Pseudoreal representations: are the ones for whiciniisymmetric matrixS exists with the
property

T" = —81°871, ST =g, (466)

As an example we can mention the séimepresentation of SU(2) generated .
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— Complex representations: finally, a representation is complex if the gerseaaiw their complex
conjugate are not related by a similarity transformation. This is for instance the case of the
three-dimensional representatighand3 of SU(3).

There are a number of invariants that can be constructed associated with an irreducible repi

tation R of a Lie groupG and that can be used to label such a representatidfi; &re the generators
in a certain representatidh of the Lie algebra, it is easy to see that the mafA%™,“ T4 T% commutes

with every generatdrl';. Therefore, because of Schur’s lemma, it has to be proportional to the identit
This defines the Casimir invariatk(R) as

dim G
> TTH = Co(R)1. (467)

a=1
A second invarianfs ( R) associated with a representatiBrcan also be defined by the identity
Tr TETY = To(R)5. (468)

Actually, taking the trace in Eq. (467) and combining the result with (468) we find that both invarie
are related by the identity

Cy(R)dim R = Ty(R) dim G, (469)

with dim R the dimension of the representatifin

These two invariants appear frequently in quantum field theory calculations with nonabelian g
fields. For exampld;(R) comes about as the coefficient of the one-loop calculation of the beta-funct
for a Yang-Mills theory with gauge grou@. In the case of SU(N), for the fundamental representatiol
we find the values

N2 -1
2N
whereas for the adjoint representation the results are

Ch(fund) = Ty(fund) = % (470)

Cy(adj) = N, Ty(adj) = N. (471)

A third invariantA(R) is specially important in the calculation of anomalies. As discussed in s¢
tion (7), the chiral anomaly in gauge theories is proportional to the group-theoreticalmc@ﬁ{Tg, Tg}}
This leads us to defind(R) as

Tr [Tg{Tg,TE}} = A(R)d™, (472)

whered®* is symmetric in its three indices and does not depend on the representation. Therefore
cancellation of anomalies in a gauge theory with fermions transformed in the represeftaifahe
gauge group is guaranteed if the corresponding invaridft) vanishes.

It is not difficult to prove thatd (R) = 0 if the representatio® is either real or pseudoreal. Indeed,
if this is the case, then there is a matlxsymmetric or antisymmetric) that intertwins the generator
T% and their complex conjugatéi"sféE = —ST}%S‘l. Then, using the hermiticity of the generators we ca
write

Tr [Tg{Tg,Tg}} — Ty [Tg{Tg,Tg}}T =Ty [T‘}%{T‘}%,T;}] . (473)

5chur's lemma states that if there is a matrixhat commutes with all elements of an irreducible representation of a L
algebra, them = A1, for some\ € C.
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Now, using (465) or (466) we have
Tr [T“R{TE,T;}} = Tt [STI%S‘l{ST}%S_l,STI%S‘l}] = Tt [Tg{Tg,Tg}} . (474)

which proves thalr [Tg{Tb , Tf%}] and therefored(R) = 0 whenever the representation is real or pset
doreal. Since the gauge anomaly in four dimensions is proportion&{ &) this means that anomalies
appear only when the fermions transform in a complex representation of the gauge group.
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Abstract

Quantum Chromo Dynamics (QCD) provides the theoretical framework for
any study of TeV scale physics at LHC. Being familiar with the basic concepts
and techniques of QCD is therefore a must for any high-energy physicist. In
these notes we consider Higgs production via gluon fusion as an example on
how accurate and flexible predictions can be obtained in perturbative QCD. We
start by illustrating how to calculate the total cross section at the leading order
(yet one loop) in the strong coupling aug and go through the details of the next-
to-leading order calculation eventually highlighting the limitations of fixed-
order predictions at the parton level. Finally, we briefly discuss how more ex-
clusive (and practical) predictions can be obtained through matching/merging
fixed-order results with parton showers.

1 Introduction

Strongly interacting particles can be described in terms of a SU(3) gauge theory field theory involving
gluons and quarks:

1 Tf .
Lacp = — GGy, + 30 il v, M
f

where the sum runs over the quark flavors,

Gl = 0,AL—0,A% — g f*eAb AL
D,u,ij = 8u5ij + igst?jAZ,
and tfj are the Gell-Mann matrices in the fundamental representation and f abe are the structure functions
of SU(3), with

[t%, %] = i fabete )

Notwithstanding its apparent simplicity, QCD is an amazingly rich theory which is able to account for
a wide diversity of phenomena, ranging from really strong (non-perturbative) interactions at low scales,
below 1 GeV, to rather weak (perturbative) interactions up to scales of the TeV at colliders, from low
density to high density states such as those happening in nuclei collisions or inside stars, from low to
high temperatures. For proton-proton collisions at the LHC, where one can consider zero temperature
and density, QCD is complicated enough that we have no means available (for the moment!) to solve
it exactly and we have to resort to a variety of approximate methods, including perturbation theory
(when the coupling is small) and lattice calculations (when the coupling is large). Thanks to the work of
theoretical and experimental physicists over the last fourty years we are convinced that QCD is a good
theory of the strong interactions, of course in the range of energies explored so far and to the level of the
theoretical accuracy that can be achieved with current technologies.

There are many excellent references on QCD with applications to collider physics, from books,
(e.g., [1]) to review articles, to write-up of lectures given in schools, and in particular some of those
given at the CERN schools over the years. My lectures at the school were largely based on the inspiring
ones by Michelangelo Mangano [2], Paolo Nason [3] and on the most recent ones by Gavin Salam [4],
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which I warmly reccommend. In these notes, I'll present a case study, i.e. how QCD can make accurate
predictions for Higgs production in gluon fusion at the LHC. The aim is to see the basic concepts at work
for a realistic and very important process so to verify their understanding and also to have a closer look at
the basic techniques used to perform such calculations. When needed and to avoid repetitions, I will refer
to specific sections of Ref. [4] as [QCD: Section number] where the reader will find further information
on the basic concepts. Links to simple Mathematica® notebooks with the calculations described below
can be found at http://maltoni.home.cern.ch/.

2 Higgs cross section at the LHC

The factorisation theorem states that the total cross section for the inclusive production of Higgs at the
LHC can be written as !

o(H+X)= Ei,j/dwlfi(l‘laﬂF)/d@fj(m,/w) X OijsH+x(8, MH, F, IR) 5 (3)

where the f; /j(az, wr) are the parton distributions functions (long distance term, non-perturbatively cal-
culable) and ¢ is the partonic cross section (short distance term, calculable in perturbation theory).
0 can be written as an expansion in ag:

6(ij > H+z) = 69(3ij — H)
+ &(1)(ij — H + upto 1 parton)
+ 6@ (ij — H + upto2partons)
+o (4)

where the first term gives the leading order (LO) approximation and it is of order o, the second next-
to-leading (NLO) order (ag) and so on.

It is interesting to know how the Higgs predictions improved and evolved over time. The LO
production was considered a long ago [5], the next-to-leading order (NLO) QCD corrections [6-9] were
calculated decades ago in the so-called effective field theory (HEFT) approximation (which will be ex-
plained in the following) as well in the full SM and found to be very large (¢N© /oC ~ 2). This
motivated the formidable endeavour of the next-to-next-to-leading order (NNLO) QCD calculations,
which have been fully evaluated in HEFT [10-12]. Given that corrections to the HEFT been estimated
through a power expansion [13-16] and found to have a negligible impact on total rates, NNLO is the
current state of the art for fixed-order predictions.

Before going into the details of the computation of the Higgs cross section, let us remind a few
general important points that are relevant for any computation in QCD.

— At LO the factorisation theorem reduces to the parton model: the parton distribution functions
fi(z) are just the probabilities (and therefore positive-definite) of finding a given parton in the
initial state hadrons at a given resolution scale ur and & gives the probability that such partons
with a total energy s = x1x2.5 will "fuse" into a Higgs.

— Total cross sections are the first and simplest example of a larger class of observables, called In-
frared Safe (IS) quantities [QCD:2.3.2], which can be consistently computed in QCD and then
compared to experimental data. Such quantities always need to be (at least to some degree) inclu-
sive on possible extra radiation and in particular resilient under soft and/or collinear radiation. The

'Be careful here as for simplicity we adopt the usual pragmatic approach on Higgs production at the LHC and imagine it
coming from different channels: gluon-gluon fusion, vector-boson-fusion, vector-boson-associated...and so on. We restrict the
discussion to the first one which is the leading mechanism. In fact, various channels overlap if contributions are organized as
powers of strong and weak couplings (e.g., gg — H appears at the same order in as and y; as gg — ttH) and in general
they mix-up once higher-order QCD and EW corrections are included. The separation into channels is anyway useful from the
experimental point of view as they typically lead to different final state signatures.
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most known example of IS quantities beyond total cross sections are jets [QCD:5]. The constraint
of infrared safety becomes non-trivial already at NLO for Eq. (3).

— Total cross sections always inclusive of any possible extra QCD radiation in the event, hereby
denoted by X, even when the calculation is performed at LO. In this case, extra radiation up to
the scale pr is accounted for by the parton distribution function’s (PDF), while hard radiation is
consistently neglected being of higher order (ag). Alternatively, one can prove that the total cross
section for producing "just a Higgs", i.e., Higgs + no resolvable radiation at an arbitrary small
scale is exactly zero at all orders in perturbation theory.

— A very important point to always keep in mind is that the the "adjectives" LO, NLO, NNLO need
to be always referred to a specific observable, i.e. different observables in a given calculation can
be predicted at a different order. For example, when talking about a "NNLO calculation for Higgs
production in gluon fusion", what is really meant is that the total inclusive cross section is known
at NNLO. The same calculation can predict the rate for Higgs+1 jet (inclusive and exclusive) at
NLO and Higgs+2 jets only at LO (where exclusive and inclusive is the same).

— Beyond LO, the separation between long-distance and short-distance physics as described by pp
(and also pr) becomes non-trivial. pr and g represent arbitrary scales in the calculation, whose
dependence is generated by the truncation of the perturbative expansion at a given order. Exploiting
the fact that physical results must be independent on such scales one finds renormalisation-group
type equations, such as the 3 function of QCD [QCD:1.2.3] and the so-called DGLAP evolution
equations for the PDF’s [QCD:3.2].

— The residual dependence of o on pr and p i at any given order in perturbation theory is often used
to gauge the accuracy of the predictions [QCD:4.4.1]. This is by itself a very crude approxima-
tion, while the towers of leading (subleading,...) log’s of the scales can be predicted at all orders
in perturbation theory, only an explicit computation is able to provide the finite terms at higher
orders. In practice, it is common to choose central scales as the typical hard scale in a process
and vary them independently between 1/2 and 2 to identify an uncertainty. However, no solid and
unique procedure exists to identify central reference values and variation intervals and to associate
a confidence level. However, milder scale dependence of higher-order results compared to lower
ones is always used to gauge the improvement on the accuracy of a given prediction.

3 pp — H + X atleading order
At LO Eq. 3 can be rewritten as

1 1
o"O(H + X) _/ dxl/ dao fo(w1, pr) fo (w2, pr) x (g9 — H), )
70 T0/%1
where 7y = m%{/S and s = x129S5. 6 for a 2 — 1 process can be rewritten as
1— dP
5 o= —|AP (2" - P
1
= —|AP2rd(s —my), (6)
2s
where )
r=mme =, =T %
s S

Performing the change of variables x1,zo — 7,y with 1 = /7eY, ©o = /Te Y (verify that the
jacobian J is equal to 1) the change of the integration limits and the result becomes

LO _ wAP [Tlev y —y
o (H+X) = — 5 dy xg(\/T0e”)g(v/T0€7Y) . (8)
myo Jlog /0
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a, i

b,v

q

Fig. 1: Representative Feynman diagram for the process gg — H. Another diagram, the one with the gluons
exchanged, contributes to the total amplitude.

This expression shows that for the cross section of a 2 — 1 process at LO, the contribution from the par-
ton distributions (a quantity known as gluon-gluon luminosity) factorises from the dynamics (|.A|?). The
gluon-gluon luminosity depends only on the kinematics in the limits of integration and can be computed
once for all for each Higgs mass. The problem is therefore reduced to the computation of the amplitude

A.

3.1 My first loop (yet finite!) amplitude: gg — H

Being a color singlet, the Higgs does not couple directly to gluons. However, as no fundamental symme-
try forbidding it is present ? it can via a loop of a colored and massive particle. In the SM such states are
the heavy quarks. Let us consider one quark at the time, i.e., the diagram(s) shown in Fig. 1. The first
observation to make, even before starting the calculation, is that even though a triangle loop in general
can give rise to divergences, both in the ultra-violet (UV) and in the infrared (IR), in this case we expect
a finite result. There are several different ways of convincing that this must be the case. A simple one
goes as follows. Divergent terms always factorize over lower order amplitudes. The one-loop amplitude
is the first non-zero term contributing to gg — H in the perturbative expansion. Therefore there cannot
be any divergence. A finite amplitude, however, does not mean that a consistent regularisation procedure
is not needed. The reason is that in intermediate steps of the calculation infinities are found that cancel
at the end, yet might leave finite terms. As we will see in gg — H such finite terms are actually nec-
essary to guarantee the gauge invariance of the result, clearly showing that there is no ambiguity in the
procedure. 3

To evaluate the diagram of Fig. 1 (there are actually two diagrams, the one shown and another one
with the gluons exchanged. They give the same contribution so we’ll just multiply our final result by
two), we employ use dimensional regularisation in d = 4 — 2¢ dimensions. *

%In fact, classically, scale invariance would forbid such a coupling. However, scale invariance is broken by renormalisation
and therefore it is not a symmetry.

3Less obvious is the case of 4y — H where the contribution coming from gauge bosons loop has to be done in different
gauges (or via low-energy-theorems) to prove the uniqueness and the correctness of dimensional regularisation procedure.
Interestingly enough, people seem to forget this fact quite regularly over the years.

“Dimensional regularisation comes in several different flavors and attention has to be paid to the details of the implementa-
tion. All formulas quoted in the main body of these lecture notes are in the so-called Conventional Dimensional Regularization
(CDR) which is the regularisation procedure where the MS scheme is defined. In practice, NLO calculations nowadays are
done in a different scheme which limits the use of the d-dimensional Dirac algebra to the loop computation.
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Using the QCD Feynman rules [QCD: Fig. 3] and the Yukawa interaction, the expression for the
amplitude corresponding to the diagram of Fig. 1 reads:

; d v
i = = g Paaet) (712 [ e o) ©)
where the overall minus sign is due to the closed fermion loop.> The denominator is Den = (£2 —
mg)[(£+p)? —m)[(£ - q)* — mp)]. Emplyoing the usual Feynman parametrization method to combine
the denominators of the loop integral into one:

L —2/1da:/1x ay (10)
one obtains
L = Q/dx d 1 (11)
Den y[€2 - mé +20- (px — qy)]®

The next step is to shift the integration momenta to ¢ = ¢ + px — qy so the denominator takes the form

1 1
— 52 [dxd : 12
Den / vy [0r2 — mé + m2zy)? (12)

The numerator of the loop integral in the shifted loop momentum becomes
o= T mol(f + p mQ) (£~ g + ma)
m2
= dmgq [g“”(mé - = =) e +p”q“] : (13)

where we have used the fact that for transverse gluons, €(p) - p = 0 and so terms proportional to the
external momenta, p,, or g, have been dropped. The above expression shows already several interesting
aspects.

The first one is that the trace is proportional to the heavy quark mass. This can be easily understood
as an effect of the spin-flip coupling of the Higgs. Gluons or photons do not change the spin of the
fermion, as vectors map left (right) spinors into left (right) spinors, while the scalars do couple left (right)
spinors with right (left) ones. If the quark circulating in the loop is massless then the trace vanishes due
to helicity conservation, independently of the actual Yukawa coupling. This is the reason why even when
the Yukawa coupling of the light quark and the Higgs is enhanced (such as in SUSY or 2HDM with large
tan (), the contribution is anyway suppressed by the kinematical mass.

The second point is that simple power counting shows that the terms proportional to the squared
loop momentum ¢2 and ¢“¢¥ give rise to UV divergences. This means that an intermediate and consin-
stent regularisation prescription is needed for intermediate manipulations and that divergences will have
to cancel in the final result.

By shifting momenta in the numerator, dropping terms linear in ¢’ and using the relation

kHEY 1 k2
ddk — MV ddki 14
| g = 0" | ey o
to write the amplitude in the form
: 2g3mY o [ dU v, 2 pf4—d 2 1
= B [ Lanf e (5) i)

3¢, (p) are the transverse gluon polarizations.
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2dxdy
€
(02 — mé +mZay)d "

(1 4xy>} ®)en(a): as)

This expression shows that if one computes the integral in d = 4, the UV divergent term is absent. For
d = 4 — 2¢, however, this gives rise to a left-over finite piece, as the scalar integrals are given by

@ i i T'(1+4+€
/ emi@E@-Cp 3%2(4706(:)(2_6)06
’ i
/(gﬁid(ﬁ—lc)?’ = —3aUmTA+aC (16)

So it is manifest that the divergence 1/¢ cancels against the (4 — d)/d term leaving a finite piece, which
in fact ensures that the final result is gauge invariant. By combining it with the other terms in the squared
parenthesis we obtain

2 2
asmg ,m Y 1—4zy
Algg — H) = _77”)@5 b<g“ TH —p Q“>6u(p)eu(Q)/d:rdy<m2 — 3 xy> (17)
Q H

(Note that we have multiplied by 2 in Eq. (17) to include the diagram where the gluon legs are crossed.)
The Feynman integral of Eq. (17) can easily be performed to find an analytic result if desired. Note
that the tensor structure could have been predicted from the start by imposing gauge invariance, i.e.,
pHFAM = ¢¥ AW = 0. By defining I(a) as

1 -z | _y4 m2
I(a) = dx dy :L‘y’ a=—4&, (18)
1— 2
0 0 axry mQ

one can factorise a 1/ mé out of the integral and cancel the overall mé in front of the amplitude (17). In
other terms the heavy quark mass dependence is confined in /(a).
For a light quark, mqg < mpy,

1 m m
I(a) =% % log? a = _Zm% log? m—? , (19)
H H

showing that in the Standard Model the charm and bottom quark contributions are strongly suppressed
by the square of the quark mass over Higgs mass ratio and come with a minus sign (with respect to the
top-quark one).

The opposite limit, mpy < mg,

I(a) 9 2, (20)

W =

which is found to be an extremely good approximation even for m¢g ~ mpy, is quite surprising at first.
In this case the amplitude reads

2
Algg — H) " - g (WmH - p”q“>fu(p)eu(q). @21
3mv 2
i.e., the amplitude gg — H becomes independent of the mass of the heavy fermion in the loop. This is
a special case of a general low energy theorem (which holds in the py — 0 limit) that states that if the
colored particle mass, independently of the other quantum numbers such as its spin acquires (all of) its
mass via the Higgs mechanism, it will contribute to the amplitude gg — H independently of its mass.
In other words gg — H acts as a counter of heavy colored particles. In a four generation scenario, for
instance, the contribution from the ¢’ and b’ would lead to a factor of three increase at the amplitude level,
i.e. a factor 9 at the cross section level. Note that this is in an apparent contradiction with of our intuition
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that heavy particles should decouple and not affect the physics at lower energy. The heavy states would
not decouple because of our assumption that their (whole) mass is due to electroweak symmetry breaking
and the interaction with the Higgs. Another interesting case is that of SUSY, where down-type and up-
type quarks can couple differently to the Higgs(es) and other colored states (squarks) are present in the
spectrum. At large tan 3, i.e. when my tan 8 ~ m,, the Higgs bottom couplings are enhanced by a
factor tan 3, while those of the top suppressed by a cot 8. However, the scaling with masses is different
in the two limits and the contribution from the bottom anyway suppressed by mg/mpg. In addition,
the the two contributions will have an opposite sign so that will actually interfere destructively in the
amplitude squared. What about the squark contributions? Being heavy scalars and therefore coming
with an opposite sign shouldn’t the stop cancel exactly the contributions from the top and the others
squarks give the dominant contribution? In this case, one has to remember that in (possibly) realistic
SUSY models the mass of a squark has two sources: one from the coupling to the Higgs vev, which
due to SUSY, it is exactly equal to the SM partner coupling and the other from the SUSY soft-breaking
terms. For light quarks the latter are by far dominant giving a scaling for A of the type m,/mg, so highly
suppressed and decoupling. A light stop instead, m; ~ m; could lead to a possibly strong suppression

of A.

3.2 Total cross section at the LHC at LO

The result can be written as:

2 2 —log /70
O (pp - H + X) = S5 I(mS’ ) P [ " g o) @)
™V TTLQ log /70

Using LO PDF’s available in public libraries, such as LHAPDF [17] one can easily compute the gluon-
gluon luminosity and therefore the LO Higgs cross section at the LHC14, see Fig. 2. An example is
given in a Mathematica® notebook that can be found at the web address mentioned at the end of the
Introduction. An interesting exercise is to vary the value of the renormalisation and factorisation scales
around the natural central choice ugr = prp = mp to try to estimate the unknown higher-orders terms
in the perturbative expansion. It has to be noted that at LO, the cross section depends on pp only
through as(pr) which appears in the short distance coefficient and therefore as an overall factor a%,
and depends on ur only via the PDF’s (both dependences are of logarithmic nature, as the application
of the renormalisation group equations easily shows). In other words the dependence on the scales is
maximal as there is no explicit dependence on the log of the scales in the short distance coefficients that
can compensate those in the coupling and in the PDF’s. At this order, this is consistent as scale changes
correspond to a change of at least one order in g more and in a LO computation only the first term in the
perturbative expansion is present. The result of varying the scales independently 1/2mpy < ur,ur <
2mp with 1/2 < pp/pg < 2 in the LO predictions for the LHC is shown in Fig. 9 for different Higgs
masses. Result are normalized to the central reference choice urp = pup = mg.

4 Higgs Effective field theory

The main result of the simple calculation gg — H is that gluon fusion is basically independent of the
heavy quark mass for a light Higgs boson. The result of Eq. (33) can be easily derived starting from the

effective vertex,
_ %S ~a apw E
Lot = 19 GG ( v >
Br H
= —waG“ mv 50 (1—9),

9s v

where 5
Gs Np

sy

(23)
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a 100 200 300 400 500 00

Fig. 2: Example of a plot for the LO cross section for pp — H at the LHC14 (pb) as a function of the Higgs mass
(GeV) obtained with Mathematica® notebook available from the author (link in the text). The red (lower) curve is
the large top-mass limit, while the blue (upper) curve is the result withe full top-mass dependence.

is the contribution of heavy fermion loops to the SU(3) beta function and § = 2ag/m.% (N is the
number of heavy fermions with m > mpg.) The effective Lagrangian of Eq. (23) gives ggH, gggH and
g99gH vertices and can be used to compute the radiative corrections of O () to gluon production. The
correction in principle involve 2-loop diagrams. However, using the effective vertices from Eq. (23), the
O(ag) corrections can be found from a 1-loop calculation. To fix the notation we shall use

1
Log = —ZAHGZ,,G“"“’, (24)
where G, is the field strength of the SU(3) color gluon field and H is the Higgs-boson field. The
effective coupling A is given by
11
A—O‘S<1+O‘S>, (25)
T

3w 4

where v is the vacuum expectation value parameter, v> = (Gpv2)~! = (246)? GeV? and the ag
correction is included, as discussed above. The effective Lagrangian generates vertices involving the
Higgs boson and two, three or four gluons. The associated Feynman rules are displayed in Fig. 3. The
two-gluon—-Higgs-boson vertex is proportional to the tensor

H" (p1,p2) = g""p1 - p2 — P (26)

while the vertices involving three and four gluons and the Higgs boson are exactly proportional to their
counterparts from pure QCD

VHYP(p1,p2,p3) = (p1 — p2) g™ + (p2 — p3)*g"" + (p3 — p1)" g™, (27)

and

X(/;[;/C,Zla = fabefcde(gﬂpgyg - g'uggl/p) + facefbde(gﬂygpg - g,u,ogllp)

®The (1 — §) term arises from a subtlety in the use of the low energy theorem. Since the Higgs coupling to the heavy
fermions is My (1 + %) ff, the counterterm for the Higgs Yukawa coupling is fixed in terms of the renormalisation of the
fermion mass and wavefunction. The beta function, on the other hand, is evaluated at g> = 0. The 1 — § term corrects for this
mismatch.
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Fig. 3: Feynman rules in the EFT where the top quark is integrated out. Gluon momenta are outgoing.

+ fadefbce(gﬂygpa - g,upguo'). (28)

5 gg — Higgs @ NLO

The HEFT is clearly a very powerful approximation as it turns a loop computation into a tree-level one.
That means that within the HEFT the calculation of the total cross section for Higgs production at NLO
will appear as a usual NLO calculation, i.e., involving only one-loop and tree-level diagrams. This is
what we describe in this section.

5.1 The NLO computation in a nutshell
At NLO Eq. 3 can be rewritten as

1 1
A (0 (1
ANOH 1+ X) = [ dor [ dmafyor ey ne) 68 g — H) + 61 (99 > H)
70 T0/%1
1 1 @
. / ey / 0w (w1, ) (o ) x 30 () — HE), (29)
ijk 70 T0/%1
where 5(°) (g9 — H) and &‘(/1 )(gg — H) denote the Born-level and the virtual cross sections, while

65%1)('5 j — H k) is the real-emission cross section:

(0,1 1 —2
U(B,V)(gg — H) = %LAB,V‘ ddp,
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. .. 1 ——2
6 (ij — HEk) = 55 ARl d®r,

In general, the virtual term contains ultraviolet (UV), soft and collinear divergences. The UV divergences
are absorbed by a universal redefinition of the couplings entering at the Born amplitude, as dictated by the
renormalisation of the SM. When integrated over the full real phase space, the real term generates soft and
collinear divergences, too, and only when infrared(IR)-safe quantities are computed, these divergences
cancel to yield a finite result. IR-safe observables O(®) can be best understood by considering the soft
or collinear limit in the real phase space, i.e. when the additional parton has low energy or is parallel to
another parton. In this limit, an IR-safe observable yields lim O(®r) = O(® ), where the Born-level
configuration ® p is obtained from ® i by eliminating the soft particle (in case of soft singularities) or by
merging the collinear particles (in case of collinear singularities).

There several ways to handle the cancellation of the singularities, which fall into two large cat-
egories, process-dependent and process-independent methods. In the former, one treats each calcula-
tion/process independently and performs manipulations of the integrals over the phase space so to obtain
analytic or semi-analytic results.

Process independent methods, on the other hand, are based on a very fundamental result, i.e., that
the pattern of the soft and collinear divergences is universal and depends only on the quantum numbers
of the initial and final state particles in the Born process. That means that given the Born amplitude, one
can predict the divergences that will show up in the virtual contributions and will be then cancelled over
integration of the extra radiation in the reals. More importantly, such divergences come in just a handful
of different types that can be dealt with once and for all.

Let us now rewrite Eq. (29) in a general and short-hand notation

SNLO / ADy [B(®r) + V(B5)] O@5) + / dBRR(Pr) O(®p) (30)

which will be useful in the following. A NLO cross section is written in terms of matrix elements for
the Born and virtual integrated over the Born phase space plus the real matrix elements integrated over
the real phase space. Within a subtraction method, the real phase space is parametrized in terms of
an underlying Born phase space ®p and a radiation phase space ® . A necessary requirement upon
this parametrization is that, in the singular limits, by merging collinear partons, or eliminating the soft
parton, the real phase becomes equal to the underlying Born one. Then the expectation value of an
IR-safe observable reads

/ deNEOO(9) = / ddp [B(Q)B)—FV((I)B)-F / d@RBS(@R)] O(®p)
+ [ avR(R(BR) O(®r) - S(@RO@s) 31)

The third member of the above equation is obtained by adding and subtracting the same quantity from
the two terms of the second member. The terms S(®pg|p) are the subtraction terms, which contain all
soft and collinear singularities of the real-emission term. Using the universality of soft and collinear
divergences, they are written in a factorised form as

S(®r) = B(®p) ® S(®pp), (32)

where the 5‘((1) R p) can be composed from universal, process-independent subtraction kernels with ana-
lytically known (divergent) integrals. These integral, when summed and added to the virtual term, yield
a finite result. The second term of the last member of Eq. (31) is also finite if O is an IR-safe observable,
since by construction .S cancels all singularities in R in the soft and collinear regions. The most popular
subtraction schemes currently used in public NLO codes are based on the dipole subtraction [18] and the
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Fig. 4: Example of Feynman diagrams giving null contributions to ¢j — H at one-loop in the HEFT. Bubbles on
the gluon legs are zero in dimensional regularisation. gg — H is zero at all orders in perturbation theory if m, = 0
due to chiral symmetry.

so-called FKS scheme [19]. The case of gg — H at NLO is particularly simple as the Born amplitude
isa 2 — 1 process. This means that the integration over phase space of the real corrections is particu-
larly simple and can therefore be done analytically. This has also the pedagogical advantage that shows
explicitly where the divergences come from and to “see” the cancellations term by term. We study the
process gg — H at NLO, in the large top-quark mass limit. All results given below are in Conventional
Dimensional Regularization (CDR), where matrix elements are calculated in d dimensions, including the
Born and real contributions, as well as the integration over phase space [6].

5.2 gg — H: Born in d dimensions

The Born amplitude is calculated via the HEFT feynman rules. The only difference with respect to
the previous calculation stems from the fact that now the computation has to be done in d = 4 — 2e-
dimensions, with € infinitesimal. The phase space do not bring any extra € term. However, the matrix
element changes
m?2 S|
(g’“’H - p”q“) =—(d-2)my, (33)
2 4
as well as the average over the initial state gluon polarizations which in d-dimensions are d — 2. This
gives
. B a?g m%{ e
B = et o LT
= G090(l—2), (34)

where z = m%{ /s is the inelasticity of the process, i.e. the fraction of the parton parton energy that
goes into the Higgs (for the Born z = 1). u is the usual arbitrary scale that needs to be introduced
in dimensional regularisation to correct for the different dimensions and keep the action adimensional
(h = ¢ = 1). Note that a cross section in d dimensions has dimensions [¢] = M?~?. Also note that we
have defined & as containing an explicit factor z.

5.3 gg — H: virtual corrections

There are several diagrams appearing at one-loop. Diagrams involving bubbles on the external gluon legs
(with 3-point gluon-gluon-gluon and gluon-gluon-Higgs verteces) give rise to scaleless integrals that are
zero in dimensional regularisation, see Fig. 4, left diagram. The qg — H process, see Fig 4 right, is
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Fig. 5: Feynman diagrams giving non-zero contributionsto gg — H at one-loop in the HEFT.

proportional to the m, parton mass which are taken massless and therefore null at all orders. As a result,
only two diagrams are non-zero, i.e., the vertex correction and the bubble with the four gluon vertex as
shown in Fig. 5

2\ €
N N ag I 2 10 179 9
no= o(1 — 1+ = — —_—t — + — , 35
o G0 0(1 — 2) [ +27TCA< %) cr< 62+36+36 +7 (35)
2 €
N R ag 0 10 179
Obub g0 (5( Z) [ + 271_0,4 <ml2q> cr < 3¢ 36 y (36)

where

I(1+el(1—e¢)?
I'(1 — 2¢)

er = (4n)° (37)

To obtain the results above, one has to write down the loop amplitudes, perform a few simplifications and
the decomposition of the tensor integrals appearing in the amplitudes so to express the results in terms
of the following two scalar integrals:

dd¢ 1 2\ /1
2e
= ) (=42
: /<2w>d£2<e+pH2 F(mH) (ﬁ )

de 1 cr < I )5 (2 >
2¢ _ L) ’ 33
: / (2m)E 2(€ + p1)%(€ + p2)? meq m%l €2 T (38)

with py = p1 + p2. Summing the contributions of the two diagrams above with the ag correction from
Eq. (25), we obtain

2\ €
by = 60 6(1— 2) [1+aScA <“2) r (—22+”+w2>} , (39)
2w miy €

i.e., the total virtual contribution is proportional to the Born amplitude and it contains pole(s) in powers
of 1/e. The fact that the full virtual amplitude is proportional to the Born is due to the simplicity of a
2 — 1 process. However, in general one can prove that the divergent contributions must be proportional
to the Born in the case of collinear (and collinear-soft, the double pole) divergences and to the so-called
color-connected Born for the soft ones. Given that the Born amplitude is proportional to a% and we
are calculating QCD corrections, we also expect UV divergences, which are proportional to 1/e. The
fact that apparently we do not see any pole in 1/¢ in the result above, it simply means that there is an
accidental cancellation between simple poles of IR origin and that of UV origin, as we did not keep them
distinct in the calculation. To leave only IR poles in the amplitude to be cancelled with those coming
from the real contribution, we therefore proceed here to renormalisation of ag. This can be attained by
the substitution in ¢, see also [QCD:1.2.3],

_ a 2 €b
as — adS(uR) = ag {1 — Eep (M ) O} , (40)

2 g €
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<
=

Fig. 6: Feynman diagrams giving ¢q real contributions in the infinite top-quark mass limit. These contributions
are finite.

where by = 11/6 C4 — 2n T /3. The UV-renormalized virtual amplitude is

2\ € 2
=69 0(1 — 1+ —=Cx | — - ——— —2—log—2*+ — (41
W) =0001-2) [1+ 20 (L) o (-5-22 224 )|
where now the poles in 1/¢2, 1/¢ are only of IR nature. Another important feature which is manifest in
the expression above is the appearance of an explicit log of the renormalisation scale in the short distance
part. As mentioned before, this the improvement expected on the scale dependence of a NLO result: the
wr dependence of the oz?g( wr) overall coefficient is exactly cancelled by the explicit log up to order a?’g.

5.4 Real Contributions

Real corrections imply the calculation of 2 — 2 tree-level amplitudes and their integration over phase
space in d dimensions. All possible initial and final state partons, gluons, quarks and anti-quarks need to
be included,

1. q¢§ — Hg + crossing (i.e., gg — Hg),
2. qg — Hq + crossings (i.e., gg — Hq, 99 — Hq, 9gq — Hq),
3. g9 — Hg.

It is easy to predict which divergences to expect from each of the subprocesses above. The reason is
that out of the possible (by Lorentz and color invariance) underlying Born amplitudes, i.e., gq¢ — H and
gg — H, the only non-zero one is gg — H. Therefore the first processes must give a finite result when
integrated over phase space, the second ones can only contain collinear divergences to be absorbed in
quark PDF’s, while the last is expected to give rise to soft and collinear divergences, part of which will be
absorbed in the gluon PDF’s and the rest canceled against those coming from the virtual contributions,
Eq. (41).

54.1 qq — Hg

This contribution, shown in Fig. 6 is finite and can be calculated directly in four dimensions. A simple
calculation gives

4 af (W +1%)

2= ——= - 42
M 81 mv? s ’ (42)
to be integrated over the 4-dimensional phase space
1
dPs = —(1—2) dv, (43)
8w
where v = 1/2(1 + cos #) and z = m?% /s as usual. Using
t = —s(1—2)(1-v), (44)
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Fig. 7: Feynman diagrams giving gg real contributions in the infinite top-quark mass limit.

u = —s(1—2)v, (45)
gives
o as6i(1—2)
or(qq) = 60 Sy (46)

542 gq — Hgq

Let us consider now the contribution from the diagrams with an initial quark, i.e., the process g¢g — Hgq.
The d-dimensional averaged/summed over initial/final state polarizations and colors amplitude is

M2 = — 1 ad W+ —e(uts) @7
541 —€) T2 t '
Integrating it over the d-dimensional phase space
1 [4m\¢ 1 Y e
dPy = 3. <S> YD) 21— 2)' 72 v (1 — v)"“dv (48)
one gets
2\ ¢ 2 2
sr(aq) = 60 2Sop (25 i _ 32 -2
nlon) = a0 5205 (L ) er |~tonle) 2= 35 s ] a9

where the pgq(2) color-stripped Altarelli-Parisi splitting function is given in the Appendix, Egs. (67). We
perform the factorisation of the collinear divergences adding the counterterm

2\ €
11. as M cr

oct. (99) = g05 K%) Equ(z)] : (50)
We note that in fact in CDR the cross section factorises over the d-dimensional spllitting functions
Egs. (68). However, the collinear counter-term in MS is defined with the 4-dimensional Altarelli-Parisi
splitting functions, Eqgs. (67), and that is why we have written the result above in terms of py,(2) leaving
out a finite term 2 (also note that our definition of o, Eq. (34), contains a factor z). This gives

ow(99) = orlgq) + 65" (99)
2 2 2
as m (1-=2) 3(1—2)
= 0y %CF pgq(Z) log T%‘H "‘pgq(Z) lOg 7 +z— §T . (51)
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Fig. 8: Feynman diagrams giving gg real contributions in the infinite top-quark mass limit.

543 gg — Hg
The calculation of the d-dimensional gg — H g amplitude involves the four diagrams shown in Fig. 8
and it is not so trivial to do by hand, yet the final result is very compact:

1 o (my +s' + "+ u)(1 = 2¢) + ge(my + 8% +1° + )
4(1 — €)? mv? stu )

MI? = (52)
2

This example is illustrative of the fact that keeping track of the € parts in the amplitude squared makes
the calculation significantly more complex for at least two reasons. First the structure of the result
itself is more involved. Second, one is forced to work at the squared amplitude level as d dimensional
contributions come from the (d — 2 dimensional ) gluon polarizations and therefore cannot exploit the
beauty, power and simplicity of helicity amplitude techniques [20,21]. Computing QCD amplitudes
where states have fixed polarizations entails huge simplifications and allows to make predictions for
amplitudes with many external partons. For example, tree-level amplitudes in the HEFT involving up to 5
extra partons can be easily obtained automatically using tools such as ALPGEN [22] or MADGRAPH [23].
Fortunately, it turns out that is possible to use a different scheme than CDR and actually perform the
computation of the Born and real matrix elements in exactly four dimensions (yet integrate them over the
d-dimensional phase space). This involves a different (and a bit tricky) d-dimensional algebra for the loop
computations and the introduction of (universal) finite terms for the initial-state counter-terms and UV
subtractions, yet with an enormous computational simplification. All public NLO codes for processes at
the LHC in practice do use such "maximally four dimensional" d-dimensional regularisation schemes.
Integrating the amplitude (52) over the d-dimensional phase space of Eq. (48) gives

2 € 2
X _oas ., (7 2 2b 7 _
UR(gg) = 0y 27TCA (m%[> cr |:<€2 + € CA 3 ) 5(1 Z)

) 11(1=2)3 (1= 2)%(1+2%) + 22
_gpgg(z)_g ; —4 z(l—z) logz
4 4
IR ) <log(1—z)) } 7 (53)
z 1—=2 +
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where the plus prescription is defined as follows:

1 1
| el @) = [ denia)ire) - ). (54)
0 0

Note that the %g—gd (1 — 2) in Eq. (53) comes from rexpressing the divergent term _%[(1;” L=y

z(1— z)] in terms of —2py, (), see Eq. (67). The factorisation of the collinear divergence is handled by
adding the corresponding counterterm

2\ €
. . Qg c
@?@mzzw%rK;>:%ﬂﬂ, (55)
F
which gives
a15(g9) = Grlgg) + 65" (g9)

2 € 2
I N 2 20 TN
= 4y QTrCA <m%{> cr [(62 + i 3 > (1 —=2)

m2, 11 (1—2)2 (1 —2)%(1+ 2%) + 22
2pgq log —L — —4 1
+2Pgg 108 ,u% 3 z z2(1—2) 08 %
4 _ )4 _
+41—i—z +(1—-2) (log(l z)> } . 56)
z 1—2z i

We can now recognise that the IR poles match those of the virtual contributions in Eq. (41). Adding up
the contributions from real and virtual contributions of the gg channel we obtain (note that our definition
of 0g, Eq. (34), contains a factor z):

M(gg9)  =06R"(99) + v (99)
ag 11 2 5 bo miy
=09 — 4?2 log ) 51—
90 5, Ca [( 373 Ca 2 o1 —2)
11(1—2)3 2 (1—z+2%)2
- + 2pgq log —4 log z
3 99 2 2(1-2)
1— 2)2 /log(1 —
+8( z+2°%) <0g( Z)) ] 57)
z 1—=z2 i

As predicted, the final results for the short distance coefficients is finite (yet scheme dependent) and does
contain the necessary log’s of the renormalisation and factorisation scales that compensate up to oz?9 the
corresponding dependences in a%( wr) of the Born amplitude and in the PDF’s.

5.5 NLO results: discussion

The expressions above can be easily implemented in a numerical code to perform the convolution in-
tegrals with PDF’s. A few simple numerical optimizations, such as the choice of integration variables,
and a bit of attention to the implementation of the + distributions, that’s all is needed. The reader can
find a sample implementation in a Mathematica® notebook at the web address mentioned at the end of
the Introduction. By running the code with different scale choices, one can associate an uncertainty to
the NLO predictions as done at LO. The result, shown in Fig. 9, comes as a big surprise! The NLO
calculation predicts a rate twice as large and the respective LO and NLO uncertainty bands do not even
overlap. That means that our naive estimate of the uncertainties at LO is totally off and therefore unre-
liable. It seems also to suggest that perturbation expansion is at stake here. As we had mentioned, this
motivated the computation of the NNLO corrections, which are also shown in Fig. 9. Fortunately, NNLO
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Fig. 9: K-factors for Higgs production from gluon fusion at the LHC. Uncertainty bands are obtained via indepen-
dent scale variation 1/2mpy < pg, pr < 2mpg with 1/2 < up/pur < 2. The LO and NLO bands can be obtained
by implementing the formulas obtained in these notes in a code that perfoms the numerical integration over the
PDF’s. Cross-checks and NNLO results can be obtained with HNNLO [24]. (Plot courtesy of M. Grazzini).

predictions do overlap with NLO and also display a smaller scale dependence, so that the perturbation
picture seems safe starting from NLO on. In fact, this behavior is rather special to pp - H + X and
it is often rephrased by saying that what we call LO (in the perturbative expansion) is not actually the
leading one in size and therefore we should not start from that. For instance, in Drell-Yan or VBF this
does not happen, and the perturbative expansions (seem to) converge beautifully, see Fig. 10. In any
case, the Higgs production reminds us an important fact that we should always keep in mind: scale vari-
ation cannot by definition reproduce missing finite terms in the perturbative expansion and as such can
only give an indication of what the real uncertainties could be. On the other hand, comparison between
predictions from LO and NNLO, their stabilization (or lack thereof) and the use of approximate meth-
ods to determine (classes of) higher order terms, all together can provide a rather solid picture on the
theoretical uncertainties on a case-by-case basis. We mention, in passing, another important source of
uncertainties in making predictions for hadron colliders, i.e., that coming from imperfect knowledge of
the PDF’s. Uncertainties are related to unknown higher-order terms in the DGLAP evolution equations
that determine as well as from the extraction of the initial condition from experimental data, see [QCD:3]
and in particular [QCD:3.3.2].”7

As far as total cross sections are concerned, the situation is therefore pretty clear. Fixed-order
calculations come equipped with self-detecting procedures that can give us information on whether a
prediction is reliable or not. If not, it can be systematically improved by including higher-order terms
(almost for free nowadays at NLO, yet at a rather high cost at NNLO) and uncertainties can be easily
estimated. So it is natural to ask, what about other IR-safe observables?

Let us consider, once again pp — H + X as an example, and focus on the Higgs momentum

"The latter does in fact imply also the prediction of experimental observables at the same order in perturbation theory and
therefore are also intrinsically also affected by scale dependencies. Such effects are not included normally in the estimation of
the uncertainties coming from PDF’s.
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Fig. 10: Examples of improvement in the predictions of processes at LHC in going from LO to NNLO. On the
left, scale dependence of the predictions for Z/~* production (at y = 0) at the LHC14, at fixed order [25]. On
the right, Higgs production at the LHC7 via VBF [26] as a function of the Higgs mass. The bands are obtained by
independent scale variation in the interval /4 < pp, ur < 4Q, @ being the virtuality of the W, Z fusing into the
Higgs. In both cases the perturbative expansion behaves extremely well and NNLO predictions overlap with those
at LO and NLO and display a much smaller residual uncertainty.

(fully inclusive) distribution, which can be parametrized in terms of only two variables®, the rapidity vz
and the transverse momentum pﬂ. At LO (referred to the total cross section), the Higgs can be boosted
in the forward or backward directions in the lab system, yy = % log %, yet it has always pg =0, i.e.

the distribution in p%} is a delta function centered at p%} = (0. At NLO (again referred to the total cross
section), 2 — 2 diagrams enter in the calculation and the Higgs can have a non-zero pﬁ. Since at any
point in phase space with pf[ # 0 this is the first non-zero contribution, the observable pf[ of the Higgs
is only at LO. In other words if we want to know the pg distribution of the Higgs at NLO over all phase
space, we need at least a NNLO prediction for the cross section. Another way of thinking about it is to
ask oneself what kind of diagrams are present in the calculation for that observable in a given area of the
phase space: if there are only tree-level diagrams then the observable is LO. It is important when working
with NLO codes to always think about what kind of observables are actually predicted at NLO, what at
LO and what not even at LO. Again, a NNLO computation for the total cross section for pp — H + X,
gives NNLO information on the Higgs rapidity distribution, NLO for the Higgs pg and pp — H + 1-jet
observables, LO for pp — H + 2-jets observables and the structure of the jet in H + 1-jet events and no
information at all on pp — H + 3-jets observables. In short, a fixed-order computation can only make
predictions for a finite number of observables, typically with a rather limited number of resolved partons
and a very small number of unresolved ones, i.e. just one for a NLO computation and up to two for a
NNLO computation. This is the first main limitation of a fixed-order computation. However, it is not the
only one.

Consider again the pg distribution of the Higgs as predicted by a NLO computation for the total
cross section, Fig. 11. This curve can be easily obtained using the expressions in four dimensions of
Egs. (42,47,52), performing the integration over the polar angle together with the PDF’s via a Monte-
Carlo method and plotting it point-by-point during the integration. The pg distribution is divergent in
pL = 0 as expected from soft and beam-collinear emissions. As we have learnt such divergences are
proportional to §(1 — z) where z is the fraction of parton-parton energy taken by the Higgs and are
cancelled by the virtual contributions, all of which reside in pr = 0. So the cancellation between real
and virtual contributions, all of it happens in the first bin of the histogram. How do we interpret such

8We do not consider the azimuthal angle ¢, because for symmetry reasons can only lead to a uniform distribution
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Fig. 11: Higgs p%; spectrum for a Higgs of mpy = 120 GeV at the LHC7. The labeling NLO and NLL+NLO
refer to the total cross section. The curves are normalized to the same value (=total cross section is the same). The
green curve is just a LO prediction for the pZ; of the Higgs. The logarithmic divergence at pf, — 0 is cancelled by
the negative infinite virtual contributions at p%, = 0 (not shown!). The resummed prediction (red curve) features a
“physical” smooth behavior at small p%,. (The resummed prediction is obtained via HqT [27]).

weird distribution? A useful way is to think about the size of the bin of the distribution as our resolution
scale: with a rather coarse binning there is no "going-to-infinity" and predictions are rather stable (this of
course includes the total cross section which corresponds to using only one bin), while with thin binning,
we start to be sensitive to low energy and virtual emissions which become increasingly important and
are not included at all in a fixed-order approach. This is the case where resummed predictions come into
rescue: one finds that the leading part of soft emissions (real and virtual) is universal, it can be considered
at all orders and included by identifying the log’s associated to it and exponentiating them. This can be
done either at very high accuracy analytically yet fully inclusively or in a numerical and exclusive way
at the leading log with a parton shower (which actually resums both soft and collinear enhancements).
The result of including these effects analytically is shown in Fig. 11, red curve. In very crude words, the
effect of the resummation is to spread the §(p7) of the virtual contributions over a range of a few tens of
GeV with the effect of smoothing out the divergence and producing a "physical" distribution.

In summary, fixed-order calculations in perturbative QCD can be performed in a well-defined
and quite simple framework, i.e. in the context of the factorization theorem. It is therefore possible to
make predictions for inclusive quantities in hadron colliders, which can be systematically improved at
the "only" price of an (exponential) increase in the complexity of the calculation. In practice, however,
the use of fixed-order predictions is limited by several other important drawbacks. First, only processes
with a few resolved partons can be calculated, while in practice we know that hundreds of hadrons can be
produced in a single proton-proton interaction of which we are bound to ignore the details. Second, sharp
infinities appear in the phase that do cancel between real and virtual contributions if inclusive enough
observables are defined, yet lead to unphysical distributions in specific areas of the phase space and/or
when the resolved partons become either soft or collinear. Such local positive and negative infinities are
unphysical because they appear only due the artificial truncation of the perturbative expansion. Finally,
the fact that plus and minus infinities appear locally in phase space also means that fixed order predictions
beyond LO cannot be used as probability functions to generate events as distributed in nature. Parton
showers, i.e. fully exclusive resummation, and their merging/matching with fixed-order predictions,
provide an elegant and powerful way out to all the above limitations.
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6 Beyond fixed-order predictions

As we have explicitly verified, fixed-order predictions have important limitations both of principle (ar-
eas of phase space and observables, such as jet substructure are poorly described, no hadrons but only
partons) and in practice (no event simulation is possible). Fortunately, an alternative approach exists that
is based on the fact that the IR structure, soft or collinear, of QCD is universal and contributions can
be resummed at all orders. Last but not least, formulas that describe the emission of soft and collinear
partons are amenable of a probabilistic interpretation and therefore not only it is possible to perform an
explicit resummation but also to associate a full “history” to an hard scattering event, i.e., to associate
to every event a full-fledged description of an high-energy event from the two initial protons to the final
(possibly hundreds) of hadrons and leptons in the final state. In addition, in the latest years, enormous
progress has been achieved in combining the accuracy of fixed-order predictions with the flexibility of
parton showers. These methods are briefly presented here together with their applications to Higgs pro-
duction. The short presentation below is adapted from Ref. [28]. The reader is also referred to [QCD:4.4]
for further details, examples and references.

6.1 Parton Showers

Parton Showers (PS) are able to dress a given Born process with all the dominant (i.e. enhanced by
collinear logarithms, and to some extent also soft ones) QCD radiation processes at all orders in pertur-
bation theory. In particular, the dominant contributons, i.e. those given by the leading logarithms, coming
from both real and virtual emissions are included. The cross section for the first (which is often also the
hardest) emission in a shower reads:

dalststep —_ dq)BB(q)B) [A(plilin) + d(I)RIBA(pT((I)MB))P(q)R\B)] ) (58)

where A(pr) denotes the Sudakov form factor

A(pr) = exp [—/ d®p pP(PrB)O(PT(PR) — PT)| - (59)

This Sudakov form factor can be understood as a no-emission probability of secondary partons down to
a resolution scale of pr. Here P(®p ) is a process-independent universal splitting function that allows
to write the PS approximation to the real cross section RS, typically given schematically by a product
of the underlying Born-level term folded with a splitting kernel P

R™(®) = P(®p5) B(®p). (60)

In this framework, @5 is often expressed in terms of three showering variables, like the virtuality ¢ in
the splitting process, the energy fraction of the splitting z and the azimuth ¢. A very simple (and widely
used) choice for the splitting function, is

do dt

Pa—>bc(z) % 7dz (61)

as(t)

P(®pp)dPrp = o

where P(z) are Altarelli-Parisi splitting functions on which any QCD amplitude factorisises in the
collinear limit b || c.

The above definition of the Sudakov form factor, guarantees that the square bracket in Eq. (58)
integrates to unity, a manifestation of the probabilistic nature of the parton shower. Thus, integrating the
shower cross section over the radiation variables yields the total cross section, given at LO by the Born
amplitude. The corresponding radiation pattern consists of two parts: one given by the first term in the
square bracket, where no further resolvable emission above the parton-shower cut-off plj_lin — typically of
the order of 1 GeV — emerges, and the other given by the second term in the square bracket describing
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the first emission, as determined by the splitting kernel. It is important to stress that the real-emission
cross section in a PS generator is only correct in the small angle and/or soft limit, where RS is a reliable
approximation of the complete matrix element.

After the 1st step the process is repeated using the new configuration as the Born one.

While rather crude, the PS approximation is a very powerful one, due mainly to the great flexi-
bility and simplicity in the implementation of 2 — 1 and 2 — 2 high-Q? processes. In addition, once
augmented with a hadronisation model the simulation can easily provide a full description of a collision
in terms of physical final states, i.e., hadrons, leptons and photons. In the current terminology a generic
Monte Carlo generator mainly refers to such tools, the most relevant examples of are PYTHIA 6 and
PyTHIA 8 [29,30], HERWIG [31], HERWIG++ [32], and SHERPA [33]. A very clear and exhaustive
presentation of parton shower generators can be found in Ref. [34].

6.2 Matrix-element merging (ME+PS)

In parton showers algorithms QCD radiation is generated in the collinear and soft approximation, using
Markov chain techniques based on Sudakov form factors. Hard and widely separated jets are thus poorly
described in this approach. On the other hand, tree-level fixed order amplitudes can provide reliable
predictions in the hard region, while failing in the collinear and soft limits. To combine both descriptions
and avoid double counting or gaps between samples with different multiplicity, an appropriate merging
method is required.

Matrix-element merging [35] aims at correcting as many large-angle emissions as possible with the
corresponding tree-level accurate prediction, rather than only small-angle accurate. This is achieved by
generating events up to a given (high) multiplicity using a matrix-element generator, with some internal
jet-resolution parameter ().t on the jet separation, such that practically all emissions above this scale
are described by corresponding tree-level matrix elements. Their contributions are corrected for running-
coupling effects and by Sudakov form factors. Radiation below ()., on the other hand is generated by
a parton-shower program, which is required to veto radiation with separation larger than Q¢,. As far as
the hardest emission is concerned, matrix-element merging is as accurate as matrix-element corrections
(when these are available) or NLO+PS. Since they lack NLO virtual corrections, however, they do not
reach NLO accuracy for inclusive quantities. Nevertheless, they are capable to achieve leading-order
accuracy for multiple hard radiation, beyond the hardest only, while NLO+PS programs, relying on the
parton shower there are only accurate in the collinear and/or soft limit for these quantities.

Several merging schemes have been proposed, which include the CKKW scheme [35-37] and its
improvements [38,39], the MLM matching [40], and the k7-MLM variation [41]. The MLM schemes
have been implemented in several matrix element codes such as ALPGEN [22], MADGRAPH [23],
through interfaces to PYTHIA/HERWIG, while SHERPA [33] and HERWIG++ [32] have adopted the
CKKW schemes and rely on their own parton showers. In Ref. [42] a detailed, although somewhat
outdated description of each method has been given and a comparative study has been performed.

6.3 NLO+PS in a nutshell

Several proposals have been made for the full inclusion of complete NLO effects in PS generators. At this
moment, only two of them have reached a mature enough stage to be used in practice: MC @NLO [43]
and POWHEG [44]. Both methods correct — in different ways — the real-emission matrix element to
achieve an exact tree-level emission matrix element, even at large angle. As we have seen in the previous
subsection, this is what is also achieved with matrix-element corrections in parton showers, at least for
the simplest processes listed earlier. This, however, is not sufficient for the NLO accuracy, since the
effect of virtual corrections also needs to be included. In both methods, the real-emission cross section
is split into a singular and non-singular part, R = R® + R/. One then computes the total NLO inclusive
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cross section, excluding the finite contribution, at fixed underlying Born kinematics, defined as

B* = B(®p) + [V(‘I’B) + /d@mBRS(‘I’RB)] ; (62)

and uses the formula

S

_ . 0]
dO_NLO+PS _ d(I)BBS((I)B) |:As(plfm ) + d‘I)RIB]Z((q);)) AS (pT((I))):| + d(I)RRf((I)R) (63)

for the generation of the events. In this formula, the term B can be understood as a local K -factor
reweighting the soft matrix-element correction part of the simulation. Clearly, employing the fact that
the term in the first square bracket integrates to unity, as before, the cross section integrates to the full
NLO cross section.

In MC@NLO one chooses R° to be identically equal to the term B @ P that the PS generator
employs to generate emissions. Within MC @ NLO, n -body events are obtained using the B* function,
and then fed to the PS, which will generate the hardest emission according to Eq. (62). These are called S
events in the MC @NLO language. An appropriate number of events are also generated according to the
R/ cross section, and are directly passed to the PS generator. These are called # events. In MC@NLO,
R/ = R — R?® is not positive definite, and it is thus necessary to generate negative weighted events in
this framework. A library of MC @ NLO Higgs processes (gluon fusion, vector-boson associated pro-
duction, and charged Higgs associated with top) is available at Ref. [45], which is interfaced to HERWIG
and HERWIG++. A fully automatized approach, AMC@NLO [46] implemented in the MADGRAPH
framework, is now available that allows to compute and combine all necessary ingredients (Born, real,
virtual matrix elements plus counterterms) at the user’s request.

In POWHEG, one chooses R° < R, and in many cases even R® = R, so that the finite cross
section R/ vanishes. In this case, the hardest emission is generated within POWHEG itself, and the
process is passed to the parton shower only after the hardest radiation is generated. Positive weighted
events are obtained, since R/ can always be chosen to be positive definite. In all cases the chosen R*
has exactly the same singularity structure as R, so that Rf always yield a finite contribution to the cross
section. Implementations of Higgs production processes with the POWHEG method are available in
HERWIG++ [47], in the POWHEGBOX [48] (interfaced to both HERWIG and PYTHIA) and recently in
SHERPA [49].

6.4 Improved descriptions of Higgs production

Being of primary importance, Higgs kinematic distributions are now quite well predicted and also avail-
able via public codes such as ResBos [50] and HqT [27,51]. Differential pg distributions accurate to LO
yet featuring the exact bottom- and top-quarks mass loop dependence (and therefore can be used also for
predictions of scalar Higgs in BSM) can be obtained via HIGLU [52] as well as via HPro [53]. However,
in experimental analyses, it is also crucial to get as precise predictions as possible for exclusive observ-
ables that involve extra jets, such as the jet pp spectra and the jet rates, at both parton and hadron level.
To optimize the search strategies and in particular to curb the very large backgrounds, current analyses
both at Tevatron and at the LHC select 0-,1- and 2-jet events and perform independent analyses on each
sample. The final systematic uncertainties are effected by both the theoretical and experimental ones
of such a jet-bin based separation. In the HEFT, fully exclusive parton- and hadron-level calculations
can now be performed by Parton Shower (PS) programs or with NLO QCD codes matched with parton
showers: via the MC@NLO and POWHEG methods. Beyond the HEFT, fully exclusive predictions
ME+PS and NLO+PS techniques has become available only recently [54,55]. The reason is that one
needs to compromise between the validity of HEFT and the complexity of higher loop calculations.

Fig. 12 shows a comparison of the predictions of the p” of the Higgs at LHC7 as obtained in
HEFT from:
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Fig. 12: Higgs p%; spectrum for a Higgs of my = 140 GeV as predicted by a series of improved predictions:
NNLL+NNLO resummed (red solid), MC@NLO + Pythia (blue dashes), matrix-element + Pythia merged results
(magenta dashes), POWHEG + Pythia (cyan dashes). All predictions display similar features, i.e. a peak between
10-20 GeV and a similar shape at high-p%; with differences that lie within their respective uncertainties (not shown).

a full analytical resummation at NNLL;

— MC@NLO (w/ PYTHIA);

ME+PS merging (MADGRAPH+PYTHIA);
— POWHEG (w/ PYTHIA).

We first stress (again) that this observable which is at NLO at high-p” only in the Hqt predictions.
The ME+PS approach is built to be LO for all observables, while MC@NLO and POWHEG predic-
tions are based on the NLO calculation for the total cross section, the same performed in these notes.
Notwidthstanding we see that given the expected uncertainties which are quite large above all at high-p”’
the shapes are in substantial agreement both in the low and high-p” ranges. In Fig. 13 the p” distribu-
tions for the first and second jets are shown comparing the ME+PS prediction based on the HEFT and
one with the full top-mass depedence and PYTHIA. Even in this case the agreeement between the various
approaches is extremely good for a light Higgs. For a very heavy Higgs difference in the pr distributions
of the extra jets become visibile at quite a high p”, a region not very relevant phenomenologically.

7 Conclusions

Progress in the field of QCD predictions for the LHC in the form of MC tools usable by both theorists and
experimentalists has made tremendous progress in the last years. It is fair to say that we are now able (or
close to be able in some specific very challenging cases) to compute automatically or semi-automatically
any interesting cross section for Standard Model and Beyond processes at NLO accuracy and interface
it with parton shower programs for event generation. In the LHC era the lowest acceptable accuracy for
any serious phenomenological and experimental study is via an NLO event generator. LHC precision
physics is now at NNLO in QCD and NLO in EW. Any physicist interested in making discoveries at the
LHC needs to be familiar with the ideas, the physics and the reach of the current QCD simulation tools.

To this aim, we have considered pp — H + X as a case study. We have illustrated how accurate
and useful predictions for cross sections and other observables can be obtained in QCD, starting from
the calculation of Born amplitude (at one loop) and the corresponding hadronic cross section. We have
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Fig. 13: Jet pr distributions for associated jets in gluon fusion production of my = 140 GeV and myg = 500 GeV
Higgs bosons at 7 TeV LHC.

then considered Higgs production at NLO in the HEFT and discussed the limitations of fixed-order
predictions. Finally, we have briefly discussed how fully exclusive predictions are obtained with modern
tools, that allow to reach the accuracy of NLO predictions together with the full exclusivity of a parton
shower approach.

Appendix
Splitting functions and collinear counterterms
We define the 4-dimensional splitting functions as in (4.94) of the ESW book:

[ 1+22 3
Pp(z) = Cp pgq(z) =Cr ﬁ +50(1- z)] (64)
Pyy(z) = Trpey(z) =Tr [22 + (1 - Z)Q] (65)
[1+(1—2)?
Pul®) = Cr pgle) = 0r | =) (66)
Pyy(z2) = Capgg(z) =2Ca [ i + 1_Z+z(1—z)] +bod(1—2), (67)
(1—2)+ z

where by = 11/6 C4 —2n ;T /3. We also define the following quantities as the extension of the splitting
functions in d-dimensions:

Pj(z) = Py(2)+ePj(z) (68)
where
Py (2) = Crpglz) =—-Cr(1-2) (69)
Py(z) = Trpg(z) = -Tr22(1 - 2) (70)
Py (2) = Cppglz)=—-Cpz (71)
Pi(z) = 0 (72)

factorisation of the collinear divergences is performed through the addition of the following counterterm

for each parton in the initial state:
1 “cp
— | —PF;j 73
[(u%) ¢ ”(z)] 7

CDR CDR @S
Oct. = 0p o

2
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where J§CHEME is the LO cross section and its value depends on the scheme (see the example for Drell-

Yan)]. In CDR, when there is a collinear divergence, the cross section behaves as
1
ol ~ —fPi%(z)UgDR + other terms. (74)
€
Adding the counterterm (73), leaves a finite part

0’? ~ —Fj (2) (USDR]EﬁO) + other terms. (75)
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Abstract

We explain the many reasons for the interest in flavor physics. We describe
flavor physics and the related CP violation within the Standard Model, and
explain how the B-factories proved that the Kobayashi-Maskawa mechanism
dominates the CP violation that is observed in meson decays. We explain the
implications of flavor physics for new physics, with emphasis on the “new
physics flavor puzzle”, and present the idea of minimal flavor violation as a
possible solution. We explain why the values flavor parameters of the Standard
Model are puzzling, present the Froggatt-Nielsen mechanism as a possible so-
lution, and describe how measurements of neutrino parameters are interpreted
in the context of this puzzle. We show that the recently discovered Higgs-
like boson may provide new opportunities for making progress on the various
flavor puzzles.

1 What is flavor?

The term “flavors” is used, in the jargon of particle physics, to describe several copies of the same g
representation, namely several fields that are assigned the same quantum charges. Within the Si
Model, when thinking of its unbrokeSU (3)c x U(1)gm gauge group, there are four different types o
particles, each coming in three flavors:

Up-type quarks in th€3) 3 representationu, c, t;
Down-type quarks in th€3) _, /3 representationd, s, b;
Charged leptons in th@)_; representatiore, u, 7;
Neutrinos in the€ 1), representationzy, vs, vs.

The term “flavor physics” refers to interactions that distinguish between flavors. By definitic
gauge interactions, namely interactions that are related to unbroken symmetries and mediated the
by massless gauge bosons, do not distinguish among the flavors and do not constitute part of
physics. Within the Standard Model, flavor-physics refers to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within the Sta
dard Model, these are the nine masses of the charged fermions and the four “mixing parameters”
angles and one phase) that describe the interactions of the charged weak-force carfjarsttigjuark-
antiquark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos
should add to the list three neutrino masses and six mixing parameters (three angles and three
for the W interactions with lepton-antilepton pairs.

The term “flavor universal” refers to interactions with couplings (or to parameters) that are pi
portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are fl
universal. An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diag
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interac
of the Higgs patrticle are flavor diagonal.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (tl
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor
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different. In “flavor changing charged current” processes, bottypp and down-type flavors, and/or
both charged lepton and neutrino flavors are involved. Examples are (i) muon degay-viav;v;, and
(i) K= — p~v; (which corresponds, at the quark level,sto — 1~ ;). Within the Standard Model,
these processes are mediated by iieébosons and occur at tree level. In “flavor changing neutral
current” (FCNC) processes, either up-type or down-type flavors but not both, and/or either chat
lepton or neutrino flavors but not both, are involved. Example are (i) muon decay‘aey and (ii)
K1 — ptp~ (which corresponds, at the quark levelstb— 71 ~). Within the Standard Model, these
processes do not occur at tree level, and are often highly suppressed.

Another useful term is “flavor violation”. We explain it later in these lectures.

2 Why is flavor physics interesting?

— Flavor physics can discover new physics or probe it before it is directly observed in experime

Here are some examples from the past:
— The smallness ((I;Lj;";f;)) led to predicting a fourth (the charm) quark;

The size ofAm led to a successful prediction of the charm mass;
The size ofAmp led to a successful prediction of the top mass;
The measurement ef; led to predicting the third generation.
The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

— CP violation is closely related to flavor physics. Within the Standard Model, there is a single
violating parameter, the Kobayashi-Maskawa phagg [1]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor chan
processes might provide evidence for such sources.

— The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that tl
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor struc
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude a
the observed rates. The question of why this does not happen constitutesathpiysics flavor
puzzle.

— Most of the charged fermion flavor parameters are small and hierarchical. The Standard N
does not provide any explanation of these features. This iStdwedard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because,
neither smallness nor hierarchy in these parameters have been established.

3 Flavor in the Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) -
symmetries of the Lagrangian and the pattern of spontaneous symmetry breaking; (ii) The represent
of fermions and scalars. The Standard Model (SM) is defined as follows:
(i) The gauge symmetry is

Gsm = SU(S)C X SU(Q)L X U(l)y. (1)

It is spontaneously broken by the VEV of a single Higgs scalr,2); » ((¢°) = v/v/2):
GSM — SU(3)C X U(l)EM. (2)
(ii) There are three fermion generations, each consisting of five representatiGgs; bf

Qri(3,2)41/6: Uri(3,1)12/3, Dri(3,1)_1s3, Lri(1,2)_1/2, Eri(1,1)-1. 3)
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3.1 The interaction basis

The Standard Model Lagrangiafigyi, is the most general renormalizable Lagrangian that is consiste
with the gauge symmetry (1), the particle content (3) and the pattern of spontaneous symmetry bre
(2). It can be divided to three parts:

ﬁSM = Ekinetic + ﬁHiggs + £Yukawa~ (4)

As concerns the kinetic terms, to maintain gauge invariance, one has to replace the derivative
a covariant derivative:
DV = 9" + igsGl Ly + igW}'T, + ig' B'Y. (5)

HereGY; are the eight gluon field$}}' the three weak interaction bosons @B the single hypercharge
boson. Thel,’s are SU(3)¢ generators (th8 x 3 Gell-Mann matrice%/\a for triplets,0 for singlets),
theTy’s areSU (2)1, generators (the x 2 Pauli matrice%rb for doublets( for singlets), and th&’s are
theU(1)y charges. For example, for the quark doublgis we have

- i P i
Liinetic(Qr) = 1QLivu (8“ + igng)‘a + §9Wé Tp + 69/B”> 0:;Qrj, (6)

while for the lepton doublets! , we have
'Ckinetic(LL) = ZLLi’Y,u (8” + ing;uTb - 29’3“) 5ijLLj~ 7

The unit matrix in flavor spacey,;, signifies that these parts of the interaction Lagrangian are flavc
universal. In addition, they conserve CP.

The Higgs potential, which describes the scalar self interactions, is given by:
Lriggs = 17670 — A(079)*. (8)

For the Standard Model scalar sector, where there is a single doublet, this part of the Lagrangian i
CP conserving.

The quark Yukawa interactions are given by
—L% =Y Qri¢Dr; + Y4QLidUr; + h.c., 9)
(Whereg = im»¢') while the lepton Yukawa interactions are given by
—LS = Y5L1i¢ER; + hec.. (10)
This part of the Lagrangian is, in general, flavor-dependent (th&tis¢ 1) and CP violating.
3.2 Global symmetries
In the absence of the Yukawa matridé$, Y* andY ¢, the SM has a larg&(3)® global symmetry:
Globat (Y€ = 0) = SU(3); x SU(3); x U(1)°, 11)
where

SU@3)S = SU3)q x SUB)y x SU(3)p,
SUB); = SUB)L x SUB)g,
U1 = U)pxU) x Uy xU(1)pg x U(1)g. (12)

125



Y. NIR

Out of the fiveU (1) charges, three can be identified with baryon numbéx {&pton number (L) and
hypercharge (Y; which are respected by the Yukawa interactions. The two remali{ng groups can
be identified with the PQ symmetry whereby the Higgs @dhg E fields have opposite charges, anc
with a global rotation of£'; only.

The point that is important for our purposes is thad,ctic + Liges respect the non-Abelian flavor
symmetryS(3)2 x SU(3)7, under which

Qr — VoQr, Ur — VyUg, Dr— VpDg, L — ViLy, Er— VgERg, (13)
where thel; are unitary matrices. The Yukawa interactions (9) and (10) break the global symmetry,
Gltobal (Y4 # 0) = U(1)p x U(L)e x U(1)y x U(1)r. (14)

(Of course, the gaugdd(1)y also remains a good symmetry.) Thus, the transformations of Eq. (13)
not a symmetry of ;. Instead, they correspond to a change of the interaction basis. These observa
also offer an alternative way of defining flavor physics: it refers to interactions that bresk s °
symmetry (13). Thus, the term “flavor violation” is often used to describe processes or parameters
break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the @Umapg symmetry
(but are neutral undé¥ (1) ),

V"~ (3,3, 1)s0(3)3, v~ (3,1, 3)su (33, (15)

and of the lepton Yukawa couplings as spurions that break the giibgd)? symmetry (but are neutral
underU(1). x U(1), x U(1),), )

The spurion formalism is convenient for several purposes: parameter counting (see below), identific
of flavor suppression factors (see Section 5), and the idea of minimal flavor violation (see Section &

3.3 Counting parameters

How many independent parameters are theg&it The two Yukawa matrice$;" andY'?, are3 x 3 and
complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all o
are, however, physical. The pattern@f;.,.1 breaking means that there is freedom to remove 9 re
and 17 imaginary parameters (the number of parameters in3htekunitary matrices minus the phase
related toU (1) g). For example, we can use the unitary transformat@ps— VoQr, Ur — VuUr
andDr — VpDg, to lead to the following interaction basis:

Y=g YU=VTiA, (17)
where),,, are diagonal,

i = diag(yda, Ys, Ub), Au = diag(Yu, Ye, Ut), (18)

while V' is a unitary matrix that depends on three real angles and one complex phase. We conclud
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we will ic
the nine real parameters as six quark masses and three mixing angles, while the singlejphase is

How many independent parameters are ther@;iﬁ The Yukawa matrix ¢ is 3 x 3 and complex.
Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however, fre
to remove 6 real and 9 imaginary parameters (the number of parameters 3nxdvBaunitary matrices
minus the phases relatedtt(1)?). For example, we can use the unitary transformatibps— Vi L1,
andEr — Vg ER, to lead to the following interaction basis:

Y€ = /\e = diag(yea Yus yT)' (19)
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We conclude that there are 3 real lepton flavor parameters. In the massweasvill identify these
parameters as the three charged lepton masses. We must, however, modify the model when we ta
account the evidence for neutrino masses.

3.4 The mass basis

Upon the replacememe(¢°) — ”%‘O, the Yukawa interactions (9) give rise to the mass matrices

T V2

The mass basis corresponds, by definition, to diagonal mass matrices. We can always find unitary
cesV,r andV,r such that

M, v, (20)

: v
VoL MgV, = Mgine = NS (21)
The four matriced/’y;,, Vyr, Viur, andV, r are then the ones required to transform to the mass basis. |
example, if we start from the special basis (17), we hidye = V;r = Vug = 1 andV,, = V. The
combinationVuLVjL is independent of the interaction basis from which we start this procedure.

We denote the left-handed quark mass eigenstat€g and D;,. The charged current interactions
for quarks [that is the interactions of the charg#d(2);, gauge bosonW;jt = %(W;} F z‘Wi)], which
in the interaction basis are described by (6), have a complicated form in the mass basis:

g N
—LY,. = EULW’*VZ-J-DL]-WJ + h.c.. (22)
whereV is the3 x 3 unitary matrix (VVf = ViV = 1) that appeared in Eq. (17). For a genera
interaction basis,
V=V V. (23)

V' is the Cabibbo-Kobayashi-Maskawa (CKMiixing matrixfor quarks [1, 2]. As a result of the fact
thatV is not diagonal, th&/’* gauge bosons couple to quark mass eigenstates of different generati
Within the Standard Model, this is the only sourcdlafor changingquark interactions.

Exercise 1:Prove that, in the absence of neutrino masses, there is no mixing in the lepton se«

Exercise 2: Prove that there is no mixing in th& couplings. (In the physics jargon, there are no
flavor changing neutral currents at tree level.)

The detailed structure of the CKM matrix, its parametrization, and the constraints on its elem
are described in Appendix A.

4 Testing CKM

Measurements of rates, mixing, and CP asymmetrieB iecays in the two B factories, BaBar abd
Belle, and in the two Tevatron detectors, CDF and DO, signified a new era in our understanding ¢
violation. The progress is both qualitative and quantitative. Various basic questions concerning CI
flavor violation have received, for the first time, answers based on experimental information. TI
guestions include, for example,

— Is the Kobayashi-Maskawa mechanism at work (namelbig # 0)?
— Does the KM phase dominate the observed CP violation?

As a first step, one may assume the SM and test the overall consistency of the various measure
However, the richness of data from the B factories allow us to go a step further and answer these que
model independently, namely allowing new physics to contribute to the relevant processes. We
explain the way in which this analysis proceeds.
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4.1 Syks

The CP asymmetry ilB — K¢ decays plays a major role in testing the KM mechanism. Befol
we explain the test itself, we should understand why the theoretical interpretation of the asymme
exceptionally clean, and what are the theoretical parameters on which it depends, within and beyol
Standard Model.

The CP asymmetry in neutral meson decays into final CP eigengtatess defined as follows:

B dF/dt[Eghys(t) — fep ] — dU/dt[Bphys(t) — fep ]

AfCP (t) = dr/dt[gghys(t) - fcp ] + dr/dt[BOphys(t) — fCP ] .

(24)

A detailed evaluation of this asymmetry is given in Appendix B. It leads to the following form:

Afop (t) = Spop sin(Amt) — Cy,,, cos(Amt),
2Im(Agep ) _ L= 1Asep ?

— =5 (25)
1+ ‘)\fCP ‘2 Jer 1+ |)\fCP |2

SfCP

where o
)‘fcp =e 0B (Afcp /Afcp ) . (26)

Here ¢ refers to the phase dff;, [see Eq. (B.23)]. Within the Standard Model, the correspondir
phase factor is given by ‘
™8 = (VigVia) / (Vi Vi) - (27)

The decay amplituded ; and A, are defined in Eq. (B.1).

dors

@) 7

Fig. 1: Feynman diagrams for (a) tree and (b) penguin amplitudes contributifty te+ f or B, — f via a
b — gqq quark-level process.

The B — J/4 K" decay [3,4] proceeds via the quark transitbors ¢c3. There are contributions
from both tree (¢) and penguin{s» whereq, = u, ¢, t is the quark in the loop) diagrams (see Fig. 1
which carry different weak phases:

Ap = (VaVetr+ D (VesVaus) P - (28)
qu=u,c,t

(The distinction between tree and penguin contributions is a heuristic one, the separation by the op
that enters is more precise. For a detailed discussion of the more complete operator product app
which also includes higher order QCD corrections, see, for example, ref. [5].) Using CKM unital
these decay amplitudes can always be written in terms of just two CKM combinations:

Apre = (VaVeo) Tyx + (VinVius) Pk (29)
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where Ty = tyx + pj i — Pyx and Py = pli — pi. A subtlety arises in this decay that is

related to the fact thaB® — J/yK° andB" — J/¢YKY. A common final state, e.gJ/vKg, can
be reached vid® — K° mixing. Consequently, the phase factor corresponding to nekitraixing,
e IO = (V2 V) /(V,,Vih), plays a role:

Apics __ VaVa) Tur + (Vi) P ViV,

— . 30
Ao (VaVo) Tor 1 (ViyVs) Pl VgVt (30)

The crucial point is that, foB — .J/1 K¢ and otheh — écs processes, we can neglect thé
contribution toA, i, in the SM, to an approximation that is better than one percent:

|Pirc/Tyrc| X [Vub/Ven| X [Vus /Ves| ~ (loop factor) x 0.1 x 0.23 < 0.005. (31)

Thus, to an accuracy better than one percent,

A — tb " td bcd |\ _ _ ,—2iB 32
o= (i) (v == 2

whereg is defined in Eg. (A.9), and consequently
S¢KS = sin Qﬁ, C@Z}KS =0. (33)

(Below the percent level, several effects modify this equation [6—9].)

Exercise 3: Show that, if theB — w7 decays were dominated by tree diagrams, then =
sin 2a.

Exercise 4:Estimate the accuracy of the predictiofisx, = sin23 andCyg = 0.

When we consider extensions of the SM, we still do not expect any significant new contr
tion to the tree level decay, — cés, beyond the SMiY-mediated diagram. Thus, the expressiol
Apks/Apiks = Va Vi) / (Vi Veq) remains valid, though the approximation of neglecting sub-domina
phases can be somewhat less accurate than Eq. (31). On the othelvharttie B° ~B° mixing ampli-
tude, can in principle get large and even dominant contributions from new physics. We can param:
the modification to the SM in terms of two parametefssignifying the change in magnitude, a2,
signifying the change in phase:

My = rj €4 M (p, ). (34)

This leads to the following generalization of Eq. (33):
SwKS = Sin(QB + 29d)7 CwKS =0. (35)
The experimental measurements give the following ranges [10]:

Syks = +0.68 £0.02, Cyrg = +0.00540.017 . (36)

4.2 Self-consistency of the CKM assumption

The three generation standard model has room for CP violation, through the KM phase in the ¢
mixing matrix. Yet, one would like to make sure that indeed CP is violated by the SM interactic
namely thatin dknr # 0. If we establish that this is the case, we would further like to know whether t
SM contributions to CP violating observables are dominant. More quantitatively, we would like to
an upper bound on the ratio between the new physics and the SM contributions.

As a first step, one can assume that flavor changing processes are fully described by the SN
check the consistency of the various measurements with this assumption. There are four relevant r
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Fig. 2: Allowed region in thep, n plane. Superimposed are the individual constraints from charmless semileptc
B decays (Vus»/Ves|), mass differences in thB® (Am,) and B (Am,) neutral meson systems, and CP violatior
in K — 7m (ex), B = YK (sin2p), B — 7w, pm, pp (o), andB — DK (v). Taken from [12].

parameters, which can be taken to be the Wolfenstein parametédrg andn defined in Eq. (A.4). The
values ofA and A are known rather accurately [11] from, respectivély— 7¢v andb — cfv decays:

A =0.2254 £ 0.0007, A =0.81115073. (37)

Then, one can express all the relevant observables as a function of the two remaining pararaeters
n, and check whether there is a range inghen plane that is consistent with all measurements. The li:
of observables includes the following:

— The rates of inclusive and exclusive charmless semilept@niecays depend di,,|? o p? +n?;
— The CP asymmetry if8 — ¢ Kg, Sykg = sin2f = (2’7(;”'

1=p)*+n*’
. Y _ + .
— The rates of variou® — DK decays depend on the phagevheree’” = \/%,

— The rates of variou® — 7, pm, pp decays depend on the phase- 7 — 5 — ~;
— The ratio between the mass splittings in the neusraind B, systems is sensitive 10,/ V;s|> =

N[(1 = p)* +n?);
— The CP violation ik — nm decays¢ g, depends in a complicated way prandy.
The resulting constraints are shown in Fig. 2.

The consistency of the various constraints is impressive. In particular, the following ranges f
andn can account for all the measurements [11]:

p=+0.1317092 " 5 = 10.345 + 0.014. (38)
0.013
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One can make then the following statement [13]:
Very likely, CP violation in flavor changing processes is dominated by the Kobayashi-Maskawa
phase.

In the next two subsections, we explain how we can remove the phrase “very likely” from f
statement, and how we can quantify the KM-dominance.

4.3 |s the KM mechanism at work?

In proving that the KM mechanism is at work, we assume that charged-current tree-level processt
dominated by th&/-mediated SM diagrams (see, for example, [14]). This is a very plausible assumpt
| am not aware of any viable well-motivated model where this assumption is not valid. Thus we car
all tree level processes and fit themptandn, as we did before. The list of such processes includes tl
following:

1. Charmless semileptonig-decaysp — ufv, measurer, [see Eq. (A.8)].

2. B — DK decays, which go through the quark transitiens> cus andb — ucs, measure the
angley [see Eqg. (A.9)].

3. B — pp decays (and, similarly3 — =« and B — pw decays) go through the quark transition
b — wud. With an isospin analysis, one can determine the relative phase between the tree ¢
amplitude and the mixing amplitude. By incorporating the measuremeh;of, one can subtract
the phase from the mixing amplitude, finally providing a measurement of the angkee Eq.
(A.9)].

In addition, we can use loop processes, but then we must allow for new physics contribution
addition to the(p, n)-dependent SM contributions. Of course, if each such measurement adds a sef
mode-dependent parameter, then we do not gain anything by using this information. However, thel
number of observables where the only relevant loop proces$ is B mixing. The listincludesS, k.,
Amp and the CP asymmetry in semileptodcdecays:

SwKs = sin(QB + 29d),
Amp = r?l(AmB)SM,
Flg SM sin 29d Flg SM COS 29d
A = —R T ) 39
St c <M12> 2 am Mo r2 (39)

As explained above, such processes involve two new parameters [see Eq. (34)]. Since there art
relevant observables, we can further tighten the constraints ifpthg-plane. Similarly, one can use
measurements related 8, — B, mixing. One gains three new observables at the cost of two ne
parameters (see, for example, [15]).

The results of such fit, projected on the- n plane, can be seen in Fig. 3. It gives [12]
n=0.4470% (30). (40)

[A similar analysis in Ref. [16] obtains th& range(0.31 — 0.46).] It is clear thaty # 0 is well
established:
The Kobayashi-Maskawa mechanism of CP violation is at work.

Another way to establish that CP is violated by the CKM matrix is to find, within the same pro
dure, the allowed range fein 25 [16]:

sin 23" = 0.80 & 0.03. (41)

Thus, 3 # 0 is well established.

The consistency of the experimental results (36) with the SM predictions (33,41) means tha
KM mechanism of CP violation dominates the observed CP violation. In the next subsection, we r
this statement more quantitative.
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Fig. 3: The allowed region in the — n plane, assuming that tree diagrams are dominated by the Standard Mc
[12].

4.4 How much can new physics contribute taB° — B mixing?

All that we need to do in order to establish whether the SM dominates the observed CP violation
to put an upper bound on the new physics contributiofsfo— B° mixing, is to project the results of
the fit performed in the previous subsection on tfie- 26, plane. If we find that, < 3, then the
SM dominance in the observed CP violation will be established. The constraints are shown in Fig.
Indeedf; < 5.

An alternative way to present the data is to uselther; parametrization,
rae% =14 hge®e. (42)

While thery, 8; parameters give the relation between the full mixing amplitude and the SM one, |
are convenient to apply to the measurementsithe,; parameters give the relation between the ne\
physics and SM contributions, and are more convenient in testing theoretical models:

hge?od = 12 (43)

The constraints in th; — o4 plane are shown in Fig. 4(b). We can make the following two statement

1. A new physics contribution t&° — B’ mixing amplitude that carries a phase that is significantl
different from the KM phase is constrained to lie below the 20-30% level.

2. A new physics contribution to thg° - B mixing amplitude which is aligned with the KM phase
is constrained to be at most comparable to the CKM contribution.

One can reformulate these statements as follows:
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1. The KM mechanism dominates CP violationfl — B’ mixing.
2. The CKM mechanism is a major player#? — B mixing.

5 The new physics flavor puzzle
5.1 A model independent discussion
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scalesrabgyg, ~ 109
GeV:

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales ¢
Mseesaw ™~ 101° GeV,

3. The fine-tuning problem of the Higgs mass suggests that the scale where the SM is replace(
a more fundamental theory is actually much lowef,, —partners < a few TeV.

4. If the dark matter is made of weakly interacting massive particles (WIMPSs) then, again, a low s
of new physics is likelyynyimp < afew TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be adds
Lsy of EQ. (4). These are terms of dimension higher than four in the fields which, therefore, t
couplings that are inversely proportional to the scale of new physige For example, the lowest
dimension non-renormalizable terms are dimension five:

. ZV.
_‘Cgl’llrlrll;v?a = AI:IJlf’ LizLngSQS + h.c.. (44)

These are the seesaw terms, leading to neutrino masses.

Exercise 5:How does the global symmetry breaking pattern (14) change when (44) is taken
account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify th
parameters in the mass basis.
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Table 1: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating
sd Amg/myg =7.0x 1071 ex =2.3x 1073
cu AmD/mD =8.7x 1071 Ar/ycp < 0.2

bd Amp/mp =63 x 107 Syx = +0.67 £0.02
bs  Amp,/mp, =2.1x 10712 Sy, = —0.04 £ 0.09

Table 2: Lower bounds on the scale of new physitgp, in units of TeV. The bounds from CP conserving
(violating) observables scale likegz;; ( /z{j).

ij CP-conserving CP-violating

sd 1x10° 2 x 104
cu 1x 103 3 x 103
bd 4 x 102 8 x 102
bs 7 x 10! 2 x 102

As concerns quark flavor physics, consider, for example, the follodimgnsion-six, four-fermion,
flavor changing operators:

- Zbs
7d(dL’YubL)2 + ATb(SL’YubL)2' (45)
NP

Each of these terms contributes to the mass splitting between the corresponding two neutral me
For example, the termap—o x (deyHbL)2 contributes toAm g, the mass difference between the twc

neutralB-mesons. We usa/5 = -1 (B £ ap_s|B") and

2mp

. - 0 1
(B°|(drav"bra)(drpyubrs)| B ) = _ngBf%;BB- (46)

This leads toAmp/mp = 2|ME|/mp ~ (|204]/3)(fz/Axp)?. Analogous expressions hold for the
other neutral mesons.

The experimental results for CP conserving and CP violating observables related to neutral
mixing (mass splittings and CP asymmetries in tree level decays, respectively) are given in Table 1

The measurements quoted in Table 1 lead, for a given value,jcpbndz{j = Zm(z;), to lower
bounds on the scaleyp. In Table 2 we give the bounds that corresponfttg = 1 and to,z{j =1.The

bounds scale likg/z;; and, /z{j, respectively.

We conclude that if the new physics has a generic flavor structure, thatisO(1), then its scale
must be abov&0? — 10* TeV. If the leading contributions involve electroweak loops, the lower bour
is somewhat lower, of ordeli0? — 10® TeV. The bounds from the corresponding four-fermi terms wit|
LR structure, instead of the LL structure of Eq. (45), are even stroffgedeedAxp > TeV, it means
that we have misinterpreted the hints from the fine-tuning problem and the dark matter puzzle.

There is, however, another way to look at these constraints:

zea < 8% 1077 (Axp/TeV)?,

~
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Zew < B X 1077 (Anp/TeV)?,
Zd S 0 X 10_6 (ANP/TGV)Q,
2 < 2x 1071 (Anp/TeV)?, (47)
2l < 6x 1077 (Anp/TeV)?,
2l < 1x1077 (Anp/TeV)?,
;< 1x107% (Anp/TeV)?,
A4, < 2x107° (Anp/TeV)2. (48)

It could be that the scale of new physics is of order TeV, but its flavor structure is far from gene
Specifically, if new particles at the TeV scale couple to the SM fermions, then there are two ways inw
their contributions to FCNC processes, such as neutral meson mixing, can be suppressed: dege
and alignment. Either of these principles, or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons).
the scale is\gy1 ~ myy. Since the leading contributions to neutral meson mixings come from box d
grams, they;; coefficients are suppressed by. To identify the relevant flavor suppression factor, on
can employ the spurion formalism. For example, the flavor transition that is relevBAt-taB° mixing
involvesdy,b;, which transforms ags, 1, 1)SU(3)3. The leading contribution must then be proportional tc

(YY) 3 o yfvtbvtg. Indeed, an explicit calculation, using VIA for the matrix element and neglectit
QCD corrections, gives (a detailed derivation can be found in Appendix B of [17])

Mg ol g3 :
~ — * 4
wherez; = m?/m}, and
x 11z 22  32%Inzx
= —)F 1 - -
So(2) = Ty R ST (50)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavor suppres
factors that apply in the SM:

SM

Im(zsd )

SM

~ a3y VigVis|* ~ 1 x 10710,

Zsd ~
Im(zSM) ~

cu
SM

Zbd ™

SM

Zbs ~

A3y VeaVes|? ~ 5 x 1079,
QBYE|\VipVip|? ~ 2 x 10714,
a3y2 | VigVip)|? ~ 7 x 1078,

3Y2 | VisVip|? ~ 2 x 1076, (51)

Note that we did not include’M in the list. The reason is tha it requires a more detailed conside
ation. The naively leading short distance contributioncia?3 (2 /y2)|VesVus|* ~ 5 x 10713, However,
higher dimension terms can replacgZfactor with (A/mp)? [18]. Moreover, long distance contribu-
tions are expected to dominate. In particular, peculiar phase space effects [19, 20] have been ide
which are expected to enhanden , to within an order of magnitude of the its measured value. The C
violating part, on the other hand, is dominated by short distance physics.

It is clear then that contributions from new physicsAatp ~ 1 TeV should be suppressed by
factors that are comparable or smaller than the SM ones. Why does that happen? This is the new
flavor puzzle.
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Table 3: The phenomenological upper bounds @fi;):; and (5};) = /(7 )i;(0%r)i;- Hereq = u,d and
M = L,R. The constraints are given fat; = 1 TeV andz = m%/mg~ = 1. We assume that the phases coulc
suppress the imaginary part by a factorof).3. Taken from Ref. [22].

ij | (0fp)i (0F)

12 0.03 0.002
13 0.2 0.07
23 0.2 0.07
12 0.1 0.008

C 0O 0 o

The fact that the flavor structure of new physics at the TeV scale mugirbgeneric means that
flavor measurements are a good probe of the new physics. Perhaps the best-studied example is
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to tf
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

5.2 The supersymmetric flavor puzzle

We consider, as an example, the contributions from the box diagrams involving the squark doublets
second and third generatior@mg, to the B, — B, mixing amplitude. The contributions are proportional
to K§ K§;K§ K¢, whereK is the mixing matrix of the gluino couplings to a left-handed down quar
and their supersymmetric squark partners[(6¢ ; )23]2 in the mass insertion approximation, describe
in Appendix C.1). We work in the mass basis for both quarks and squarks. A detailed derivation [2

given in Appendix C.2. It gives:

o?mp, f3 BB,nqeD . . (am2)?
Mpy = = 10§m% [11f6(z) + 4xf6($)]T§(K§l2K§i2)2- (52)
d

Herem ; is the average mass of the two squark generatiﬁrms% is the mass-squared difference, anc
x = ms/mfz.
Eq. (52) can be translated into our generic language:

ANP = Mg, (53)

~ ~ 2
s 11 fs(x) + dx fo(x Arm? N _
S L2 )a2< 1) (KK ~ 107 (0,

18 S\ m?2

d

where, for the last approximation, we took the example ef 1 [and used, correspondingly] fs(1) +
4f¢(1) = 1/6], and defined

A2
st = () (K ). )
m;

Similar expressions can be derived for the dependené&’of K on (5%, )12, B’ — B on (84, )13,
and D° — D9 on (8%,5)12. Then we can use the constraints of Egs. (47,48) to put upper bounds
(6,5)ij- Some examples are given in Table 3 (see Ref. [22] for details and list of references).

We learn that, in most cases, we neiéjcj/mq < 1/TeV. One can immediately identify three
generic ways in which supersymmetric contributions to neutral meson mixing can be suppressed:

1. Heavinessing > 1TeV,
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2. DegeneracyAm? < m3;
3. Alignment: K, < 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [23], the squar
very heavy and supersymmetry no longer solves the fine tuning problem. (When the first two sc
generations are mildly heavy and the third generation is light, as in effective supersymmetry [24]
fine tuning problem is still solved, but additional suppression mechanisms are needed.) If we we
maintain supersymmetry as a solution to the fine tuning problem, either degeneracy or alignmen
combination of the two is needed. This means that the flavor structure of supersymmetry is not ge
as argued in the previous section.

Take, for example(5j‘-fL)12 < 0.03. Naively, one might expect the alignment to be of orde
(V.aV5) ~ 0.2, which is far from sufficient by itself. Barring a very precise alignment{{||i&< |V,.s|)
[25, 26] and accidental cancelations, we are led to conclude that the first two squark generations m
quasi-degenerate. Actually, by combining the constraints fidtn- K9 mixing andD® — DO mixing,
one can show that this is the case independently of assumptions about the alignment [27-29]. Anal
conclusions can be drawn for many TeV-scale new physics scenarios: a strong level of degener
required (for definitions and detailed analysis, see [30]).

Exercise 9: DoesK:,‘f1 ~ | V| suffice to satisfy the\m g constraint with neither degeneracy nor
heaviness? (Use the two generation approximation and ignore the second generation.)

Is there a natural way to make the squarks degenerate? Degeneracy requiresSthatrtierix of
soft supersymmetry breaking mass-squared teﬁ@§ ~ mfjl. We have mentioned already that flavor
universality is a generic feature of gauge interactions. Thus, the requirement of degeneracy is perl
hint that supersymmetry breakinggauge mediatetb the MSSM fields.

5.3 Minimal flavor violation (MFV)

If supersymmetry breaking is gauge mediated, the squark mass matricéé/{ay;- doublet and
SU(2)-singlet squarks have the following form at the scale of mediatigp:

N, (ma) = (m3, + Do ) 1+ MM,
]\Z/%L(mM) = (m%L + DDL> 1 +MdMT7
N (mar) = (m + Dy ) 1+ MMy,
N3 (my) = (m3 + Dpg) 1+ MMy, (55)

whereD,, = (T3)q, — (QrM)q,55m% cos 23 are theD-term contributions. Here, the only source of
the SU(3); breaking are the SM Yukawa matrices.

This statement holds also when the renormalization group evolution is applied to find the forr
these matrices at the weak scale. Taking the scale of the soft breaking#tgrns be somewhat higher
than the electroweak breaking scalg; allows us to neglect th®,, and M, terms in (55). Then we
obtain

MéL (mz) ~ méL <1”31 + CuYuYJ + CdeYdT> ,
MgR(mZ) ~ m%}_{ (7“31 + CuRYJYu> ,
M%R(mz) ~ m%R (7”31 -+ CdRYdTYd) . (56)

Herers represents the universal RGE contribution that is proportional to the gluino mass®@(6) x
(Mz(mar)/mg(mar))) and thec-coefficients depend logarithmically on,;/mz and can be o®(1)
whenm, is not far below the GUT scale.
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Models of gauge mediated supersymmetry breaking (GMSB) provide aetenexample of a
large class of models that obey a simple principle caitédimal flavor violation(MFV) [31]. This
principle guarantees that low energy flavor changing processes deviate only very little from the
predictions. The basic idea can be described as follows. The gauge interactions of the SM are uni
in flavor space. The only breaking of this flavor universality comes from the three Yukawa matiices,
Y¢ andY®. If this remains true in the presence of the new physics, nalig)yy ¢ andY ¢ are the only
flavor non-universal parameters, then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions 1
we presented in section 3.2. The Standard Model with vanishing Yukawa couplings has a large ¢
symmetry (11,12). In this section we concentrate only on the quarks. The non-Abelian part of the fl
symmetry for the quarks iSU(3)2 of Eg. (12) with the three generations of quark fields transformin
as follows:

Qr(3,1,1), Ur(1,3,1), Dgr(1,1,3). (57)
The Yukawa interactions,
Ly =QrY'DrH + QLY "UrH,, (58)
(H. = imoH™) break this symmetry. The Yukawa couplings can thus be thought of as spurions with
following transformation properties undSU(?))g [see Eq. (15)]:

Y~ (3,3,1), Y%~ (3,1,3). (59)
When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields which trans
under the flavor symmetry, and then require that all the Lagrangian terms, constructed from the

fields,Y andY*, must be (formally) invariant under the flavor groﬂb’(?))g. Of course, in realityLy
breaksSU (3)2 precisely becausg®* arenotfields and do not transform under the symmetry.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be applied in
ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension operators,
structed from SM-fields antf -spurions, are formally invariant undéfyopai.

2. If we consider a full high-energy theory that extends the SM, then all operators, constructed
SM and the new fields, and from-spurions, are formally invariant undélyopai.

Exercise 10: Use the spurion formalism to argue that, in MFV models, K — 7'v> decay
amplitude is proportional ta? Vi, V;:.

Exercise 11:Find the flavor suppression factors in thg* coefficients, if MFV is imposed, and
compare to the bounds in Eq. (47).

Examples of MFV models include models of supersymmetry with gauge-mediation or with ano
mediation of its breaking.

531 Testing MFV attheLHC

If the LHC discovers new particles that couple to the SM fermions, then it will be able to test soluti
to the new physics flavor puzzle such as MFV [32]. Much of its power to test such frameworks is bi
on identifying top and bottom quarks.

To understand this statement, we notice that the spufiGhandY? can always be written in
terms of the two diagonal Yukawa matricks and \; and the CKM matrixV/, see Egs. (17,18). Thus,
the only source of quark flavor changing transitions in MFV models is the CKM matrix. Next, note t
to an accuracy that is better thé}{0.05), we can write the CKM matrix as follows:

1 023 0
v=|(-023 1 o]. (60)
0 0 1
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Exercise 12:The approximation (60) should be intuitively obvious to top-physicists, but definit
counter-intuitive to bottom-physicists. (Some of them have dedicated a large part of their caree
experimental or theoretical efforts to determivig andV,,;,.) What does the approximation imply for the
bottom quark? When we take into account that it is only goo@ {.05), what would the implications
be?

We learn that the third generation of quarks is decoupled, to a good approximation, from the
two. This, in turn, means that any new patrticle that couples to an odd number of the SM quarks (thinl
example, of heavy quarks in vector-like representatiorigs@f), decay into either third generation quark,
or to non-third generation quark, but not to both. For example, in Ref. [32], MFV models with additio
charge—1/3, SU(2).-singlet quarks -B’ — were considered. A concrete test of MFV was propose
based on the fact that the largest mixing effect involving the third generation is of [bfgr~ 0.002:

Is the following prediction, concerning eventsBf pair production, fulfilled:

I'(B'B’ X
_ TBB = Xqi005) <1073, (61)
I'(B'B" = Xqi2q12) + I'(B'B" — Xq3q3)

If not, then MFV is excluded. One could similarly test various versions of minimal lepton flavor violati
(MLFV) [33-38].

Analogous tests can be carried out in the supersymmetric framework [39—-45]. Here, there is
a generic prediction that, in each of the three sectors (&, Dr), squarks of the first two generations
are quasi-degenerate, and do not decay into third generation quarks. Squarks of the third generati
be separated in mass (though, for smatl 3, the degeneracy in thBy sector is threefold), and decay
only to third generation quarks.

We conclude that measurements at the LHC related to new patrticles that couple to the SM ferr
are likely to teach us much more about flavor physics.

6 The Standard Model flavor puzzle

The SM has thirteen flavor parameters: six quark Yukawa couplings, four CKM parameters (three a
and a phase), and three charged lepton Yukawa couplings. (One can use fermions masses instea
fermion Yukawa couplingsy; = \/§mf/v.) The orders of magnitudes of these thirteen dimensionle
parameters are as follows:

Y; ~ 1, YV.~10"2, Y, ~107°,

Y, ~ 1072, Y,~1073, Y;~ 1074

Y, ~ 1072, Y, ~1073 Y.~ 1079,

Vis| ~ 0.2, |Vip| ~0.04, |Vip| ~0.004, g ~ 1. (62)

Only two of these parameters are clearly@(l ), the top-Yukawa and the KM phase. The other flavo
parameters exhibit smallness and hierarchy. Their values span six orders of magnitude. It may b
this set of numerical values are just accidental. More likely, the smallness and the hierarchy h:
reason. The question of why there is smallness and hierarchy in the SM flavor parameters cons
“The Standard Model flavor puzzle."

The motivation to think that there is indeed a structure in the flavor parameters is strengthen
considering the values of the four SM parameters that are not flavor parameters, namely the three
couplings and the Higgs self-coupling:

gs~1, g~06, e~03, A~ 0.2. (63)

This set of values does seem to be a random distribution of order-one numbers, as one would n
expect.
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A few examples of mechanisms that were proposed to explain the obsenvetdisrof the flavor
parameters are the following:

— An approximate Abelian symmetry (“The Froggatt-Nielsen mechanism" [46]);
— An approximate non-Abelian symmetry (sg.[47]);

— Conformal dynamics (“The Nelson-Strassler mechanism" [48]);

— Location in an extra dimension [49].

We will take as an example the Froggatt-Nielsen mechanism.

6.1 The Froggatt-Nielsen mechanism

Small numbers and hierarchies are often explained by approximate symmetries. For example, the
mass splitting between the charged and neural pions finds an explanation in the approximate is
(global SU(2)) symmetry of the strong interactions.

Approximate symmetries lead to selection rules which account for the size of deviations fromr
symmetry limit. Spurion analysis is particularly convenient to derive such selection rules. The Frog
Nielsen mechanism postulate$’al) ;; symmetry, that is broken by a small spurign. Without loss of
generality, we assigey; aU (1) charge ofH (e;7) = —1. Each SMfield is assigned&(1) ;7 charge. In
general, different fermion generations are assigned different charges, hence the term *horizontal sy
try. The rule is that each term in the Lagrangian, made of SM fields and the spurion should be forn
invariant undeU (1) .

The approximaté/ (1) symmetry thus leads to the following selection rules:

u |H(Qi)+H(Uj)+H(¢u)l
Yiji = €y 7 )
ngl _ eII?(QiHH(DjHH(%)‘,
}/zj _ Eg(LiHH(Ej)*H(%N_ (64)

As a concrete example, we take the following set of charges:

H(Q:) = H(Uj)=H(E)=(21,0),

(Li) = H(D;)=(0,0,0),

H(¢u) = H(da)=0. (65)

et 3 ¢ e e é
Yin [ @ e, Yin @) T~|e e €]. (66)
e e 1 11 1

We emphasize that for each entry we give the parametric suppression (that is the pejyéubtach
entry has an unknown (complex) coefficient of order one, and there are no relations between the
one coefficients of different entries.

The structure of the Yukawa matrices dictates the parametric suppression of the physical ok
ables:

1, Yo~ e Yy~
V, ~ 1, Yi~e Yinél
1

, Yi~e Yo~ éd
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‘Vus‘ ~ € "/cb"\“fy ’Vub”\'627 5KMN1~ (67)

Fore ~ 0.05, the parametric suppressions are roughly consistent with the observed hierarchy. In pi
ular, this set of charges predicts that the down and charged lepton mass hierarchies are similar, wh
up hierarchy is the square of the down hierarchy. These features are roughly realized in Nature.

Exercise 13: Derive the parametric suppression and approximate numerical valués*pfts
eigenvalues, and the three angles@f, for H(Q;) = 4,2,0, H(U;) = 3,2,0 andey = 0.2

Could we explain any set of observed values with such an approximate symmetry? If we cc
then the FN mechanism cannot be really tested. The answer however is negative. Consider, for ex:
the quark sector. Naively, we have U11) ; charges that we are free to choose. However{tfigy x
U(1)p x U(1)pq symmetry implies that there are only 8 independent choices that affect the structut
the Yukawa couplings. On the other hand, there are 9 physical parameters. Thus, there should be €
relation between the physical parameters that is independent of the choice of charges. Assuming tl
sum of charges in the exponents of Eq. (64) is of the same sign for all 18 combinations, the relatior

’Vub‘ ~ ’Vus‘/cb’7 (68)
which is fulfilled to within a factor of 2. There are also interesting inequalities (here):
Vii| 2 m(Usi)/m(Uj), m(Ds)/m(D;). (69)

All six inequalities are fulfilled. Finally, if we order the up and the down masses from light to heavy, tl
the CKM matrix is predicted to be 1, namely the diagonal entries are not parametrically suppress
This structure is also consistent with the observed CKM structure.

6.2 The flavor of neutrinos

Five neutrino flavor parameters have been measured in recent yeassd486]): two mass-squared
differences,

Am3, = (7.54£0.2) x 1075 eV2, |Am3,| = (2.5+£0.1) x 1073 eV?, (70)
and the three mixing angles,
[Uea| = 0.55 £0.01, |U,3| = 0.64 +0.02, |Ues| = 0.15+0.01. (72)

These parameters constitute a significant addition to the thirteen SM flavor parameters and provi
principle, tests of various ideas to explain the SM flavor puzzle.

The numerical values of the parameters show various surprising features:

= [Ups| > any |Vy;1;

= |[Uez| > any |Vj];

— |Ues| is not particularly small (|th| & |UeaUps));

— mg/m3 2,1/6 > any m;/m; for charged fermions.

These features can be summarized by the statement that, in contrast to the charged fermions,
smallness nor hierarchy have been observed so far in the neutrino related parameters.

One way of interpretation of the neutrino data comes under the name of neutrino mass ani
[51-53]. It postulates that the neutrino mass matrix has no structure, namely all entries are of the
order of magnitude. Normalized to an effective neutrino mass sclésccsaw, the various entries are
random numbers of order one. Note that anarchy means neither hierarchy nor degeneracy.

141



Y. NIR

If true, the contrast between neutrino mass anarchy and quark argedHapton mass hierarchy
may be a deep hint for a difference between the flavor physics of Majorana and Dirac fermions.
source of both anarchy and hierarchy might, however, be explained by a much more mundane t
anism. In particular, neutrino mass anarchy could be a result of a FN mechanism, where the
left-handed lepton doublets carry the same FN charge. In that case, the FN mechanism predict pa
ric suppression of neither neutrino mass ratios nor leptonic mixing angles, which is quite consistent
(70) and (71). Indeed, the viable FN model presented in Section 6.1 belongs to this class.

Another possible interpretation of the neutrino data is to takgms ~ |Ues| ~ 0.15 to be small,
and require that they are parametrically suppressed (while the other two mixing angles are order
Such a situation is impossible to accommodate in a large class of FN models [54].

The same data, and in particular the proximity|Bf,| to 1/v/3 ~ 0.58 and the proximity of
U] to 1/v/2 ~ 0.71 led to a very different interpretation. This interpretation, termed ‘tribimaxims
mixing’ (TBM), postulates that the leptonic mixing matrix is parametrically close to the following spec
form [55]:

2 1 9
Ve o3

\U|tBM = ¢ ? ? . (72)
V6 V3 V2

Such a form is suggestive of discrete non-Abelian symmetries, and indeed numerous models basec
A, symmetry have been proposed [56,57]. A significant feature of of TBM is that the third mixing ar
should be close t{d/.3| = 0. Until recently, there have been only upper bound§gs|, consistent with
the models in the literature. In the last year, however, a valy€gf close to the previous upper bound
has been established [58], see Eq. (71). Such a large value (and the consequent significant de
of |Uy,s| from maximal bimixing) puts in serious doubt the TBM idea. Indeed, it is difficult in thi
framework, if not impossible, to account favm2, /Am2, ~ |Ue3|? without fine-tuning [59].

7 Higgs physics: the new flavor arena

A Higgs-like bosonh has been discovered by the ATLAS and CMS experiments at the LHC [60, 6
The fact that for thef = v~ and f = ZZ* final states, the experiments measure
o(pp — h)BR(h — f)

B = (tp > BBR( = F)I5 (73)

of order one (see.q.[62]),

Ryz+ = 1.14£0.2, (74)
R,, = 11%0.2, (75)

is suggestive that thé-production via gluon-gluon fusion proceeds at a rate similar to the Stand:
Model (SM) prediction, giving a strong indication tHgt thehtt Yukawa coupling, is of order one. This
first determination ot} signifies a new arena for the explorationflafvor physics.

In the future, measurementsBf; and R+, will allow us to extract additional flavor parameters:
Y;, the hbb Yukawa coupling, and’;, the b7+ 7~ Yukawa coupling. For the latter, the current allowec
range is already quite restrictive:
Ro+.— =1.0+0.4. (76)

It may well be that the values df, and/orY, will deviate from their SM values. The most likely
explanation of such deviations will be that there are more than one Higgs doublets, and that the doul
that couple to the down and charged lepton sectors are not the same as the one that couples to
sector.
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A more significant test of our understanding of flavor physics, which npghtide a window into
new flavor physics, will come further in the future, whér). ,- is measured. (At present, there is ar
upper boundRz,,+,- < 9.8.) The ratio

x . —BR(h—pup7)
phpm = BR(h — 7t77)’

(77)

is predicted within the SM with impressive theoretical cleanliness. To leading order, it is given

X,+,- = mZ/m2, and the corrections of order;; and of orderm? /m? to this leading result are

known. Itis an interesting question to understand what can be learned from a test of this relation [62
It is also possible to search for the SM-forbidden decay maddes, u*7F [65-68]. A measure-

ment of, or an upper bound on

BR(h — yt77) + BR(h — p=7%)
BR(h — 7t77) ’

X,ur (78)

would provide additional information relevant to flavor physics. Thus, a broader question is to unders
the implications for flavor physics of measurementgiof .-, X+, and X, [63].
Let us take as an example how we can use the set of these three measurements if there is €

light Higgs boson. A violation of the SM reIatioY;?M = @5@ is a consequence of nonrenormaliz-
able terms. The leading ones are the 6 terms. In the interaction basis, we have

LY = —Njfifhe +he., (79)
3 N
L7 = =33 ifre(9'9) + he.,

where expanding around the vacuum we have (v + h)/+/2. DefiningVy, g via

2
Vom =V ()\ + ;MX> Viv, (80)

wherem = diag(me., m,,, m,), and defining\ via
A=V NV (81)

we obtain

\/§mz~ 1)2

Yij = i + i (82)

To proceed, one has to make assumptions about the structdrdofvhat follows, we consider
first the assumption of minimal flavor violation (MFV) and then a Froggatt-Nielsen (FN) symmetry.

7.1 MRV

MFV requires that the leptonic part of the Lagrangian is invariant undefla(); x SU(3)g global
symmetry, with the left-handed lepton doublets transformin{Bas), the right-handed charged lepton
singlets transforming aél, 3) and the charged lepton Yukawa matiixis a spurion transforming as
(3,3).

Specifically, MFV means that, in Eq. (79),

N = aX + AN+ O(N), (83)
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wherea andb are numbers. Note that,f;, andVy are the diagonalizing matrices frA)rVL)\VIf2 = )\diag

then they are also the diagonalizing matricesXaf \, Vi AAAV, = (A\4#€)3. Then, Eqgs. (80), (81)
and (82) become

V2m av?\ g b s
— 1 =) )\diag e Adlag 3
v < +2A2> o
) : . 2 2v/2bm?
A= axteE 4 p(atee)? _a‘fvm + \Cgm :
V2m; av? Qbmf
Yi; = T&;j [1 + Az + A2 ] , (84)

where, in the expressions farandY’, we included only the leading universal and leading non-univers
corrections to the SM relations.

We learn the following points about the Higgs-related lepton flavor parameters in this clas
models:

1. h has no flavor off-diagonal couplings:

Yur,Yru =0. (85)
2. The values of the diagonal couplings deviate from their SM values. The deviation is small, of o
v? /A%
2
2m,
Y, ~ <1+ ‘“’2) v2m: (86)
A v

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its
value. The deviation is, however, very small, of ordel/A?:

Y, my 2b(m?2 — mi)

The predictions of the SM with MFV non-renormalizable terms are then the following:

U(pp — h)SM Ftot 2 2
R+ - = 142 A
( o(op = h) TSV o + 2av* /A7,

Xytm = (mu/m:)*(1—4bm2/A?),
X, = 0. (88)

Thus, MFV will be excluded if experiments observe the» i decay. On the other hand, MFV allows
for a universal deviation of(v?/A?) of the flavor-diagonal dilepton rates, and a smaller non-univers
deviation ofO(m2/A?).

7.2 FN

An attractive explanation of the smallness and hierarchy in the Yukawa couplings is provided by
Froggatt-Nielsen (FN) mechanism [46]. In this framework/@ )y symmetry, under which different
generations carry different charges, is broken by a small parameté¥ithout loss of generalityz is
taken to be a spurion of chargel. Then, various entries in the Yukawa mass matrices are suppres
by different powers o€y, leading to smallness and hierarchy.

Specifically for the leptonic Yukawa matrix, takirtigto be neutral undet/ (1), H(h) = 0, we
have

\ij eg(Ej)*H(Li). (89)
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We emphasize that the FN mechanism dictates only the parametric suppressicm.erifry has an
arbitrary order one coefficient. The resulting parametric suppression of the masses and leptonic n
angles is given by [69]

H(E;)-H(L;) H(Lj)—H(L;) .

mgi/UNéH s ’Uij’NEH (90)

Since H(¢'¢) = 0, the entries of the matrix’ have the same parametric suppression as tl
corresponding entries ik [26], though the order one coefficients are different:

)‘;j = 0(1) X )\ij- (91)
This structure allows us to estimate the entrieé@ﬁn terms of physical observables:

Az~ me/v,

Aag  ~ mu/v,

Aag ~  |Uss|(m-/v),

Asg ~ (mp/v)/|Uss. (92)

We learn the following points about the Higgs-related lepton flavor parameters in this clas
models:

1. h has flavor off-diagonal couplings:

|Uaz|vm,
Y;m’ = O<A2 ’

vm
Y, = —r_. 93
g © (!U23!A2> 53)
2. The values of the diagonal couplings deviate from their SM values:
2
v~ Y2mr [0 (2] (94)
v A2

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its

value: )
Yu _my, v
Lomlio(%)]. o

The predictions of the SM with FN-suppressed non-renormalizable terms are then the followi

(U(pp — h)SM Ftot) R
o(pp — h) Ftsé\g T

1+ Ow?/A?),
X/ﬁlf = (mu/mT)Q(l + O(Uz/A2))7
XT,IL = 0(04//\4)' (96)
Thus, FN will be excluded if experiments observe deviations from the SM of the same size in |
flavor-diagonal and flavor-changirigdecays. On the other hand, FN allows non-universal deviations

O(v?/A?) in the flavor-diagonal dilepton rates, and a smaller deviatiofi@f* /A*) in the off-diagonal
rate.
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8 Conclusions

(i) Measurements of CP violating-meson decays have established that the Kobayashi-Maskawa me
anism is the dominant source of the observed CP violation.

(i) Measurements of flavor changidgrmeson decays have established the the Cabibbo-Kobaye
Maskawa mechanism is a major player in flavor violation.

(iii) The consistency of all these measurements with the CKM predictions sharpens the
physics flavor puzzle: If there is new physics at, or below, the TeV scale, then its flavor structure mu
highly non-generic.

(iv) Measurements of neutrino flavor parameters have not only not clarified the standard m
flavor puzzle, but actually deepened it. Whether they imply an anarchical structure, or a tribimax
mixing, it seems that the neutrino flavor structure is very different from that of quarks.

(v) If the LHC experiments, ATLAS and CMS, discover new particles that couple to the Stand
Model fermions, then, in principle, they will be able to measure new flavor parameters. Conseque
the new physics flavor puzzle is likely to be understood.

(vi) If the flavor structure of such new patrticles is affected by the same physics that sets the fl
structure of the Yukawa couplings, then the LHC experiments (and future flavor factories) may be
to shed light also on the standard model flavor puzzle.

(vii) The recently discovered Higgs-like boson provides an opportunity to make progress in
understanding of the flavor puzzle(s).

The huge progress in flavor physics in recent years has provided answers to many questior
the same time, new questions arise. The LHC era is likely to provide more answers and more ques

Appendices
A The CKM matrix

The CKM matrixV is a3 x 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in defininy in that we can permute between the various generations. Tl
freedom is fixed by ordering the up quarks and the down quarks by their massgs,;, us, us) —
(u,c,t) and(dy, d2,ds) — (d, s,b). The elements of are written as follows:

Vud Vus Vub
V=|(Va Ves Va |- (A.1)
Via Vis Vi

(7i) There is further freedom in the phase structur&ofThis means that the number of physical
parameters i’ is smaller than the number of parameters in a general uritary matrix which is nine
(three real angles and six phases). Let us definé; = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of usind,;, andV,x for the rotation (21) to the mass basis we g andV,z, defined
by V,;, = P,V andV,z = P,V,r, we still maintain a legitimate mass basis sidﬂéiag remains
unchanged by such transformations. HoweVedoes change:

V — P,VPL. (A.2)

This freedom is fixed by demanding thidthas the minimal number of phases. In the three generati
caseV has a single phase. (There are five phase differences between the elem@nendfP; and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Mask
phasejky: which is the single source of CP violation in the quark sector of the Standard Model [1].
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VidVib
a=b —

Vu quE B = q) 1

Fig. A.1: Graphical representation of the unitarity constraipgV,;, + VeaVy + ViaVy;, = 0 as a triangle in the
complex plane.

The fact that” is unitary and depends on only four independent physical parameters can be n
manifest by choosing a specific parametrization. The standard choice is [70]

i

C12C13 $12€C13 S13€e”
_ i i
V = | —s12¢23 — c12523513€"  c12023 — S12523513€" s23¢13 |, (A.3)
6 i
512823 — C12¢23513€"0  —C12523 — $12€23513€"°  €23C13

wherec;; = cosf;; ands;; = sinf;;. The;;’s are the three real mixing parameters whilés the
Kobayashi-Maskawa phase. It is known experimentally that« so3 < s12 < 1. Itis convenient to
choose an approximate expression where this hierarchy is manifest. This is the Wolfenstein param
tion, where the four mixing parameters dre A, p,n) with A = |V,,5| = 0.23 playing the role of an
expansion parameter andepresenting the CP violating phase [71, 72]:

1-— %)\2 — %)\4 A A)\3(p —1in)
V= |-A+3A2N5[1-2(p+in)] 1—3ir— IXY(1+442) AN? . (A4
AN1— (1= 3IXY)(p+in)] —AN 4+ FAM[L —2(p+in)] 1-— A2\

A very useful concept is that of thaitarity triangles The unitarity of the CKM matrix leads to
various relations among the matrix elemesetsg,.

VudVis + VeaVis + ViaVis = 0, (A.5)
Vusvu*b + chsvcﬂl; + V;fs‘/tz - 0; (A6)
VuaVap + VeaVe, + ViaViy, = 0. (A7)

Each of these three relations requires the sum of three complex quantities to vanish and so can b
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, thoug
term “unitarity triangle" is usually reserved for the relation (A.7) only. The unitarity triangle related
Eqg. (A.7) is depicted in Fig. A.1.

The rescaled unitarity triangle is derived from (A.7) by (a) choosing a phase convention such
(VeaVy;) is real, and (b) dividing the lengths of all sides|by;V; |. Step (a) aligns one side of the triangle
with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchar
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates o
remaining vertex correspond to the Wolfenstein paraméierg). The area of the rescaled unitarity
triangle is|n|/2.

Depicting the rescaled unitarity triangle in tfie ) plane, the lengths of the two complex sides

=P+, Ri=

are
Vuqub

VeaVen

ViaVi

R, =
VeaVen

— =2+ P (A.8)
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The three angles of the unitarity triangle are defined as follows [73, 74]:

Ltdil;l'; Ve 7) - ud *b
c u X .
o = arg [— VeaVr | B =arg |— ViVt | v = arg VeaV (A.9)

They are physical quantities and can be independently measured by CP asymme3riesciays. It is
also useful to define the two small angles of the unitarity triangles (A.6,A.5):

VisVip
VesVa

Bs = arg [— } , PBi = arg [— VCSVCZ} . (A.10)

VsV

B CPVin B decays to final CP eigenstates

We define decay amplitudes @&f (which could be charged or neutral) and its CP conjudato a
multi-particle final statef and its CP conjugatg¢ as

Ap=(fIHIB) . A;=(fIHIB) , Ap=(fH|B) , Ay=(fH|B), (B.)

where?{ is the Hamiltonian governing weak interactions. The action of CP on these states introd
phasegp and{; according to

CP|B) = e™7[B) , CP|f)=e"|f),
CP|B) = e ™7|B) , CP[f)=e"|f), (B.2)

so that(C'P )? = 1. The phase§p and¢; are arbitrary and unphysical because of the flavor symmet
of the strong interaction. If CP is conserved by the dynani©s; ,#] = 0, then Ay andZ? have the
same magnitude and an arbitrary unphysical relative phase

Ap =& ) Ay (B.3)

A state that is initially a superposition &° and B, say
[%(0)) = a(0)| B%) + b(0)| BY) , (B.4)

will evolve in time acquiring components that describe all possible decay final $tates, . ..}, that
is,

(1)) = a(t)| B®) + b(t)| BY) + c1(t)| f1) + ca(®)| fo) + -+ . (B.5)

If we are interested in computing only the values:¢f) andb(t) (and not the values of afi;(¢)), and

if the timest in which we are interested are much larger than the typical strong interaction scale,
we can use a much simplified formalism [75]. The simplified time evolution is determinedby 2
effective Hamiltoniari{ that is not Hermitian, since otherwise the mesons would only oscillate and |
decay. Any complex matrix, such @& can be written in terms of Hermitian matricks andI” as

H:M—%F. (B.6)

M andT are associated withB", BY) <+ (B, BY) transitions via off-shell (dispersive) and on-shell
(absorptive) intermediate states, respectively. Diagonal elements ahdI™ are associated with the
flavor-conserving transitionB? — B? and B — B° while off-diagonal elements are associated witt
flavor-changing transition8° <+ BY.

The eigenvectors of{ have well defined masses and decay widths. We introduce complex
rameterg andgq to specify the components of the strong interaction eigenst&teand B, in the light
(Bp) and heavy (1) mass eigenstates:

|Br,u) = p|B°) +q|B°) (B.7)
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with the normalizationp|?> + |¢|*> = 1. The special form of Eq. (B.7) is related to the fact that CP"
imposesMi; = My andI'y; = I'ys. Solving the eigenvalue problem gives

D Mo — (i/2)T'12
If either CP or T is a symmetry ¢, thenM;, andTl'y» are relatively real, leading to
2 .
<‘-’> — s o M ~1, (B.9)
p p

where¢p is the arbitrary unphysical phase introduced in Eqg. (B.2).

The real and imaginary parts of the eigenvalues{o€orresponding tdB;, ) represent their
masses and decay-widths, respectively. The mass differdncg and the width differencé\I'z are
defined as follows:

AmBEMH—ML, AFBEFH—FL. (BlO)

Note that here\m g is positive by definition, while the sign dfI' is to be experimentally determined.
The average mass and width are given by

M M r r
mp= B TML o _lHTL (B.11)
2 2
It is useful to define dimensionless ratiegandy:
AmB AFB
= =—. B.12
r, Y=o, (B.12)
Solving the eigenvalue equation gives
1
(AmB)2 — Z(AFB)Q = (4’M12’2 — ’F12|2), AmBAFB = 4R8(M12I“{2). (813)

All CP-violating observables if? and B decays to final stateg and f can be expressed in terms
of phase-convention-independent combinationd pf A, A; and A7, together with, for neutral-meson
decays onlyg/p. CP violation in charged-meson decays depends only on the combimﬁt}gmf],
while CP violation in neutral-meson decays is complicatedddy <> B° oscillations and depends,
additionally, ong/p| and on\ s = (¢/p)(As/Ay).

For neutralD, B, andB; mesonsATI'/T" < 1 and so both mass eigenstates must be consider
in their evolution. We denote the state of an initially piB®) or | B°) after an elapsed proper tinteas
|BOnys(t)) or [BY, (1)), respectively. Using the effective Hamiltonian approximation, we obtain

phys
Bus(8)) = g4(8)[B°) g - ()| BY),
BYye(t)) = g1(t)[B°) — g g-(1)B° | (B.14)
where ) ' ) ' )
g+(t) =5 (e—’mHt—ifH’f + e—lmLt—aFLf) . (B.15)

One obtains the following time-dependent decay rates:

0
R T (1A /A ) o) + (1A = (/) ) costaT)
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+ 2Re((q/p)A}Ay) sinh(yI't) — 2Zm((q/p) A} Ay) sin(xI't) , (B.16)

AT [BY d _ _
| "*jﬁ)Nj L (Itp/@)Af|? + [Af]?) cosh(yI't) — ((p/q)As|? — [Af|?) cos(aT't)

+ 2R€((p/q)AfZ}) sinh(yI't) — 2Im((p/q)AfZ;) sin(zI't) , (B.17)

whereN; is a common normalization factor. Decay rates to the CP-conjugate finalfsteteobtained
analogously, with\y = N7 and the substitutionsl; — A and Ay — Z7 in Egs. (B.16,B.17). Terms
proportional to|A¢|* or |A|? are associated with decays that occur without anyet> B oscilla-
tion, while terms proportional tt(q/p)A¢|* or |(p/q)Af|* are associated with decays following a ne
oscillation. Thesinh(yI't) andsin(xI't) terms of Eqs. (B.16,B.17) are associated with the interferen
between these two cases. Note that, in multi-body decays, amplitudes are functions of phase-spac
ables. Interference may be present in some regions but not others, and is strongly influenced by re
substructure.

One possible manifestation of CP-violating effects in meson decays [76] is in the interfere
between a decay without mixindg® — f, and a decay with mixingB® — BY — f (such an effect
occurs only in decays to final states that are commaB%@nd B°, including all CP eigenstates). It is
defined by

Im(Af) #0, (B.18)
with o
_qAy

N =200 B.19

f P A (B.19)

This form of CP violation can be observed, for example, using the asymmetry of neutral meson de
into final CP eigenstatep

_ dr/dt[Eghys(t) — fop ] — dU/dt[Bphys(t) — fep ]
dU/dt[BY () = fop ]+ dU/dt[BOphys(t) — fep]

Afcp (t) (B.20)

For AT' = 0 and|q/p| = 1 (which is a good approximation fa8 mesons),A;., has a particularly
simple form [77-79]:

Af(t) = Sysin(Amt) — Cycos(Amt),
2Zm(Xy) _ 1P

_ = B.21
Ve wel (B.21)

Sy =

Consider theB — f decay amplituded s, and the CP conjugate proced$,— f, with decay
amplitudeZ?. There are two types of phases that may appear in these decay amplitudes. Con
parameters in any Lagrangian term that contributes to the amplitude will appear in complex conijt
form in the CP-conjugate amplitude. Thus their phases appe&y Hnd27 with opposite signs. In the
Standard Model, these phases occur only in the couplings dithéosons and hence are often callec
“weak phases”. The weak phase of any single term is convention dependent. However, the diffe
between the weak phases in two different termd jris convention independent. A second type of phas
can appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is the pc
contribution from intermediate on-shell states in the decay process. Since these phases are gener
CP-invariant interactions, they are the sameﬂl'bnandzf. Usually the dominant rescattering is due tc
strong interactions and hence the designation “strong phases” for the phase shifts so induced.
only the relative strong phases between different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-transfor
phases of Eq. (B.3). Those spurious phases are due to an arbitrary choice of phase convention,
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not originate from any dynamics or induce any CP violation. For simplicity, wéhesn to zero from
here on.

It is useful to write each contributiom; to A in three parts: its magnitude;|, its weak phase;,
and its strong phasg. If, for example, there are two such contributioAs, = a; + a2, we have

Af — |a1’ei(51+¢1)+|a2‘ei(52+¢2)7
A; = |y’ 4 |ag|e02m92), (B.22)

Similarly, for neutral meson decays, it is useful to write
Myy = [Myp|e"® | Typ = [Tyoler . (B.23)

Each of the phases appearing in Egs. (B.22,B.23) is convention dependent, but combinations si
81— 62, ¢1— 2, dar — dr andeas + 1 — ¢, (Whereg, is a weak phase contributing tby) are physical.

In the approximations that only a single weak phase contributes to depay,]af|ei(5f+¢f), and
that|I"y2/M2| = 0, we obtain|A\s| = 1 and the CP asymmetries in decays to a final CP eigengtate
[Eq. (B.20)] with eigenvalue; = £1 are given by

Ajep (6) = Im(Ny) sin(Amt) with Zm(\s) = nysin(gar + 2¢7). (B.24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are involve
extraction of its value frorm(\y).

C Supersymmetric flavor violation
C.1 Mass insertions

Supersymmetric models provide, in general, new sources of flavor violation. We here present the
malism of mass insertions. We do that for the charged sleptons, but the formalism is straightforwi
adapted for squarks.

The supersymmetric lepton flavor violation is most commonly analyzed in the basis in which
charged lepton mass matrix and the gaugino vertices are diagonal. In this basis, the slepton mas:
not necessarily flavor-diagonal, and have the form

~ ~ ~ M2 A.qv O
* n[g ]V[NE L E* P < Lij ilVd > ~L] ’ Cc1
Mz( 7 )7,] Ny ( Li Rk) Ajk’vd M]%kl ERl ( )

where M, N = L, R label chirality, andi, j, k,{ = 1,2,3 are generational indices\/? and M3 are
the supersymmetry breaking slepton masses-squared. ATp@rameters enter in the trilinear scalal
couplings A;;j¢alril};, Whereg, is the down-type Higgs boson, ang = (pq). We neglect small
flavor-conserving terms involvingan 8 = v, /vg.

In this basis, charged LFV takes place through one or more slepton mass insertion. Each
insertion brings with it a factor of
SN = (M2)MN /i, (C.2)

wherem? is the representative slepton mass scale. Physical processes therefore constrain
(8N )ege ~ max [§HN, SMPSEN L (i 5)] . (C.3)
For example,

(61L2R)eff ~ max [Alg’l)d/’l’hz, MglkAkgvd/ﬁfl, AlkvdMI%kz/m4, (e 2)] . (C.49)

151



Y. NIR

Note that contributions with two or more insertions may be less suppressed tsantih only one.

It is useful to express th@f}“’ mass insertions in terms of parameters in the mass basis. We
write, for example,

1 A~
S = =T KL KL A, (C.5)
«
Here, we ignord. — R mixing, so thal‘K’iLCY is the mixing angle in the coupling of a neutralino’fQ — /1.,
(with ¢; = e, u, 7 denoting charged lepton mass eigenstatedand ¢1, £, ¢35 denoting charged slepton
mass eigenstates), addn? = m% —m?. Using the unitarity of the mixing matrix”, we can write
Lo

m2olt =" KL K (AmG, +m?) = (M2)F, (C.6)

thus reproducing the definition (C.2).

In many cases, a two generation effective framework is useful. To understand that, consider ¢
where (no summation overj, k)

[KRKGE | < KGR,
(KK AmE o | < |KGKP AmE - (C.7)

lr; Lr;lr:"’

whereAm%Z = m% — m2 . Then, the contribution of the intermediatg can be neglected and,
ili Lj Li

furthermore, to a good approximatidty; K J;* + K/;K [ = 0. For these cases, we obtain

2
mZ2 -~
Lrilr;

oLl —
ij m2

L 7-Lx

C.2 Neutral meson mixing

We consider the squark-gluino box diagram contributiobtb— D’ mixing amplitude that is propor-
tional to K3, Ki;" K3, K77, where K is the mixing matrix of the gluino couplings to left-handed u
quarks and their up squark partners. (In the language of the mass insertion approximation, we cal
here the contribution that i [(6%; )12]%.) We work in the mass basis for both quarks and squarks.

The contribution is given by

472

M} =—i
12 227

a2mp fpBpnqep » (g K1 K3 K1) (135 + 4 Lij ). (C.9)
i,J

where

j / d4p p2
435 = = =
’ (2m)* (p? —m2)?(p? —m?)(p? — 1i3)

i M2 m;* ~§
+ — o —— In— + — —— ——In—2|, (C.10)
(mg —m3)(m; —m2)? 2 (mF —mZ)(m? —m2)? 2
I _ /d4p 1
W) @)t 2 - m2)2(p? — ) (p? — m?)
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2 72
J

m
n—|. (C11
(=)~ g G o — e g (O

We now follow the discussion in refs. [21, 80]. To see the consequences of the super-GIM m
anism, let us expand the expression for the box integral around someﬁdélfmr the squark masses-
squared:

L2, mi,m3) = Ly(m2,m2 + 6mi,m2 + om?)
= L(m,m2,md) + (0mg + 6m3)I5 (2, mg, mg, ;)
1 - - - - 29 -9 2 ~9 -
where .
d*p 1
L,(m2,m2,... . m2 z/ C.13
n(mg7mq) 7mq) (27_‘_)4 (pg — mg)g(pg — mg)n_ga ( )

and similarly forI,;;. Note thatl,, oc (m2)"~% and, o« (m2)"~%. Thus, usingr = m2/m2, it is
customary to define

7 ~ ) ~
In = —~_fn(x)7 In = —~_fn(x) (C-14)
(4m)?(mg)"—2 (4m)?(mg)"—3
The unitarity of the mixing matrix implies that
Y (KK Ky K =Y (Ky KKK =0. (C.15)

? J

Consequently, the terms that are proportiofalfs, f5 and f5 vanish in their contribution td/;». When
om? < mg for all ¢, the leading contributions td/,5 come fromfs and fs. We learn that for quasi-
degenerate squarks, the leading contribution is quadratic in the small mass-squared difference
functionsfs(z) and fg(z) are given by

6(1+3z)Inx + 23 — 922 — 92 + 17

f6<$) = 6(1 _1.)5 ’
- N — 3 — 9p2
o) = 6z(1+ )1 §<1ix>59$ +9x+1' (C.16)

For example, withe = 1, fs(1) = —1/20 and fo = +1/30; with z = 2.33, f5(2.33) = —0.015 and
fe = +0.013.

To further simplify things, let us consider a two generation case. Then
My o 2(K3Ki7)H0mT)? + 2(K5 Ki5)*(0mm3)? + (K3 K1t K3 K15 ) (9imf + d1ms3)°
= (K Ki7)(m3 — mi)*. (C.17)

We thus rewrite Eq. (C.9) for the case of quasi-degenerate squarks:

oampfiB N AM3)?
MB = Dm% Ng”QCD [11fs(2) + 4xf6(x)]%(K21K11 )2. (C.18)
mq mq

For example, for: = 1, 11 fg(x) + 4z f(z) = +0.17. Forz = 2.33, 11 fs(z) + 4z fs(2) = 40.003.
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QCD under extreme conditions: an informal discussion

E.S. Fragd
J. W. Goethe-University, Frankfurt am Main, Germany

Abstract

We present an informal discussion of some aspects of strong interactions under
extreme conditions of temperature and density at an elementary level. This
summarizes lectures delivered at the 2013 CERN — Latin-American School of
High-Energy Physics and is aimed at students working in experimental high-
energy physics.

1 Introduction and motivation: why, where and how

Quantum Chromodynamics (QCD) is an extremely successful theory of strong interactions tha
passed numerous tests in particle accelerators over more than 40 years [1]. This corresponds
behavior of hadrons in the vacuum, including not only the spectrum but also all sorts of dynamical
cesses. More recently strong interactions, and therefore QCD, has also started being probed inam
under conditions that become more and more extreme [2]. Although quite involved theoretically, tF
not just an academic problem. In order to make it clear, one should consider three very basic ques
that should always be asked in the beginning: why? where? how?

1.1 Why?

It was realized since the very beginning that strong interactions exhibit two remarkable features thi
related but represent properties of complementary sectors of the energy scale. The first one is asyr
freedom [3], which can be perturbatively demonstrated by an explicit computation of the beta func
to a give loop order in QCD [4]. The second, which is consistent with the first but should be see
totally independent, since it is a property of the nonperturbative vacuum of strong interactions, is «
confinement [5]. Even though reality constantly shows that confinement is a property of strong inte
tions, and therefore should somehow be built in QCD, this proof remains a theoretical open proble
far. Even for the pure Yang-Mills theory, where the bound states correspond to glueballs, the exis
of a mass gap is still to be shown after more than half a century of the original paper on nonabelian ¢
theories [6]. For this reason, confinement is ranked in the Clay Mathematics Institute list of unsc
Millennium problems [7].

Much more than a cute (and very tough) mathematical problem, this is certainly among the |
important theoretical and phenomenological problems in particle physics, since hidden there is thi
origin of mass, as we feel in our everyday lives and experience with ordinary (and not so ordinary) m
Although the Higgs mechanism provides a way to give mass to elementary patrticles in the Star
Model [8], most of what constitutes the masses of hadrons come from interactions. For instance,
than90% of the proton mass originates in quark and gluon condensates [9]. So, in spite of the fant
success of the Standard Model [8], we do not understand a few essential mechanisms.

Extremely high temperatures and densities bring us to an energy scale that facilitates deco
ment, and matter under such extreme conditions can behave in unexpected ways due to collective ¢
This is, of course, a way to study the mechanism of confinement (by perturbing or modifying this sta
matter). This leads us also to a deeper yet childish motivation, that of understanding what happens
keep making things hotter and hotter, or keep squeezing things harder and harder [10]. These que
can be reformulated in a more technical fashion as 'what is the inner structure of matter and the r
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of strong interactions under extreme conditions of temperature and densitgRperiments, one needs
to “squeeze”, “heat” and “break”. From the theoretical point of view, one needs a good formulatiol
in-medium quantum field theory, using QCD or effective theories.

It is clear that the challenge is enormous. Although confinement seems to be a key featu
hadrons, and manifests also in relevant scales sug¢h asAgcp, it only seemdo be present in QCD.
So far, controlled lattice simulations show strong evidence of confinement in the pure gauge tr
[11]. As hinted previously, however, the theory is nonperturbative at the relevant scales, so that an
methods are very constrained. And, although lattice simulations have developed to provide solid r¢
in several scenarios, they are not perfect. And, more important, they are not Nature. To make prc
in understanding, or at least collecting important facts, one needs it all: experiments and observa
lattice simulations, the full theory in specific (solvable to some extent) limits and effective models. 4
also combinations, whenever possible, to diminish the drawbacks of each approach.

T

early universe

Te Quark-Gluon

Plasma

Hadrons

Color

Superconductivity
nuclei
neutran stars

m,/3 M m

Fig. 1: Cartoon of a phase diagram for strong interactions. Extracted from Ref. [12]

Whichever the framework chosen, collective phenomena will play a major role. Although so!
what put aside in the so-called microscopic “fundamental” particle physics, collective effects can a
dramatically the behavior of elementary particles in a medium under certain conditions. Beside
well-known examples of BCS and BEC phases in condensed matter systems [13], and also in
quark matter [14], it was recently found that photons can form a Bose-Einstein condensate [15]. In
the textbook case of water and its different phases is quite illustrative of the richness that comes fror
lective phenomena that would hardly be guessed from the case of very few or non-interacting eleme
particles.

In terms of the thermodynamics, or many-body problem, the basic idea is to perturb the (confi
vacuum to study confinement by heating (temperature), squeezing or unbalancing species (che
potentials for baryon number, isospin, strangeness, etc) and using classical external fields (mac
electric, etc), so that the system is taken away from the confined phase and back. One can also
(or not) confinement to other key properties of strong interactions, such as chiral symmetry. And,"
the theorist standpoint, draw all possible phase diagrams of QCD and its “cousin theories” (realiza
of QCD with parameters, such as the number of colors or flavors, or the values of masses, that a
realized in Nature) to learn basic facts. There are several examples, one well-known being the ‘Colt
plot’, where one studies the nature of the phase transitions and critical lines ¢mthe- my, ms)
plane. Nevertheless, if one draws a cartoon of the phase diagram in the temperature vs. quark ch
potential, for instance Fig. 1, and compares it to computations from effective models, lattice simula
and freeze-out points extracted from high-energy heavy ion collision data, one sees that the point
scatter in a large area [16]. So, there is still a long way ahead.
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1.2 Where?

According to the Big Bang picture and the current description of the evolution of the early universe |
we expect that at about)—>s after the Big Bang a soup of quark-gluon plasma (in the presence
electrons, photons, etc) has undergone a phase transition to confined hadrons. This was, of cour
first realization of a QCD transition. This process was thermally driven and happened at very low ba
chemical potential.

It is quite remarkable that the scales of strong interactions allow for the experimental reprodut
of analogous conditions in high-energy ultra-relativistic heavy ion collisions in the laboratory [18].
a picture by T. D. Lee, these collisions are seen as heavy bulls that collide and generate new stz
matter [19]. Such experiments are under way at BNL-RHIC [20] and CERN-LHC [21], and will be p
of the future heavy ion programs at FAIR-GSI [22] and NICA [23].

For obvious reasons, it is common to refer to such experiments as “Little Bangs”. However,
should be cautious with this point. In spite of the fact that the typical energy scales involved nee
be the same, as well as the state of matter created, the so-called quark-gluon plasma [24], the re¢
space-time scales differ by several orders of magnitude. Using a simple approximation for the equ

of state,

7T2

~ o~ 4
3p~en 30N(T)T , 1)
wherep is the pressure; the energy density and¥ (7") the number of relevant degrees of freedom, w:
can easily estimate the typical sizes involved. The radius of the universe at the QCD phase tran
epoch, as given by the particle horizon in a Robertson-Walker space-time [25], where the scale 1

grows asu(t) ~ t", is given by (n=1/2 andN(T') ~ 50 at this time for QCD)

1 /1 45 \'? Mp  1.45x 10'®
Lo (T) (1 —n) (WMT)) T (T/GeV)A/N(T)fm' @)

Here Mp, is the Planck mass, and it is clear that the system is essentially in the thermodynamic lim

Fig. 2: Cartoon representing non-central heavy ion collisions and how they affect the size of the system.

On the other hand, in heavy ion collisions the typical length scale of the systémds <
10 — 15 fm, so that the system can be very small, especially if one considers non-central collisions
(see Fig. 2). One can develop analogous arguments for the time scales given by the expansion
finding that the whole process in the early universe happens adiabatically, whereas in heavy ion
not even clear whether the system can achieve thermal equilibrium, given the explosive nature ¢
evolution in this case. So, there are certainly large differences (in time and length scales) betwee
and Little Bangs...

Keeping this caveat in mind, heavy ion experiments have been investigating new phases of n
at very high energies for more than a decade, producing an awesome amount of interesting data
richer picture of strong interactions (see Ref. [27] for a review).

In the realization of the Big and Little Bangs one is always in the high temperature and
density (small baryon chemical potential) sector of the phase diagram of strong interactions. How
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high densities (at very low temperatures) can also probe new states ohlwadratter, and that is what

is expected to be found in the core of compact stars [28]. There, new phases, condensates and eve
superconductivity may be present. In particular, the deconfinement and chiral transitions might ¢
significantly the explosion mechanism in supernovae [28] via modifications in the equation of state.

After a neutron (or hybrid) star is formed, densities in its core can in principle reach several til
the nuclear saturation density = 0.16 fm > = 3 x 10g/cm?®, which corresponds to squeezing?
solar masses into a sphere~ofl0 km of radius. To describe these objects, one needs General Relati
besides in-medium quantum field theory.

1.3 How?

The reader is hopefully already convinced that, in order to describe the phenomenology of the
structure and dynamics of strong interactions under extreme conditions, one needs all possibilit
disposal: theory, effective modeling, etc. We do not have one problem ahead, but a myriad of diffe
problems. So, one has to make a choice. Our focus here will be the equation of state, of which we
discuss a few aspects.

At this point, we are lead again to the “why” question. And the answer is because, besides c
ing all the thermodynamic equilibrium information we may be interested in, it is also the basic cru
ingredient for dynamics, structure, etc. In fact, the phase diagram topology is determined in every (
by the full knowledge of the pressup¢T’, 1, B, . ..). This will determine all phases present as we die
different knobs, or control parameters, such as temperature or chemical potentials.

The structure of a compact star, for instance, is given by the solution of the Tolman-Oppenhei
Volkov (TOV) equations [28], which encode Einstein’s General Relativity field equations in hydrosti
equilibrium for a spherical geometry:

d GM(r)e(r) (r) 4rr3p(r)
i 21 20M] [“fm} {”Mf;)] ’ ©
PL — () . M(R) =M. )

Given the equation of state = p(e), one can integrate the TOV equations from the origin until th
pressure vanisheg(R) = 0. Different equations of state define different types of stars (white dwar
neutron stars, strange stars, quark stars, etc) and curves on the mass-radius diagram for the famr
stars.

Furthermore, to describe the evolution of the hot plasma created in high-energy heavy ion ¢
sions, one need to make use of hydrodynamics, whose fundamental equations encode the conse
of energy-momentum ('** = 0) and of baryon number (or different charges){@v" = 0, with
viv, = 1). These represent only five equations for six unknown functions, the additional constr
provided by the equation of state. Hence, it is clear that we really need the equation of state to mak
progress.

In principle, we have all the building blocks to compute the equation of state. The Lagrangia
QCD is given, so one would have “simply” to compute the thermodynamic potential, from which one
extract all relevant thermodynamic functions. The fact that the vacuum of QCD is highly nonperturba
as discussed previously, makes it way more complicated from the outset. As we know, QCD m
becomes simpler at very high temperatures and densifies)d ;. playing the role of the momentum
scale in a plasma, but very complicated in the opposite limit. On top of thahdx are, unfortunately,
not high enough in the interesting cases, so that the physically relevant region is way before asym
freedom really kicks in. Perturbative calculations are still an option, but then one has to recall that fi
temperature perturbative QCD is very sick in the infrared, and its naive formulation breaks down
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Equation of state - ndive field map

| l

hadronic models, pQCD at T>O & u>0
nuclear field theory asymptotic freedom

where all the things that matter happen...

there is no appropriate formalism yet!

Fig. 3: Cartoon of the naive field map for the equation of state for strong interactions.

scale given by/?>7T [29]. This is known as Linde’s problem: at this scale, fqia- 1)-loop diagram for
the pressure, fof > 3 all loops contribute to the term of ordg? even for weak coupling [29].

The situation does not look very promising, as illustrated by the cartoon of Fig. 3 which shi
that there is no appropriate formalism to tackle with the problem in the physically relevant region for
phase structure, namely the critical regions. However, there are several ways out. Some popular ex
being: very intelligent and sophisticated “brute force” (lattice QCD), intensive use of symmetries
fective field theory models), redefining degrees of freedom (quasiparticle models), “moving down” f
very high-energy perturbative QCD, “moving up” from hadronic low-energy (nuclear) models. And
can and should also combine these possibilities, as discussed previously.

2 Symmetries of QCD and effective model building
2.1 The simplest approach: the bag model

Before discussing the building of effective models based on the symmetries, or rather approximate
metries, of QCD, let us consider a very simple description: the MIT bag model [29] applied to desc
the thermodynamics of strong interactions.

The model incorporates two basic ingredients, asymptotic freedom and confinement, in the
plest and crudest fashion: bubbles (bags) of perturbative vacuum in a confining medium, including «
tual O(as) corrections. Asymptotic freedom is implemented by considering free quarks and glu
inside color singlet bags, whereas confinement is realized by imposing that the vector current var
on the boundary.

Then, confinement is achieved by assuming a constant energy density for the vacuum (net
pressure), encoded in the so-called bag condBara phenomenological parameter extracted from fit
to hadron masses3 can also be viewed as the difference in energy density between the QCD anc
perturbative vacua. A hadron energy (for a spherical bag) receives contributions from the vacuun
the kinetic energy, so that its minimum yields

16

Byt = ZrRiB 5)
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and the hadron pressure (at equilibrium)

OFE}, const
=—=-B+——=0. 6
Pr="gv T gt =0 ©
Assuming the existence of a deconfining transition, the pressure in the quark-gluon plasma |
within this model is given by

7 >7T2T4_B’ @

PQGP = <Vb + ZVf 90
whereas the pressure in the hadronic phase (taking, for simplicity, a pion gas) is given by

w27

W ) (8)

Pr = Vg

neglecting masses. Here, we have the following numbers of degrees of freeden®, v, = 2(N2 —1)
andvy = 2NNy for pions, gluons and quarks, respectively.

For instance, folN. = 3, N; = 2 and B/* = 200 MeV, we obtain the following critical

temperature:
458
T.=|—= | ~144 M
<177r2> eV 9)

and a first-order phase transition as is clear from Fig. 4. The value of the critical temperature is act
very good as compared to recent lattice simulations [30], considering that this is a very crude mode
the other hand the nature of the transition, a crossover, is almost by construction missed in this app

1 1 1 1
4_
— QGP ba
3 — pion gas|
+
a2t -
1 4
0 1 I 1 1 1
0 100 200 300 400 500
T (MeV)

Fig. 4: Pressures in the bag model description.

2.2 Basics of effective model building in QCD

To go beyond in the study of the phases of QCD, one needs to know its symmetries, and how the
broken spontaneously or explicitly. But QCD is very involved. First, it is a non-abéliafV,.) gauge
theory, with gluons living in the adjoint representation. Then, theré\grdynamical quarks who live in
the fundamental representation. On top of that, these quarks have masses which are all different,
is very annoying from the point of view of symmetries. So, in studying the phases of QCD, we shi
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do it by parts, and consider many “cousin theories” which are very similar@b Qut simpler (more
symmetric). In so doing, we can also study the dependence of physics on parameters which are fi
Nature.

Fig. 5 illustrates the step-by-step process one can follow in assembling the symmetry fea
present in QCD and learning from simpler theories, as well as cousin theories. Notice that the
theory, whose parameters are given by comparison to the experimental measurements, has essen
symmetry left. Yet, some symmetries are mildly broken so that a “memory” of them remains. This
allows us to use “approximate order parameters”, for instance, a concept that is very useful in pract
characterize the chiral and deconfinement transitions.

pure glue SU(N):

® Z(N) symmetry (SSB)
® order parameter: Polyakov loop L
o deconfining trans.: N=2 (2" order), N=3 (weakly 15" order)

+ massless quarks:

e chiral symmetry (SSB)

® order parameter: chiral condensate ¢

o Z(N) explicitly broken, but rise of L <> deconf.
e chiral trans.: N=3,2 (N;=2) - 2" order

+ massive quarks:

Z(N) and chiral explicitly broken
Yet vary remarkably and L < ©

Fig. 5: Basic hierarchy in the step-by-step approach to QCD.

2.3 SU(N.), Z(N.) and the Polyakov loop
In the QCD Lagrangian with massless quarks,

1 .
L = §T1“FWF“”+(jz'y“D#q, (20)
D, = (8, —igA,). (11)
7
F/u/ = ; [DH(A)vDV(A)] ) (12)

we have invariance under loc8lU (N,). In particular, we have invariance under elements of the cent
groupZ(N,) (for a review, see Ref. [31])

2

Nel. (13)

Q. = e’
At finite temperature, one has also to impose the following boundary conditions:

Au(E,B) = +AuZ,0), (14)
Q( 75) = _Q(fvo)' (15)

Any gauge transformation that is periodicirwill do it. However, ‘t Hooft noticed that the class of
possible transformations is more general. They are such that

8y

Q& B) =92 , Q0 =1, (16)
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keeping the gauge fields invariant but not the quarks.

For pure glue thisZ(N.) symmetry is exact and we can define an order parameter - the Polya
loop:

1 B
L(z) = FTrPexp [zg/ dr T Ag(Z, 7'):| , 7)
c 0
with L transforming as
L(Z) — Q. L(F) 1 = ¢ ¥ L(F) . (18)

At very high temperatureg, ~ 0, andg — 0, so that

- 2nT

(O)=¢e"Nely , Lo~T1, (19)

and we have & -fold degenerate vacuum, signaling spontaneous symmetry breaking of gloNg).
At T = 0, confinement implies thay = 0. Then,{, = 0 can be used as an order parameter for th
deconfining transition:

bo=0,T<T. ; bo>0,T>T,. (20)

Usually the Polyakov loop is related to the free energy of an infinitely heavy test quark via (confinerr
no free quark)

(0) = g~ Frest/T (21)

See, however, the critical discussion in Ref. [31].

Fig. 6: Effective potential for the Polyakov loop fa@r < T, (upper) and’ > T, (lower). Extracted from Ref. [32].

The analysis above is valid only for pure glue, i.e. with no dynamical quarks. However, we can
ask whethe¥ (3) is an approximate symmetry in QCD. On the lattice, in full QCD, one sees a remarke
variation of¢ aroundT, so that it plays the role of an approximate order parameter [33]. Notice, howe
thatZ(3) is broken at high, not low’, just the opposite of what is found in the analogous description
spin systems, such as Ising, Potts, etc [13]. The effective potential for the Polyakov loop is illustrat:
Fig. 6.
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2.4 Adding quarks: chiral symmetry

In the limit of massless quarks, QCD is invariant under global chiral rotatigné; ) ;, x U (Ny)r of the
quark fields. One can rewrite this symmetry in terms of vecto={\R + L) and axial (A= R — L)
rotations

U(Ng) x U(Ny)r ~ U(Nyg)v x U(Ny)a - (22)
ASU(N) ~ SU(N) x U(1), one finds
U(Ng)p x U(Nyg)g ~ SU(Ng)p x SU(Ng)r x U(L)y x U(1)a , (23)

where we see th& (1) from quark number conservation and #i€l) 4 broken by instantons.

In QCD, the remainingU (Ny)r, x SU(Ny)r is explicitly broken by a nonzero mass term. Take
for simplicity, Ny = 2. Then,

1 _ _ _ _
L= ZFﬁyFG“V + dJL’Y”D;ﬂf)L + T,ZJR’)/“DN¢R — mu(ﬂLuR -l-ﬂRuL) — md(deR + deL) ,  (24)

so that, for non-vanishingw, = mg, the only symmetry that remains is the vector iSosBin(2)y .
In the light quark sector of QCD, chiral symmetry is just approximate. Then, for massless QCD,
should find parity doublets in the vacuum, which is not confirmed in the hadronic spectrum. Thus, c
symmetry must be broken in the vacuum by the presence of a quark chiral condensate, so that

SU(Ny)r x SU(Nyg)r = SU(Ny)v (25)

and the broken generators allow for the existence of pions, kaons, etc.

Hence, for massless QCD, we can define an order parameter for the spontaneous breaking of
symmetry in the vacuum - the chiral condensate:

(0[¢]0) = ([, ¥R|0) + (0[¢ 1L |0) , (26)

so that this vacuum expectation value couples togethel Hied R sectors, unless in the case it vanishes
For very high temperatures or densities (law), one expects to restore chiral symmetry, melting th
condensate that is a function ®f and quark masses and plays the role of an order parameter for
chiral transition in QCD.

Again, the analysis above is valid only for massless quarks. However, we can still ask whe
QCD is approximately chiral in the light quark sector. On the lattice (full massive QCD), one set
remarkable variation of the chiral condensate arofliihdso that the condensate plays the role of a
approximate order parameter [33].

In summary, there are two relevant phase transitions in QCD, associated with spontaneous sy
try breaking mechanisms for different symmetries of the action: (i) an approxifiafe) symmetry and
deconfinement, which is exact for pure gaufjé(/N.) with an order parameter given by the Polyako\
loop; (ii) an approximate chiral symmetry and chiral transition, which is exact for massless quarks,
an order parameter given by the chiral condensate.

One can try to investigate these phase transitions by building effective models based on
symmetries of the QCD action. Then, the basic rules would be: (i) keeping all relevant symme
of the action; (i) trying to include in the effective action all terms allowed by the chosen symmetr
(iii) developing a mimic of QCD at low energy using a simpler field theory; (iv) providing, whenev
possible, analytic results at least for estimates and qualitative behavior. Well-known examples ai
linear sigma model, the Nambu-Jona-Lasinio model, Polyakov loop models and so on [24]. Althc
they represent just part of the story, combined with lattice QCD they may provide good insight.
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3 A final comment

Instead of conclusions, just a final comment on a point we have already made in the discussion ¢
To make progress in understanding, or at least in collecting facts about, (de)confinement and chiral
metry, we need it all: experiments and observations, lattice simulations, theory developments, effe
models, and also combinations whenever possible. In that vein, it is absolutely crucial to have the
and experimentalists working and discussing together.
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Abstract

The origin of the ultra high energy cosmic rays (UHECR) with energies above
E > 10'7eV, is still unknown. The discovery of their sources will reveal
the engines of the most energetic astrophysical accelerators in the universe.
This is a written version of a series of lectures devoted to UHECR at the 2013
CERN-Latin-American School of High-Energy Physics. We present an intro-
duction to acceleration mechanisms of charged particles to the highest ener-
gies in astrophysical objects, their propagation from the sources to Earth, and
the experimental techniques for their detection. We also discuss some of the
relevant observational results from Telescope Array and Pierre Auger Obser-
vatory. These experiments deal with particle interactions at energies orders of
magnitude higher than achieved in terrestrial accelerators.

1 Introduction

Extreme physical systems provide the best scenario to study the fundamental physical laws. In this
direction the research on ultra high energy cosmic rays is a crucial element, contributing to progress
in both astrophysics and particle physics. UHECR open a window to energy and kinematic regions
previously unexplored in the study of fundamental interactions and continue to motivate current and
future cosmic ray experiments. In this note we summarize a series of lectures given at the 7th CERN-
Latin-American School of High-Energy Physics on ultra high energy cosmic rays, the highest-energy
particles measured on Earth with energy £ > 10'7eV.

UHECR are mainly protons and nuclei, accelerated in astrophysical objects. The requirements
for these objects to be sources of UHECR are quite stringent, as in addition to be able to accelerate to
extremely high energies, they should also have the luminosity that can account for the observed fluxes.
UHECR must survive during acceleration, escape and propagation through the intergalactic space, los-
ing energy in the interactions with the Infrared/optical (IR/O), Cosmic Microwave Background (CMB)
or Radio Background photons. We begin with a brief introduction to cosmic rays. Then, we introduce
basic concepts of acceleration mechanisms, and the main energy loss processes for UHECR during prop-
agation. The opacity of the CMB to the propagation of these particles is a key issue in the search for the
origin of UHECR, leading to a modification of the energy spectrum and a strong constraint on the prox-
imity of UHECR sources. At this point we give a short description of the main experimental techniques
for the detection of UHECR and discuss observational results of the cosmic ray spectrum. UHECR are
also deflected in the intergalactic and galactic magnetic fields in the propagation volume, what limits
the search for correlations of the arrival direction of UHECR with possible sources and distributions of
astrophysical objects in our vicinity. Here we present studies of anisotropy at the highest energies. Next,
we summarize the phenomenology of cosmic ray air showers, including the dominant electromagnetic
processes driving the shower evolution. We also present the hadronic interaction models used to extrap-
olate results from collider data to ultrahigh energies. Finally, we describe the main observables sensitive
to primary composition, the most challenging issue to understand the nature and origin of UHECR.

2 Cosmic Rays

In 1912, Victor Hess carried out a series of balloon flights taking an electroscope to measured the ioniz-
ing radiation as a function of altitude. He discovered that the ionization rate increased by at least a factor
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of two at around 5 km above the Earth’s surface [1]. He received the Nobel prize in 1936 for the discov-
ery of this “penetrating radiation” coming from space, later called cosmic rays. In 1938, Pierre Auger
and his colleagues first reported the existence of extensive air showers (EAS), showers of secondary
particles caused by the collision of primary high energy particles with air molecules. On the basis of
his measurements, Auger concluded that he had observed showers with energies of 10'%eV [2,3]. The
literature abounds in historical introductions to cosmic rays, we recommend the heart-warming notes by
J. Cronin at the 30th International Cosmic Ray Conference [4]. See also the lectures notes presented in
Refs. [5,6].

For primary energy above 10''eV, the observed cosmic ray flux can be described by a series of
power laws with the flux falling about three orders of magnitude for each decade increase in energy.
Figure 1 shows the “all-particle” spectrum. The differential energy spectrum has been multiplied by
E?6 in order to display the features of the steep spectrum that are otherwise difficult to discern [7]. A
change of the spectral index ( £~27 to E~30) at an energy of about 10'°eV is known as the cosmic ray
knee. This feature is generally believed to correspond to the steepening of the galactic proton spectrum,
either because a change of the propagation regime or because of maximum limitations at the source,
[8—10]. The same effect for heavier nuclei may cause the softer spectrum above the knee. In this context,
subsequent steepenings of the spectrum are predicted at E,,,. ~ Z x 10'%eV reaching ~ 8 x 10'6eV
for the iron group. The KASCADE-Grande collaboration provided the first observation of this sequence
of changes [11]. Above several ~ 10'%eV the magnetic field in the vicinity of the Galaxy would not trap
very effectively even the very heaviest nuclei, so the detected cosmic rays must be extragalactic [12].
The onset of an extragalactic contribution could be indicated by the so-called second knee, a further
steepening of the spectrum at about 10!7-"eV. The flattening around 10'¥-%eV is called the ankle of the
spectrum. The simplest way of producing this feature is that of intersecting the steep galactic spectrum
with a flatter extragalactic one. Under this assumption, several models have been developed. In the
“ankle model” [13, 14], the transition appears at 10'®-5eV. This model needs a new high energy galactic
component between the iron knee and the onset of the extragalactic component. In the “dip model”,
the ankle appears as an intrinsic part of the pair-production dip, a feature predicted in the spectrum of
extragalactic protons that can be directly linked to the interaction of UHECR with the CMB [15-17].
In this model the transition from the galactic to the extragalactic component begins at the second knee
and is completed at the beginning of the dip at £ ~ 10'8eV. In “mix composition models” [18], the
transition occurs at 3 x 10'8eV with mass composition changing from the galactic iron to extragalactic
mixed composition of different nuclei. For a recent comprehensive review of the transition models see
Ref. [19].

The Large Hadron Collider (LHC) will collide in 2015 protons at /s ~ 14 TeV. This impressive

energy is still about a factor of 50 smaller than the centre-of-mass energy of the highest energy cosmic
ray so far observed, assuming primary protons.
For cosmic ray energies above 10!V, the flux becomes so low that direct detection of the primary
using devices in or above the upper atmosphere is, for all practical purposes, impossible. Fortunately, in
such cases the primary particle has enough energy to initiate a particle cascade in the atmosphere large
enough that the products are detectable at ground. There are several techniques which can be employed
in detecting these extensive air showers (EAS), ranging from sampling of particles in the cascade to
measurements of fluorescence, Cerenkov or radio emissions produced by the shower.

3 Acceleration of cosmic rays

There are two types of mechanisms able to accelerate charged particles to reach ultrahigh energies and
at the same time give a power law injection spectrum. One is the acceleration of particles directly to
very high energy by an extended electric field [20], such as the case of unipolar inductors in relativistic
magnetic rotators (e.g. neutron stars [21]) or black holes with magnetized disks that lose rotational
energy in jets. They have the advantage of being fast, however, they suffer from the circumstance that
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Fig. 1: All-particle spectrum of cosmic rays. From Ref. [7]

the acceleration occurs in astrophysical sites of very high energy density, where new opportunities for
energy loss exist. In addition, they predict a hard injection spectrum that cannot be reconciled with the
currently observed slope. In 1949, Fermi introduced a statistical acceleration mechanism [22]. In his
publication, Fermi considered the scattering of cosmic particles on moving magnetized clouds which
led to a fractional energy gain ¢ = (AE)/E o« (3% where f3 is the average velocity of the scattering
centres in units of ¢. There is a net transfer of the macroscopic kinetic energy from the moving cloud
to the particle, but the average energy gain is very small. Nowadays, this process is called “second
order Fermi acceleration”. The first really successful theory of high energy cosmic ray acceleration was
identified in [23] to be the Fermi acceleration in nonrelativistic shock waves in supernova remnants. The
diffusion of cosmic rays in moving magnetized plasmas in the upstream and downstream of the shocks,
force particles to repeatedly cross the shock front, hence gaining energy by numerous encounters, this
results in £ < 8. When measured in the stationary upstream frame, 3 is the speed of the shocked fluid
in units of c¢. This mechanism is known as “first order Fermi acceleration”. Shock waves for UHECR
acceleration are Gamma Ray Bursts (GRB) shocks, jets and hot spots of Active Galactic Nuclei (AGN),
and gravitational accretion shocks.

Following [24], we provide here a simple calculation to obtain the power law predictions from first
order Fermi processes under the “test particle approximation”, in which the back-reaction of accelerated
CRs on the shock properties is neglected. The energy E,, of a cosmic particle after n acceleration cycles
is:

E, = Eo(1+&)" (1

and the number of cycles to reach E results from Eq. (1)

n=In (50) (1 +€) %)

where Ej is the energy at injection into the acceleration site. If the escape probability P, per encounter
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is constant, then the probability to stay in the acceleration region after n cycles is (1 — P.s.)". The
fraction of particles accelerated to energies > F, the integral spectrum, is:

(1 — Pese)™ 1 EN\7"
N(>FE —
(> ) = Pesc = Pesc EO (3)

with v o Peg./€ for §¢ < 1 and P.se < 1. Note that both first and second order Fermi acceleration
produce a power law energy spectrum.

The escape probability from the acceleration site depends on the characteristic time for the accel-
eration cycle and the characteristic time for escape from the acceleration site. In the rest frame of the
shock the conservation relations imply that the upstream velocity w,;, is much higher than the down-
stream velocity Ugown. The compression ratio 7 = wuyp /Udown = Ndown/ nyp can be determined by
requiring continuity of particle number, momentum, and energy across the shock. Here nyp (ngown) is
the particle density of the upstream (downstream) plasma. For an ideal gas the compression ratio can
be related to the specific heat ratio and the Mach number of the shock. In the case of highly supersonic
shocks, » = 4 [25]. To determine the spectrum we need to calculate . For the case of shock accelera-
tion, { =43 /3 = 4 (uup — Udown)/3 and the escape probability can be obtained as the ratio of the loss
flux, downstream away from the shock, and the crossing flux. Assuming the configuration of a large,
plane shock the escape probability results as P.s. = 4uqown/c. Finally, we obtain the spectral index of
the integral energy spectrum:

3
70 Pase/§ % i ox 1 @)
This injection spectrum should be compared with the observed flux of cosmic rays, dN/dE
E~2. The result is in good agreement although additional effects, like energy losses or an energy depen-
dence of the escape probability, could have an important impact on the shape of the injection spectrum.
For a comprehensive review of shock acceleration theory, see Ref. [25]. For a discussion about different
acceleration mechanisms we recommend Ref. [26].

The requirements for astrophysical objects to be sources of UHECR are stringent. The Larmor
radius of a particle with charge Ze increases with its energy E according to

1.1 E B\ !
——(—— ) (=) kpec.
=7 <1018eV) (MG> pe ®)

The search for UHECR extralagalactic sources was motivated by the fact that r, in the galactic magnetic
field is much larger than the thickness of the galactic disk, hence, confinement in the galaxy is not main-
tained for UHECR. The famous Hillas criteria states that the Larmor radius of the accelerated particles
cannot exceed the size of the source (Rsource), Stting a natural limit in the particle’s energy.

B u
Enax ~ Z (MG> <Rls(<;);ce> x 108 eV . (6)

This limitation in energy can be seen in the so-called Hillas plot [27] shown in Fig. 2 where candidate
sources are placed in a plane of the characteristic magnetic field B versus their characteristic size R. For
protons, the only sources for the UHECR that seem to be plausible are radio galaxy lobes and clusters
of galaxies. Exceptions may occur for sources which move relativistically in the host-galaxy frame, in
particular jets from AGN and GRB. In this case the maximal energy might be increased due to a Doppler
boost by a factor ~ 30 or ~ 1000, respectively. For a survey of cosmic ray sources shown in Fig. 2 and
their signatures, see Refs. [26,28]. An interesting point is that if acceleration takes place in GRB, one
may expect a strong neutrino signature due to proton interactions with the radiative background [29].
Such a signature is now being probed by the Ice Cube experiment [30].
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Fig. 2: The “Hillas plot” for various CR source candidates (blue). Also shown are jet-frame parameters for blazers,
gamma-ray bursts, and microquasars (purple). The corresponding point for the LHC beam is also shown. The red
dashed lines show the lower limit for accelerators of protons at the CR knee (~ 10'4-5eV), CR ankle (~ 10'%-%eV)
and the GZK suppression (~ 101%-6¢V). The dotted gray line is the upper limit from synchrotron losses and proton
interactions in the cosmic photon background (R > 1 Mpc). From Ref. [31].

4 Propagation of extragalactic cosmic rays
4.1 Energy losses of protons

There are three main energy loss processes for protons propagating over cosmological distances: Adia-
batic energy losses due to the expansion of the universe, —dE /dt = Hy, pair production (py — pe*e™)
and pion-production py — wN on photons of the cosmic microwave background (CMB). Collisions
with optical and infrared photons give a negligible contribution.

The fractional energy loss due to interactions with the cosmic background radiation at a redshift
z = 0 is determined by the integral of the nucleon energy loss per collision multiplied by the probability
per unit time for a nucleon collision in an isotropic gas of photons [32]. For interactions with a blackbody
field of temperature 7', the photon density is that of a Planck spectrum, so the fractional energy loss is
given by i y .
1dE ckT
TEdt T 2n202(ch) Z / duwr 0j(wr) yjwr In(1 — e~ /20T, )

where w;. is the photon energy in the rest frame of the nucleon, and y; is the inelasticity, i.e. the average
fraction of the energy lost by the photon to the nucleon in the laboratory frame for the jth reaction
channel. The sum is carried out over all channels and dw, o;(w,) is the total cross section of the jth
interaction channel, I' is the usual Lorentz factor of the nucleon, and wy;, is the threshold energy for the
jth reaction in the rest frame of the nucleon.

At energies E < mem,/kT = 2.1 x 10V, the reaction (py — pete™) takes place on the
photons from the high energy tail of the Planck distribution. The cross section of the reaction approxi-

3
mated by the threshold values is o (w;) = {5 a r ( o — ) , v is the fine structure constant and rg is

the classical radius of the electron [33]. The inelasticity at threshold results y = 2 %; . The fractional
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energy loss due to pair production is then,

1 (dE\ 16cm. o (KT\® (TkT\? Me )

‘E(ﬁ>—7rwﬂ%<m) (W) e (1) ®
At higher energies (E > 10'%eV) the photopion reactions py — pr” and py — 7 n on the tail of
the Planck distribution give the main contribution to proton energy loss. The photons are seen blue-
shifted by the cosmic rays in their rest frames and the reaction becomes possible. The cross sections
of these reactions are well known. It strongly increase at the A(1232) resonance, which decays into
the one pion channels 7+n and 7¥p at a photon energy in the proton rest frame of 145 MeV. At higher
energies, heavier baryon resonances occur and the proton might reappear only after successive decays of
resonances. The cross section in this region can be described by a sum of Breit-Wigner distributions over
the main resonances produced in N+ collisions with 7N, 7w N and KA (A — N) final states [34].
For the cross section at high energies the fits from the CERN-HERA and COMPAS Groups to the high-
energy py cross section [35] can be used. Assuming that reactions mediated by baryon resonances have
spherically symmetric decay angular distributions, the average energy loss of the nucleon after n resonant
collisions is given by

2 2
1 Mp, — My
yelmy) =1- o[ <1+22> , ©)

m
i=1 R, 4

where mp_denotes the mass of the it resonant system of the decay chain, m ; the mass of the associated
meson, mg, = \/s is the total energy of the reaction in the c.m., and mp_ the mass of the nucleon. It is
well established from experiments that, at very high energies (/s > 3 GeV), the incident nucleons lose
one-half their energy via pion photoproduction independent of the number of pions produced ( “leading
particle effect”) [36].

A fit to Eq. (7) for the region /s < 2 GeV with the exponential behavior derived from the values
of cross section and fractional energy loss at threshold, gives [37]

1 [dE
“E (dt)w = Aexp[-B/E], (10)
A =(3.66+0.08) x 10 8yr~!, B =(2.87+0.03) x 10" GeV . (11)

The fractional energy loss at higher c.m. energies (1/s = 3 GeV) is roughly a constant,
1 (dE
—— (=] =C=(242£0.03) x 10 yr . 12
5 () -« ) %107 yr (12)

From the values determined for the fractional energy loss, it is straightforward to compute the energy
degradation of UHECRSs in terms of their flight time. This is given by,

At — Ei(B/E) + Ei(B/Ey) =0, for 101°GeV < FE <102 GeV, (13)

and
E(t) = Eyexp[— C't], for E>102GeV, (14)

where Ei is the exponential integral. Figure 3 shows the proton energy degradation as a function of
the mean propagation distance. Notice that, independent of the initial energy of the nucleon, the mean
energy values approach 102°eV after a distance of ~ 100 Mpc. This fact contrains the proximity to the
Earth of the sources of UHECR with energies above 5 x 10'%V.
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Fig. 3: Energy attenuation length of protons in the intergalactic medium. For proton sources beyond ~ 100 Mpc,
the observed proton energy is < 102%eV regardless its initial value. From Ref. [37].

4.2 Energy losses of nuclei

The relevant mechanisms for the energy loss of nuclei during propagation are: Compton interactions,
pair production in the field of the nucleus, photodisintegration and hadron photoproduction. For nuclei
of energy £ > 10'%eV the dominant loss process is photodisintegration. In the nucleus rest-frame,
pair production has a threshold at ~ 1 MeV, photodisintegration is particularly important at the peak
of the giant dipole resonance (15 to 25 MeV), and photomeson production has a threshold energy of
~ 145 MeV. Compton interactions result in only a negligibly small energy loss for the nucleus [38].

For a nucleus of mass A and charge Ze, the energy loss rate due to photopair production is Z2/A
times higher than for a proton of the same Lorentz factor [39], whereas the energy loss rate due to pho-
tomeson production remains roughly the same. The latter is true because the cross section for photome-
son production by nuclei is proportional to the mass number A [40], while the inelasticity is proportional
to 1/A. However, it is photodisintegration rather than photopair and photomeson production that deter-
mines the energetics of ultrahigh energy cosmic nuclei. During this process some fragments of the nuclei
are released, mostly single neutrons and protons. Experimental data of photonuclear interactions are con-
sistent with a two-step process: photoabsorption by the nucleus to form a compound state, followed by a
statistical decay process involving the emission of one or more nucleons.

The disintegration rate with production of ¢ nucleons is given by [41]

_ Loz nw)
“orz J, Y2

2I'w
RAi / dw, WrO Aj (wr) (15)
0
where n(w) is the density of photons with energy w in the system of reference in which the cosmic
microwave background (CMB) is at 2.7 K and w, is the energy of the photons in the rest frame of the
nucleus. As usual, I' is the Lorentz factor and o 4; is the cross section for the interaction.

Here, the soft photon background is taken as the sum of a 2.7 K Planckian spectrum that dominates
at energies w € (2.0 x 1079 eV ,4 x 1073 eV), and the infrared radiation as estimated in Ref. [42].
Parameterizations of the photodisintegration cross section for the different nuclear species are given in
Ref. [38]. Summing over all possible channels for a given number of nucleons, one obtains the effective
nucleon loss rate R = Zl 1R 4;. The effective nucleon loss rate for light elements, as well as for those in
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Fig. 4: The energy of the surviving fragment () = 4 x 10°, Iy = 2 x 10'%) vs. propagation time obtained
using Eq. (20) is indicated with a solid line. Also included is the energy attenuation length obtained from Monte
Carlo simulations with (dashed) and without (dotted-dashed) pair creation production, for comparison. The region
between the two dotted lines includes 95% of the simulations. This gives a clear idea of the range of values which
can result from fluctuations from the average behaviour.

the carbon, silicon and iron groups can be scaled as in [38]

A A
(&)-m ()

with the photodisintegration rate parametrized by [43]

dA
dt

%

Rs6(T) = 3.25 x 10791770643 exp(—2.15 x 10'%/T) 57! A7)
forT' € [1.0 x 10%,36.8 x 10%], and
Rsg(T') = 1.59 x 10712 ~0-0698 -1 (18)

forT' € [3.68 x 101°,10.0 x 10'°].

For photodisintegration, the averaged fractional energy loss results equal to the fractional loss in
mass number of the nucleus, because the nucleon emission is isotropic in the rest frame of the nucleus.
During the photodisintegration process the Lorentz factor of the nucleus is conserved, unlike the cases
of pair production and photomeson production processes which involve the creation of new particles that
carry off energy. The total fractional energy loss is then

1dE _ 1dT' R

Ea Ta 4 (19)

For w, < 145 MeV the reduction in T comes from the nuclear energy loss due to pair production [44].
For I' > 10'° the energy loss due to photopair production is negligible, and thus

—R(D)|, t/56

E(t) ~938 A(t) T MeV ~ Ege (20)

Figure 4 shows the energy of the heaviest surviving nuclear fragment as a function of the propa-

gation time, for initial iron nuclei. The solid curves are obtained using Eq. (20), whereas the dashed and
dotted-dashed curves are obtained by means of Monte Carlo simulations [45]. One can see that nuclei
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with Lorentz factors above 10'Y cannot survive for more than 10 Mpc. For these distances, the approx-

imation given in Eq. (20) always lies in the region which includes 95% of the Monte Carlo simulations.
When the nucleus is emitted with a Lorentz factor I'y < 5 x 10%, pair production losses start to be
relevant, significantly reducing the value of I" as the nucleus propagates distances of O(100 Mpc). The
effect has a maximum for I'y &~ 4 x 10 but becomes small again for I'y < 10?, for which appreciable
effects only appear for cosmological distances (> 1000 Mpc), see for instance Ref. [45].

Note that Eq. (20) imposes a strong constraint on the location of nucleus-sources: less than 1%
of iron nuclei (or any surviving fragment of their spallations) can survive more than 3 x 10'* s with an
energy > 1020 eV. It is important to keep in mind that a light propagation distance of 1.03 x 10'* s
corresponds to 1 Mpc.

In recent years the interest in the propagation of UHECR nuclei has significantly grown. A com-
plete review with a detailed list of references can be found in [46]. Most recent calculations of UHECR
proton propagation use the Monte Carlo generator SOPHIA [47] for photomeson interaction of protons,
based on available data and phenomenological models. For the case of nuclei propagation, existing
propagation codes are CRPropa [48] and the complete nuclei propagation tool presented in Ref. [49].

5 Cosmic ray observations at the highest energies: Hybrid instruments

For primary cosmic ray energies above 10'%eV, the flux becomes so low that individual events cannot
longer be detected directly. Fortunately, in such cases the primary particle has enough energy to initiate
an extended air shower (EAS) in the atmosphere. Only the secondary particles are detected and used
to infer the properties of the primary particle. There are several techniques which can be employed in
detecting EAS.

The most commonly used detection method involves sampling the shower front at a given altitude
using an array of sensors spread over a large area. The classical set up consists of an array of plastic
scintillators, registering charged particles from the shower (also some converted photons). Another tech-
nique is to use water Cerenkov detectors (WCD), that allow the detection of the very numerous photons
present in showers. They are deep compare with scintillators, so they have larger response to inclined
showers. An initial estimate of the shower direction is obtained from the relative arrival times of signal
at a minimum of 3 non-collinear detectors, treating the shower front as if it were planar. The density of
particles falls off with the distance to the shower core and this can be parameterized by a lateral distribu-
tion function (LDF), which, of course, depends on the characteristics of the detectors used. The particle
density at a large distance from the shower core is commonly used as an energy estimator. Muons in the
EAS have higher energies than electromagnetic particles, which in addition suffer significant scattering
and energy loss. Thus, the muonic component tends to arrive earlier and over a shorter period of time
than the electromagnetic one. These signatures may also help to distinguish p’s from electrons and ’s
providing a useful tool to determine the primary composition.

Another highly successful air shower detection method involves measurement of the longitudinal
development of the cascade by sensing the fluorescence light produced via interactions of the charged
particles in the atmosphere. As an extensive air shower develops, it dissipates much of its energy by
exciting and ionizing air molecules along its path. Excited nitrogen molecules fluoresce producing radia-
tion in the 300 - 400 nm ultraviolet range, to which the atmosphere is quite transparent. Under favourable
atmospheric conditions EAS can be detected at distances as large as 20 km, though observations can only
be made on clear moonless nights, yielding a duty cycle of about 10%. The shower development appears
as a rapidly moving spot of light whose angular motion depends on both the distance and the orientation
of the shower axis. The fluorescence technique provides the most effective way to measure the energy of
the primary particle. The amount of fluorescence light emitted is proportional to the number of charged
particles in the showers allowing a direct measurement of the longitudinal development of the EAS in
the atmosphere. For this, the sky is viewed by many segmented eyes using photomultipliers. From the
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measured shower profile the position of the shower maximum X, which is sensitive to primary com-
position, can be obtained. The energy in the electromagnetic component is calculated by integrating the
measured shower profile, after corrections for atmospheric attenuation of the fluorescence light and con-
tamination of the signal by Cerenkov light. Finally, to derived the total energy of the shower, an estimate
of the missing energy carried to the ground by neutrinos and high energy muons must be made based on
assumptions about the primary mass and the appropriate hadronic interaction models.

In this note we focus on the two high energy cosmic ray experiments currently operating: the
Pierre Auger Observatory [50] and the Telescope Array (TA) [51]. The Pierre Auger Observatory, the
largest UHECR experiment in the world, is located in Malargiie, Argentina (35°12'S, 69°12'W). It has
an accumulated exposure of about 30000 km? sr yr. The Telescope Array located in Millard County,
Utah, USA (39.3°N, 112.9°W), due to a later start and its more than 4 times smaller area, has collected
about 10 times less events. Both the Pierre Auger Observatory and TA are hybrid detectors employing
two complementary detection techniques for the ground-based measurement of air showers induced by
UHECR: a surface detector array (SD) and a fluorescence detector (FD).

The ground array of the Pierre Auger Observatory consists of 1600 stations spaced by 1.5 km
covering an area of 3000 km?.. Each detector is a cylindrical, opaque tank of 10 m? and a water depth of
1.2 m, where particles produce light by Cerenkov radiation. The filtered water is contained in an internal
coating which diffusely reflects the light collected by three photomultipliers (PMT) installed on the top.
The large diameter PMTs (= 20 cm ) hemispherical photomultiplier are mounted facing down and look
at the water through sealed polyethylene windows that are integral part of the internal liner. Due to the
size of the array the stations have to work in an autonomous way. Thus the stations operate on battery-
backed solar power and communicate with a central station by using wireless LAN radio links. The time
information is obtained from the Global Positioning Satellite (GPS) system. This array is fully efficient
at energies above £ > 3 x 10'8eV. Additional detectors with 750 m spacing have been nested within the
1500 m array to cover an area of 25 km? with full efficiency above E > 3 x 10'7eV. The SD is sensitive
to electromagnetic and muonic secondary particles of air showers and has a duty cycle of almost 100%.
The surface array is overlooked by 27 optical telescopes grouped in 5 buildings on the periphery of the
array [52]. The field of view of each telescope is 30 © in azimuth, and 1.5 ° to 30 ° in elevation, except for
three of them, for which the elevation is between 30 © and 60 ° (HEAT telescopes [53] ). Light is focused
with a spherical mirror of 13 m? on a camera of 440 hexagonal PMTs. The FD can only operate during
dark nights, which limits its duty cycle to 13%. Stable data taking with the SD started in January 2004
and the Observatory has been running with its full configuration since 2008.

In Figure 5 (left panel) we present a schematic description of a water Cerenkov detector installed
at the Pierre Auger Observatory. Mounted on top of the tank are the solar panel, electronic enclosure,
mast, radio antenna and GPS antenna for absolute and relative timing. A battery is contained in a box
attached to the the tank. The main components of a fluorescence eye are shown on the right panel of
Figure 5: alarge spherical mirror with a radius of curvature of 3.4 m, a pixel camera in the focal surface
and a diaphragm with an entrance glass window. This filter allows reduction of night background with
respect to the fluorescence signal and also serves to protect the equipment from dust.

The TA surface array consists of 507 detector units deployed in a square grid with 1.2 km spacing
to cover a total area of approximately 700 km?. Each unit consists of a plastic scintillation counter of
3m? surface and 1.2 cm thickness, with 2 layers of plastic scintillators viewed by PMT at each end.
The entire system is powered by a solar panel and battery. The communication is done with WLAN
modem. The SD array is fully efficient for cosmic rays with energies greater than 10'88¢V [54]. Three
FD stations are placed around the SD array, with a total of 38 telescopes. Each telescope is comprised of
a cluster of photo-tubes and a reflecting mirror of 3.3 m diameter. A PMT camera consisting of 16 x 16
PMTs is set at a distance of 3000 mm from the mirror. The field of view of each PMT is approximately
1° and that of the FD station is from 3° to 33 ° in elevation and 108 ° in azimuth. See Ref. [51] for
details of the TA detectors.
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Fig. 5: Left: A typical surface detector of the Auger Observatory. Right: A fluorescence telescope. See the text
for the description of the components.

6 Flux measurements

Surface arrays, with its near 100% duty cycle, give the larger data sample used to obtain the energy
spectrum. The comparison of the shower energy, measured using fluorescence, with the SD energy
parameter for a subset of hybrid events is used to calibrate the energy scale for the array.

The first step towards the flux measurement with the SD array is the reconstruction of arrival
direction and core position of air showers. Then, a stable parameter from the SD which correlates with
the primary energy is reconstructed. This parameter is the signal at an optimal distances to the shower
core at which the spread in the signal size is minimum [55]. In the following we distinguish between
vertical events (0 < 60°) and inclined events (62° < 6 < 80°). For the case of Auger, the optimal
distance is 1000 m for the main array and 450 m for the “infill”, while for TA is 800 m. For vertical
events the signals at the optimal distance obtained from a LDF fit, have to be corrected for their zenith
angle dependence due to air shower attenuation in the atmosphere. This is done in Auger with a Constant
Intensity Cut (CIC) method [56]. The equivalent signal at median zenith angle of 38 © (35 °) is then used
to infer the energy for the 1500 m (750 m) array [57,58]. Events that have independently triggered the
SD array and FD telescopes are used for the energy calibration of SD data [59]. The correlation between
the different energy estimators and the energy obtained from the FD is shown in Figure 6 (left panel)
superimposed with the calibration functions resulting from maximum-likelihood fits. For the case of
TA, the energy is estimated by using a look-up table in S(800) and zenith angle determined from an
exhaustive Monte Carlo simulation. The uncertainty in energy scale of the Monte Carlo simulation of
an SD is large, and possible biases associated with the modelling of hadronic interactions are difficult to
determine. Therefore, the SD energy scale is corrected to the TA FD using hybrid events. The observed
differences between the FD and SD events are well described by a simple proportionality relationship,
where the SD energy scale is 27% higher than the FD [60].

Water Cerenkov detectors from the Pierre Auger Observatory SD, have larger response to inclined
showers. These EAS are characterized by the dominance of secondary muons at ground, as the elec-
tromagnetic component is largely absorbed in the large atmospheric depth traversed by the shower [61].
The reconstruction is based on the estimation of the relative muon content N19 with respect to a simu-
lated proton shower with energy 10 x 10'%eV [62]. N19 is used to infer the primary energy for inclined
events, as shown in the left pannel of Figure 6.

The energy spectra obtained from the three SD datasets are shown in the right panel of Figure 6.
To characterize the spectral features, the Auger collaboration describes the data with a power law below
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Fig. 6: Left: The correlation between the different energy estimators S38, S35 and N19 (see text) and the energy
determined by FD. Right: Energy spectra, corrected for energy resolution, derived from SD and from hybrid data.
From Ref. [57].

the ankle J(E) oc E~7 and a power law with smooth suppression above:

logyy E' — logyg E1 /2 -1
logyo We '

J(E;E > E,) x ET7? [1 + exp (

71, Y2 are the spectral indices below/above the ankle at E,. Ej /o is the energy at which the flux has
dropped to half of its peak value before the suppression, the steepness of which is described with
log;, We. The data in Figure 6 clearly exhibit the ankle at 10'®7eV and a flux suppression above
10'9eV. The Pierre Auger Observatory has confirmed the GZK feature of the spectrum with a sig-
nificance greater than 20 o obtained by comparison to a power law extrapolation. This observation
seems to indicate that acceleration in extragalactic sources can explain the high energy CR spectrum,
ending the need for exotic alternatives designed to avoid the flux suppression. However, the possibility
that this feature in the spectrum is due to the maximum energy of acceleration at the sources is not easily
dismissed.

We present here only the energy spectrum from the Pierre Auger Observatory, details of the cor-
responding spectrum obtained by the Telescope Array collaboration are presented in Ref. [63]. As dis-
cussed in Ref. [64], it is found that the energy spectra determined by these experiments are consistent
in normalization and shape after energy scaling factors are applied. Those scaling factors are within
systematic uncertainties in the energy scale quoted by the experiments.

7 Correlation with astrophysical objects

Since the UHECR are charged particles, they not only lose energy in the interaction with background
photons, but also they are deflected by galactic and extragalactic magnetic fields. The galactic magnetic
field (GMF) can be modelled as the sum of a regular (large scale fluctuations) and a turbulent (smaller
scale fluctuations) components. The directions on the sky in which cosmic rays are deflected strongly
depend on the GMF model, however, averaged quantities such as the average UHECR deflection angle
are much less model dependent [65]. Extragalactic magnetic fields are expected to be stronger in the
large scale structure of the Universe and significantly weaker in voids. UHECR deflections in such fields
are poorly constrained ranging from negligible to more than ten degrees, even for 100 EeV protons (See
Ref. [26] and references therein). Attempts to detect anisotropies at ultrahigh energies are based on the
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Fig. 7: Left: The 69 arrival directions of cosmic rays with energy £ > 55 EeV detected by the Pierre Auger
Observatory up to December 2009 are plotted as black dots in an Aitoff-Hammer projection of the sky in galactic
coordinates. The solid line represents the field of view of the Southern Observatory for zenith angles smaller than
60°. Blue circles of radius 3.1° are centred at the positions of the 318 AGN in the VCV catalogue that lie within
75 Mpc and that are within the field of view of the Observatory. Darker blue indicates larger relative exposure. The
exposure-weighted fraction of the sky covered by the blue circles is 21%. Right: Fraction of events correlating
with AGN as a function of the cumulative number of events, starting after the exploratory data. The expected
correlating fraction for isotropic cosmic rays is shown by the dotted line. From Ref. [68]

selection of events with the largest magnetic rigidity to study whether they can be correlated with the
direction of possible sources or distributions of astrophysical objects in our vicinity (less than 100 Mpc).

The most recent discussion of anisotropies in the sky distribution of ultrahigh energy events began
when the Pierre Auger Observatory reported a correlation of its highest energy events with AGN [66] in
the 12th Veron-Cetty & Veron (VCV) catalogue [67]. To calculate a meaningful statistical significance
in such an analysis, it is important to define the search procedure a priori in order to ensure it is not
inadvertently devised especially to suit the particular data set after having studied it. With the aim of
avoiding accidental bias on the number of trials performed in selecting the cuts, the Auger anisotropy
analysis scheme followed a pre-defined process. First an exploratory data sample was employed for
comparison with various source catalogues and for tests of various cut choices. The results of this
exploratory period were then used to design prescriptions to be applied to subsequently gathered data.
The first 14 events were used for an exploratory scan and the correlation was most significant for AGN for
energy threshold 5.5 x 10'%eV with redshifts z < 0.018 (distances < 75 Mpc) and within 3.1° separation
angles. The subsequent 13 events established a 99% confidence level for rejecting the hypothesis of
isotropic cosmic ray flux. The reported fraction of correlation events was 693}5%. An analysis with
data up to the end of 2009 (69 events in total, as seen in the left panel of Figure 7) indicated that the
correlation level decreased to 38Jjg% [68]. In the right panel of Figure 7 we show the most likely value
of the fraction of the correlated events with objects in the VCV catalogue as a function of the total
number of time-ordered events (the events used in the exploratory scan are excluded). The 1o and 20
uncertainties in this value are indicated. The current estimate of the fraction of correlating cosmic rays
is 33 + 5% (28 events correlating from a total of 84 events) with 21% expected under the isotropic
hypothesis [69].

The Telescope Array Collaboration has also searched for correlation with AGN in the VCV cat-
alogue [70,71]. The TA exposure is peaked in the Northern hemisphere so the AGN visible to TA are
not the same as the ones visible to Auger, though there is some overlap. When the distribution of nearby

AGN is taken into account, and assuming equal AGN luminosities in UHECR, the correlating fraction
would be 40%.

A complete report on the current status for anisotropy searches can be found in [72]. The report
includes, in the region around 10'®eV, constraints from measuring the first harmonic modulation in the
right ascension distribution of arrival directions, and search for point-like sources that would be indicative
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of a flux of neutrons (see also Ref. [73]); at higher energies, searches for clustering in arrival directions,
and correlations with nearby extragalactic objects (see also Ref. [74]) or the large scale structure of the
Universe.

8 Mass composition estimate: the biggest challenge

A determination of primary composition is invaluable in revealing the origin of cosmic rays as this
information would provide important bounds on sources and on possible production and acceleration
mechanisms. In addition, a proper interpretation of anisotropy information requires knowledge of the
primary mass due to the influence on propagation of the galactic and intergalactic magnetic fields. A
detailed analysis of composition data from various experiments has been presented in Ref. [75]. We first
present a brief description of the general signatures of the EAS (See Ref. [76] for a summary of the
phenomenology of these giant air showers). After that, we introduce the shower observables sensitive to
primary species.

8.1 Signatures of Extensive Air Showers

The evolution of an extensive air shower is dominated by electromagnetic processes. The interaction of
a baryonic cosmic ray with an air nucleus high in the atmosphere leads to a cascade of secondary mesons
and nucleons. The first few generations of charged pions interact again, producing a hadronic core, which
continues to feed the electromagnetic and muonic components of the showers. Up to about 50 km above
sea level, the density of atmospheric target nucleons is . ~ 102° cm™2, and so even for relatively low
energies, say F .+ ~ 1 TeV, the probability of decay before interaction falls below 10%. Ultimately,
the electromagnetic cascade dissipates around 90% of the primary particle’s energy, and hence the total
number of electromagnetic particles is very nearly proportional to the shower energy.

By the time a vertically incident 102°eV proton shower reaches the ground, there are about 10*!
secondaries with energy above 90 keV in the the annular region extending 8 m to 8 km from the shower
core. Of these, 99% are photons, electrons, and positrons, with a typical ratio of « to eTe™ of 9 to 1.
Their mean energy is around 10 MeV and they transport 85% of the total energy at ground level. Of
course, photon-induced showers are even more dominated by the electromagnetic channel, as the only
significant muon generation mechanism in this case is the decay of charged pions and kaons produced in
~y-air interactions [77].

It is worth mentioning that these figures dramatically change for the case of very inclined showers.
For a primary zenith angle, # > 70°, the electromagnetic component becomes attenuated exponentially
with atmospheric depth, being almost completely absorbed at ground level. As a result, most of the
energy at ground level from an inclined shower is carried by muons.

In contrast to hadronic collisions, the electromagnetic interactions of shower particles can be cal-
culated very accurately from quantum electrodynamics. Electromagnetic interactions are thus not a
major source of systematic errors in shower simulations. The first comprehensive treatment of electro-
magnetic showers was elaborated by Rossi and Greissen [78]. This treatment was recently cast in a more
pedagogical from by Gaisser [24], which we summarize in the subsequent paragraphs.

The generation of the electromagnetic component is driven by electron bremsstrahlung and pair
production [79]. Eventually the average energy per particle drops below a critical energy, ¢g, at which
point ionization takes over from bremsstrahlung and pair production as the dominant energy loss mech-
anism. The e® energy loss rate due to bremsstrahlung radiation is nearly proportional to their energy,
whereas the ionization loss rate varies only logarithmically with the e* energy. Throughout this note we
take the critical energy to be that at which the ionization loss per radiation length is equal to the electron
energy, yielding g = 710 MeV /(Z.g + 0.92) ~ 86 MeV [80]. The changeover from radiation losses
to ionization losses depopulates the shower. One can thus categorize the shower development in three
phases: the growth phase, in which all the particles have energy > €p; the shower maximum, Xy,,x; and
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the shower tail, where the particles only lose energy, get absorbed or decay.

Most of the general features of an electromagnetic cascade can be understood in terms of the toy
model due to Heitler [81]. In this model, the shower is imagined to develop exclusively via bremsstrahlung
and pair production, each of which results in the conversion of one particle into two. These physical pro-
cesses are characterized by an interaction length X. One can thus imagine the shower as a particle tree
with branches that bifurcate every X, until they fall below a critical energy, €, at which point energy
loss processes dominate. Up to €, the number of particles grows geometrically, so that after n = X/ X
branchings, the total number of particles in the shower is N =~ 2". At the depth of shower maximum
Xmax, all particles are at the critical energy, €y, and the energy of the primary particle, Ej, is split among
all the Nyax = Eo/€o particles. Putting this together, we get:

In(Eoy/€o) '

Xmax ~ XO n 2

21

Even baryon-induced showers are dominated by electromagnetic processes, so this toy model is
still enlightening for such cases. In particular, for proton showers, Eq. (21) tells us that the Xy, scales
logarithmically with primary energy, while Ny .y scales linearly. Moreover, to extend this discussion
to heavy nuclei, we can apply the superposition principle as a reasonable first approximation. In this
approximation, we pretend that the nucleus comprises unbound nucleons, such that the point of first
interaction of one nucleon is independent of all the others. Specifically, a shower produced by a nucleus
with energy F, and mass A is modelled by a collection of A proton showers, each with A~! of the
nucleus energy. Modifying Eq. (21) accordingly one easily obtains Xy,,x o< In(Ep/A).

Changes in the mean mass composition of the cosmic ray flux as a function of energy will manifest
as changes in the mean values of X ,x. This change of X, with energy1 is commonly known as the

elongation rate theorem [82]:
- 60X max

¢ 6lnE
For purely electromagnetic showers, X,.x(E) = Xy In(E/€p) and then the elongation rate is D, ~ X.
For proton primaries, the multiplicity rises with energy, and thus the resulting elongation rate becomes
smaller. This can be understood by noting that, on average, the first interaction is determined by the
proton mean free path in the atmosphere, A\n. In this first interaction the incoming proton splits into
(n(E)) secondary particles, each carrying an average energy E/(n(E)). Assuming that X, .« (F) de-
pends logarithmically on energy, as we found with the Heitler model described above, it follows that,

(22)

Xomax(E) = Ay + Xo In[E/(n(E))] . 23)

If we assume a multiplicity dependence (n(E)) ~ ngE*, then the elongation rate becomes,

0 X max dIn(n(E)) OAN
=X, [1- 24
sme 0 [ SInE SInE @4)
which corresponds to the form given in [83],
6ln<n(E)> )\N (51n()\N)
De=Xy |l -—m—F+——F—F|=Xo(1—-B) . 2
0 [ SInE X, 0lnE o ) 5)
Using the superposition model and assuming that
/\N dln )\N
B=A-— 2
Xo 0InFE (26)

!The elongation rate is commonly reported per decade of energy, D10 = I{Xmax)/0 log E, where D1g = 2.3D...
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is not changing with energy, one obtains for mixed primary composition [83]

o]

Thus, the elongation rate provides a measurement of the change of the mean logarithmic mass with
energy.

D.= X, (1—B) [1 - 27)

In Ref. [84], a precise calculation of a hadronic shower evolution has been presented assuming
that hadronic interactions produce exclusively pions. The first interaction diverts 1/3 of the available
energy (Ey/3) into the EM component via the 7°’s, while the remaining 2/3 continue as hadrons. Us-
ing pp data [85], we parametrized the charged particle production in the first interaction as N+ =
41.2(Ey/1 PeV)'/5. The depth of shower maximum is thus the same as for an electromagnetic shower
of energy Fy/(3N,+), giving for a proton initiated shower:

Xglax = Xo+ XEM ln[EO/(6N7r60)]
(470 + 58 log19[Eo /1 PeV]) g/cm? . (28)

For protons the elongation rate results ~ 58 g/ cm? per decade of energy, in good agreement with calcula-
tions that model the shower development using the best estimates of the relevant features of the hadronic
interactions. Muons are produced from the pion decay when they reach the critical energy ( £7) after n.
generations. Introducing 8 = In(2N; )/ In(3N;), the total number of muons is:

N, = (Eo/¢F)P . (29)

For N =5, 8 = 0.85. Unlike the electron number, the muon multiplicity does not grow linearly with the
primary energy, but at a slower rate. The precise value of 8 depends on the average pion multiplicity used.
It also depends on the inelasticity of the hadronic interactions. The critical pion energy ¢ ~ 20GeV in
a shower generated by 1 PeV proton.

Using the superposition model, we obtain for a nucleus of mass A.

B
A _ 4 [(Eo/A)
Ny =A [ er . 30)

From the discussion above, it follows that the depth of shower maximum and the number of muons
depend on the mass of the primary particle: iron initiated showers develop faster in the atmosphere,

having smaller X .« than proton initiated shower, while larger number of muons are expected for heavier
nuclei.

While the Heitler model is very useful for imparting a first intuition regarding global shower
properties, the details of shower evolution are far too complex to be fully described by a simple analytical
model. Full Monte Carlo simulation of interaction and transport of each individual particle is required
for precise modelling of the shower development. At present two Monte Carlo packages are available to
simulate EAS: CORSIKA (COsmic Ray SImulation for KAscade) [86] and AIRES (AIR shower Extended
Simulation) [87]. Both programs provide fully 4-dimensional simulations of the air showers initiated by
protons, photons, and nuclei. A comparative study using these codes can be found in Ref. [88]. Different
hadronic interaction models are used in these event generators, such as SIBYLL [89], QGSJET [90] and
EPOS [91,92]. The LHC data, particularly those measured in the extreme forward region of the collisions,
is of great importance to the physics of EAS. As an example, EPOS has been modified to reproduce in
detail LHC data from various experiments [93].

8.2 Measurement of mass sensitive observables

In this section, we discuss how baryonic species may, to some extent, be distinguished by the signatures
they produce in the atmosphere. The estimate of primary masses is the most challenging task in high en-
ergy cosmic ray physics as such measurements rely on comparisons of data to models. EAS simulations
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are subject to uncertainties mostly because hadronic interaction models need to be extrapolated at energy
ranges several order of magnitude higher than those accessible to current particle accelerators. In what
follows, we consider both surface array and fluorescence detector observables.

The main purpose of fluorescence detectors is to measure the properties of the longitudinal devel-
opment. The shower longitudinal profile is usually parameterized with a function, such as the Gaisser-
Hillas function [94] used by the Pierre Auger Observatory. Using this parametrization, fluorescence
detectors can measure X, With a statistical precision typically around 30 g/cm?. The speed of shower
development is the clearest indicator of the primary composition. It was shown in Sec. 8 using the su-
perposition model that there is a difference between the depth of maximum in proton and iron induced
showers. In fact, nucleus-induced showers develop faster, having X,,x higher in the atmosphere. From
Monte Carlo simulations, one finds that the difference between the average Xp,ax for protons and iron nu-
clei is about 90 — 100 g/cm?. However, because of shower-to-shower fluctuations, it is not possible to ob-
tain meaningful composition estimates from X, on a shower-by-shower basis, though one can derive
composition information from the magnitude of the fluctuations themselves. For protons, the depth of
first interaction fluctuates more than it does for iron, and consequently the fluctuations of X, are larger
for protons as well. In Figure 8 the (X ,,x) measurements of (X ,ax) with non-imaging Cherenkov de-
tectors (Tunka [96], Yakutsk [97], CASA-BLANCA [98]) and fluorescence detectors (HiRes/MIA [99],
HiRes [100], Auger [101] and TA [102] compared to air shower simulations using several hadronic in-
teraction models are presented. The conclusion of the detailed study in Ref. [75] indicates that, around
the region of the ankle of the cosmic ray spectrum, the measurements are compatible within their quoted
systematic uncertainties and the (X ,ax) is close to the prediction for air showers initiated by a predom-
inantly light composition. However, at higher energies, the experimental uncertainties are still too large
to draw conclusions from the data. In addition, the systematic differences between different type of
measurements are very sensitive to the particular interaction model used for the interpretation.

The electromagnetic component of an EAS suffers more scattering and energy loss than the
muonic component and consequently, muons tend to arrive earlier and over a shorter period of time.
This means that parameters characterizing the time structure of the EAS, as measured by surface arrays,
will be correlated with X, and hence with primary mass. An early study of the shower signal observed
in water Cerenkov detectors arrays [103] established the utility of a shower property known as risetime in
estimating the primary composition. Specifically, the risetime, ¢1 /5, is defined as the time for the signal
to rise from 10% to 50% of the full signal.

In ground array experiments the analysis is usually performed by projecting the signals registered
by the detectors into the shower plane (perpendicular to the shower axis) and thus, neglecting the further
shower evolution of the late regions. As a consequence, for inclined showers, the circular symmetry
in the signals of surface detectors is broken. This results in a dependence of the signal features on the
azimuth angle in the shower plane [104,105]. A detailed study based on Monte Carlo simulations [106],
showed that for showers arriving with zenith angle ¢ > 30°, this is mainly due to the attenuation of the
electromagnetic component of the shower as it crosses additional atmosphere to reach a late detector.
For a given primary energy F, the risetime asymmetry in water Cerenkov detectors array, as in the Pierre
Auger Observatory, depends on zenith angle 6 of the primary cosmic ray in such a way that its behaviour
versus sec 6 is reminiscent of the longitudinal development of the shower. In Ref. [106], it was shown
that the zenith angle at which the risetime asymmetry becomes maximum, © ., is correlated with the
shower development and hence with the primary species.

Using the time information of the signals recorded by the water Cerenkov detectors, it is also pos-
sible to obtain information about the longitudinal development of the hadronic component of extensive
air showers and the first interaction point in an indirect way. In particular, a method was developed to
reconstruct the Muon Production Depth (MPD), the distance to the production of the muon measured
parallel to the shower axis, using the signals of detectors far from the core [107]. The MPD technique
allows one to convert the time distribution of the signal recorded by the SD detectors into muon produc-
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Fig. 8: Measurements of (X,.x) with non-imaging Cherenkov detectors (Tunka [96], Yakutsk [97], CASA-
BLANCA [98]) and fluorescence detectors (HiRes/MIA [99], HiRes [100], Auger [101] and TA [102] compared
to air shower simulations using hadronic interaction models. HiRes and TA data have been corrected for detector
effects as indicated by the (A) values, to allow comparison with the unbiased measurement from Auger. This
picture is taken from Ref. [75].

tion distances using an approximate relation between production distance, transverse distance and time
delay with respect the shower front plane. From the MPDs a new observable can be defined, X K ox, as
the depth along the shower axis where the number of produced muons reaches a maximum, which is
sensitive to primary mass.

The evolution of X5 ax, Omazs (Xmax) and RMS(Xpax) with energy, as measured by the Pierre
Auger Observatory with data up to 2010 [108], is presented in Figure 9. For a very complete discussion of
these results see Ref. [109]. It is worth noting that the these analyses come from completely independent
techniques that have different sources of systematic uncertainties. Concerning the RMS, a variety of
compositions can give rise to large values of the RMS, because the width of the Xi,ax is influenced
by both, the shower-to-shower fluctuations of individual components and their relative displacement
in terms of (Xax). These measurements from Auger may be interpreted as a transition to a heavier
composition that may be caused by a Peters-cycle [110] in extragalactic sources similar to what has been
observed at around the knee [75, 109].

Updated studies of Xfiax, (Xmax) and RMS(X,ax) from the Pierre Auger Observatory can be
found in Ref. [111]. The most recent results on (X,,x) measurements from the TA experiment were
presented in Refs. [112,113].
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Abstract

The good performance of the LHC provided enough data at 7 TeV and 8 TeV

to allow the experiments to perform very competitive measurements and to ex-
pand the knowledge about the fundamental interaction far beyond that from
previous colliders. This report summarizes the highlights of the results ob-

tained with these data samples by the four large experiments, covering all the
topics of the physics program and focusing on those exploiting the possibilities
of the LHC.

1 Introduction

The standard model (SM) [1-3] of particles and interactions is currently the most successful theor
scribing the Universe at the smallest distances, or equivalently, highest energies. Such task is perf
with the use of three families of fermions and a number of bosons associated to the interactions as
by the SU(3)c x SU(2)r x U(1)y symmetry group. Since in Nature tt$/(2);, x U(1)y is not an

exact symmetry, we require an additional field, the so-called Higgs field, which sponteneously breal
symmetry according to the BEH mechanism [4], giving rise to the weak and electromagnetic interac
as they are observed at lower energies. In addition this field is responsible to give mass to the ferm

Although successful, the SM does not appear to be complete since several esperimental evic
are not included in the model. In this group, it should be remarked that gravitational effects are
described, neither are all the related effects, such as Dark Matter or Dark Energy. In addition the ct
structure of the SM does not include enough CP violation to justify the observed matter-antimatte
balance in the Universe. Finally the neutrinos in the model are assumed to be massless, somethil
currently is experimentally discarded after the measurements of neutrino mixing.

In addition to the missing parts in the SM there are several points in which the model is not ¢
pletely satisfactory, concretely related to theoretical aspects of it. Several issues are always men
in this context, but they are summarized in three main issues: the need of fine-tuning to understat
low scale of the electroweak symmetry breaking and other parameters (the hierarchy problem), thi
of understanding on why there are three families with double-nature sets (i.e. quark and leptons) al
lack of apparent relation between the different interactions (i.e. the origin of the observed values for
plings, including fermionic masses). In practice, the SM has clear limitations since it misses too n
explanations about why things are as they are and it requires too many parameters to actually de
things as they are.

The proposed solution to both the experimentally-motivated limitations and the theoretical dis
isfaction is to add more interactions or particles which complete the model. In such scenario, the
would become a low-energy approximation, or visible part, of a larger theory. By increasing the en
in our studies we gain access to the additional particles and effects, which are usually referred to as
physics” or “physics beyond the SM” (BSM). These effects that are not explained by the SM will ¢
vide additional information about the limitations of the SM, opening the correct doors towards a n
accurate description of our Universe.

With this motivation we are led to the design of a powerful hadronic collider which maximizes-
reach in sensitivity to the possible BSM physics. This is achieved by maximizing the available ene
which would provide the possibility to produce more massive particles, and the number of collisions
time unit (luminosity), which increase the yield for the produced particles and effects. This is exe

978-92-9083-412-0; 0531-4283 — (© CERN, 2015. Published under the Creative Common Attribution CC BY 4.0 Licence. 191

http://dx.doi.org/10.5170/CERN-2015-001.191


http://dx.doi.org/10.5170/CERN-2015-001.191

O. GONZALEZ

the motivation for the Large Hadron Collider (LHC) [5] located at CERN,rr@aneva (Switzerland),
which is recognized as “the discovery machine” for physics beyond the SM providing a large amou
energy per collision and a large amount of collisions.

In the following sections we will describe the LHC and the related experiments and report on
main results for the different part of the program, designed to take advantage of all the possibilities ¢
by such powerful machines.

2 The LHC and the experiments

The LHC is the most energetic and most challenging collider up to date. It is designed to collide prc
or heavy ions at a maximum energy of 14 TeV of energy and very high collision rates. Technical
itations has prevented it to reach its design parameters, and the collected datasets contains collis
7 or 8 TeV of total center-of-mass energies. In any case this represents more than 3 times more ¢
than the previously most energetic collider (The Tevatron at Fermilab, USA). This allows to reach en
scales that were not accessible before, both for particle and heavy-ion physics.

But the LHC is not just about large energy: it also provides the largest collision rate ever reac
allowing to collect sizable data samples in record time. To quantify the amount of data, the previc
mentioned concept of luminosity is used. The integrated luminosity relates the number of a tyf
events in a sample and the cross section for that type of event. Experimentally, this allows to con
the luminosity (“calibrate” the size of the sample) using a very well known process and count the nur
of events from it, and sé = N/o whereL is the luminosity,N the number of events andthe cross
section of the process. Once the sample luminosity is known, the value is used to measure cross st
of processes of interest, as= L/N. Finally, knowing the cross section of a process, one estimates !
number of expected events from that process in the sample/Wwith L - 0. These are the basic tools to
perform analysis of the data samples.

At the LHC during the first years of operations, samples of reasonable size were obtaine
7 TeV (in 2010 and 2011), accounting for 6-fhof luminosity for proton-proton collisions and 17®~!
for lead-lead collisions. Additionally, data at 8 TeV were obtained for proton-proton collisions, accol
ing to 23.3 fbo !, and proton-lead collisions with a luminosity of 32T The results described in this
report have been obtained by using these data samples.

The collisions provided by the LHC occur at four interaction points along the 27-km ring.
those points, several experiments are located. The main four experiments are ALICE, ATLAS, CMS
LHCb and are located as shown in Fig. 1. These four experiments collect the data from the colli
and provide the results of the physics analyses, as described in the following sections.

In addition to the main experiments, other thnei@or experiments are intended for more dedicate
studies: TOTEM [6], LHCf [7] and MOEDAL [8]. Neither their results nor plans will be covered hel
since their scientific output is very specific and beyond the aim of this report. However, this shoulc
minimize their importance in order to understand forward production (as it is the case of the first twc
dedicated search for magnetic monoples (as it is the aim of MOEDAL).

Each of the main experiments deserved some specific description to put into context the ph
output they provide.

2.1 The ATLAS experiment

ATLAS [9] is the largest experiment at the LHC. It is intended to study all possible physics topic
analysing the full final state of the LHC collisions. It is characterized by its great capabilities in track
and calorimetry surrounded by huge muon-detection chambers in a toroidal field.

The detector has almost full solid-angle coverage with a forward-backward symmetric distribut
Itis also azimuthally symmetric, as expected for the physics in the collisions. The hermetic design al
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Fig. 1: Schematic layout of the LHC and the main experiments, identified at their location in the accelerator 1

to infer the presence of undetected particles via the transverse momentum embalanace, the so
“missing E7" (ET'9), which can be computed as:

e [[20] 4 [Sn]

where the sum runs over the observed particles (regardless on the way they are detected and
structed).

This quantity is expected to be small due to the conservation of the momentum and theref
significantly large value is interpreted as the presence of particle(s) that escape detection, as if the «
neutrinos and other weakly-interacting particles which do not interact with matter by mean of the nu
or electromagnetic forces.

In order to quantify the coverage of the detector, another interesting variable is the pseudorag.
an alternative to the polar angledefined as:

Ip| +p2}

n=—In[tan(6/2)] = lln[\p! — D=

2
which is well suited for cylindrical description of events, as it is the case of collisions involving hadr
in the initial state.

The structure of ATLAS allows to reconstruct jets up|td ~ 4.5, muons up tdn| ~ 3 and
electrons and photons up figl ~ 2.47, providing a very large coverage for the main pieces to study tt
final states in the LHC collisions.

2.2 The CMS experiment

CMS [10] is the other multipurpose detector of the LHC. Similar to ATLAS in aim and capabilitie
it present a more compact structure for a similar performance due to its stronger magnetic field.
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also hermetic and provides an impressive energy resolution for electndnshatons, for a coverage of
In| < 2.5. Muons are detected up 19| ~ 2.4 with a more traditional approach that takes advantage
the redundancy with the inner tracking. Finally jets are reconstructed |up t04.5.

When comparing both detectors, the strong point of CMS is the great resolution in the ir
tracking, which becomes the core of the detector, specifically when used as redundancy for reconstr
of muons and other particles. On the other hand, ATLAS has better global calorimetry and more pr
and sophisticated muon detection.

However, these differences are in practice more technical than real, since the treatment of th
in the reconstruction of objects allows both collaborations to obtain very comparable results. The
is to compensate the limitations of the detectors with the information coming from the stronger par
redundant informations from other components.

One good example of this is provided by the conceppaticle flowthat has been extensively
used in the last years, specially in the CMS analyses. The idea is that instead of reconstructing the
gquantities from the detector information (calorimeter cells, tracks), an intermediate step is taken an
detector information is combined to identify “objects” that are associated to particles. From the det
information, the kinematic recontruction of each “object” is performed in an optimal way, since e
class of object (lepton, photon, neutral or charge hadron and so on) is treated differently. It is then
these “objects” that the event quantities are then reconstructed.

These idea represent a big gain since each object is treated as close as possible to its ex
behaviour with the detector components. Additionally, the combination of the detector parts allow
get the most of the detector information as a whole, leading to the final goal of having a global €
description. The case of CMS is extremely clear since the particle-flow approach allows to use as
tracking information as possible, reducing the impact of the lower quality hadronic reconstruction ir
calorimeters.

By the use of this kind of ideas and even more sophisticated techniques, the LHC experin
have been able to extract the most of the data samples, going beyond the most optimistic expect:
as we will describe in future sections.

2.3 The LHCb experiment

The LHCb detector [11] has been designed to perform studies on flavour physics, specifically of ha
containing bottom quarks. Since their production is specially large in the forward region, the dete
design is mostly oriented to maximize rate and provide very accurate reconstruction instead of max
ing the coverage. It therefore detects particles in the forward region and it reaches an impresive trac
vertex reconstruction due to dedicated sophisticated components.

The main limitation of the measurements in the forward region is the high sensitivity to proce:
in which multiplicities are large. For this reason, the LHCb did not collect lead-lead data and reqt
luminosity levelingo keep the number of collisions in the same event at reasonable levels. This leve
is the reason why the integrated luminosity of the data samples is smaller for this experiment.

On the other hand, its great coverage in the forward region allows this detector to perform r
surements beyond the coverage of ATLAS and CMS, providing a nice complementarity at the LHC
is not limited to the topics for which the LHCb was intended. As we will see below, the LHCb exp
iment is providing nice and competetive results in areas where CMS and ATLAS were expected !
dominant.

2.4 The ALICE experiment

The ALICE detector [12] has been designed to maximize the physics output from heavy-ion collisi
The aim of the experiment is not the detection of exotic or striking signatures but to maximize
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particle identification in order to retrieve as much information as possible abeuirtperties of the
medium created in the collision and how it affects the behaviour of the produced particles. There
the detector components mostly focus on measurements that allows to study the dependence of ste
properties of the final states with respect of variables that correlates with the production of new r
states, i.e. the production of high energy density, high temperature and high pression states.

Due to this, the strong point of ALICE with respect to the other LHC experiments is the impres:
particle identification, in order to identify relevant particles immersed in high multiplicity events. T
limitations that this impose is the reduced coverage for each type of particle and the lack of symn
in the detector: more types of different subdetectors covering different solid angle regions. This m
that the muon coverage is limited to the forward region (2.5 < 4) while electrons and photons are
detected centrally (n 0.9).

The specific design of the ALICE detector makes the results from ATLAS and CMS also v
atractive for heavy-ion physics, due to its complementarity to ALICE, although they are not in comg
tion when the particle identification is a key part of the study, as we will discuss later in this report.

2.5 Data adquisition and event reconstruction at the LHC experiments

The data-acquisition (DAQ) systems of the experiments have been designed to collect the inforn
of the collisions happening at the LHC. They are very sophisticated in order to efficiently collect
information from all the detector components and store it to tape for future analysis.

On the other hand, the DAQ need to deal with the problem that having collisions every 50 n¢
25 ns in the future) it is impossible to store all or even part of the information for every single ew:
For that it is needed to have an automated decision system which selects the events as soon as t
produced in order to reduce the amount of data that is physically stored to a manageable level.
system, calledrigger, has therefore the goal of reducing the rate from tens of MHz to hundreds of |
providing data of 100 MB/s, which is a storable quantity.

Although the concept is simple, it should be noticed that events that are not accepted by the tr
are lost forever, implying a big responsability. Additionally, the trigger conditions at the LHC are v
challenging and represent a new frontier in data acquisition due to high rates and event sizes. Ho\
there is the need for those required rates ans event sizes since the aim of the experiments is to stu
processes with high precision, even at the cost of suffering at the DAQ level.

In addition to the DAQ challenges, other difficulty arises from the high rate: since the collis
cross section is so large, it is very likely that several proton-proton pairs collide in the same event
crossing). Most of the collisions are soft uninteresting collisions that would appear at the same tin
interesting ones. This situation is usually referregitesupcollisions and it complicates the reconstruc-
tion of interesting events since it becomes harder to distinct them from usual background, some
that is specially dramatic at the trigger level. The reason underneath being that reconstructed quau
specially the global ones like tHE'sS, are modified and led to misleading values.

This problem with thepile-upis what motivated the luminosity leveling at the LHCb interactior
point: to avoid the deterioration of the performance due to the overlap of collisions. Since statisti
not really the issue due to the large cross section, it is more practical to reduce the collision rate to ¢
higher purity events than just reject good events due to trigger limitations. It should be noticed tt
similar idea may be required for the other experiments in the future when running at the highest rat

After the data has been collected and stored in tape, it is analyzed to investigate the characteri
of the physics producing it. The analysis consists on the identification and quantification of the ob
contained in the event.

We have already described how to reconstruct HES quantity that allows to associate unde-
tected particles to the event. Additionally we also described how the reconstruction of the final state
be simplified with the use of the conceptpxrticle flow.
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As a specific case of the later, the presence of leptons in the final stateridarfantal tool in a
hadron collider to recognize important physic events. Electrons are identified using the properties
interaction with the calorimeters. Muons are identified using the chambers specifically designed fi
detection, using the property that they are charged and highly penetrating.

Photons are also identified using the deposits in the calorimeters, where they look similar to
trons, but are distinguishable from them due to the absence of electric charge, and therefore the |
hits in the tracking system.

The 7 leptons are the hardest objects to identify in a detector, but their use is strongly motiv:
by their common presence in final states for BSM physics, or for Higgs searches, as we will see
Their leptonic decays are hard to distinguish from electrons and muons, but their hadronic decay
dominant ones, are separated from other hadron production due to their low multiplicity and the |
matical properties. The main issue is that is commonly hard to separate them from the large backg
of hadron production, and specially at the trigger, where the usable resources are more limited. C
other hand the experiments at LHC has used experience at previous colliders to really exploit a
possibilities of analysis with leptons, as it is described below.

Finally, apart from leptons and photons, it is very common the production of hadrons. T
are originated from quarks and gluons that are not observed because the strong force confines
within colourless hadrons. The mechanisms transforming those coloured particles into hadrons c
be understood in the pertubartion approach used to perform estimations from the theory, but fortur
they can be treated in such a way that their effects do not affect too much the predictions. The sil
technique to reduce this effect is by usiets of hadrons to reconstruct and characterize the final state

The idea is that the processes that are not perturbately calculable occur at energy scales ti
much lower than the usual hard processes taking part in the LHC collisions. Therefore they do not m
sustantially the global topology of the event and hadrons appear as collimated bunches of particle
are kinematically close to that of the hard partons produced in the event.

This qualitative description, only valid for studies of hard parton production, should be quanti
with the use of a specific and well-suited algorithm that reconstruct the jets. The results are us
dependent on the algorithm, but when the same algorithm is used for comparing measuremen
theory, the conclusions are independent of the algorithm, if the application is sounded.

~ Data analyses at the LHC experiments are performed with all these objects: leptons, phc
E'SS, hadrons and jets, with very satisfactory results, mostly due to the high quality of the data acqg
tion and reconstruction.

3 Measurements to rediscover the SM

As mentioned above, the aim of the LHC is to produce unknown particles and increase sensitivity tc
possible interactions by colliding protons at high energies. However, on top of the possible intere
processes there are other SM-related processes that tend to hide the most interesting ones. For a
collider, QCD jet production has a so large cross section that is the basic process happening
collisions.

In fact, this makes the LHC a QCD machine aiming for discovery. Independently of wha
actually done, everything depends on QCD-related effects: parton radiaton, parton distribution f
tions (PDFs) of the initial-state protons, hadronization processes for the final-state partons and sc
fortunately most of these cannot be calculated due to our limited knowledge on how to deal witk
QCD theory and therefore, in order to understand them requires the realization of measurements
allow to refine the existing phenomenological models used to obtain predictions on what to expect i
proton-proton collisions at the LHC.

For this reason it is impossible to simply ignore the “less interesting” events which are consid
as background of the events containing effects and particles beyond the SM. In fact, at the LHC,
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any other hadron collider, the understanding of QCD is not just somethadgdenor a priority: it is the
only possibility.

As a good example, it is needed to realize that the first measurements performed at the LH
the total cross section and the differential cross sections for producing charged particles. They a
calculable in the pertubative approach of QCD, but they are required to perform realistic predictions
thetuningsof the model generators). They were performed at the beginning of the collisions by all
experiments (see e.g. [13, 14]) and from the beginning have become important tools to understal
collisions at the several energies the LHC has been operating.

In addition, even in these preliminary studies the LHC experiments proved that the LHC is cr
ing the lines to a new regime: an interesting effect observed looking at the correlations between ch
particles: CMS observed [15] that in addition to the udaade A¢ correlations (i.e. opposite hemi-
spheres), there are additiomadar-side(i.e. smallA¢ and largeAn) correlations in events with very
high multiplicities, specifically with more than 100 produced charged particles.

Figure 2 shows the mentioned observation of the so-called “rigde”. Similar effects were obse
previosly in heavy-ion collisions, although it is not completely clear the source of them is the se
Currently there is not a clear explanation of the source, but the LHC data has confirmed its preset
lead-lead and proton-lead collisions, see e.g. [16].

3.1 Studies of jet production at the LHC

Apart from these soft-QCD measurements that are a fundamental piece to adjust the phenomeno
models, measurements related to hard QCD are also performed at the LHC experiments in or
validate the QCD expectations on the perturbative regime, and to learn about the interactions be
partons at the shortest distances and also about the partonic content of the proton.

Measurements are done for inclusive jet production, as those by ATLAS in [17], and comp:
to the NLO predictions, which are able to reproduce the data after soft-physics corrections (the
not large). Some kinematic regions are sometimes off, but they are correlated to problematic ¢
in which proton PDFs are not well known or the effects from higher orders or soft physics are la
Similar conclusions are drawn from studies of multijet production, in which the sensitivity to QCLC
enhanced using ratios, as the three-to-two jet ratio by CMS [18], in which many uncertainties cance
the senstitivity to QCD shows up via the emission of hard partons. In fact the direct sensitivity to
strong coupling constant,s (@), allows a measurement of this value for the first time beyond 400 Ge
confirming the expectation from the running of that coupling.

With a different aim, instead of measuring quantities that are more accurately known, the|
interest in measuring in regions where uncertainties may be larger, but sensitive to unknown quan
as it is the case of the PDFs. Measurements at the LHC experiments [19, 20] are sensitive to PL
regions where they are not well constrained and able to distinguish between prediction of different
Specially useful for the high-x gluon and sea quark PDF which is loosely constrained by the HE
data. It is worth to remark that even if the LHC aims for discovering of BSM physics, it is a very use
machine to increase the knowledge about the internal structure of the proton, via the measure
sensitive to the PDFs. In incoming sections this will be mentioned a few times.

When studying the production of jets, an important topic by its own is the measurement of proi
tion of heavy-flavour (charm and bottom) jets. Since they are not present in the proton in a sizable
its study provides important information about QCD, specially for specific flavour production, somett
which is not possible for the light quarks and gluons. The fact that it is possible to perform sepal
studies for charm and bottom jets is due to the possibility of tagging the jets as originating/containi
heavy-flavour quark.

This has been a recent possibility due to the improvement in tracking, specifically at the clc
distances to the collision. After surpassing the challenges involved in the LEP and Tevatron experirn
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the detectors have reached to possibility to reconstruct vertices so pretise resolving secondary
vertices coming from “long lived” hadrons containing a bottom and a charm quark has become a stai
tool in accelerator physics.

The fact behind thikeavy-flavour tagging the presence of hadrons that live long enough so the
decay products appear in the detector as displaced tracks and vertices within jets that are incom|
with originating at the so-called primary vertex, in which the interaction took place. These disple
tracks and vertices are resolved and conveniently used to tag jets containing these heavy-flavour h
and therefore likely to originate from a charm or bottom quark. The information provided by then
used either on a simple and straightforward way (that is safer and more traditional) or on multiva
techniques that allow to increase performance of the tagger. The later has become more popt
expertise with this kind of tool is well established.

Making use of the tagging tools it is possible to study the production of jets originating fron
bottom quark, or b-jets. Measurements by the two collaborations has been made [21,22] and conr
to QCD precitions for heavy-flavour production computed with the MC@NLO [23] program. As sho
in Fig. 3, a good agreement is observed overall although there are some small discrepancies in s
kinematic regions, similarly at what was observed in inclusive jet production. It should be noti
that the level of agreement is good due to the improvements in the theoretical calculations durin
last decade. Predictions are difficult for the kind of process under study, so the level of discrep
observed is considered a complete success of the QCD calculations. Of course further work i
needed, emphasizing the importance of the precise measurements at the LHC.

In a similar topic, one important measurement at the LHC experiments will be to try to disental
the production of jets containing two heavy-flavour quarks. In the past the quality of the heavy-fla
tagging only allowed the separation of jets with at least a heavy-flavour quark. However, at the L
the improved detection techniques and the experience with tagging tools will also allow to investi
the production of multi-b jets, which are of importance in topologies with merged jets or to reject
presence of gluon jets containing a gluon-splitting process into heavy-flavour quarks.

Exploiting the subtle differences in the displacement of tracks, studies are performed on thi
sue [24], and good rejection power of gluon jets has been observed while keeping a big fraction ¢
single b jets. More dedicated studies will be needed to improve the related tools for rejecting this k
ground, but current results has confirmed its feasibility and also that the heavy-flavour taggers at the
experiments are taking advantage of the improved detector capabilities.

Regarding the LHC in a new kinematic regime, it should be remarked the development during
last years of tools to investigate the production of boosted objects. Since available energies at the
are much larger than the masses of the SM patrticles, itis likely to observe their production with very |
transverse momenta, giving rise to the merging of objects. This is specially worrisome in the case ¢
since they are hard to separate after their constituents have been merged together. For that reason,
dedicated studies and the development of new techniques has been done at the LHC experiments |
in order to deal with the topology of boosted jets. The idea is to exploit the properties of the inte
structure to recover information of the original partons whose jets have been merged, and separatt
from single parton jets that are boosted in the transverse direction, i.e. produced with large trans
momentum.

Many techniques have been developed and tested in the identification of merged jet and chec
the simulation reproduce the characteristics of the jets allowing the distinction of the jets containing
or more “hard” partons. Currently its performance has been proven to identify merged jets coming
boosted W bosons and top quarks, and used for searches. However its principal motivation is st
need of this kind of tools for the future running at higher energy.
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Fig. 2: Relative distribution of the charged particles in Fig. 3: Differential cross section of bottom jet produc-
proton-proton at 7 TeV as measured by CMS in sev-tion at the LHC with a center of mass energy of 7 TeV.
eral selections in th&\n — A¢ plane. Apart from the Measurements in different rapidity regions (dots) are
expected back-to-back correlation, a near-side correlaplotted as a function of the transverse momentum of th
tion is observed even at largen for high-multiplicity ~ jet and compared to the MC@NLO predictions (lines).
events (plots below).

3.2 Studies of soft QCD physics at the LHC

Apart from particle and jet production via QCD processes, the experiments are able to perform st
related to QCD via more complicated mechanisms. Among this, one that has become really import
the possibility of observing more than one partonic collision from the same protons. Since a protor
bunch of partons it is not uncommon to have several partons colliding at the same time. And the
allows to have very hard collisions since the energy of the protons is very large.

These multiparton interactions are a complicated topic since it is not clear up to which level ¢
collision can be considered independent of the others. In addition, the probability associated t
additional collisions to happen is not calculable and require models whose parameters require
tuning in order to improve the modeling of the underlying event. The validity test of the models
usually done in samples that are reasonably understood and trying to extract the maximum po
information to get the proper parameterization. With this aim, ATLAS has measured the contribL
from double-parton interaction for W+dijet events [27] to (b&é6 + 0.01(stat)+ 0.03(syst), in good
agreement with the expectations that were tuned to previous data.

Related to QCD in strange regions, the LHC allows studies for diffractive and forward prod
tion of particles and jets at higher scales than previous hadron colliders. These are relevant in
to understand hadron interaction at softer scales, and also to adjust the models describing this k
process.

Even the LHCb experiments has produced results for forward hadron production, which are
competitive due to the optimization of the detector for particle ID and its very forward coverage. Re
of these studies [28] have been compared to the predictions obtained by traditional event generat
also those used in the simulation of cosmic-ray events, which are very sensitive to this kind of proce

Another example of new kind of QCD measurements is the study of exclusive diboson (W
production via the collision of photons performed by CMS [29]. This makes the LHC a photon colli
at high energies, which allows dedicated studies of the electroweak interaction. The result wit
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dataset collected at 7 TeV allows to measure the cross section with still a lowcagie#, implying the
need of more data. However, using the sample with highest transverse momentum, it was possible
limits on the production via anomalous quartic couplings, showing the potential of this kind of studir

3.3 Electroweak boson and diboson production at the LHC

Although the measurements described above allow to test the predictions by QCD and even of the
troweak sector in some cases, the most sensitive studies to validate the SM predictions are comini
the events containing photons or weak bosons. The idea is that these events are usually simple to
nize and the perturbative calculations of the processes and the backgrounds are usually very accu

The most common process of this kind is the production of photons, whose interest have
demonstrated in the past hadron colliders, in which this was considered a “QCD study” since it pro\
direct information on the quarks. Hard photons radiated from quarks are good probes of the inter
since they are not affected by soft processes and they are able to distinguish mong different ki
quarks. In addition the large cross section ofthget allows its use as a fundamental calibration tool.

Additionally, studies of diphoton production yield to very stringent test of the SM predictior
specially for a final state that is an important background in many interesting searches of new part
decaying in photon final states. The study by ATLAS [30] performed measurements of the photon
production as a function of several variables and compared them to several event generators, at di
orders in QCD and types of partonic showers in order to evaluate the level of performance of the ava
production tools.

However, when talking on boson production, the studies related to the weak bosons beco
fundamental test of the SM predictions that were performed at the LHC in order to also check the pe
mance of the detectors and tools for analyses. Even after the first analyses, the studies of events \
and Z bosons are fundamental tools for calibration and understanding of the object identification ar
construction. Measurements at several energies, as the one at 8 TeV by CMS [31], have been pert
and show very good agreemeent with the expectations by the SM and also confirming the exceler
dictions of the SM at several energies for measurements performed for W and Z production durin
last three decades, as shown in Fig.. 4.

Although the basic goal for studying the production of weak bosons is to confirm the performe
of the detectors and of the basic SM prediction, dedicated measurements related to them are alsc
damental part of the LHC program. This is the case for measurements sensitive to the internal strt
of the proton and also of the SM details that could not be tested before at the level of precision reac
at the LHC. This affects both kind of processes: final states that were never available in a proton-p
collider before, like the ratio of W to W~ measured by ATLAS [32], or whose yield was too small, like
the measurement of 2 4/ (as in [33]) which is a calibration piece for the Higgs searches.

This explains the large effort at the LHC to measure the properties of the production of w
bosons. Some of the properties are measurements for confirmation and validation purposes, bui
are really motivated by the new possibilities opened at the LHC experiments. This is seen evenin €
iments that are not intended for boson studies, like the results at LHCDb, in which the very forwarc
tection makes measurements of Z and W production very competitive even with lower acceptances
since they are measured in kinematic regions that are not available for the main detectors. Even
compatible with forward Z bosons decaying intdeptons have been observed at the LHCb [35], indi
cating an important benchmark for the performance of the experiment to obtain results beyond fl
physics.

In the case of W production, Fig. 5 shows the lepton charge asymmetry as a functjcaisof
confirms the complementarity of the several experiments at the LHC, in this case how the LHCb is al
extend the region reachable by the ATLAS and CMS, even with a reduced yield. All these measurer
of forward production will have a big impact in the fits to extract the parton content of the proton, si
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Fig. 4: Cross sections of weak boson production Fig. 5: Lepton charge asymmetry of W production as ¢
in hadron colliders at several center-of-mass enerfunction ofyn at the LHC with the 7-TeV data from the

gies. SM predictions for proton-antiproton and proton- ATLAS, CMS and LHCb experiment. The inclusion of
proton collisions are compared to the measurementthe later experiment allows to extend the measuremei
shown as different types of dots. to very forward regions never reached before.

most of the current uncertainty is reduced by forward production of particles, more sensitive to the
constrained partonic content, as gluons and sea quarks at high-x.

But not only the proton structure benefits from the large yields at the LHC for producing wse
bosons since the presence of a massive object allows studies of QCD processes in an environmen
perturbative calculations are accurate enough to bring very stringent tests of the expectations.

The typical example is the use of bosons as “probes” of the underlying hard process involving
partons, whose rules are naturally dictacted by strong interactions. This is the case of the meast
of jet production in association to a Z or W, as in [36, 37], which are sensitive to the partons interac
and also major backgrounds to most of the new models for BSM physics. The measurements are ¢
constrain the room for the new physics, and, in other kienmatic regions, to check the validity of the
used to estimate these final states. It should be noted that not only the yields are interesting, bt
the kinematic distributions of the final state objects, specially those sensitive to unexpected undel
physics, as in [38, 39], in which specific distributions of bosons and jets are studied in order to per
accurate tests of the SM predictions, taking advantage of the large yields.

Similarly, another topic that directly benefits from the high cross section and luminosity at
LHC is the production of heavy flavour quarks in association with a weak boson. Being very sens
to the SM structure, some of the processes have not being accurately tested due to the limited st:
at previous colliders. In fact, results at the Tevatron have been controversial regarding the way the
generators reproduce the measurements. The larger statistics at the LHC allows the improvement
precision of the measurement. This is the case for the W+b-jet measurement by ATLAS [40], w
clearly shows that description by event generators could be improved, which is not a trivial case,
it is a background for many studies for BSM physics. Understanding this discrepancy should be a
priority of the physics at LHC, from the theoretical and experimental point of view.

Another final state that has benefit a lot by the new frontier set at the LHC is the productiol
charm in association with a W boson. Its interest is given by the fact that since W is able to chi
the flavour of a quark, the production of single charm is dominated by interactions involving down
strange quarks in the proton. Therefore directly sensitive to the strange content of the proton. In adc
the charge of the produced W is completely correlated to the charge of the charm and down/strange
As mentioned above, the W is used as a direct probe of the structure of the underlaying parton coll
In this case the result of the measurement by CMS [41] is presented as the fraction of charm jets in \
events and also of the ratio of Wto W~ in events with a charm produced in association with the \/
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Both quantities are sensitive to the PDF of the strange quark and antiquaekm&asurements are in
good agreement with the expectations and they will allow to improve the accuracy of the proton PC

In the case of the Z boson, the low cross sections prevented detailed studies of the prodt
associated with heavy flavour quarks to be performed at the Tevatron. Again the LHC has brougt
possibility to study this in detail. The analyses studying the production of Z+b-jet, as in [42], show
the event generators, in this case MADGRAPH [43], are able to describe the distributions. How
with the explicit requirement of two b-jets the agreement get clearly worse [44], implying that sc
theoretical work may be required: although the processes (and calculation diagrams) are the san
relative weight is different due to the kinematic requirements on the second jet.

Finally, the last topic entering the scene when talking about weak bosons and jets is the ¢
for electroweakly produced bosons, the so-caWMedtor-boson fusiofVBF) production. In this case
the boson is produced in association of two jets that tends to be forward, due to the kinematics.
forward jets are used to “VBF-tag” the event and separate them from the main processes, weak rac
from partons or parton annihilation. Measurement by CMS [45] allowed to measure a cross secti
agreement with NLO calculations. In addition, this kind of analysis also contributes to understanc
production of jets in the forward region, which is less understood due to the challenges in experim
studies and also in theoretical calculations.

It should be remarked that the interest of all the results involving jet production in associa
with weak bosons will be kept in the future, as the measurements get more precise, implying li
challenges for the modeling of very important processes at the LHC, either for their own interest ol
as background estimations for searches of all kind.

3.4 Diboson production at the LHC

As it is well known, the production of more than one boson is one of the most sensitive test of the
abelian structure of the electroweak sector of the SM, so it is very sensitive to deviation produced by
couplings involving the SM bosons.

The main limitation is that precisely the presence of several weak couplings makes the ¢
section small, and the observation of these final states has been very difficult. However, the LH(
open a new era for this kind of studies since large samples are available to perform detailed sti
allowing precise studies of diboson production for the first time. In fact, the LHC will allow in tt
future the observation of multiboson production, which has never been observed. In addition, the
samples available has allowed that diboson production has become a standard reference for calil
in advanceed analyses.

The basic processes testing the SM structure and with large cross section is the productiol
weak boson and a photon (Wand Z~) which are directly sensitive to the unification of the electromag
netic and weak interactions. The results of the analysis, like [46], shown that data are in good agre¢
with expectations, even at higher transverse momenta, which may be sensitive to new physics affi
the unification of interactions.

In the case of two massive boson, the process with the highest cross section is the production «
W bosons, in which the samples are large enough to allow detailed comparisons with the predictio
the event generators, even via differential distributions [47]. The conclusion of the studies is that the
predictions reproduce very well the shapes of the observed distributions in data, but they underes
the total cross section.

This discrepancy has been observed by the two collaborations and at the two energies of the
Investigation of the origin of it is under study. Similarly, studies of the production of two Z bosons she
a slight excess in the data with respect to the expectations [47,48]. In this case, the yields are smz
the excess is not as significant, but the clean final state, requiring four isolated leptons, leads tc
straightforward conclusions. This channel, which leads to a pure sample of ZZ events and with
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Fig. 6: Summary of the measurements by ATLAS for massive particles (weak bosons and top quarks) in s
and double mode at the LHC with a center-of-mass energy of 7 TeV.

reconstructed kinematics, provides the best test bed for diboson studies, specially with the amol
events expected at the LHC.

In addition to the pure leptonic channels, that are much cleaner in a hadron collider, the serr
tonic channels are also exploited at the LHC, since it is the most precise way to study the had
decays of Z and W bosons, not available in the inclusive production due to the large dijet backgrol
The performed measurements in the W+dijet sample [39, 49] yield the observation of the dibosor
nal. Separation of the Z and W in the hadronic channel is not possible due to resolution, and ther
this final state is able to measure the mixture of WW and WZ events. The result is in agreement
the observation, and the analysis has also tested the W+dijet background, whose interest was met
above. Finally it should be remarked that WZ has been also measured in the fully leptonic channe
which provides the topology of three charged leptons B which has a large relevance in searche
for new physics, in particular supersymmetry, and therefore the understanding of the kinematics i
diboson process is a fundamental part of the program.

In conclusion, it should be remarked that even if the LHC is intended to discover the phy
beyond the SM, measurements of the know processes has produced many interesting results, s
confirm the observations at previous colliders, but also new results that were not previously acces
In this sense, and as summarized in Fig. 6, the impressive agreement of the measurements provides
base on which the experiments are building the tools and confidence for the observation of unexg
results, when higher precision or new final states are reachable in the data.

4 Measurements on bottom and charm hadrons

The spectroscopy of hadrons has been a fundamental source of information in particle physics, si
has allowed to detect effects beyond the reachable energy scale and since it provides the only dire
to understand quarks and QCD at low energies.

The case of heavy flavour hadrons, which include at least a bottom or charm quark, is of a brc
interest due to the higher masses involved that allows to perform more accurate theoretical calculi
related to the properties of the hadrons. With the measurements in hadron spectroscopy, it is poss
perform several classes of studies, as the properties of bound states, production of new states, r
branching ratios and interference effects. All of them provide information about possible BSM phy
or improve the knowledge about partons in confinement states.
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It should be remarked that in order to perform studies with hadrons, itddeteto reconstruct
them. This sets a very different approach to the ones described above in which the hadrons ai
merged together in jets that are related to the original partons. The goal in the physics with hac
is to explicitly identify the interesting objects. This is achieved in several steps: The first consisi
the identification of the detected particles, as pions, kaons and more commonly muons and elec
Some of these objects are (pseudo)stable and are identified as tracks or similar. Sometimes the ne¢
the particle is also inferred by using specifically designed detectors, but in other cases the nature
assumed as part of the reconstruction process.

After the detected particles are identified, they are combined to reconstruct “mother” particles
may have decayed into them. The usual method is to reconstruct the invariant mass of several i
fied objects and find events in which they are coming from another particle (over a possible contin
background) as a resonant excess. Those events associated to a decaying particle may be use
tract information about the particle, apart from the direct identification of the particle itself in the m
distribution. Furthermore, the particles identified this way via its decay products may be further ust
reconstruct other partental particles in a recursive reconstruction that allows the full identification o
decay chain of the original particle.

With these tools and the goal of measuring the hadron properties in mind, the LHC experim
have been able to identify hadrons, some of them completely unknown. One example is the obser
by ATLAS of the new exited statg,(3P), belonging to the bottomonium family decaying ift(lS/2S)
by the emission of a photon [51]. The mass distribution showing the resonances produced by the
state is shown in Fig. 7 centered at a mas3$®530 + 0.005(stat)+ 0.009(syst) GeV. Also the CMS
experiments was able to find th — EbﬂrjE state, which has been the first baryon and fermion four
at the LHC, and with a mass 6945.0 + 0.7(stat)+ 0.3(syst] £+ 2.7(PDG) MeV [52].

However, and as expected, it is the main experiment focusing in heavy-flavour physics, LI
with its larger samples with higher purity who is able to measure the properties of bottom hadrons
higher precision. Specially about the recently discovered baryons, for which this experiment has ali
relatively large samples with high purity selection. The measurements,fd2,” and=," documented
in [53] required very detailed understanding of the detector momentum scales, in order to get the
precise mass measurements in the World.

Additionally the LHCD is also leading the effort in searching for rare decays of known hadrc
These decays are of interest for its possible sensitivity to new interactions involving quarks becaust
include loop diagrams or interesting vertices that could be affected by unknown effects. Among the
decays, one of the most attractive one®ig B® — uu since it is associated to a well-controlled anc
easily identifiable final state. Additionally, the branching ratio is very small but expected to be enha
in several of the possible BSM extensions. This explains the intensive search for this signal in the
decade at the Tevatron, where exclusion limit approached the SM expectation. However, the large s
collected by the LHCb experiment allowed to get evidence of the decay, with a significah.&e pfor
By that is in good agreement with the SM value [54]. The decay3fgrsearched in the same analysis
is also in agreement with the SM, but significance of the excess is smaller. The absence of discre
has set strong limits on possible new physics affecting the decay, confirming the negative results
direct searches at the other LHC experiments, as described in sections 8 and 9.

Another interesting decay under study28 — K* ., whose branching fraction in the SMis not
that small but whose kinematics is sensitive to the presence of new physics. One is the forward-bac!
asymmetry as a function of the invariant mass of the muons, measured by LHCDb [55] and observed
in agreement with the SM calculations.

All these measurements confirm the good performance of the detectors for heavy hadron ph
although the measurements are not bringing information about the possible BSM physics, but s
stringent constraints on the way the new physics may modify the interaction between quarks.
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Fig. 7: Invariant mass distribution qi*p~~ to ob-  Fig. 8: Raw mixing asymmetry fo3° — D~7* as a
serve the resonances decaying int¢lS/2S) and a function of the decay time. The solid black line is the
photon. A clear state at 10.5 GeV is observed in bothprojection of the mixing asymmetry of the combined
decays, compatible with being thg(3P) state of the probability function for the sample.

bottomonium family.

4.1 Mixing and oscillations

Within the properties of hadrons, one that has become of large relevance is that of the mixing of ne
mesons, in which the flavour eigenstates differ from the mass eigenstates, leading to a change in its
according to the quantum mechanics rules. These oscillations are well steblishedHd), the and B?
and are starting to become accessible forfile

In the case of thé8", the LHCb samples are reaching unprecedent precision and even provic
new channels of observation. Figure 8 shows the result of the oscillations for the very pure sa
of B — Dzt as a function of the decay time [56]. As it can be observed, the measurements
well reproduced by the expectation obtained taking into account the composition of the sample us
compute the raw asymmetry.

In the case of theD?, the oscillations are now becoming accessible thanks to the large samg
specially at the LHCb. Its study is strongly motivated since charm is the only up-type quark in wt
mixing and CP violation are accessible. It can also provide surprises since it is a previously unexp
region. The study of the mixing and oscillations for th&is done by exploiting the interference betweer
the mixing and the double-Cabibbo-suppressed decays. The same channel provide a right sign
wrong sign set of candidates that are used to perform the measurement. The first set is not sens
the mixing and therefore provides a perfect reference sample.

In order to reduce uncertainties in the production, the inffidistate is tagged by using the decay
product of theD* — D%r,. Using all these events, it is possible to measure the mixing and the LH
has provided the first observation from a single measurement, with a significance @8].16he result
is in good agreement with previous measurements, but the increased significance is another proof
reach available at the LHC even for studies of low-mass objects.

4.2 Measurements of the CKM matrix and CP violation

As remarked several times, the main goal of the studies in flavour physics is to investigate the d
of the fermion families, specially the relationship among them. In the case of the quarks, the rel
between the flavour eigenstates (from the point of view of the weak interaction) and the mass eigen:
is given by the so-called CKM matrix [58] which is expected to be unitary (when all families are includ
and that can be parameterized with three mixing angles and one complex phase. The unitary cor
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allows the representation of combinations of elements in rows and columns of the asaa triangle
whose area is related to the CP violation in the family mixing.

The goal is therefore to identify the processes that are sensitive to combinations of elemer
the matrix and extract the associated information about the matrix and the triangle. The measure
of single elements in the matrix is associated to processes that are not observable in hadron pl
However, that is not a complete limitation, as proben by the large set of results in the last decade rele
the CKM and CP violation parameters. Still, certain measurements are newly coming from the LHC
an example, the LHCb experiment has measured the angging the tree process&™ — DK+ [59]
which has the advantage of being very clean: as we mentioned before, processes with loops are se
to new physics, so the values measured at tree level are dominated by SM-only physics. The mei
value,y = (71.171%%)° is in agreement with the World average, with comparable uncertainty.

Other interesting result from the LHCDb is the study of CP violation in charmless three-body
cays of B mesons [60], that are sensitive to transitions between the first and third generation.
observed asymmetry is interesting because it is opposité in 7~ (enhacement foB~) with respect
to Kt K~n* (enhacement foB™) and it seems to be enhanced locally for some kinematics regions.

In the case of the mixing, one of the most important channéis— J/¢¢ since it is sensitive
to new physics affecting the CP violation. Measurements [61] agree with the SM expectations, anc
were also used to obtain the first measurement of the width difference of the mass eigenstates wi
not compatible with zero (AI'= 0.116 + 0.018(stat)+ 0.006(syst) ps!).

Finally, the last open topic for CP violation is its study in charm decays, which has been meas
by the LHCb collaboration [62] to be significantly different from zero, an unexpected result since mo:
the SM-based predictions suggest almost no violation. Although calculations are difficult and the (
estimations may underestimate the value, the measured value, confirmed at other experiments, s
bit large, which may be pointing to some BSM effects.

As with most of the discrepancies observed, more data is needed to increase our knowledg
theoretical development is an additional requirement to quantify the level of disagreeement observe
before its origin is further investigated.

5 Results on the top quark

In the hadron physics described in the previous section, one quark is not investigated: the top. Beil
most massive of the quarks (and of any observed fundamental particle) it is hard to produce and
does not hadronize but directly decays into a W and a bottom quark. Additionally, its exceptionally |
value of the mass makes him the best candidate to be related to new physics, so its study is man
and one of the big goals of the LHC program: the top quark may lead the path to BSM physics, ir
same way as heutrinos are leading the path in non-collider results.

At the LHC the dominant process to produce a top quark is QCD pair-production that has a |
cross section. In fact the LHC is the first machine that is able to produce top quarks at high rate, allc
detailed studies to be performed. This also applies to other production mechanisms, as that of sing
andtW production, the latter being available at the LHC for the first time. In fact the production cri
sections of processes involving top are so large that it is also a very common background in many
of searches, which is an additional motivation for studying its properties.

The study of the top quark at the LHC follows a similar strategy developed at Tevatron: chan
are identified with the number and type of leptons in the final state. Depending on that, event:
analyzed to extract all available information in a sample as clean as possible. Additionally all char
are considered, in order to investigate all possible events and the presence of discrepancies with 1
to the SM expectations.
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Fig. 9: Distribution of the number of jets in events with Fig. 10: Invariant mass distribution for three jets form-

an electron or positron, a b-jet and signific#§t*Sas  ing a top candidate in fully-hadronic of top-pair pro-

measured by ATLAS at 7 TeV. Sample composition isduction events. Measurement by ATLAS at 7 TeV. Ex-

split into the main components. pectations for the top-pair signal and the multijet back:
ground (histograms) are shown and compared to th
data (dots).

5.1 Measurements of the top-pair production cross section

The first property to be measured for the top quark is the production cross section in the main mechi
(pair production) and the simpler channel: the semileptonic events in which there is a good iden
lepton and at least one jet tagged as coming from a bottom quark. Results were obtained for the s
collected at 7 TeV by ATLAS, giving a cross section laf5 + 2(stat)+ 17(syst)+ 3(lumi) pb [63].
Distribution of the number of jets is presented for events with an electron in Fig.9, showing the ¢
signal yield for high jet multiplicities.

It should be noted that the semileptonic events apply only to electrons and muons, not-to t
lepton that is considered aside. That channel has also being studied since it is very important fc
possible new physics related to the third generation and the measurements (like the one in [64
found to be in good agreement with the expectations. Additionally the all-hadronic channel has
being investigated [65] in order to confirm the expectations. These two channels used the invariant
distribution of the top quark candidates, as shown in Fig. 10, in order to separate the large backgrc
It should be remarked that the lack of precision for these channels is basically driven by the syste
uncertainties affecting the background or the acceptances.

On the other extreme, channels containing two leptons (electrons and muons) provide the cle
signature. At the Tevatron this channel was not precise because of the lower yield, but the LHC
proven this is no longer an issue with the single most precise measurement of the cross section frc
dilepton channel at CMS [661,61.9 + 2.5(stat)"2 3 (syst)+ 3.6(lumi) pb, again at 7 TeV.

All these channels provide experimentally independent measurements of the production cros
tion that have been combined [67] to give a valud 03.3 + 2.3(stat)+ 9.8(syst) pb. The combination
has also proven the good consistency among the different channels and the two experiments. In ac
to these results at 7 TeV, the two collaborations are working on getting a similar picture with the data
lected at 8 TeV and measure the top-pair production cross section, whose interest is to test the m¢
higher energies but also to open the possibility of performing ratios of energies (and even double |
with the addition of the Z-boson production cross section) which will enhance the sensitivity to B
physics. The first measurements of the cross section at 8 TeV are reported in [68] and [69].
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However it should be remarked that the large samples of top events ardlalgm@new sets
of studies that were not available at Tevatron: measuring SM quantities using events containin
quarks. Those provide good tests of the SM, but also a useful frame to perform precise measuret
One example is the extraction af from the top-pair production cross section [70], which leads to
competitive value because it is determined in an energy regime that has only been accessible to a r«
amount of measurements.

Besides of the total production cross section, the experiments are measuring differential |
sections [71, 72]. These studies provide very stringent test of the SM predictions and of the mod
in simulation. In addition the sensitivity to possible discrepancies is enhanced, since such discreps
could appear in tails of distributions, as expected from possible new physics, and not affect the bt
them in any visible way.

The results of the measurements does not present any significant discrepancy and good agre
is observed, which increases the confidence on the predictive power of the theoretical tools. The:
going to be fundamental when larger samples are investigated, as those collected in 2012 at 8 TeV
precision will be much larger and the challenges and sensitivity to new physics increases to previ
unknown levels.

5.2 Measurement of the properties of the top quark

Until more data is available for detailed studies of the production mechanism, the current data sai
allow the measurement of the properties of the top quark to an unprecendent precision. The first (
the determination of the mass, since it ia a parameter that determines many other properties, and i
value is already a motivation by itself.

The LHC experiments are exploiting the experience at the Tevatron and are already measurir
mass of the top quark with very advanced techniques: template fits, jet calibration in-situ and sin
In addition the measurements are performed in several samples that are later combined, even t
combined LHC result, as summarized in Fig. 11 and documented by the collaborations [73]. It shou
remarked that the achieved precision will be very hard to improve, but still the mass of the top qua
a relevant quantity of study at the LHC. Specfically larger samples will allow differential measurem
of the mass, dMd X, which provides additional information and constraints.

In addition to the direct measurement of the mass, the LHC experiments are also measurir
mass indirectly from the measured cross section and the comparison to the theoretical expect:
The value extracted from this [74, 75] is not as precise as the direct measurements, but the comp
provides a new handle to find inconsistencies in the theory predictions (and therefore opening the
to possible BSM physics). The results are in good agreement, confirming the impressive performar
the SM predictions for top production and properties.

Additionally to the mass there are other several quantities that have been measured for the
the LHC by CMS and ATLAS. As an incomplete summary, here are brief references to them:

— Electric charge

Within the SM there is a fixed expectation for the electric charge of the top quark (+2/3 of tha
the positron). However, some models would allow a charge of -4/3 (same units) which is still fi
compatible with the observed decays since the inclusive measurements do not relate the charge
lepton from the W boson and that of the bottom quark, specially due to the difficulties to measure
latter.

However performing studies of the charge asasociated to the bottom quark (and the jet) an
pairing of jet and W boson to identify the ones coming from the same top, it is possible to obtain
sitivity to the charge of the top quark. Even with limited luminosities, analyses by the two collabc
tions [76, 77] by testing the two models again sensitive distributions are excluding the alternative \
beyond any reasonable doubt.

208



LHC RESULTS HIGHLIGHTS

— Mass difference for top and antitop

CMS has measured the mass difference between the quark and the antiquark version of the tog
which provides a stringent test of the CPT invariance in Nature and of the possible compositeness
top quark state. The result is in agreement with the SM expectation in which there is no difference.

— Polarization and spin correlations

Due to the short lifetime of the top quark, its decay happens before a change of the spin. This allo
perform studies related to the spin that are not available to any other quark.

In pair production the polarization of the top quark is investigated by using the angle betw
the quark and the lepton. Measurements by CMS in the dilepton channel [79] and by ATLAS in
lepton+jet sample [80] has confirmed that the polarization is in agreement with the SM expectation
quarks are produced unpolarized.

However, the SM predicts that even if the quarks are not polarized, the spins of que quark and
quark are correlated. The degree of correlation as measured by ATLAS in helicity bagis/i$ s [81],
in perfect agreement with NLO SM predictions, which sets additional constraints to possible anom:
production, i.e. BSM physics.

— Helicity of W from top decays

Due to the characteristics of the coupling of the W boson to fermions, we expect that helicity of th
decaying from top quarks to be fully determined. This property is parameterized in different compor
that are accessible by studying the angular ditributions between the lepton from the W boson and ti
quark in the W rest frame.

Measurements performed by the two collaborations [82, 83] are in agreement with the SM ex
tations and the results are used to set limits on anomalous couplings between the W boson and t
quark, basically testing the V-A structure of the weak coupling of the only quark in which it is direc
accessible.

— Forward-Backward asymmetry in top-pair production

In top-quark pair production a stricking assymetry was observed at the Tevatron regarding the fov
backward production of the quarks, which a clear preference of the top quark to be produced i
direction of the proton (and the antiquark in that of the antiproton).

Although this is somewhat expected, the observed value is much larger than the NLO predict
Some uncertainties involved in the calculations may be large but the effect may be also product
some unknown effect, specially because the effect increases with the mass of the produced pair.

At the LHC the available energy and production yield motivates a more precise study of the ef
However, the symmetric initial state prevents the realization of exactly the same measurement. C
other hand, the matter-dominated initial state introduces differences in the rapidity distributions o
quark and antiquark that is related to the distribution studied at the Tevatron experiments.

The measurements of the asymmetry for the quadity] = |y:| — |y;| performed by the two
experiments [85, 86] show good agreement with the SM expectations. It should be remarked this
not exclude the Tevatron result, since there are no final model explaining the asymmetry. Howeve
LHC results exclude some proposed models and adds some additional information that is very
for this subject, that is a good candidate to be one of the hot topics for the incoming years, specifi
regarding top physics.

— Study of t¢ + X production

Since the pair production cross section of top quarks is so large, it has become possible to start stt
the properties of the top quark with the associated production of additional objects, usually rad
from the top. Sizes of the current datasamples do not allow detailed studies of the most intere
processes, as the production of a pair of tops and electroweak bosons, but current studies are sl
the possibilities for the future running.
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Fig. 11: Summary of the more relevant measurementsFig. 12: Measurements of the single-top production
of the top-quark mass at the LHC, including the com-cross section in the t-channel by CMS at 7 TeV anc
bined from the two experiments and the comparison8 TeV. For comparison, measurements at the Tevatrc
with the best Tevatron combination. experiments are also shown.

On the other hand, other processes that have not been studied in detail are already reacha
accurate comparison with the SM predictions. Two examples are given by the production of je
association with a top pair [87] or even the production of bottom jets [88]. These measurements ¢
good agreement with expectations and are setting strong constraints on the model predictions in rt
that were not investigated before.

In summary, the LHC has been proven ds@factoryallowing a high rate of produced top quarks
to perform very detailed measurements of its properties. It is expected that the precision of thes
increase with the future samples, providing information and constraints for models related to the
known of the quarks in the standard model. Therefore it is not an exaggeration to claim that pa
physics has already entered in the era of precision in top-quark physics.

5.3 Single-top production

A very important topic regarding top production is thatsirigle topthat is dominated by electroweak
production of top quarks. The process, observed at the Tevatron, has not being studied in detail ur
arrival of the LHC, in which the available yields allow accurate comparison to the theory.

In the production of single top there are traditionally three channels under consideration:
t-channel (via a W exchange) which is the one with the highest cross section and sensitive to the bc
qguark content of the proton, the s-channel (via virtual W production) angoMtduction, which was
not observed at the Tevatron. From them, the t-channel is relatively easy to be studied at the
and current results have reached a good precision and even allowed separate sudies of the qui
antiquark production. Figure 12 show the measurements at CMS at 7 TeV and 8 TeV [89] and compe
with Tevatron measurements. Similar studies has been produced by ATLAS, with similar reach
conclusions [90]. Additionally, results on the s-channel were able to set limits on the process the
around 5 times the SM predictions [91]. However, the current analysis does not include the full
available. With more data the results will become much more relevant. It should be noted tha
s-channel is more sensitive to possible anomalous production of particles.

Regarding the third channel, the associated production of a W boson and a top quark, both €
iments reached the level of evidence using the 7 TeV sample [92, 93]. The observed distribution
in agreement with the SM expectations, but more data is heeded to perform accurate comparison:
8 TeV data should allow the observation and first precise measurements of this process, althour
analysis is a bit challenging due to the harder conditions.
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Fig. 13: Summary of all the direct determinations of the CKM elementat the Tevatron and LHC experiments
from single-top production.

Once the production of single-top events has been established, the study of them allows to pr
information about the electroweak couplings of the top quark, specifically due to the sensitivity of
production mechanism to the CKM eleménj, ruling the coupling between the top quark, the botton
quark and the W boson. Several determinations of this quantity have been performed at Tevatro
LHC, as summarized in Fig. 13.

In conclusion, studies of the single-top production are starting to reach a precision that will
the SM under test in the unexplored sector of electroweak physics with top quarks. Without doubt
will also contribute in the next years to complete the picture we have of this quark as a key piece ¢
SM and its link to its possible extensions.

6 Results on heavy-ion collisions

Although the main goal of the LHC is to understand the interactions at the highest energies (or sh
distances), this collider also allows to produce extreme conditions in terms of energy density, pre
affecting baryonic matter. This is achieved by colliding heavy-ion nuclei, as it is the case of lead.

main goal is to try to study the strong interaction at lower levels, i.e. investigate concepts as confinel
thermal phenomena, chiral symmetry and so on, more closely related to the conditions affecting q
and gluons in the early universe than the clean parton-parton collisions usually studied at the LHC"
colliding protons.

Also in the case of the LHC the increase in energy represents a big step forward in studi
heavy-ion collisions: the experiments at RHIC were intended to discover the production of stror
interacting perfect fluid. The LHC experiments shall characterize the details of this new class of m
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with the increased precision. For that, one of the most useful quantitiesaliphie flow, defined as the
second momentum of the azimuthal distribution of produced patrticles. It contains very important ph
information because larger values of the quantity indicates the presence of viscosity in the medit
the early times after the collision. Such values were observed at RHIC and by ALICE [94], confi
ing the expectations from hydrodynamic models. Adiditionally, ALICE has measured the elliptic fl
and production yields (and ratios) for specific particles, as e.g. in [95] identified via its sophistici
detector subsystems. Some of the results are a bit unexpected, as the reduced production of b
with respect to pions, which may be pointing to some presence of hadronic rescattering, an effect
observed. Other interesting measurements have already been performed by the collaborations w
aim of quantifying the characteristics of the collisions, as studies of higher-order harmonics (as in [
or particle correlations, and the studies related to the measurements sensitive to the Chiral Mar
Effect [97] which is a fundamental study in the heavy-ion program at the LHC after the first hint:
RHIC.

However, most of the current studies in heavy-ion collisions are more pointing to the confirma
of the results found at RHIC in order to tests new tools and fix a solid base to go beyond in tern
energy and sizes of data samples. In fact, it is in terms of hard probes of the created medium whe
LHC experiments have clearly go beyond previous experiments.

ATLAS was the first one presented a result on jet quenching [98], in which one expect dijet ev
produced from hard parton interactions in lead-lead collisions are observed as assymetric prodi
of jets: opposite to a produced jet with large transverse momentum it is not straightforward to fil
second jet, as in the usual proton-proton collisions. In fact a factor 2 of suppresion in central colli
is observed, very independent of the jet momentum. This is explained by the presence of a str.
interacting medium which affects more one hard parton than its companion, and therefore giving
impression of disappearence of jets.

In addition to jets, it has been very common the use of hard photons as probes of the mec
Photons are transparent to the medium, so they are perfect to quantify effects on jet quenching
production ofy+jet, as in [99]. However, photons may also be coming from the hadrons in the medi
or in the final state, so they represent as small limitation that the LHC experiments may avoid with th
of more massive probes that were not available at RHIC: the weak bosons. Currently the experir
have been focusing on detecting the presence of those bosons, since available data samples d
allow its use as actual probes, e.g. in Z+jet production. However, the detection of leptonic Z bosor
CMS [100] and ATLAS [101] have already allowed the first differential measurements to characte
the production of these ideal probes, completely insensitive to initial state or hadronization and for w
the medium is transparent. Studies of the W bosons have also been performed [102] and have &
provided interesting confirmation regarding proton-neutron differences: isospin effect yields a red
asymmetry in charge with respect to proton-proton collisions at the same energy per nucleon. /
larger samples are needed for more detailed studies, but the LHC is probing all its potential in heav
collisions.

Another area in which the LHC allows to reach much further than RHIC is the sudy of hea
flavour production. As in the case of proton-proton collisions, the possibility of identifying second
vertices allows specific studies to be performed. In fact ALICE has shown its great capabilities witt
reconstruction of open-charm mesons, D mesons [103] which are not only nicely observed but alsc
to perform measurements, like the one shown in Fig. 14, which probes the confirmation of suppre
for open charm in central collisions, in good agreement with more inclusive studies. The aim of u
open-charm mesons (and perhaps B mesons) is that they bring the possibility of quantifying differe
in the energy loss in the medium between heavy or light quarks and even gluons.

But the identification of heavy-flavour states is much more powerful in the dilepton resonan
specifically for the quarkonia states. They have a long history of being studied in heavy-ion collis
due to their clean signature and the big theoretical/phenomenological knowledge on them. Rega
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Fig. 14: The nuclear modification factor with respect Fig. 15: Invariant mass of dimuon pairs measured by

to proton-proton measured in lead-lead collisions forCMS in the region of theY family as produced in

D mesons in the most central events as measured byeavy-ion collisions (dots and red-line fit). Compari-

ALICE. Data (black dots) are compared to the nuclearson to the data from proton-proton collisions normal-

modification factors of charged particles (open circles)ized to theY(1S) peak (blue dashed line) shows the

and non-prompy//+ from CMS (squares). sequential suppression of the family in heavy-ion col-
lisions.

of being colourless they are sensitive to the medium since they rely on the strong force to kee
two quarks bounded. In fact these states are affected by screening effect and they become an
thermometer of the medium: the larger the radius of the system (larger for e.g. 2S states tha
the larger the screening. Therefore we expect to obsesagaential suppresioor meltingwithin the
quarkonia families: less bound states are more suppressed than those that are more bound. T
been clearly observed in measurements by CMS [104] fofitHamily, as shown in Fig. 15. Clearly
the excited states are affected more in relative terms than the ground state when comparing reasul
lead-lead collisions with those of proton-proton at the same energy per nucleon. This is an addit
confirmation that a strongly interacting medium is created in the relativistic heavy-ion collisions at
LHC.

It should be noted however that even if the qualitative picture seems clean, the quantitative di
do not completely fit, so further measurements and theoretical developments will be needed in or
fully understand the generated medium. Such kind of studies are already in place, as the measurem
J /v suppresion by CMS [105] (in central rapidities) and ALICE [106] (in forward rapidities), probir
the nice complementarity between experiments. However the agreement in the suppression do
apply to the observation by CMS tha(2S) is less suppressed than the) for transverse momenta
larger than 3 GeV, something not confirmed by the ALICE measurements.

In conclusion the heavy-ion program of the LHC experiments is already providing interest
results bringing the field to unexplored areas with a new energy regime and new possibilities, like
use of new available tools and probes. The propects for the future, with further analyses of the
including the 30 nb' collected for proton-lead collisions (as the previews in [107, 108]), will hel
towards the ultimate goal of the program: detailed characterization of QCD thermal matter by mea
precise measurements from heavy-ion collisions at LHC.
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7 Searches for the SM Higgs boson

The SM structure and its implications in the description of the Universe is based on the presence of a
known asHiggs fieldthat is responsible for the symmetry breaking giving rise to the electromagnetic i
weak interaction and also to give masses to the weak bosons. In this process, a single degree of fr
is translated into a scalar particlbe Higgs boson, that should be observed and whose coupling to
fermions are introduced in such a way that these last ones acquire the masses that are forbidden
symmetry before it gets broken.

This particle is therefore the missing keystone of the SM and it was extensively searched fi
previous colliders without success. The good performance of the SM strongly motivated the exist
of the particle, and the measurements and fits from pre-LHC colliders pointed to a mass of ar
100 GeV [109].

Under this situation, the LHC started collecting the data that should provide light to the existe
of this boson and eventually find it. This was the most important search for the first years of the |
experiments and for this reason it deserves a full section describing the analyses and the strat
follow in order to observe the presence of the boson and also the related measurements wich are
to confirm whether the observed resonance actually matches the properties expected for the SM
boson.

7.1 Strategy to search for the boson at the LHC

Before the LHC had collected enough data for being competitive in searches of the Higgs bosor
results from LEP and the Tevatron were the richest source of information. In fact, LEP had exclud:
95% C.L. the SM Higgs boson below 114 GeV and its measurements had constrained the mass
Higgs to be around 100 GeV.

In the case of Tevatron, the direct searches were excluding a Higgs aroung 165 GeV, leavin
available regions to be clearly separated into two: The low-mass region, for masses between 11
160 GeV, that was very strongly motivated. The second region, with relatively high masses be'
170 GeV, was less motivated, but still not discarded, specially considering that the motivation wa
suming negligible effects from possible BSM physics (or more complex Higgs models).

The first step therefore for the LHC was to look into these two regions and during 2011 all chan
were considered to investigate all the mass ranges. For low masses, although the decay is doming
that to bottom quarks, the involved channels were those having the Higgs decaying into ZZ (in 4 lep
or vy, with some information from the WW:+7— andbb decays in all accessible production modes
For high masses the most useful channels were those involving decays into WW and ZZ in all po
signatures. With this approach the two experiments presented results on Deceflgén 13with the
data collected at 7 TeV. The results presented at that time led to a complete exclusion of the Higgs |
in the high-mass region (up to more than 400-500 GeV) and most of the low-mass one, leaving al:
small window around 125 GeV.

In that window the exclusion was not possible because both experiments saw an excess, not
pletely significant but enough to prevent exclusion of the presence of a SM Higgs boson. the e
was appearing in several of the channels Naturally, the presence of a resonance in the most mo
channels to detect the SM Higgs boson was a clear suggestion that such boson was the respons
the excess, so all the focus from that moment was to intensively search for a possible boson with a
around 125 GeV whose properties were close to those expected for the SM Higgs boson.

This effort was designed to be applied to the 8 TeV data collected right after the Winter in 2
and the idea was to maximize sensitivity in the two most sensitive channels at that mass (4-lepton Z
~v) and also look at the complementary channels (WW;~ andbb) that could provide some further
sensitivity and also some additional information regarding the nature of the boson: more coup
involved.
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Fig. 16: On the left, 95% C.L. limit on the ratio of the cross section over the SM expectation for the produci
of a Higgs boson as a function of its mass as obtained by ATLAS at the time of ICHEP-2012. Observed lin
compared with the expected limit (in absence of such a particle) and the uncertainty intervals. On the righ
local p-values for a similar study in several analyses by CMS. In both cases a very significant excess is ob:
around 125 GeV that is interpreted as observation of a new patrticle, likely the SM Higgs boson.

In parallel more analyses were still considered in order to complete the pictures, even those
were looking (and excluding) the presence of a SM Higgs boson at higher and higher masses.

All these analyses are described in the following sections.

7.2 Analyses for the discovery (ICHEP-2012 results and afterwards)

At the time of ICHEP-2012 the size of the available data at 8 TeV was comparable to that colle
at 7 TeV, allowing already enough sensitivity to perform statements on the boson. Both collabora
presented results in the main channels on #8912, and they confirmed the presence of a new boson
the discovery (5§ level. The presented results are summarized by the plots in Fig. 16, where the re
from the statistical analyses of the studies are shown.

The measurements performed at 8 TeV also increased the precision on the knowledge of the
and in general tend to confirm its nature as that of the SM Higgs boson. Later improvements t
analyses and the addition of the data that was provided by the LHC during 2012 have brought addi
support for this hypothesis. However, some questions are still to be investigated and further data\
allow more precise measurements in the future. Here we will discuss some of the more relevant r
bringing to the current knowledge about the boson dicovered at a mass of 125 GeV.

In the case of CMS, th& — ~+ search [110] is performed by using several categories of diphot
(for inclusive production mode) and two categories for tagging Vector-Boson Fusion (VBF) proces
It should be noted that VBF is very important because it is sizable (mostly because the leading t
production occurs via loops) and it involves different couplings than the dominant mechanism, e.g.
very important for fermiophobic models.

With all those categories, the analysis is able to achieve a significant exce$s @fith a yield a
bit higher than expectation.

In addition to that, the 4-lepton search was dealt in this collaboration with the use of a kinernr
discriminant that accounts for the fact that the Higgs boson is a scalar. This kind of tools have mad:
this analysis [111] is the central reference for measuring the properties of the boson, as described |
As shown in Fig. 17 the channel has very little background and the signal is clearly observed in sp
the low yield. The significance of the excess at a mass of 126 GeV is very high, although in this cas
yield comes a bit lower than the SM expectation, but still in agreement.
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Fig. 17: On the left, the mass distribution of 4 leptons in events selected for the Higgs search at CMS. Data (
are compared to the background expectation (solid histograms) and a Higgs signa(Wijk126 GeV (red line).
On the right, local p-values associated to the same analysis, with a clear excess for a Higgs mass around 12

In addition with the most sensitive channels, CMS has put a lot of effort on the secondary char
which are giving additional constraints about the boson, with a small sensitivity. Specifically, the \
decay also suggests the existence of a boson, but with a yield on the lower side [112}.7Thshows
clear limitations on the size of the data sample and although the result is compatible with a SM Hig
is also in agreement with the background-only hypothesis [113]. A similar conclusion is extracted 1
the decay into bottom quarks [114], in which the Higgs need to be observed in the production assor
with a weak boson, in order to keep the dijet background under reasonable limits. The studies of dit
production described in section 3.4, specifically in the semileptonic channels, provide a solid supp:
the search of the boson in this decay channel. In any case, more data will provide stronger constrai
the fermionic decay channels, currently compatible with the existence of the SM Higgs boson but
small significance.

From the ATLAS side, also several updates came after ICHEP-2012, bringing further confirme
to the signal and, as in the CMS case, higher precision in the results. The diphoton search [115]
formed with several categories, has lead to a very strong signal, which approaches the level of bein
high when compared to the SM expectation with a signal strength value approaching a factor of 2 (I
1 the SM prediction). Dedicated studies of this value in a per-channel basis does not indicate any
striking, but uncertainties in those cases are large since it is the combination of them which is brir
the high significance of the signal. Plot on the left of Fig. 18 shows the invariant mass distributio
diphotons in which the resonance at a mass around 125 GeV is clearly observed.

As in the diphoton search, the 4-lepton channel in ATLAS gives a signal strength higher t
the expectation, although in this case in agreement with the SM value (and with the CMS result).
study of this final state [116] is performed by exploiting the kinematical properties of the decay prod
from a spin-0 particle. As shown in the plot on the right of Fig. 18, the signal is clearly observed v
a reasonable amount of background, which leads to this channel as the main reference to meas
properties of the boson, as in the case of CMS.

Regarding the complementary channels, ATLAS also puts a big effort on those with similar ¢
clusions to those obtained by CMS. In the case of the decay into bottom quarks [117], sensitivity ha
yet reached the level to allow quantitative statements about the boson to be made. The other two
nels [118, 119] give higher yields than expected, but still with large uncertainties. In the case of
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Fig. 18: On the left, invariant mass of two photons in the search for the Higgs decaying into diphotons

formed by ATLAS. The fitted background is subtracted in the plot below in order to enhance a resonant e:
close to 125 GeV. On the right, invariant mass distribution of 4 leptons in events selected for the Higgs sea
ATLAS.Data are compared to the background and a signal hypothesisaith=125 GeV.

the value seems to be high in the case of the main production channel, but in VBF and in asso«
production with a weak boson (VH) the signal strength is clearly on the low side [119]. It is too earl
be considered a problem since the uncertainty is still large enough to cover the SM valuel within

7.3 Post-discovery goals: measuring the properties

As described in the previous section, a new boson has been observed and its properties are compe
those expected from the Higgs boson of the SM. With the additional analysis the picture is getting |
complete, but precision needs to be improved to extract further conclusions.

One of the goals in the incomimapst-discoveryears is the measurements of all the propertie:
This has been already started, and some answers are already provided, as we will discuss here.

The first set of results is the comparison of the signal strength for the several channels that
been investigated. The results are summarized in the plots of Fig. 19. As mentioned in the pre
section, values are not completely matching the expectations from the SM, but they are not signific
discrepant. More data will be needed to reduce the uncertainty and investigate possible anomalies
production and decay mechanisms. Explicit disentangling of the couplings show they are fully com
ble with the SM expectations, as in [120].

After the production mechanism has been checked, the first obvious property to measure |
mass of the found resonance. Dedicated studies has been performed at the two collaborations us
most sensitive channels. In the case of CMS, the last study has been based on the 4-lepton sam
provides a mass value of(H) = 126.2 + 0.6(stat)+ 0.2(syst) GeV [121]. In the same analysis, studie:
of the spin and the parity leads to the conclusion that the data clearly favours a pure scalar vel
pseudoscalar. Additionally, data is not precise enough to distinguish between spin-0 and spin-2 pa
in this channel.

In the case of ATLAS, the results presented in [122] show some tension between the masse
tracted from the 4-lepton and the diphoton channels. In the first case a valuérbf = 123.5 +
0.9(stat) £ 0.3(syst) GeV is obtained. For the second, the valuenigdd) = 126.6 + 0.3(stat) +
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Fig. 19: Signal strength in the several channels sensitive to a Higgs boson with a mass close to 125 G«
CMS (on the left) and ATLAS (on the right). SM prediction should be centered at 1, which is compatible with
measured values and with the combined average.

0.7(syst) GeV, in better agreement with the measured value at CMS using the 4-lepton channel.
discrepancy will require some further investigation and perhaps data to be understood. It shou
added to the issue that the signal strength values as measured by ATLAS tend to be higher than tl
expectations.

In addition to the mass measurement, studies of the spin and parity has also been perform
ATLAS [123]. They are similar to those by CMS, but more complete since information is also extrac
from the H — ~+ analysis. This has allow to add more sensitivity to the distinction between sipn-0
spin-2 patrticles.

7.4 Other searches for SM-like Higgs and within models of new physics

Even though a boson that is a good candidate to be the Higgs as predicted by the SM has been
other analyses looking for SM-like Higgs bosons are still of interest. The main motivation is that t
may be sensitive to scalar resonances with a mass larger than that of the boson, or smaller but with
production cross sections.

Most of these searches are following very closely the searches for the SM Higgs at the ¢
spondent masses, since they inherit from analyses performed before the boson was observed. Tl
naturally diverging from the optimal search for the SM Higgs, in order to look for similar particles, |
not with exactly those properties of the SM Higgs. Many searches has been performed by ATLAS |
and CMS [125] and have computed limits for possible presence of particles that are SM-Higgs ¢
since no hint for a resonant scalar has been seen.

Furthermore, several BSM theories include the modification of the Higgs-sector, which imp
that other Higgs particles may be present in Nature, even with the presence of the SM one. The sug
discrepancies in the Higgs properties add further motivations for this kind of models. Note we discu
them here even if searches for BSM physics are included in sections 8 and 9.

As usual in searches for new physics, supersymmetric models are the most attractive to be
sidered. In the case of Higgses, Supersymmetry (SUSY) requires the presence of at least five Hi
one basically like that predicted in the SM and others that are relevant due to their properties: chi
Higgses and Higgses with enhanced couplings to bottom quarks leptons. This later case motivated
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the search for a Higgs decaying intd 7~ interpreted in SUSY models. Lack of any observed sign:
bring the experiments to use the results [126,127] to set constraints in the SUSY parameter space

In addition, searches for charged Higgs have been performed in order to look for their presen
decays of the top quark. CMS has focused onsttolannel [128], looking for an anomalous presenc
of 7-based decays with respect to other leptonic channels. Limits were set for several models d
the good agreement of the data with the W-only-decay hypothesis. In the case of ATLAS, one o
investigated channel wal* — c¢s [129], in which the presence of a dijet resonance not peaking
the mass of the W boson will be identified as a signal. In addition, we expect a lower yield due tc
competing channel that is purely hadronic (assuming that the charged Higgs decay preferably int
channel). Data does not confirm these expected anomalies, so additional limits are set for this ki
model.

Aside for the basic SUSY models, other extensions of the SM incorporate modifications of
Higgs sector and therefore they have been searched for. There are many possibilities here, and :
classes of Higgses show up. However, we should emphasize that some of them yield topologies the
have been missed due to kinematic selection, as it is the case of Higgses with low masses (as the ¢
resonance search in [130]) which may be produced just as boosted objects due to their own coug
Other possible exotic particle in the Higgs sector is the presence of doubly-charged particles w
searches, as the one in [131], have not reported any visible discrepancy with respect to the expect
backgrounds.

In conclusion, no significant hint of alternative or extended Higgs sectors has been found to ¢
plement the boson observed at a mass around 125 GeV. However, this does not imply that the p
beyond the SM is out of reach, since the Higgs sector is well known for providing very elusive partic
For this reason, searches of new particles have been performed independently of the discovery
possible Higgs, as discussed in the following sections.

8 Searches for new physics

As it has been discussed before, the LHC is intended as a machine to bring information about new pl
beyond the SM. The possibility that the Higgs boson has been found does not only confirm the va
of the SM, but also its limitations that should be investigated to find even more correct answers abo!
structure of the Universe at the smallest distances.

Finding these answers at the LHC requires a huge effort in order to cover the many possibil
and therefore corners of the parameter space. This makes the search topic a very broad field of
tigation. In this report we just summarize the most interesting searches of all those developed
LHC.

Within the searches for BSM physics, the models involving SUSY are strongly motivated du
their good theoretical performance to solve the SM limitations. Specifically the doubling of the p:
cle spectrum, in order to have a supersymmetric partner to each SM patrticle, allows a very react
nomenology that translates into many analyses investigating several types of final state topologies.
are discussed in section 9.

On the other hand, there are well-defined alternatives to supersymmetric models that also pr
possible explanations to the issues of the SM as the full description of the Universe. In the follov
subsections we focus on summarizing the searches for these alternative models.

8.1 Searches for unknown high-mass resonances

When looking for new physics, the more direct approach is to look for particles that are notincluded i
SM spectrum. For that, the search for resonances decaying into detectable and well-known particles
simplest approach. Some of these resonances are naturally predicted in extensions of the SM, s
with the addition of new interactions. Figure 20 show the invariant mass of dileptons as measure
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Fig. 20: Invariant mass distributions of electron-positron (left) and dimuon (right) in dilepton events collectec
ATLAS. Data (dots) are compared with the SM predictions (solid histograms) and some expectations for |
resonances (lines).

ATLAS when looking for a massive resonance that would appear as a peak in those distributions.
comparison of the data with the SM expectation show very good agreement and results [132] (and
for CMS) are used to set limits on the production cross section for resonances, and lower mass lim
possible Z-like particles in the order of 2.5-3 TeV.

Similar to the lepton search, the production of dijet resonances has also been considered, as
CMS result documented in [134], in which special treatment has been performed in order to sef
between resonances decaying into gluons or into quarks (or a mix). Also in this case, a good agre
has been observed, but the main issue is how to handle the huge background at the lower invariant
that forces to reject events even at the trigger level.

This has been the testing analysis of a new technique, addliedscouting, which allows to collect
interesting events passing around the trigger limits. The idea is to collect events at a higher rat
storing only the final reconstructed objects, which allows the reduction of the data content per event.
permitted CMS to trigger and perform studies for lower invariant masses with competitive results [
even with a reduced datasample of 0.13'b

When looking for resonances, the presence of neutrinos is not a limitation, and the search i
extended to the use of thieinsverse massf a lepton and théZ'ss, defined as

My = \/2 pry EI”E“SS- (1 —cosAd¢y,)

to investigate the presence of new resonances decaying into a charged lepton and a neutrino. In tt
of a resonance, this variable shows a Jacobian peak that is on top of a smooth background. The «
results, as those in [136], do not show any hint of such type of structure, and limits on productio
W-like particles has been set.

However, when we talk about limits on very massive W-like particle, a possible decay chann
into a top and a bottom quark, which is not allowed for the W. This was investigated by ATLAS [1.
and found no sign of a resonance decaying into those quarks, and independently of the number
identified b-jets. It should be noted that the searches of this kind of resonance have become very po
at the LHC due to the available energy for producing high-mass resonances decaying to the most m
particles in the SM spectrum. This is also confirmed in the study of resonances decaying to weak bc
which are predicted to appear in several BSM theories. A result by ATLAS has taken advantage ¢
trilepton final state to look for resonances decaying into WZ [138], providing a very competitive res
although usually this kind of search is performed with semileptonic or fully hadronic channels to rr
use of the larger branching ratio.
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In fact, the energy at the LHC is so large and the possibility for producisgn@nce so large,
that very massive object could appear and the decay products will be boosted, which may lead tc
(e.g. from W) merged into one reconstructed jet. This has been turned into a benefit to enhance ¢
by using merged jets to tag the presence of hadronically decayed bosons. The result of the analy
CMS [139] shows the good performance of the boosted-jet tools. Unfortunately no sign of new phy
was found.

A similar analysis by ATLAS looking for a resonance decaying into ZZ in the semileptonic ch:
nel [140] also exploits the merged jet topology to increase acceptance to very massive resonanci
set a much constraining limit than that accessible by the obvious dijet topology.

Among the searches for resonances indicating BSM physics, one common topic is the studi
possible excited states of fundamental particles, which could be related to new physics (e.g. cc
interactions or internal substructure). This is the case for the search of excited muon states decayir
a muon and a photon as the one by ATLAS [141] looking for the Drell-Yan production of a muon anc
excited muon. The results are in good agreement with SM predictions for the most discriminant vari
the invariant mass of the two muons and the photon, which allows to set stringent limits in the pos
scale for such a excited state to exist.

In addition to the searches for resonant states in the two-body decays, the high masses acci
at the LHC allows the searches for more complicated topologies, with more objects in the final <
One example is the search for boosted resonances decaying into three jets. The search perforr
CMS [142] assumes pair-production of these objects, and therefore the idea is to study three-jet e
bles whose transverse momentum is large but the corresponding mass may show a peak structure
to a decaying resonance. The requirement of large transverse momentum allows the reduction
combinatorial background, for which the mass and the transverse momentum will show a correle
Although the result of the analysis does not show hints of any possible resonance, the used techniq
be used in other searches in the future. In the current case, limits are set on the existence of reson

Another alternative that is open at the LHC is the cascade decay with initial massive object:
quentally decaying into states. A very syummetric case considered at CMS consists on the pair pr
tion of objects (e.g. technicolour particles) decaying into pairs of particles (e.g. other lighter state i
technicolour spectrum) which decay into dijet. This process will lead to an 8-jet topology in which tF
are resonant peaks in four dijet masses, two 4-jet masses and perhaps in the 8-jet mass in case the
pair-production occurs from the decay of a single-produced particle. All this information is combi
into an artificial Neural-Network to enhance signal-like topologies. The results [143] show that the
no peak structure on top of the combinatorial background coming from usually-produced 8-jet e\
and limits has been set for models motivating this kind of signature.

8.2 Searches for leptoquarks

One special case of pair-produced resonances that are motivated by unification méeetssarks,
particles having both lepton and baryon numbers. They are detected via their decay into a lepton
quark, which gives a resonant peak in the invariant mass (in the case of charged leptons) or sign
excess inEMsSrelated variables (in the case of neutrinos).

Since these patrticles carry colour, they are pair-produced with a large cross-section, giving
to clean signatures due to the leptons in the decay. Furthermore, they also have a rich phenomer
since these particles could be of different classes (scalar, vector) and also appear in different gener
although they are usually not mixing fermions of different families.

The basic analyses, mostly oriented to the first two generations are easily identified by the
of lepton, which determines the generation we are focusing. Searches by ATLAS [144] show ¢
agreement with the SM expectations for #gj and uujj final states. These results are used to st
limits that are going beyond previous searches of these particles.
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Since the first generations are not providing hints of leptoquarks, evis@ ichannels with neu-
trinos, searches have also been focused on the third generation, mlegtens and bottom quarks are
expected. Specifically the search by CMS [145] with the use of b-jets exploits the sensitivity givel
the scalar sum of the transverse momenta of the decay products. The results are in good agreeme
the SM expectations, and they are used to set limits on the leptoquark production, but also on the
duction of scalar tops within R-parity (#)-Violating SUSY models (see details in section 9.3), giving
an explicit proof that searches of new physics are usually sensitive to several classes of models br
similar final states, an in similar areas of the phase space.

8.3 Extradimensions and graviton searches

The extensions of the SM do not only consider the extension of the particle spectrum or the intera
sector. Several models introduce the modification of the structure of the Universe by incorporating
tional dimensions, that would be microscopic and whose existence may explain the large scale diffe
between the electroweak interaction and gravitation. The idea is that the new dimensions will be forl
to the SM particles and effects, while gravity expands in all the available dimensions. The signature:
be striking with the production of gravitons (producing Iad@%‘sssince they escape detection) and S
particles, leading to single-photon (monophoton) or single-jet (monojet) topologies,

These have been looked for by the collaborations. As an example, ATLAS has looked for ey
with a photon with large transverse momentum that is accompanied Withﬂéﬁ"@% which is the most
significant variable to identify the presence of new physics [146]. Good agreement is observed
respect to the SM expectations for this signature, dominated by undetected weak bosons (neutrii
cays) in association with a photon. Also some background contribution is present due to detector €
generating artificial kinematics looking like the signal.

Furthermore, ATLAS and CMS have also looked for the monojet topology [147,148]. Althou
the main motivation for this signature is the production of gravitons produced in association with qus
there has been an increase use of this kind of search for studying the production of invisible particle
generic Dark Matter candidates) in a model-independent way, being the jet balancE@‘sﬁ’]m'oduced
by initial-state radiation. This keeps a small fraction of the total signal, but allows to look for hard:
detect particles that may be copiously produced at the LHC collisions. It should be remarked tha
makes a strong case when compared to the more clean monophoton signature: results are more s
to other classes of models.

The results of the monojet searches has also found good agreeement with the SM predic
Figure 21 shows th&)"s* distribution of the ATLAS analysis [147], that has also been used to set lim
in the production of gravitino from the decays of squarks and gluinos.

Another possiblity related to extra-dimensions and accessible production of graviton is that
ticles may appear as Kaluza-Klein towers which sequentally decay into less massive objects. Sy
cally, gravitons may appear as diphoton resonances, which is an easy-to-identify signature, but it s
from large backgrounds. Anyway, they have been investigated by the LHC experiments, as the an
in [149], and no hint of such a resonance has been found on top of the diphoton high-mass spectrt
shown in Fig. 22, which also includes the expectation from a resonance as those predicted by Ra
Sundrum models and the expected effect due to a more generic model including additional dimens

8.4 New physics in the top sector and new generations

As discussed before, the top quark is usually suggested as the primary candidate to open the path t
new physics. Its large mass and coupling to the Higgs, which are the basic quantities related to the
ends of the SM, make this quark a very attractive place to search for discrepancies with respect
SM expectations, Since the first step to fix the hierarchy problem is to have a partner canceling the
induced corrections to the Higgs mass, such a partner should be at reach of the LHC independently
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Fig. 21: Distribution of theE;“iSS variable in events Fig. 22: Distribution of the diphoton invariant mass in
with a single jet with large transverse momentum.events with two photons with large transverse momen
Data (dots) are compared to the background expectdum. Data (dots) are compared to the background e»
tions (filled histograms) and possible signals for BSM pectations (filled histograms) and possible signals fo
physics (coloured lines). BSM physics (coloured lines) containing a Randall-

Sundrum resonance or a generic extradimention mode

nature. Although the most obvious choice is a SUSY partner (see section 9.2), alternative options
been made, including the possibility of the existence of a very mas$igederation.

One option considered by ATLAS [150] is the search for the pair-production of a top part
having an electric charge of 5/3 (of that of the positron). Appearing in several models, the decay i
top quark and a W boson allows to have good acceptance with same-sign dileptons and also to u
hardness of the event (scalar sum of transverse momenta of final objects) as discriminating variab!
significant discrepancy has been observed with respect to the low expected SM background.

As a general rule, the existence of additional generations (containing canonical or exotic parti
that would contain coloured particles more masive than the SM ones leads to very busy final sta
terms of multiplicity and of energy. This is used in the optimization looking for this kind of topol:
gies, being very common the requirement of hard events or with rare combination of objects (same
leptons, leptons and b-jets in high multiplicities and similar requirements). The performed anal
searching for a¥ generation, as those in [151,152]. All searches have brought the conclusion that t
are no hints for the existence of & generation (in the reachable masses) nor of any new physics t
may look like massive particles regarding busy final-state topologies.

8.5 Searches for very exotic signatures

The lack of success to find hint of straightforward BSM physics has open the possibility that Nature i
as predictable as we might think and the new physics may appear in some even more exotic sign
than those considered for the theoretically-motivated BSM final states. This has led to the stuc
final states that could have escaped the more traditional selection or based on models less relatec
confirmed SM predictions, which bring to new classes of final states.

One option that has been considered is the production of microscopic black holes at the LHC
sions. Some generic properties of them from quantum gravity provide general rules of final-state e:
tations: high multiplicities and democratic treatment of objects. The search for this kind of events [:
was performed by exploting that the scalar sum of transverse energies for the SM background pre
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a shape that is independent of the multiplicity. Therefore the lower multiplicitytevame used to get
the shape that is compared to the data with high multiplicities. Good agreement has been observ¢
limits in a model-independent approach are set.

Other rare topology that is not commonly considered is the presence of long-lived particles
may escape even the trigger selection. Some of these particles appear in several models as quas
particles. In this context, searches for charged massive particles (CHAMPSs) by CMS [154] or more
icated searches like the stable chargino using track-disappearance by ATLAS [155] are good exa
of the possibilities beyond the usual approaches and how the detectors <re used with non-standart
reconstructions to look for unexpected classes of particles. In this, we should also mention the s
for magnetic monopoles (as that by ATLAS in [156]), whose existence is very strongly motivated
to the electric charge quantization and as part of the electromegnetic unification. The need for sp
reconstruction of the events (since these particles are not electric charges, and behave very diffe
inside magnetic fields) add some complication to the analysis, but still the results are very compe
when compared to direct searches because of the possibility to produce them with high cross sec
the LHC. In any case no hint for production of monopoles has been observed and further data will he
increase the sensitivity, specially with the addition of the dedicated experiment for this (MoOEDAL [8

In conclusion, after the first datasamples provided by the LHC collisions have been analyze:
discrepancy with the SM prediction has been found that could be considered as a significant hi
new physics or particles beyond the SM spectrum. The future running of the LHC at a higher en
and higher luminosities, discussed in section 10, should provide more information on the possible
physics.

9 Searches for supersymmetry

In SUSY models the particle spectrum is at least doubled [157], bringing a lot of possible processe:
could distort the measured values with respect to the SM expectations. Depending on the cons|
process, the final state to be investigated is different, providing a rich phenomenology.

However, since at the LHC the initial state is based on partons, the dominant production m
anism is usually the production of coloured superpartners. In usual models they are produced in
since R-parity (&, a quantity being 1 for particles and -1 for superpartners) is conserved. In addition,
conservation o2 p implies that the lightest SUSY patrticle (LSP) is stable and a Dark Matter candide

These basic properties allow to make general analysis in searches for SUSY which focus or
cific parts of the spectrum. In addition, this also brought a new way of interpreting the results wl
are based on “simplified models” which provide well-determined processes for the given final st
This has simplified the interpretation of the results in terms of the possible theoretical models. Ol
other hand, the more traditional, “full model”, approach are still advantageous to interpret results -
different analysis and experiments within a common framework.

Independently of the model the most basic search for SUSY is to look for jet88fitl The latter
being a hint of the stable LSP, and the jets appearing as the decay products of coloured superpe
which are the ones associated with larger production cross sections: squarks and gluinos. These a
are just dependent on the reconstruction ofﬁ]ﬁl—*ﬁs and they try to quantify its presence with variables
that are less sensitive to misreconstruction. In addition several categories are investigated in orde
sensitive to different kind of SUSY processes. The categories are usually identified by the hardne
the event (withZ!"'sS or momenta of jets), the multiplicity of jets, or the multiplicity of b-jets.

The analyses by the collaborations, as those in [158,159], do not show any significant discref
with respect to the expected backgrounds. Results are used to set limits in several types of mode
are typically excluding the presence of squarks (of the first generations) and gluinos below 1-1.5 Te

In the case of massive squarks, it is feasible to produce gauginos that are lighter but still ha
produce directly from the proton collisions. These gauginos may decay in leptons with large trans
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momenta which simplify the identification of the events at the trigger and recotistrdevels. Both
collaborations have searched for SUSY events in final states with leptons, jets and sigﬁ]?i'@a[’mo,
161] and the results shows good agreement with the SM expectation. Results have been used to se
on the production of SUSY patrticles that produce leptons in the final state. It should be noted the
studies with leptons include thelepton (as in [162]) since they provide increased sensitivity to the ca
of Higgsino-like gauginos.

When one consider leptons in the final state, the presence of multileptons may be a good h
SUSY due to the reduced SM backgrounds. Specially when there are at least three leptons and sigr
E?iss, which is the golden final state detecting the production of a pair of chargino and neutral
decaying leptonically or even production of scalar leptons. The background of these kind of studies
164] is dominated by diboson (or multiboson) production in which leptons are the decay products ¢
massive weak bosons.

Again, the presence of leptons is fundamental is some areas of the parameter space since
gauginos may not be as “flavour symmetric” as the corresponding SM bosons. In any case, no signi
excess has been observed and the results are used to set limits on the production of gauginos. It sh
noted that this kind of final state is sensitive to a different area of the SUSY parameter space, so th:
complementary to the search of events in which coloured superpartners are producted and seque
decay into SM particles.

9.1 Gauge-mediated Supersymmetry breaking

After the simplest topologies have been investigated and report negative results regarding the exi:
of SUSY, other models providing significant differences in the final states need to be considere:
qualitative change is set by models in which SUSY is broken in a hidden sector and communicate
gauge interaction [165], since the LSP is the gravitino and the phenomenology depends on the ne
lightest SUSY particles (NLSP) because most of the decays go preferably via that particle.

In the cases where such particle is a scalar lepton, usually the sc¢dta final state contains
leptons that are easy to identify. Searches by both collaborations [166, 167] show good agreemer
expectations in several types of final states.

Other case that is very relevant is when the NLSP is a neutralino, decaying into a gauge t
(usually a photon) and the gravitino. This is also a relatively simple final state, since the presen
photons helps to make the event selection much cleaner. The analysis searching for diphdtffanc
by CMS [168] observed a good agreement between the observed data and the expected SM backg
as displayed in Fig. 23, where tig"'ss distribution in events with two photons is shown, including som
possible signals to explicitly shown the sensitivity to a signal in this variable.

Even if the considered final state in models with gauge-mediated SUSY breaking was able to
limits set for MSSM-inspired searches, the results are not showing any significant discrepancy that
be attributed to the production of SUSY particles.

9.2 Natural SUSY and third generation squarks

After the studies of the more obvious SUSY final states, the obtained limits are moving the Sl
scale to high values so it starts to approach the decoupling with respect to the electroweak scale.
the motivation for SUSY is to fix problems at this latter scale, new concepts are required to keej
connections between the two scales and, at the same time, avoid the current limits from more inc|
final states.

In this sense the two obvious things is first to keep the neutralino (or equivalent) as the LS
order to have a Dark Matter candidate that is stable and weakly coupled. Secondly, we need the li
scalar top to be light enough to keep the divergences in the Higgs mass as smaller as possible. This

m(t) < 400 GeV. This expression also requires a gluino not far from 2 TeV to avoid a strong correc
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on the scalar top mass. With these requirements, all other SUSY particles nagrhavalue, since
their influence is much smaller. Therefore current limits on general searches are avoided.

However, this “natural” SUSY becomes only completely natural when other superpartners
associated to the needed ones. For this reason it is not uncommon to have also light scalar bottom
or scalarr (as mentioned above). Additionally, the LSP could be a family of degenerated gauginc
several classes. It should be noted that in spite of the reduced number of superparticles involve
possible final states are very complex due to the involvement of the third generation of fermions.

For example, with the described spectrum, it is feasible to have gluino-pair production as
process with higher cross section. These gluinos decay into quarkEgél?r‘d In the case the scalar
bottom is available, the gluinos may give rise to final states contaiﬁgﬁiﬁs and four bottom quarks,
that may be identified as b-jets. This topology is very clean due to the reduced backgrounds and the
sensitivity may be enhanced by the b-jet requirements, allowing some additional room with respect 1
more inclusive limits, where the limitation was the huge backgrounds. The study done by ATLAS [1
shows no hint for anomalous production of multi-b-jets and signifi@ﬁs, a selection sensitive to this
final state. Limits in SUSY and other models are set. Regarding the interpretation, it should be r
that this analysis is also sensitive to the decay into top quarks, since also four bottom-quarks app
the final state.

On the other hand, the case of top and scalar top quarks produced via gluino production is |
richer than just the presence of b-jets, due to the large multiplicity of W bosons. It is possible the
identify the events containing four top quarks and signiﬁo_laii‘l'\tsS in several approaches and with very
challenging final states for the SM expectations: analyses in this topic [170, 171] are testing the
predictions in very specific corners of the phase space, and specifically in regions that were not 1
before. Even there the SM predictions provide a very good description of the measurements, v
translates into further contraints to SUSY production.

Even if the use of gluino-mediated production allows the use of striking signatures, it is m
attractive the direct production of squarks of the third generation which are those strongly motiv
to be relatively light, according to “naturalness”. Therefore experiments performed searches of s
bottom quarks as that in [172] in which the identification of b-jets is fundamental to reduce the
background. In addition, searches for direct production of scalar top quarks [173-176] still pro
enough complexity in the final state to allow several classes of searches. This is seen in summary
as that displayed in Fig. 24, containing the exclusion areas from several searches of direct product
scalar top.quarks.

As the summary plot shows, the several assumptions on the decay and kinematics of the final
allows to exclude large areas of the parameter space. But in summary, the lack of observation of
for scalar top quarks just bring the scale for SUSY (in this case given by the mass of the scalar tc
higher values, similarly of the results in more inclusive searches. Threfore, it seems that SUSY ma
show up in the most obvious way to fix the issues of the SM and particle physics.

9.3 Searches forR p-Violating SUSY

Although usually it is assumed th&ts is conserved because it directly provides a Dark Matter candida
it is obvious that there is no reason a priori why that quantity needs to be conserved. By relaxini
conservation condition it is possible to avoid many of the most stringent limits, since they are usi
obtained with the requirement oS, which is inspired by the assumption of conserviRg. In
addition, the phenomenology becomes much richer due to the possibilities in the spectrum and |
possible interactions. For example with the presence of unusual resonances in the final state{like
eft).

One general characteristic of tlh&--Violating signatures is that since all the superpartners dec.
into SM particles, the final state usually is related with high multiplicity of objects, and involving ma
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Fig. 24: Summary of the limits for scalar tops from
Fig. 23: Distribution of theEsSin diphoton events as the available analyses by ATLAS, drawn in the neu-
measured by the CMS collaboration. Data (dots) ardralino (LSP)-stop plane according to the assumption
compared to the SM predictions (solid histograms) andf all the channels.
to possible models of new physics (lines).

different types of them. This also brings the fact that basically every final state is availaBlg-in
Violating SUSY due to the rich phenomenology.

As reference analyses, we should mention the multilepton searches, as that by ATLAS [177] |
ing for anomalous production of events containing 4 or more leptons having eitherﬂgﬁfmr large
energy activity (quantified via the concept of effective mass). Reasonable agreement with the sma
expectations has been observed.

Other typical search in the context Bf>-Violating models is the search for resonances decayir
into two leptons of different type, as the one performed by ATLAS in [178], wich considers the cas
e, et andur resonances. No hint of such states was found and limits were set in the relevant mo
It should be noted that the open possibilities in this set of models have the clear disadvantage th
application of the limits is very reduced in comparison with the parameter space.

A last analysis that needs to be discussed is the search for events containing multilepton
identified b-jets, that has been investigated by CMS [179]. The interest of this search is not only ¢
possible presence of new physics, but also since it is sensitive to very rare SM processes, whose
vation is as interesting as the search for BSM physics. This includes some of the associated prod
of top quark and weak bosons mentioned in section 5.2. Although no hint of new physics has b
observed, the analysis already probes the sensitivity to the rare SM processes that should be inves
in future datasamples collected at the LHC.

10 Future of the LHC experiments and physics

After the running ended in March 2013, the LHC accelerator is currently in a shutdown period whic
needed for maintenance and repair work which will allow the running at the highest energy and lumi
ity conditions. This shutdown will last until 2015 and it is also used by the experiments for additic
improvements and work.

The plan after the shutdown is to run for a few years at nominal energy (probably 13 TeV)
collect a sample of 100 ftd . Afterwards a new shutdown is expected to bring the luminosity to tt

227



O. GONZALEZ

design value and run for a few more years (2019-2022) to collect adalitd®® fb~! at a center of mass
energy of 14 TeV.

Afterwards a third shutdown will bring the machine to a Phase-2 upgrade that may allow to co
additional 3000 fb! along the next decade. All these data will allow accurate studies for particles :
interactions observed during the first runs of the collider. An alternative will be to upgrade the LHC ¢
may be able to reach higher energies and set a new frontier on the investigated energy scales.

In addition to the improvements by the accelerator, the experiments are getting ready to upg
their components in order to exploit the possibilities the several stages of the LHC will provide. ATL
and CMS will need to face new challenges in terms of collection rate, luminosity and radiation anc
therefore working on improvements for the DAQ and trigger selection, upgrades of the internal par
the detectors and replacements of the parts that may be limiting factors in the incoming phases.

In the case of ALICE, the main goal is to have the best possible detector for the run after
second shutdown, in order to get all the reachable information about the heavy ion program of the |
hopefully understanding the Quark-Gluon Plasma with unprecendent accuracy and being able to pi
enough information for the theoretical characterization of its properties. It is not completely clear
whether ALICE will be present in the LHC running beyond 2022,

The case of the LHCb is special due to the reduced need for luminosity. The plan is to co
5 fb~! after the current shutdown and then collect 50'flduring the main part of the main run of the
current LHC. As in the case of ALICE, it is not clear whether LHCb will be present in future improv
ments of the LHC projects, either in terms of luminosity or of new energy regimes.

To summarize, the LHC is planning the future runnings with improved performance in orde
provide large amount of data that will yield to important measurements during the several stages ¢
accelerator. The expected program and the results from the experiments are awaited from the pe
physics community to confirm and improve the results already obtained at the LHC and describt
previous sections.

However, it should be remarked that even the current datasample are still providing importan
relevant results, as reported on the web pages of the experiments [180].

11 Overview and conclusions

The LHC experiments have finished a very sucedkfuh | with very important milestones and discov-
eries in all the topics planned for the program. Confirmations of the SM expectations, measureme
heavy-flavour and top quark physics and results related to heavy-ion collisions have clearly overrule
of the previous achievements due to the new energy frontier, the good performance of the accelerat
the detectors and also to the high quality of the studies.

In the part dedicated to searches for new particles, which is the main goal of the LHC, the cu
results already made the first big discovery by finding of a new boson having a mass of 125 GeVv
other possible particles expected in extensions of the SM, new limits have been set, highly increasil
constraints for BSM physics.

The properties of the new boson has been measured in the current datasample and they s
confirm that this boson may be the long-awaited Higgs boson expected in the standard model, tr
missing piece of this theory. Further studies are on-going, and others waiting for further running o
LHC, in order to increase the precision of the measurements and confirm this extrem.

Expectations for the future running in 2015 at 13 TeV are getting higher with the increase in re
for possible new particles and also the improved precision of the measurements with the larger
samples expected. Specifically, precision measurements of the properties of the new boson and o
observations that have been accessible at the LHC keep the focus on the LHC results as the more
door to the new discoveries in the second half of this decade.
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Abstract

This report summarizes a series of three lectures aimed at giving an overview
of basic particle detection principles, the interaction of particles with matter,
the application of these principles in modern detector systems, as well tech-
niques to read out detector signals in high-rate experiments.

1 Introduction

“New directions in science are launched by new tools much more often than by new concepts” is a fa-
mous quote from Freeman Dyson’s book Imagined Worlds. This is certainly true for the field of particle
physics, where new tools such as the cloud chamber, bubble chamber, wire chamber, solid-state detectors,
accelerators, etc. have allowed physicists to enter into unchartered territory and to discover unexpected
phenomena, the understanding of which has provided a deeper insight into the nature of matter. Looking
at all Nobel Prize winners connected to the Standard Model of particle physics, one finds many more ex-
perimentalists and “instrumentalists” than theoretically orientated physicists, which is a strong indicator
of the essence of new tools for advancing our knowledge.

This report will first discuss a few detector systems in order to illustrate the detector needs and
specifications of modern particle physics experiments. Then the interaction of particles with matter,
which is of course at the heart of particle detection, will be reviewed. Techniques for tracking with gas
detectors and solid-state detectors as well as energy measurement with calorimeters are then elaborated.
Finally, the tricks on how to process the signals from these detectors in modern high-rate applications
will be discussed.

2 Examples of detector systems

The Large Hadron Collider (LHC) experiments ATLAS, CMS, ALICE and LHCb are currently some
of the most prominent detectors because of their size, complexity and rate capability. Huge magnet
systems, which are used to bend the charged particles in order to measure their momenta, dominate the
mechanical structures of these experiments. Proton collision rates of 1 GHz, producing particles and
jets of TeV-scale energy, present severe demands in terms of spectrometer and calorimeter size, rate
capability and radiation resistance. The fact that only about 100 of the 10° events per second can be
written to disk necessitates highly complex online event selection, i.e. “triggering’. The basic layout of
these collider experiments is quite similar. Close to the interaction point there are several layers of pixel
detectors that allow the collision vertices to be distinguished and measured with precision on the tens of
micrometres level. This also allows short-lived B and D mesons to be identified by their displaced decay
vertices. In order to follow the tracks along their curved path up to the calorimeter, a few metres distant
from the collision point, one typically uses silicon strip detectors or gas detectors at larger radii. CMS has
an “all-silicon tracker” up to the calorimeter, while the other experiments use also gas detectors like so-
called straw tubes or a time projection chamber. The trackers are then followed by the electromagnetic
and hadron calorimeter, which measures the energy of electrons, photons and hadrons by completely
absorbing them in very large amounts of material. The muons, the only particles able to pass through
the calorimeters, are then measured at even larger radii by dedicated muon systems. The sequence of
vertex detector, tracker for momentum spectrometry, calorimeter for energy measurement followed again
by tracking for muons is the classic basic geometry that underlies most collider and even fixed-target
experiments. It allows one to distinguish electrons, photons, hadrons and muons and to measure their
momenta and energies.
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The ALICE and LHCb experiments use a few additional detector systems that allow different
hadrons to be distinguished. By measuring the particle’s velocity in addition to the momentum, one can
identify the mass and therefore the type of hadron. This velocity can be determined by measuring time of
flight, the Cerenkov angle or the particle’s energy loss. ALICE uses, in addition, the transition radiation
effect to separate electrons from hadrons, and has therefore implemented almost all known tricks for
particle identification. Another particle detector using all these well-established techniques is the Alpha
Magnetic Spectrometer (AMS) that has recently been installed on the International Space Station. 1t is
aimed at measuring the primary cosmic-ray composition and energy distribution.

More “exotic” detector geometries are used for neutrino experiments, which demand huge detector
masses in order to make the neutrinos interact. The IceCube experiment at the South Pole uses one cubic
kilometre of ice as the neutrino detection medium to look for neutrino point sources in the Universe.
Neutrinos passing through the Earth from the Northern Hemisphere interact deep down under the ice
and the resulting charged particles are travelling upwards at speeds larger than the speed of light in
the ice. They therefore produce Cerenkov radiation, which is detected by a series of more than 5000
photon detectors that are immersed into the ice and look downwards. An example of an accelerator-
based neutrino experiment is the CERN Neutrino to Gran Sasso (CNGS) beam. A neutrino beam is sent
from CERN over a distance of 732 km to the Gran Sasso laboratory in Italy, where some large neutrino
detectors are set up. One of them, the OPERA detector, uses more than 150 000 lead bricks as neutrino
target. The bricks are built up from alternating sheets of lead and photographic emulsion, which allows
tracking with the micrometre precision necessary to identify the tau leptons that are being produced by
interaction of tau neutrinos. This “passive” detector is followed by trigger and tracking devices, which
detect secondary particles from the neutrino interactions in the lead bricks and identify the bricks where
an interesting event has taken place. To analyse the event, the bricks have then to be removed from the
assembly and the photographic emulsion must be developed.

These are only a few examples from a large variety of existing detector systems. It is, however,
important to bear in mind that there are only a few basic principles of particle interaction with matter that
underly all these different detectors. It is therefore worth going through them in detail.

3 Basics of particle detection

The Standard Model of particle physics counts 17 particles, namely six quarks, six leptons, photon,
gluon, W and Z bosons, and the hypothetical Higgs particle. Quarks, however, are not seen as free
particles; rather, they combine into baryons and mesons, of which there are hundreds. How can we
therefore distinguish all these different particle types in our detectors? The important fact is that, out
of the hundreds of known hadrons, only 27 have a lifetime that is long enough such that they can leave
a track > 1 pm in the detector. All the others decay “on the spot” and can only be identified and
reconstructed through kinematic relations of their decay products like the “invariant mass”. Out of these
27 particles, 13 have lifetimes that make them decay after a distance between a few hundred micrometres
and a few millimetres at GeV energies, so they can be identified by their decay vertices, which are only a
short distance from the primary collision vertex (secondary vertex tagging). The 14 remaining particles
are the only ones that can actually “fly” though the entire detector, and the following eight are by far
the most frequent ones: electron, muon, photon, charged pion, charged kaon, neutral kaon, proton and
neutron. The principle task of a particle detector is therefore to identify and measure the energies and
momenta of these eight particles.

Their differences in mass, charge and type of interaction are the key to their identification, which
will be discussed in detail later. The electron leaves a track in the tracking detector and produces a shower
in the electromagnetic (EM) calorimeter. The photon does not leave a track but also produces a shower
in the EM calorimeter. The charged pion, charged kaon and the proton show up in the tracker but pass
through the EM calorimeter and produce hadron showers in the hadron calorimeter. The neutral kaon and
the neutron do not show tracks and shower in the hadron calorimeter. The muon is the only particle than
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manages to pass through even the hadron calorimeter and is identified by tracking detectors behind the
calorimeters. How to distinguish between pion, kaon and proton is typically the task of specific particle
identification (PID) detectors.

4 Interaction of particles with matter

The processes leading to signals in particle detectors are now quite well understood and, as a result
of available computing power and simulation programs like GEANT or GARFIELD, one can simulate
detector responses to the level of a few percent based on fundamental microphysics processes (atomic and
nuclear cross-sections). By knowing the basic principles and performing some ‘“back-of-the-envelope
calculations”, it is possible to estimate detector response to the 20-30% level.

It sounds obvious that any device that is to detect a particle must interact with it in some way. In
accelerator experiments, however, there is a way to detect neutrinos even if they do not interact in the
detector. Since the total momentum of the colliding particles is known, the sum of all momenta of the
produced particles must amount to the same number, owing to momentum conservation. If one uses a
hermetic detector, the measurement of missing momentum can therefore be used to detect the momentum
vector of the neutrino!

The electromagnetic interaction of charged particles with matter lies at the heart of all particle
detection. We can distinguish six types of these interactions: atomic excitation, atomic ionization,
bremsstrahlung, multiple scattering, Cerenkov radiation and transition radiation. We will discuss them
in more detail in the following.

4.1 Ionization and excitation

A charged particle passing through an atom will interact through the Coulomb force with the atomic
electrons and the nucleus. The energy transferred to the electrons is about 4000 times larger compared to
the energy transferred to the nucleus because of the much higher mass of the nucleus. We can therefore
assume that energy is transferred only to the electrons. In a distant encounter between a passing particle
and an electron, the energy transfer will be small — the electron will not be liberated from the atom but
will just go to an excited state. In a close encounter the energy transfer can be large enough to exceed
the binding energy — the atom is ionized and the electron is liberated. The photons resulting from de-
excitation of the atoms and the ionization electrons and ions are used in particle detectors to generate
signals that can be read out with appropriate readout electronics.

The faster the particle is passing through the material, the less time there is for the Coulomb force
to act, and the energy transfer for the non-relativistic regime therefore decreases with particle velocity
v as 1/v%. If the particle velocity reaches the speed of light, this decrease should stop and stay at a
minimum plateau. After a minimum for Lorentz factors v = 1/4/1 — v2/c? of ~ 3, however, the energy
loss increases again because the kinematically allowed maximum energy that can be transferred from the
incoming particle to the atomic electron is increasing. This rise goes with logy and is therefore called
the relativistic rise. Bethe and Bloch devised a quantum-mechanical calculation of this energy loss in the
1930s. For ultra-relativistic particles, the very strong transverse field will polarize the material and the
energy loss will be slightly reduced.

The energy loss is, in addition, independent of the mass of the incoming particle. Dividing the
energy loss by the density of the material, it becomes an almost universal curve for all materials. The
energy loss of a particle with &~ 3 is around 1-2 x p[g/cm®] MeV/em. Taking iron as an example, the
energy for a high-energy particle due to ionization and excitation is about 1 GeV/m. The energy loss is
also proportional to the square of the particle charge, so a helium nucleus will deposit four times more
energy compared to a proton of the same velocity.

Dividing this energy loss by the ionization energy of the material, we can get a good estimate of
the number of electrons and ions that are produced in the material along the track of the passing particle.
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Since the energy deposited is a function of the particle’s velocity only, we can use it to identify particles:
measuring the momentum by the bending in a magnetic field and the velocity from the energy loss, we
can determine the mass of the particle in certain momentum regions.

If a particle is stopped in a material, the fact that the energy loss of charged particles increases
for smaller velocities results in large energy deposits at the end of the particle track. This is the basis of
hadron therapy, where charged particles are used for tumour treatment. These particles deposit a large
amount of dose inside the body at the location of the tumour without exposing the overlying tissue to
high radiation loads.

This energy loss is, of course, a statistical process, so the actual energy loss will show fluctua-
tions around the average given by the Bethe-Bloch description. This energy-loss distribution was first
described by Landau and it shows a quite asymmetric tail towards large values of the energy loss. This
large fluctuation of the energy loss is one of the important limiting factors of tracking detector resolution.

4.2 Multiple scattering, bremsstrahlung and pair production

The Coulomb interaction of an incoming particle with the atomic nuclei of the detector material results
in deflection of the particle, which is called multiple scattering. A particle entering a piece of material
perpendicular to the surface will therefore have a probability of exiting at a different angle, which has
a Gaussian distribution with a standard deviation that depends on the particle’s properties and the mate-
rial. This standard deviation is inversely proportional to the particle velocity and the particle momentum,
so evidently the effect of multiple scattering and related loss of tracking resolution and therefore mo-
mentum resolution is worst for low-energy particles. The standard deviation of the angular deflection
is, in addition, proportional to the square root of the material thickness, so clearly one wants to use the
thinnest possible tracking devices. The material properties are summarized in the so-called radiation
length X, and the standard deviation depends on the inverse root of that. Materials with small radiation
length are therefore not well suited to the volume of tracking devices. This radiation length X is propor-
tional to A/pZ? where A, p and Z are the nuclear number, density and atomic number of the material.
Tracking systems therefore favour materials with very low atomic number like beryllium for beampipes,
carbon fibre and aluminium for support structures, and thin silicon detectors or gas detectors as tracking
elements.

The deflection of the charged particle by the nuclei results in acceleration and therefore emission
of electromagnetic radiation. This effect is called “bremsstrahlung” and it plays a key role in calorimetric
measurements. The energy loss of a particle due to bremsstrahlung is proportional to the particle energy
and inversely proportional to the square of the particle mass. Since electrons and positrons are very
light, they are the only particles where energy loss due to bremsstrahlung can dominate over energy
loss due to ionization at typical present accelerator energies. The energy of a high-energy electron or
positron travelling a distance z in a material decreases as exp(—z/X), where X is again the above-
mentioned radiation length. The muon, the next lightest particle, has about 200 times the electron mass,
so the energy loss from bremsstrahlung is 40 000 times smaller at a given particle energy. A muon must
therefore have an energy of more than 400 GeV in order to have an energy loss from bremsstrahlung that
dominates over the ionization loss. This fact can be used to distinguish them from other particles, and it
is at the basis of electromagnetic calorimetry through a related effect, the so-called pair production.

A high-energy photon has a certain probability of converting into an electron—positron pair in the
vicinity of a nucleus. This effect is closely related to bremsstrahlung. The average distance that a high-
energy photon travels in a material before converting into an electron—positron pair is also approximately
given by the radiation length X. The alternating processes of bremsstrahlung and pair production result
in an electromagnetic cascade (shower) of more and more electrons and positrons with increasingly
degraded energy until they are stopped in the material by ionization energy loss. We will come back to
this in the discussion of calorimetry.
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4.3 Cerenkov radiation

Charged particles passing through material at velocities larger than the speed of light in the material
produce an electromagnetic shock wave that materializes as electromagnetic radiation in the visible and
ultraviolet range, the so-called Cerenkov radiation. With n being the refractive index of the material,
the speed of light in the material is ¢/n, so the fact that a particle does or does not produce Cerenkov
radiation can be used to apply a threshold to its velocity. This radiation is emitted at a characteristic
angle with respect to particle direction. This Cerenkov angle O, is related to the particle velocity v by
cos O, = ¢/nv, so by measuring this angle, one can determine the velocity of a charged particle.

4.4 Transition radiation

Transition radiation is emitted when a charged particle crosses the boundary between two materials of
different permittivity. The probability of emission is proportional to the Lorentz factor y of the particle
and is only appreciable for ultra-relativistic particles, so it is mainly used to distinguish electrons from
other hadrons. As an example a particle with v = 1000 has a probability of about 1% to emit a photon on
the transition between two materials, so one has to place many layers of material in the form of sheets,
foam or fibres in order to produce a measurable amount of radiation. The energy of the emitted photons
is in the keV region, so the fact that a charged particle is accompanied by X-rays is used to identify it as
an electron or positron.

5 Detector principles

In the previous section we have seen how charged particles leave a trail of excited atoms and electron—ion
pairs along their track. Now we can discuss how this is used to detect and measure them. We will first
discuss detectors based on atomic excitation, so-called scintillators, where the de-excitation produces
photons, which are reflected to appropriate photon detectors. Then we discuss gaseous and solid-state
detectors based on ionization, where the electrons and ions (holes) drift in electric fields, which induces
signals on metallic readout electrodes connected to readout electronics.

5.1 Detectors based on scintillation

The light resulting from complex de-excitation processes is typically in the ultraviolet to visible range.
The three important classes of scintillators are the noble gases, inorganic crystals and polycyclic hydro-
carbons (plastics). The noble gases show scintillation even in their liquid phase. An application of this
effect is the liquid argon time projection chamber where the instantaneous light resulting from the pas-
sage of the particle can be used to mark the start signal for the drift-time measurement. Inorganic crystals
show the largest light yield and are therefore used for precision energy measurement in calorimetry ap-
plications and also in nuclear medicine. Plastics constitute the most important class of scintillators owing
to their cheap industrial production, robustness and mechanical stability. The light yield of scintillators is
typically a few percent of the energy loss. In 1 cm of plastic scintillator, a high-energy particle typically
loses 1.5 MeV, of which 15 keV goes into visible light, resulting in about 15000 photons. In addition
to the light yield, the decay time, i.e. the de-excitation time, is an important parameter of the scintillator.
Many inorganic crystals such as Nal or CsI show very good light yield, but have decay times of tens,
even hundreds, of nanoseconds, so they have to be carefully chosen considering the rate requirements of
the experiments. Plastic scintillators, on the other hand, are very fast and have decay times on only the
nanosecond scale, and they are therefore often used for precision timing and triggering purposes.

The photons produced inside a scintillator are internally reflected to the sides of the material,
where so-called “light guides” are attached to guide the photons to appropriate photon detection devices.
A very efficient way to extract the light is to use so-called wavelength shifting fibres, which are attached
to the side of the scintillator materials. The light entering the fibre from the scintillator is converted into
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a longer wavelength there and it can therefore not reflect back into the scintillator. The light stays in the
fibre and is internally reflected to the end, where again the photon detector is placed.

The classic device used to convert these photons into electrical signals is the so-called photo-
multiplier. A photon hits a photocathode, a material with very small work function, and an electron is
liberated. This electron is accelerated in a strong electric field to a dynode, which is made from a mate-
rial with high secondary electron yield. The one electron hitting the surface will therefore create several
electrons, which are again guided to the next dynode, and so on, so that out of the single initial electron
one ends up with a sizeable signal of, for example, 107—108 electrons.

In recent years, the use of solid-state photomultipliers, the so-called avalanche photodiodes (APDs),
has become very popular, owing to their much lower price and insensitivity to magnetic fields.

5.2 Gaseous detectors

A high-energy particle leaves about 80 electron—ion pairs in 1 cm of argon, which is not enough charge
to be detected above the readout electronics noise of typically a few hundred to a few thousand electrons,
depending on the detector capacitance and electronics design. A sizeable signal is only seen if a few
tens or hundreds of particles cross the gas volume at the same time, and in this operational mode such
a gas detector, consisting of two parallel metal electrodes with a potential applied to one of them, is
called an “ionization chamber”. In order to be sensitive to single particles, a gas detector must have
internal electron multiplication. This is accomplished most easily in the wire chamber. Wires of very
small diameter, between 10 and 100 pm, are placed between two metallic plates a few millimetres apart.
The wires are at a high voltage of a few kilovolts, which results in a very high electric field close to the
wire surface. The ionization electrons move towards the thin wires, and, in the strong fields close to
the wires, the electrons are accelerated to energies above the ionization energy of the gas, which results
in secondary electrons and as a consequence an electron avalanche. Gas gains of 10*~10° are typically
used, which makes the wire chambers perfectly sensitive to single tracks. In this basic application, the
position of the track is therefore given by the position of the wire that carries a signal, so we have a
one-dimensional positioning device.

One has to keep in mind that the signal in the wire is not due to the electrons entering wire; rather,
the signal is induced while the electrons are moving towards the wire and the ions are moving away from
it. Once all charges arrive at the electrode, the signal is terminated. The signals in detectors based on
ionization are therefore induced on the readout electrodes by the movement of the charges. This means
that we find signals not only on electrodes that receive charges but also on other electrodes in the detector.
For the wire chamber one can therefore segment the metal plates (cathodes) into strips in order to find
the second coordinate of the track along the wire direction. In many applications, one does not even
read out the wire signals but instead one segments the cathode planes into square or rectangular pads
to get the full two-dimensional information from the cathode pad readout. The position resolution is in
this case not limited by the pad size. If one uses pad dimensions of the order of the cathode-to-wire
distance, one finds signals on a few neighbouring pads, and, by using centre-of-gravity interpolation, one
can determine the track position, which is only 1/10 to 1/100 of the pad size. Position resolution down
to 50 ;m and rate capabilities of hundreds of kHz of particles per cm? per second can be achieved with
these devices.

Another way to achieve position resolution that is far smaller than the wire separation is the so-
called drift chamber. One determines the time when the particle passes the detector by an external device,
which can be a scintillator or the accelerator clock in a collider experiment, and one uses the arrival time
of the ionization electrons at the wire as the measure of the distance between the track and the wire. The
ATLAS muons system, for instance, uses tubes of 15 mm radius with a central wire, and the measurement
of the drift time determines the track position to 80 xm precision.

The choice of the gas for a given gas detector is dominated by the transport properties of electrons
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and ions in gases, because these determine the signal and timing characteristics. In order to avoid the
ionization electrons getting lost on their way to the readout wires, one can use only gases with very small
electronegativity. The main component of detector gases are therefore the noble gases like argon or neon.
Other admixtures like hydrocarbons (methane, isobutane) or COs are also needed in order to “tune” the
gas transport properties and to ensure operational stability. Since hydrocarbons were shown to cause
severe chamber ageing effects at high rates, the LHC detectors use almost exclusively argon, neon and
xenon together with CO» for all wire chambers.

Typical drift velocities of electrons are in the range of 5—10 cm/us. The velocity of the ions that are
produced in the electron avalanche at the wire and are moving back to the cathodes is about 1000-5000
times smaller than the electron velocity. The movement of these ions produced long signal tails in wire
chambers, which have to be properly removed by dedicated filter electronics.

During the past 10-15 years a very large variety of new gas detectors have entered particle physics
instrumentation, the so-called micropattern gas detectors like the GEM (gas electron multiplier) or the
MICROMEGA (micro mesh gas detector). In these detectors the high fields for electron multiplication
are produced by micropattern structures that are realized with photolithographic methods. Their main
advantages are rate capabilities far in excess of those achievable in wire chambers, low material budget
construction and semi-industrial production possibilities.

5.3 Solid-state detectors

In gaseous detectors, a charged particle liberates electrons from the atoms, which are freely bouncing
between the gas atoms. An applied electric field makes the electrons and ions move, which induces
signals on the metal readout electrodes. For individual gas atoms, the electron energy levels are discrete.

In solids (crystals), the electron energy levels are in “bands”. Inner-shell electrons, in the lower
energy bands, are closely bound to the individual atoms and always stay with “their” atoms. However,
in a crystal there are energy bands that are still bound states of the crystal, but they belong to the entire
crystal. Electrons in these bands and the holes in the lower band can move freely around the crystal, if
an electric field is applied. The lowest of these bands is called the “conduction band”.

If the conduction band is filled, the crystal is a conductor. If the conduction band is empty and
“far away” from the last filled band, the valence band, the crystal is an insulator. If the conduction band
is empty but the distance to the valence band is small, the crystal is called a semiconductor.

The energy gap between the valence band and the conduction band is called the band gap E,. The
band gaps of diamond, silicon and germanium are 5.5, 1.12 and 0.66 eV, respectively. If an electron in
the valence band gains energy by some process, it can be excited into the conduction band and a hole
in the valence band is left behind. Such a process can be the passage of a charged particle, but also
thermal excitation with a probability proportional to exp(—FEy/kT’). The number of electrons in the
conduction band therefore increases with temperature, i.e. the conductivity of a semiconductor increases
with temperature.

It is possible to treat electrons in the conduction band and holes in the valence band similar to
free particles, but with an effective mass different from elementary electrons not embedded in the lattice.
This mass is furthermore dependent on other parameters such as the direction of movement with respect
to the crystal axis. If we want to use a semiconductor as a detector for charged particles, the number
of charge carriers in the conduction band due to thermal excitation must be smaller than the number
of charge carriers in the conduction band produced by the passage of a charged particle. Diamond can
be used for particle detection at room temperature; silicon and germanium must be cooled, or the free
charge carriers must be eliminated by other tricks like “doping”.

The average energy to produce an electron—hole pair for diamond, silicon and germanium, respec-
tively, is 13, 3.6 and 2.9 eV. Compared to gas detectors, the density of a solid is about a factor of 1000
larger than that of a gas, and the energy to produce an electron—hole pair for silicon, for example, is
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a factor 7 smaller than the energy to produce an electron—ion pair in argon. The number of primary
charges in a silicon detector is therefore about 10* times larger than in a gas and, as a result, solid-state
detectors do not need internal amplification. While, in gaseous detectors, the velocities of electrons and
ions differ by a factor of 1000, the velocities of electrons and holes in many semiconductor detectors are
quite similar, which results in very short signals of a few tens of nanosecond length.

The diamond detector works like a solid-state ionization chamber. One places diamond of a few
hundred micrometres thickness between two metal electrodes and applies an electric field. The very large
electron and hole mobilities of diamond result in very fast and short signals, so, in addition to tracking
application, the diamond detectors are used as precision timing devices.

Silicon is the most widely used semiconductor material for particle detection. A high-energy
particle produces around 33 000 electron—hole pairs in 300 pum of silicon. At room temperature there
are, however, 1.45 x 100 electron—hole pairs per cm>. To apply silicon as a particle detector at room
temperature, one therefore has to use the technique of “doping”. Doping silicon with arsenic makes it
an n-type conductor (more electrons than holes); doping silicon with boron makes it a p-type conductor
(more holes that electrons). Putting an n-type and p-type conductor in contact realizes a diode.

At a p—n junction the charges are depleted and a zone free of charge carriers is established. By
applying a voltage, the depletion zone can be extended to the entire diode, which results in a highly
insulating layer. An ionizing particle produces free charge carriers in the diode, which drift in the electric
field and therefore induce an electrical signal on the metal electrodes. As silicon is the most commonly
used material in the electronics industry, it has one big advantage with respect to other materials, namely
highly developed technology.

Strip detectors are a very common application, where the detector is segmented into strips of a few
50-150 pm pitch and the signals are read out on the ends by wire bonding the strips to the readout elec-
tronics. The other coordinate can then be determined, either by another strip detector with perpendicular
orientation, or by implementing perpendicular strips on the same wafer. This technology is widely used
at the LHC, and the CMS tracker uses 445 m? of silicon detectors.

In the very-high-multiplicity region close to the collision point, a geometry of crossed strips results
in too many “ghost” tracks, and one has to use detectors with a chessboard geometry, so-called pixel
detectors, in this region. The major complication is the fact that each of the chessboard pixels must be
connected to a separate readout electronics channel. This is achieved by building the readout electronics
wafer in the same geometry as the pixel layout and soldering (bump bonding) each of the pixels to its
respective amplifier. Pixel systems in excess of 100 million channels are successfully operating at the
LHC.

A clear goal of current solid-state detector development is the possibility of integration of the
detection element and the readout electronics into a monolithic device.

6 Calorimetry

The energy measurement of charged particles by completely absorbing (“stopping”) them is called
calorimetry. Electromagnetic (EM) calorimeters measure the energy of electrons and photons. Hadron
calorimeters measure the energy of charged and neutral hadrons.

6.1 Electromagnetic calorimeters

As discussed above, high-energy electrons suffer significant bremsstrahlung owing to their small mass.
The interplay of bremsstrahlung and pair production will develop a single electron or photon into a
shower of electrons and positrons. The energy of these shower particles decreases exponentially until all
of them are stopped due to ionization loss. The total amount of ionization produced by the electrons and
positrons is then a measure of the particle energy. The characteristic length scale of this shower process
is called the radiation length X, and in order to fully absorb a photon or electron one typically uses a
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thickness of about 25 X. One example of such an EM calorimeter at the LHC is the crystal calorimeter
of CMS, which uses PbW, crystals. The radiation length X of this crystal is 9 mm, so with a length
of 22 cm one can fully absorb the high-energy electron and photon showers. In these crystals the light
produced by the shower particles is used as the measure of the energy.

Liquid noble gases are the other prominent materials used for EM calorimetry. In these devices, the
total amount of ionization is used as a measure of the energy. The NA48 experiment uses a homogeneous
calorimeter of liquid krypton, which has a radiation length of 4.7 cm. Liquid argon has a radiation length
of 14 cm, so one would need a depth of 350 cm to fully absorb the EM showers. Since this is not
practicable, one interleaves the argon with absorber material of smaller radiation length, such as lead,
to allow a more compact design of the calorimeter. Such an alternating assembly of absorber material
and active detector material is called a sampling calorimeter. Although the energy resolution of such a
device is worse compared to a homogeneous calorimeter, for many applications it is good enough. The
ATLAS experiment uses such a liquid argon sampling calorimeter. Other calorimeter types use plastic
scintillators interleaved with absorber materials.

The energy resolution of calorimeters improves as 1/v/E where E is the particle energy. This
means that the energy measurement becomes “easier” at high-energy colliders. For homogeneous EM
calorimeters, energy resolutions of o /E = 1%/+/E (GeV) are achieved; typical resolutions of sam-
pling calorimeters are in the range of o/ E = (10-20%)/+/E (GeV).

6.2 Hadron calorimeters

While only electrons and photons have small enough masses to produce significant EM bremsstrahlung,
there is a similar “strong-interaction bremsstrahlung effect” for hadrons. High-energy hadrons radiate
pions in the vicinity of a nucleus, and a cascade of these pions develops, which also fully absorbs the
incident hadron, and the total ionization loss of this cascade is used to measure the particle energy.
The length scale of this shower development is the so-called hadronic interaction length A, which is
significantly larger than the radiation length X. For iron the radiation length X is 1.7 cm, whereas the
hadronic interaction length X is 17 cm. Hadron calorimeters are therefore significantly larger and heavier
than EM calorimeters. The energy resolution of hadron calorimeters is typically worse than that of EM
calorimeters because of the more complex shower processes. About 50% of the energy ends up in pions,
20% ends up in nuclear excitation and 30% goes into slow neutrons, which are usually not detected. A
fraction of the produced pions consists of g, which instantly decay into two photons, which in turn start
an EM cascade. The relative fluctuations of all these processes will result in a larger fluctuation of the
calorimeter signal and therefore reduced resolution. Hadron calorimeters are also typically realized as
sampling calorimeters with lead or steel plates interleaved with scintillators or liquid noble gases. Energy
resolutions of o /E = (50-100%)/+/ E (GeV) are typical.

7 Particle identification

By measuring the trajectory of a particle in a magnetic field, one measures the particle’s momentum, so
in order to determine the particle type, i.e. the particle’s mass, one needs an additional measurement.
Electrons, positrons and photons can be identified by electromagnetic calorimetry, and muons can be
identified by the fact that they traverse large amounts of material without being absorbed. To distinguish
between protons, kaons and pions is a slightly more subtle affair, and it is typically achieved by measuring
the particle’s velocity in addition to the momentum.

For kinetic energies that are not too far from the rest mass of the particle, the velocity is not yet
too close to the speed of light, such that one can measure the velocity by time of flight. With precision
timing detectors like scintillators or resistive plate chambers, time resolutions of less than 100 ps are
being achieved. For a time-of-flight distance of 1 m, this allows kaon/pion separation up to 1.5 GeV/e,
and proton/pion separation up to about 3 GeV/c.
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The energy loss of a particle also measures its velocity, so particle identification up to tens of GeV
for pions and protons can be achieved. In gas detectors with pad readout and charge interpolation, the
signal pulse height is measured for centre-of-gravity interpolation in view of precision tracking. Since
the pulse height is a measure of the energy loss, it can in addition be used for particle identification. Time
projection chambers are the best examples of combined tracking and particle identification detectors.

For larger velocities, one can use the measurement of the Cerenkov angle to find the particle
velocity. This radiation is emitted at a characteristic angle that is uniquely related to the particle velocity.
Using short radiators this angle can be determined simply by measuring the radius of the circle produced
by the photons in a plane at a given distance from the radiator. Another technique uses a spherical mirror
to project the photons emitted along a longer path onto a plane that also forms a circle. Detectors of this
type are called ring imaging Cerenkov detectors (RICH). Since only a “handful” of photons are emitted
over typical radiator thicknesses, very efficient photon detectors are the key ingredient to Cerenkov
detectors. Using very long gas radiators with very small refractive index, kaon/pion separation up to
momenta of 200 GeV/c has been achieved.

8 Signal readout

Many different techniques to make particle tracks visible were developed in the last century. The cloud
chamber, the bubble chamber and the photographic emulsion were taking actual pictures of the particle
tracks. Nowadays we have highly integrated electronic detectors that allow high particle rates to be
processed with high precision. Whereas bubble chambers were almost unbeatable in terms of position
resolution (down to a few micrometres) and the ability to investigate very complex decay processes, these
detectors were only able to record a few events per second, which is not suitable for modern high-rate
experiments. The LHC produces 10 proton—proton collisions per second, of which, for example, 100
produce W bosons that decay into leptons, 10 produce a top quark pair and 0.1 produce a hypothetical
Higgs particle of 100 GeV. Only around 100 of the 10? events per second can be written to tape, which
still results in petabytes of data per year to be analysed. The techniques to reduce the rate from 10° to
100 Hz by selecting only the “interesting” events is the realm of the so-called trigger and data acquisition.
With a bunch crossing time of 25 ns, the particles produced in one collision have not even reached the
outer perimeter of the detector when the next collision is already taking place. The synchronization of
the data belonging to one single collision is therefore another very challenging task. In order to become
familiar with the techniques and vocabulary of trigger and data acquisition, we discuss a few examples.

If, for example, we want to measure temperature, we can use the internal clock of a PC to peri-
odically trigger the measurement. If, on the other hand, we want to measure the energy spectrum of the
beta-decay electrons of a radioactive nucleus, we need to use the signal itself to trigger the readout. We
can split the detector signal caused by the beta electron and use one path to apply a threshold to the sig-
nal, which produces a “logic” pulse that can “trigger” the measurement of the pulse height in the second
path. Until this trigger signal is produced, one has to “store” the signal somewhere, which is done in the
simplest application by a long cable where the signal can propagate.

If we measure the beta electrons, we cannot distinguish the signals from cosmic particles that are
traversing the detector. By building a box around our detector that is made from scintillator, for example,
we can determine whether a cosmic particle has entered the detector or whether it was a genuine beta-
decay electron. Triggering the readout on the condition of a detector signal in coincidence with the
absence of a signal in the scintillator box, we can therefore arrive at a pure beta spectrum sample.

Another example of a simple “trigger” logic is the measurement of the muon lifetime with a stack
of three scintillators. Many of the cosmic muons will pass through all three scintillators, but some of
them will have lower energy such that they traverse the first one and get stuck in the central one. After a
certain time the muon will decay and the decay electron produces a signal in the central and the bottom
scintillators. By starting a clock with a signal condition of 1 AND 2 ANDNOT 3 and stopping the clock
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with NOT 1 AND 2 AND 3, one can measure the lifetime of the muons.

At the LHC experiment some typical trigger signals are high-energy events transverse to the proton
beam direction, which signify interesting high-energy parton collisions. High-energy clusters in the
calorimeters or high-energy muons are therefore typical trigger signals, which start the detector readout
and ship the data to dedicated processing units for further selection refinement.

In order to cope with high rates, one has to find appropriate ways to deal with the “processing”
time, i.e. the time while the electronics is busy with reading out the data. This we discuss in the following.
First we assume a temperature sensor connected to a PC. The PC has an internal clock, which can be
used to periodically trigger the temperature measurement and write the values to disk. The measurement
and data storage will take a certain time 7, so this “deadtime” limits the maximum acquisition rate. For
a deadtime 7 = 1 ms, we have a maximum acquisition rate of f = 1/7 = 1 kHz.

For the example of the beta spectrum measurement, we are faced with the fact that the events
are completely random and it can happen that another beta decay takes place while the acquisition of the
previous one is still ongoing. In order to avoid triggering the readout while the acquisition of the previous
event is still ongoing, one has to introduce a so-called “busy logic”, which blocks the trigger while the
readout is ongoing. Because the time between events typically follows an exponential distribution, there
will always be events lost even if the acquisition time is smaller than the average rate of events. In order
to collect 99% of the events, one has to overdesign the readout system with a deadtime of only 10% of the
average time between events. To avoid this problem, one uses a so-called FIFO (first-in first-out) buffer
in the data stream. This buffer receives as input the randomly arriving data and stores them in a queue.
The readout of the buffer happens at constant rate, so by properly choosing the depth of the buffer and
the readout rate, it is possible to accept all data without loss, even for readout rates close to the average
event rate. This transformation from random input to clocked output is call “de-randomization”.

In order to avoid “storing” the signals in long cables, one can also replace them by FIFOs. At
colliders, where the bunch crossing comes in regular intervals, the data are stored in so-called front-end
pipelines, which sample the signals at the bunch crossing rate and store them until a trigger decision
arrives.

The event selection is typically performed at several levels of increasing refinement. The fast trig-
ger decisions in the LHC experiments are performed by specialized hardware on or close to the detector.
After a coarse events selection, the rates are typically low enough to allow a more refined selection using
dedicated computer farms that do more sophisticated analysis of the events. The increasing comput-
ing power, however, drives the concepts of trigger and data acquisition into quite new directions. The
concepts for some future high-energy experiments foresee so-called “asynchronous” data-driven read-
out concepts, where the signal of each detector element receives a time stamp and is then shipped to a
computer farm where the event synchronization and events selection is carried out purely by software
algorithms.
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Abstract

This document is a pedagogical introduction to statistics for particle physics.
Emphasis is placed on the terminology, concepts, and methods being used at
the Large Hadron Collider. The document addresses both the statistical tests
applied to a model of the data and the modeling itself. I expect to release
updated versions of this document in the future.

1 Introduction

It is often said that the language of science is mathematics. It could well be said that the language of
experimental science is statistics. It is through statistical concepts that we quantify the correspondence
between theoretical predictions and experimental observations. While the statistical analysis of the data
is often treated as a final subsidiary step to an experimental physics result, a more direct approach would
be quite the opposite. In fact, thinking through the requirements for a robust statistical statement is an
excellent way to organize an analysis strategy.

In these lecture notes' I will devote significant attention to the strategies used in high-energy
physics for developing a statistical model of the data. This modeling stage is where you inject your
understanding of the physics. I like to think of the modeling stage in terms of a conversation. When
your colleague asks you over lunch to explain your analysis, you tell a story. It is a story about the signal
and the backgrounds — are they estimated using Monte Carlo simulations, a side-band, or some data-
driven technique? Is the analysis based on counting events or do you use some discriminating variable,
like an invariant mass or perhaps the output of a multivariate discriminant? What are the dominant
uncertainties in the rate of signal and background events and how do you estimate them? What are the
dominant uncertainties in the shape of the distributions and how do you estimate them? The answer to
these questions forms a scientific narrative; the more convincing this narrative is the more convincing
your analysis strategy is. The statistical model is the mathematical representation of this narrative and
you should strive for it to be as faithful a representation as possible.

Once you have constructed a statistical model of the data, the actual statistical procedures should
be relatively straight forward. In particular, the statistical tests can be written for a generic statistical
model without knowledge of the physics behind the model. The goal of the RooStats project was
precisely to provide statistical tools based on an arbitrary statistical model implemented with the RooFit
modeling language. While the formalism for the statistical procedures can be somewhat involved, the
logical justification for the procedures is based on a number of abstract properties for the statistical
procedures. One can follow the logical argument without worrying about the detailed mathematical
proofs that the procedures have the required properties. Within the last five years there has been a
significant advance in the field’s understanding of certain statistical procedures, which has led to to some
commonalities in the statistical recommendations by the major LHC experiments. I will review some of
the most common statistical procedures and their logical justification.

!These notes borrow significantly from other documents that T am writing contemporaneously; specifically Ref. [1], docu-
mentation for HistFactory [2] and the ATLAS Higgs combination.
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2 Conceptual building blocks for modeling
2.1 Probability densities and the likelihood function

This section specifies my notations and conventions, which I have chosen with some care.? Our statistical
claims will be based on the outcome of an experiment. When discussing frequentist probabilities, one
must consider ensembles of experiments, which may either be real, based on computer simulations, or
mathematical abstraction.

Figure 1 establishes a hierarchy that is fairly general for the context of high-energy physics. Imag-
ine the search for the Higgs boson, in which the search is composed of several “channels” indexed by c.
Here a channel is defined by its associated event selection criteria, not an underlying physical process.
In addition to the number of selected events, n., each channel may make use of some other measured
quantity, x., such as the invariant mass of the candidate Higgs boson. The quantities will be called “ob-
servables” and will be written in roman letters e.g. x.. The notation is chosen to make manifest that the
observable z is frequentist in nature. Replication of the experiment many times will result in different
values of = and this ensemble gives rise to a probability density function (pdf) of z, written f(z), which
has the important property that it is normalized to unity

/f(w)dx =1.

In the case of discrete quantities, such as the number of events satisfying some event selection, the
integral is replaced by a sum. Often one considers a parametric family of pdfs

f(zla),

read “f of z given o” and, henceforth, referred to as a probability model or just model. The parameters
of the model typically represent parameters of a physical theory or an unknown property of the detector’s
response. The parameters are not frequentist in nature, thus any probability statement associated with «
is Bayesian.? In order to make their lack of frequentist interpretation manifest, model parameters will be
written in greek letters, e.g.: 11, 0, o, v.* From the full set of parameters, one is typically only interested
in a few: the parameters of interest. The remaining parameters are referred to as nuisance parameters,
as we must account for them even though we are not interested in them directly.

While f(x) describes the probability density for the observable x for a single event, we also need
to describe the probability density for a dataset with many events, D = {x1, ..., x,}. If we consider the
events as independently drawn from the same underlying distribution, then clearly the probability density
is just a product of densities for each event. However, if we have a prediction that the total number of
events expected, call it v, then we should also include the overall Poisson probability for observing n
events given v expected. Thus, we arrive at what statisticians call a marked Poisson model,

n

f(D|v, ) = Pois(n|v) [ ] f(xela) , (1)

e=1

where I use a bold f to distinguish it from the individual event probability density f(z). In prac-
tice, the expectation is often parametrized as well and some parameters simultaneously modify the ex-
pected rate and shape, thus we can write v — v(«). In RooFit both f and f are implemented with
a RooAbsPdf; where RooAbsPdf: :getVal(x) always provides the value of f(z) and depending on
RooAbsPdf : :extendMode () the value of v is accessed via RooAbsPdf : :expectedEvents ().

2As in the case of relativity, notational conventions can make some properties of expressions manifest and help identify
mistakes. For example, g, x"y" is manifestly Lorentz invariant and z* + y, is manifestly wrong.

3Note, one can define a conditional distribution f(z|y) when the joint distribution f(x, %) is defined in a frequentist sense.

*While it is common to write s and b for the number of expected signal and background, these are parameters not observ-
ables, so I will write vs and vg. This is one of few notational differences to Ref. [1].
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The likelihood function L(«) is numerically equivalent to f(z|«) with z fixed — or f(D]«) with
D fixed. The likelihood function should not be interpreted as a probability density for «. In particular,
the likelihood function does not have the property that it normalizes to unity

Not True!
L a=1.

It is common to work with the log-likelihood (or negative log-likelihood) function. In the case of a
marked Poisson, we have what is commonly referred to as an extended likelihood [3]

—InL(a) = v(a)—nlhhv(a Zlnf (xe) + lnn'

constant

extended term

To reiterate the terminology, probability density function refers to the value of f as a function of x given
a fixed value of «; likelihood function refers to the value of f as a function of « given a fixed value of x;
and model refers to the full structure of f(z|«).

Probability models can be constructed to simultaneously describe several channels, that is several
disjoint regions of the data defined by the associated selection criteria. I will use e as the index over
events and ¢ as the index over channels. Thus, the number of events in the ¢*® channel is n. and the
value of the '™ event in the ¢ channel is z.. In this context, the data is a collection of smaller datasets:
Dsim = {Dl, - ’Dcmax} = {{CCC:l,e:l ce .%'C:Le:nc}, R {%czcmaxyezl < Te=Cmax,6=Nemax }} InRooFit
the index c is referred to as a RooCategory and it is used to inside the dataset to differentiate events as-
sociated to different channels or categories. The class RooSimultaneous associates the dataset D, with
the corresponding marked Poisson model. The key point here is that there are now multiple Poisson
terms. Thus we can write the combined (or simultaneous) model

fim(Dsmla) =[]  |Pois(ne|v(a focem , ©)

cEchannels

remembering that the symbol product over channels has implications for the structure of the dataset.

2.2 Auxiliary measurements

Auxiliary measurements or control regions can be used to estimate or reduce the effect of systematic
uncertainties. The signal region and control region are not fundamentally different. In the language that
we are using here, they are just two different channels.

A common example is a simple counting experiment with an uncertain background. In the fre-
quentist way of thinking, the true, unknown background in the signal region is a nuisance parameter,
which I will denote v.> If we call the true, unknown signal rate vs and the number of events in the
signal region ngr then we can write the model Pois(ngr|vs + vg). As long as vp is a free parameter,
there is no ability to make any useful inference about vg. Often we have some estimate for the back-
ground, which may have come from some control sample with ncr events. If the control sample has no
signal contamination and is populated by the same background processes as the signal region, then we
can write Pois(ncr|7vp), where ncg is the number of events in the control region and 7 is a factor used
to extrapolate the background from the signal region to the control region. Thus the total probability
model can be written f;,, (nsr, ncr|vs, vB) = Pois(nsr|vs + vB) - Pois(ncr|Tvp). This is a special
case of Eq. 2 and is often referred to as the “on/off” problem [4].

Based on the control region alone, one would estimate (or ‘measure’) vg = ncr/7. Intuitively the
estimate comes with an ‘uncertainty’ of \/ncr /7. We will make these points more precise in Sec. 3.1, but

>Note, you can think of a counting experiment in the context of Eq. 1 with f(z) = 1, thus it reduces to just the Poisson
term.
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Fig. 1: A schematic diagram of the logical structure of a typical particle physics probability model and dataset
structures.

the important lesson here is that we can use auxiliary measurements (ie. ncg) to describe our uncertainty
on the nuisance parameter vp statistically. Furthermore, we have formed a statistical model that can be
treated in a frequentist formalism — meaning that if we repeat the experiment many times ncg, will vary
and so will the estimate of vp. It is common to say that auxiliary measurements ‘constrain’ the nuisance
parameters. In principle the auxiliary measurements can be every bit as complex as the main signal
region, and there is no formal distinction between the various channels.

The use of auxiliary measurements is not restricted to estimating rates as in the case of the on/off
problem above. One can also use auxiliary measurements to constrain other parameters of the model.
To do so, one must relate the effect of some common parameter «, in multiple channels (ie. the signal
region and a control regions). This is implicit in Eq. 2.

2.3 Frequentist and Bayesian reasoning

The intuitive interpretation of measurement of vp to be ncr /7T & \/ncr/7 is that the parameter v has
a distribution centered around ncr/7 with a width of \/ncr/7. With some practice you will be able
to immediately identify this type of reasoning as Bayesian. It is manifestly Bayesian because we are
referring to the probability distribution of a parameter. The frequentist notion of probability of an event
is defined as the limit of its relative frequency in a large number of trials. The large number of trials
is referred to as an ensemble. In particle physics the ensemble is formed conceptually by repeating the
experiment many times. The true values of the parameters, on the other hand, are states of nature, not the
outcome of an experiment. The true mass of the Z boson has no frequentist probability distribution. The
existence or non-existence of the Higgs boson has no frequentist probability associated with it. There is
a sense in which one can talk about the probability of parameters, which follows from Bayes’s theorem:

P(B|A)P(A)

P(AIB) = =55

3)
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Bayes’s theorem is a theorem, so there’s no debating it. It is not the case that Frequentists dispute whether
Bayes’s theorem is true. The debate is whether the necessary probabilities exist in the first place. If one
can define the joint probability P(A, B) in a frequentist way, then a Frequentist is perfectly happy using
Bayes theorem. Thus, the debate starts at the very definition of probability.

The Bayesian definition of probability clearly can’t be based on relative frequency. Instead, it
is based on a degree of belief. Formally, the probability needs to satisfy Kolmogorov’s axioms for
probability, which both the frequentist and Bayesian definitions of probability do. One can quantify
degree of belief through betting odds, thus Bayesian probabilities can be assigned to hypotheses on
states of nature. In practice human’s bets are not generally not ‘coherent’ (see ‘dutch book’), thus this
way of quantifying probabilities may not satisfy the Kolmogorov axioms.

Moving past the philosophy and accepting the Bayesian procedure at face value, the practical
consequence is that one must supply prior probabilities for various parameter values and/or hypotheses.
In particular, to interpret our example measurement of ncg as implying a probability distribution for vp
we would write

m(vglncr) < f(ncrlve)n(ve) 4)

where 7(vg|ncr) is called the posterior probability density, f(ncr|vp) is the likelihood function, and
n(vp) is the prior probability. Here I have suppressed the somewhat curious term P(ncg), which can
be thought of as a normalization constant and is also referred to as the evidence. The main point here is
that one can only invert ‘the probability of ncg given v’ to be ‘the probability of vp given ncg’ if one
supplies a prior. Humans are very susceptible to performing this logical inversion accidentally, typically
with a uniform prior on vg. Furthermore, the prior degree of belief cannot be derived in an objective
way. There are several formal rules for providing a prior based on formal rules (see Jefferey’s prior and
Reference priors), though these are not accurately described as representing a degree of belief. Thus,
that style of Bayesian analysis is often referred to as objective Bayesian analysis.

Some useful and amusing quotes on Bayesian and Frequentist reasoning:

“Using Bayes’s theorem doesn’t make you a Bayesian, always using Bayes’s theorem makes
you a Bayesian.” —unknown

“Bayesians address the questions everyone is interested in by using assumptions that no
one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to
anyone.”- Louis Lyons

2.4 Consistent Bayesian and Frequentist modeling of constraint terms

Often a detailed probability model for an auxiliary measurement are not included directly into the model.
If the model for the auxiliary measurement were available, it could and should be included as an addi-
tional channel as described in Sec. 2.2. The more common situation for background and systematic
uncertainties only has an estimate, “central value”, or best guess for a parameter «;, and some notion
of uncertainty on this estimate. In this case one typically resorts to including idealized terms into the
likelihood function, here referred to as “constraint terms”, as surrogates for a more detailed model of the
auxiliary measurement. I will denote this estimate for the parameters as a,, to make it manifestly fre-
quentist in nature. In this case there is a single measurement of a,, per experiment, thus it is referred to as
a “global observable” in RooStats. The treatment of constraint terms is somewhat ad hoc and discussed
in more detail in Sec. 4.1.6. I make it a point to write constraint terms in a manifestly frequentist form
faploy).

Probabilities on parameters are legitimate constructs in a Bayesian setting, though they will always
rely on a prior. In order to distinguish Bayesian pdfs from frequentist ones, greek letters will be used for
their distributions. For instance, a generic Bayesian pdf might be written 7(«). In the context of a main
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measurement, one might have a prior for «,, based on some estimate a,. In this case, the prior 7(c,)
is really a posterior from some previous measurement. It is desirable to write with the help of Bayes
theorem

m(aplap) o< L(ay)n(ap) = faplop)n(ap) (5)
where 7)(cy,) is some more fundamental prior.® By taking the time to undo the Bayesian reasoning into
an objective pdf or likelihood and a prior we are able to write a model that can be used in a frequentist

context. Within RooStats, the care is taken to separately track the frequentist component and the prior;
this is achieved with the ModelConfig class.

If one can identify what auxiliary measurements were performed to provide the estimate of «;, and
its uncertainty, then it is not a logical fallacy to approximate it with a constraint term, it is simply a con-
venience. However, not all uncertainties that we deal result from auxiliary measurements. In particular,
some theoretical uncertainties are not statistical in nature. For example, uncertainty associated with the
choice of renormalization and factorization scales and missing higher-order corrections in a theoretical
calculation are not statistical. Uncertainties from parton density functions are a bit of a hybrid as they are
derived from data but require theoretical inputs and make various modeling assumptions. In a Bayesian
setting there is no problem with including a prior on the parameters associated to theoretical uncertain-
ties. In contrast, in a formal frequentist setting, one should not include constraint terms on theoretical
uncertainties that lack a frequentist interpretation. That leads to a very cumbersome presentation of re-
sults, since formally the results should be shown as a function of the uncertain parameter. In practice,
the groups often read Eq. 5 to arrive at an effective frequentist constraint term.

I will denote the set of parameters with constraint terms as S and the global observables G = {a,}
with p € S. By including the constraint terms explicitly (instead of implicitly as an additional channel)
we arrive at the total probability model, which we will not need to generalize any further:

fiot(Dsim, Glar) = H Pois(nc|ve(a)) H Je(zeela) | - H folaploy) . (6)
cEchannels e=1 pES

3 Physics questions formulated in statistical language
3.1 Measurement as parameter estimation

One of the most common tasks of the working physicist is to estimate some model parameter. We do it
so often, that we often don’t realize it. For instance, the sample mean Z = ) ., z./n is an estimate for
the mean, 1, of a Gaussian probability density f(z|u, 0) = Gauss(z|u, o). More generally, an estimator
&(D) is some function of the data and its value is used to estimate the true value of some parameter .
There are various abstract properties such as variance, bias, consistency, efficiency, robustness, etc [5].
The bias of an estimator is defined as B(&) = E[&] — «, where E means the expectation value of
Ela] = [ &(z) f(z)dz or the probability-weighted average. Clearly one would like an unbiased estima-
tor. The variance of an estimator is defined as var[d] = E[(a — E[d])?]; and clearly one would like
an estimator with the minimum variance. Unfortunately, there is a tradeoff between bias and variance.
Physicists tend to be allergic to biased estimators, and within the class of unbiased estimators, there is
a well defined minimum variance bound referred to as the Cramér-Rao bound (that is the inverse of the

Fisher information, which we will refer to again later).

The most widely used estimator in physics is the maximum likelihood estimator (MLE). It is
defined as the value of o which maximizes the likelihood function L(«). Equivalently this value, &,
maximizes log L(«) and minimizes — log L(«). The most common tool for finding the maximum likeli-
hood estimator is Minuit, which conventionally minimizes — log L(«) (or any other function) [6]. The
jargon is that one ‘fits’ the function and the maximum likelihood estimate is the ‘best fit value’.

8Glen Cowan has referred to this more fundamental prior as an ’urprior’, which is based on the German use of ’ur’ for
forming words with the sense of ‘proto-, primitive, original’.
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When one has a multi-parameter likelihood function L(cx), then the situation is slightly more
complicated. The maximum likelihood estimate for the full parameter list, &, is clearly defined. The
various components ¢, are referred to as the unconditional maximum likelihood estimates. In the physics
jargon, one says all the parameters are ‘floating’. One can also ask about maximum likelihood estimate
of vy, is with some other parameters «, fixed; this is called the conditional maximum likelihood estimate
and is denoted &,(c,). These are important quantities for defining the profile likelihood ratio, which
we will discuss in more detail later. The concept of variance of the estimates is also generalized to
the covariance matrix cov|ay, o] = E[(G&p — ap) (& — ayy)] and is often denoted X,,,. Note, the
diagonal elements of the covariance matrix are the same as the variance for the individual parameters, ie.
cov|ay, o) = varloy).

In the case of a Poisson model Pois(n|v) the maximum likelihood estimate of v is simply 7 = n.
Thus, it follows that the variance of the estimator is var[P] = var[n] = v. Thus if the true rate is v one
expects to find estimates © with a characteristic spread around v; it is in this sense that the measurement
has a estimate has some uncertainty or ‘error’ of \/n. We will make this statement of uncertainty more
precise when we discuss frequentist confidence intervals.

When the number of events is large, the distribution of maximum likelihood estimates approaches
a Gaussian or normal distribution.” This does not depend on the pdf f(x) having a Gaussian form. For
small samples this isn’t the case, but this limiting distribution is often referred to as an asymptotic dis-
tribution. Furthermore, under most circumstances in particle physics, the maximum likelihood estimate
approaches the minimum variance or Cramér-Rao bound. In particular, the inverse of the covariance
matrix for the estimates is asymptotically given by

Plostle)] )

Doy 0y @

So()=FE [
where I have written explicitly that the expectation, and thus the covariance matrix itself, depend on the
true value . The right side of Eq. 7 is called the (expected) Fisher information matrix. Remember
that the expectation involves an integral over the observables. Since that integral is difficult to perform
in general, one often uses the observed Fisher information matrix to approximate the variance of the
estimator by simply taking the matrix of second derivatives based on the observed data

_82 log L(x)

~_1 _
> (a) B 80[1781)/

pp’

(®)
This is what Minuit’s Hesse algorithm® calculates to estimate the covariance matrix of the parameters.

3.2 Discovery as hypothesis tests

Let us examine the statistical statement associated to the claim of discovery for new physics. Typically,
new physics searches are looking for a signal that is additive on top of the background, though in some
cases there are interference effects that need to be taken into account and one cannot really talk about
’signal’ and ’background’ in any meaningful way. Discovery is formulated in terms of a hypothesis
test where the background-only hypothesis plays the role of the null hypothesis and the signal-plus-
background hypothesis plays the roll of the alternative. Roughly speaking, the claim of discovery is a
statement that the data are incompatible with the background-only hypothesis. Consider the simplest
scenario where one is counting events in the signal region, ngr and expects vp events from background
and vg events from the putative signal. Then we have the following hypotheses:

"There are various conditions that must be met for this to be true, but skip the fine print in these lectures. There are two
conditions that are most often violated in particle physics, which will be addressed later.
8The matrix is called the Hessian, hence the name.
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symbol statistical name physics name probability model
Hy null hypothesis background-only Pois(ngr|vp)
H, alternate hypothesis ~ signal-plus-background Pois(nsgr|vs + vB)

In this simple example it’s fairly obvious that evidence for a signal shows up as an excess of events and
a reasonable way to quantify the compatibility of the observed data noo r, and the null hypothesis is to
calculate the probability that the background-only would produce at least this many events; the p-value

p= Z Pois(n|vp) . )

—n0
n—nSR

If this p-value is very small, then one might choose to reject the null hypothesis.

Note, the p-value is not a to be interpreted as the probability of the null hypothesis given the data —
that is a manifestly Bayesian statement. Instead, the p-value is a statement about the probability to have
obtained data with a certain property assuming the null hypothesis.

How do we generalize this to more complicated situations? There were really two ingredients in
our simple example. The first was the proposal that we would reject the null hypothesis based on the
probability for it to produce data at least as extreme as the observed data. The second ingredient was
the prescription for what is meant by more discrepant; in this case the possible observations are ordered
according to increasing ngr. One could imagine using difference between observed and expected, ngr —
vp, as the measure of discrepancy. In general, a function that maps the data to a single real number is
called a test statistic: T(D) — R. How does one choose from the infinite number of test statistics?

Neyman and Pearson provided a framework for hypothesis testing that addresses the choice of
the test statistic. This setup treats the null and the alternate hypotheses in an asymmetric way. First,
one defines an acceptance region in terms of a test statistic, such that if 7(D) < k, one accepts the
null hypothesis. One can think of the T'(D) = k, as defining a contour in the space of the data, which
is the boundary of this acceptance region. Next, one defines the size of the test, o’ as the probability
the null hypothesis will be rejected when it is true (a so-called Type-I error). This is equivalent to
the probability under the null hypothesis that the data will not be found in this acceptance region, ie.
a = P(T(D) > ko|Hyp). Note, it is now clear why there is a subscript on k,, since the contour level is
related to the size of the test. In contrast, if one accepts the null hypothesis when the alternate is true,
it is called a Type-II error. The probability to commit a Type-II error is denoted as 3 and it is given by
B = P(T(D) < kq|H1). One calls 1 — /3 the power of the test. With these definitions in place, one
looks for a test statistic that maximizes the power of the test for a fixed test size. This is a problem for
the calculus of variations, and sounds like it might be very difficult for complicated probability models.

It turns out that in the case of two simple hypotheses (probability models without any parameters),
there is a simple solution! In particular, the test statistic leading to the most powerful test is given by the
likelihood ratio T p(D) = £(D|H1)/f(D|Hp). This result is referred to as the Neyman-Pearson lemma,
and I will give an informal proof. We will prove this by considering a small variation to the acceptance
region defined by the likelihood ratio. The solid red contour in Fig. 2 represents the rejection region
(the complement to the acceptance region) based on the likelihood ratio and the dashed blue contour
represents a small perturbation. If we can say that any variation to the likelihood ratio has less power,
then we will have proved the Neyman-Pearson lemma. The variation adds (the left, blue wedge) and
removes (the right, red wedge) rejection regions. Because the Neyman-Pearson setup requires that both
tests have the same size, we know that the probability for the data to be found in the two wedges must be
the same under the null hypothesis. Because the two regions are on opposite sides of the contour defined
by f(D|H,)/f(D|Hp), then we know that the data is less likely to be found in the small region that we
added than the small region we subtracted assuming the alternate hypothesis. In other words, there is

“Note, o is the conventional notation for the size of the test, and has nothing to do with a model parameter in Eq. 2.
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less probability to reject the null when the alternate is true; thus the test based on the new contour is less
powerful.

=

P(\_|Ho) = P(_/|Hy)

P(z|H,) P(z|Hy)
P(a|Hy) ~ @ P(z|Hy) ~
P(\_IH1) < PO_[Hok, P(_/|Hy) > P(_/|Ho)k,

P(\UH1) < P(_/|H:1)

Fig. 2: A graphical proof of the Neyman-Pearson lemma.

How does this generalize for our most general model in Eq. 6 with many free parameters? First
one must still define the null and the alternate hypotheses. Typically is done by saying some parameters
— the parameters of interest oy, — take on specific values takes on a particular value for the signal-
plus-background hypothesis and a different value for the background-only hypothesis. For instance,
the signal production cross-section might be singled out as the parameter of interest and it would take
on the value of zero for the background-only and some reference value for the signal-plus-background.
The remainder of the parameters are called the nuisance parameters ounis. Unfortunately, there is no
equivalent to the Neyman-Pearson lemma for models with several free parameters — so called, composite
models. Nevertheless, there is a natural generalization based on the profile likelihood ratio.

Remembering that the test statistic 7' is a real-valued function of the data, then any particular
probability model fio (D]cx) implies a distribution for the test statistic f(7'|cx). Note, the distribution for
the test statistic depends on the value of . Below we will discuss how one constructs this distribution,
but lets take it as given for the time being. Once one has the distribution, then one can calculate the
p-value is given by

plar) = TOO F(T|a)dT = /f(D|a) 0(T(D) — Ty) dD = P(T > Tpla) , (10)

where T} is the value of the test statistic based on the observed data and 6(-) is the Heaviside function.'?

Usually the p-value is just written as p, but I have written it as p(«) to make its a-dependence explicit.

Given that the p-value depends on ¢, how does one decide to accept or reject the null hypothesis?
Remembering that a,; takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of a5 or take

19The integral J dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events
and an integral over the values of z. for each of those events.
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its maximal (or supremum) value

psup(apoi) = sup p(anuis) . 11)

Qlnuis

As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5o
criterion — which is a conventional way to refer to & = 2.87 - 10~7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5o criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3.3 Excluded and allowed regions as confidence intervals

Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical
parameters are allowed or excluded given available data. Figure 3 shows two examples. Figure 3(a)
shows an example with au,oi = (0/0snr, Mp), Where 0 /o5 is the ratio of the production cross-section
for the Higgs boson with respect to its prediction in the standard model and M is the unknown Higgs
mass parameter in the standard model. All the parameter points above the solid black curve correspond
to scenarios for the Higgs boson that are considered ‘excluded at the 95% confidence level’. Figure 3(b)
shows an example with a0 = (my, m¢) where myy is the mass of the W-boson and m; is the mass
of the top quark. We have discovered the W -boson and the top quark and measured their masses. The
blue ellipse ‘is the 68% confidence level contour’ and all the parameter points inside it are considered
‘consistent with data at the 1o level’. What is the precise meaning of these statements?

s 1071 T L B RSN R 80'5_HY_LEP2‘ ‘ ‘ ‘
& E ATLAS 2011 Data - and Tevatron
S5 ¢ __ . - LEP1 and SLD
5 - (E))t()sga/:g ILdt =1.0-4.91fb™ i 68% CL
E [ 48t {s=7TeV ] <
- - a

[¢] i

3 & 804
S 1 MY -
I . £

i 80.3

10—1‘|C‘L‘S!_I‘rn\|ts“”\””m”‘\lew 155
100 200 300 400 500 600
M, [GeV] m, [GeV]
(a) (b)

Fig. 3: Two examples of confidence intervals.

In a frequentist setting, these allowed regions are called confidence intervals or confidence regions,
and the parameter points outside them are considered excluded. Associated with a confidence interval
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is a confidence level, i.e. the 95% and 68% confidence level in the two examples. If we repeat the
experiments and obtain different data, then these confidence intervals will change. It is useful to think of
the confidence intervals as being random in the same way the data are random. The defining property of
a 95% confidence interval is that it covers the true value 95% of the time.

How can one possibly construct a confidence interval has the desired property, that it covers the
true value with a specified probability, given that we don’t know the true value? The procedure for
building confidence intervals is called the Neyman Construction [7], and it is based on ‘inverting’ a
series of hypothesis tests (as described in Sec. 3.2). In particular, for each value of ¢ in the parameter
space one performs a hypothesis test based on some test statistic where the null hypothesis is a.. Note,
that in this context, the null hypothesis is changing for each test and generally is not the background-
only. If one wants a 95% confidence interval, then one constructs a series of hypothesis test with a size
of 5%. The confidence interval (D) is constructed by taking the set of parameter points where the null
hypothesis is accepted.

I(D) = {a| P(T(D) > ka|@) < a} . (12)

where the final « and the subscript &, refer to the size of the test. Since a hypothesis test with a size
of 5% should accept the null hypothesis 95% of the time if it is true, confidence intervals constructed in
this way satisfy the defining property. This same property is usually formulated in terms of coverage.
Coverage is the probability that the interval will contain (cover) the parameter o when it is true,

coverage(a) = Pla € I'| @) . (13)

The equation above can easily be mis-interpreted as the probability the parameter is in a fixed interval
I; but one must remember that in evaluating the probability above the data D, and, thus, the corre-
sponding intervals produced by the procedure (D), are the random quantities. Note, that coverage is a
property that can be quantified for any procedure that produces the confidence intervals I. Intervals pro-
duced using the Neyman Construction procedure are said to “cover by construction”; however, one can
consider alternative procedures that may either under-cover or over-cover. Undercoverage means that
P(a € I'| o) is smaller than desired and over-coverage means that P(a € I | o) is larger than desired.
Note that in general coverage depends on the assumed true value cx.

Since one typically is only interested in forming confidence intervals on the parameters of interest,
then one could use the supremum p-value of Eq. 11. This procedure ensures that the coverage is at least
the desired level, though for some values of « it may over-cover (perhaps significantly). This procedure,
which I call the ‘full construction’, is also computationally very intensive when o has many parameters
as it require performing many hypothesis tests. In the naive approach where each «, is scanned in a
regular grid, the number of parameter points tested grows exponentially in the number of parameters.
There is an alternative approach, which I call the ‘profile construction’ [8,9] and which statisticians call
an ‘hybrid resampling technique’ [10, 11] that is approximate to the full construction, but typically has
good coverage properties. We return to the procedures and properties for the different types of Neyman
Constructions later.

Figure 4 provides an overview of the classic Neyman construction corresponding to the left panel
of Fig. 5. The left panel of Fig. 5 is taken from the Feldman and Cousins’s paper [12] where the parameter
of the model is denoted p instead of 6. For each value of the parameter p, the acceptance region in x
is illustrated as a horizontal bar. Those regions are the ones that satisfy 7'(D) < k,, and in the case of
Feldman-Cousins the test statistic is the one of Eq. 53. This presentation of the confidence belt works
well for a simple model in which the data consists of a single measurement D = {z}. Once one has the
confidence belt, then one can immediately find the confidence interval for a particular measurement of =
simply by taking drawing a vertical line for the measured value of x and finding the intersection with the
confidence belt.

Unfortunately, this convenient visualization doesn’t generalize to complicated models with many
channels or even a single channel marked Poisson model where D = {z1,...,2,}. In those more
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Fig. 4: A schematic visualization of the Neyman Construction. For each value of 6 one finds a region in x
that satisfies [ f(x|0)dz (blue). Together these regions form a confidence belt (green). The intersection of the
observation xq (red) with the confidence belt defines the confidence interval [0;, 05].

complicated cases, the confidence belt can still be visualized where the observable z is replaced with 7',
the test statistic itself. Thus, the boundary of the belt is given by k,, vs. pu as in the right panel of Fig. 5.
The analog to the vertical line in the left panel is now a curve showing how the observed value of the test
statistic depends on y. The confidence interval still corresponds to the intersection of the observed test
statistic curve and the confidence belt, which clearly satisfies 7'(D) < k. For more complicated models
with many parameters the confidence belt will have one axis for the test statistic and one axis for each
model parameter.

Note, a 95% confidence interval does not mean that there is a 95% chance that the true value of the
parameter is inside the interval — that is a manifestly Bayesian statement. One can produce a Bayesian
credible interval with that interpretation; however, that requires a prior probability distribution over the
parameters. Similarly, for any fixed interval I one can compute the Bayesian credibility of the interval

_ J; f(D|a)m(ax)dex
[f(D]a)T(a)de

P(a € ID) (14)

4 Modeling and the Scientific Narrative

Now that we have established a general form for a probability model (Eq. 2) and we have translated
the basic questions of measurement, discovery, and exclusion into the statistical language we are ready
to address the heart of the statistical challenge — building the model. It is difficult to overestimate how
important the model building stage is. So many of the questions that are addressed to the statistical
experts in the major particle physics collaborations are not really about statistics per se, but about model
building. In fact, the first question that you are likely to be asked by one of the statistical experts is “what
is your model?”

Often people are confused by the question “what is your model?” or simply have not written it
down. You simply can’t make much progress on any statistical questions if you haven’t written down a
model. Of course, people do usually have some idea for what it is that they want to do The process of
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Fig. 5: Two presentations of a confidence belt (see text). Left panel taken from Ref. [12]. Right panel shows a
presentation that generalizes to more complicated models.

writing down the model often obviates the answer to the question, reveals some fundamental confusion
or assumption in the analysis strategy, or both. As mentioned in the introduction, writing down the model
is intimately related with the analysis strategy and it is a good way to organize an analysis effort.

I like to think of the modeling stage in terms of a scientific narrative. 1 find that there are three
main narrative elements, though many analyses use a mixture of these elements when building the model.
Below I will discuss these narrative elements, how they are translated into a mathematical formulation,
and their relative pros and cons.

4.1 Simulation Narrative

The simulation narrative is probably the easiest to explain and produces statistical models with the
strongest logical connection to physical theory being tested. We begin with an relation that every particle
physicists should know for the rate of events expected from a specific physical process

rate = (flux) x (cross section) x (efficiency) x (acceptance) , (15)

where the cross section is predicted from the theory, the flux is controlled by the accelerator!!, and the
efficiency and acceptance are properties of the detector and event selection criteria. It is worth not-
ing that the equation above is actually a repackaging of a more fundamental relationship. In fact the
fundamental quantity that is predicted from first principles in quantum theory is the scattering proba-
bility P(i — f) = |(i| )2/ ({(i|i){f|f)) inside a box of size V' over some time interval T', which is then
repackaged into the Lorentz invariant form above.

In the simulation narrative the efficiency and acceptance are estimated with computer simulations
of the detector. Typically, a large sample of events is generated using Monte Carlo techniques. The
Monte Carlo sampling is performed separately for the hard (perturbative) interaction (e.g. MadGraph),
the parton shower and hadronization process (e.g. Pythia and Herwig), and the interaction of particles
with the detector (e.g. Geant). Note, the efficiency and acceptance depend on the physical process
considered, and I will refer to each such process as a sample (in reference to the corresponding sample
of events generated with Monte Carlo techniques).

"In some cases, like cosmic rays, the flux must be estimated since the accelerator is quite far away.
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To simplify the notation, I will define the effective cross section, o.g. to be the product of the total
cross section, efficiency, and acceptance. Thus, the total number of events expected to be selected for
a given scattering process, v, is the product of the time-integrated flux or time-integrated luminosity, A,
and the effective cross section

V= AOcff. - (16)

I use X here instead of the more common L to avoid confusion with the likelihood function and because
when we incorporate uncertainty on the time-integrated luminosity it will be a parameter of the model
for which I have chosen to use greek letters.

If we did not need to worry about detector effects and we could measure the final state perfectly,
then the distribution for any observable x would be given by

1 doe
(idealized)  f(z) = — 2

17
Oeff. dx 17
Of course, we do need to worry about detector effects and we incorporate them with the detector sim-
ulation discussed above. From the Monte Carlo sample of events'? {x1,..., 2y} we can estimate the
underlying distribution f(x) simply by creating a histogram. If we want we can write the histogram
based on B bins centered at x; with bin width wy, explicitly as

O(|wi — xp|/wp) 0|z — xp|/w0p)
N Wy ’

(histogram) f(z) = h(z) = Z (18)

where the first Heaviside function accumulates simulated events in the bin and the second selects the bin
containing the value of z in question. Histograms are the most common way to estimate a probability
density function based on a finite sample, but there are other possibilities. The downsides of histograms
as an estimate for the distribution f(x) is that they are discontinuous and have dependence on the location
of the bin boundaries. A particularly nice alternative is called kernel estimation [13]. In this approach,
one places a kernel of probability K (z) centered around each event in the sample:

N
A 1 Tr—x;

kernel estimat ~ = — K . 19

(kernel estimate) f(x) = fo(x) N Zz; < - ) (19)
The most common choice of the kernel is a Gaussian distribution, and there are results for the optimal
width of the kernel h. Equation 19 is referred to as the fixed kernel estimate since h is common for all the
events in the sample. A second order estimate or adaptive kernel estimation provides better performance
when the distribution is multimodal or has both narrow and wide features [13].

4.1.1 The multi-sample mixture model

So far we have only considered a single interaction process, or sample. How do we form a model
when there are several scattering processes contributing to the total rate and distribution of x? From
first principles of quantum mechanics we must add these different processes together. Since there is no
physical meaning to label individual processes that interfere quantum mechanically, I will consider all
such processes as a single sample. Thus the remaining set of samples that do not interfere simply add
incoherently. The total rate is simply the sum of the individual rates

Vot = Y Vs (20)

s&samples

2Here I only consider unweighted Monte Carlo samples, but the discussion below can be generalized for weighted Monte
Carlo samples.
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and the total distribution is a weighted sum called a mixture model

fl)=— > wvifl), @1)

1%
tot sEsamples

where the subscript s has been added to the equations above for each such sample. With these two
ingredients we can construct our marked Poisson model of Eq. 1 for a single channel, and we can simply
repeat this for several disjoint event selection requirements to form a multi-channel simultaneous model
like Eq. 2. In the multi-channel case we will give the additional subscript ¢ € channels to v.s, fes(z),
Ve tot» and f.(z). However, at this point, our model has no free parameters c.

4.1.2 Incorporating physics parameters into the model

Now we want to parametrize our model interns of some physical parameters «, such as those that appear
in the Lagrangian of a some theory. Changing the parameters in the Lagrangian of a theory will in
general change both the total rate v and the shape of the distributions f(z). In principle, we can repeat
the procedure above for each value of these parameters « to form v.s(a) and fes(x|a) for each sample
and selection channel, and, thus, from fg, (D|a). In practice, we need to resort to some interpolation
strategy over the individual parameter points {c; } where we have Monte Carlo samples. We will return
to these interpolation strategies later.

In some case the only effect of the parameter is to scale the rate of some scattering process vs(cx)
without changing its distribution f(z|a). Furthermore, the scaling is often known analytically, for
instance, a coupling constants produce a linear relationship like v(a;,) = £ap + 1. In such cases,
interpolation is not necessary and the parametrization of the likelihood function is straightforward.

Note, not all physics parameters need be considered parameters of interest. There may be a free
physics parameter that is not directly of interest, and as such it would be considered a nuisance parameter.

4.1.2.1 An example, the search for the standard model Higgs boson

In the case of searches for the standard model Higgs boson, the only free parameter in the Lagrangian is
mp. Once my is specified the rates and the shapes for each of the scattering processes (combinations of
production and decay modes) are specified by the theory. Of course, as the Higgs boson mass changes
the distributions do change so we do need to worry about interpolating the shapes f(x|m). However
the results are often presented as a raster scan over my, where one fixes m g and then asks about the rate
of signal events from the Higgs boson scattering process. With my fixed this is really a simple hypoth-
esis test between background-only and signal-plus-background'?, but we usually choose to construct a
parametrized model that does not directly correspond to any theory. In this case the parameter of interest
is some scaling of the rate with respect to the standard model prediction, i = o /ogpm, such that g = 0 is
the background-only situation and . = 1 is the standard model prediction. Furthermore, we usually use
this global p factor for each of the production and decay modes even though essentially all theories of
physics beyond the standard model would modify the rates of the various scattering processes differently.
Figure 3 shows confidence intervals on y for fixed values of my. Values below the solid black curve
are not excluded (since an arbitrarily small signal rate cannot be differentiated from the background-only
and this is a one-sided confidence interval).

4.1.3 Incorporating systematic effects

The parton shower, hadronization, and detector simulation components of the simulation narrative are
based on phenomenological models that have many adjustable parameters. These parameters are nui-

BNote that H — W interferes with “background-only” W W scattering process. For low Higgs boson masses, the narrow
Higgs width means this interference is negligible. However, at high masses the interference effect is significant and we should
really treat these two processes together as a single sample.
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sance parameters included in our master list of parameters c. The changes in the rates v(c) and shapes
f(x|cx) due to these parameters lead to systematic uncertainties'*. We have already eluded to how one
can deal with the presence of nuisance parameters in hypothesis testing and confidence intervals, but here
we are focusing on the modeling stage. In principle, we deal with modeling of these nuisance parameters
in the same way as the physics parameters, which is to generate Monte Carlo samples for several choices
of the parameters {c;} and then use some interpolation strategy to form a continuous parametrization
for v(a), f(z|a), and fsm(D|er). In practice, there are many nuisance parameters associated to the
parton shower, hadronization, and detector simulation so this becomes a multi-dimensional interpolation
problem!>. This is one of the most severe challenges for the simulation narrative.

Typically, we don’t map out the correlated effect of changing multiple vy, simultaneously. Instead,
we have some nominal settings for these parameters o’ and then vary each individual parameter ‘up’
and ‘down’ by some reasonable amount osz. So if we have Np parameters we typically have 1 + 2Np
variations of the Monte Carlo sample from which we try to form fy;,,,(D|cx). This is clearly not an ideal
situation and it is not hard to imagine cases where the combined effect on the rate and shapes cannot be
factorized in terms of changes from the individual parameters.

What is meant by “vary each individual parameter ‘up’ and ‘down’ by some reasonable amount” in
the paragraph above? The nominal choice of the parameters " is usually based on experience, test beam
studies, Monte Carlo ‘tunings’, etc.. These studies correspond to auxiliary measurements in the language
used in Sec. 2.2 and Sec. 2.4. Similarly, these parameters typically have some maximum likelihood
estimates and standard uncertainties from the auxiliary measurements as described in Sec. 3.1. Thus our
complete model fio(D|cax) of Eq. 6 should not only deal with parametrizing the effect of changing each
o, but also include either a constraint term fj,(a,|cy,) or an additional channel that describes a more
complete probability model for the auxiliary measurement.

Below we will consider a specific interpolation strategy and a few of the most popular conventions
for constraint terms. However, before moving on it is worth emphasizing that while, naively, the matrix
element associated to a perturbative scattering amplitude has no free parameters (beyond the physics
parameters discussed above), fixed order perturbative calculations do have residual scale dependence.
This type of theoretical uncertainty has no auxiliary measurement associated with it even in principle,
thus it really has no frequentist description. This was discussed briefly in Sec. 2.4. In contrast, the parton
density functions are the results of auxiliary measurements and the groups producing the parton density
function sets spend time providing sensible multivariate constraint terms for those parameters. However,
those measurements also have uncertainties due to parametrization choices and theoretical uncertainties,
which are not statistical in nature. In short we must take care in ascribing constraint terms to theoretical
uncertainties and measurements that have theoretical uncertainties'®.

4.1.4 Tabulating the effect of varying sources of uncertainty

The treatment of systematic uncertainties is subtle, particularly when one wishes to take into account
the correlated effect of multiple sources of systematic uncertainty across many signal and background
samples. The most important conceptual issue is that we separate the source of the uncertainty (for
instance the uncertainty in the calorimeter’s response to jets) from its effect on an individual signal or
background sample (eg. the change in the acceptance and shape of a W+jets background). In particular,
the same source of uncertainty has a different effect on the various signal and background samples.
The effect of these ‘up’ and ‘down’ variations about the nominal predictions vs(a®) and fg(z|a?) is
quantified by dedicated studies. The result of these studies can be arranged in tables like those below.
The main purpose of the HistFactory XML schema is to represent these tables. And HistFactoryisa
tool that can convert these tables into our master model . (D]cx) of Eq. 6 implemented as a RooAbsPdf

14Systematic uncertainty is arguably a better term than systematic error.
'5This is sometimes referred to as ‘template morphing’
16“Note that I deliberately called them theory errors, not uncertainties.” — Tilman Plehn
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with a ModelConfig to make it compatible with RooStats tools. The convention used by HistFactory
is related to our notation via

Vs(a)fs(x‘a) = ns(a)as(x’a) (22)

where 75(a) represents relative changes in the overall rate v(«) and os(z|a) includes both changes
to the rate and the shape f(x|a). This choice is one of convenience because histograms are often not
normalized to unity, but instead in code rate information. As the name implies, HistFactory works
with histograms, so instead of writing o(x|c) the table is written as o4 (c), where b is a bin index.
To compress the notation further, 77;:17 <—1 and apisb represent the value of when «a, = oz;,t and all other
parameters are fixed to their nominal values. Thus we arrive at the following tabular form for models
built on the simulation narrative based on histograms with individual nuisance parameters varied one at
a time:

Syst Sample 1 e Sample N
Nominal Value 7]2:1 =1 772: N=1
p=0verallSys 1 77;:1,5:1’ Mp—1s=1 -+~ nJZl,s:N, Mp=1,5=N
p=OverallSys M | - + -
p=Uvera ys np:M s=1° 77]3:M s=1 co np:M s=N> np:M s=N
Net Effect Ns=1(cx) . Ns=n ()

Table 1: Tabular representation of sources of uncertainties that produce a correlated effect in the normalization
individual samples (eg. OverallSys). The 77;5 represent histogram when oy, = 1 and are inserted into the High
attribute of the OverallSys XML element. Similarly, the 7, represent histogram when s = —1 and are inserted
into the Low attribute of the OverallSys XML element. Note, this does not imply that ™ > 5™, the + superscript
correspond to the variation in the source of the systematic, not the resulting effect.

Syst Sample 1 Sample N
y p Y
; 0 0

Nominal Value Oe1p e Ts—Nb

11 ¥ = ¥ =
p=HistoSys 1 Op=1,5=1,b> Tp=1,5=1,b Op=1,5=N,b> Ip=1,5=Nb
p=HistoSys M o o ol o

y p=M,s=1,b> p=M,s=1,b co p=M,s=N,b’ p=M,s=N,b

Net Effect Os=1,p(Cx) ... Os=Np()

Table 2: Tabular representation of sources of uncertainties that produce a correlated effect in the normalization
and shape individual samples (eg. HistoSys ). The O';_Sb represent histogram when s = 1 and are inserted into
the HighHist attribute of the HistoSys XML element. Similarly, the o, represent histogram when oy = —1
and are inserted into the LowHist attribute of the HistoSys XML element.

4.1.5 Interpolation Conventions

For each sample, one can interpolate and extrapolate from the nominal prediction 2 = 1 and the vari-
ations 77?):5 to produce a parametrized ns(c). Similarly, one can interpolate and extrapolate from the
nominal shape agb and the variations a}jfsb to produce a parametrized oz (). We choose to parametrize
ap such that ay, = 0 is the nominal value of this parameter, o, = %1 are the “+10 variations”. Need-
less to say, there is a significant amount of ambiguity in these interpolation and extrapolation proce-
dures and they must be handled with care. Bellow are some of the interpolation strategies supported by
HistFactory. These are all "vertical’ style interpolation treated independently per-bin. Four interpola-
tion strategies are described below and can be compared in Fig 6. The interested reader is invited to look
at alternative "horizontal’ interpolation strategies, such as the one developed by Alex Read in Ref. [14]

263



K. CRANMER

(the RooFit implementation is called RooIntegralMorph) and Max Baak’s RooMomentMorph. These
horizontal interpolation strategies are better suited for features moving, such as the location of an invari-
ant mass bump changing with the hypothesized mass of a new particle..

Piecewise Linear (InterpCode=0)

The piecewise-linear interpolation strategy is defined as

ns(a) =1+ Z Lin (i 1,08, 115p) (23)
pESyst

and for shape interpolation it is

oo(@) = 0%+ Y Tin(p; 0%, 0 0piy) 24)
pESyst
with
aIt—1% a>0

25
a(l®-T17) a<0 )

Ilin.(a; I07 I+7 Iﬁ) = {
PRrOS: This approach is the most straightforward of the interpolation strategies.

CoNS: It has two negative features. First, there is a kink (discontinuous first derivative) at o« = 0
(see Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
Second, the interpolation factor can extrapolate to negative values. For instance, if n~ = 0.5 then we
have () < 0 when oo < —2 (see Fig 6(c)).

Note that one could have considered the simultaneous variation of a, and «, in a multiplicative
way. The multiplicative accumulation is not an option currently.

Note that this is the default convention for o4, () (ie. HistoSys ).

Piecewise Exponential (InterpCode=1)

The piecewise exponential interpolation strategy is defined as

ns(a) = H Texp. (p; 1,77;2, 775_p) (26)
pESyst
and for shape interpolation it is
osp(a) = Ugb H Texp. (ap; O'Sba U;b, O-g;sb) 27
pESyst

with
(It/I))* «a>0

(I"/I)~® a<0 8

Iexp.(a;107]+al_) = {

PRrROS: This approach ensures that n(«) > 0 (see Fig 6(c)) and for small response to the uncer-
tainties it has the same linear behavior near o ~ 0 as the piecewise linear interpolation (see Fig 6(a)).

CoONS: It has two negative features. First, there is a kink (discontinuous first derivative) at a = 0,
which can cause some difficulties for numerical minimization packages such as Minuit. Second, for
large uncertainties it develops a different linear behavior compared to the piecewise linear interpolation.
In particular, even if the systematic has a symmetric response (ie. n* — 1 = 1 — 17) the interpolated
response will develop a kink for large response to the uncertainties (see Fig 6(c)).

Note that the one could have considered the simultaneous variation of oy, and «y in an additive
way, but this is not an option currently.
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Note, that when paired with a Gaussian constraint on « this is equivalent to linear interpolation and
a log-normal constraint in In(«). This is the default strategy for normalization uncertainties 7, () (ie.
OverallSys ) and is the standard convention for normalization uncertainties in the LHC Higgs Com-
bination Group. In the future, the default may change to the Polynomial Interpolation and Exponential
Extrapolation described below.

Polynomial Interpolation and Exponential Extrapolation (InterpCode=4)

The strategy of this interpolation option is to use the piecewise exponential extrapolation as above
with a polynomial interpolation that matches (o = +ayg), dn/do|a=+a,, and d?n/da?|4=+q, and the
boundary +«y is defined by the user (with default g = 1).

Us(a) = H Ipoly|exp.(ap; 1, 77;;3; 77;)7 Oé()) (29)
pESyst
with
(I'*/Ip)* a>a
Ipoly|exp.(a;IOaI+7I_aaO) =41 +Z?:1 aiai ’a‘ < Qg (30)

(I=/Ip)~™ a < —wp
and the a; are fixed by the boundary conditions described above.

ProS: This approach avoids the kink (discontinuous first and second derivatives) at « = 0 (see
Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
This approach ensures that (a) > 0 (see Fig 6(c)).

Note: This option is not available in ROOT 5.32.00, but is available for normalization uncertainties
(OverallSys) in the subsequent patch releases. In future releases, this may become the default.

4.1.6 Consistent Bayesian and Frequentist modeling

The variational estimates 7+ and o typically correspond to so called “+1¢ variations” in the source of
the uncertainty. Here we are focusing on the source of the uncertainty, not its affect on rates and shapes.
For instance, we might say that the jet energy scale has a 10% uncertainty. !” This is common jargon,
but what does it mean? The most common interpretation of this statement is that the uncertain parameter
ap (eg. the jet energy scale) has a Gaussian distribution. However, this way of thinking is manifestly
Bayesian. If the parameter was estimated from an auxiliary measurement, then it is the PDF for that
measurement that we wish to include into our probability model. In the frequentist way of thinking, the
jet energy scale has an unknown true value and upon repeating the experiment many times the auxiliary
measurements estimating the jet energy scale would fluctuate randomly about this true value. To aid in
this subtle distinction, we use greek letters for the parameters (eg. «,) and roman letters for the auxiliary
measurements a,,. Furthermore, we interpret the “+£10” variation in the frequentist sense, which leads to
the constraint term f,(ap|c,,). Then, we can pair the resulting likelihood with some prior on ¢, to form
a Bayesian posterior if we wish according to Eq. 5.

It is often advocated that a “log-normal” or “gamma” distribution for «y, is more appropriate
than a gaussian constraint [15]. This is particularly clear in the case of bounded parameters and large
uncertainties. Here we must take some care to build a probability model that can maintain a consistent
interpretation in Bayesian a frequentist settings. Table 3 summarizes a few consistent treatments of the
frequentist pdf, the likelihood function, a prior, and the resulting posterior.

Finally, it is worth mentioning that the uncertainty on some parameters is not the result of an auxil-
iary measurement — so the constraint term idealization, it is not just a convenience, but a real conceptual

7Without loss of generality, we choose to parametrize o, such that o, = 0 is the nominal value of this parameter, o, = &1
are the “+10 variations”.
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Fig. 6: Comparison of the three interpolation options for different n*. (a) n~ = 0.8, n* = 1.2, (b) n~

nt=15()n" =027 =18and (d)n~ =0.95n" =15

PDF

Likelihood

Prior 7

Posterior

1.1,

G(ap|04p’ Up)

G(aplap, op)

7o (oY) o< const

G(O‘p|ap’ Up)

Pr(Bp|A=1;B=1+n,)
51; : PLN(Bp|np> Up)
Bp - PLn(Bp|ngp, op)

mo(Bp) o< const
m0(Bp) o< const
)

mo(Bp) o< 1/Bp

Pois(ny|7,58,)
PLN(”prvUp)
PLN(”p|/8pa‘7p)

Pr(BplA=1p;B=1+n,)
PN (Bplnp, op)
PLN(Bplnp, op)

Table 3: Table relating consistent treatments of PDF, likelihood, prior, and posterior for nuisance parameter con-

straint terms.

leap. This is particularly true for theoretical uncertainties from higher-order corrections or renormal-
izaiton and factorization scale dependence. In these cases a formal frequentist analysis would not include
a constraint term for these parameters, and the result would simply depend on their assumed values. As
this is not the norm, we can think of reading Table 3 from right-to-left with a subjective Bayesian prior

7 () being interpreted as coming from a fictional auxiliary measurement.
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4.1.6.1 Gaussian Constraint

The Gaussian constraint for o, corresponds to the familiar situation. It is a good approximation of
the auxiliary measurement when the likelihood function for ¢, from that auxiliary measurement has a
Gaussian shape. More formally, it is valid when the maximum likelihood estimate of «, (eg. the best fit
value of o)) has a Gaussian distribution. Here we can identify the maximum likelihood estimate of a,
with the global observable a,, remembering that it is a number that is extracted from the data and thus
its distribution has a frequentist interpretation.

N2
1 (ap — ap) } 31)

\ /2%0% 20%

with 0, = 1 by default. Note that the PDF of a,, and the likelihood for «, are positive for all values.

G(ap’apv Up) =

4.1.6.2 Poisson (“Gamma’”) constraint

When the auxiliary measurement is actually based on counting events in a control region (eg. a Poisson
process), a more accurate to describe the auxiliary measurement with a Poisson distribution. It has been
shown that the truncated Gaussian constraint can lead to undercoverage (overly optimistic) results, which
makes this issue practically relevant [4]. Table 3 shows that a Poisson PDF together with a uniform prior
leads to a gamma posterior, thus this type of constraint is often called a “gamma” constraint. This is a
bit unfortunate since the gamma distribution is manifestly Bayesian and with a different choice of prior,
one might not arrive at a gamma posterior. When dealing with the Poisson constraint, it is no longer
convenient to work with our conventional scaling for ay, which can be negative. Instead, it is more
natural to think of the number of events measured in the auxiliary measurement 7, and the mean of the
Poisson parameter. This information is not usually available, instead one usually has some notion of the
relative uncertainty in the parameter alrfl (eg. athe jet energy scale is known to 10%). In order to give
some uniformity to the different uncertainties of this type and think of relative uncertainty, the nominal
rate is factored out into a constant 7, and the mean of the Poisson is given by 7,c;,.

(Tpap)™ €T

Pois(ny|Tpay,) = (32)

!
Np:
Here we can use the fact that Var[n,] = ,/7,&, and reverse engineer the nominal auxiliary measurement

0 1\2
n, =1 =(1/0,7)" . (33)
where the superscript 0 is to remind us that n,, will fluctuate in repeated experiments but ng is the value

of our measured estimate of the parameter.

One important thing to keep in mind is that there is only one constraint term per nuisance pa-
rameter, so there must be only one 017;3[ per nuisance parameter. This a;el is related to the fundamental
uncertainty in the source and we cannot infer this from the various response terms "7;[5 or a;tub.

Another technical difficulty is that the Poisson distribution is discrete. So if one were to say the
relative uncertainty was 30%, then we would find ng = 11.11..., which is not an integer. Rounding n,,
to the nearest integer while maintaining 7, = (1/ 0'21;61)2 will bias the maximum likelihood estimate of o,
away from 1. To avoid this, one can use the gamma distribution, which generalizes more continuously
with

Pr(ay|A =1, B=mn,—1) = A(Aa,)Pe 4 /T(B) . (34)

This approach works fine for likelihood fits, Bayesian calculations, and frequentist techniques based on
asymptotic approximations, but it does not offer a consistent treatment of the pdf for the global observable
ny that is needed for techniques based on Monte Carlo sampling.
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4.1.6.3 Log-normal constraint

From Eadie et al., “The log-normal distribution represents a random variable whose logarithm follows a
normal distribution. It provides a model for the error of a process involving many small multiplicative
errors (from the Central Limit Theorem). It is also appropriate when the value of an observed variable is a
random proportion of the previous observation.” [15,16]. This logic of multiplicative errors applies to the
the measured value, not the parameter. Thus, it is natural to say that there is some auxiliary measurement
(global observable) with a log-normal distribution. As in the gamma/Poisson case above, let us again say
that the global observable is n;, with a nominal value

n) =1, = (1/a")?. (35)

Then the conventional choice for the corresponding log-normal distribution is

1 1 In(n,/a )2]
Pix(nplap, kp) = —————exp | —— 2 36
LN( P‘ P p) /727l'ln:‘€np [ Q(IHHP)Q (36)
while the likelihood function is (blue curve in Fig. 7(a)).
1 1 In(n,/a )T

L(oy,) = ——— —exp | ——2LP2 ;. 37
() V2 Ink np P [ 2(Inkp)? 37)

To get to the posterior for «, given n,, we need an ur-prior 7(cy,)

1 1 1n(np/ap)2}

m(ap) X N(ap) —=————exp |——— 5" 38
(o) x ) i enp | el 38)

If n(y) is uniform, then the posterior looks like the red curve in Fig. 7(b). However, when paired with
an “ur-prior” () o< 1/cy, (green curve in Fig. 7(b)), this results in a posterior distribution that is also
of a log-normal form for «, (blue curve in Fig. 7(b)).

_ Pdf(xl)

0

bl I Lol
0 123 456 7 8 9 10

L(p) (red), T (1) (green), Posterior(mulx) (blue,black)

Fig. 7: The lognormal constraint term: (left) the pdf for the global observable a,, and (right) the likelihood function,
the posterior based on a flat prior on «,, and the posterior based on a 1/a, prior.

4.1.7 Incorporating Monte Carlo statistical uncertainty on the histogram templates

The histogram based approach described above are based Monte Carlo simulations of full detector sim-
ulation. These simulations are very computationally intensive and often the histograms are sparsely
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populated. In this case the histograms are not good descriptions of the underlying distribution, but are
estimates of that distribution with some statistical uncertainty. Barlow and Beeston outlined a treatment
of this situation in which each bin of each sample is given a nuisance parameter for the true rate, which
is then fit using both the data measurement and the Monte Carlo estimate [17]. This approach would
lead to several hundred nuisance parameters in the current analysis. Instead, the HistFactory employs
a lighter weight version in which there is only one nuisance parameter per bin associated with the total
Monte Carlo estimate and the total statistical uncertainty in that bin. If we focus on an individual bin
with index b the contribution to the full statistical model is the factor

Pois(np|vp(ax) + 'ybull)vlc(a)) Pois(myp|y7) , (39)

where ny, is the number of events observed in the bin, () is the number of events expected in the
bin where Monte Carlo statistical uncertainties need not be included (either because the estimate is
data driven or because the Monte Carlo sample is sufficiently large), V})VIC(a) is the number of events
estimated using Monte Carlo techniques where the statistical uncertainty needs to be taken into account.
Both expectations include the dependence on the parameters c. The factor -y, is the nuisance parameter
reflecting that the true rate may differ from the Monte Carlo estimate Z/},VIC(a) by some amount. If
the total statistical uncertainty is dp, then the relative statistical uncertainty is given by 1/})\/[0 /0p. This
corresponds to a total Monte Carlo sample in that bin of size my, = (Jp/ Z/}JVIC)Q. Treating the Monte Carlo
estimate as an auxiliary measurement, we arrive at a Poisson constraint term Pois(mp|v,75), Where my,
would fluctuate about ;73 if we generated a new Monte Carlo sample. Since we have scaled v to be a
factor about 1, then we also have 7, = (1€ /5;,)%; however, 7, is treated as a fixed constant and does not

fluctuate when generating ensembles of pseudo-experiments.

It is worth noting that the conditional maximum likelihood estimate vﬁb(a) can be solved analyti-
cally with a simple quadratic expression.

- —B+VB? - 4AC

Fo(a) = - , (40)
with
A=) + 7)) (41)
B = ()7 + () (a) — npiC () — mpC(a) (42)
C = mbub(a) . (43)

In a Bayesian technique with a flat prior on +y, the posterior distribution is a gamma distribution.
Similarly, the distribution of 4; will take on a skew distribution with an envelope similar to the gamma
distribution, but with features reflecting the discrete values of m;. Because the maximum likelihood
estimate of ~y, will also depend on n; and &, the features from the discrete values of m;y, will be smeared.
This effect will be more noticeable for large statistical uncertainties where 73, is small and the distribution
of 4, will have several small peaks. For smaller statistical uncertainties where 7}, is large the distribution
of 4, will be approximately Gaussian.

4.2 Data-Driven Narrative

The strength of the simulation narrative lies in its direct logical link from the underlying theory to the
modeling of the experimental observations. The weakness of the simulation narrative derives from the
weaknesses in the simulation itself. Data-driven approaches are more motivated when they address
specific deficiencies in the simulation. Before moving to a more abstract or general discussion of t