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Abstract

The CERN–Latin-American School of High-Energy Physics is intended to give young physicists an introduc-
tion to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain
lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, flavour physics,
quantum chromodynamics under extreme conditions, cosmic-ray physics, cosmology, recent highlights of LHC
results, practical statistics for particle physicists and a short introduction to the principles of particle physics
instrumentation.
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Preface

The seventh School in the series of Latin-American Schools of High-Energy Physics took place from 6 to 19
March 2013 in Arequipa, Peru. It was organized by CERN with the support of local colleagues from several
universities in Peru (PUCP, UNI and UNSA), with PUCP playing a leading role.

The School received financial support from: CERN; CIEMAT, Spain; RENAFAE, Brazil; and PUCP in
Peru. Our sincere thanks go to all of these sponsors for making it possible to organize the School with many
young participants from Latin-American countries who otherwise would not have been able to attend.

The School was hosted in the comfortable Estelar Hotel El Lago on the outskirts of the city of Arequipa. We
are indebted to the hotel and its friendly staff for their help in making the event such a success. In particular, we
would like to mention the hotel’s general manager, Hugo Avila, who helped us greatly in preparing the School
as well as during the event itself.

Professor Alberto Gago from PUCP acted as local director for the School, assisted by members of the local
organising committee. We are extremely grateful to Alberto and his colleagues for their excellent work in
organizing the School and for creating such a wonderful atmosphere for the participants. We would also like
to mention the team from the physics department of the local university, UNSA, especially David Pacheco and
Rolando Perca who helped with numerous practical arrangements.

Sixty-five students of 18 different nationalities attended the School. Following the tradition of the School
the students shared twin rooms mixing nationalities, and in particular the Europeans mixed with Latin Ameri-
cans.

The 11 lecturers came from Europe, Israel, Latin America and the USA. The lectures, which were given in
English, were complemented by daily discussion sessions led by five physicists coming from Latin America.
The lectures and the discussion sessions were all held using the conference facilities of the hotel. The students
displayed their own research work in the form of posters in a special evening session during the first week. The
posters were left on display until the end of the School. The students from each discussion group also performed
a project, studying in detail the analysis of a published paper from an LHC experiment. A representative of each
group presented a brief summary talk during a special evening session during the second week of the School.

Our thanks are due to the lecturers and discussion leaders for their active participation in the School and for
making the scientific programme so stimulating. The students who in turn manifested their good spirits during
two intense weeks undoubtedly appreciated their personal contributions in answering questions and explaining
points of theory.

We are very grateful to Hélène Haller and Kate Ross, the Administrators for the CERN Schools of Physics,
for their efforts in the lengthy preparations for the School and during the event itself. Their efficient work,
friendly attitude, and continuous care of the participants and their needs were highly appreciated.

The participants will certainly remember the two interesting excursions, an afternoon tour of the city of
Arequipa, and, particularly, a spectacular full-day excursion to the Colca Canyon for many of the participants,
or to the Pacific coast for the others. They also greatly appreciated the excellent social and leisure programme,
including horse riding and evenings spent together in the hotel, as well as the farewell party on the last night.

The success of the School was to a large extent due to the students themselves. Their poster session and
group projects were very well prepared and highly appreciated, and throughout the School they participated
actively during the lectures, in the discussion sessions, and in the different activities and excursions.

Nick Ellis
(On behalf of the Organizing Committee)
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Introductory Lectures on Quantum Field Theory

L. Álvarez-Gauméa and M. A. Vázquez-Mozob
a CERN, Geneva, Switzerland
b Universidad de Salamanca, Salamanca, Spain

Abstract
In these lectures we present a few topics in quantum field theory in detail.
Some of them are conceptual and some more practical. They have been se-
lected because they appear frequently in current applications to particle physics
and string theory.

1 Introduction

These notes summarize lectures presented at the 2005 CERN-CLAF School in Malargüe (Argentina),
the 2009 CERN-CLAF School in Medellín (Colombia), the 2011 CERN-CLAF School in Natal (Brazil),
the 2012 Asia-Europe-Pacific School of High Energy Physics in Fukuoka (Japan), and the 2013 CERN–
Latin-American School of High-Energy Physics in Arequipa (Peru). The audience in all occasions was
composed to a large extent by students in experimental High Energy Physics with an important minority
of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as
quantum field theory. For this reason the lectures were intended to provide a review of those parts of the
subject to be used later by other lecturers. Although a cursory acquaitance with th subject of quantum
field theory is helpful, the only requirement to follow the lectures it is a working knowledge of Quantum
Mechanics and Special Relativity.

The guiding principle in choosing the topics presented (apart to serve as introductions to later
courses) was to present some basic aspects of the theory that present conceptual subtleties. Those topics
one often is uncomfortable with after a first introduction to the subject. Among them we have selected:

- The need to introduce quantum fields, with the great complexity this implies.

- Quantization of gauge theories and the rôle of topology in quantum phenomena. We have included
a brief study of the Aharonov-Bohm effect and Dirac’s explanation of the quantization of the
electric charge in terms of magnetic monopoles.

- Quantum aspects of global and gauge symmetries and their breaking.

- Anomalies.

- The physical idea behind the process of renormalization of quantum field theories.

- Some more specialized topics, like the creation of particle by classical fields and the very basics
of supersymmetry.

These notes have been written following closely the original presentation, with numerous clarifi-
cations. Sometimes the treatment given to some subjects has been extended, in particular the discussion
of the Casimir effect and particle creation by classical backgrounds. Since no group theory was assumed,
we have included an Appendix with a review of the basics concepts.

By lack of space and purpose, few proofs have been included. Instead, very often we illustrate a
concept or property by describing a physical situation where it arises. A very much expanded version
of these lectures, following the same philosophy but including many other topics, has appeared in book
form in [1]. For full details and proofs we refer the reader to the many textbooks in the subject, and in
particular in the ones provided in the bibliography [2–11]. Specially modern presentations, very much
in the spirit of these lectures, can be found in references [5, 6, 10, 11]. We should nevertheless warn the
reader that we have been a bit cavalier about references. Our aim has been to provide mostly a (not
exhaustive) list of reference for further reading. We apologize to those authors who feel misrepresented.

Published by CERN in the Proceedings of the 2013 CERN–Latin-American School of High-Energy Physics, Arequipa,
Peru, 6 – 19 March 2013, edited by M. Mulders and G. Perez, CERN-2015-001 (CERN, Geneva, 2015)

978–92–9083–412-0; 0531-4283 – c© CERN, 2015. Published under the Creative Common Attribution CC BY 4.0 Licence.
http://dx.doi.org/10.5170/CERN-2015-001.1
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A note about notation

Before starting it is convenient to review the notation used. Through these notes we will be using the
metric ηµν = diag (1,−1,−1,−1). Derivatives with respect to the four-vectorxµ = (ct, ~x) will be
denoted by the shorthand

∂µ ≡ ∂

∂xµ
=

(
1

c

∂

∂t
, ~∇

)
. (1)

As usual space-time indices will be labelled by Greek letters (µ, ν, . . . = 0, 1, 2, 3) while Latin indices
will be used for spatial directions (i, j, . . . = 1, 2, 3). In many expressions we will use the notation
σµ = (1, σi) whereσi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2)

Sometimes we use of the Feynman’s slash notation/a = γµaµ. Finally, unless stated otherwise, we work
in natural units~ = c = 1.

2 Why do we need quantum field theory after all?

In spite of the impressive success of Quantum Mechanics in describing atomic physics, it was immedi-
ately clear after its formulation that its relativistic extension was not free of difficulties. These problems
were clear already to Schrödinger, whose first guess for a wave equation of a free relativistic particle was
the Klein-Gordon equation

(
∂2

∂t2
−∇2 +m2

)
ψ(t, ~x) = 0. (3)

This equation follows directly from the relativistic “mass-shell” identityE2 = ~p 2 +m2 using the corre-
spondence principle

E → i
∂

∂t
,

~p → −i~∇. (4)

Plane wave solutions to the wave equation (3) are readily obtained

ψ(t, ~x) = e−ipµxµ
= e−iEt+i~p·~x with E = ±ωp ≡ ±

√
~p 2 +m2. (5)

In order to have a complete basis of functions, one must include plane wave with bothE > 0 andE < 0.
This implies that given the conserved current

jµ =
i

2

(
ψ∗∂µψ − ∂µψ

∗ ψ
)
, (6)

its time-component isj0 = E and therefore does not define a positive-definite probability density.

A complete, properly normalized, continuous basis of solutions of the Klein-Gordon equation (3)
labelled by the momentum~p can be defined as

fp(t, ~x) =
1

(2π)
3
2
√
2ωp

e−iωpt+i~p·~x,

f−p(t, ~x) =
1

(2π)
3
2
√
2ωp

eiωpt−i~p·~x. (7)
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Fig. 1: Spectrum of the Klein-Gordon wave equation

Given the inner product

〈ψ1|ψ2〉 = i

∫
d3x

(
ψ∗
1∂0ψ2 − ∂0ψ

∗
1 ψ2

)

the states (7) form an orthonormal basis

〈fp|fp′〉 = δ(~p− ~p ′),

〈f−p|f−p′〉 = −δ(~p− ~p ′), (8)

〈fp|f−p′〉 = 0. (9)

The wave functionsfp(t, x) describes states with momentum~p and energy given byωp =
√

~p 2 +m2.
On the other hand, the states|f−p〉 not only have a negative scalar product but they actually correspond
to negative energy states

i∂0f−p(t, ~x) = −
√

~p 2 +m2 f−p(t, ~x). (10)

Therefore the energy spectrum of the theory satisfies|E| > m and is unbounded from below (see Fig.
1). Although in a case of a free theory the absence of a ground state is not necessarily a fatal problem,
once the theory is coupled to the electromagnetic field this is the source of all kinds of disasters, since
nothing can prevent the decay of any state by emission of electromagnetic radiation.

The problem of the instability of the “first-quantized” relativistic wave equation can be heuristi-
cally tackled in the case of spin-1

2 particles, described by the Dirac equation
(
−iβ

∂

∂t
+ ~α · ~∇−m

)
ψ(t, ~x) = 0, (11)

where~α andβ are4× 4 matrices

αi =

(
0 iσi

−iσi 0

)
, β =

(
0 1
1 0

)
, (12)
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Fig. 2: Creation of a particle-antiparticle pair in the Dirac see picture

with σi the Pauli matrices, and the wave functionψ(t, ~x) has four components. The wave equation (11)
can be thought of as a kind of “square root” of the Klein-Gordon equation (3), since the latter can be
obtained as

(
−iβ

∂

∂t
+ ~α · ~∇−m

)†(
−iβ

∂

∂t
+ ~α · ~∇−m

)
ψ(t, ~x) =

(
∂2

∂t2
−∇2 +m2

)
ψ(t, ~x). (13)

An analysis of Eq. (11) along the lines of the one presented above for the Klein-Gordon equation
leads again to the existence of negative energy states and a spectrum unbounded from below as in Fig.
1. Dirac, however, solved the instability problem by pointing out that now the particles are fermions
and therefore they are subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be
occupied by at most one particle, so the states withE = m can be made stable if we assume thatall the
negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum where all
negative energy states are occupied, the so-called Dirac sea, it also leads directly to the conclusion that a
single-particle interpretation of the Dirac equation is not possible. Indeed, a photon with enough energy
(E > 2m) can excite one of the electrons filling the negative energy states, leaving behind a “hole” in
the Dirac see (see Fig. 2). This hole behaves as a particle with equal mass and opposite charge that
is interpreted as a positron, so there is no escape to the conclusion that interactions will produce pairs
particle-antiparticle out of the vacuum.

In spite of the success of the heuristic interpretation of negative energy states in the Dirac equation
this is not the end of the story. In 1929 Oskar Klein stumbled into an apparent paradox when trying to
describe the scattering of a relativistic electron by a square potential using Dirac’s wave equation [12] (for
pedagogical reviews see [13, 14]). In order to capture the essence of the problem without entering into
unnecessary complication we will study Klein’s paradox in the context of the Klein-Gordon equation.

Let us consider a square potential with heightV0 > 0 of the type showed in Fig. 3. A solution to
the wave equation in regions I and II is given by

ψI(t, x) = e−iEt+ip1x +Re−iEt−ip1x,

ψII(t, x) = Te−iEt+p2x, (14)
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Fig. 3: Illustration of the Klein paradox.

where the mass-shell condition implies that

p1 =
√
E2 −m2, p2 =

√
(E − V0)2 −m2. (15)

The constantsR andT are computed by matching the two solutions across the boundaryx = 0. The
conditionsψI(t, 0) = ψII(t, 0) and∂xψI(t, 0) = ∂xψII(t, 0) imply that

T =
2p1

p1 + p2
, R =

p1 − p2
p1 + p2

. (16)

At first sight one would expect a behavior similar to the one encountered in the nonrelativistic
case. If the kinetic energy is bigger thanV0 both a transmitted and reflected wave are expected, whereas
when the kinetic energy is smaller thanV0 one only expect to find a reflected wave, the transmitted wave
being exponentially damped within a distance of a Compton wavelength inside the barrier.

Indeed this is what happens ifE − m > V0. In this case bothp1 andp2 are real and we have a
partly reflected, and a partly transmitted wave. In the same way, ifV0 − 2m < E −m < V0 thenp2 is
imaginary and there is total reflection.

However, in the case whenV0 > 2m and the energy is in the range0 < E − m < V0 − 2m
a completely different situation arises. In this case one finds that bothp1 andp2 are real and therefore
the incoming wave function is partially reflected and partially transmitted across the barrier. This is a
shocking result, since it implies that there is a nonvanishing probability of finding the particle at any
point across the barrier with negative kinetic energy (E −m − V0 < 0)! This weird result is known as
Klein’s paradox.

As with the negative energy states, the Klein paradox results from our insistence in giving a single-
particle interpretation to the relativistic wave function. Actually, a multiparticle analysis of the paradox
[13] shows that what happens when0 < E − m < V0 − 2m is that the reflection of the incoming
particle by the barrier is accompanied by the creation of pairs particle-antiparticle out of the energy of
the barrier (notice that for this to happen it is required thatV0 > 2m, the threshold for the creation of a
particle-antiparticle pair).
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Fig. 4: Two regionsR1, R2 that are causally disconnected.

Actually, this particle creation can be understood by noticing that the sudden potential step in Fig.
3 localizes the incoming particle with massm in distances smaller than its Compton wavelengthλ = 1

m .
This can be seen by replacing the square potential by another one where the potential varies smoothly
from 0 toV0 > 2m in distances scales larger than1/m. This case was worked out by Sauter shortly after
Klein pointed out the paradox [15]. He considered a situation where the regions withV = 0 andV = V0

are connected by a region of lengthd with a linear potentialV (x) = V0x
d . Whend > 1

m he found that
the transmission coefficient is exponentially small1.

The creation of particles is impossible to avoid whenever one tries to locate a particle of massm
within its Compton wavelength. Indeed, from Heisenberg uncertainty relation we find that if∆x ∼ 1

m ,
the fluctuations in the momentum will be of order∆p ∼ m and fluctuations in the energy of order

∆E ∼ m (17)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are enough to allow
the creation of particles out of the vacuum. In the case of a spin-1

2 particle, the Dirac sea picture shows
clearly how, when the energy fluctuations are of orderm, electrons from the Dirac sea can be excited to
positive energy states, thus creating electron-positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by relativistic invariance.
In non-relativistic Quantum Mechanics observables are represented by self-adjoint operator that in the
Heisenberg picture depend on time. Therefore measurements are localized in time but are global in
space. The situation is radically different in the relativistic case. Because no signal can propagate faster
than the speed of light, measurements have to be localized both in time and space. Causality demands
then that two measurements carried out in causally-disconnected regions of space-time cannot interfere
with each other. In mathematical terms this means that ifOR1 andOR2 are the observables associated
with two measurements localized in two causally-disconnected regionsR1, R2 (see Fig. 4), they satisfy

[OR1 ,OR2 ] = 0, if (x1 − x2)
2 < 0, for all x1 ∈ R1, x2 ∈ R2. (18)

1In section (9.1) we will see how, in the case of the Dirac field, this exponential behavior can be associated with the creation
of electron-positron pairs due to a constant electric field (Schwinger effect).
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Hence, in a relativistic theory, the basic operators in the Heisenberg picturemust depend on the
space-time positionxµ. Unlike the case in non-relativistic quantum mechanics, here the position~x is not
an observable, but just a label, similarly to the case of time in ordinary quantum mechanics. Causality is
then imposed microscopically by requiring

[O(x),O(y)] = 0, if (x− y)2 < 0. (19)

A smeared operatorOR over a space-time regionR can then be defined as

OR =

∫
d4xO(x) fR(x) (20)

wherefR(x) is the characteristic function associated withR,

fR(x) =

{
1 x ∈ R
0 x /∈ R

. (21)

Eq. (18) follows now from the microcausality condition (19).

Therefore, relativistic invariance forces the introduction of quantum fields. It is only when we
insist in keeping a single-particle interpretation that we crash against causality violations. To illustrate
the point, let us consider a single particle wave functionψ(t, ~x) that initially is localized in the position
~x = 0

ψ(0, ~x) = δ(~x). (22)

Evolving this wave function using the HamiltonianH =
√
−∇2 +m2 we find that the wave function

can be written as

ψ(t, ~x) = e−it
√
−∇2+m2

δ(~x) =

∫
d3k

(2π)3
ei
~k·~x−it

√
k2+m2

. (23)

Integrating over the angular variables, the wave function can be recast in the form

ψ(t, ~x) =
1

2π2|~x|

∫ ∞

−∞
k dk eik|~x| e−it

√
k2+m2

. (24)

The resulting integral can be evaluated using the complex integration contourC shown in Fig. 5. The
result is that, for anyt > 0, one finds thatψ(t, ~x) 6= 0 for any~x. If we insist in interpreting the wave
functionψ(t, ~x) as the probability density of finding the particle at the location~x in the timet we find
that the probability leaks out of the light cone, thus violating causality.

3 From classical to quantum fields

We have learned how the consistency of quantum mechanics with special relativity forces us to abandon
the single-particle interpretation of the wave function. Instead we have to consider quantum fields whose
elementary excitations are associated with particle states, as we will see below.

In any scattering experiment, the only information available to us is the set of quantum number
associated with the set of free particles in the initial and final states. Ignoring for the moment other
quantum numbers like spin and flavor, one-particle states are labelled by the three-momentum~p and
span the single-particle Hilbert spaceH1

|~p〉 ∈ H1, 〈~p|~p ′〉 = δ(~p− ~p ′) . (25)

The states{|~p〉} form a basis ofH1 and therefore satisfy the closure relation
∫

d3p |~p〉〈~p| = 1 (26)
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Fig. 5: Complex contourC for the computation of the integral in Eq. (24).

The group of spatial rotations acts unitarily on the states|~p〉. This means that for every rotationR ∈
SO(3) there is a unitary operatorU(R) such that

U(R)|~p〉 = |R~p〉 (27)

whereR~p represents the action of the rotation on the vector~k, (R~p)i = Ri
jk

j . Using a spectral decom-

position, the momentum operator̂P i can be written as

P̂ i =

∫
d3p |~p〉 pi 〈~p| (28)

With the help of Eq. (27) it is straightforward to check that the momentum operator transforms as a
vector under rotations:

U(R)−1 P̂ i U(R) =

∫
d3p |R−1~p〉 pi 〈R−1~p| = Ri

jP̂
j , (29)

where we have used that the integration measure is invariant under SO(3).

Since, as we argued above, we are forced to deal with multiparticle states, it is convenient to
introduce creation-annihilation operators associated with a single-particle state of momentum~p

[a(~p), a†(~p ′)] = δ(~p− ~p ′), [a(~p), a(~p ′)] = [a†(~p), a†(~p ′)] = 0, (30)

such that the state|~p〉 is created out of the Fock space vacuum|0〉 (normalized such that〈0|0〉 = 1) by
the action of a creation operatora†(~p)

|~p〉 = a†(~p)|0〉, a(~p)|0〉 = 0 ∀~p. (31)

Covariance under spatial rotations is all we need if we are interested in a nonrelativistic theory.
However in a relativistic quantum field theory we must preserve more that SO(3), actually we need
the expressions to be covariant under the full Poincaré group ISO(1,3) consisting in spatial rotations,
boosts and space-time translations. Therefore, in order to build the Fock space of the theory we need
two key ingredients: first an invariant normalization for the states, since we want a normalized state in
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one reference frame to be normalized in any other inertial frame. And secondly a relativistic invariant
integration measure in momentum space, so the spectral decomposition of operators is covariant under
the full Poincaré group.

Let us begin with the invariant measure. Given an invariant functionf(p) of the four-momentum
pµ of a particle of massm with positive energyp0 > 0, there is an integration measure which is invariant
under proper Lorentz transformations2

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) f(p), (32)

whereθ(x) represent the Heaviside step function. The integration overp0 can be easily done using the
δ-function identity

δ[f(x)] =
∑

xi=zeros of f

1

|f ′(xi)|
δ(x− xi), (33)

which in our case implies that

δ(p2 −m2) =
1

2p0
δ
(
p0 −

√
~p 2 +m2

)
+

1

2p0
δ
(
p0 +

√
~p 2 +m2

)
. (34)

The second term in the previous expression correspond to states with negative energy and therefore does
not contribute to the integral. We can write then

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) f(p) =

∫
d3p

(2π)3
1

2
√

~p 2 +m2
f
(√

~p 2 +m2, ~p
)
. (35)

Hence, the relativistic invariant measure is given by

∫
d3p

(2π)3
1

2ωp
with ωp ≡

√
~p 2 +m2. (36)

Once we have an invariant measure the next step is to find an invariant normalization for the states.
We work with a basis{|p〉} of eigenstates of the four-momentum operatorP̂µ

P̂ 0|p〉 = ωp|p〉, P̂ i|p〉 = p i|p〉. (37)

Since the states|p〉 are eigenstates of the three-momentum operator we can express them in terms of the
non-relativistic states|~p〉 that we introduced in Eq. (25)

|p〉 = N(~p)|~p〉 (38)

with N(~p) a normalization to be determined now. The states{|p〉} form a complete basis, so they should
satisfy the Lorentz invariant closure relation

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) |p〉 〈p| = 1 (39)

At the same time, this closure relation can be expressed, using Eq. (38), in terms of the nonrelativistic
basis of states{|~p〉} as

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) |p〉 〈p| =

∫
d3p

(2π)3
1

2ωp
|N(p)|2 |~p〉 〈~p|. (40)

2The factors of2π are introduced for later convenience.
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Using now Eq. (28) for the nonrelativistic states, expression (39) followsprovided

|N(~p)|2 = (2π)3 (2ωp). (41)

Taking the overall phase in Eq. (38) so thatN(p) is real, we define the Lorentz invariant states|p〉 as

|p〉 = (2π)
3
2

√
2ωp |~p〉, (42)

and given the normalization of|~p〉 we find the normalization of the relativistic states to be

〈p|p′〉 = (2π)3(2ωp)δ(~p− ~p ′). (43)

Although not obvious at first sight, the previous normalization is Lorentz invariant. Although it
is not difficult to show this in general, here we consider the simpler case of 1+1 dimensions where the
two components(p0, p1) of the on-shell momentum can be parametrized in terms of a single hyperbolic
angleλ as

p0 = m coshλ, p1 = m sinhλ. (44)

Now, the combination2ωpδ(p
1 − p1′) can be written as

2ωpδ(p
1 − p1′) = 2m coshλ δ(m sinhλ−m sinhλ′) = 2δ(λ− λ′), (45)

where we have made use of the property (33) of theδ-function. Lorentz transformations in1 + 1 di-
mensions are labelled by a parameterξ ∈ R and act on the momentum by shifting the hyperbolic angle
λ → λ+ ξ. However, Eq. (45) is invariant under a common shift ofλ andλ′, so the whole expression is
obviously invariant under Lorentz transformations.

To summarize what we did so far, we have succeed in constructing a Lorentz covariant basis of
states for the one-particle Hilbert spaceH1. The generators of the Poincaré group act on the states|p〉 of
the basis as

P̂µ|p〉 = pµ|p〉, U(Λ)|p〉 = |Λµ
ν p

ν〉 ≡ |Λp〉 with Λ ∈ SO(1, 3). (46)

This is compatible with the Lorentz invariance of the normalization that we have checked above

〈p|p′〉 = 〈p|U(Λ)−1U(Λ)|p′〉 = 〈Λp|Λp′〉. (47)

OnH1 the operator̂Pµ admits the following spectral representation

P̂µ =

∫
d3p

(2π)3
1

2ωp
|p〉 pµ 〈p| . (48)

Using (47) and the fact that the measure is invariant under Lorentz transformation, one can easily show
thatP̂µ transform covariantly under SO(1,3)

U(Λ)−1P̂µU(Λ) =
∫

d3p

(2π)3
1

2ωp
|Λ−1p〉 pµ 〈Λ−1p| = Λµ

νP̂
ν . (49)

A set of covariant creation-annihilation operators can be constructed now in terms of the operators
a(~p), a†(~p) introduced above

α(~p) ≡ (2π)
3
2

√
2ωpa(~p), α†(~p) ≡ (2π)

3
2

√
2ωpa

†(~p) (50)

with the Lorentz invariant commutation relations

[α(~p), α†(~p ′)] = (2π)3(2ωp)δ(~p− ~p ′),
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[α(~p), α(~p ′)] = [α†(~p), α†(~p ′)] = 0. (51)

Particle states are created by acting with any number of creation operatorsα(~p) on the Poincaré invariant
vacuum state|0〉 satisfying

〈0|0〉 = 1, P̂µ|0〉 = 0, U(Λ)|0〉 = |0〉, ∀Λ ∈ SO(1, 3). (52)

A general one-particle state|f〉 ∈ H1 can be then written as

|f〉 =
∫

d3p

(2π)3
1

2ωp
f(~p)α†(~p)|0〉, (53)

while an-particle state|f〉 ∈ H⊗n
1 can be expressed as

|f〉 =
∫ n∏

i=1

d3pi
(2π)3

1

2ωpi

f(~p1, . . . , ~pn)α
†(~p1) . . . α†(~pn)|0〉. (54)

That this states are Lorentz invariant can be checked by noticing that from the definition of the creation-
annihilation operators follows the transformation

U(Λ)α(~p)U(Λ)† = α(Λ~p) (55)

and the corresponding one for creation operators.

As we have argued above, the very fact that measurements have to be localized implies the ne-
cessity of introducing quantum fields. Here we will consider the simplest case of a scalar quantum field
φ(x) satisfying the following properties:

- Hermiticity.

φ†(x) = φ(x). (56)

- Microcausality. Since measurements cannot interfere with each other when performed in causally
disconnected points of space-time, the commutator of two fields have to vanish outside the relative
ligth-cone

[φ(x), φ(y)] = 0, (x− y)2 < 0. (57)

- Translation invariance.

ei
bP ·aφ(x)e−i bP ·a = φ(x− a). (58)

- Lorentz invariance.

U(Λ)†φ(x)U(Λ) = φ(Λ−1x). (59)

- Linearity. To simplify matters we will also assume thatφ(x) is linear in the creation-annihilation
operatorsα(~p), α†(~p)

φ(x) =

∫
d3p

(2π)3
1

2ωp

[
f(~p, x)α(~p) + g(~p, x)α†(~p)

]
. (60)

Sinceφ(x) should be hermitian we are forced to takef(~p, x)∗ = g(~p, x). Moreover,φ(x) satisfies
the equations of motion of a free scalar field,(∂µ∂

µ +m2)φ(x) = 0, only if f(~p, x) is a complete
basis of solutions of the Klein-Gordon equation. These considerations leads to the expansion

φ(x) =

∫
d3p

(2π)3
1

2ωp

[
e−iωpt+i~p·~xα(~p) + eiωpt−i~p·~xα†(~p)

]
. (61)
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Given the expansion of the scalar field in terms of the creation-annihilation operators it can be
checked thatφ(x) and∂tφ(x) satisfy the equal-time canonical commutation relations

[φ(t, ~x), ∂tφ(t, ~y)] = iδ(~x− ~y) (62)

The general commutator[φ(x), φ(y)] can be also computed to be

[φ(x), φ(x′)] = i∆(x− x′). (63)

The function∆(x− y) is given by

i∆(x− y) = −Im

∫
d3p

(2π)3
1

2ωp
e−iωp(t−t′)+i~p·(~x−~x ′)

=

∫
d4p

(2π)4
(2π)δ(p2 −m2)ε(p0)e−ip·(x−x′), (64)

whereε(x) is defined as

ε(x) ≡ θ(x)− θ(−x) =

{
1 x > 0

−1 x < 0
. (65)

Using the last expression in Eq. (64) it is easy to show thati∆(x − x′) vanishes whenx andx′

are space-like separated. Indeed, if(x− x′)2 < 0 there is always a reference frame in which both events
are simultaneous, and sincei∆(x − x′) is Lorentz invariant we can compute it in this reference frame.
In this caset = t′ and the exponential in the second line of (64) does not depend onp0. Therefore, the
integration overk0 gives

∫ ∞

−∞
dp0ε(p0)δ(p2 −m2) =

∫ ∞

−∞
dp0

[
1

2ωp
ε(p0)δ(p0 − ωp) +

1

2ωp
ε(p0)δ(p0 + ωp)

]

=
1

2ωp
− 1

2ωp
= 0. (66)

So we have concluded thati∆(x− x′) = 0 if (x− x′)2 < 0, as required by microcausality. Notice that
the situation is completely different when(x − x′)2 ≥ 0, since in this case the exponential depends on
p0 and the integration over this component of the momentum does not vanish.

3.1 Canonical quantization

So far we have contented ourselves with requiring a number of properties to the quantum scalar field:
existence of asymptotic states, locality, microcausality and relativistic invariance. With these only ingre-
dients we have managed to go quite far. The previous can also be obtained using canonical quantization.
One starts with a classical free scalar field theory in Hamiltonian formalism and obtains the quantum
theory by replacing Poisson brackets by commutators. Since this quantization procedure is based on the
use of the canonical formalism, which gives time a privileged rôle, it is important to check at the end of
the calculation that the resulting quantum theory is Lorentz invariant. In the following we will briefly
overview the canonical quantization of the Klein-Gordon scalar field.

The starting point is the action functionalS[φ(x)] which, in the case of a free real scalar field of
massm is given by

S[φ(x)] ≡
∫

d4xL(φ, ∂µφ) =
1

2

∫
d4x

(
∂µφ∂

µφ−m2φ2
)
. (67)
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The equations of motion are obtained, as usual, from the Euler-Lagrange equations

∂µ

[
∂L

∂(∂µφ)

]
− ∂L

∂φ
= 0 =⇒ (∂µ∂

µ +m2)φ = 0. (68)

The momentum canonically conjugated to the fieldφ(x) is given by

π(x) ≡ ∂L
∂(∂0φ)

=
∂φ

∂t
. (69)

In the Hamiltonian formalism the physical system is described not in terms of the generalized coordinates
and their time derivatives but in terms of the generalized coordinates and their canonically conjugated
momenta. This is achieved by a Legendre transformation after which the dynamics of the system is
determined by the Hamiltonian function

H ≡
∫

d3x

(
π
∂φ

∂t
− L

)
=

1

2

∫
d3x

[
π2 + (~∇φ)2 +m2

]
. (70)

The equations of motion can be written in terms of the Poisson rackets. Given two functional
A[φ, π], B[φ, π] of the canonical variables

A[φ, π] =

∫
d3xA(φ, π), B[φ, π] =

∫
d3xB(φ, π). (71)

Their Poisson bracket is defined by

{A,B} ≡
∫

d3x

[
δA

δφ

δB

δπ
− δA

δπ

δB

δφ

]
, (72)

where δ
δφ denotes the functional derivative defined as

δA

δφ
≡ ∂A

∂φ
− ∂µ

[
∂A

∂(∂µφ)

]
(73)

Then, the canonically conjugated fields satisfy the following equal time Poisson brackets

{φ(t, ~x), φ(t, ~x ′)} = {π(t, ~x), π(t, ~x ′)} = 0,

{φ(t, ~x), π(t, ~x ′)} = δ(~x− ~x ′). (74)

Canonical quantization proceeds now by replacing classical fields with operators and Poisson
brackets with commutators according to the rule

i{·, ·} −→ [·, ·]. (75)

In the case of the scalar field, a general solution of the field equations (68) can be obtained by working
with the Fourier transform

(∂µ∂
µ +m2)φ(x) = 0 =⇒ (−p2 +m2)φ̃(p) = 0, (76)

whose general solution can be written as3

φ(x) =

∫
d4p

(2π)4
(2π)δ(p2 −m2)θ(p0)

[
α(p)e−ip·x + α(p)∗eip·x

]

3In momentum space, the general solution to this equation iseφ(p) = f(p)δ(p2 − m2), with f(p) a completely general
function ofpµ. The solution in position space is obtained by inverse Fourier transform.
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=

∫
d3p

(2π)3
1

2ωp

[
α(~p )e−iωpt+~p·~x + α(~p )∗eiωpt−~p·~x

]
(77)

and we have requiredφ(x) to be real. The conjugate momentum is

π(x) = − i

2

∫
d3p

(2π)3

[
α(~p )e−iωpt+~p·~x + α(~p )∗eiωpt−~p·~x

]
. (78)

Now φ(x) andπ(x) are promoted to operators by replacing the functionsα(~p), α(~p)∗ by the
corresponding operators

α(~p ) −→ α̂(~p ), α(~p )∗ −→ α̂†(~p ). (79)

Moreover, demanding[φ(t, ~x), π(t, ~x ′)] = iδ(~x − ~x ′) forces the operatorŝα(~p), α̂(~p)† to have the
commutation relations found in Eq. (51). Therefore they are identified as a set of creation-annihilation
operators creating states with well-defined momentum~p out of the vacuum|0〉. In the canonical quanti-
zation formalism the concept of particle appears as a result of the quantization of a classical field.

Knowing the expressions of̂φ andπ̂ in terms of the creation-annihilation operators we can proceed
to evaluate the Hamiltonian operator. After a simple calculation one arrives to the expression

Ĥ =

∫
d3p

[
ωpα̂

†(~p)α̂(~p) +
1

2
ωp δ(~0)

]
. (80)

The first term has a simple physical interpretation sinceα̂†(~p)α̂(~p) is the number operator of particles
with momentum~p. The second divergent term can be eliminated if we defined the normal-ordered
Hamiltonian:Ĥ: with the vacuum energy subtracted

:Ĥ:≡ Ĥ − 〈0|Ĥ|0〉 =
∫

d3pωp α̂
†(~p ) α̂(~p ) (81)

It is interesting to try to make sense of the divergent term in Eq. (80). This term have two sources
of divergence. One is associated with the delta function evaluated at zero coming from the fact that we
are working in a infinite volume. It can be regularized for large but finite volume by replacingδ(~0) ∼ V .
Hence, it is of infrared origin. The second one comes from the integration ofωp at large values of
the momentum and it is then an ultraviolet divergence. The infrared divergence can be regularized by
considering the scalar field to be living in a box of finite volumeV . In this case the vacuum energy is

Evac ≡ 〈0|Ĥ|0〉 =
∑

~p

1

2
ωp. (82)

Written in this way the interpretation of the vacuum energy is straightforward. A free scalar quantum
field can be seen as a infinite collection of harmonic oscillators per unit volume, each one labelled by
~p. Even if those oscillators are not excited, they contribute to the vacuum energy with their zero-point
energy, given by12ωp. This vacuum contribution to the energy add up to infinity even if we work at
finite volume, since even then there are modes with arbitrary high momentum contributing to the sum,
pi = niπ

Li
, with Li the sides of the box of volumeV andni an integer. Hence, this divergence is of

ultraviolet origin.

Our discussion leads us to the conclusion that the vacuum in quantum field theory is radically
different from the classical idea of the vacuum as “empty space”. Indeed, we have seen that a quantum
field can be regarded as a set of an infinite number of harmonic oscillators and that the ground state of
the system is obtained whenall oscillators are in their respective ground states. This being so, we know
from elementary quantum mechanics that a harmonic oscillator in its ground state is not “at rest”, but
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Region I Region II

Conducting plates

Region III

d

Fig. 6: Illustration of the Casimir effect. In regions I and II the spetrum of modes of the momentump⊥ is
continuous, while in the space between the plates (region II) it is quantized in units ofπ

d .

fluctuate with an energy given by its zero-point energy. When translated to quantum field theory, this
means that the vacuum can be picture as a medium where virtual particles are continuously created and
annihilated. As we will see, this nontrivial character of the vacuum has physical consequences ranging
from the Casimir effect (see below) to the screening or antiscreening of charges in gauge theories (see
Section 8.2).

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic of the scalar field. It is also present in other cases,
in particular in quantum electrodynamics. Although one might be tempted to discarding this infinite
contribution to the energy of the vacuum as unphysical, it has observable consequences. In 1948 Hendrik
Casimir pointed out [16] that although a formally divergent vacuum energy would not be observable, any
variation in this energy would be (see [17] for comprehensive reviews).

To show this he devised the following experiment. Consider a couple of infinite, perfectly con-
ducting plates placed parallel to each other at a distanced (see Fig. 6). Because the conducting plates fix
the boundary condition of the vacuum modes of the electromagnetic field these are discrete in between
the plates (region II), while outside there is a continuous spectrum of modes (regions I and III). In order
to calculate the force between the plates we can take the vacuum energy of the electromagnetic field
as given by the contribution of two scalar fields corresponding to the two polarizations of the photon.
Therefore we can use the formulas derived above.

A naive calculation of the vacuum energy in this system gives a divergent result. This infinity can
be removed, however, by substracting the vacuum energy corresponding to the situation where the plates
are removed

E(d)reg = E(d)vac − E(∞)vac (83)

This substraction cancels the contribution of the modes outside the plates. Because of the boundary
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conditions imposed by the plates the momentum of the modes perpendicular to the plates are quantized
according top⊥ = nπ

d , with n a non-negative integer. If we consider that the size of the plates is much
larger than their separationd we can take the momenta parallel to the plates~p‖ as continuous. Forn > 0
we have two polarizations for each vacuum mode of the electromagnetic field, each contributing like
1
2

√
~p 2
‖ + p2⊥ to the vacuum energy. On the other hand, whenp⊥ = 0 the corresponding modes of the

field are effectively (2+1)-dimensional and therefore there is only one polarization. Keeping this in mind,
we can write

E(d)reg = S

∫
d2p‖
(2π)2

1

2
|~p‖|+ 2S

∫
d2p‖
(2π)2

∞∑

n=1

1

2

√
~p 2
‖ +

(nπ
d

)2

− 2Sd

∫
d3p

(2π)3
1

2
|~p | (84)

whereS is the area of the plates. The factors of 2 take into account the two propagating degrees of
freedom of the electromagnetic field, as discussed above. In order to ensure the convergence of integrals
and infinite sums we can introduce an exponential damping factor4

E(d)reg =
1

2
S

∫
d2p⊥
(2π)2

e−
1
Λ
|~p‖ ||~p‖ |+ S

∞∑

n=1

∫
d2p‖
(2π)2

e
− 1

Λ

q

~p 2
‖+(

nπ
d )

2
√

~p 2
‖ +

(nπ
d

)2

− Sd

∫ ∞

−∞

dp⊥
2π

∫
d2p‖
(2π)2

e
− 1

Λ

q

~p 2
‖+p2⊥

√
~p 2
‖ + p2⊥ (85)

whereΛ is an ultraviolet cutoff. It is now straightforward to see that if we define the function

F (x) =
1

2π

∫ ∞

0
y dy e−

1
Λ

q

y2+(xπ
d )

2
√
y2 +

(xπ
d

)2
=

1

4π

∫ ∞

(xπ
d )

2
dz e−

√
z

Λ
√
z (86)

the regularized vacuum energy can be written as

E(d)reg = S

[
1

2
F (0) +

∞∑

n=1

F (n)−
∫ ∞

0
dxF (x)

]
(87)

This expression can be evaluated using the Euler-MacLaurin formula [19]
∞∑

n=1

F (n)−
∫ ∞

0
dxF (x) = −1

2
[F (0) + F (∞)] +

1

12

[
F ′(∞)− F ′(0)

]

− 1

720

[
F ′′′(∞)− F ′′′(0)

]
+ . . . (88)

Since for our functionF (∞) = F ′(∞) = F ′′′(∞) = 0 andF ′(0) = 0, the value ofE(d)reg is
determined byF ′′′(0). Computing this term and removing the ultraviolet cutoff,Λ → ∞ we find the
result

E(d)reg =
S

720
F ′′′(0) = − π2S

720d3
. (89)

Then, the force per unit area between the plates is given by

PCasimir = − π2

240

1

d4
. (90)

The minus sign shows that the force between the plates is attractive. This is the so-called Casimir effect.
It was experimentally measured in 1958 by Sparnaay [18] and since then the Casimir effect has been
checked with better and better precission in a variety of situations [17].

4Actually, one could introduce any cutoff functionf(p2⊥ + p2‖) going to zero fast enough asp⊥, p‖ → ∞. The result is
independent of the particular function used in the calculation.
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4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate our discussion of the quantization procedure.
However, nature is richer than that and it is necessary to consider other fields with more complicated be-
havior under Lorentz transformations. Before considering other fields we pause and study the properties
of the Lorentz group.

4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generators. Three of them correspond to the generators
of the group of rotations in three dimensions SO(3). In terms of the generatorsJi of the group a finite
rotation of angleϕ with respect to an axis determined by a unitary vector~e can be written as

R(~e, ϕ) = e−iϕ~e· ~J , ~J =




J1
J2
J3


 . (91)

The other three generators of the Lorentz group are associated with boostsMi along the three spatial
directions. A boost with rapidityλ along a direction~u is given by

B(~u, λ) = e−iλ ~u· ~M , ~M =




M1

M2

M3


 . (92)

These six generators satisfy the algebra

[Ji, Jj ] = iǫijkJk,

[Ji,Mk] = iǫijkMk, (93)

[Mi,Mj ] = −iǫijkJk,

The first line corresponds to the commutation relations of SO(3), while the second one implies that the
generators of the boosts transform like a vector under rotations.

At first sight, to find representations of the algebra (93) might seem difficult. The problem is
greatly simplified if we consider the following combination of the generators

J±
k =

1

2
(Jk ± iMk). (94)

Using (93) it is easy to prove that the new generatorsJ±
k satisfy the algebra

[J±
i , J±

j ] = iǫijkJ
±
k ,

[J+
i , J−

j ] = 0. (95)

Then the Lorentz algebra (93) is actually equivalent to two copies of the algebra ofSU(2) ≈ SO(3).
Therefore the irreducible representations of the Lorentz group can be obtained from the well-known rep-
resentations of SU(2). Since the latter ones are labelled by the spins = k + 1

2 , k (with k ∈ N), any
representation of the Lorentz algebra can be identified by specifying(s+, s−), the spins of the represen-
tations of the two copies of SU(2) that made up the algebra (93).

To get familiar with this way of labelling the representations of the Lorentz group we study some
particular examples. Let us start with the simplest one(s+, s−) = (0,0). This state is a singlet under
J±
i and therefore also under rotations and boosts. Therefore we have a scalar.

The next interesting cases are(12 ,0) and (0, 12). They correspond respectively to a right-handed
and a left-handed Weyl spinor. Their properties will be studied in more detail below. In the case of
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Representation Type of field

(0,0) Scalar

(12 ,0) Right-handed spinor

(0, 12) Left-handed spinor

(12 ,
1
2) Vector

(1,0) Selfdual antisymmetric 2-tensor

(0,1) Anti-selfdual antisymmetric 2-tensor

Table 1: Representations of the Lorentz group

(12 ,
1
2), since from Eq. (94) we see thatJi = J+

i + J−
i the rules of addition of angular momentum

tell us that there are two states, one of them transforming as a vector and another one as a scalar under
three-dimensional rotations. Actually, a more detailed analysis shows that the singlet state corresponds
to the time component of a vector and the states combine to form a vector under the Lorentz group.

There are also more “exotic” representations. For example we can consider the(1,0) and(0,1)
representations corresponding respectively to a selfdual and an anti-selfdual rank-two antisymmetric
tensor. In Table 1 we summarize the previous discussion.

To conclude our discussion of the representations of the Lorentz group we notice that under a
parity transformation the generators of SO(1,3) transform as

P : Ji −→ Ji, P : Mi −→ −Mi (96)

this means thatP : J±
i −→ J∓

i and therefore a representation(s1, s2) is transformed into(s2, s1). This
means that, for example, a vector(12 ,

1
2) is invariant under parity, whereas a left-handed Weyl spinor

(12 ,0) transforms into a right-handed one(0, 12) and vice versa.

4.2 Spinors

Weyl spinors. Let us go back to the two spinor representations of the Lorentz group, namely(12 ,0) and
(0, 12). These representations can be explicitly constructed using the Pauli matrices as

J+
i =

1

2
σi, J−

i = 0 for (12 ,0),

J+
i = 0, J−

i =
1

2
σi for (0, 12). (97)

We denote byu± a complex two-component object that transforms in the representations± = 1
2 of J i

±.
If we defineσµ

± = (1,±σi) we can construct the following vector quantities

u†+σ
µ
+u+, u†−σ

µ
−u−. (98)

Notice that since(J±
i )† = J∓

i the hermitian conjugated fieldsu†± are in the(0, 12) and(12 ,0) respectively.

To construct a free Lagrangian for the fieldsu± we have to look for quadratic combinations of the
fields that are Lorentz scalars. If we also demand invariance under global phase rotations

u± −→ eiθu± (99)
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we are left with just one possibility up to a sign

L±
Weyl = iu†±

(
∂t ± ~σ · ~∇

)
u± = iu†±σ

µ
±∂µu±. (100)

This is the Weyl Lagrangian. In order to grasp the physical meaning of the spinorsu± we write the
equations of motion

(
∂0 ± ~σ · ~∇

)
u± = 0. (101)

Multiplying this equation on the left by
(
∂0 ∓ ~σ · ~∇

)
and applying the algebraic properties of the Pauli

matrices we conclude thatu± satisfies the massless Klein-Gordon equation

∂µ∂
µ u± = 0, (102)

whose solutions are:

u±(x) = u±(k)e−ik·x, with k0 = |~k|. (103)

Plugging these solutions back into the equations of motion (101) we find
(
|~k| ∓ ~k · ~σ

)
u± = 0, (104)

which implies

u+ :
~σ · ~k
|~k|

= 1,

u− :
~σ · ~k
|~k|

= −1. (105)

Since the spin operator is defined as~s = 1
2~σ, the previous expressions give the chirality of the states with

wave functionu±, i.e. the projection of spin along the momentum of the particle. Therefore we conclude
thatu+ is a Weyl spinor of positive helicityλ = 1

2 , while u− has negative helicityλ = −1
2 . This agrees

with our assertion that the representation(12 ,0) corresponds to a right-handed Weyl fermion (positive
chirality) whereas(0, 12) is a left-handed Weyl fermion (negative chirality). For example, in the standard
model neutrinos are left-handed Weyl spinors and therefore transform in the representation(0, 12) of the
Lorentz group.

Nevertheless, it is possible that we were too restrictive in constructing the Weyl Lagrangian (100).
There we constructed the invariants from the vector bilinears (98) corresponding to the product repre-
sentations

(12 ,
1
2) = (12 ,0)⊗ (0, 12) and (12 ,

1
2) = (0, 12)⊗ (12 ,0). (106)

In particular our insistence in demanding the Lagrangian to be invariant under the global symmetry
u± → eiθu± rules out the scalar term that appears in the product representations

(12 ,0)⊗ (12 ,0) = (1,0)⊕ (0,0), (0, 12)⊗ (0, 12) = (0,1)⊕ (0,0). (107)

The singlet representations corresponds to the antisymmetric combinations

ǫabu
a
±u

b
±, (108)

whereǫab is the antisymmetric symbolǫ12 = −ǫ21 = 1.
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At first sight it might seem that the term (108) vanishes identically because of the antisymmetry
of the ǫ-symbol. However we should keep in mind that the spin-statistic theorem (more on this later)
demands that fields with half-integer spin have to satisfy the Fermi-Dirac statistics and therefore satisfy
anticommutation relations, whereas fields of integer spin follow the statistic of Bose-Einstein and, as a
consequence, quantization replaces Poisson brackets by commutators. This implies that the components
of the Weyl fermionsu± are anticommuting Grassmann fields

ua±u
b
± + ub±u

a
± = 0. (109)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy the Fermi-Dirac statis-
tics) do not exist classically. The reason is that they satisfy the Pauli exclusion principle and therefore
each quantum state can be occupied, at most, by one fermion. Therefore the naïve definition of the clas-
sical limit as a limit of large occupation numbers cannot be applied. Fermion field do not really make
sense classically.

Since the combination (108) does not vanish and we can construct a new Lagrangian

L±
Weyl = iu†±σ

µ
±∂µu± − m

2
ǫabu

a
±u

b
± + h.c. (110)

This mass term, called of Majorana type, is allowed if we do not worry about breaking the global U(1)
symmetryu± → eiθu±. This is not the case, for example, of charged chiral fermions, since the Majorana
mass violates the conservation of electric charge or any other gauge U(1) charge. In the standard model,
however, there is no such a problem if we introduce Majorana masses for right-handed neutrinos, since
they are singlet under all standard model gauge groups. Such a term will break, however, the global U(1)
lepton number charge because the operatorǫabν

a
Rν

b
R changes the lepton number by two units

Dirac spinors. We have seen that parity interchanges the representations(12 ,0) and (0, 12), i.e. it
changes right-handed with left-handed fermions

P : u± −→ u∓. (111)

An obvious way to build a parity invariant theory is to introduce a pair or Weyl fermionsu+ andu+.
Actually, these two fields can be combined in a single four-component spinor

ψ =

(
u+
u−

)
(112)

transforming in the reducible representation(12 ,0)⊕ (0, 12).

Since now we have bothu+ andu− simultaneously at our disposal the equations of motion for
u±, iσµ

±∂µu± = 0 can be modified, while keeping them linear, to

iσµ
+∂µu+ = mu−

iσµ
−∂µu− = mu+



 =⇒ i

(
σµ
+ 0
0 σµ

−

)
∂µψ = m

(
0 1
1 0

)
ψ. (113)

These equations of motion can be derived from the Lagrangian density

LDirac = iψ†
(

σµ
+ 0
0 σµ

−

)
∂µψ −mψ†

(
0 1
1 0

)
ψ. (114)

To simplify the notation it is useful to define the Diracγ-matrices as

γµ =

(
0 σµ

−
σµ
+ 0

)
(115)
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and the Dirac conjugate spinorψ

ψ ≡ ψ†γ0 = ψ†
(

0 1
1 0

)
. (116)

Now the Lagrangian (114) can be written in the more compact form

LDirac = ψ (iγµ∂µ −m)ψ. (117)

The associated equations of motion give the Dirac equation (11) with the identifications

γ0 = β, γi = iαi. (118)

In addition, theγ-matrices defined in (115) satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (119)

In D dimensions this algebra admits representations of dimension2[
D
2
]. WhenD is even the Dirac

fermionsψ transform in a reducible representation of the Lorentz group. In the case of interest,D = 4
this is easy to prove by defining the matrix

γ5 = −iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (120)

We see thatγ5 anticommutes with all otherγ-matrices. This implies that

[γ5, σµν ] = 0, with σµν = − i

4
[γµ, γν ]. (121)

Because of Schur’s lemma (see Appendix) this implies that the representation of the Lorentz group
provided byσµν is reducible into subspaces spanned by the eigenvectors ofγ5 with the same eigenvalue.
If we define the projectorsP± = 1

2(1± γ5) these subspaces correspond to

P+ψ =

(
u+
0

)
, P−ψ =

(
0
u−

)
, (122)

which are precisely the Weyl spinors introduced before.

Our next task is to quantize the Dirac Lagrangian. This will be done along the lines used for
the Klein-Gordon field, starting with a general solution to the Dirac equation and introducing the cor-
responding set of creation-annihilation operators. Therefore we start by looking for a complete basis of
solutions to the Dirac equation. In the case of the scalar field the elements of the basis were labelled by
their four-momentumkµ. Now, however, we have more degrees of freedom since we are dealing with
a spinor which means that we have to add extra labels. Looking back at Eq. (105) we can define the
helicity operator for a Dirac spinor as

λ =
1

2
~σ ·

~k

|~k|

(
1 0
0 1

)
. (123)

Hence, each element of the basis of functions is labelled by its four-momentumkµ and the corresponding
eigenvalues of the helicity operator. For positive energy solutions we then propose the ansatz

u(k, s)e−ik·x, s = ±1

2
, (124)

whereuα(k, s) (α = 1, . . . , 4) is a four-component spinor. Substituting in the Dirac equation we obtain

(/k −m)u(k, s) = 0. (125)
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In the same way, for negative energy solutions we have

v(k, s)eik·x, s = ±1

2
, (126)

wherev(k, s) has to satisfy

(/k +m)v(k, s) = 0. (127)

Multiplying Eqs. (125) and (127) on the left respectively by(/k ∓ m) we find that the momentum is
on the mass shell,k2 = m2. Because of this, the wave function for both positive- and negative-energy
solutions can be labeled as well using the three-momentum~k of the particle,u(~k, s), v(~k, s).

A detailed analysis shows that the functionsu(~k, s), v(~k, s) satisfy the properties

u(~k, s)u(~k, s) = 2m, v(~k, s)v(~k, s) = −2m,

u(~k, s)γµu(~k, s) = 2kµ, v(~k, s)γµv(~k, s) = 2kµ, (128)∑

s=± 1
2

uα(~k, s)uβ(~k, s) = (/k +m)αβ ,
∑

s=± 1
2

vα(~k, s)vβ(~k, s) = (/k −m)αβ ,

with k0 = ωk =
√
~k 2 +m2. Then, a general solution to the Dirac equation including creation and

annihilation operators can be written as:

ψ̂(t, ~x) =

∫
d3k

(2π)3
1

2ωk

∑

s=± 1
2

[
u(~k, s) b̂(~k, s)e−iωkt+i~k·~x + v(~k, s) d̂†(~k, s)eiωkt−i~k·~x

]
. (129)

The operatorŝb†(~k, s), b̂(~k) respectively create and annihilate a spin-1
2 particle (for example, an

electron) out of the vacuum with momentum~k and helicitys. Because we are dealing with half-integer
spin fields, the spin-statistics theorem forces canonical anticommutation relations forψ̂ which means
that the creation-annihilation operators satisfy the algebra5

{b(~k, s), b†(~k ′, s′)} = δ(~k − ~k ′)δss′ ,

{b(~k, s), b(~k ′, s′)} = {b†(~k, s), b†(~k ′, s′)} = 0. (130)

In the case ofd(~k, s), d†(~k, s) we have a set of creation-annihilation operators for the correspond-
ing antiparticles (for example positrons). This is clear if we notice thatd†(~k, s) can be seen as the
annihilation operator of a negative energy state of the Dirac equation with wave functionvα(~k, s). As
we saw, in the Dirac sea picture this corresponds to the creation of an antiparticle out of the vacuum (see
Fig. 2). The creation-annihilation operators for antiparticles also satisfy the fermionic algebra

{d(~k, s), d†(~k ′, s′)} = δ(~k − ~k ′)δss′ ,

{d(~k, s), d(~k ′, s′)} = {d†(~k, s), d†(~k ′, s′)} = 0. (131)

All other anticommutators betweenb(~k, s), b†(~k, s) andd(~k, s), d†(~k, s) vanish.

The Hamiltonian operator for the Dirac field is

Ĥ =
1

2

∑

s=± 1
2

∫
d3k

(2π)3

[
b†(~k, s)b(~k, s)− d(~k, s)d†(~k, s)

]
. (132)

At this point we realize again of the necessity of quantizing the theory using anticommutators instead
of commutators. Had we use canonical commutation relations, the second term inside the integral in

5To simplify notation, and since there is no risk of confusion, we drop from now on the hat to indicate operators.
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(132) would give the number operatord†(~k, s)d(~k, s) with a minus sign in front. As a consequence the
Hamiltonian would be unbounded from below and we would be facing again the instability of the theory
already noticed in the context of relativistic quantum mechanics. However, because of theanticommuta-
tion relations (131), the Hamiltonian (132) takes the form

Ĥ =
∑

s=± 1
2

∫
d3k

(2π)3
1

2ωk

[
ωkb

†(~k, s)b(~k, s) + ωkd
†(~k, s)d(~k, s)

]
− 2

∫
d3k ωkδ(~0). (133)

As with the scalar field, we find a divergent vacuum energy contribution due to the zero-point energy
of the infinite number of harmonic oscillators. Unlike the Klein-Gordon field, the vacuum energy is
negative. In section 9.2 we will see that in certain type of theories called supersymmetric, where the
number of bosonic and fermionic degrees of freedom is the same, there is a cancellation of the vacuum
energy. The divergent contribution can be removed by the normal order prescription

:Ĥ:=
∑

s=± 1
2

∫
d3k

(2π)3
1

2ωk

[
ωkb

†(~k, s)b(~k, s) + ωkd
†(~k, s)d(~k, s)

]
. (134)

Finally, let us mention that using the Dirac equation it is easy to prove that there is a conserved
four-current given by

jµ = ψγµψ, ∂µj
µ = 0. (135)

As we will explain further in sec. 6 this current is associated to the invariance of the Dirac Lagrangian
under the global phase shiftψ → eiθψ. In electrodynamics the associated conserved charge

Q = e

∫
d3x j0 (136)

is identified with the electric charge.

4.3 Gauge fields

In classical electrodynamics the basic quantities are the electric and magnetic fields~E, ~B. These can be
expressed in terms of the scalar and vector potential(ϕ, ~A)

~E = −~∇ϕ− ∂ ~A

∂t
,

~B = ~∇× ~A. (137)

From these equations it follows that there is an ambiguity in the definition of the potentials given by the
gauge transformations

ϕ(t, ~x) → ϕ(t, ~x) +
∂

∂t
ǫ(t, ~x), ~A(t, ~x) → ~A(t, ~x)− ~∇ǫ(t, ~x). (138)

Classically(ϕ, ~A) are seen as only a convenient way to solve the Maxwell equations, but without physical
relevance.

The equations of electrodynamics can be recast in a manifestly Lorentz invariant form using the
four-vector gauge potentialAµ = (ϕ, ~A) and the antisymmetric rank-two tensor:Fµν = ∂µAν − ∂νAµ.
Maxwell’s equations become

∂µF
µν = jµ,

ǫµνση∂νFση = 0, (139)
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where the four-currentjµ = (ρ,~) contains the charge density and the electric current. The field strength
tensorFµν and the Maxwell equations are invariant under gauge transformations (138), which in covari-
ant form read

Aµ −→ Aµ + ∂µǫ. (140)

Finally, the equations of motion of charged particles are given, in covariant form, by

m
duµ

dτ
= eFµνuν , (141)

wheree is the charge of the particle anduµ(τ) its four-velocity as a function of the proper time.

The physical rôle of the vector potential becomes manifest only in Quantum Mechanics. Using
the prescription of minimal substitution~p → ~p−e ~A, the Schrödinger equation describing a particle with
chargee moving in an electromagnetic field is

i∂tΨ =

[
− 1

2m

(
~∇− ie ~A

)2
+ eϕ

]
Ψ. (142)

Because of the explicit dependence on the electromagnetic potentialsϕ and ~A, this equation seems
to change under the gauge transformations (138). This is physically acceptable only if the ambiguity
does not affect the probability density given by|Ψ(t, ~x)|2. Therefore, a gauge transformation of the
electromagnetic potential should amount to a change in the (unobservable) phase of the wave function.
This is indeed what happens: the Schrödinger equation (142) is invariant under the gauge transformations
(138) provided the phase of the wave function is transformed at the same time according to

Ψ(t, ~x) −→ e−ie ǫ(t,~x)Ψ(t, ~x). (143)

Aharonov-Bohm effect.This interplay between gauge transformations and the phase of the wave
function give rise to surprising phenomena. The first evidence of the rôle played by the electromagnetic
potentials at the quantum level was pointed out by Yakir Aharonov and David Bohm [20]. Let us consider
a double slit experiment as shown in Fig. 7, where we have placed a shielded solenoid just behind the
first screen. Although the magnetic field is confined to the interior of the solenoid, the vector potential is
nonvanishing also outside. Of course the value of~A outside the solenoid is a pure gauge, i.e.~∇× ~A = ~0,
however because the region outside the solenoid is not simply connected the vector potential cannot be
gauged to zero everywhere. If we denote byΨ

(0)
1 andΨ(0)

2 the wave functions for each of the two electron
beams in the absence of the solenoid, the total wave function once the magnetic field is switched on can
be written as

Ψ = e
ie

R

Γ1
~A·d~x

Ψ
(0)
1 + e

ie
R

Γ2
~A·d~x

Ψ
(0)
2

= e
ie

R

Γ1
~A·d~x

[
Ψ

(0)
1 + eie

H

Γ
~A·d~xΨ(0)

2

]
, (144)

whereΓ1 andΓ2 are two curves surrounding the solenoid from different sides, andΓ is any closed loop
surrounding it. Therefore the relative phase between the two beams gets an extra term depending on the
value of the vector potential outside the solenoid as

U = exp

[
ie

∮

Γ

~A · d~x
]
. (145)

Because of the change in the relative phase of the electron wave functions, the presence of the vector
potential becomes observable even if the electrons do not feel the magnetic field. If we perform the
double-slit experiment when the magnetic field inside the solenoid is switched off we will observe the
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source

Fig. 7: Illustration of an interference experiment to show the Aharonov-Bohm effect.S represent the solenoid in
whose interior the magnetic field is confined.

usual interference pattern on the second screen. However if now the magnetic field is switched on,
because of the phase (144), a change in the interference pattern will appear. This is the Aharonov-Bohm
effect.

The first question that comes up is what happens with gauge invariance. Since we said that~A
can be changed by a gauge transformation it seems that the resulting interference patters might depend
on the gauge used. Actually, the phaseU in (145) is independent of the gauge although, unlike other
gauge-invariant quantities like~E and ~B, is nonlocal. Notice that, since~∇× ~A = ~0 outside the solenoid,
the value ofU does not change under continuous deformations of the closed curveΓ, so long as it does
not cross the solenoid.

The Dirac monopole.It is very easy to check that the vacuum Maxwell equations remain invariant
under the transformation

~E − i ~B −→ eiθ( ~E − i ~B), θ ∈ [0, 2π] (146)

which, in particular, forθ = π
2 interchanges the electric and the magnetic fields:~E → ~B, ~B → − ~E.

This duality symmetry is however broken in the presence of electric sources. Nevertheless the Maxwell
equations can be “completed” by introducing sources for the magnetic field(ρm,~m) in such a way that
the duality (146) is restored when supplemented by the transformation

ρ− iρm −→ eiθ(ρ− iρm), ~− i~m −→ eiθ(~− i~m). (147)

Again forθ = π/2 the electric and magnetic sources get interchanged.

In 1931 Dirac [21] studied the possibility of finding solutions of the completed Maxwell equation
with a magnetic monopoles of chargeg, i.e. solutions to

~∇ · ~B = g δ(~x). (148)

Away from the position of the monopole~∇ · ~B = 0 and the magnetic field can be still derived locally
from a vector potential~A according to~B = ~∇ × ~A. However, the vector potential cannot be regular
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Dirac string

Γ

g

Fig. 8: The Dirac monopole.

everywhere since otherwise Gauss law would imply that the magnetic flux threading a closed surface
around the monopole should vanish, contradicting (148).

We look now for solutions to Eq. (148). Working in spherical coordinates we find

Br =
g

|~x|2 , Bϕ = Bθ = 0. (149)

Away from the position of the monopole (~x 6= ~0) the magnetic field can be derived from the vector
potential

Aϕ =
g

|~x| tan
θ

2
, Ar = Aθ = 0. (150)

As expected we find that this vector potential is actually singular around the half-lineθ = π (see Fig.
8). This singular line starting at the position of the monopole is called the Dirac string and its position
changes with a change of gauge but cannot be eliminated by any gauge transformation. Physically we
can see it as an infinitely thin solenoid confining a magnetic flux entering into the magnetic monopole
from infinity that equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it seems that the presence of
monopoles introduces an ambiguity. This would be rather strange, since Maxwell equations are gauge
invariant also in the presence of magnetic sources. The solution to this apparent riddle lies in the fact that
the Dirac string does not pose any consistency problem as far as it does not produce any physical effect,
i.e. if its presence turns out to be undetectable. From our discussion of the Aharonov-Bohm effect we
know that the wave function of charged particles pick up a phase (145) when surrounding a region where
magnetic flux is confined (for example the solenoid in the Aharonov-Bohm experiment). As explained
above, the Dirac string associated with the monopole can be seen as a infinitely thin solenoid. Therefore
the Dirac string will be unobservable if the phase picked up by the wave function of a charged particle is
equal to one. A simple calculation shows that this happens if

ei e g = 1 =⇒ e g = 2πn with n ∈ Z. (151)
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Interestingly, this discussion leads to the conclusion that the presence of a single magnetic monopoles
somewhere in the Universe implies for consistency the quantization of the electric charge in units of2π

g ,
whereg the magnetic charge of the monopole.

Quantization of the electromagnetic field.We now proceed to the quantization of the electro-
magnetic field in the absence of sourcesρ = 0, ~ = ~0. In this case the Maxwell equations (139) can be
derived from the Lagrangian density

LMaxwell = −1

4
FµνF

µν =
1

2

(
~E 2 − ~B 2

)
. (152)

Although in general the procedure to quantize the Maxwell Lagrangian is not very different from the
one used for the Klein-Gordon or the Dirac field, here we need to deal with a new ingredient: gauge
invariance. Unlike the cases studied so far, here the photon fieldAµ is not unambiguously defined
because the action and the equations of motion are insensitive to the gauge transformationsAµ → Aµ +
∂µε. A first consequence of this symmetry is that the theory has less physical degrees of freedom than
one would expect from the fact that we are dealing with a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing the electro-
magnetic potential before quantization. This can be done in several ways, for example by imposing the
Lorentz gauge fixing condition

∂µA
µ = 0. (153)

Notice that this condition does not fix completely the gauge freedom since Eq. (153) is left invariant
by gauge transformations satisfying∂µ∂µε = 0. One of the advantages, however, of the Lorentz gauge
is that it is covariant and therefore does not pose any danger to the Lorentz invariance of the quantum
theory. Besides, applying it to the Maxwell equation∂µF

µν = 0 one finds

0 = ∂µ∂
µAν − ∂ν (∂µA

µ) = ∂µ∂
µAν , (154)

which means that sinceAµ satisfies the massless Klein-Gordon equation the photon, the quantum of the
electromagnetic field, has zero mass.

Once gauge invariance is fixedAµ is expanded in a complete basis of solutions to (154) and the
canonical commutation relations are imposed

Âµ(t, ~x) =
∑

λ=±1

∫
d3k

(2π)3
1

2|~k|

[
ǫµ(~k, λ)â(~k, λ)e

−i|~k|t+i~k·~x + ǫµ(~k, λ)
∗ â†(~k, λ)ei|

~k|t−i~k·~x
]

(155)

whereλ = ±1 represent the helicity of the photon, andǫµ(~k, λ) are solutions to the equations of motion
with well defined momentum an helicity. Because of (153) the polarization vectors have to be orthogonal
to kµ

kµǫµ(~k, λ) = kµǫµ(~k, λ)
∗ = 0. (156)

The canonical commutation relations imply that

[â(~k, λ), â†(~k ′, λ′)] = (2π)3(2|~k|)δ(~k − ~k ′)δλλ′

[â(~k, λ), â(~k ′, λ′)] = [â†(~k, λ), â†(~k ′, λ′)] = 0. (157)

Thereforêa(~k, λ), â†(~k, λ) form a set of creation-annihilation operators for photons with momentum~k
and helicityλ.

Behind the simple construction presented above there are a number of subleties related with gauge
invariance. In particular the gauge freedom seem to introduce states in the Hilbert space with negative
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probability. A careful analysis shows that when gauge invariance if properly handled these spurious states
decouple from physical states and can be eliminated. The details can be found in standard textbooks [1]-
[11].

Coupling gauge fields to matter.Once we know how to quantize the electromagnetic field we
consider theories containing electrically charged particles, for example electrons. To couple the Dirac
Lagrangian to electromagnetism we use as guiding principle what we learned about the Schrödinger
equation for a charged particle. There we saw that the gauge ambiguity of the electromagnetic potential
is compensated with a U(1) phase shift in the wave function. In the case of the Dirac equation we know
that the Lagrangian is invariant underψ → eieεψ, with ε a constant. However this invariance is broken
as soon as one identifiesε with the gauge transformation parameter of the electromagnetic field which
depends on the position.

Looking at the Dirac Lagrangian (117) it is easy to see that in order to promote the global U(1)
symmetry into a local one,ψ → e−ieε(x)ψ, it suffices to replace the ordinary derivative∂µ by a covariant
oneDµ satisfying

Dµ

[
e−ieε(x)ψ

]
= e−ieε(x)Dµψ. (158)

This covariant derivative can be constructed in terms of the gauge potentialAµ as

Dµ = ∂µ + ieAµ. (159)

The Lagrangian of a spin-12 field coupled to electromagnetism is written as

LQED = −1

4
FµνF

µν + ψ(i/D −m)ψ, (160)

invariant under the gauge transformations

ψ −→ e−ieε(x)ψ, Aµ −→ Aµ + ∂µε(x). (161)

Unlike the theories we have seen so far, the Lagrangian (160) describe an interacting theory. By
plugging (159) into the Lagrangian we find that the interaction between fermions and photons to be

L(int)
QED = −eAµ ψγ

µψ. (162)

As advertised above, in the Dirac theory the electric current four-vector is given byjµ = eψγµψ.

The quantization of interacting field theories poses new problems that we did not meet in the case
of the free theories. In particular in most cases it is not possible to solve the theory exactly. When this
happens the physical observables have to be computed in perturbation theory in powers of the coupling
constant. An added problem appears when computing quantum corrections to the classical result, since
in that case the computation of observables are plagued with infinities that should be taken care of. We
will go back to this problem in section 8.

Nonabelian gauge theories.Quantum electrodynamics (QED) is the simplest example of a gauge
theory coupled to matter based in the abelian gauge symmetry of local U(1) phase rotations. However, it
is possible also to construct gauge theories based on nonabelian groups. Actually, our knowledge of the
strong and weak interactions is based on the use of such nonabelian generalizations of QED.

Let us consider a gauge groupG with generatorsT a, a = 1, . . . ,dimG satisfying the Lie algebra6

[T a, T b] = ifabcT c. (163)

6Some basics facts about Lie groups have been summarized in Appendix A.
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A gauge field taking values on the Lie algebra ofG can be introducedAµ ≡ Aa
µT

a which transforms
under a gauge transformations as

Aµ −→ − 1

ig
U∂µU

−1 + UAµU
−1, U = eiχ

a(x)Ta
, (164)

whereg is the coupling constant. The associated field strength is defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (165)

Notice that this definition of theF a
µν reduces to the one used in QED in the abelian case whenfabc = 0.

In general, however, unlike the case of QED the field strength is not gauge invariant. In terms ofFµν =
F a
µνT

a it transforms as

Fµν −→ UFµνU
−1. (166)

The coupling of matter to a nonabelian gauge field is done by introducing again a covariant deriva-
tive. For a field in a representation ofG

Φ −→ UΦ (167)

the covariant derivative is given by

DµΦ = ∂µΦ− igAa
µT

aΦ. (168)

With the help of this we can write a generic Lagrangian for a nonabelian gauge field coupled to scalars
φ and spinorsψ as

L = −1

4
F a
µνF

µν a + iψ/Dψ +DµφD
µφ− ψ [M1(φ) + iγ5M2(φ)]ψ − V (φ). (169)

In order to keep the theory renormalizable we have to restrictM1(φ) andM2(φ) to be at most linear inφ
whereasV (φ) have to be at most of quartic order. The Lagrangian of the standard model is of the form
(169).

4.4 Understanding gauge symmetry

In classical mechanics the use of the Hamiltonian formalism starts with the replacement of generalized
velocities by momenta

pi ≡
∂L

∂q̇i
=⇒ q̇i = q̇i(q, p). (170)

Most of the times there is no problem in inverting the relationspi = pi(q, q̇). However in some systems
these relations might not be invertible and result in a number of constraints of the type

fa(q, p) = 0, a = 1, . . . , N1. (171)

These systems are called degenerate or constrained [23,24].

The presence of constraints of the type (171) makes the formulation of the Hamiltonian formalism
more involved. The first problem is related to the ambiguity in defining the Hamiltonian, since the
addition of any linear combination of the constraints do not modify its value. Secondly, one has to make
sure that the constraints are consistent with the time evolution in the system. In the language of Poisson
brackets this means that further constraints have to be imposed in the form

{fa, H} ≈ 0. (172)
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Following [23] we use the symbol≈ to indicate a “weak” equality that holds when the constraints
fa(q, p) = 0 are satisfied. Notice however that since the computation of the Poisson brackets involves
derivatives, the constraints can be used only after the bracket is computed. In principle the conditions
(172) can give rise to a new set of constraintsgb(q, p) = 0, b = 1, . . . , N2. Again these constraints
have to be consistent with time evolution and we have to repeat the procedure. Eventually this finishes
when a set of constraints is found that do not require any further constraint to be preserved by the time
evolution7.

Once we find all the constraints of a degenerate system we consider the so-called first class con-
straintsφa(q, p) = 0, a = 1, . . . ,M , which are those whose Poisson bracket vanishes weakly

{φa, φb} = cabcφc ≈ 0. (173)

The constraints that do not satisfy this condition, called second class constraints, can be eliminated by
modifying the Poisson bracket [23]. Then the total Hamiltonian of the theory is defined by

HT = piqi − L+
M∑

a=1

λ(t)φa. (174)

What has all this to do with gauge invariance? The interesting answer is that for a singular system
the first class constraintsφa generate gauge transformations. Indeed, because{φa, φb} ≈ 0 ≈ {φa, H}
the transformations

qi −→ qi +
M∑

a

εa(t){qi, φa},

pi −→ pi +
M∑

a

εa(t){pi, φa} (175)

leave invariant the state of the system. This ambiguity in the description of the system in terms of
the generalized coordinates and momenta can be traced back to the equations of motion in Lagrangian
language. Writing them in the form

∂2L

∂q̇i∂q̇j
q̈j = − ∂2L

∂q̇i∂qj
q̇j +

∂L

∂qi
, (176)

we find that order to determine the accelerations in terms of the positions and velocities the matrix∂2L
∂q̇i∂q̇j

has to be invertible. However, the existence of constraints (171) precisely implies that the determinant
of this matrix vanishes and therefore the time evolution is not uniquely determined in terms of the initial
conditions.

Let us apply this to Maxwell electrodynamics described by the Lagrangian

L = −1

4

∫
d3 FµνF

µν . (177)

The generalized momentum conjugate toAµ is given by

πµ =
δL

δ(∂0Aµ)
= F 0µ. (178)

In particular for the time component we find the constraintπ0 = 0. The Hamiltonian is given by

H =

∫
d3x [πµ∂0Aµ − L] =

∫
d3x

[
1

2

(
~E 2 + ~B 2

)
+ π0∂0A0 +A0

~∇ · ~E
]
. (179)

7In principle it is also possible that the procedure finishes because some kind of inconsistent identity is found. In this case
the system itself is inconsistent as it is the case with the LagrangianL(q, q̇) = q.
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Requiring the consistency of the constraintπ0 = 0 we find a second constraint

{π0, H} ≈ ∂0π
0 + ~∇ · ~E = 0. (180)

Together with the first constraintπ0 = 0 this one implies Gauss’ law~∇ · ~E = 0. These two constrains
have vanishing Poisson bracket and therefore they are first class. Therefore the total Hamiltonian is given
by

HT = H +

∫
d3x

[
λ1(x)π

0 + λ2(x)~∇ · ~E
]
, (181)

where we have absorbedA0 in the definition of the arbitrary functionsλ1(x) andλ2(x). Actually, we
can fix part of the ambiguity takingλ1 = 0. Notice that, becauseA0 has been included in the multipliers,
fixing λ1 amounts to fixing the value ofA0 and therefore it is equivalent to taking a temporal gauge. In
this case the Hamiltonian is

HT =

∫
d3x

[
1

2

(
~E 2 + ~B 2

)
+ ε(x)~∇ · ~E

]
(182)

and we are left just with Gauss’ law as the only constraint. Using the canonical commutation relations

{Ai(t, ~x), Ej(t, ~x
′)} = δijδ(~x− ~x ′) (183)

we find that the remaining gauge transformations are generated by Gauss’ law

δAi = {Ai,

∫
d3x′ ε ~∇ · ~E} = ∂iε, (184)

while leavingA0 invariant, so for consistency with the general gauge transformations the functionε(x)
should be independent of time. Notice that the constraint~∇ · ~E = 0 can be implemented by demanding
~∇ · ~A = 0 which reduces the three degrees of freedom of~A to the two physical degrees of freedom of
the photon.

So much for the classical analysis. In the quantum theory the constraint~∇ · ~E = 0 has to be
imposed on the physical states|phys〉. This is done by defining the following unitary operator on the
Hilbert space

U(ε) ≡ exp

(
i

∫
d3x ε(~x) ~∇ · ~E

)
. (185)

By definition, physical states should not change when a gauge transformations is performed. This is
implemented by requiring that the operatorU(ε) acts trivially on a physical state

U(ε)|phys〉 = |phys〉 =⇒ (~∇ · ~E)|phys〉 = 0. (186)

In the presence of charge densityρ, the condition that physical states are annihilated by Gauss’ law
changes to(~∇ · ~E − ρ)|phys〉 = 0.

The role of gauge transformations in the quantum theory is very illuminating in understanding the
real rôle of gauge invariance [25]. As we have learned, the existence of a gauge symmetry in a theory
reflects a degree of redundancy in the description of physical states in terms of the degrees of freedom
appearing in the Lagrangian. In Classical Mechanics, for example, the state of a system is usually
determined by the value of the canonical coordinates(qi, pi). We know, however, that this is not the case
for constrained Hamiltonian systems where the transformations generated by the first class constraints
change the value ofqi andpi withoug changing the physical state. In the case of Maxwell theory for every
physical configuration determined by the gauge invariant quantities~E, ~B there is an infinite number of
possible values of the vector potential that are related by gauge transformationsδAµ = ∂µε.
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Fig. 9: Compactification of the real line (a) into the circumferenceS1 (b) by adding the point at infinity.

In the quantum theory this means that the Hilbert space of physical states is defined as the result of
identifying all states related by the operatorU(ε) with any gauge functionε(x) into a single physical state
|phys〉. In other words, each physical state corresponds to a whole orbit of states that are transformed
among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redundancy in the states a further
condition can be given that selects one single state on each orbit. In the case of Maxwell electrodynamics
the conditionsA0 = 0, ~∇ · ~A = 0 selects a value of the gauge potential among all possible ones giving
the same value for the electric and magnetic fields.

Since states have to be identified by gauge transformations the topology of the gauge group plays
an important physical rôle. To illustrate the point let us first deal with a toy model of a U(1) gauge theory
in 1+1 dimensions. Later we will be more general. In the Hamiltonian formalism gauge transformations
g(~x) are functions defined onR with values on the gauge group U(1)

g : R −→ U(1). (187)

We assume thatg(x) is regular at infinity. In this case we can add to the real lineR the point at infinity
to compactify it into the circumferenceS1 (see Fig. 9). Once this is doneg(x) are functions defined on
S1 with values onU(1) = S1 that can be parametrized as

g : S1 −→ U(1), g(x) = eiα(x), (188)

with x ∈ [0, 2π].

BecauseS1 does have a nontrivial topology,g(x) can be divided into topological sectors. These
sectors are labelled by an integer numbern ∈ Z and are defined by

α(2π) = α(0) + 2π n . (189)

Geometricallyn gives the number of times that the spatialS1 winds around theS1 defining the gauge
group U(1). This winding number can be written in a more sophisticated way as

∮

S1

g(x)−1dg(x) = 2πn , (190)

where the integral is along the spatialS1.

In R3 a similar situation happens with the gauge group8 SU(2). If we demandg(~x) ∈ SU(2) to be
regular at infinity|~x| → ∞ we can compactifyR3 into a three-dimensional sphereS3, exactly as we did
in 1+1 dimensions. On the other hand, the functiong(~x) can be written as

g(~x) = a0(x)1+ ~a(x) · ~σ (191)

8Although we present for simplicity only the case of SU(2), similar arguments apply to any simple group.
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and the conditionsg(x)†g(x) = 1, det g = 1 implies that(a0)2 + ~a 2 = 1. Therefore SU(2) is a
three-dimensional sphere andg(x) defines a function

g : S3 −→ S3. (192)

As it was the case in 1+1 dimensions here the gauge transformationsg(x) are also divided into topolog-
ical sectors labelled this time by the winding number

n =
1

24π2

∫

S3

d3x ǫijkTr
[(
g−1∂ig

) (
g−1∂ig

) (
g−1∂ig

)]
∈ Z. (193)

In the two cases analyzed we find that due to the nontrivial topology of the gauge group manifold
the gauge transformations are divided into different sectors labelled by an integern. Gauge transforma-
tions with different values ofn cannot be smoothly deformed into each other. The sector withn = 0
corresponds to those gauge transformations that can be connected with the identity.

Now we can be a bit more formal. Let us consider a gauge theory in 3+1 dimensions with gauge
groupG and let us denote byG the set of all gauge transformationsG = {g : S3 → G}. At the same
time we defineG0 as the set of transformations inG that can be smoothly deformed into the identity. Our
theory will have topological sectors if

G/G0 6= 1. (194)

In the case of the electromagnetism we have seen that Gauss’ law annihilates physical states. For a
nonabelian theory the analysis is similar and leads to the condition

U(g0)|phys〉 ≡ exp

[
i

∫
d3xχa(~x)~∇ · ~Ea

]
|phys〉 = |phys〉, (195)

whereg0(~x) = eiχ
a(~x)Ta

is in the connected component of the identityG0. The important point to realize
here is that only the elements ofG0 can be written as exponentials of the infinitesimal generators. Since
this generators annihilate the physical states this implies thatU(g0)|phys〉 = |phys〉 only wheng0 ∈ G0.

What happens then with the other topological sectors? Ifg ∈ G/G0 there is still a unitary operator
U(g) that realizes gauge transformations on the Hilbert space of the theory. However sinceg is not in the
connected component of the identity, it cannot be written as the exponential of Gauss’ law. Still gauge
invariance is preserved ifU(g) only changes the overall global phase of the physical states. For example,
if g1 is a gauge transformation with winding numbern = 1

U(g1)|phys〉 = eiθ|phys〉. (196)

It is easy to convince oneself that all transformations with winding numbern = 1 have the same value
of θ modulo2π. This can be shown by noticing that ifg(~x) has winding numbern = 1 theng(~x)−1 has
opposite winding numbern = −1. Since the winding number is additive, given two transformationsg1,
g2 with winding number 1,g−1

1 g2 has winding numbern = 0. This implies that

|phys〉 = U(g−1
1 g2)|phys〉 = U(g1)†U(g2)|phys〉 = ei(θ2−θ1)|phys〉 (197)

and we conclude thatθ1 = θ2 mod2π. Once we know this it is straightforward to conclude that a gauge
transformationgn(~x) with winding numbern has the following action on physical states

U(gn)|phys〉 = einθ|phys〉, n ∈ Z. (198)

To find a physical interpretation of this result we are going to look for similar things in other
physical situations. One of then is borrowed from condensed matter physics and refers to the quantum
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states of electrons in the periodic potential produced by the ion lattice in a solid. For simplicity we
discuss the one-dimensional case where the minima of the potential are separated by a distancea. When
the barrier between consecutive degenerate vacua is high enough we can neglect tunneling between
different vacua and consider the ground state|na〉 of the potential near the minimum located atx = na
(n ∈ Z) as possible vacua of the theory. This vacuum state is, however, not invariant under lattice
translations

eia
bP |na〉 = |(n+ 1)a〉. (199)

However, it is possible to define a new vacuum state

|k〉 =
∑

n∈Z
e−ikna|na〉, (200)

which undereia bP transforms by a global phase

eia
bP |k〉 =

∑

n∈Z
e−ikna|(n+ 1)a〉 = eika|k〉. (201)

This ground state is labelled by the momentumk and corresponds to the Bloch wave function.

This looks very much the same as what we found for nonabelian gauge theories. The vacuum
state labelled byθ plays a rôle similar to the Bloch wave function for the periodic potential with the
identification ofθ with the momentumk. To make this analogy more precise let us write the Hamiltonian
for nonabelian gauge theories

H =
1

2

∫
d3x

(
~πa · ~πa + ~Ba · ~Ba

)
=

1

2

∫
d3x

(
~Ea · ~Ea + ~Ba · ~Ba

)
, (202)

where we have used the expression of the canonical momentaπi
a and we assume that the Gauss’ law

constraint is satisfied. Looking at this Hamiltonian we can interpret the first term within the brackets as
the kinetic energyT = 1

2~πa ·~πa and the second term as the potential energyV = 1
2
~Ba · ~Ba. SinceV ≥ 0

we can identify the vacua of the theory as those~A for whichV = 0, modulo gauge transformations. This
happens wherever~A is a pure gauge. However, since we know that the gauge transformations are labelled
by the winding number we can have an infinite number of vacua which cannot be continuously connected
with one another using trivial gauge transformations. Taking a representative gauge transformationgn(~x)
in the sector with winding numbern, these vacua will be associated with the gauge potentials

~A = − 1

ig
gn(~x)~∇gn(~x)

−1, (203)

modulo topologically trivial gauge transformations. Therefore the theory is characterized by an infinite
number of vacua|n〉 labelled by the winding number. These vacua are not gauge invariant. Indeed, a
gauge transformation withn = 1 will change the winding number of the vacua in one unit

U(g1)|n〉 = |n+ 1〉. (204)

Nevertheless a gauge invariant vacuum can be defined as

|θ〉 =
∑

n∈Z
e−inθ|n〉, with θ ∈ R (205)

satisfying

U(g1)|θ〉 = eiθ|θ〉. (206)
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We have concluded that the nontrivial topology of the gauge group have very important physi-
cal consequences for the quantum theory. In particular it implies an ambiguity in the definition of the
vacuum. Actually, this can also be seen in a Lagrangian analysis. In constructing the Lagrangian for
the nonabelian version of Maxwell theory we only consider the termF a

µνF
µν a. However this is not the

only Lorentz and gauge invariant term that contains just two derivatives. We can write the more general
Lagrangian

L = −1

4
F a
µνF

µν a − θg2

32π2
F a
µνF̃

µν a, (207)

whereF̃ a
µν is the dual of the field strength defined by

F̃ a
µν =

1

2
ǫµνσλF

σλ. (208)

The extra term in (207), proportional to~E a · ~B a, is actually a total derivative and does not change the
equations of motion or the quantum perturbation theory. Nevertheless it has several important physical
consequences. One of them is that it violates both parityP and the combination of charge conjugation
and parityCP . This means that since strong interactions are described by a nonabelian gauge theory
with group SU(3) there is an extra source ofCP violation which puts a strong bound on the value ofθ.
One of the consequences of a term like (207) in the QCD Lagrangian is a nonvanishing electric dipole
moment for the neutron [26]. The fact that this is not observed impose a very strong bound on the value
of theθ-parameter

|θ| < 10−9 (209)

From a theoretical point of view it is still to be fully understood whyθ either vanishes or has a very small
value.

Finally, theθ-vacuum structure of gauge theories that we found in the Hamiltonian formalism can
be also obtained using path integral techniques form the Lagrangian (207). The second term in Eq. (207)
gives then a contribution that depends on the winding number of the corresponding gauge configuration.

5 Towards computational rules: Feynman diagrams

As the basic tool to describe the physics of elementary particles, the final aim of quantum field theory
is the calculation of observables. Most of the information we have about the physics of subatomic
particles comes from scattering experiments. Typically, these experiments consist of arranging two or
more particles to collide with a certain energy and to setup an array of detectors, sufficiently far away
from the region where the collision takes place, that register the outgoing products of the collision and
their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed from quantum mechanical amplitudes
and how these amplitudes themselves can be evaluated in perturbative quantum field theory. We keep our
discussion rather heuristic and avoid technical details that can be found in standard texts [2]- [11]. The
techniques described will be illustrated with the calculation of the cross section for Compton scattering
at low energies.

5.1 Cross sections and S-matrix amplitudes

In order to fix ideas let us consider the simplest case of a collision experiment where two particles collide
to produce again two particles in the final state. The aim of such an experiments is a direct measurement
of the number of particles per unit timedNdt (θ, ϕ) registered by the detector flying within a solid angle
dΩ in the direction specified by the polar anglesθ, ϕ (see Fig. 10). On general grounds we know that

35

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

35



detector

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Ω(θ,ϕ)d

Interaction
region

detector

Fig. 10: Schematic setup of a two-to-two-particles single scattering event in the center of mass reference frame.

this quantity has to be proportional to the flux of incoming particles9, fin. The proportionality constant
defines the differential cross section

dN

dt
(θ, ϕ) = fin

dσ

dΩ
(θ, ϕ). (210)

In natural unitsfin has dimensions of (length)−3, and then the differential cross section has dimensions
of (length)2. It depends, apart from the direction(θ, ϕ), on the parameters of the collision (energy, impact
parameter, etc.) as well as on the masses and spins of the incoming particles.

Differential cross sections measure the angular distribution of the products of the collision. It is
also physically interesting to quantify how effective the interaction between the particles is to produce
a nontrivial dispersion. This is measured by the total cross section, which is obtained by integrating the
differential cross section over all directions

σ =

∫ 1

−1
d(cos θ)

∫ 2π

0
dϕ

dσ

dΩ
(θ, ϕ). (211)

To get some physical intuition of the meaning of the total cross section we can think of the classical
scattering of a point particle off a sphere of radiusR. The particle undergoes a collision only when the
impact parameter is smaller than the radius of the sphere and a calculation of the total cross section yields
σ = πR2. This is precisely the cross area that the sphere presents to incoming particles.

In Quantum Mechanics in general and in quantum field theory in particular the starting point for
the calculation of cross sections is the probability amplitude for the corresponding process. In a scattering
experiment one prepares a system with a given number of particles with definite momenta~p1, . . . , ~pn. In
the Heisenberg picture this is described by a time independent state labelled by the incoming momenta
of the particles (to keep things simple we consider spinless particles) that we denote by

|~p1, . . . , ~pn; in〉. (212)

9This is defined as the number of particles that enter the interaction region per unit time and per unit area perpendicular to
the direction of the beam.
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On the other hand, as a result of the scattering experiment a numberk of particles with momenta
~p1

′, . . . , ~pk ′ are detected. Thus, the system is now in the “out” Heisenberg picture state

|~p1′, . . . , ~pk ′; out〉 (213)

labelled by the momenta of the particles detected at late times. The probability amplitude of detectingk
particles in the final state with momenta~p1′, . . . , ~pk ′ in the collision ofn particles with initial momenta
~p1, . . . , ~pn defines theS-matrix amplitude

S(in → out) = 〈~p1′, . . . , ~pk ′; out|~p1, . . . , ~pn; in〉. (214)

It is very important to keep in mind that both the (212) and (213) are time-independent states in
the Hilbert space of a very complicated interacting theory. However, since both at early and late times the
incoming and outgoing particles are well apart from each other, the “in” and “out” states can be thought
as two states|~p1, . . . , ~pn〉 and|~p1′, . . . , ~pk ′〉 of the Fock space of the corresponding free theory in which
the coupling constants are zero. Then, the overlaps (214) can be written in terms of the matrix elements
of anS-matrix operator̂S acting on the free Fock space

〈~p1′, . . . , ~pk ′; out|~p1, . . . , ~pn; in〉 = 〈~p1′, . . . , ~pk ′|Ŝ|~p1, . . . , ~pn〉. (215)

The operator̂S is unitary,Ŝ† = Ŝ−1, and its matrix elements are analytic in the external momenta.

In any scattering experiment there is the possibility that the particles do not interact at all and the
system is left in the same initial state. Then it is useful to write theS-matrix operator as

Ŝ = 1+ iT̂ , (216)

where1 represents the identity operator. In this way, all nontrivial interactions are encoded in the matrix
elements of theT -operator〈~p1′, . . . , ~pk ′|iT̂ |~p1, . . . , ~pn〉. Since momentum has to be conserved, a global
delta function can be factored out from these matrix elements to define the invariant scattering amplitude
iM

〈~p1′, . . . , ~pk ′|iT̂ |~p1, . . . , ~pn〉 = (2π)4δ(4)

( ∑

initial

pi −
∑

final

p′f

)
iM(~p1, . . . , ~pn; ~p1

′, . . . , ~pk
′) (217)

Total and differential cross sections can be now computed from the invariant amplitudes. Here we
consider the most common situation in which two particles with momenta~p1 and~p2 collide to produce
a number of particles in the final state with momenta~pi

′. In this case the total cross section is given by

σ =
1

(2ωp1)(2ωp2)|~v12|

∫ [ ∏

final
states

d3p′i
(2π)3

1

2ωp′i

]∣∣∣Mi→f

∣∣∣
2
(2π)4δ(4)

(
p1 + p2 −

∑

final
states

p′i

)
, (218)

where~v12 is the relative velocity of the two scattering particles. The corresponding differential cross
section can be computed by dropping the integration over the directions of the final momenta. We will
use this expression later in Section 5.3 to evaluate the cross section of Compton scattering.

We seen how particle cross sections are determined by the invariant amplitude for the correspond-
ing proccess, i.e.S-matrix amplitudes. In general, in quantum field theory it is not possible to compute
exactly these amplitudes. However, in many physical situations it can be argued that interactions are
weak enough to allow for a perturbative evaluation. In what follows we will describe howS-matrix
elements can be computed in perturbation theory using Feynman diagrams and rules. These are very
convenient bookkeeping techniques allowing both to keep track of all contributions to a process at a
given order in perturbation theory, and computing the different contributions.
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5.2 Feynman rules

The basic quantities to be computed in quantum field theory are vacuum expectation values of products
of the operators of the theory. Particularly useful are time-ordered Green functions,

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉, (219)

where|Ω〉 is the the ground state of the theory and the time ordered product is defined

T
[
Oi(x)Oj(y)

]
= θ(x0 − y0)Oi(x)Oj(y) + θ(y0 − x0)Oj(y)Oi(x). (220)

The generalization to products with more than two operators is straightforward: operators are always
multiplied in time order, those evaluated at earlier times always to the right. The interest of these kind of
correlation functions lies in the fact that they can be related toS-matrix amplitudes through the so-called
reduction formula. To keep our discussion as simple as possible we will not derived it or even write
it down in full detail. Its form for different theories can be found in any textbook. Here it suffices to
say that the reduction formula simply states that anyS-matrix amplitude can be written in terms of the
Fourier transform of a time-ordered correlation function. Morally speaking

〈~p1′, . . . , ~pm′; out|~p1, . . . , ~pn; in〉

⇓ (221)
∫
d4x1 . . .

∫
d4yn〈Ω|T

[
φ(x1)

† . . . φ(xm)†φ(y1) . . . φ(yn)
]
|Ω〉 eip1′·x1 . . . e−ipn·yn ,

whereφ(x) is the field whose elementary excitations are the particles involved in the scattering.

The reduction formula reduces the problem of computingS-matrix amplitudes to that of evaluating
time-ordered correlation functions of field operators. These quantities are easy to compute exactly in the
free theory. For an interacting theory the situation is more complicated, however. Using path integrals,
the vacuum expectation value of the time-ordered product of a number of operators can be expressed as

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉 =

∫
DφDφ†O1(x1) . . .On(xn) e

iS[φ,φ†]

∫
DφDφ† eiS[φ,φ

†]
. (222)

For an theory with interactions, neither the path integral in the numerator or in the denominator is Gaus-
sian and they cannot be calculated exactly. However, Eq. (222) is still very useful. The actionS[φ, φ†]
can be split into the free (quadratic) piece and the interaction part

S[φ, φ†] = S0[φ, φ
†] + Sint[φ, φ

†]. (223)

All dependence in the coupling constants of the theory comes from the second piece. Expanding now
exp[iSint] in power series of the coupling constant we find that each term in the series expansion of both
the numerator and the denominator has the structure

∫
DφDφ†

[
. . .

]
eiS0[φ,φ†], (224)

where “. . .” denotes certain monomial of fields. The important point is that now the integration measure
only involves the free action, and the path integral in (224) is Gaussian and therefore can be computed
exactly. The same conclusion can be reached using the operator formalism. In this case the correlation
function (219) can be expressed in terms of correlation functions of operators in the interaction picture.
The advantage of using this picture is that the fields satisfy the free equations of motion and therefore
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can be expanded in creation-annihilation operators. The correlations functions are then easily computed
using Wick’s theorem.

Putting together all the previous ingredients we can calculateS-matrix amplitudes in a perturbative
series in the coupling constants of the field theory. This can be done using Feynman diagrams and rules,
a very economical way to compute each term in the perturbative expansion of theS-matrix amplitude
for a given process. We will not detail the the construction of Feynman rules but just present them
heuristically.

For the sake of concreteness we focus on the case of QED first. Going back to Eq. (160) we
expand the covariant derivative to write the action

SQED =

∫
d4x

[
−1

4
FµνF

µν + ψ(i/∂ −m)ψ + eψγµψAµ

]
. (225)

The action contains two types of particles, photons and fermions, that we represent by straight and wavy
lines respectively

� �
The arrow in the fermion line does not represent the direction of the momentum but the flux of (negative)
charge. This distinguishes particles form antiparticles: if the fermion propagates from left to right (i.e.
in the direction of the charge flux) it represents a particle, whereas when it does from right to left it
corresponds to an antiparticle. Photons are not charged and therefore wavy lines do not have orientation.

Next we turn to the interaction part of the action containing a photon field, a spinor and its conju-
gate. In a Feynman diagram this corresponds to the vertex

�
Now, in order to compute anS-matrix amplitude to a given order in the coupling constante for a process
with certain number of incoming and outgoing asymptotic states one only has to draw all possible dia-
grams with as many vertices as the order in perturbation theory, and the corresponding number and type
of external legs. It is very important to keep in mind that in joining the fermion lines among the different
building blocks of the diagram one has to respect their orientation. This reflects the conservation of the
electric charge. In addition one should only consider diagrams that are topologically non-equivalent, i.e.
that they cannot be smoothly deformed into one another keeping the external legs fixed10.

To show in a practical way how Feynman diagrams are drawn, we consider Bhabha scattering, i.e.
the elastic dispersion of an electron and a positron:

e+ + e− −→ e+ + e−.

Our problem is to compute theS-matrix amplitude to the leading order in the electric charge. Because
the QED vertex contains a photon line and our process does not have photons either in the initial or the

10From the point of view of the operator formalism, the requirement of considering only diagrams that are topologically
nonequivalent comes from the fact that each diagram represents a certain Wick contraction in the correlation function of
interaction-picture operators.
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final states we find that drawing a Feynman diagram requires at least two vertices. In fact, the leading
contribution is of ordere2 and comes from the following two diagrams, each containing two vertices:

�
e−

e+

e−

e+

+ (−1)×�
e−

e+

e−

e+

Incoming and outgoing particles appear respectively on the left and the right of this diagram. Notice
how the identification of electrons and positrons is done comparing the direction of the charge flux with
the direction of propagation. For electrons the flux of charges goes in the direction of propagation,
whereas for positrons the two directions are opposite. These are the only two diagrams that can be
drawn at this order in perturbation theory. It is important to include a relative minus sign between
the two contributions. To understand the origin of this sign we have to remember that in the operator
formalism Feynman diagrams are just a way to encode a particular Wick contraction of field operators
in the interaction picture. The factor of−1 reflects the relative sign in Wick contractions represented by
the two diagrams, due to the fermionic character of the Dirac field.

We have learned how to draw Feynman diagrams in QED. Now one needs to compute the con-
tribution of each one to the corresponding amplitude using the so-called Feynman rules. The idea is
simple: given a diagram, each of its building blocks (vertices as well as external and internal lines) has
an associated contribution that allows the calculation of the corresponding diagram. In the case of QED
in the Feynman gauge, we have the following correspondence for vertices and internal propagators:

�α β =⇒
(

i

/p−m+ iε

)

βα

�µ ν =⇒ −iηµν
p2 + iε

�
α

β

µ =⇒ −ieγµβα(2π)
4δ(4)(p1 + p2 + p3).

A change in the gauge would reflect in an extra piece in the photon propagator. The delta function
implementing conservation of momenta is written using the convention that all momenta are entering the
vertex. In addition, one has to perform an integration over all momenta running in internal lines with the
measure

∫
ddp

(2π)4
, (226)

and introduce a factor of−1 for each fermion loop in the diagram11.
11The contribution of each diagram comes also multiplied by a degeneracy factor that takes into account in how many ways

a given Wick contraction can be done. In QED, however, these factors are equal to 1 for many diagrams.
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In fact, some of the integrations over internal momenta can actually be done using the delta func-
tion at the vertices, leaving just a global delta function implementing the total momentum conservation in
the diagram [cf. Eq. (217)]. It is even possible that all integrations can be eliminated in this way. This is
the case when we have tree level diagrams, i.e. those without closed loops. In the case of diagrams with
loops there will be as many remaining integrations as the number of independent loops in the diagram.

The need to perform integrations over internal momenta in loop diagrams has important conse-
quences in Quantum Field Theory. The reason is that in many cases the resulting integrals are ill-defined,
i.e. are divergent either at small or large values of the loop momenta. In the first case one speaks ofin-
frared divergencesand usually they cancel once all contributions to a given process are added together.
More profound, however, are the divergences appearing at large internal momenta. Theseultraviolet
divergencescannot be cancelled and have to be dealt through the renormalization procedure. We will
discuss this problem in some detail in Section 8.

Were we computing time-ordered (amputated) correlation function of operators, this would be all.
However, in the case ofS-matrix amplitudes this is not the whole story. In addition to the previous
rules here one needs to attach contributions also to the external legs in the diagram. These are the wave
functions of the corresponding asymptotic states containing information about the spin and momenta of
the incoming and outgoing particles. In the case of QED these contributions are:

Incoming fermion:	α =⇒ uα(~p, s)

Incoming antifermion:
α =⇒ vα(~p, s)

Outgoing fermion:� α =⇒ uα(~p, s)

Outgoing antifermion:� α =⇒ vα(p, s)

Incoming photon:µ =⇒ ǫµ(~k, λ)

Outgoing photon:Æ µ =⇒ ǫµ(~k, λ)
∗
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Here we have assumed that the momenta for incoming (resp. outgoing) particlesare entering (resp.
leaving) the diagram. It is important also to keep in mind that in the computation ofS-matrix amplitudes
all external states are on-shell. In Section 5.3 we illustrate the use of the Feynman rules for QED with
the case of the Compton scattering.

The application of Feynman diagrams to carry out computations in perturbation theory is ex-
tremely convenient. It provides a very useful bookkeeping technique to account for all contributions to
a process at a given order in the coupling constant. This does not mean that the calculation of Feynman
diagrams is an easy task. The number of diagrams contributing to the process grows very fast with the
order in perturbation theory and the integrals that appear in calculating loop diagrams also get very com-
plicated. This means that, generically, the calculation of Feynman diagrams beyond the first few orders
very often requires the use of computers.

Above we have illustrated the Feynman rules with the case of QED. Similar rules can be com-
puted for other interacting quantum field theories with scalar, vector or spinor fields. In the case of the
nonabelian gauge theories introduced in Section 4.3 we have:

�α, i β, j =⇒
(

i

/p−m+ iε

)

βα

δij

�µ, a ν, b =⇒ −iηµν
p2 + iε

δab

�
α, i

β, j

µ, a =⇒ −igγµβαt
a
ij

�
ν, b

σ, c

µ, a =⇒ g fabc
[
ηµν(pσ1 − pσ2 ) + permutations

]

�
µ, a

σ, c

ν, b

λ, d

=⇒ −ig2
[
fabef cde

(
ηµσηνλ − ηµληνσ

)
+ permutations

]

It is not our aim here to give a full and detailed description of the Feynman rules for nonabelian
gauge theories. It suffices to point out that, unlike the case of QED, here the gauge fields can interact
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among themselves. Indeed, the three and four gauge field vertices are a consequence of the cubic and
quartic terms in the action

S = −1

4

∫
d4xF a

µνF
µν a, (227)

where the nonabelian gauge field strengthF a
µν is given in Eq. (165). The self-interaction of the non-

abelian gauge fields has crucial dynamical consequences and its at the very heart of its success in de-
scribing the physics of elementary particles.

5.3 An example: Compton scattering

To illustrate the use of Feynman diagrams and Feynman rules we compute the cross section for the
dispersion of photons by free electrons, the so-called Compton scattering:

γ(k, λ) + e−(p, s) −→ γ(k′, λ′) + e−(p′, s′).

In brackets we have indicated the momenta for the different particles, as well as the polarizations and
spins of the incoming and outgoing photon and electrons respectively. The first step is to identify all
the diagrams contributing to the process at leading order. Taking into account that the vertex of QED
contains two fermion and one photon leg, it is straightforward to realize that any diagram contributing to
the process at hand must contain at least two vertices. Hence the leading contribution is of ordere2. A
first diagram we can draw is:

�
k, λ

p, s

k′, λ′

p′, s′

This is, however, not the only possibility. Indeed, there is a second possible diagram:

�
k, λ

p, s

p′, s′

k′, λ′

It is important to stress that these two diagrams are topologically nonequivalent, since deforming one into
the other would require changing the label of the external legs. Therefore the leadingO(e2) amplitude
has to be computed adding the contributions from both of them.

Using the Feynman rules of QED we find� +� = (ie)2u(~p ′, s′)/ǫ ′(~k ′, λ′)∗
/p+ /k +me

(p+ k)2 −m2
e

/ǫ(~k, λ)u(~p, s)

+ (ie)2u(~p ′, s′)/ǫ(~k, λ)
/p− /k′ +me

(p− k′)2 −m2
e

/ǫ ′(~k ′, λ′)∗u(~p, s). (228)

Because the leading order contributions only involve tree-level diagrams, there is no integration over
internal momenta and therefore we are left with a purely algebraic expression for the amplitude. To get
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an explicit expression we begin by simplifying the numerators. The following simple identity turns out
to be very useful for this task

/a/b = −/b/a+ 2(a · b)1. (229)

Indeed, looking at the first term in Eq. (228) we have

(/p+ /k +me)/ǫ(~k, λ)u(~p, s) = −/ǫ(~k, λ)(/p−me)u(~p, s) + /k/ǫ(~k, λ)u(~p, s)

+ 2p · ǫ(~k, λ)u(~p, s), (230)

where we have applied the identity (229) on the first term inside the parenthesis. The first term on
the right-hand side of this equation vanishes identically because of Eq. (125). The expression can be
further simplified if we restrict our attention to the Compton scattering at low energy when electrons are
nonrelativistic. This means that all spatial momenta are much smaller than the electron mass

|~p|, |~k|, |~p ′|, |~k ′| ≪ me. (231)

In this approximation we have thatpµ, p′µ ≈ (me,~0) and therefore

p · ǫ(~k, λ) = 0. (232)

This follows from the absence of temporal photon polarization. Then we conclude that at low energies

(/p+ /k +me)/ǫ(~k, λ)u(~p, s) = /k/ǫ(~k, λ)u(~p, s) (233)

and similarly for the second term in Eq. (228)

(/p− /k′ +me)/ǫ
′(~k′, λ′)∗u(~p, s) = −/k′/ǫ ′(~k′, λ′)∗u(~p, s). (234)

Next, we turn to the denominators in Eq. (228). As it was explained in Section 5.2, in computing
scattering amplitudes incoming and outgoing particles should have on-shell momenta,

p2 = m2
e = p′2 and k2 = 0 = k′2. (235)

Then, the two denominator in Eq. (228) simplify respectively to

(p+ k)2 −m2
e = p2 + k2 + 2p · k −m2

e = 2p · k = 2ωp|~k| − 2~p · ~k (236)

and

(p− k′)2 −m2
e = p2 + k′2 + 2p · k′ −m2

e = −2p · k′ = −2ωp|~k ′|+ 2~p · ~k ′. (237)

Working again in the low energy approximation (231) these two expressions simplify to

(p+ k)2 −m2
e ≈ 2me|~k|, (p− k′)2 −m2

e ≈ −2me|~k ′|. (238)

Putting together all these expressions we find that at low energies� +�
≈ (ie)2

2me
u(~p ′, s′)

[
/ǫ ′(~k ′λ′)∗

/k

|~k|
ǫ(~k, λ) + ǫ(~k, λ)

/k′

|~k ′|
/ǫ ′(~k ′λ′)∗

]
u(~p, s). (239)
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Using now again the identity (229) a number of times as well as the transversality condition of the
polarization vectors (156) we end up with a handier equation� +� ≈ e2

me

[
ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

]
u(~p ′, s′)

/k

|~k|
u(~p, s)

+
e2

2me
u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗

(
/k

|~k|
− /k′

|~k ′|

)
u(~p, s). (240)

With a little bit of effort we can show that the second term on the right-hand side vanishes. First we
notice that in the low energy limit|~k| ≈ |~k ′|. If in addition we make use the conservation of momentum
k − k ′ = p ′ − p and the identity (125)

u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗
(

/k

|~k|
− /k′

|~k ′|

)
u(~p, s)

≈ 1

|~k|
u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗(/p′ −me)u(~p, s). (241)

Next we use the identity (229) to take the term(/p′−me) to the right. Taking into account that in the low
energy limit the electron four-momenta are orthogonal to the photon polarization vectors [see Eq. (232)]
we conclude that

u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗(/p′ −me)u(~p, s)

= u(~p ′, s′)(/p′ −me)/ǫ(~k, λ)/ǫ
′(~k ′, λ′)∗u(~p, s) = 0 (242)

where the last identity follows from the equation satisfied by the conjugate positive-energy spinor,
u(~p ′, s′)(/p′ −me) = 0.

After all these lengthy manipulations we have finally arrived at the expression of the invariant
amplitude for the Compton scattering at low energies

iM =
e2

me

[
ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

]
u(~p ′, s′)

/k

|~k|
u(~p, s). (243)

The calculation of the cross section involves computing the modulus squared of this quantity. For many
physical applications, however, one is interested in the dispersion of photons with a given polarization
by electrons that are not polarized, i.e. whose spins are randomly distributed. In addition in many
situations either we are not interested, or there is no way to measure the final polarization of the outgoing
electron. This is for example the situation in cosmology, where we do not have any information about
the polarization of the free electrons in the primordial plasma before or after the scattering with photons
(although we have ways to measure the polarization of the scattered photons).

To describe this physical situations we have to average over initial electron polarization (since we
do not know them) and sum over all possible final electron polarization (because our detector is blind to
this quantum number),

|iM|2 = 1

2

(
e2

me|~k|

)2 ∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2 ∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2
. (244)

The factor of 12 comes from averaging over the two possible polarizations of the incoming electrons.
The sums in this expression can be calculated without much difficulty. Expanding the absolute value
explicitly

∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2
=

∑

s=± 1
2

∑

s′=± 1
2

[
u(~p, s)†/k†u(~p ′, s′)†

][
u(~p ′, s′)/ku(~p, s)

]
, (245)
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using thatγµ† = γ0γµγ0 and after some manipulation one finds that

∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2

=




∑

s=± 1
2

uα(~p, s)uβ(~p, s)


 (/k)βσ




∑

s′=± 1
2

uσ(~p
′, s′)uρ(~p ′, s′)


 (/k)ρα

= Tr
[
(/p+me)/k(/p

′ +me)/k
]
, (246)

where the final expression has been computed using the completeness relations in Eq. (128). The final
evaluation of the trace can be done using the standard Dirac matrices identities. Here we compute it
applying again the relation (229) to commute/p′ and/k. Using thatk2 = 0 and that we are working in the
low energy limit we have12

Tr
[
(/p+me)/k(/p

′ +me)/k
]
= 2(p · k)(p′ · k)Tr1 ≈ 8m2

e|~k|2. (247)

This gives the following value for the invariant amplitude

|iM|2 = 4e4
∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

∣∣∣
2

(248)

Plugging|iM|2 into the formula for the differential cross section we get

dσ

dΩ
=

1

64π2m2
e

|iM|2 =
(

e2

4πme

)2 ∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
. (249)

The prefactor of the last equation is precisely the square of the so-called classical electron radiusrcl. In
fact, the previous differential cross section can be rewritten as

dσ

dΩ
=

3

8π
σT

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
, (250)

whereσT is the total Thomson cross section

σT =
e4

6πm2
e

=
8π

3
r2cl. (251)

The result (250) is relevant in many areas of Physics, but its importance is paramount in the study
of the cosmological microwave background (CMB). Just before recombination the universe is filled by
a plasma of electrons interacting with photons via Compton scattering, with temperatures of the order of
1 keV. Electrons are then nonrelativistic (me ∼ 0.5 MeV) and the approximations leading to Eq. (250)
are fully valid. Because we do not know the polarization state of the photons before being scattered by
electrons we have to consider the cross section averaged over incoming photon polarizations. From Eq.
(250) we see that this is proportional to

1

2

∑

λ=1,2

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
=


1

2

∑

λ=1,2

ǫi(~k, λ)ǫj(~k, λ)
∗


 ǫj(~k

′, λ′)ǫi(~k ′, λ′)∗. (252)

The sum inside the brackets can be computed using the normalization of the polarization vectors,|~ǫ (~k, λ)|2 =
1, and the transversality condition~k · ~ǫ(~k, λ) = 0

1

2

∑

λ=1,2

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2

=
1

2

(
δij −

kikj

|~k|2

)
ǫ′j(~k

′, λ′)ǫ′i(~k
′, λ′)∗

12We use also the fact that the trace of the product of an odd number of Dirac matrices is always zero.
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=
1

2

[
1− |~ℓ · ~ǫ ′(~k ′, λ′)|2

]
, (253)

where~ℓ =
~k

|~k| is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all polarizations parallel to
the direction of the incoming photon~ℓ, whereas the differential cross section reaches the maximum in the
plane normal to~ℓ. If photons would collide with the electrons in the plasma with the same intensity from
all directions, the result would be an unpolarized CMB radiation. The fact that polarization is actually
measured in the CMB carries crucial information about the physics of the plasma before recombination
and, as a consequence, about the very early universe (see for example [22] for a throughout discussion).

6 Symmetries

6.1 Noether’s theorem

In Classical Mechanics and Classical Field Theory there is a basic result that relates symmetries and
conserved charges. This is called Noether’s theorem and states that for each continuous symmetry of the
system there is conserved current. In its simplest version in Classical Mechanics it can be easily proved.
Let us consider a LagrangianL(qi, q̇i) which is invariant under a transformationqi(t) → q′i(t, ǫ) labelled
by a parameterǫ. This means thatL(q′, q̇′) = L(q, q̇) without using the equations of motion13. If ǫ ≪ 1
we can consider an infinitesimal variation of the coordinatesδǫqi(t) and the invariance of the Lagrangian
implies

0 = δǫL(qi, q̇i) =
∂L

∂qi
δǫqi +

∂L

∂q̇i
δǫq̇i =

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δǫqi +

d

dt

(
∂L

∂q̇i
δǫqi

)
. (254)

Whenδǫqi is applied on a solution to the equations of motion the term inside the square brackets vanishes
and we conclude that there is a conserved quantity

Q̇ = 0 with Q ≡ ∂L

∂q̇i
δǫqi. (255)

Notice that in this derivation it is crucial that the symmetry depends on a continuous parameter since
otherwise the infinitesimal variation of the Lagrangian in Eq. (254) does not make sense.

In Classical Field Theory a similar result holds. Let us consider for simplicity a theory of a single
field φ(x). We say that the variationsδǫφ depending on a continuous parameterǫ are a symmetry of the
theory if, without using the equations of motion, the Lagrangian density changes by

δǫL = ∂µK
µ. (256)

If this happens then the action remains invariant and so do the equations of motion. Working out now the
variation ofL underδǫφ we find

∂µK
µ =

∂L
∂(∂µφ)

∂µδǫφ+
∂L
∂φ

δǫφ = ∂µ

(
∂L

∂(∂µφ)
δǫφ

)
+

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
δǫφ. (257)

If φ(x) is a solution to the equations of motion the last terms disappears, and we find that there is a
conserved current

∂µJ
µ = 0 with Jµ =

∂L
∂(∂µφ)

δǫφ−Kµ. (258)

13The following result can be also derived a more general situations where the Lagrangian changes by a total time derivative.
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Actually a conserved current implies the existence of a charge

Q ≡
∫

d3xJ0(t, ~x) (259)

which is conserved

dQ

dt
=

∫
d3x ∂0J

0(t, ~x) = −
∫

d3x ∂iJ
i(t, ~x) = 0, (260)

provided the fields vanish at infinity fast enough. Moreover, the conserved chargeQ is a Lorentz scalar.
After canonical quantization the chargeQ defined by Eq. (259) is promoted to an operator that generates
the symmetry on the fields

δφ = i[φ,Q]. (261)

As an example we can consider a scalar fieldφ(x)which under a coordinate transformationx → x′

changes asφ′(x′) = φ(x). In particular performing a space-time translationxµ
′
= xµ + aµ we have

φ′(x)− φ(x) = −aµ∂µφ+O(a2) =⇒ δφ = −aµ∂µφ. (262)

Since the Lagrangian density is also a scalar quantity, it transforms under translations as

δL = −aµ∂µL. (263)

Therefore the corresponding conserved charge is

Jµ = − ∂L
∂(∂µφ)

aν∂νφ+ aµL ≡ −aνT
µν , (264)

where we introduced the energy-momentum tensor

Tµν =
∂L

∂(∂µφ)
∂νφ− ηµνL. (265)

We find that associated with the invariance of the theory with respect to space-time translations there
are four conserved currents defined byTµν with ν = 0, . . . , 3, each one associated with the translation
along a space-time direction. These four currents form a rank-two tensor under Lorentz transformations
satisfying

∂µT
µν = 0. (266)

The associated conserved charges are given by

P ν =

∫
d3xT 0ν (267)

and correspond to the total energy-momentum content of the field configuration. Therefore the energy
density of the field is given byT 00 while T 0i is the momentum density. In the quantum theory thePµ

are the generators of space-time translations.

Another example of a symmetry related with a physically relevant conserved charge is the global
phase invariance of the Dirac Lagrangian (117),ψ → eiθψ. For smallθ this corresponds to variations
δθψ = iθψ, δθψ = −iθψ which by Noether’s theorem result in the conserved charge

jµ = ψγµψ, ∂µj
µ = 0. (268)
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Thus implying the existence of a conserved charge

Q =

∫
d3xψγ0ψ =

∫
d3xψ†ψ. (269)

In physics there are several instances of global U(1) symmetries that act as phase shifts on spinors.
This is the case, for example, of the baryon and lepton number conservation in the standard model. A
more familiar case is the U(1) local symmetry associated with electromagnetism. Notice that although
in this case we are dealing with a local symmetry,θ → eα(x), the invariance of the Lagrangian holds
in particular for global transformations and therefore there is a conserved currentjµ = eψγµψ. In
Eq. (162) we saw that the spinor is coupled to the photon field precisely through this current. Its time
component is the electric charge densityρ, while the spatial components are the current density vector~.

This analysis can be carried over also to nonabelian unitary global symmetries acting as

ψi −→ Uijψj , U †U = 1 (270)

and leaving invariant the Dirac Lagrangian when we have several fermions. If we write the matrixU in
terms of the hermitian group generatorsT a as

U = exp (iαaT
a) , (T a)† = T a, (271)

we find the conserved current

jµa = ψiT
a
ijγ

µψj , ∂µj
µ = 0. (272)

This is the case, for example of the approximate flavor symmetries in hadron physics. The simplest
example is the isospin symmetry that mixes the quarksu andd

(
u
d

)
−→ M

(
u
d

)
, M ∈ SU(2). (273)

Since the proton is a bound state of two quarksu and one quarkd while the neutron is made out of
one quarku and two quarksd, this isospin symmetry reduces at low energies to the well known isospin
transformations of nuclear physics that mixes protons and neutrons.

6.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conserved chargesQa associated to symmetries by
Noether’s theorem are operators implementing the symmetry at the quantum level. Since the charges are
conserved they must commute with the Hamiltonian

[Qa, H] = 0. (274)

There are several possibilities in the quantum mechanical realization of a symmetry:

Wigner-Weyl realization. In this case the ground state of the theory|0〉 is invariant under the
symmetry. Since the symmetry is generated byQa this means that

U(α)|0〉 ≡ eiαaQa |0〉 = |0〉 =⇒ Qa|0〉 = 0. (275)

At the same time the fields of the theory have to transform according to some irreducible representation
of the group generated by theQa. From Eq. (261) it is easy to prove that

U(α)φiU(α)−1 = Uij(α)φj , (276)
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whereUij(α) is an element of the representation in which the fieldφi transforms. If we consider now
the quantum state associated with the operatorφi

|i〉 = φi|0〉 (277)

we find that because of the invariance of the vacuum (275) the states|i〉 transform in the same represen-
tation asφi

U(α)|i〉 = U(α)φiU(α)−1U(α)|0〉 = Uij(α)φj |0〉 = Uij(α)|j〉. (278)

Therefore the spectrum of the theory is classified in multiplets of the symmetry group. In addition, since
[H,U(α)] = 0 all states in the same multiplet have the same energy. If we consider one-particle states,
then going to the rest frame we conclude that all states in the same multiplet have exactly the same mass.

Nambu-Goldstone realization. In our previous discussion the result that the spectrum of the
theory is classified according to multiplets of the symmetry group depended crucially on the invariance
of the ground state. However this condition is not mandatory and one can relax it to consider theories
where the vacuum state is not left invariant by the symmetry

eiαaQa |0〉 6= |0〉 =⇒ Qa|0〉 6= 0. (279)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.

To illustrate the consequences of (279) we consider the example of a number scalar fieldsϕi

(i = 1, . . . , N ) whose dynamics is governed by the Lagrangian

L =
1

2
∂µϕ

i∂µϕi − V (ϕ), (280)

where we assume thatV (φ) is bounded from below. This theory is globally invariant under the transfor-
mations

δϕi = ǫa(T a)ijϕ
j , (281)

with T a, a = 1, . . . , 12N(N − 1) the generators of the group SO(N).

To analyze the structure of vacua of the theory we construct the Hamiltonian

H =

∫
d3x

[
1

2
πiπi +

1

2
~∇ϕi · ~∇ϕi + V (ϕ)

]
(282)

and look for the minimum of

V(ϕ) =
∫

d3x

[
1

2
~∇ϕi · ~∇ϕi + V (ϕ)

]
. (283)

Since we are interested in finding constant field configurations,~∇ϕ = ~0 to preserve translational invari-
ance, the vacua of the potentialV(ϕ) coincides with the vacua ofV (ϕ). Therefore the minima of the
potential correspond to the vacuum expectation values14

〈ϕi〉 : V (〈ϕi〉) = 0,
∂V

∂ϕi

∣∣∣∣
ϕi=〈ϕi〉

= 0. (284)

We divide the generatorsT a of SO(N) into two groups: Those denoted byHα (α = 1, . . . , h)
that satisfy

(Hα)ij〈ϕj〉 = 0. (285)

14For simplicity we consider that the minima ofV (φ) occur at zero potential.
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This means that the vacuum configuration〈ϕi〉 is left invariant by the transformation generated byHα.
For this reason we call themunbroken generators. Notice that the commutator of two unbroken genera-
tors also annihilates the vacuum expectation value,[Hα, Hβ ]ij〈ϕj〉 = 0. Therefore the generators{Hα}
form a subalgebra of the algebra of the generators of SO(N). The subgroup of the symmetry group
generated by them is realized à la Wigner-Weyl.

The remaining generatorsKA, with A = 1, . . . , 12N(N − 1) − h, by definition do not preserve
the vacuum expectation value of the field

(KA)ij〈ϕj〉 6= 0. (286)

These will be called thebroken generators. Next we prove a very important result concerning the broken
generators known as the Goldstone theorem: for each generator broken by the vacuum expectation value
there is a massless excitation.

The mass matrix of the excitations around the vacuum〈ϕi〉 is determined by the quadratic part of
the potential. Since we assumed thatV (〈ϕ〉) = 0 and we are expanding around a minimum, the first
term in the expansion of the potentialV (ϕ) around the vacuum expectation values is given by

V (ϕ) =
∂2V

∂ϕi∂ϕj

∣∣∣∣
ϕ=〈ϕ〉

(ϕi − 〈ϕi〉)(ϕj − 〈ϕj〉) +O
[
(ϕ− 〈ϕ〉)3

]
(287)

and the mass matrix is:

M2
ij ≡

∂2V

∂ϕi∂ϕj

∣∣∣∣
ϕ=〈ϕ〉

. (288)

In order to avoid a cumbersome notation we do not show explicitly the dependence of the mass matrix
on the vacuum expectation values〈ϕi〉.

To extract some information about the possible zero modes of the mass matrix, we write down the
conditions that follow from the invariance of the potential underδϕi = ǫa(T a)ijϕ

j . At first order inǫa

δV (ϕ) = ǫa
∂V

∂ϕi
(T a)ijϕ

j = 0. (289)

Differentiating this expression with respect toϕk we arrive at

∂2V

∂ϕi∂ϕk
(T a)ijϕ

j +
∂V

∂ϕi
(T a)ik = 0. (290)

Now we evaluate this expression in the vacuumϕi = 〈ϕi〉. Then the derivative in the second term cancels
while the second derivative in the first one gives the mass matrix. Hence we find

M2
ik(T

a)ij〈ϕj〉 = 0. (291)

Now we can write this expression for both broken and unbroken generators. For the unbroken ones, since
(Hα)ij〈ϕj〉 = 0, we find a trivial identity0 = 0. On the other hand for the broken generators we have

M2
ik(K

A)ij〈ϕj〉 = 0. (292)

Since(KA)ij〈ϕj〉 6= 0 this equation implies that the mass matrix has as many zero modes as broken
generators. Therefore we have proven Goldstone’s theorem: associated with each broken symmetry
there is a massless mode in the theory. Here we have presented a classical proof of the theorem. In the
quantum theory the proof follows the same lines as the one presented here but one has to consider the
effective action containing the effects of the quantum corrections to the classical Lagrangian.
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As an example to illustrate this theorem, we consider a SO(3) invariant scalar field theory with a
“mexican hat” potential

V (~ϕ) =
λ

4

(
~ϕ 2 − a2

)2
. (293)

The vacua of the theory correspond to the configurations satisfying〈~ϕ〉 2 = a2. In field space this equa-
tion describes a two-dimensional sphere and each solution is just a point in that sphere. Geometrically
it is easy to visualize that a given vacuum field configuration, i.e. a point in the sphere, is preserved
by SO(2) rotations around the axis of the sphere that passes through that point. Hence the vacuum
expectation value of the scalar field breaks the symmetry according to

〈~ϕ〉 : SO(3) −→ SO(2). (294)

Since SO(3) has three generators and SO(2) only one we see that two generators are broken and there-
fore there are two massless Goldstone bosons. Physically this massless modes can be thought of as
corresponding to excitations along the surface of the sphere〈~ϕ〉 2 = a2.

Once a minimum of the potential has been chosen we can proceed to quantize the excitations
around it. Since the vacuum only leaves invariant a SO(2) subgroup of the original SO(3) symmetry
group it seems that the fact that we are expanding around a particular vacuum expectation value of the
scalar field has resulted in a lost of symmetry. This is however not the case. The full quantum theory
is symmetric under the whole symmetry group SO(3). This is reflected in the fact that the physical
properties of the theory do not depend on the particular point of the sphere〈~ϕ〉 2 = a2 that we have
chosen. Different vacua are related by the full SO(3) symmetry and therefore should give the same
physics.

It is very important to realize that given a theory with a vacuum determined by〈~ϕ〉 all other
possible vacua of the theory are unaccessible in the infinite volume limit. This means that two vacuum
states|01〉, |02〉 corresponding to different vacuum expectation values of the scalar field are orthogonal
〈01|02〉 = 0 and cannot be connected by any local observableΦ(x), 〈01|Φ(x)|02〉 = 0. Heuristically
this can be understood by noticing that in the infinite volume limit switching from one vacuum into
another one requires changing the vacuum expectation value of the field everywhere in space at the same
time, something that cannot be done by any local operator. Notice that this is radically different to our
expectations based on the Quantum Mechanics of a system with a finite number of degrees of freedom.

In High Energy Physics the typical example of a Goldstone boson is the pion, associated with
the spontaneous breaking of the global chiral isospinSU(2)L × SU(2)R symmetry. This symmetry acts
independently in the left- and right-handed spinors as

(
uL,R
dL,R

)
−→ ML,R

(
uL,R
dL,R

)
, ML,R ∈ SU(2)L,R (295)

Presumably since the quarks are confined at low energies this symmetry is spontaneously broken down
to the diagonal SU(2) acting in the same way on the left- and right-handed components of the spinors.
Associated with this symmetry breaking there is a Goldstone mode which is identified as the pion. No-
tice, nevertheless, that the SU(2)L×SU(2)R would be an exact global symmetry of the QCD Lagrangian
only in the limit when the masses of the quarks are zeromu,md → 0. Since these quarks have nonzero
masses the chiral symmetry is only approximate and as a consequence the corresponding Goldstone bo-
son is not massless. That is why pions have masses, although they are the lightest particle among the
hadrons.

Symmetry breaking appears also in many places in condensed matter. For example, when a solid
crystallizes from a liquid the translational invariance that is present in the liquid phase is broken to a
discrete group of translations that represent the crystal lattice. This symmetry breaking has Goldstone
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bosons associated which are identified with phonons which are the quantum excitation modes of the
vibrational degrees of freedom of the lattice.

The Higgs mechanism.Gauge symmetry seems to prevent a vector field from having a mass.
This is obvious once we realize that a term in the Lagrangian likem2AµA

µ is incompatible with gauge
invariance.

However certain physical situations seem to require massive vector fields. This happened for
example during the 1960s in the study of weak interactions. The Glashow model gave a common de-
scription of both electromagnetic and weak interactions based on a gauge theory with group SU(2)×U(1)
but, in order to reproduce Fermi’s four-fermion theory of theβ-decay it was necessary that two of the
vector fields involved would be massive. Also in condensed matter physics massive vector fields are
required to describe certain systems, most notably in superconductivity.

The way out to this situation is found in the concept of spontaneous symmetry breaking discussed
previously. The consistency of the quantum theory requires gauge invariance, but this invariance can be
realized à la Nambu-Goldstone. When this is the case the full gauge symmetry is not explicitly present in
the effective action constructed around the particular vacuum chosen by the theory. This makes possible
the existence of mass terms for gauge fields without jeopardizing the consistency of the full theory, which
is still invariant under the whole gauge group.

To illustrate the Higgs mechanism we study the simplest example, the Abelian Higgs model: a
U(1) gauge field coupled to a self-interacting charged complex scalar fieldΦ with Lagrangian

L = −1

4
FµνF

µν +DµΦD
µΦ− λ

4

(
ΦΦ− µ2

)2
, (296)

where the covariant derivative is given by Eq. (159). This theory is invariant under the gauge transfor-
mations

Φ → eiα(x)Φ, Aµ → Aµ + ∂µα(x). (297)

The minimum of the potential is defined by the equation|Φ| = µ. We have a continuum of different
vacua labelled by the phase of the scalar field. None of these vacua, however, is invariant under the
gauge symmetry

〈Φ〉 = µeiϑ0 → µeiϑ0+iα(x) (298)

and therefore the symmetry is spontaneously broken Let us study now the theory around one of these
vacua, for example〈Φ〉 = µ, by writing the fieldΦ in terms of the excitations around this particular
vacuum

Φ(x) =

[
µ+

1√
2
σ(x)

]
eiϑ(x). (299)

Independently of whether we are expanding around a particular vacuum for the scalar field we should
keep in mind that the whole Lagrangian is still gauge invariant under (297). This means that perform-
ing a gauge transformation with parameterα(x) = −ϑ(x) we can get rid of the phase in Eq. (299).
Substituting thenΦ(x) = µ+ 1√

2
σ(x) in the Lagrangian we find

L = −1

4
FµνF

µν + e2µ2AµA
µ +

1

2
∂µσ∂

µσ − 1

2
λµ2σ2

− λµσ3 − λ

4
σ4 + e2µAµA

µσ + e2AµA
µσ2. (300)

What are the excitation of the theory around the vacuum〈Φ〉 = µ? First we find a massive real scalar
field σ(x). The important point however is that the vector fieldAµ now has a mass given by

m2
γ = 2e2µ2. (301)
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The remarkable thing about this way of giving a mass to the photon is that at no point we have given up
gauge invariance. The symmetry is only hidden. Therefore in quantizing the theory we can still enjoy all
the advantages of having a gauge theory but at the same time we have managed to generate a mass for
the gauge field.

It is surprising, however, that in the Lagrangian (300) we did not found any massless mode. Since
the vacuum chosen by the scalar field breaks theU(1) generator of U(1) we would have expected one
masless particle from Goldstone’s theorem. To understand the fate of the missing Goldstone boson we
have to revisit the calculation leading to Eq. (300). Were we dealing with a global U(1) theory, the
Goldstone boson would correspond to excitation of the scalar field along the valley of the potential and
the phaseϑ(x) would be the massless Goldstone boson. However we have to keep in mind that in com-
puting the Lagrangian we managed to get rid ofϑ(x) by shifting it intoAµ using a gauge transformation.
Actually by identifying the gauge parameter with the Goldstone excitation we have completely fixed the
gauge and the Lagrangian (300) does not have any gauge symmetry left.

A massive vector field has three polarizations: two transverse ones~k · ~ǫ (~k,±1) = 0 plus a longi-
tudinal one~ǫL(~k) ∼ ~k. In gauging away the massless Goldstone bosonϑ(x) we have transformed it into
the longitudinal polarization of the massive vector field. In the literature this is usually expressed saying
that the Goldstone mode is “eaten up” by the longitudinal component of the gauge field. It is important
to realize that in spite of the fact that the Lagrangian (300) looks pretty different from the one we started
with we have not lost any degrees of freedom. We started with the two polarizations of the photon plus
the two degrees of freedom associated with the real and imaginary components of the complex scalar
field. After symmetry breaking we end up with the three polarizations of the massive vector field and the
degree of freedom of the real scalar fieldσ(x).

We can also understand the Higgs mechanism in the light of our discussion of gauge symmetry
in section 4.4. In the Higgs mechanism the invariance of the theory under infinitesimal gauge trans-
formations is not explicitly broken, and this implies that Gauss’ law is satisfied quantum mechanically,
~∇ · ~Ea|phys〉 = 0. The theory remains invariant under gauge transformations in the connected com-
ponent of the identityG0, the ones generated by Gauss’ law. This does not pose any restriction on the
possible breaking of the invariance of the theory with respect to transformations that cannot be continu-
ously deformed to the identity. Hence in the Higgs mechanism the invariance under gauge transformation
that are not in the connected component of the identity,G/G0, can be broken. Let us try to put it in more
precise terms. As we learned in section 4.4, in the Hamiltonian formulation of the theory finite energy
gauge field configurations tend to a pure gauge at spatial infinity

~Aµ(~x)−→− 1

ig
g(~x)~∇g(~x)−1, |~x| → ∞ (302)

The set transformationsg0(~x) ∈ G0 that tend to the identity at infinity are the ones generated by Gauss’
law. However, one can also consider in general gauge transformationsg(~x) which, as|~x| → ∞, approach
any other elementg ∈ G. The quotientG∞ ≡ G/G0 gives a copy of the gauge group at infinity. There
is no reason, however, why this group should not be broken, and in general it is if the gauge symmetry
is spontaneously broken. Notice that this is not a threat to the consistency of the theory. Properties
like the decoupling of unphysical states are guaranteed by the fact that Gauss’ law is satisfied quantum
mechanically and are not affected by the breaking ofG∞.

In condensed matter physics the symmetry breaking described by the nonrelativistic version of
the Abelian Higgs model can be used to characterize the onset of a superconducting phase in the BCS
theory, where the complex scalar fieldΦ is associated with the Cooper pairs. In this case the parameterµ2

depends on the temperature. Above the critical temperatureTc, µ2(T ) > 0 and there is only a symmetric
vacuum〈Φ〉 = 0. When, on the other hand,T < Tc thenµ2(T ) < 0 and symmetry breaking takes place.
The onset of a nonzero mass of the photon (301) below the critical temperature explains the Meissner
effect: the magnetic fields cannot penetrate inside superconductors beyond a distance of the order1

mγ
.
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The Abelian Higgs model discussed here can be regarded as a toy model of the Brout-Englert-
Higgs mechanism responsible for giving mass to theW± andZ0 gauge bosons in the standard model.
Giving mass to these three bosons requires the introduction of a two-component complex scalar field
transforming as a doublet under SU(2). Three of its four degrees of freedom are incorporated as the
longitudinal components of the three massive gauge fields, whereas the fourth one remains as a scalar
propagating degree of freedom. Its elementary excitations are spin zero neutral particles known as Higgs
bosons.

The Higgs boson couples to the massive gauge fields, as well as to quarks and leptons. More-
over, its coupling to the fermions is proportional to the fermion masses and therefore very weak for
light fermions. This, together with the fact that Higgs productions processes have large standard model
backgrounds, complicates its experimental detection. After decades of searches in various experiments,
a Higgs boson candidate was finally detected at the ATLAS and CMS collaborations at the Large Hadron
Collider (LHC) in 2012 with a mass of approximately 125 GeV. At the time of writing, all evidences
point to the fact that this new particle is indeed the so much coveted standard model Higgs.

7 Anomalies

So far we did not worry too much about how classical symmetries of a theory are carried over to the
quantum theory. We have implicitly assumed that classical symmetries are preserved in the process of
quantization, so they are also realized in the quantum theory.

This, however, does not have to be necessarily the case. Quantizing an interacting field theory
is a very involved process that requires regularization and renormalization and sometimes, it does not
matter how hard we try, there is no way for a classical symmetry to survive quantization. When this
happens one says that the theory has ananomaly(for reviews see [28]). It is important to avoid here the
misconception that anomalies appear due to a bad choice of the way a theory is regularized in the process
of quantization. When we talk about anomalies we mean a classical symmetry thatcannotbe realized in
the quantum theory, no matter how smart we are in choosing the regularization procedure.

In the following we analyze some examples of anomalies associated with global and local sym-
metries of the classical theory. In Section 8 we will encounter yet another example of an anomaly, this
time associated with the breaking of classical scale invariance in the quantum theory.

7.1 Axial anomaly

Probably the best known examples of anomalies appear when we consider axial symmetries. If we
consider a theory of two Weyl spinorsu±

L = iψ∂/ψ = iu†+σ
µ
+∂µu+ + iu†−σ

µ
−∂µu− with ψ =

(
u+
u−

)
(303)

the Lagrangian is invariant under two types of global U(1) transformations. In the first one both helicities
transform with the same phase, this is avectortransformation:

U(1)V : u± −→ eiαu±, (304)

whereas in the second one, the axialU(1), the signs of the phases are different for the two chiralities

U(1)A : u± −→ e±iαu±. (305)

Using Noether’s theorem, there are two conserved currents, a vector current

Jµ
V = ψγµψ = u†+σ

µ
+u+ + u†−σ

µ
−u− =⇒ ∂µJ

µ
V = 0 (306)
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and an axial vector current

Jµ
A = ψγµγ5ψ = u†+σ

µ
+u+ − u†−σ

µ
−u− =⇒ ∂µJ

µ
A = 0. (307)

The theory described by the Lagrangian (303) can be coupled to the electromagnetic field. The
resulting classical theory is still invariant under the vector and axial U(1) symmetries (304) and (305).
Surprisingly, upon quantization it turns out that the conservation of the axial current (307) is spoiled by
quantum effects

∂µJ
µ
A ∼ ~ ~E · ~B. (308)

To understand more clearly how this result comes about we study first a simple model in two
dimensions that captures the relevant physics involved in the four-dimensional case [29]. We work in
Minkowski space in two dimensions with coordinates(x0, x1) ≡ (t, x) and where the spatial direction
is compactified to a circleS1. In this setup we consider a fermion coupled to the electromagnetic field.
Notice that since we are living in two dimensions the field strengthFµν only has one independent com-
ponent that corresponds to the electric field along the spatial direction,F 01 ≡ E (in two dimensions there
are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representation of the algebra of
γ-matrices

{γµ, γν} = 2ηµν with η =

(
1 0
0 −1

)
. (309)

In two dimensions the dimension of the representation of theγ-matrices is2[
2
2
] = 2. Here take

γ0 ≡ σ1 =

(
0 1
1 0

)
, γ1 ≡ iσ2 =

(
0 1

−1 0

)
. (310)

This is a chiral representation since the matrixγ5 is diagonal15

γ5 ≡ −γ0γ1 =

(
1 0
0 −1

)
(311)

Writing the two-component spinorψ as

ψ =

(
u+
u−

)
(312)

and defining as usual the projectorsP± = 1
2(1±γ5) we find that the componentsu± of ψ are respectively

a right- and left-handed Weyl spinor in two dimensions.

Once we have a representation of theγ-matrices we can write the Dirac equation. Expressing it in
terms of the componentsu± of the Dirac spinor we find

(∂0 − ∂1)u+ = 0, (∂0 + ∂1)u− = 0. (313)

The general solution to these equations can be immediately written as

u+ = u+(x
0 + x1), u− = u−(x0 − x1). (314)

Henceu± are two wave packets moving along the spatial dimension respectively to the left(u+) and
to the right(u−). Notice that according to our convention the left-movingu+ is a right-handed spinor
(positive helicity) whereas the right-movingu− is a left-handed spinor (negative helicity).

15In any even number of dimensionsγ5 is defined to satisfy the conditionsγ2
5 = 1 and{γ5, γµ} = 0.
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Fig. 11: Spectrum of the massless two-dimensional Dirac field.

If we want to interpret (313) as the wave equation for two-dimensional Weyl spinors we have the
following wave functions for free particles with well defined momentumpµ = (E, p).

u
(E)
± (x0 ± x1) =

1√
L
e−iE(x0±x1) with p = ∓E. (315)

As it is always the case with the Dirac equation we have both positive and negative energy solutions. For
u+, sinceE = −p, we see that the solutions with positive energy are those with negative momentum
p < 0, whereas the negative energy solutions are plane waves withp > 0. For the left-handed spinoru−
the situation is reversed. Besides, since the spatial direction is compact with lengthL the momentump
is quantized according to

p =
2πn

L
, n ∈ Z. (316)

The spectrum of the theory is represented in Fig. 11.

Once we have the spectrum of the theory the next step is to obtain the vacuum. As with the Dirac
equation in four dimensions we fill all the states withE ≤ 0 (Fig. 12). Exciting of a particle in the Dirac
see produces a positive energy fermion plus a hole that is interpreted as an antiparticle. This gives us the
clue on how to quantize the theory. In the expansion of the operatoru± in terms of the modes (315) we
associate positive energy states with annihilation operators whereas the states with negative energy are
associated with creation operators for the corresponding antiparticle

u±(x) =
∑

E>0

[
a±(E)v

(E)
± (x) + b†±(E)v

(E)
± (x)∗

]
. (317)

The operatora±(E) acting on the vacuum|0,±〉 annihilates a particle with positive energyE and mo-
mentum∓E. In the same wayb†±(E) creates out of the vacuum an antiparticle with positive energyE
and spatial momentum∓E. In the Dirac sea picture the operatorb±(E)† is originally an annihilation
operator for a state of the sea with negative energy−E. As in the four-dimensional case the problem of
the negative energy states is solved by interpreting annihilation operators for negative energy states as
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Fig. 12: Vacuum of the theory.

creation operators for the corresponding antiparticle with positive energy (and vice versa). The operators
appearing in the expansion ofu± in Eq. (317) satisfy the usual algebra

{aλ(E), a†λ′(E
′)} = {bλ(E), b†λ′(E

′)} = δE,E′δλλ′ , (318)

where we have introduced the labelλ, λ′ = ±. Also,aλ(E), a†λ(E) anticommute withbλ′(E′), b†λ′(E′).

The Lagrangian of the theory

L = iu†+(∂0 + ∂1)u+ + iu†−(∂0 − ∂1)u− (319)

is invariant under both U(1)V , Eq. (304), and U(1)A, Eq. (305). The associated Noether currents are in
this case

Jµ
V =

(
u†+u+ + u†−u−
−u†+u+ + u†−u−

)
, Jµ

A =

(
u†+u+ − u†−u−
−u†+u+ − u†−u−

)
. (320)

The associated conserved charges are given, for the vector current by

QV =

∫ L

0
dx1

(
u†+u+ + u†−u−

)
(321)

and for the axial current

QA =

∫ L

0
dx1

(
u†+u+ − u†−u−

)
. (322)

Using the orthonormality relations for the modesv
(E)
± (x)

∫ L

0
dx1 v

(E)
± (x) v

(E′)
± (x) = δE,E′ (323)

we find for the conserved charges:

QV =
∑

E>0

[
a†+(E)a+(E)− b†+(E)b+(E) + a†−(E)a−(E)− b†−(E)b−(E)

]
,
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Fig. 13: Effect of the electric field.

QA =
∑

E>0

[
a†+(E)a+(E)− b†+(E)b+(E)− a†−(E)a−(E) + b†−(E)b−(E)

]
. (324)

We see thatQV counts the net number (particles minus antiparticles) of positive helicity states plus the
net number of states with negative helicity. The axial charge, on the other hand, counts the net number of
positive helicity states minus the number of negative helicity ones. In the case of the vector current we
have subtracted a formally divergent vacuum contribution to the charge (the “charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of eitherQV orQA, since the
occupation numbers do not change. What we want to study is the effect of coupling the theory to electric
field E . We work in the gaugeA0 = 0. Instead of solving the problem exactly we are going to simulate
the electric field by adiabatically varying in a long timeτ0 the vector potentialA1 from zero value to
−Eτ0. From our discussion in section 4.3 we know that the effect of the electromagnetic coupling in the
theory is a shift in the momentum according to

p −→ p− eA1, (325)

wheree is the charge of the fermions. Since we assumed that the vector potential varies adiabatically,
we can assume it to be approximately constant at each time.

Then, we have to understand what is the effect of (325) on the vacuum depicted in Fig. (12). What
we find is that the two branches move as shown in Fig. (13) resulting in some of the negative energy
states of thev+ branch acquiring positive energy while the same number of the empty positive energy
states of the other branchv− will become empty negative energy states. Physically this means that the
external electric fieldE creates a number of particle-antiparticle pairs out of the vacuum. Denoting by
N ∼ eE the number of such pairs created by the electric field per unit time, the final values of the charges
QV andQA are

QA(τ0) = (N − 0) + (0−N) = 0,

QV (τ0) = (N − 0)− (0−N) = 2N. (326)
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Therefore we conclude that the coupling to the electric field produces a violation in the conservation of
the axial charge per unit time given by∆QA ∼ eE . This implies that

∂µJ
µ
A ∼ e~E , (327)

where we have restored~ to make clear that the violation in the conservation of the axial current is a
quantum effect. At the same time∆QV = 0 guarantees that the vector current remains conserved also
quantum mechanically,∂µJ

µ
V = 0.

We have just studied a two-dimensional example of the Adler-Bell-Jackiw axial anomaly [30].
The heuristic analysis presented here can be made more precise by computing the quantity

Cµν = 〈0|T
[
Jµ
A(x)J

ν
V (0)

]
|0〉 =�Jµ

A
γ

(328)

The anomaly is given then by∂µCµν . A careful calculation yields the numerical prefactor missing in Eq.
(327) leading to the result

∂µJ
µ
A =

e~
2π

ενσFνσ, (329)

with ε01 = −ε10 = 1.

The existence of an anomaly in the axial symmetry that we have illustrated in two dimensions is
present in all even dimensional of space-times. In particular in four dimensions the axial anomaly it is
given by

∂µJ
µ
A = − e2

16π2
εµνσλFµνFσλ. (330)

This result has very important consequences in the physics of strong interactions as we will see in what
follows

7.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of Quantum Chromodynamics
(QCD) [32]. This is a nonabelian gauge theory with gauge group SU(Nc) coupled to a numberNf of
quarks. These are spin-1

2 particlesQi f labelled by two quantum numbers: colori = 1, . . . , Nc and flavor
f = 1, . . . , Nf . The interaction between them is mediated by theN2

c − 1 gauge bosons, the gluonsAa
µ,

a = 1, . . . , N2
c − 1. In the real worldNc = 3 and the number of flavors is six, corresponding to the

number of different quarks: up (u), down (d), charm (c), strange (s), top (t) and bottom (b).

For the time being we are going to study a general theory of QCD withNc colors andNf flavors.
Also, for reasons that will be clear later we are going to work in the limit of vanishing quark masses,
mf → 0. In this cases the Lagrangian is given by

LQCD = −1

4
F a
µνF

aµν +

Nf∑

f=1

[
iQ

f
LD/ Qf

L + iQ
f
RD/ Qf

R

]
, (331)

where the subscriptsL andR indicate respectively left and right-handed spinors,Qf
L,R ≡ P±Qf , and the

field strengthF a
µν and the covariant derivativeDµ are respectively defined in Eqs. (165) and (168). Apart
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from the gauge symmetry, this Lagrangian is also invariant under a global U(Nf )L×U(Nf )R acting on
the flavor indices and defined by

U(Nf )L :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → Qf

R

U(Nf )R :





Qf
L → Qf

L

Qr
R → ∑

f ′(UR)ff ′Qf ′
R

(332)

with UL, UR ∈ U(Nf ). Actually, since U(N)=U(1)×SU(N) this global symmetry group can be written
as SU(Nf )L×SU(Nf )R×U(1)L×U(1)R. The abelian subgroup U(1)L×U(1)R can be now decomposed
into their vector U(1)B and axial U(1)A subgroups defined by the transformations

U(1)B :





Qf
L → eiαQf

L

Qf
R → eiαQf

R

U(1)A :





Qf
L → eiαQf

L

Qf
R → e−iαQf

R

(333)

According to Noether’s theorem, associated with these two abelian symmetries we have two conserved
currents:

Jµ
V =

Nf∑

f=1

Q
f
γµQf , Jµ

A =

Nf∑

f=1

Q
f
γµγ5Q

f . (334)

The conserved charge associated with vector chargeJµ
V is actually the baryon number defined as the

number of quarks minus number of antiquarks.

The nonabelian part of the global symmetry group SU(Nf )L×SU(Nf )R can also be decomposed
into its vector and axial subgroups, SU(Nf )V × SU(Nf )A, defined by the following transformations of
the quarks fields

SU(Nf )V :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → ∑

f ′(UL)ff ′Qf ′
R

SU(Nf )A :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → ∑

f ′(U
−1
R )ff ′Qf ′

R

(335)

Again, the application of Noether’s theorem shows the existence of the following nonabelian conserved
charges

JI µ
V ≡

Nf∑

f,f ′=1

Q
f
γµ(T I)ff ′Qf ′

, JI µ
A ≡

Nf∑

f,f ′=1

Q
f
γµγ5(T

I)ff ′Qf ′
. (336)

To summarize, we have shown that the initial chiral symmetry of the QCD Lagrangian (331) can be
decomposed into its chiral and vector subgroups according to

U(Nf )L × U(Nf )R = SU(Nf )V × SU(Nf )A × U(1)B × U(1)A. (337)

The question to address now is which part of the classical global symmetry is preserved by the quantum
theory.

As argued in section 7.1, the conservation of the axial currentsJµ
A andJaµ

A can in principle be
spoiled due to the presence of an anomaly. In the case of the abelian axial currentJµ

A the relevant quantity
is the correlation function

Cµνσ ≡ 〈0|T
[
Jµ
A(x)j

a ν
gauge(x

′)jb σgauge(0)
]
|0〉 =

Nf∑

f=1


�Jµ

A

Qf g

Qf

g

Qf



symmetric

(338)
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Herejaµgauge is the nonabelian conserved current coupling to the gluon field

jaµgauge ≡
Nf∑

f=1

Q
f
γµτaQf , (339)

where, to avoid confusion with the generators of the global symmetry we have denoted byτa the gen-
erators of the gauge group SU(Nc). The anomaly can be read now from∂µCµνσ. If we impose Bose
symmetry with respect to the interchange of the two outgoing gluons and gauge invariance of the whole
expression,∂νCµνσ = 0 = ∂σC

µνσ, we find that the axial abelian global current has an anomaly given
by16

∂µJ
µ
A = −g2Nf

32π2
εµνσλF a

µνF
aµν . (340)

In the case of the nonabelian axial global symmetry SU(Nf )A the calculation of the anomaly is
made as above. The result, however, is quite different since in this case we conclude that the nonabelian
axial currentJaµ

A is not anomalous. This can be easily seen by noticing that associated with the axial
current vertex we have a generatorT I of SU(Nf ), whereas for the two gluon vertices we have the
generatorsτa of the gauge group SU(Nc). Therefore, the triangle diagram is proportional to the group-
theoretic factor


�JIµ

A
Qf g

Qf

g

Qf



symmetric

∼ trT I tr {τa, τ b} = 0 (341)

which vanishes because the generators of SU(Nf ) are traceless.

From here we would conclude that the nonabelian axial symmetry SU(Nf )A is nonanomalous.
However this is not the whole story since quarks are charged particles that also couple to photons. Hence
there is a second potential source of an anomaly coming from the the one-loop triangle diagram coupling
JI µ
A to two photons

〈0|T
[
JI µ
A (x)jνem(x

′)jσem(0)
]
|0〉 =

Nf∑

f=1


�JIµ

A
Qf γ

Qf

γ

Qf



symmetric

(342)

wherejµem is the electromagnetic current

jµem =

Nf∑

f=1

qf Q
f
γµQf , (343)

with qf the electric charge of thef -th quark flavor. A calculation of the diagram in (342) shows the
existence of an Adler-Bell-Jackiw anomaly given by

∂µJ
I µ
A = − Nc

16π2




Nf∑

f=1

(T I)ff q
2
f


 εµνσλFµνFσλ, (344)

16The normalization of the generatorsT I of the global SU(Nf ) is given bytr (T IT J) = 1
2
δIJ .
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whereFµν is the field strength of the electromagnetic field coupling to the quarks. The only chance for
the anomaly to cancel is that the factor between brackets in this equation be identically zero.

Before proceeding let us summarize the results found so far. Because of the presence of anomalies
the axial part of the global chiral symmetry, SU(Nf )A and U(1)A are not realized quantum mechanically
in general. We found that U(1)A is always affected by an anomaly. However, because the right-hand
side of the anomaly equation (340) is a total derivative, the anomalous character ofJµ

A does not explain
the absence of U(1)A multiplets in the hadron spectrum, since a new current can be constructed which
is conserved. In addition, the nonexistence of candidates for a Goldstone boson associated with the
right quantum numbers indicates that U(1)A is not spontaneously broken either, so it has be explicitly
broken somehow. This is the so-called U(1)-problem which was solved by ’t Hooft [33], who showed
how the contribution of quantum transitions between vacua with topologically nontrivial gauge field
configurations (instantons) results in an explicit breaking of this symmetry.

Due to the dynamics of the SU(Nc) gauge theory the axial nonabelian symmetry is spontaneously

broken due to the presence at low energies of a vacuum expectation value for the fermion bilinearQ
f
Qf

〈0|Qf
Qf |0〉 6= 0 (No summation inf !). (345)

This nonvanishing vacuum expectation value for the quark bilinear actually breaks chiral invariance
spontaneously to the vector subgroup SU(Nf )V , so the only subgroup of the original global symmetry
that is realized by the full theory at low energy is

U(Nf )L × U(Nf )R −→ SU(Nf )V × U(1)B. (346)

Associated with this breaking a Goldstone boson should appear with the quantum numbers of the broken
nonabelian current. For example, in the case of QCD the Goldstone bosons associated with the sponta-
neously symmetry breaking induced by the vacuum expectation values〈uu〉, 〈dd〉 and 〈(ud− du)〉 have
been identified as the pionsπ0, π±. These bosons are not exactly massless because of the nonvanishing
mass of theu andd quarks. Since the global chiral symmetry is already slightly broken by mass terms in
the Lagrangian, the associated Goldstone bosons also have masses although they are very light compared
to the masses of other hadrons.

In order to have a better physical understanding of the role of anomalies in the physics of strong
interactions we particularize now our analysis of the case of real QCD. Since theu andd quarks are
much lighter than the other four flavors, QCD at low energies can be well described by including only
these two flavors and ignoring heavier quarks. In this approximation, from our previous discussion we
know that the low energy global symmetry of the theory is SU(2)V ×U(1)B, where now the vector group
SU(2)V is the well-known isospin symmetry. The axial U(1)A current is anomalous due to Eq. (340)
with Nf = 2. In the case of the nonabelian axial symmetry SU(2)A, taking into account thatqu = 2

3e
and qd = −1

3e and that the three generators of SU(2) can be written in terms of the Pauli matrices as
TK = 1

2σ
K we find

∑

f=u,d

(T 1)ff q
2
f =

∑

f=u,d

(T 1)ff q
2
f = 0,

∑

f=u,d

(T 3)ff q
2
f =

e2

6
. (347)

ThereforeJ3µ
A is anomalous.

Physically, the anomaly in the axial currentJ3µ
A has an important consequence. In the quark

model, the wave function of the neutral pionπ0 is given in terms of those for theu andd quark by

|π0〉 = 1√
2

(
|ū〉|u〉 − |d̄〉|d〉

)
. (348)
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The isospin quantum numbers of|π0〉 are those of the generatorT 3. Actually the analogy goes further
since∂µJ

3µ
A is the operator creating a pionπ0 out of the vacuum

|π0〉 ∼ ∂µJ
3µ
A |0〉. (349)

This leads to the physical interpretation of the triangle diagram (342) withJ3µ
A as the one loop contribu-

tion to the decay of a neutral pion into two photons

π0 −→ 2γ . (350)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [34] presented a calcula-
tion, using current algebra techniques, according to which the decay of the pion into two photons should
be suppressed. This however contradicted the experimental evidence that showed the existence of such a
decay. The way out to this paradox, as pointed out in [30], is the axial anomaly. What happens is that the
current algebra analysis overlooks the ambiguities associated with the regularization of divergences in
quantum field theory. A QED evaluation of the triangle diagram leads to a divergent integral that has to
be regularized somehow. It is in this process that the Adler-Bell-Jackiw axial anomaly appears resulting
in a nonvanishing value for theπ0 → 2γ amplitude17.

The existence of anomalies associated with global currents does not necessarily mean difficulties
for the theory. On the contrary, as we saw in the case of the axial anomaly it is its existence what
allows for a solution of the Sutherland-Veltman paradox and an explanation of the electromagnetic decay
of the pion. The situation, however, is very different if we deal with local symmetries. A quantum
mechanical violation of gauge symmetry leads to all kinds of problems, from lack of renormalizability to
nondecoupling of negative norm states. This is because the presence of an anomaly in the theory implies
that the Gauss’ law constraint~∇ · ~Ea = ρa cannot be consistently implemented in the quantum theory.
As a consequence states that classically are eliminated by the gauge symmetry become propagating fields
in the quantum theory, thus spoiling the consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left and right-
handed fermions transform in different representations of the gauge group. Physically, the most inter-
esting example of such theories is the electroweak sector of the standard model where, for example, left
handed fermions transform as doublets under SU(2) whereas right-handed fermions are singlets. On the
other hand, QCD is free of gauge anomalies since both left- and right-handed quarks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

L = −1

4
F aµνF a

µν + i

N+∑

i=1

ψ
i
+D/

(+)ψi
+ + i

N−∑

j=1

ψ
j
−D/

(−)ψj
−, (351)

where the chiral fermionsψi
± transform according to the representationsτai,± of the gauge groupG

(a = 1, . . . ,dimG). The covariant derivativesD(±)
µ are then defined by

D(±)
µ ψi

± = ∂µψ
i
± + igAK

µ τKi,±ψ
i
±. (352)

As for global symmetries, anomalies in the gauge symmetry appear in the triangle diagram with one
axial and two vector gauge current vertices

〈0|T
[
jaµA (x)jb νV (x′)jc σV (0)

]
|0〉 =


 jaµA jbνV

jcσV



symmetric

(353)

17An early computation of the triangle diagram for the electromagnetic decay of the pion was made by Steinberger in [31].
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where gauge vector and axial currentsjaµV , jaµA are given by

jaµV =

N+∑

i=1

ψ
i
+τ

a
+γ

µψi
+ +

N−∑

j=1

ψ
j
−τ

a
−γ

µψj
−,

jaµA =

N+∑

i=1

ψ
i
+τ

a
+γ

µψi
+ −

N−∑

i=1

ψ
j
−τ

a
−γ

µψj
−. (354)

Luckily, we do not have to compute the whole diagram in order to find an anomaly cancellation condition,
it is enough if we calculate the overall group theoretical factor. In the case of the diagram in Eq. (353)
for every fermion species running in the loop this factor is equal to

tr
[
τai,±{τ bi,±, τ ci,±}

]
, (355)

where the sign± corresponds respectively to the generators of the representation of the gauge group for
the left and right-handed fermions. Hence the anomaly cancellation condition reads

N+∑

i=1

tr
[
τai,+{τ bi,+, τ ci,+}

]
−

N−∑

j=1

tr
[
τaj,−{τ bj,−, τ cj,−}

]
= 0. (356)

Knowing this we can proceed to check the anomaly cancellation in the standard model SU(3)×SU(2)×U(1).
Left handed fermions (both leptons and quarks) transform as doublets with respect to the SU(2) factor
whereas the right-handed components are singlets. The charge with respect to the U(1) part, the hyper-
chargeY , is determined by the Gell-Mann-Nishijima formula

Q = T3 + Y, (357)

whereQ is the electric charge of the corresponding particle andT3 is the eigenvalue with respect to the
third generator of the SU(2) group in the corresponding representation:T3 = 1

2σ
3 for the doublets and

T3 = 0 for the singlets. For the first family of quarks (u, d) and leptons (e, νe) we have the following
field content

quarks:

(
uα

dα

)

L, 1
6

uα
R, 2

3

dα
R, 2

3

leptons:

(
νe
e

)

L,− 1
2

eR,−1 (358)

whereα = 1, 2, 3 labels the color quantum number and the subscript indicates the value of the weak
hyperchargeY . Denoting the representations of SU(3)×SU(2)×U(1) by(nc, nw)Y , with nc andnw

the representations of SU(3) and SU(2) respectively andY the hypercharge, the matter content of the
standard model consists of a three family replication of the representations:

left-handed fermions: (3, 2)L1
6

(1, 2)L− 1
2

(359)

right-handed fermions: (3, 1)R2
3

(3, 1)R− 1
3

(1, 1)R−1.

In computing the triangle diagram we have 10 possibilities depending on which factor of the gauge group
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SU(3)×SU(2)×U(1) couples to each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)2 U(1)

SU(3)2 U(1) SU(2) U(1)2

SU(3) SU(2)2

SU(3) SU(2) U(1)

SU(3) U(1)2

It is easy to check that some of them do not give rise to anomalies. For example the anomaly for the
SU(3)3 case cancels because left and right-handed quarks transform in the same representation. In the
case of SU(2)3 the cancellation happens term by term because of the Pauli matrices identityσaσb =
δab + iεabcσc that leads to

tr
[
σa{σb, σc}

]
= 2 (trσa) δbc = 0. (360)

However the hardest anomaly cancellation condition to satisfy is the one with three U(1)’s. In this case
the absence of anomalies within a single family is guaranteed by the nontrivial identity

∑

left

Y 3
+ −

∑

right

Y 3
− = 3× 2×

(
1

6

)3

+ 2×
(
−1

2

)3

− 3×
(
2

3

)3

− 3×
(
−1

3

)3

− (−1)3

=

(
−3

4

)
+

(
3

4

)
= 0. (361)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice that this result
holds even if a right-handed sterile neutrino is added since such a particle is a singlet under the whole
standard model gauge group and therefore does not contribute to the triangle diagram. Therefore we see
how the matter content of the standard model conspires to yield a consistent quantum field theory.

In all our discussion of anomalies we only considered the computation of one-loop diagrams.
It may happen that higher loop orders impose additional conditions. Fortunately this is not so: the
Adler-Bardeen theorem [35] guarantees that the axial anomaly only receives contributions from one loop
diagrams. Therefore, once anomalies are canceled (if possible) at one loop we know that there will be
no new conditions coming from higher-loop diagrams in perturbation theory.

The Adler-Bardeen theorem, however, only applies in perturbation theory. It is nonetheless possi-
ble that nonperturbative effects can result in the quantum violation of a gauge symmetry. This is precisely
the case pointed out by Witten [36] with respect to the SU(2) gauge symmetry of the standard model.
In this case the problem lies in the nontrivial topology of the gauge group SU(2). The invariance of
the theory with respect to gauge transformations which are not in the connected component of the iden-
tity makes all correlation functions equal to zero. Only when the number of left-handed SU(2) fermion
doublets is even gauge invariance allows for a nontrivial theory. It is again remarkable that the family
structure of the standard model makes this anomaly to cancel

3×
(

u
d

)

L

+ 1×
(

νe
e

)

L

= 4 SU(2)-doublets, (362)

where the factor of 3 comes from the number of colors.
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8 Renormalization

8.1 Removing infinities

From its very early stages, quantum field theory was faced with infinities. They emerged in the calcula-
tion of most physical quantities, such as the correction to the charge of the electron due to the interactions
with the radiation field. The way these divergences where handled in the 1940s, starting with Kramers,
was physically very much in the spirit of the Quantum Theory emphasis in observable quantities: since
the observed magnitude of physical quantities (such as the charge of the electron) is finite, this number
should arise from the addition of a “bare” (unobservable) value and the quantum corrections. The fact
that both of these quantities were divergent was not a problem physically, since only its finite sum was
an observable quantity. To make thing mathematically sound, the handling of infinities requires the in-
troduction of some regularization procedure which cuts the divergent integrals off at some momentum
scaleΛ. Morally speaking, the physical value of an observableOphysical is given by

Ophysical = lim
Λ→∞

[O(Λ)bare +∆O(Λ)~] , (363)

where∆O(Λ)~ represents the regularized quantum corrections.

To make this qualitative discussion more precise we compute the corrections to the electric charge
in Quantum Electrodynamics. We consider the process of annihilation of an electron-positron pair to
create a muon-antimuon paire−e+ → µ+µ−. To lowest order in the electric chargee the only diagram
contributing is

!e− µ+

e+

γ

µ−

However, the corrections at ordere4 to this result requires the calculation of seven more diagrams

"e− µ+

e+ µ−

+#e− µ+

e+

µ−

+$µ+e−

µ−e+

+%e− µ+

e+ µ−

+&e− µ+

e+

µ−
+'µ+

e+

µ−
e−

+(µ+e+

µ−e−

In order to compute the renormalization of the charge we consider the first diagram which takes
into account the first correction to the propagator of the virtual photon interchanged between the pairs
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due to vacuum polarization. We begin by evaluating

) =
−iηµα

q2 + iǫ


*α β




−iηβν

q2 + iǫ
, (364)

where the diagram between brackets is given by

+α β ≡ Παβ(q) = i2(−ie)2(−1)

∫
d4k

(2π)4
Tr (/k +me)γ

α(/k + /q +me)γ
β

[k2 −m2
e + iǫ] [(k + q)2 −m2

e + iǫ]
. (365)

Physically this diagram includes the correction to the propagator due to the polarization of the vacuum,
i.e. the creation of virtual electron-positron pairs by the propagating photon. The momentumq is the
total momentum of the electron-positron pair in the intermediate channel.

It is instructive to look at this diagram from the point of view of perturbation theory in nonrela-
tivistic Quantum Mechanics. In each vertex the interaction consists of the annihilation (resp. creation)
of a photon and the creation (resp. annihilation) of an electron-positron pair. This can be implemented
by the interaction Hamiltonian

Hint = e

∫
d3xψγµψAµ. (366)

All fields inside the integral can be expressed in terms of the corresponding creation-annihilation oper-
ators for photons, electrons and positrons. In Quantum Mechanics, the change in the wave function at
first order in the perturbationHint is given by

|γ, in〉 = |γ, in〉0 +
∑

n

〈n|Hint|γ, in〉0
Ein − En

|n〉 (367)

and similarly for |γ, out〉, where we have denoted symbolically by|n〉 all the possible states of the
electron-positron pair. Since these states are orthogonal to|γ, in〉0, |γ, out〉0, we find tordere2

〈γ, in|γ′, out〉 = 0〈γ, in|γ′, out〉0 +
∑

n

0〈γ, in|Hint|n〉 〈n|Hint|γ′, out〉0
(Ein − En)(Eout − En)

+O(e4). (368)

Hence, we see that the diagram of Eq. (364) really corresponds to the order-e2 correction to the photon
propagator〈γ, in|γ′, out〉

,γ γ′
−→ 0〈γ, in|γ′, out〉0

-γ γ′
−→

∑

n

〈γ, in|Hint|n〉 〈n|Hint|γ′, out〉
(Ein − En)(Eout − En)

. (369)
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Once we understood the physical meaning of the Feynman diagram to be computed we proceed
to its evaluation. In principle there is no problem in computing the integral in Eq. (364) for nonzero
values of the electron mass. However since here we are going to be mostly interested in seeing how
the divergence of the integral results in a scale-dependent renormalization of the electric charge, we
will set me = 0. This is something safe to do, since in the case of this diagram we are not inducing
new infrared divergences in taking the electron as massless. Implementing gauge invariance and using
standard techniques in the computation of Feynman diagrams (see references [1]- [11]) the polarization
tensorΠµν(q) defined in Eq. (365) can be written as

Πµν(q) =
(
q2ηµν − qµqν

)
Π(q2) (370)

with

Π(q) = 8e2
∫ 1

0
dx

∫
d4k

(2π)4
x(1− x)

[k2 −m2 + x(1− x)q2 + iǫ]2
(371)

To handle this divergent integral we have to figure out some procedure to render it finite. This can be
done in several ways, but here we choose to cut the integrals off at a high energy scaleΛ, where new
physics might be at work,|p| < Λ. This gives the result

Π(q2) ≃ e2

12π2
log

(
q2

Λ2

)
+ finite terms. (372)

If we would send the cutoff to infinityΛ → ∞ the divergence blows up and something has to be done
about it.

If we want to make sense out of this, we have to go back to the physical question that led us to
compute Eq. (364). Our primordial motivation was to compute the corrections to the annihilation of two
electrons into two muons. Including the correction to the propagator of the virtual photon we have

. =/ +0
= ηαβ (veγ

αue)
e2

4πq2

(
vµγ

βuµ

)
+ ηαβ (veγ

αue)
e2

4πq2
Π(q2)

(
vµγ

βuµ

)

= ηαβ (veγ
αue)

{
e2

4πq2

[
1 +

e2

12π2
log

(
q2

Λ2

)]}(
vµγ

βuµ

)
. (373)

Now let us imagine that we are performing ae− e+ → µ−µ+ with a center of mass energyµ. From the
previous result we can identify the effective charge of the particles at this energy scalee(µ) as

1 = ηαβ (veγ
αue)

[
e(µ)2

4πq2

](
vµγ

βuµ

)
. (374)

This charge,e(µ), is the quantity that is physically measurable in our experiment. Now we can make
sense of the formally divergent result (373) by assuming that the charge appearing in the classical La-
grangian of QED is just a “bare” value that depends on the scaleΛ at which we cut off the theory,
e ≡ e(Λ)bare. In order to reconcile (373) with the physical results (374) we must assume that the
dependence of the bare (unobservable) chargee(Λ)bare on the cutoffΛ is determined by the identity

e(µ)2 = e(Λ)2bare

[
1 +

e(Λ)2bare
12π2

log

(
µ2

Λ2

)]
. (375)
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If we still insist in removing the cutoff,Λ → ∞ we have to send the bare charge to zeroe(Λ)bare → 0
in such a way that the effective coupling has the finite value given by the experiment at the energy scale
µ. It is not a problem, however, that the bare charge is small for large values of the cutoff, since the
only measurable quantity is the effective charge that remains finite. Therefore all observable quantities
should be expressed in perturbation theory as a power series in the physical couplinge(µ)2 and not in
the unphysical bare couplinge(Λ)bare.

8.2 The beta-function and asymptotic freedom

We can look at the previous discussion, an in particular Eq. (375), from a different point of view. In order
to remove the ambiguities associated with infinities we have been forced to introduce a dependence of
the coupling constant on the energy scale at which a process takes place. From the expression of the
physical coupling in terms of the bare charge (375) we can actually eliminate the cutoffΛ, whose value
after all should not affect the value of physical quantities. Taking into account that we are working in
perturbation theory ine(µ)2, we can express the bare chargee(Λ)2bare in terms ofe(µ)2 as

e(Λ)2 = e(µ)2
[
1 +

e(µ)2

12π2
log

(
µ2

Λ2

)]
+O[e(µ)6]. (376)

This expression allow us to eliminate all dependence in the cutoff in the expression of the effective charge
at a scaleµ by replacinge(Λ)bare in Eq. (375) by the one computed using (376) at a given reference
energy scaleµ0

e(µ)2 = e(µ0)
2

[
1 +

e(µ0)
2

12π2
log

(
µ2

µ2
0

)]
. (377)

From this equation we can compute, at this order in perturbation theory, the effective value of the
coupling constant at an energyµ, once we know its value at some reference energy scaleµ0. In the case
of the electron charge we can use as a reference Thompson’s scattering at energies of the order of the
electron massme ≃ 0.5 MeV, at where the value of the electron charge is given by the well known value

e(me)
2 ≃ 1

137
. (378)

With this we can computee(µ)2 at any other energy scale applying Eq. (377), for example at the electron
massµ = me ≃ 0.5MeV. However, in computing the electromagnetic coupling constant at any other
scale we must take into account the fact that other charged particles can run in the loop in Eq. (373).
Suppose, for example, that we want to calculate the fine structure constant at the mass of theZ0-boson
µ = MZ ≡ 92 GeV. Then we should include in Eq. (377) the effect of other fermionic standard model
fields with masses belowMZ . Doing this, we find18

e(MZ)
2 = e(me)

2

[
1 +

e(me)
2

12π2

(∑

i

q2i

)
log

(
M2

Z

m2
e

)]
, (379)

whereqi is the charge in units of the electron charge of thei-th fermionic species running in the loop
and we sum over all fermions with masses below the mass of theZ0 boson. This expression shows how
the electromagnetic coupling grows with energy. However, in order to compare with the experimental
value ofe(MZ)

2 it is not enough with including the effect of fermionic fields, since also theW± bosons

18In the first version of these notes the argument used to show the growing of the electromagnetic coupling constant could
have led to confusion to some readers. To avoid this potential problem we include in the equation for the running coupling
e(µ)2 the contribution of all fermions with masses belowMZ . We thank Lubos Motl for bringing this issue to our attention.
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can run in the loop (MW < MZ). Taking this into account, as well as threshold effects, the value of the
electron charge at the scaleMZ is found to be [37]

e(MZ)
2 ≃ 1

128.9
. (380)

This growing of the effective fine structure constant with energy can be understood heuristically
by remembering that the effect of the polarization of the vacuum shown in the diagram of Eq. (364)
amounts to the creation of a plethora of electron-positron pairs around the location of the charge. These
virtual pairs behave as dipoles that, as in a dielectric medium, tend to screen this charge and decreasing
its value at long distances (i.e. lower energies).

The variation of the coupling constant with energy is usually encoded in quantum field theory in
thebeta functiondefined by

β(g) = µ
dg

dµ
. (381)

In the case of QED the beta function can be computed from Eq. (377) with the result

β(e)QED =
e3

12π2
. (382)

The fact that the coefficient of the leading term in the beta-function is positiveβ0 ≡ 1
6π > 0 gives

us the overall behavior of the coupling as we change the scale. Eq. (382) means that, if we start at an
energy where the electric coupling is small enough for our perturbative treatment to be valid, the effective
charge grows with the energy scale. This growing of the effective coupling constant with energy means
that QED is infrared safe, since the perturbative approximation gives better and better results as we go to
lower energies. Actually, because the electron is the lighter electrically charged particle and has a finite
nonvanishing mass the running of the fine structure constant stops at the scaleme in the well-known
value 1

137 . Would other charged fermions with masses belowme be present in Nature, the effective value
of the fine structure constant in the interaction between these particles would run further to lower values
at energies below the electron mass.

On the other hand if we increase the energy scalee(µ)2 grows until at some scale the coupling is of
order one and the perturbative approximation breaks down. In QED this is known as the problem of the
Landau pole but in fact it does not pose any serious threat to the reliability of QED perturbation theory:
a simple calculation shows that the energy scale at which the theory would become strongly coupled is
ΛLandau ≃ 10277 GeV. However, we know that QED does not live that long! At much lower scales we
expect electromagnetism to be unified with other interactions, and even if this is not the case we will
enter the uncharted territory of quantum gravity at energies of the order of1019 GeV.

So much for QED. The next question that one may ask at this stage is whether it is possible to
find quantum field theories with a behavior opposite to that of QED, i.e. such that they become weakly
coupled at high energies. This is not a purely academic question. In the late 1960s a series of deep-
inelastic scattering experiments carried out at SLAC showed that the quarks behave essentially as free
particles inside hadrons. The apparent problem was that no theory was known at that time that would
become free at very short distances: the example set by QED seem to be followed by all the theories that
were studied. This posed a very serious problem for quantum field theory as a way to describe subnuclear
physics, since it seemed that its predictive power was restricted to electrodynamics but failed miserably
when applied to describe strong interactions.

Nevertheless, this critical time for quantum field theory turned out to be its finest hour. In 1973
David Gross and Frank Wilczek [38] and David Politzer [39] showed that nonabelian gauge theories can
actually display the required behavior. For the QCD Lagrangian in Eq. (331) the beta function is given

71

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

71



g

g

β(  )g

g*
1

g*
2

*
3

Fig. 14: Beta function for a hypothetical theory with three fixed pointsg∗1 , g∗2 andg∗3 . A perturbative analysis
would capture only the regions shown in the boxes.

by19

β(g) = − g3

16π2

[
11

3
Nc −

2

3
Nf

]
. (383)

In particular, for real QCD (NC = 3, Nf = 6) we have thatβ(g) = − 7g3

16π2 < 0. This means that
for a theory that is weakly coupled at an energy scaleµ0 the coupling constant decreases as the energy
increasesµ → ∞. This explain the apparent freedom of quarks inside the hadrons: when the quarks
are very close together their effective color charge tend to zero. This phenomenon is calledasymptotic
freedom.

Asymptotic free theories display a behavior that is opposite to that found above in QED. At high
energies their coupling constant approaches zero whereas at low energies they become strongly coupled
(infrared slavery). This features are at the heart of the success of QCD as a theory of strong interactions,
since this is exactly the type of behavior found in quarks: they are quasi-free particles inside the hadrons
but the interaction potential potential between them increases at large distances.

Although asymptotic free theories can be handled in the ultraviolet, they become extremely com-
plicated in the infrared. In the case of QCD it is still to be understood (at least analytically) how the
theory confines color charges and generates the spectrum of hadrons, as well as the breaking of the chiral
symmetry (345).

In general, the ultraviolet and infrared properties of a theory are controlled by the fixed points of
the beta function, i.e. those values of the coupling constantg for which it vanishes

β(g∗) = 0. (384)

Using perturbation theory we have seen that for both QED and QCD one of such fixed points occurs
at zero coupling,g∗ = 0. However, our analysis also showed that the two theories present radically
different behavior at high and low energies. From the point of view of the beta function, the difference
lies in the energy regime at which the coupling constant approaches its critical value. This is in fact
governed by the sign of the beta function around the critical coupling.

19The expression of the beta function of QCD was also known to ’t Hooft [40]. There are even earlier computations in the
russian literature [41].
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We have seen above that when the beta function is negative close to the fixedpoint (the case of
QCD) the coupling tends to its critical value,g∗ = 0, as the energy is increased. This means that the
critical point isultraviolet stable, i.e. it is an attractor as we evolve towards higher energies. If, on the
contrary, the beta function is positive (as it happens in QED) the coupling constant approaches the critical
value as the energy decreases. This is the case of aninfrared stablefixed point.

This analysis that we have motivated with the examples of QED and QCD is completely general
and can be carried out for any quantum field theory. In Fig. 14 we have represented the beta function for
a hypothetical theory with three fixed points located at couplingsg∗1, g∗2 andg∗3. The arrows in the line
below the plot represent the evolution of the coupling constant as the energy increases. From the analysis
presented above we see thatg∗1 = 0 andg∗3 are ultraviolet stable fixed points, while the fixed pointg∗2 is
infrared stable.

In order to understand the high and low energy behavior of a quantum field theory it is then crucial
to know the structure of the beta functions associated with its couplings. This can be a very difficult
task, since perturbation theory only allows the study of the theory around “trivial" fixed points, i.e. those
that occur at zero coupling like the case ofg∗1 in Fig. 14. On the other hand, any “nontrivial” fixed
point occurring in a theory (likeg∗2 andg∗3) cannot be captured in perturbation theory and requires a full
nonperturbative analysis.

The moral to be learned from our discussion above is that dealing with the ultraviolet divergences
in a quantum field theory has the consequence, among others, of introducing an energy dependence in
the measured value of the coupling constants of the theory (for example the electric charge in QED).
This happens even in the case of renormalizable theories without mass terms. These theories are scale
invariant at the classical level because the action does not contain any dimensionful parameter. In this
case the running of the coupling constants can be seen as resulting from a quantum breaking of classical
scale invariance: different energy scales in the theory are distinguished by different values of the coupling
constants. Remembering what we learned in Section 7, we conclude that classical scale invariance is an
anomalous symmetry. One heuristic way to see how the conformal anomaly comes about is to notice
that the regularization of an otherwise scale invariant field theory requires the introduction of an energy
scale (e.g. a cutoff). This breaking of scale invariance cannot be restored after renormalization.

Nevertheless, scale invariance is not lost forever in the quantum theory. It is recovered at the
fixed points of the beta function where, by definition, the coupling does not run. To understand how
this happens we go back to a scale invariant classical field theory whose fieldφ(x) transform under
coordinate rescalings as

xµ −→ λxµ, φ(x) −→ λ−∆φ(λ−1x), (385)

where∆ is called the canonical scaling dimension of the field. An example of such a theory is a massless
φ4 theory in four dimensions

L =
1

2
∂µφ∂µφ− g

4!
φ4, (386)

where the scalar field has canonical scaling dimension∆ = 1. The Lagrangian density transforms as

L −→ λ−4L[φ] (387)

and the classical action remains invariant20.

If scale invariance is preserved under quantization, the Green’s functions transform as

〈Ω|T [φ′(x1) . . . φ′(xn)]|Ω〉 = λnΛ〈Ω|T [φ(λ−1x1) . . . φ(λ
−1xn)]|Ω〉. (388)

20In aD-dimensional theory the canonical scaling dimensions of the fields coincide with its engineering dimension:∆ =
D−2
2

for bosonic fields and∆ = D−1
2

for fermionic ones. For a Lagrangian with no dimensionful parameters classical scale
invariance follows then from dimensional analysis.
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Fig. 15: Systems of spins in a two-dimensional square lattice.

This is precisely what happens in a free theory. In an interacting theory the running of the coupling
constant destroys classical scale invariance at the quantum level. Despite of this, at the fixed points of
the beta function the Green’s functions transform again according to (388) where∆ is replaced by

∆anom = ∆+ γ∗. (389)

The canonical scaling dimension of the fields are corrected byγ∗, which is called the anomalous dimen-
sion. They carry the dynamical information about the high-energy behavior of the theory.

8.3 The renormalization group

In spite of its successes, the renormalization procedure presented above can be seen as some kind of pre-
scription or recipe to get rid of the divergences in an ordered way. This discomfort about renormalization
was expressed in occasions by comparing it with “sweeping the infinities under the rug”. However thanks
to Ken Wilson to a large extent [42] the process of renormalization is now understood in a very profound
way as a procedure to incorporate the effects of physics at high energies by modifying the value of the
parameters that appear in the Lagrangian.

Statistical mechanics.Wilson’s ideas are both simple and profound and consist in thinking about
quantum field theory as the analog of a thermodynamical description of a statistical system. To be more
precise, let us consider an Ising spin system in a two-dimensional square lattice as the one depicted in
Fig 15. In terms of the spin variablessi = ±1

2 , wherei labels the lattice site, the Hamiltonian of the
system is given by

H = −J
∑

〈i,j〉
si sj , (390)

where〈i, j〉 indicates that the sum extends over nearest neighbors andJ is the coupling constant between
neighboring spins (here we consider that there is no external magnetic field). The starting point to study
the statistical mechanics of this system is the partition function defined as

Z =
∑

{si}
e−βH , (391)

where the sum is over all possible configurations of the spins andβ = 1
T is the inverse temperature.

For J > 0 the Ising model presents spontaneous magnetization below a critical temperatureTc, in any
dimension higher than one. Away from this temperature correlations between spins decay exponentially
at large distances

〈sisj〉 ∼ e
− |xij |

ξ , (392)
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Fig. 16: Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective spin computed
according to the rule (394). Notice also that the size of the lattice spacing is doubled in the process.

with |xij | the distance between the spins located in thei-th andj-th sites of the lattice. This expression
serves as a definition of the correlation lengthξ which sets the characteristic length scale at which spins
can influence each other by their interaction through their nearest neighbors.

Suppose now that we are interested in a macroscopic description of this spin system. We can
capture the relevant physics by integrating out somehow the physics at short scales. A way in which this
can be done was proposed by Leo Kadanoff [43] and consists in dividing our spin system in spin-blocks
like the ones showed in Fig 16. Now we can construct another spin system where each spin-block of the
original lattice is replaced by an effective spin calculated according to some rule from the spins contained
in each blockBa

{si : i ∈ Ba} −→ s (1)
a . (393)

For example we can define the effective spin associated with the blockBa by taking the majority rule
with an additional prescription in case of a draw

s (1)
a =

1

2
sgn

(∑

i∈Ba

si

)
, (394)

where we have used the sign function,sign(x) ≡ x
|x| , with the additional definitionsgn(0) = 1. This

procedure is called decimation and leads to a new spin system with a doubled lattice space.

The idea now is to rewrite the partition function (391) only in terms of the new effective spins
s

(1)
a . Then we start by splitting the sum over spin configurations into two nested sums, one over the spin

blocks and a second one over the spins within each block

Z =
∑

{~s}
e−βH[si] =

∑

{~s (1)}

∑

{~s∈Ba}
δ

[
s (1)
a − sign

(∑

i∈Ba

si

)]
e−βH[si]. (395)
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The interesting point now is that the sum over spins inside each block can be written as the exponential
of a new effective Hamiltonian depending only on the effective spins,H(1)[s

(1)
a ]

∑

{s∈Ba}
δ

[
s (1)
a − sign

(∑

i∈Ba

si

)]
e−βH[si] = e−βH(1)[s

(1)
a ]. (396)

The new Hamiltonian is of course more complicated

H(1) = −J (1)
∑

〈i,j〉
s
(1)
i s

(1)
j + . . . (397)

where the dots stand for other interaction terms between the effective block spins. This new terms appear
because in the process of integrating out short distance physics we induce interactions between the new
effective degrees of freedom. For example the interaction between the spin block variabless

(1)
i will in

general not be restricted to nearest neighbors in the new lattice. The important point is that we have
managed to rewrite the partition function solely in terms of this new (renormalized) spin variabless (1)

interacting through a new HamiltonianH(1)

Z =
∑

{s (1)}
e−βH(1)[s

(1)
a ]. (398)

Let us now think about the space of all possible Hamiltonians for our statistical system including
all kinds of possible couplings between the individual spins compatible with the symmetries of the sys-
tem. If denote byR the decimation operation, our previous analysis shows thatR defines a map in this
space of Hamiltonians

R : H → H(1). (399)

At the same time the operationR replaces a lattice with spacinga by another one with double spacing
2a. As a consequence the correlation length in the new lattice measured in units of the lattice spacing is
divided by two,R : ξ → ξ

2 .

Now we can iterate the operationR an indefinite number of times. Eventually we might reach a
HamiltonianH⋆ that is not further modified by the operationR

H
R−→ H(1) R−→ H(2) R−→ . . .

R−→ H⋆. (400)

The fixed point HamiltonianH⋆ is scale invariantbecause it does not change asR is performed. Notice
that because of this invariance the correlation length of the system at the fixed point do not change under
R. This fact is compatible with the transformationξ → ξ

2 only if ξ = 0 or ξ = ∞. Here we will focus
in the case of nontrivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifying the values of the coupling constants
associated with all possible interaction terms between individual spins of the lattice. If we denote by
Oa[si] these (possibly infinite) interaction terms, the most general Hamiltonian for the spin system under
study can be written as

H[si] =
∞∑

a=1

λaOa[si], (401)

whereλa ∈ R are the coupling constants for the corresponding operators. These constants can be thought
of as coordinates in the space of all Hamiltonians. Therefore the operationR defines a transformation in
the set of coupling constants

R : λa −→ λ(1)
a . (402)
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For example, in our case we started with a Hamiltonian in which only one of the coupling constants
is different from zero (sayλ1 = −J). As a result of the decimationλ1 ≡ −J → −J (1) while some
of the originally vanishing coupling constants will take a nonzero value. Of course, for the fixed point
Hamiltonian the coupling constants do not change under the scale transformationR.

Physically the transformationR integrates out short distance physics. The consequence for physics
at long distances is that we have to replace our Hamiltonian by a new one with different values for the
coupling constants. That is, our ignorance of the details of the physics going on at short distances result
in a renormalizationof the coupling constants of the Hamiltonian that describes the long range physical
processes. It is important to stress that althoughR is sometimes called a renormalization group trans-
formation in fact this is a misnomer. Transformations between Hamiltonians defined byR do not form
a group: since these transformations proceed by integrating out degrees of freedom at short scales they
cannot be inverted.

In statistical mechanics fixed points under renormalization group transformations withξ = ∞
are associated with phase transitions. From our previous discussion we can conclude that the space
of Hamiltonians is divided in regions corresponding to the basins of attraction of the different fixed
points. We can ask ourselves now about the stability of those fixed points. Suppose we have a statistical
system described by a fixed-point HamiltonianH⋆ and we perturb it by changing the coupling constant
associated with an interaction termO. This is equivalent to replaceH⋆ by the perturbed Hamiltonian

H = H⋆ + δλO, (403)

whereδλ is the perturbation of the coupling constant corresponding toO (we can also consider pertur-
bations in more than one coupling constant). At the same time thinking of theλa’s as coordinates in the
space of all Hamiltonians this corresponds to moving slightly away from the position of the fixed point.

The question to decide now is in which direction the renormalization group flow will take the
perturbed system. Working at first order inδλ there are three possibilities:

– The renormalization group flow takes the system back to the fixed point. In this case the corre-
sponding interactionO is calledirrelevant.

– R takes the system away from the fixed point. If this is what happens the interaction is called
relevant.

– It is possible that the perturbation actually does not take the system away from the fixed point at
first order inδλ. In this case the interaction is said to bemarginaland it is necessary to go to higher
orders inδλ in order to decide whether the system moves to or away the fixed point, or whether
we have a family of fixed points.

Therefore we can picture the action of the renormalization group transformation as a flow in the
space of coupling constants. In Fig. 17 we have depicted an example of such a flow in the case of a
system with two coupling constantsλ1 andλ2. In this example we find two fixed points, one at the
origin O and another atF for a finite value of the couplings. The arrows indicate the direction in which
the renormalization group flow acts. The free theory atλ1 = λ2 = 0 is a stable fix point since any
perturbationδλ1, δλ2 > 0 makes the theory flow back to the free theory at long distances. On the
other hand, the fixed pointF is stable with respect to certain type of perturbations (along the line with
incoming arrows) whereas for any other perturbations the system flows either to the free theory at the
origin or to a theory with infinite values for the couplings.

Quantum field theory. Let us see now how these ideas of the renormalization group apply to
Field Theory. Let us begin with a quantum field theory defined by the Lagrangian

L[φa] = L0[φa] +
∑

i

giOi[φa], (404)
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Fig. 17: Example of a renormalization group flow.

whereL0[φa] is the kinetic part of the Lagrangian andgi are the coupling constants associated with the
operatorsOi[φa]. In order to make sense of the quantum theory we introduce a cutoff in momentaΛ. In
principle we include all operatorsOi compatible with the symmetries of the theory.

In section 8.2 we saw how in the cases of QED and QCD, the value of the coupling constant
changed with the scale from its value at the scaleΛ. We can understand now this behavior along the lines
of the analysis presented above for the Ising model. If we would like to compute the effective dynamics
of the theory at an energy scaleµ < Λ we only have to integrate out all physical models with energies
between the cutoffΛ and the scale of interestµ. This is analogous to what we did in the Ising model by
replacing the original spins by the block spins. In the case of field theory the effective actionS[φa, µ] at
scaleµ can be written in the language of functional integration as

eiS[φ
′
a,µ] =

∫

µ<p<Λ

∏

a

Dφa e
iS[φa,Λ]. (405)

HereS[φa,Λ] is the action at the cutoff scale

S[φa,Λ] =

∫
d4x

{
L0[φa] +

∑

i

gi(Λ)Oi[φa]

}
(406)

and the functional integral in Eq. (405) is carried out only over the field modes with momenta in the
rangeµ < p < Λ. The action resulting from integrating out the physics at the intermediate scales
betweenΛ andµ depends not on the original field variableφa but on some renormalized fieldφ′

a. At
the same time the couplingsgi(µ) differ from their values at the cutoff scalegi(Λ). This is analogous to
what we learned in the Ising model: by integrating out short distance physics we ended up with a new
Hamiltonian depending on renormalized effective spin variables and with renormalized values for the
coupling constants. Therefore the resulting effective action at scaleµ can be written as

S[φ′
a, µ] =

∫
d4x

{
L0[φ

′
a] +

∑

i

gi(µ)Oi[φ
′
a]

}
. (407)

This Wilsonian interpretation of renormalization sheds light to what in section 8.1 might have looked
just a smart way to get rid of the infinities. The running of the coupling constant with the energy scale
can be understood now as a way of incorporating into an effective action at scaleµ the effects of field
excitations at higher energiesE > µ.
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As in statistical mechanics there are also quantum field theories that are fixed points of the renor-
malization group flow, i.e. whose coupling constants do not change with the scale. We have encountered
them already in Section 8.2 when studying the properties of the beta function. The most trivial example
of such theories are massless free quantum field theories, but there are also examples of four-dimensional
interacting quantum field theories which are scale invariant. Again we can ask the question of what hap-
pens when a scale invariant theory is perturbed with some operator. In general the perturbed theory is not
scale invariant anymore but we may wonder whether the perturbed theory flows at low energies towards
or away the theory at the fixed point.

In quantum field theory this can be decided by looking at the canonical dimensiond[O] of the
operatorO[φa] used to perturb the theory at the fixed point. In four dimensions the three possibilities are
defined by:

– d[O] > 4: irrelevant perturbation. The running of the coupling constants takes the theory back to
the fixed point.

– d[O] < 4: relevant perturbation. At low energies the theory flows away from the scale-invariant
theory.

– d[O] = 4: marginal deformation. The direction of the flow cannot be decided only on dimensional
grounds.

As an example, let us consider first a massless fermion theory perturbed by a four-fermion inter-
action term

L = iψ∂/ψ − 1

M2
(ψψ)2. (408)

This is indeed a perturbation by an irrelevant operator, since in four-dimensions[ψ] = 3
2 . Interactions

generated by the extra term are suppressed at low energies since typically their effects are weighted by
the dimensionless factorE

2

M2 , whereE is the energy scale of the process. This means that as we try
to capture the relevant physics at lower and lower energies the effect of the perturbation is weaker and
weaker rendering in the infrared limitE → 0 again a free theory. Hence, the irrelevant perturbation in
(408) makes the theory flow back to the fixed point.

On the other hand relevant operators dominate the physics at low energies. This is the case, for
example, of a mass term. As we lower the energy the mass becomes more important and once the energy
goes below the mass of the field its dynamics is completely dominated by the mass term. This is, for
example, how Fermi’s theory of weak interactions emerges from the standard model at energies below
the mass of theW± boson

2u e+

d

W+

νe
=⇒3u

e+

d

νe

At energies belowMW = 80.4 GeV the dynamics of theW+ boson is dominated by its mass term and
therefore becomes nonpropagating, giving rise to the effective four-fermion Fermi theory.

To summarize our discussion so far, we found that while relevant operators dominate the dynamics
in the infrared, taking the theory away from the fixed point, irrelevant perturbations become suppressed
in the same limit. Finally we consider the effect of marginal operators. As an example we take the
interaction term in massless QED,O = ψγµψAµ. Taking into account that ind = 4 the dimension of
the electromagnetic potential is[Aµ] = 1 the operatorO is a marginal perturbation. In order to decide
whether the fixed point theory

L0 = −1

4
FµνF

µν + iψD/ ψ (409)
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is restored at low energies or not we need to study the perturbed theory in more detail. This we have
done in section 8.1 where we learned that the effective coupling in QED decreases at low energies. Then
we conclude that the perturbed theory flows towards the fixed point in the infrared.

As an example of a marginal operator with the opposite behavior we can write the Lagrangian for
a SU(Nc) gauge theory,L = −1

4F
a
µνF

aµν , as

L = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAa ν − ∂νAaµ)− 4gfabcAa

µA
b
ν ∂

µAc ν

+ g2fabcfadeAb
µA

c
νA

dµAe ν ≡ L0 +Og, (410)

i.e. a marginal perturbation of the free theory described byL0, which is obviously a fixed point under
renormalization group transformations. Unlike the case of QED we know that the full theory is asymp-
totically free, so the coupling constant grows at low energies. This implies that the operatorOg becomes
more and more important in the infrared and therefore the theory flows away the fixed point in this limit.

It is very important to notice here that in the Wilsonian view the cutoff is not necessarily regarded
as just some artifact to remove infinities but actually has a physical origin. For example in the case of
Fermi’s theory ofβ-decay there is a natural cutoffΛ = MW at which the theory has to be replaced by the
standard model. In the case of the standard model itself the cutoff can be taken at Planck scaleΛ ≃ 1019

GeV or the Grand Unification scaleΛ ≃ 1016 GeV, where new degrees of freedom are expected to
become relevant. The cutoff serves the purpose of cloaking the range of energies at which new physics
has to be taken into account.

Provided that in the Wilsonian approach the quantum theory is always defined with a physical
cutoff, there is no fundamental difference between renormalizable and nonrenormalizable theories. Ac-
tually, a renormalizable field theory, like the standard model, can generate nonrenormalizable operators
at low energies such as the effective four-fermion interaction of Fermi’s theory. They are not sources
of any trouble if we are interested in the physics at scales much below the cutoff,E ≪ Λ, since their
contribution to the amplitudes will be suppressed by powers ofE

Λ .

9 Special topics

9.1 Creation of particles by classical fields

Particle creation by a classical source.In a free quantum field theory the total number of particles
contained in a given state of the field is a conserved quantity. For example, in the case of the quantum
scalar field studied in section 3 we have that the number operator commutes with the Hamiltonian

n̂ ≡
∫

d3k

(2π)3
1

2ωk
α†(~k)α(~k), [Ĥ, n̂] = 0. (411)

This means that any states with a well-defined number of particle excitations will preserve this number
at all times. The situation, however, changes as soon as interactions are introduced, since in this case
particles can be created and/or destroyed as a result of the dynamics.

Another case in which the number of particles might change is if the quantum theory is coupled
to a classical source. The archetypical example of such a situation is the Schwinger effect, in which a
classical strong electric field produces the creation of electron-positron pairs out of the vacuum. However,
before plunging into this more involved situation we can illustrate the relevant physics involved in the
creation of particles by classical sources with the help of the simplest example: a free scalar field theory
coupled to a classical external sourceJ(x). The action for such a theory can be written as

S =

∫
d4x

[
1

2
∂µφ(x)∂

µφ(x)− m2

2
φ(x)2 + J(x)φ(x)

]
, (412)
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whereJ(x) is a real function of the coordinates. Its identification with a classical source is obvious once
we calculate the equations of motion

(
∇2 +m2

)
φ(x) = J(x). (413)

Our plan is to quantize this theory but, unlike the case analyzed in section 3, now the presence of the
sourceJ(x) makes the situation a bit more involved. The general solution to the equations of motion can
be written in terms of the retarded Green function for the Klein-Gordon equation as

φ(x) = φ0(x) + i

∫
d4x′GR(x− x′)J(x′), (414)

whereφ0(x) is a general solution to the homogeneous equation and

GR(t, ~x) =

∫
d4k

(2π)4
i

k2 −m2 + iǫ sign(k0)
e−ik·x

= i θ(t)

∫
d3k

(2π)3
1

2ωk

(
e−iωkt+~k·~x − eiωkt−i~p·~x

)
, (415)

with θ(x) the Heaviside step function. The integration contour to evaluate the integral overp0 surrounds
the poles atp0 = ±ωk from above. SinceGR(t, ~x) = 0 for t < 0, the functionφ0(x) corresponds to the
solution of the field equation att → −∞, before the interaction with the external source21

To make the argument simpler we assume thatJ(x) is switched on att = 0, and only last for a
time τ , that is

J(t, ~x) = 0 if t < 0 or t > τ. (416)

We are interested in a solution of (413) for times after the external source has been switched off,t > τ .
In this case the expression (415) can be written in terms of the Fourier modesJ̃(ω,~k) of the source as

φ(t, ~x) = φ0(x) + i

∫
d3k

(2π)3
1

2ωk

[
J̃(ωk,~k)e

−iωkt+i~k·~x − J̃(ωk,~k)
∗eiωkt−i~k·~x

]
. (417)

On the other hand, the general solutionφ0(x) has been already computed in Eq. (77). Combining this
result with Eq. (417) we find the following expression for the late time general solution to the Klein-
Gordon equation in the presence of the source

φ(t, x) =

∫
d3k

(2π)3
1√
2ωk

{[
α(~k) +

i√
2ωk

J̃(ωk,~k)

]
e−iωkt+i~k·~x

+

[
α∗(~k)− i√

2ωk
J̃(ωk,~k)

∗
]
eiωkt−i~k·~x

}
. (418)

We should not forget that this is a solution valid for timest > τ , i.e. once the external source has been
disconnected. On the other hand, fort < 0 we find from Eqs. (414) and (415) that the general solution
is given by Eq. (77).

Now we can proceed to quantize the theory. The conjugate momentumπ(x) = ∂0φ(x) can be
computed from Eqs. (77) and (418). Imposing the canonical equal time commutation relations (74) we
find thatα(~k), α†(~k) satisfy the creation-annihilation algebra (51). From our previous calculation we
find that for t > τ the expansion of the operatorφ(x) in terms of the creation-annihilation operators
α(~k), α†(~k) can be obtained from the one fort < 0 by the replacement

α(~k) −→ β(~k) ≡ α(~k) +
i√
2ωk

J̃(ωk,~k),

21We could have taken instead the advanced propagatorGA(x) in which caseφ0(x) would correspond to the solution to the
equation at large times, after the interaction withJ(x).
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α†(~k) −→ β†(~k) ≡ α†(~k)− i√
2ωk

J̃(ωk,~k)
∗. (419)

Actually, sinceJ̃(ωk,~k) is a c-number, the operatorsβ(~k), β†(~k) satisfy the same algebra asα(~k), α†(~k)
and therefore can be interpreted as well as a set of creation-annihilation operators. This means that we
can define two vacuum states,|0−〉, |0+〉 associated with both sets of operators

α(~k)|0−〉 = 0

β(~k)|0+〉 = 0



 ∀ ~k. (420)

For an observer att < 0, α(~k) andα(~k) are the natural set of creation-annihilation operators
in terms of which to expand the field operatorφ(x). After the usual zero-point energy subtraction the
Hamiltonian is given by

Ĥ(−) =
1

2

∫
d3k

(2π)3
α†(~k)α(~k) (421)

and the ground state of the spectrum for this observer is the vacuum|0−〉. At the same time, a second
observer att > τ will also see a free scalar quantum field (the source has been switched off att = τ ) and
consequently will expandφ in terms of the second set of creation-annihilation operatorsβ(~k), β†(~k). In
terms of this operators the Hamiltonian is written as

Ĥ(+) =
1

2

∫
d3k

(2π)3
β†(~k)β(~k). (422)

Then for this late-time observer the ground state of the Hamiltonian is the second vacuum state|0+〉.
In our analysis we have been working in the Heisenberg picture, where states are time-independent

and the time dependence comes in the operators. Therefore the states of the theory are globally defined.
Suppose now that the system is in the “in” ground state|0−〉. An observer att < 0 will find that there
are no particles

n̂(−)|0−〉 = 0. (423)

However the late-time observer will find that the state|0−〉 contains an average number of particles given
by

〈0−|n̂(+)|0−〉 =
∫

d3k

(2π)3
1

2ωk

∣∣∣J̃(ωk,~k)
∣∣∣
2
. (424)

Moreover,|0−〉 is no longer the ground state for the “out” observer. On the contrary, this state have a
vacuum expectation value for̂H(+)

〈0−|Ĥ(+)|0−〉 =
1

2

∫
d3k

(2π)3

∣∣∣J̃(ωk,~k)
∣∣∣
2
. (425)

The key to understand what is going on here lies in the fact that the external source breaks the
invariance of the theory under space-time translations. In the particular case we have studied here where
J(x) has support over a finite time interval0 < t < τ , this implies that the vacuum is not invariant
under time translations, so observers at different times will make different choices of vacuum that will
not necessarily agree with each other. This is clear in our example. An observer int < τ will choose the
vacuum to be the lowest energy state of her Hamiltonian,|0−〉. On the other hand, the second observer
at late timest > τ will naturally choose|0+〉 as the vacuum. However, for this second observer, the
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Fig. 18: Pair creation by a electric field in the Dirac sea picture.

state|0−〉 is not the vacuum of his Hamiltonian, but actually an excited state that is a superposition of
states with well-defined number of particles. In this sense it can be said that the external source has the
effect of creating particles out of the “in” vacuum. Besides, this breaking of time translation invariance
produces a violation in the energy conservation as we see from Eq. (425). Particles are actually created
from the energy pumped into the system by the external source.

The Schwinger effect.A classical example of creation of particles by a external field was pointed
out by Schwinger [44] and consists of the creation of electron-positron pairs by a strong electric field. In
order to illustrate this effect we are going to follow a heuristic argument based on the Dirac sea picture
and the WKB approximation.

In the absence of an electric field the vacuum state of a spin-1
2 field is constructed by filling all the

negative energy states as depicted in Fig. 2. Let us now connect a constant electric field~E = E~ux in the
range0 < x < L created by a electrostatic potential

V (~r) =





0 x < 0
−Ex 0 < x < L
−EL x > L

(426)

After the field has been switched on, the Dirac sea looks like in Fig. 18. In particular we find that if
eEL > 2m there are negative energy states atx > L with the same energy as the positive energy states
in the regionx < 0. Therefore it is possible for an electron filling a negative energy state with energy
close to−2m to tunnel through the forbidden region into a positive energy state. The interpretation of
such a process is the production of an electron-positron pair out of the electric field.

We can compute the rate at which such pairs are produced by using the WKB approximation.
Focusing for simplicity on an electron on top of the Fermi surface nearx = L with energyE0, the
transmission coefficient in this approximation is given by22

TWKB = exp

[
−2

∫ 1
eE

“

E0+
√

m2+~p 2
T

”

1
eE

“

E0−
√

m2+~p 2
T

”

dx

√
m2 − [E0 − eE(x− x0)]

2 + ~p 2
T

]

22Notice that the electron satisfy the relativistic dispersion relationE =
p

~p 2 +m2 + V and therefore−p2x = m2 − (E −
V )2 + ~p 2

T . The integration limits are set by those values ofx at whichpx = 0.
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= exp
[
− π

eE
(
~p 2
T +m2

)]
, (427)

wherep2T ≡ p2y + p2z. This gives the transition probability per unit time and per unit cross sectiondydz
for an electron in the Dirac sea with transverse momentum~pT and energyE0. To get the total probability
per unit time and per unit volume we have to integrate over all possible values of~pT andE0. Actually,
in the case of the energy, because of the relation betweenE0 and the coordinatex at which the particle
penetrates into the barrier we can writedE0

2π = eE
2πdx and the total probability per unit time and per unit

volume for the creation of a pair is given by

W = 2

(
eE
2π

)∫
d2pT
(2π)2

e−
π
eE (~p

2
T +m2) =

e2E2

4π3
e−

πm2

eE , (428)

where the factor of2 accounts for the two polarizations of the electron.

Then production of electron-positron pairs is exponentially suppressed and it is only sizeable for
strong electric fields. To estimate its order of magnitude it is useful to restore the powers ofc and~ in
(428)

W =
e2E2

4π3c~2
e−

πm2c3

~eE (429)

The exponential suppression of the pair production disappears when the electric field reaches the critical
valueEcrit at which the exponent is of order one

Ecrit =
m2c3

~e
≃ 1.3× 1016V cm−1. (430)

This is indeed a very strong field which is extremely difficult to produce. A similar effect, however,
takes place also in a time-varying electric field [45] and there is the hope that pair production could be
observed in the presence of the alternating electric field produced by a laser.

The heuristic derivation that we followed here can be made more precise in QED. There the decay
of the vacuum into electron-positron pairs can be computed from the imaginary part of the effective
actionΓ[Aµ] in the presence of a classical gauge potentialAµ

iΓ[Aµ] ≡4+5 +6 + . . .

= log det

[
1− ie/A

1

i∂/−m

]
. (431)

This determinant can be computed using the standard heat kernel techniques. The probability of pair
production is proportional to the imaginary part ofiΓ[Aµ] and gives

W =
e2E2

4π3

∞∑

n=1

1

n2
e−nπm2

eE . (432)

Our simple argument based on tunneling in the Dirac sea gave only the leading term of Schwinger’s result
(432). The remaining terms can be also captured in the WKB approximation by taking into account the
probability of production of several pairs, i.e. the tunneling of more than one electron through the barrier.

Here we have illustrated the creation of particles by semiclassical sources in quantum field theory
using simple examples. Nevertheless, what we learned has important applications to the study of quan-
tum fields in curved backgrounds. In quantum field theory in Minkowski space-time the vacuum state
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is invariant under the Poincaré group and this, together with the covarianceof the theory under Lorentz
transformations, implies that all inertial observers agree on the number of particles contained in a quan-
tum state. The breaking of such invariance, as happened in the case of coupling to a time-varying source
analyzed above, implies that it is not possible anymore to define a state which would be recognized as
the vacuum by all observers.

This is precisely the situation when fields are quantized on curved backgrounds. In particular, if
the background is time-dependent (as it happens in a cosmological setup or for a collapsing star) different
observers will identify different vacuum states. As a consequence what one observer call the vacuum will
be full of particles for a different observer. This is precisely what is behind the phenomenon of Hawking
radiation [46]. The emission of particles by a physical black hole formed from gravitational collapse of
a star is the consequence of the fact that the vacuum state in the asymptotic past contain particles for an
observer in the asymptotic future. As a consequence, a detector located far away from the black hole
detects a stream of thermal radiation with temperature

THawking =
~c3

8πGN kM
(433)

whereM is the mass of the black hole,GN is Newton’s constant andk is Boltzmann’s constant. There
are several ways in which this results can be obtained. A more heuristic way is perhaps to think of this
particle creation as resulting from quantum tunneling of particles across the potential barrier posed by
gravity [47].

9.2 Supersymmetry

One of the things that we have learned in our journey around the landscape of quantum field theory
is that our knowledge of the fundamental interactions in Nature is based on the idea of symmetry, and
in particular gauge symmetry. The Lagrangian of the standard model can be written just including all
possible renormalizable terms (i.e. with canonical dimension smaller o equal to 4) compatible with the
gauge symmetry SU(3)×SU(2)×U(1) and Poincaré invariance. All attempts to go beyond start with the
question of how to extend the symmetries of the standard model.

As explained in Section 5.1, in a quantum field theoretical description of the interaction of elemen-
tary particles the basic observable quantity to compute is the scattering orS-matrix giving the probability
amplitude for the scattering of a number of incoming particles with a certain momentum into some final
products

A(in −→ out) = 〈~p1′, . . . ;out|~p1, . . . ; in〉. (434)

An explicit symmetry of the theory has to be necessarily a symmetry of theS-matrix. Hence it is fair to
ask what is the largest symmetry of theS-matrix.

Let us ask this question in the simple case of the scattering of two particles with four-momentap1
andp2 in thet-channel

7p1p2

p′1

p′2

We will make the usual assumptions regarding positivity of the energy and analyticity. Invariance of the
theory under the Poincaré group implies that the amplitude can only depend on the scattering angleϑ
through

t = (p′1 − p1)
2 = 2

(
m2

1 − p1 · p′1
)
= 2

(
m2

1 − E1E
′
1 + |~p1||~p1′| cosϑ

)
. (435)
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If there would be any extra bosonic symmetry of the theory it would restrict thescattering angle to a set
of discrete values. In this case theS-matrix cannot be analytic since it would vanish everywhere except
for the discrete values selected by the extra symmetry.

Actually, the only way to extend the symmetry of the theory without renouncing to the analyticity
of the scattering amplitudes is to introduce “fermionic” symmetries, i.e. symmetries whose generators
are anticommuting objects [48]. This means that in addition to the generators of the Poincaré group23

Pµ,Mµν and the ones for the internal gauge symmetriesG, we can introduce a number of fermionic gen-
eratorsQI

a, Qȧ I (I = 1, . . . ,N ), whereQȧ I = (QI
a)

†. The most general algebra that these generators
satisfy is theN -extended supersymmetry algebra [49]

{QI
a, Qḃ J} = 2σµ

aḃ
Pµδ

I
J ,

{QI
a, Q

J
b } = 2εabZIJ , (436)

{QI
ȧ, Q

J
ḃ } = 2εȧḃZ

IJ
, (437)

whereZIJ ∈ C commute with any other generator and satisfiesZIJ = −ZJI . Besides we have the
commutators that determine the Poincaré transformations of the fermionic generatorsQI

a, Qȧ J

[QI
a, P

µ] = [Qȧ I , P
µ] = 0,

[QI
a,M

µν ] =
1

2
(σµν) b

a QI
b , (438)

[Qa I ,M
µν ] = −1

2
(σµν) ḃ

ȧ Qḃ I ,

whereσ0i = −iσi, σij = εijkσk andσµν = (σµν)†. These identities simply mean thatQI
a, Qȧ J

transform respectively in the(12 ,0) and (0, 12) representations of the Lorentz group.

We know that the presence of a global symmetry in a theory implies that the spectrum can be
classified in multiplets with respect to that symmetry. In the case of supersymmetry start with the case
caseN = 1 in which there is a single pair of superchargesQa, Qȧ satisfying the algebra

{Qa, Qḃ} = 2σµ

aḃ
Pµ, {Qa, Qb} = {Qȧ, Qḃ} = 0. (439)

Notice that in theN = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry algebra (439), starting with the massless
case. Given a state|k〉 satisfyingk2 = 0, we can always find a reference frame where the four-vectorkµ

takes the formkµ = (E, 0, 0, E). Since the theory is Lorentz covariant we can obtain the representation
of the supersymmetry algebra in this frame where the expressions are simpler. In particular, the right-
hand side of the first anticommutator in Eq. (439) is given by

2σµ

aḃ
Pµ = 2(P 0 − σ3P 3) =

(
0 0
0 4E

)
. (440)

Therefore the algebra of supercharges in the massless case reduces to

{Q1, Q
†
1} = {Q1, Q

†
2} = 0,

{Q2, Q
†
2} = 4E. (441)

The commutator{Q1, Q
†
1} = 0 implies that the action ofQ1 on any state gives a zero-norm state of the

Hilbert space||Q1|Ψ〉|| = 0. If we want the theory to preserve unitarity we must eliminate these null

23The generatorsMµν are related with the ones for boost and rotations introduced in section 4.1 byJ i ≡ M0i, M i =
1
2
εijkM jk. In this section we also use the “dotted spinor” notation, in which spinors in the(1

2
,0) and (0, 1

2
) representations

of the Lorentz group are indicated respectively by undotted (a, b, . . .) and dotted (̇a, ḃ, . . .) indices.
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states from the spectrum. This is equivalent to settingQ1 ≡ 0. On the other hand, in terms of the second
generatorQ2 we can define the operators

a =
1

2
√
E
Q2, a† =

1

2
√
E
Q†

2, (442)

which satisfy the algebra of a pair of fermionic creation-annihilation operators,{a, a†} = 1, a2 =
(a†)2 = 0. Starting with a vacuum statea|λ〉 = 0 with helicity λ we can build the massless multiplet

|λ〉, |λ+ 1
2〉 ≡ a†|λ〉. (443)

Here we consider two important cases:

– Scalar multiplet: we take the vacuum state to have zero helicity|0+〉 so the multiplet consists of a
scalar and a helicity-12 state

|0+〉, | 12〉 ≡ a†|0+〉. (444)

However, this multiplet is not invariant under the CPT transformation which reverses the sign of
the helicity of the states. In order to have a CPT-invariant theory we have to add to this multiplet
its CPT-conjugate which can be obtain from a vacuum state with helicityλ = −1

2

|0−〉, | −1
2〉. (445)

Putting them together we can combine the two zero helicity states with the two fermionic ones into
the degrees of freedom of a complex scalar field and a Weyl (or Majorana) spinor.

– Vector multiplet: now we take the vacuum state to have helicityλ = 1
2 , so the multiplet contains

also a massless state with helicityλ = 1

| 12〉, |1〉 ≡ a†| 12〉. (446)

As with the scalar multiplet we add the CPT conjugated obtained from a vacuum state with helicity
λ = −1

| − 1
2〉, | − 1〉, (447)

which together with (446) give the propagating states of a gauge field and a spin-1
2 gaugino.

In both cases we see the trademark of supersymmetric theories: the number of bosonic and fermionic
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeat the previous analysis for each supersym-
metry charge. At the end, we haveN sets of fermionic creation-annihilation operators{aI , a†I} = δIJ ,

(aI)
2 = (a†I)

2 = 0. Let us work out the case ofN = 8 supersymmetry. Since for several reasons we do
not want to have states with helicity larger than2, we start with a vacuum state|−2〉 of helicityλ = −2.
The rest of the states of the supermultiplet are obtained by applying the eight different creation operators
a†I to the vacuum:

λ = 2 : a†1 . . . a
†
8| − 2〉

(
8

8

)
= 1 state,

λ =
3

2
: a†I1 . . . a

†
I7
| − 2〉

(
8

7

)
= 8 states,

λ = 1 : a†I1 . . . a
†
I6
| − 2〉

(
8

6

)
= 28 states,
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λ =
1

2
: a†I1 . . . a

†
I5
| − 2〉

(
8

5

)
= 56 states,

λ = 0 : a†I1 . . . a
†
I4
| − 2〉

(
8

4

)
= 70 states, (448)

λ = −1

2
: a†I1a

†
I2
a†I3 | − 2〉

(
8

3

)
= 56 states,

λ = −1 : a†I1a
†
I2
| − 2〉

(
8

2

)
= 28 states,

λ = −3

2
: a†I1 | − 2〉

(
8

1

)
= 8 states,

λ = −2 : | − 2〉 1 state.

Putting together the states with opposite helicity we find that the theory contains:

– 1 spin-2 fieldgµν (a graviton),

– 8 spin-32 gravitino fieldsψI
µ,

– 28 gauge fieldsA[IJ ]
µ ,

– 56 spin-12 fermionsψ[IJK],

– 70 scalarsφ[IJKL],

where by[IJ...] we have denoted that the indices are antisymmetrized. We see that, unlike the massless
multiplets ofN = 1 supersymmetry studied above, this multiplet is CPT invariant by itself. As in the
case of the masslessN = 1 multiplet, here we also find as many bosonic as fermionic states:

bosons: 1 + 28 + 70 + 28 + 1 = 128 states,
fermions: 8 + 56 + 56 + 8 = 128 states.

Now we study briefly the case of massive representations|k〉, k2 = M2. Things become simpler
if we work in the rest frame whereP 0 = M and the spatial components of the momentum vanish. Then,
the supersymmetry algebra becomes:

{QI
a, Qḃ J} = 2Mδaḃδ

I
J . (449)

We proceed now in a similar way to the massless case by defining the operators

aIa ≡ 1√
2M

QI
a, a†ȧ I ≡ 1√

2M
Qȧ I . (450)

The multiplets are found by choosing a vacuum state with a definite spin. For example, forN = 1 and
taking a spin-0 vacuum|0〉 we find three states in the multiplet transforming irreducibly with respect to
the Lorentz group:

|0〉, a†ȧ|0〉, εȧḃa†ȧa
†
ḃ
|0〉, (451)

which, once transformed back from the rest frame, correspond to the physical states of two spin-0 bosons
and one spin-12 fermion. ForN -extended supersymmetry the corresponding multiplets can be worked
out in a similar way.

The equality between bosonic and fermionic degrees of freedom is at the root of many of the
interesting properties of supersymmetric theories. For example, in section 4 we computed the divergent
vacuum energy contributions for each real bosonic or fermionic propagating degree of freedom is24

Evac = ±1

2
δ(~0)

∫
d3pωp, (452)

24For a boson, this can be read off Eq. (80). In the case of fermions, the result of Eq. (134) gives the vacuum energy
contribution of the four real propagating degrees of freedom of a Dirac spinor.
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where the sign± corresponds respectively to bosons and fermions. Hence, for a supersymmetric the-
ory the vacuum energy contribution exactly cancels between bosons and fermions. This boson-fermion
degeneracy is also responsible for supersymmetric quantum field theories being less divergent than non-
supersymmetric ones.

Appendix: A crash course in Group Theory

In this Appendix we summarize some basic facts about Group Theory. Given a groupG a representation
of G is a correspondence between the elements ofG and the set of linear operators acting on a vector
spaceV , such that for each element of the groupg ∈ G there is a linear operatorD(g)

D(g) : V −→ V (453)

satisfying the group operations

D(g1)D(g2) = D(g1g2), D(g−1
1 ) = D(g1)

−1, g1, g2 ∈ G. (454)

The representationD(g) is irreducible if and only if the only operatorsA : V → V commuting with all
the elements of the representationD(g) are the ones proportional to the identity

[D(g), A] = 0, ∀g ⇐⇒ A = λ1, λ ∈ C (455)

More intuitively, we can say that a representation is irreducible if there is no proper subspaceU ⊂ V
(i.e. U 6= V andU 6= ∅) such thatD(g)U ⊂ U for every elementg ∈ G.

Here we are specially interested in Lie groups whose elements are labelled by a number of con-
tinuous parameters. In mathematical terms this means that a Lie group is a manifoldM together with
an operationM × M −→ M that we will call multiplication that satisfies the associativity property
g1 · (g2 · g3) = (g1 · g2) · g3 together with the existence of unityg1 = 1g = g,for everyg ∈ M and
inversegg−1 = g−1g = 1.

The simplest example of a Lie group is SO(2), the group of rotations in the plane. Each element
R(θ) is labelled by the rotation angleθ, with the multiplication acting asR(θ1)R(θ2) = R(θ1 + θ2).
Because the angleθ is defined only modulo2π, the manifold of SO(2) is a circumferenceS1.

One of the interesting properties of Lie groups is that in a neighborhood of the identity element
they can be expressed in terms of a set of generatorsT a (a = 1, . . . ,dimG) as

D(g) = exp(−iαaT
a) ≡

∞∑

n=0

(−i)n

n!
αa1 . . . αanT

a1 . . . T an , (456)

whereαa ∈ C are a set of coordinates ofM in a neighborhood of1. Because of the general Baker-
Campbell-Haussdorf formula, the multiplication of two group elements is encoded in the value of the
commutator of two generators, that in general has the form

[T a, T b] = ifabcT c, (457)

wherefabc ∈ C are called the structure constants. The set of generators with the commutator operation
form the Lie algebra associated with the Lie group. Hence, given a representation of the Lie algebra
of generators we can construct a representation of the group by exponentiation (at least locally near the
identity).

We illustrate these concept with some particular examples. For SU(2) each group element is
labelled by three real numberαi, i = 1, 2, 3. We have two basic representations: one is the fundamental
representation (or spin12 ) defined by

D 1
2
(αi) = e−

i
2
αiσ

i
, (458)
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with σi the Pauli matrices. The second one is the adjoint (or spin 1) representation which can be written
as

D1(αi) = e−iαiJ
i
, (459)

where

J1 =




0 0 0
0 0 1
0 −1 0


 , J2 =




0 0 −1
0 0 0
1 0 0


 , J3 =




0 1 0
−1 0 0
0 0 0


 . (460)

Actually, J i (i = 1, 2, 3) generate rotations around thex, y andz axis respectively. Representations of
spinj ∈ N+ 1

2 can be also constructed with dimension

dimDj(g) = 2j + 1. (461)

As a second example we consider SU(3). This group has two basic three-dimensional representa-
tions denoted by3 and3 which in QCD are associated with the transformation of quarks and antiquarks
under the color gauge symmetry SU(3). The elements of these representations can be written as

D3(α
a) = e

i
2
αaλa , D3(α

a) = e−
i
2
αaλT

a (a = 1, . . . , 8), (462)

whereλa are the eight hermitian Gell-Mann matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , (463)

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =




1√
3

0 0

0 1√
3

0

0 0 − 2√
3


 .

Hence the generators of the representations3 and3 are given by

T a(3) =
1

2
λa, T a(3) = −1

2
λT
a . (464)

Irreducible representations can be classified in three groups: real, complex and pseudoreal.

– Real representations: a representation is said to be real if there is asymmetric matrixS which acts
as intertwiner between the generators and their complex conjugates

T
a
= −ST aS−1, ST = S. (465)

This is for example the case of the adjoint representation of SU(2) generated by the matrices (460)

– Pseudoreal representations: are the ones for which anantisymmetric matrixS exists with the
property

T
a
= −ST aS−1, ST = −S. (466)

As an example we can mention the spin-1
2 representation of SU(2) generated by1

2σ
i.
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– Complex representations: finally, a representation is complex if the generators and their complex
conjugate are not related by a similarity transformation. This is for instance the case of the two
three-dimensional representations3 and3 of SU(3).

There are a number of invariants that can be constructed associated with an irreducible represen-
tationR of a Lie groupG and that can be used to label such a representation. IfT a

R are the generators
in a certain representationR of the Lie algebra, it is easy to see that the matrix

∑dimG
a=1 T a

RT
a
R commutes

with every generatorT a
R. Therefore, because of Schur’s lemma, it has to be proportional to the identity25.

This defines the Casimir invariantC2(R) as

dimG∑

a=1

T a
RT

a
R = C2(R)1. (467)

A second invariantT2(R) associated with a representationR can also be defined by the identity

TrT a
RT

b
R = T2(R)δab. (468)

Actually, taking the trace in Eq. (467) and combining the result with (468) we find that both invariants
are related by the identity

C2(R) dimR = T2(R) dimG, (469)

with dimR the dimension of the representationR.

These two invariants appear frequently in quantum field theory calculations with nonabelian gauge
fields. For exampleT2(R) comes about as the coefficient of the one-loop calculation of the beta-function
for a Yang-Mills theory with gauge groupG. In the case of SU(N), for the fundamental representation,
we find the values

C2(fund) =
N2 − 1

2N
, T2(fund) =

1

2
, (470)

whereas for the adjoint representation the results are

C2(adj) =N, T2(adj) =N. (471)

A third invariantA(R) is specially important in the calculation of anomalies. As discussed in sec-
tion (7), the chiral anomaly in gauge theories is proportional to the group-theoretical factorTr

[
T a
R{T b

R, T
c
R}

]
.

This leads us to defineA(R) as

Tr
[
T a
R{T b

R, T
c
R}

]
= A(R)dabc, (472)

wheredabc is symmetric in its three indices and does not depend on the representation. Therefore, the
cancellation of anomalies in a gauge theory with fermions transformed in the representationR of the
gauge group is guaranteed if the corresponding invariantA(R) vanishes.

It is not difficult to prove thatA(R) = 0 if the representationR is either real or pseudoreal. Indeed,
if this is the case, then there is a matrixS (symmetric or antisymmetric) that intertwins the generators
T a
R and their complex conjugatesT

a
R = −ST a

RS
−1. Then, using the hermiticity of the generators we can

write

Tr
[
T a
R{T b

R, T
c
R}

]
= Tr

[
T a
R{T b

R, T
c
R}

]T
= Tr

[
T
a
R{T

b
R, T

c
R}

]
. (473)

25Schur’s lemma states that if there is a matrixA that commutes with all elements of an irreducible representation of a Lie
algebra, thenA = λ1, for someλ ∈ C.
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Now, using (465) or (466) we have

Tr
[
T
a
R{T

b
R, T

c
R}

]
= −Tr

[
ST a

RS
−1{ST b

RS
−1, ST c

RS
−1}

]
= −Tr

[
T a
R{T b

R, T
c
R}

]
, (474)

which proves thatTr
[
T a
R{T b

R, T
c
R}

]
and thereforeA(R) = 0 whenever the representation is real or pseu-

doreal. Since the gauge anomaly in four dimensions is proportional toA(R) this means that anomalies
appear only when the fermions transform in a complex representation of the gauge group.

References
[1] L. Álvarez-Gaumé and M. A. Vázquez-Mozo,An Invitation to Quantum Field Theory,Springer

2011.

[2] J. D. Bjorken and S. D. Drell,Relativistic Quantum Fields, McGraw-Hill 1965.

[3] C. Itzykson and J.-B. Zuber,Quantum Field Theory, McGraw-Hill 1980.

[4] P. Ramond,Field Theory: A Modern Primer, Addison-Wesley 1990.

[5] M. E. Peskin and D. V. Schroeder,An Introduction to Quantum Field Theory, Addison Wesley
1995.

[6] S. Weinberg,The Quantum Theory of Fields, Vols. 1-3, Cambridge 1995

[7] P. Deligne et al. (editors),Quantum Fields and Strings: a Course for Mathematicians, American
Mathematical Society 1999.

[8] A. Zee,Quantum Field Theory in a Nutshell, Princeton 2003.

[9] B. S. DeWitt,The Global Approach to Quantum Field Theory, Vols. 1 & 2, Oxford 2003.

[10] V. P. Nair,Quantum Field Theory. A Modern Perspective, Springer 2005.

[11] T. Banks,Modern Quantum Field Theory, Cambridge 2008.

[12] O. Klein,Die Reflexion von Elektronen an einem Potentialsprung nach der Relativischen Dynamik
von Dirac, Z. Phys.53 (1929) 157.

[13] B. R. Holstein,Klein’s paradox, Am. J. Phys.66 (1998) 507.

[14] N. Dombey and A. Calogeracos,Seventy years of the Klein paradox, Phys. Rept.315(1999) 41.
N. Dombey and A. Calogeracos,History and Physics of the Klein Paradox, Contemp. Phys.40
(1999) 313 (quant-ph/9905076).

[15] F. Sauter,Zum Kleinschen Paradoxon, Z. Phys.73 (1932) 547.

[16] H. B. G. Casimir,On the attraction between two perfectly conducting plates, Proc. Kon. Ned. Akad.
Wet.60 (1948) 793.

[17] G. Plunien, B. Müller and W. Greiner,The Casimir Effect, Phys. Rept.134(1986) 87.
K. A. Milton, The Casimir Effect: Physical Manifestation of Zero-Point Energy,
(hep-th/9901011).
K. A. Milton, The Casimir effect: recent controversies and progress, J. Phys.A37 (2004) R209
(hep-th/0406024).
S. K. Lamoreaux,The Casimir force: background, experiments, and applications, Rep. Prog. Phys.
68 (2005) 201.

[18] M. J. Sparnaay,Measurement of attractive forces between flat plates, Physica24 (1958) 751.

[19] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, Dover 1972.

[20] Y. Aharonov and D. Bohm,Significance of the electromagnetic potentials in the quantum theory,
Phys. Rev.115(1955) 485.

[21] P. A. M. Dirac,Quantised Singularities in the Electromagnetic Field, Proc. Roy. Soc.133 (1931)
60.

[22] S. Dodelson,Modern Cosmology, Academic Press 2003.

[23] P. A. M. Dirac,Lectures on Quantum Mechanics, Dover 2001.

92

L. ÁLVAREZ-GAUMÉ AND M.A. VÁZQUEZ-MOZO

92



[24] M. Henneaux and C. Teitelboim,Quantization of Gauge Systems, Princeton 1992.

[25] R. Jackiw,Quantum meaning of classical field theory, Rev. Mod. Phys.49 (1977) 681
R. Jackiw,Introduction to the Yang-Mills quantum theory, Rev. Mod. Phys.52 (1980) 661.

[26] P. Ramond,Journeys Beyond the Standard Model, Perseus Books 1999.
R. .N . Mohapatra,Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics,
Springer 2003.

[27] C. P. Burguess,Goldstone and pseudogoldstone bosons in nuclear, particle and condensed matter
physics, Phys. Rept.330(2000) 193(hep-th/9808176).

[28] L. Álvarez-Gaumé,An introduction to anomalies, in: “Fundamental problems of gauge field the-
ory”, eds. G. Velo and A. S. Wightman, Plenum Press 1986.
R. A. Bertlmann,Anomalies in Quantum Field Theory, Oxford 1996.
K. Fujikawa and H. Suzuki,Path Integrals and Quantum Anomalies, Oxford 2004.
J. A. Harvey,TASI lectures on anomalies,hep-th/0509097.
L. Álvarez-Gaumé and M. A. Vázquez-Mozo,Introduction to Anomalies, Springer (to appear).

[29] R. Jackiw, Topological investigations of quantized gauge theories, in: “Current Algebra and
Anomalies”, eds. S. B. Treiman, R. Jackiw, B. Zumino and E. Witten, Princeton 1985.

[30] S. Adler,Axial-Vector Vertex in Spinor Electrodynamics,Phys. Rev.177(1969) 2426.
J. S. Bell and R. Jackiw,A PCAC puzzle:π0 → 2γ in the sigma model, Nuovo CimentoA60 (1969)
47.

[31] J. Steinberger,On the Use of Substraction Fiels and the Lifetimes of Some Types of Meson Decay,
Phys. Rev.76 (1949) 1180.

[32] F. J. Ynduráin,The Theory of Quark and Gluon Interactions, Springer 1999.

[33] G. ’t Hooft, How the instantons solve the U(1) problem, Phys. Rept.142(1986) 357.

[34] D. G. Sutherland,Current Algebra and Some Nonstrong Mesonic Decays, Nucl. Phys.B2 (1967)
433.
M. J. G. Veltman,Theoretical aspects of high-energy neutrino interactions, Proc. R. Soc.A301
(1967) 107.

[35] S. L. Adler and W. A. Bardeen,Absence of higher order corrections in the anomalous axial vector
divergence equation, Phys. Rev.182(1969) 1517.

[36] E. Witten,An SU(2) anomaly, Phys. Lett.B117(1982) 324.

[37] S. Eidelman et al.Review of Particle Phhysics, Phys. Lett.B592(2004) 1 (http://pdg.lbl.gov).

[38] D. J. Gross and F. Wilczek,Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett.30
(1973) 1343.

[39] H. D. Politzer,Reliable perturbative results for strong interations?, Phys. Rev. Lett.30 (1973)
1346.

[40] G. ’t Hooft, remarks at theColloquium on Renormalization of Yang-Mills fields and applications to
particle physics, Marseille 1972.

[41] I. B. Khriplovich,Green’s functions in theories with a non-abelian gauge group, Yad. Fiz.10(1969)
409 [Sov. J. Nucl. Phys.10 (1970) 235].
M. V. Terentiev and V. S. Vanyashin,The vacuum polarization of a charged vector field, Zh. Eskp.
Teor. Fiz.48 (1965) 565 [Sov. Phys. JETP21 (1965) 375].

[42] K. G. Wilson, Renormalization group and critical phenomena 1. Renormalization group and the
Kadanoff scaling picture,Phys. Rev.B4 (1971) 3174.
K. G. Wilson,Renormalization group and critical phenomena 2. Phase space cell analysis of criti-
cal behavior, Phys. Rev.B4 (1971) 3184
K. G. Wilson,The renormalization group and critical phenomena, Rev. Mod. Phys.55 (1983) 583.

[43] L. P. Kadanoff,Scaling Laws for Ising Models NearTc, Physics2 (1966) 263.

93

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

93



[44] J. Schwinger,On Gauge Invariance and Vacuum Polarization, Phys. Rev.82 (1951) 664.

[45] E. Brezin and C. Itzykson,Pair Production in Vacuum by an Alternating Field, Phys. Rev.D2
(1970) 1191.

[46] S. W. Hawking,Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199.

[47] M. K. Parikh and F. Wilczek,Hawking Radiation as Tunneling, Phys. Rev. Lett.85 (2000) 5042
(hep-th/9907001)

[48] Yu. A. Golfand and E. P. Likhtman,Extension of the Algebra of Poincaré group generators and
violations of P-invariance, JETP Lett.13 (1971) 323.
D. V. Volkov and V. P. Akulov,Is the Neutrino a Goldstone Particle, Phys. Lett.B46 (1973) 109.
J. Wess and B. Zumino,A Lagrangian Model Invariant under Supergauge Transformations, Phys.
Lett. B49 (1974) 52.
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Basics of QCD for the LHC: pp → H +X as a case study

F. Maltoni
Centre for Cosmology, Particle Physics and Phenomenology (CP3)
Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract
Quantum Chromo Dynamics (QCD) provides the theoretical framework for
any study of TeV scale physics at LHC. Being familiar with the basic concepts
and techniques of QCD is therefore a must for any high-energy physicist. In
these notes we consider Higgs production via gluon fusion as an example on
how accurate and flexible predictions can be obtained in perturbative QCD. We
start by illustrating how to calculate the total cross section at the leading order
(yet one loop) in the strong coupling αS and go through the details of the next-
to-leading order calculation eventually highlighting the limitations of fixed-
order predictions at the parton level. Finally, we briefly discuss how more ex-
clusive (and practical) predictions can be obtained through matching/merging
fixed-order results with parton showers.

1 Introduction
Strongly interacting particles can be described in terms of a SU(3) gauge theory field theory involving
gluons and quarks:

LQCD = −1

4
Gµν,aGa

µν +
∑

f

ψ̄f
i i /Dij ψ

f
j , (1)

where the sum runs over the quark flavors,

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gsf

abcAb
µA

c
ν ,

Dµ,ij = ∂µδij + igst
a
ijA

a
µ ,

and taij are the Gell-Mann matrices in the fundamental representation and fabc are the structure functions
of SU(3), with

[ta, tb] = ifabctc . (2)

Notwithstanding its apparent simplicity, QCD is an amazingly rich theory which is able to account for
a wide diversity of phenomena, ranging from really strong (non-perturbative) interactions at low scales,
below 1 GeV, to rather weak (perturbative) interactions up to scales of the TeV at colliders, from low
density to high density states such as those happening in nuclei collisions or inside stars, from low to
high temperatures. For proton-proton collisions at the LHC, where one can consider zero temperature
and density, QCD is complicated enough that we have no means available (for the moment!) to solve
it exactly and we have to resort to a variety of approximate methods, including perturbation theory
(when the coupling is small) and lattice calculations (when the coupling is large). Thanks to the work of
theoretical and experimental physicists over the last fourty years we are convinced that QCD is a good
theory of the strong interactions, of course in the range of energies explored so far and to the level of the
theoretical accuracy that can be achieved with current technologies.

There are many excellent references on QCD with applications to collider physics, from books,
(e.g., [1]) to review articles, to write-up of lectures given in schools, and in particular some of those
given at the CERN schools over the years. My lectures at the school were largely based on the inspiring
ones by Michelangelo Mangano [2], Paolo Nason [3] and on the most recent ones by Gavin Salam [4],

Published by CERN in the Proceedings of the 2013 CERN–Latin-American School of High-Energy Physics, Arequipa,
Peru, 6 – 19 March 2013, edited by M. Mulders and G. Perez, CERN-2015-001 (CERN, Geneva, 2015)

978–92–9083–412-0; 0531-4283 – c© CERN, 2015. Published under the Creative Common Attribution CC BY 4.0 Licence.
http://dx.doi.org/10.5170/CERN-2015-001.95
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which I warmly reccommend. In these notes, I’ll present a case study, i.e. how QCD can make accurate
predictions for Higgs production in gluon fusion at the LHC. The aim is to see the basic concepts at work
for a realistic and very important process so to verify their understanding and also to have a closer look at
the basic techniques used to perform such calculations. When needed and to avoid repetitions, I will refer
to specific sections of Ref. [4] as [QCD: Section number] where the reader will find further information
on the basic concepts. Links to simple Mathematica® notebooks with the calculations described below
can be found at http://maltoni.home.cern.ch/.

2 Higgs cross section at the LHC
The factorisation theorem states that the total cross section for the inclusive production of Higgs at the
LHC can be written as 1

σ(H +X) = Σi,j

∫
dx1fi(x1, µF )

∫
dx2fj(x2, µF )× σ̂ij→H+x(s,mH , µF , µR) , (3)

where the fi/j(x, µF ) are the parton distributions functions (long distance term, non-perturbatively cal-
culable) and σ̂ is the partonic cross section (short distance term, calculable in perturbation theory).
σ̂ can be written as an expansion in αS :

σ̂(ij → H + x) = σ̂(0)(ij → H)

+ σ̂(1)(ij → H + up to 1 parton)

+ σ̂(2)(ij → H + up to 2 partons)

+ . . . (4)

where the first term gives the leading order (LO) approximation and it is of order α2
S , the second next-

to-leading (NLO) order (α3
S) and so on.

It is interesting to know how the Higgs predictions improved and evolved over time. The LO
production was considered a long ago [5], the next-to-leading order (NLO) QCD corrections [6–9] were
calculated decades ago in the so-called effective field theory (HEFT) approximation (which will be ex-
plained in the following) as well in the full SM and found to be very large (σNLO/σLO ∼ 2). This
motivated the formidable endeavour of the next-to-next-to-leading order (NNLO) QCD calculations,
which have been fully evaluated in HEFT [10–12]. Given that corrections to the HEFT been estimated
through a power expansion [13–16] and found to have a negligible impact on total rates, NNLO is the
current state of the art for fixed-order predictions.

Before going into the details of the computation of the Higgs cross section, let us remind a few
general important points that are relevant for any computation in QCD.

– At LO the factorisation theorem reduces to the parton model: the parton distribution functions
fi(x) are just the probabilities (and therefore positive-definite) of finding a given parton in the
initial state hadrons at a given resolution scale µF and σ̂ gives the probability that such partons
with a total energy s = x1x2S will "fuse" into a Higgs.

– Total cross sections are the first and simplest example of a larger class of observables, called In-
frared Safe (IS) quantities [QCD:2.3.2], which can be consistently computed in QCD and then
compared to experimental data. Such quantities always need to be (at least to some degree) inclu-
sive on possible extra radiation and in particular resilient under soft and/or collinear radiation. The

1Be careful here as for simplicity we adopt the usual pragmatic approach on Higgs production at the LHC and imagine it
coming from different channels: gluon-gluon fusion, vector-boson-fusion, vector-boson-associated...and so on. We restrict the
discussion to the first one which is the leading mechanism. In fact, various channels overlap if contributions are organized as
powers of strong and weak couplings (e.g., gg → H appears at the same order in αS and yt as gg → tt̄H) and in general
they mix-up once higher-order QCD and EW corrections are included. The separation into channels is anyway useful from the
experimental point of view as they typically lead to different final state signatures.
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most known example of IS quantities beyond total cross sections are jets [QCD:5]. The constraint
of infrared safety becomes non-trivial already at NLO for Eq. (3).

– Total cross sections always inclusive of any possible extra QCD radiation in the event, hereby
denoted by X , even when the calculation is performed at LO. In this case, extra radiation up to
the scale µF is accounted for by the parton distribution function’s (PDF), while hard radiation is
consistently neglected being of higher order (αS). Alternatively, one can prove that the total cross
section for producing "just a Higgs", i.e., Higgs + no resolvable radiation at an arbitrary small
scale is exactly zero at all orders in perturbation theory.

– A very important point to always keep in mind is that the the "adjectives" LO, NLO, NNLO need
to be always referred to a specific observable, i.e. different observables in a given calculation can
be predicted at a different order. For example, when talking about a "NNLO calculation for Higgs
production in gluon fusion", what is really meant is that the total inclusive cross section is known
at NNLO. The same calculation can predict the rate for Higgs+1 jet (inclusive and exclusive) at
NLO and Higgs+2 jets only at LO (where exclusive and inclusive is the same).

– Beyond LO, the separation between long-distance and short-distance physics as described by µF
(and also µR) becomes non-trivial. µF and µR represent arbitrary scales in the calculation, whose
dependence is generated by the truncation of the perturbative expansion at a given order. Exploiting
the fact that physical results must be independent on such scales one finds renormalisation-group
type equations, such as the β function of QCD [QCD:1.2.3] and the so-called DGLAP evolution
equations for the PDF’s [QCD:3.2].

– The residual dependence of σ on µF and µR at any given order in perturbation theory is often used
to gauge the accuracy of the predictions [QCD:4.4.1]. This is by itself a very crude approxima-
tion, while the towers of leading (subleading,...) log’s of the scales can be predicted at all orders
in perturbation theory, only an explicit computation is able to provide the finite terms at higher
orders. In practice, it is common to choose central scales as the typical hard scale in a process
and vary them independently between 1/2 and 2 to identify an uncertainty. However, no solid and
unique procedure exists to identify central reference values and variation intervals and to associate
a confidence level. However, milder scale dependence of higher-order results compared to lower
ones is always used to gauge the improvement on the accuracy of a given prediction.

3 pp → H + X at leading order
At LO Eq. 3 can be rewritten as

σLO(H +X) =

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2fg(x1, µF )fg(x2, µF )× σ̂(0)(gg → H) , (5)

where τ0 = m2
H/S and s = x1x2S. σ̂ for a 2 → 1 process can be rewritten as

σ̂ =
1

2s
|A|2 d3P

(2π)32EH
(2π)4δ4(p+ q − PH)

=
1

2s
|A|22πδ(s−m2

H) , (6)

where

τ ≡ x1x2 =
S

s
, τ0 =

m2
H

S
. (7)

Performing the change of variables x1, x2 → τ, y with x1 ≡ √
τey, x2 ≡ √

τe−y (verify that the
jacobian J is equal to 1) the change of the integration limits and the result becomes

σLO(H +X) =
π|A|2
m2

HS

∫ − log
√
τ0

log
√
τ0

dy xg(
√
τ0e

y)g(
√
τ0e

−y) . (8)
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p

q

a, µ

b, ν

ℓ+ p

ℓ− q

ℓ

Fig. 1: Representative Feynman diagram for the process gg → H . Another diagram, the one with the gluons
exchanged, contributes to the total amplitude.

This expression shows that for the cross section of a 2 → 1 process at LO, the contribution from the par-
ton distributions (a quantity known as gluon-gluon luminosity) factorises from the dynamics (|A|2). The
gluon-gluon luminosity depends only on the kinematics in the limits of integration and can be computed
once for all for each Higgs mass. The problem is therefore reduced to the computation of the amplitude
A.

3.1 My first loop (yet finite!) amplitude: gg → H

Being a color singlet, the Higgs does not couple directly to gluons. However, as no fundamental symme-
try forbidding it is present 2 it can via a loop of a colored and massive particle. In the SM such states are
the heavy quarks. Let us consider one quark at the time, i.e., the diagram(s) shown in Fig. 1. The first
observation to make, even before starting the calculation, is that even though a triangle loop in general
can give rise to divergences, both in the ultra-violet (UV) and in the infrared (IR), in this case we expect
a finite result. There are several different ways of convincing that this must be the case. A simple one
goes as follows. Divergent terms always factorize over lower order amplitudes. The one-loop amplitude
is the first non-zero term contributing to gg → H in the perturbative expansion. Therefore there cannot
be any divergence. A finite amplitude, however, does not mean that a consistent regularisation procedure
is not needed. The reason is that in intermediate steps of the calculation infinities are found that cancel
at the end, yet might leave finite terms. As we will see in gg → H such finite terms are actually nec-
essary to guarantee the gauge invariance of the result, clearly showing that there is no ambiguity in the
procedure. 3

To evaluate the diagram of Fig. 1 (there are actually two diagrams, the one shown and another one
with the gluons exchanged. They give the same contribution so we’ll just multiply our final result by
two), we employ use dimensional regularisation in d = 4− 2ǫ dimensions. 4

2In fact, classically, scale invariance would forbid such a coupling. However, scale invariance is broken by renormalisation
and therefore it is not a symmetry.

3Less obvious is the case of γγ → H where the contribution coming from gauge bosons loop has to be done in different
gauges (or via low-energy-theorems) to prove the uniqueness and the correctness of dimensional regularisation procedure.
Interestingly enough, people seem to forget this fact quite regularly over the years.

4Dimensional regularisation comes in several different flavors and attention has to be paid to the details of the implementa-
tion. All formulas quoted in the main body of these lecture notes are in the so-called Conventional Dimensional Regularization
(CDR) which is the regularisation procedure where the MS scheme is defined. In practice, NLO calculations nowadays are
done in a different scheme which limits the use of the d-dimensional Dirac algebra to the loop computation.
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Using the QCD Feynman rules [QCD: Fig. 3] and the Yukawa interaction, the expression for the
amplitude corresponding to the diagram of Fig. 1 reads:

iA = −(−igs)2Tr(tatb)
(−imQ

v

)∫
ddℓ

(2π)d
tµν

Den
(i)3ǫµ(p)ǫν(q) (9)

where the overall minus sign is due to the closed fermion loop.5 The denominator is Den = (ℓ2 −
m2

Q)[(ℓ+p)
2−m2

Q][(ℓ−q)2−m2
Q]. Emplyoing the usual Feynman parametrization method to combine

the denominators of the loop integral into one:

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0

dy

[Ax+By + C(1− x− y)]3
(10)

one obtains
1

Den
= 2

∫
dx dy

1

[ℓ2 −m2
Q + 2ℓ · (px− qy)]3

. (11)

The next step is to shift the integration momenta to ℓ′ = ℓ+ px− qy so the denominator takes the form

1

Den
→ 2

∫
dx dy

1

[ℓ′ 2 −m2
Q +m2

Hxy]
3
. (12)

The numerator of the loop integral in the shifted loop momentum becomes

tµν = Tr

[
(/ℓ +mQ)γ

µ(/ℓ + /p+mQ)(/ℓ − /q +mQ)γ
ν

]

= 4mQ

[
gµν(m2

Q − ℓ2 − m2
H

2
) + 4ℓµℓν + pνqµ

]
. (13)

where we have used the fact that for transverse gluons, ǫ(p) · p = 0 and so terms proportional to the
external momenta, pµ or qν , have been dropped. The above expression shows already several interesting
aspects.

The first one is that the trace is proportional to the heavy quark mass. This can be easily understood
as an effect of the spin-flip coupling of the Higgs. Gluons or photons do not change the spin of the
fermion, as vectors map left (right) spinors into left (right) spinors, while the scalars do couple left (right)
spinors with right (left) ones. If the quark circulating in the loop is massless then the trace vanishes due
to helicity conservation, independently of the actual Yukawa coupling. This is the reason why even when
the Yukawa coupling of the light quark and the Higgs is enhanced (such as in SUSY or 2HDM with large
tanβ), the contribution is anyway suppressed by the kinematical mass.

The second point is that simple power counting shows that the terms proportional to the squared
loop momentum ℓ2 and ℓµℓν give rise to UV divergences. This means that an intermediate and consin-
stent regularisation prescription is needed for intermediate manipulations and that divergences will have
to cancel in the final result.

By shifting momenta in the numerator, dropping terms linear in ℓ′ and using the relation
∫
ddk

kµkν

(k2 − C)m
=

1

d
gµν

∫
ddk

k2

(k2 − C)m
(14)

to write the amplitude in the form

iA = −
2g2sm

2
Q

v
δab

∫
ddℓ′

(2π)d

∫
dxdy

{
gµν

[
m2

Q + ℓ′2
(
4− d

d

)
+m2

H(xy − 1

2
)

]

5ǫµ(p) are the transverse gluon polarizations.
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+pνqµ(1− 4xy)

}
2dxdy

(ℓ′2 −m2
Q +m2

Hxy)
3
ǫµ(p)ǫν(q). (15)

This expression shows that if one computes the integral in d = 4, the UV divergent term is absent. For
d = 4− 2ǫ, however, this gives rise to a left-over finite piece, as the scalar integrals are given by

∫
ddℓ

(2π)d
ℓ2

(ℓ2 − C)3
=

i

32π2
(4π)ǫ

Γ(1 + ǫ)

ǫ
(2− ǫ)C−ǫ

∫
ddℓ

(2π)d
1

(ℓ2 − C)3
= − i

32π2
(4π)ǫΓ(1 + ǫ)C−1−ǫ . (16)

So it is manifest that the divergence 1/ǫ cancels against the (4− d)/d term leaving a finite piece, which
in fact ensures that the final result is gauge invariant. By combining it with the other terms in the squared
parenthesis we obtain

A(gg → H) = −
αSm

2
Q

πv
δab

(
gµν

m2
H

2
− pνqµ

)
ǫµ(p)ǫν(q)

∫
dxdy

(
1− 4xy

m2
Q −m2

Hxy

)
. (17)

(Note that we have multiplied by 2 in Eq. (17) to include the diagram where the gluon legs are crossed.)
The Feynman integral of Eq. (17) can easily be performed to find an analytic result if desired. Note
that the tensor structure could have been predicted from the start by imposing gauge invariance, i.e.,
pµAµν = qνAµν = 0. By defining I(a) as

I(a) ≡
∫ 1

0
dx

∫ 1−x

0
dy

1− 4xy

1− axy
, a =

m2
H

m2
Q

, (18)

one can factorise a 1/m2
Q out of the integral and cancel the overall m2

Q in front of the amplitude (17). In
other terms the heavy quark mass dependence is confined in I(a).
For a light quark, mQ ≪ mH ,

I(a)
a→∞−→ − 1

2a
log2 a = −

m2
Q

2m2
H

log2
m2

Q

m2
H

, (19)

showing that in the Standard Model the charm and bottom quark contributions are strongly suppressed
by the square of the quark mass over Higgs mass ratio and come with a minus sign (with respect to the
top-quark one).
The opposite limit, mH ≪ mQ,

I(a)
a→0−→ 1

3
, (20)

which is found to be an extremely good approximation even for mQ ∼ mH , is quite surprising at first.
In this case the amplitude reads

A(gg → H)
mQ≫mH−→ − αS

3πv
δab

(
gµν

m2
H

2
− pνqµ

)
ǫµ(p)ǫν(q). (21)

i.e., the amplitude gg → H becomes independent of the mass of the heavy fermion in the loop. This is
a special case of a general low energy theorem (which holds in the pH → 0 limit) that states that if the
colored particle mass, independently of the other quantum numbers such as its spin acquires (all of) its
mass via the Higgs mechanism, it will contribute to the amplitude gg → H independently of its mass.
In other words gg → H acts as a counter of heavy colored particles. In a four generation scenario, for
instance, the contribution from the t′ and b′ would lead to a factor of three increase at the amplitude level,
i.e. a factor 9 at the cross section level. Note that this is in an apparent contradiction with of our intuition
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that heavy particles should decouple and not affect the physics at lower energy. The heavy states would
not decouple because of our assumption that their (whole) mass is due to electroweak symmetry breaking
and the interaction with the Higgs. Another interesting case is that of SUSY, where down-type and up-
type quarks can couple differently to the Higgs(es) and other colored states (squarks) are present in the
spectrum. At large tanβ, i.e. when mb tanβ ≃ mt, the Higgs bottom couplings are enhanced by a
factor tanβ, while those of the top suppressed by a cotβ. However, the scaling with masses is different
in the two limits and the contribution from the bottom anyway suppressed by mQ/mH . In addition,
the the two contributions will have an opposite sign so that will actually interfere destructively in the
amplitude squared. What about the squark contributions? Being heavy scalars and therefore coming
with an opposite sign shouldn’t the stop cancel exactly the contributions from the top and the others
squarks give the dominant contribution? In this case, one has to remember that in (possibly) realistic
SUSY models the mass of a squark has two sources: one from the coupling to the Higgs vev, which
due to SUSY, it is exactly equal to the SM partner coupling and the other from the SUSY soft-breaking
terms. For light quarks the latter are by far dominant giving a scaling for A of the typemq/mq̃, so highly
suppressed and decoupling. A light stop instead, mt̃ ≃ mt could lead to a possibly strong suppression
of A.

3.2 Total cross section at the LHC at LO
The result can be written as:

σLO(pp→ H +X) =
α2
S(µR)

64πv2
| I

(
m2

H

m2
Q

)
|2 τ0

∫ − log
√
τ0

log
√
τ0

dyg(
√
τ0e

y, µF )g(
√
τ0e

−y, µF ) (22)

Using LO PDF’s available in public libraries, such as LHAPDF [17] one can easily compute the gluon-
gluon luminosity and therefore the LO Higgs cross section at the LHC14, see Fig. 2. An example is
given in a Mathematica® notebook that can be found at the web address mentioned at the end of the
Introduction. An interesting exercise is to vary the value of the renormalisation and factorisation scales
around the natural central choice µR = µF = mH to try to estimate the unknown higher-orders terms
in the perturbative expansion. It has to be noted that at LO, the cross section depends on µR only
through αS(µR) which appears in the short distance coefficient and therefore as an overall factor α2

S ,
and depends on µF only via the PDF’s (both dependences are of logarithmic nature, as the application
of the renormalisation group equations easily shows). In other words the dependence on the scales is
maximal as there is no explicit dependence on the log of the scales in the short distance coefficients that
can compensate those in the coupling and in the PDF’s. At this order, this is consistent as scale changes
correspond to a change of at least one order in αS more and in a LO computation only the first term in the
perturbative expansion is present. The result of varying the scales independently 1/2mH < µR, µF <
2mH with 1/2 < µF /µR < 2 in the LO predictions for the LHC is shown in Fig. 9 for different Higgs
masses. Result are normalized to the central reference choice µR = µF = mH .

4 Higgs Effective field theory
The main result of the simple calculation gg → H is that gluon fusion is basically independent of the
heavy quark mass for a light Higgs boson. The result of Eq. (33) can be easily derived starting from the
effective vertex,

Leff =
αS

12π
Ga

µνG
a µν

(
H

v

)

=
βF
gs
Ga

µνG
a µν

(
H

2v

)
(1− δ),

where

βF =
g3sNF

24π2
(23)
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Fig. 2: Example of a plot for the LO cross section for pp→ H at the LHC14 (pb) as a function of the Higgs mass
(GeV) obtained with Mathematica® notebook available from the author (link in the text). The red (lower) curve is
the large top-mass limit, while the blue (upper) curve is the result withe full top-mass dependence.

is the contribution of heavy fermion loops to the SU(3) beta function and δ = 2αS/π.6 (NF is the
number of heavy fermions with m≫ mH .) The effective Lagrangian of Eq. (23) gives ggH , gggH and
ggggH vertices and can be used to compute the radiative corrections of O(α3

S) to gluon production. The
correction in principle involve 2-loop diagrams. However, using the effective vertices from Eq. (23), the
O(α3

S) corrections can be found from a 1-loop calculation. To fix the notation we shall use

Leff = −1

4
AHGa

µνG
a,µν , (24)

where Ga
µν is the field strength of the SU(3) color gluon field and H is the Higgs-boson field. The

effective coupling A is given by

A =
αS

3πv

(
1 +

11

4

αS

π

)
, (25)

where v is the vacuum expectation value parameter, v2 = (GF

√
2)−1 = (246)2 GeV2 and the αS

correction is included, as discussed above. The effective Lagrangian generates vertices involving the
Higgs boson and two, three or four gluons. The associated Feynman rules are displayed in Fig. 3. The
two-gluon–Higgs-boson vertex is proportional to the tensor

Hµν(p1, p2) = gµνp1 · p2 − pν1p
µ
2 , (26)

while the vertices involving three and four gluons and the Higgs boson are exactly proportional to their
counterparts from pure QCD

V µνρ(p1, p2, p3) = (p1 − p2)
ρgµν + (p2 − p3)

µgνρ + (p3 − p1)
νgρµ, (27)

and

Xµνρσ
abcd = fabefcde(g

µρgνσ − gµσgνρ) + facefbde(g
µνgρσ − gµσgνρ)

6The (1 − δ) term arises from a subtlety in the use of the low energy theorem. Since the Higgs coupling to the heavy
fermions is Mf (1 + H

v
)ff , the counterterm for the Higgs Yukawa coupling is fixed in terms of the renormalisation of the

fermion mass and wavefunction. The beta function, on the other hand, is evaluated at q2 = 0. The 1− δ term corrects for this
mismatch.
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(a)

p1 µ a

p2 ν b

iAδabHµν(p1,p2)

(b)

p1 µ a

p2 ν b

p3 σ c

-AgfabcVµνσ(p1,p2,p3)

(c)

p1 µ a

p2 ν b

p3 σ c

p4 λ d
-iAg2Xabcd

µνσλ

Fig. 3: Feynman rules in the EFT where the top quark is integrated out. Gluon momenta are outgoing.

+ fadefbce(g
µνgρσ − gµρgνσ). (28)

5 gg → Higgs @ NLO
The HEFT is clearly a very powerful approximation as it turns a loop computation into a tree-level one.
That means that within the HEFT the calculation of the total cross section for Higgs production at NLO
will appear as a usual NLO calculation, i.e., involving only one-loop and tree-level diagrams. This is
what we describe in this section.

5.1 The NLO computation in a nutshell
At NLO Eq. 3 can be rewritten as

σNLO(H +X) =

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2fg(x1, µF )fg(x2, µF )[σ̂
(0)
B (gg → H) + σ̂

(1)
V (gg → H)]

+
∑

ijk

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2fi(x1, µF )fj(x2, µF )× σ̂
(1)
R (ij → H k) , (29)

where σ̂(0)(gg → H) and σ̂(1)V (gg → H) denote the Born-level and the virtual cross sections, while
σ̂
(1)
R (ij → H k) is the real-emission cross section:

σ̂
(0,1)
B,V (gg → H) =

1

2s
|AB,V |

2
dΦB ,
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σ̂
(1)
R (ij → Hk) =

1

2s
|AR|

2
dΦR ,

In general, the virtual term contains ultraviolet (UV), soft and collinear divergences. The UV divergences
are absorbed by a universal redefinition of the couplings entering at the Born amplitude, as dictated by the
renormalisation of the SM. When integrated over the full real phase space, the real term generates soft and
collinear divergences, too, and only when infrared(IR)-safe quantities are computed, these divergences
cancel to yield a finite result. IR-safe observables O(Φ) can be best understood by considering the soft
or collinear limit in the real phase space, i.e. when the additional parton has low energy or is parallel to
another parton. In this limit, an IR-safe observable yields limO(ΦR) = O(ΦB), where the Born-level
configuration ΦB is obtained from ΦR by eliminating the soft particle (in case of soft singularities) or by
merging the collinear particles (in case of collinear singularities).

There several ways to handle the cancellation of the singularities, which fall into two large cat-
egories, process-dependent and process-independent methods. In the former, one treats each calcula-
tion/process independently and performs manipulations of the integrals over the phase space so to obtain
analytic or semi-analytic results.

Process independent methods, on the other hand, are based on a very fundamental result, i.e., that
the pattern of the soft and collinear divergences is universal and depends only on the quantum numbers
of the initial and final state particles in the Born process. That means that given the Born amplitude, one
can predict the divergences that will show up in the virtual contributions and will be then cancelled over
integration of the extra radiation in the reals. More importantly, such divergences come in just a handful
of different types that can be dealt with once and for all.

Let us now rewrite Eq. (29) in a general and short-hand notation

σNLO ≡
∫

dΦB [B(ΦB) + V (ΦB)]O(ΦB) +

∫
dΦRR(ΦR) O(ΦR) (30)

which will be useful in the following. A NLO cross section is written in terms of matrix elements for
the Born and virtual integrated over the Born phase space plus the real matrix elements integrated over
the real phase space. Within a subtraction method, the real phase space is parametrized in terms of
an underlying Born phase space ΦB and a radiation phase space ΦR|B . A necessary requirement upon
this parametrization is that, in the singular limits, by merging collinear partons, or eliminating the soft
parton, the real phase becomes equal to the underlying Born one. Then the expectation value of an
IR-safe observable reads

∫
dσ(NLO)O(Φ) =

∫
dΦB

[
B(ΦB) + V (ΦB) +

∫
dΦR|BS(ΦR)

]
O(ΦB)

+

∫
dΦR [R(ΦR) O(ΦR)− S(ΦR)O(ΦB)] . (31)

The third member of the above equation is obtained by adding and subtracting the same quantity from
the two terms of the second member. The terms S(ΦR|B) are the subtraction terms, which contain all
soft and collinear singularities of the real-emission term. Using the universality of soft and collinear
divergences, they are written in a factorised form as

S(ΦR) = B(ΦB)⊗ S̃(ΦR|B) , (32)

where the S̃(ΦR|B) can be composed from universal, process-independent subtraction kernels with ana-
lytically known (divergent) integrals. These integral, when summed and added to the virtual term, yield
a finite result. The second term of the last member of Eq. (31) is also finite if O is an IR-safe observable,
since by construction S cancels all singularities in R in the soft and collinear regions. The most popular
subtraction schemes currently used in public NLO codes are based on the dipole subtraction [18] and the
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g

g

H

q

q̄

H

Fig. 4: Example of Feynman diagrams giving null contributions to ij → H at one-loop in the HEFT. Bubbles on
the gluon legs are zero in dimensional regularisation. qq̄ → H is zero at all orders in perturbation theory ifmq = 0

due to chiral symmetry.

so-called FKS scheme [19]. The case of gg → H at NLO is particularly simple as the Born amplitude
is a 2 → 1 process. This means that the integration over phase space of the real corrections is particu-
larly simple and can therefore be done analytically. This has also the pedagogical advantage that shows
explicitly where the divergences come from and to “see” the cancellations term by term. We study the
process gg → H at NLO, in the large top-quark mass limit. All results given below are in Conventional
Dimensional Regularization (CDR), where matrix elements are calculated in d dimensions, including the
Born and real contributions, as well as the integration over phase space [6].

5.2 gg → H: Born in d dimensions
The Born amplitude is calculated via the HEFT feynman rules. The only difference with respect to
the previous calculation stems from the fact that now the computation has to be done in d = 4 − 2ǫ-
dimensions, with ǫ infinitesimal. The phase space do not bring any extra ǫ term. However, the matrix
element changes (

gµν
m2

H

2
− pνqµ

)2

=
1

4
(d− 2)m4

H , (33)

as well as the average over the initial state gluon polarizations which in d-dimensions are d − 2. This
gives

σ̂B =
α2
S

π

m2
H

576v2s

µ2ǫ

(1− ǫ)
δ(1− z)

≡ σ̂0 δ(1− z) , (34)

where z ≡ m2
H/s is the inelasticity of the process, i.e. the fraction of the parton parton energy that

goes into the Higgs (for the Born z = 1). µ is the usual arbitrary scale that needs to be introduced
in dimensional regularisation to correct for the different dimensions and keep the action adimensional
(~ = c = 1). Note that a cross section in d dimensions has dimensions [σ] = M2−d. Also note that we
have defined σ̂0 as containing an explicit factor z.

5.3 gg → H: virtual corrections
There are several diagrams appearing at one-loop. Diagrams involving bubbles on the external gluon legs
(with 3-point gluon-gluon-gluon and gluon-gluon-Higgs verteces) give rise to scaleless integrals that are
zero in dimensional regularisation, see Fig. 4, left diagram. The qq̄ → H process, see Fig 4 right, is
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g

H

g

Fig. 5: Feynman diagrams giving non-zero contributionsto gg → H at one-loop in the HEFT.

proportional to the mq parton mass which are taken massless and therefore null at all orders. As a result,
only two diagrams are non-zero, i.e., the vertex correction and the bubble with the four gluon vertex as
shown in Fig. 5

σ̂tri = σ̂0 δ(1− z)

[
1 +

αS

2π
CA

(
µ2

m2
H

)ǫ

cΓ

(
− 2

ǫ2
+

10

3ǫ
+

179

36
+ π2

)]
, (35)

σ̂bub = σ̂0 δ(1− z)

[
1 +

αS

2π
CA

(
µ2

m2
H

)ǫ

cΓ

(
−10

3ǫ
− 179

36

)]
, (36)

where

cΓ = (4π)ǫ
Γ(1 + ǫ)Γ(1− ǫ)2

Γ(1− 2ǫ)
. (37)

To obtain the results above, one has to write down the loop amplitudes, perform a few simplifications and
the decomposition of the tensor integrals appearing in the amplitudes so to express the results in terms
of the following two scalar integrals:

µ2ǫ
∫

ddℓ

(2π)d
1

ℓ2(ℓ+ pH)2
= cΓ

(
µ2

m2
H

)ǫ(
1

ǫ
+ 2

)
,

µ2ǫ
∫

ddℓ

(2π)d
1

ℓ2(ℓ+ p1)2(ℓ+ p2)2
=

cΓ
2m2

H

(
µ2

m2
H

)ǫ(
2

ǫ2
− π2

)
, (38)

with pH = p1 + p2. Summing the contributions of the two diagrams above with the αS correction from
Eq. (25), we obtain

σ̂V = σ̂0 δ(1− z)

[
1 +

αS

2π
CA

(
µ2

m2
H

)ǫ

cΓ

(
− 2

ǫ2
+

11

3
+ π2

)]
, (39)

i.e., the total virtual contribution is proportional to the Born amplitude and it contains pole(s) in powers
of 1/ǫ. The fact that the full virtual amplitude is proportional to the Born is due to the simplicity of a
2 → 1 process. However, in general one can prove that the divergent contributions must be proportional
to the Born in the case of collinear (and collinear-soft, the double pole) divergences and to the so-called
color-connected Born for the soft ones. Given that the Born amplitude is proportional to α2

S and we
are calculating QCD corrections, we also expect UV divergences, which are proportional to 1/ǫ. The
fact that apparently we do not see any pole in 1/ǫ in the result above, it simply means that there is an
accidental cancellation between simple poles of IR origin and that of UV origin, as we did not keep them
distinct in the calculation. To leave only IR poles in the amplitude to be cancelled with those coming
from the real contribution, we therefore proceed here to renormalisation of αS . This can be attained by
the substitution in σ̂0, see also [QCD:1.2.3],

αS → αMS
S (µR) = αS

[
1− αS

2π
cΓ

(
µ2

µ2R

)ǫ
b0
ǫ

]
, (40)
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Fig. 6: Feynman diagrams giving qq̄ real contributions in the infinite top-quark mass limit. These contributions
are finite.

where b0 = 11/6CA − 2nfTF /3. The UV-renormalized virtual amplitude is

σ̂MS
V (gg) = σ̂0 δ(1− z)

[
1 +

αS

2π
CA

(
µ2

m2
H

)ǫ

cΓ

(
− 2

ǫ2
− 2

ǫ

b0
CA

− 2
b0
CA

log
m2

H

µ2R
+

11

3
+ π2

)]
. (41)

where now the poles in 1/ǫ2, 1/ǫ are only of IR nature. Another important feature which is manifest in
the expression above is the appearance of an explicit log of the renormalisation scale in the short distance
part. As mentioned before, this the improvement expected on the scale dependence of a NLO result: the
µR dependence of the α2

S(µR) overall coefficient is exactly cancelled by the explicit log up to order α3
S .

5.4 Real Contributions
Real corrections imply the calculation of 2 → 2 tree-level amplitudes and their integration over phase
space in d dimensions. All possible initial and final state partons, gluons, quarks and anti-quarks need to
be included,

1. qq̄ → Hg + crossing (i.e., q̄q → Hg) ,
2. qg → Hq + crossings (i.e., q̄g → Hq̄ , gq → Hq , gq̄ → Hq̄) ,
3. gg → Hg .

It is easy to predict which divergences to expect from each of the subprocesses above. The reason is
that out of the possible (by Lorentz and color invariance) underlying Born amplitudes, i.e., qq̄ → H and
gg → H , the only non-zero one is gg → H . Therefore the first processes must give a finite result when
integrated over phase space, the second ones can only contain collinear divergences to be absorbed in
quark PDF’s, while the last is expected to give rise to soft and collinear divergences, part of which will be
absorbed in the gluon PDF’s and the rest canceled against those coming from the virtual contributions,
Eq. (41).

5.4.1 qq̄ → Hg

This contribution, shown in Fig. 6 is finite and can be calculated directly in four dimensions. A simple
calculation gives

|M|2 = 4

81

α3
S

πv2
(u2 + t2)

s
, (42)

to be integrated over the 4-dimensional phase space

dΦ2 =
1

8π
(1− z) dv , (43)

where v = 1/2(1 + cos θ) and z = m2
H/s as usual. Using

t = −s(1− z)(1− v) , (44)
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Fig. 7: Feynman diagrams giving qg real contributions in the infinite top-quark mass limit.

u = −s(1− z)v , (45)

gives

σ̂R(qq̄) = σ̂0
αS

2π

64

27

(1− z)3

z
. (46)

5.4.2 gq → Hq

Let us consider now the contribution from the diagrams with an initial quark, i.e., the process gq → Hq.
The d-dimensional averaged/summed over initial/final state polarizations and colors amplitude is

|M|2 = − 1

54(1− ǫ)

α3
S

πv2
(u2 + s2)− ǫ(u+ s)2

t
. (47)

Integrating it over the d-dimensional phase space

dΦ2 =
1

8π

(
4π

s

)ǫ 1

Γ(1− ǫ)
zǫ(1− z)1−2ǫ v−ǫ(1− v)−ǫdv (48)

one gets

σ̂R(gq) = σ̂0
αS

2π
CF

(
µ2

m2
H

)ǫ

cΓ

[
−1

ǫ
pgq(z) + z − 3

2

(1− z)2

z
+ pgq(z) log

(1− z)2

z

]
, (49)

where the pgq(z) color-stripped Altarelli-Parisi splitting function is given in the Appendix, Eqs. (67). We
perform the factorisation of the collinear divergences adding the counterterm

σcoll.c.t. (gq) = σ0
αS

2π

[(
µ2

µ2F

)ǫ
cΓ
ǫ
Pgq(z)

]
. (50)

We note that in fact in CDR the cross section factorises over the d-dimensional spllitting functions
Eqs. (68). However, the collinear counter-term in MS is defined with the 4-dimensional Altarelli-Parisi
splitting functions, Eqs. (67), and that is why we have written the result above in terms of pgq(z) leaving
out a finite term z (also note that our definition of σ0, Eq. (34), contains a factor z). This gives

σ̂MS
R (gq) = σ̂R(gq) + σ̂coll.c.t. (gq)

= σ0
αS

2π
CF

[
pgq(z) log

m2
H

µ2F
+ pgq(z) log

(1− z)2

z
+ z − 3

2

(1− z)2

z

]
. (51)
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Fig. 8: Feynman diagrams giving gg real contributions in the infinite top-quark mass limit.

5.4.3 gg → Hg

The calculation of the d-dimensional gg → Hg amplitude involves the four diagrams shown in Fig. 8
and it is not so trivial to do by hand, yet the final result is very compact:

|M|2 = 1

24(1− ǫ)2
α3
S

πv2
(m8

H + s4 + t4 + u4)(1− 2ǫ) + 1
2ǫ(m

4
H + s2 + t2 + u2)2

stu
. (52)

This example is illustrative of the fact that keeping track of the ǫ parts in the amplitude squared makes
the calculation significantly more complex for at least two reasons. First the structure of the result
itself is more involved. Second, one is forced to work at the squared amplitude level as d dimensional
contributions come from the (d − 2 dimensional ) gluon polarizations and therefore cannot exploit the
beauty, power and simplicity of helicity amplitude techniques [20, 21]. Computing QCD amplitudes
where states have fixed polarizations entails huge simplifications and allows to make predictions for
amplitudes with many external partons. For example, tree-level amplitudes in the HEFT involving up to 5
extra partons can be easily obtained automatically using tools such as ALPGEN [22] or MADGRAPH [23].
Fortunately, it turns out that is possible to use a different scheme than CDR and actually perform the
computation of the Born and real matrix elements in exactly four dimensions (yet integrate them over the
d-dimensional phase space). This involves a different (and a bit tricky) d-dimensional algebra for the loop
computations and the introduction of (universal) finite terms for the initial-state counter-terms and UV
subtractions, yet with an enormous computational simplification. All public NLO codes for processes at
the LHC in practice do use such "maximally four dimensional" d-dimensional regularisation schemes.
Integrating the amplitude (52) over the d-dimensional phase space of Eq. (48) gives

σ̂R(gg) = σ̂0
αS

2π
CA

(
µ2

m2
H

)ǫ

cΓ

[(
2

ǫ2
+

2

ǫ

b0
CA

− π2

3

)
δ(1− z)

−2

ǫ
pgg(z)−

11

3

(1− z)3

z
− 4

(1− z)2(1 + z2) + z2

z(1− z)
log z

+ 4
1 + z4 + (1− z)4

z

(
log(1− z)

1− z

)

+

]
, (53)
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where the plus prescription is defined as follows:
∫ 1

0
dx [h(x)]+f(x) =

∫ 1

0
dxh(x)[f(x)− f(1)] . (54)

Note that the 2
ǫ

b0
CA
δ(1 − z) in Eq. (53) comes from rexpressing the divergent term −4

ǫ [
z

(1−z)+
+ 1−z

z +

z(1− z)] in terms of −2
ǫpgg(z), see Eq. (67). The factorisation of the collinear divergence is handled by

adding the corresponding counterterm

σ̂coll.c.t. (gg) = 2 σ̂0
αS

2π

[(
µ2

µ2F

)ǫ
cΓ
ǫ
Pgg(z)

]
, (55)

which gives

σ̂MS
R (gg) = σ̂R(gg) + σ̂coll.c.t. (gg)

= σ̂0
αS

2π
CA

(
µ2

m2
H

)ǫ

cΓ

[(
2

ǫ2
+

2

ǫ

b0
CA

− π2

3

)
δ(1− z)

+2pgg log
m2

H

µ2F
− 11

3

(1− z)3

z
− 4

(1− z)2(1 + z2) + z2

z(1− z)
log z

+ 4
1 + z4 + (1− z)4

z

(
log(1− z)

1− z

)

+

]
. (56)

We can now recognise that the IR poles match those of the virtual contributions in Eq. (41). Adding up
the contributions from real and virtual contributions of the gg channel we obtain (note that our definition
of σ0, Eq. (34), contains a factor z):

σ̂MS(gg) = σ̂MS
R (gg) + σ̂MS

V (gg)

= σ0
αS

2π
CA

[(
11

3
+

2

3
π2 − 2

b0
CA

log
m2

H

µ2R

)
δ(1− z)

−11

3

(1− z)3

z
+ 2pgg log

m2
H

µ2F
− 4

(1− z + z2)2

z(1− z)
log z

+ 8
(1− z + z2)2

z

(
log(1− z)

1− z

)

+

]
. (57)

As predicted, the final results for the short distance coefficients is finite (yet scheme dependent) and does
contain the necessary log’s of the renormalisation and factorisation scales that compensate up to α3

S the
corresponding dependences in α2

S(µR) of the Born amplitude and in the PDF’s.

5.5 NLO results: discussion
The expressions above can be easily implemented in a numerical code to perform the convolution in-
tegrals with PDF’s. A few simple numerical optimizations, such as the choice of integration variables,
and a bit of attention to the implementation of the + distributions, that’s all is needed. The reader can
find a sample implementation in a Mathematica® notebook at the web address mentioned at the end of
the Introduction. By running the code with different scale choices, one can associate an uncertainty to
the NLO predictions as done at LO. The result, shown in Fig. 9, comes as a big surprise! The NLO
calculation predicts a rate twice as large and the respective LO and NLO uncertainty bands do not even
overlap. That means that our naive estimate of the uncertainties at LO is totally off and therefore unre-
liable. It seems also to suggest that perturbation expansion is at stake here. As we had mentioned, this
motivated the computation of the NNLO corrections, which are also shown in Fig. 9. Fortunately, NNLO

16

F. MALTONI

110



Fig. 9: K-factors for Higgs production from gluon fusion at the LHC. Uncertainty bands are obtained via indepen-
dent scale variation 1/2mH < µR, µF < 2mH with 1/2 < µF /µR < 2. The LO and NLO bands can be obtained
by implementing the formulas obtained in these notes in a code that perfoms the numerical integration over the
PDF’s. Cross-checks and NNLO results can be obtained with HNNLO [24]. (Plot courtesy of M. Grazzini).

predictions do overlap with NLO and also display a smaller scale dependence, so that the perturbation
picture seems safe starting from NLO on. In fact, this behavior is rather special to pp → H + X and
it is often rephrased by saying that what we call LO (in the perturbative expansion) is not actually the
leading one in size and therefore we should not start from that. For instance, in Drell-Yan or VBF this
does not happen, and the perturbative expansions (seem to) converge beautifully, see Fig. 10. In any
case, the Higgs production reminds us an important fact that we should always keep in mind: scale vari-
ation cannot by definition reproduce missing finite terms in the perturbative expansion and as such can
only give an indication of what the real uncertainties could be. On the other hand, comparison between
predictions from LO and NNLO, their stabilization (or lack thereof) and the use of approximate meth-
ods to determine (classes of) higher order terms, all together can provide a rather solid picture on the
theoretical uncertainties on a case-by-case basis. We mention, in passing, another important source of
uncertainties in making predictions for hadron colliders, i.e., that coming from imperfect knowledge of
the PDF’s. Uncertainties are related to unknown higher-order terms in the DGLAP evolution equations
that determine as well as from the extraction of the initial condition from experimental data, see [QCD:3]
and in particular [QCD:3.3.2]. 7

As far as total cross sections are concerned, the situation is therefore pretty clear. Fixed-order
calculations come equipped with self-detecting procedures that can give us information on whether a
prediction is reliable or not. If not, it can be systematically improved by including higher-order terms
(almost for free nowadays at NLO, yet at a rather high cost at NNLO) and uncertainties can be easily
estimated. So it is natural to ask, what about other IR-safe observables?

Let us consider, once again pp → H + X as an example, and focus on the Higgs momentum
7The latter does in fact imply also the prediction of experimental observables at the same order in perturbation theory and

therefore are also intrinsically also affected by scale dependencies. Such effects are not included normally in the estimation of
the uncertainties coming from PDF’s.
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σ (pb) at LHC
√s = 7 TeV

scale choice:
Q/4 ≤ µR,µF ≤ 4Q
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Fig. 10: Examples of improvement in the predictions of processes at LHC in going from LO to NNLO. On the
left, scale dependence of the predictions for Z/γ∗ production (at y = 0) at the LHC14, at fixed order [25]. On
the right, Higgs production at the LHC7 via VBF [26] as a function of the Higgs mass. The bands are obtained by
independent scale variation in the interval Q/4 ≤ µF , µR ≤ 4Q, Q being the virtuality of the W,Z fusing into the
Higgs. In both cases the perturbative expansion behaves extremely well and NNLO predictions overlap with those
at LO and NLO and display a much smaller residual uncertainty.

(fully inclusive) distribution, which can be parametrized in terms of only two variables8, the rapidity yH
and the transverse momentum pTH . At LO (referred to the total cross section), the Higgs can be boosted
in the forward or backward directions in the lab system, yH = 1

2 log
x1
x2

, yet it has always pTH = 0, i.e.
the distribution in pTH is a delta function centered at pTH = 0. At NLO (again referred to the total cross
section), 2 → 2 diagrams enter in the calculation and the Higgs can have a non-zero pTH . Since at any
point in phase space with pTH 6= 0 this is the first non-zero contribution, the observable pTH of the Higgs
is only at LO. In other words if we want to know the pTH distribution of the Higgs at NLO over all phase
space, we need at least a NNLO prediction for the cross section. Another way of thinking about it is to
ask oneself what kind of diagrams are present in the calculation for that observable in a given area of the
phase space: if there are only tree-level diagrams then the observable is LO. It is important when working
with NLO codes to always think about what kind of observables are actually predicted at NLO, what at
LO and what not even at LO. Again, a NNLO computation for the total cross section for pp → H +X ,
gives NNLO information on the Higgs rapidity distribution, NLO for the Higgs pTH and pp→ H + 1-jet
observables, LO for pp→ H + 2-jets observables and the structure of the jet in H + 1-jet events and no
information at all on pp → H + 3-jets observables. In short, a fixed-order computation can only make
predictions for a finite number of observables, typically with a rather limited number of resolved partons
and a very small number of unresolved ones, i.e. just one for a NLO computation and up to two for a
NNLO computation. This is the first main limitation of a fixed-order computation. However, it is not the
only one.

Consider again the pTH distribution of the Higgs as predicted by a NLO computation for the total
cross section, Fig. 11. This curve can be easily obtained using the expressions in four dimensions of
Eqs. (42,47,52), performing the integration over the polar angle together with the PDF’s via a Monte-
Carlo method and plotting it point-by-point during the integration. The pTH distribution is divergent in
pTH = 0 as expected from soft and beam-collinear emissions. As we have learnt such divergences are
proportional to δ(1 − z) where z is the fraction of parton-parton energy taken by the Higgs and are
cancelled by the virtual contributions, all of which reside in pT = 0. So the cancellation between real
and virtual contributions, all of it happens in the first bin of the histogram. How do we interpret such

8We do not consider the azimuthal angle φ, because for symmetry reasons can only lead to a uniform distribution
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Fig. 11: Higgs pTH spectrum for a Higgs of mH = 120 GeV at the LHC7. The labeling NLO and NLL+NLO
refer to the total cross section. The curves are normalized to the same value (=total cross section is the same). The
green curve is just a LO prediction for the pTH of the Higgs. The logarithmic divergence at pTH → 0 is cancelled by
the negative infinite virtual contributions at pTH = 0 (not shown!). The resummed prediction (red curve) features a
“physical” smooth behavior at small pTH . (The resummed prediction is obtained via HqT [27]).

weird distribution? A useful way is to think about the size of the bin of the distribution as our resolution
scale: with a rather coarse binning there is no "going-to-infinity" and predictions are rather stable (this of
course includes the total cross section which corresponds to using only one bin), while with thin binning,
we start to be sensitive to low energy and virtual emissions which become increasingly important and
are not included at all in a fixed-order approach. This is the case where resummed predictions come into
rescue: one finds that the leading part of soft emissions (real and virtual) is universal, it can be considered
at all orders and included by identifying the log’s associated to it and exponentiating them. This can be
done either at very high accuracy analytically yet fully inclusively or in a numerical and exclusive way
at the leading log with a parton shower (which actually resums both soft and collinear enhancements).
The result of including these effects analytically is shown in Fig. 11, red curve. In very crude words, the
effect of the resummation is to spread the δ(pT ) of the virtual contributions over a range of a few tens of
GeV with the effect of smoothing out the divergence and producing a "physical" distribution.

In summary, fixed-order calculations in perturbative QCD can be performed in a well-defined
and quite simple framework, i.e. in the context of the factorization theorem. It is therefore possible to
make predictions for inclusive quantities in hadron colliders, which can be systematically improved at
the "only" price of an (exponential) increase in the complexity of the calculation. In practice, however,
the use of fixed-order predictions is limited by several other important drawbacks. First, only processes
with a few resolved partons can be calculated, while in practice we know that hundreds of hadrons can be
produced in a single proton-proton interaction of which we are bound to ignore the details. Second, sharp
infinities appear in the phase that do cancel between real and virtual contributions if inclusive enough
observables are defined, yet lead to unphysical distributions in specific areas of the phase space and/or
when the resolved partons become either soft or collinear. Such local positive and negative infinities are
unphysical because they appear only due the artificial truncation of the perturbative expansion. Finally,
the fact that plus and minus infinities appear locally in phase space also means that fixed order predictions
beyond LO cannot be used as probability functions to generate events as distributed in nature. Parton
showers, i.e. fully exclusive resummation, and their merging/matching with fixed-order predictions,
provide an elegant and powerful way out to all the above limitations.
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6 Beyond fixed-order predictions
As we have explicitly verified, fixed-order predictions have important limitations both of principle (ar-
eas of phase space and observables, such as jet substructure are poorly described, no hadrons but only
partons) and in practice (no event simulation is possible). Fortunately, an alternative approach exists that
is based on the fact that the IR structure, soft or collinear, of QCD is universal and contributions can
be resummed at all orders. Last but not least, formulas that describe the emission of soft and collinear
partons are amenable of a probabilistic interpretation and therefore not only it is possible to perform an
explicit resummation but also to associate a full “history" to an hard scattering event, i.e., to associate
to every event a full-fledged description of an high-energy event from the two initial protons to the final
(possibly hundreds) of hadrons and leptons in the final state. In addition, in the latest years, enormous
progress has been achieved in combining the accuracy of fixed-order predictions with the flexibility of
parton showers. These methods are briefly presented here together with their applications to Higgs pro-
duction. The short presentation below is adapted from Ref. [28]. The reader is also referred to [QCD:4.4]
for further details, examples and references.

6.1 Parton Showers
Parton Showers (PS) are able to dress a given Born process with all the dominant (i.e. enhanced by
collinear logarithms, and to some extent also soft ones) QCD radiation processes at all orders in pertur-
bation theory. In particular, the dominant contributons, i.e. those given by the leading logarithms, coming
from both real and virtual emissions are included. The cross section for the first (which is often also the
hardest) emission in a shower reads:

dσ1st step = dΦBB(ΦB)
[
∆(pmin

⊥ ) + dΦR|B∆(pT(ΦR|B))P (ΦR|B)
]
, (58)

where ∆(pT) denotes the Sudakov form factor

∆(pT) = exp

[
−
∫

dΦR|BP (ΦR|B)Θ(pT(ΦR)− pT)

]
. (59)

This Sudakov form factor can be understood as a no-emission probability of secondary partons down to
a resolution scale of pT. Here P (ΦR|B) is a process-independent universal splitting function that allows
to write the PS approximation to the real cross section RPS, typically given schematically by a product
of the underlying Born-level term folded with a splitting kernel P

RPS(Φ) = P (ΦR|B)B(ΦB). (60)

In this framework, ΦR|B is often expressed in terms of three showering variables, like the virtuality t in
the splitting process, the energy fraction of the splitting z and the azimuth φ. A very simple (and widely
used) choice for the splitting function, is

P (ΦR|B)dΦR|B =
αS(t)

2π
Pa→bc(z)

dφ

2π

dt

t
dz (61)

where P (z) are Altarelli-Parisi splitting functions on which any QCD amplitude factorisises in the
collinear limit b ‖ c.

The above definition of the Sudakov form factor, guarantees that the square bracket in Eq. (58)
integrates to unity, a manifestation of the probabilistic nature of the parton shower. Thus, integrating the
shower cross section over the radiation variables yields the total cross section, given at LO by the Born
amplitude. The corresponding radiation pattern consists of two parts: one given by the first term in the
square bracket, where no further resolvable emission above the parton-shower cut-off pmin

⊥ – typically of
the order of 1 GeV – emerges, and the other given by the second term in the square bracket describing
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the first emission, as determined by the splitting kernel. It is important to stress that the real-emission
cross section in a PS generator is only correct in the small angle and/or soft limit, whereRPS is a reliable
approximation of the complete matrix element.

After the 1st step the process is repeated using the new configuration as the Born one.

While rather crude, the PS approximation is a very powerful one, due mainly to the great flexi-
bility and simplicity in the implementation of 2 → 1 and 2 → 2 high-Q2 processes. In addition, once
augmented with a hadronisation model the simulation can easily provide a full description of a collision
in terms of physical final states, i.e., hadrons, leptons and photons. In the current terminology a generic
Monte Carlo generator mainly refers to such tools, the most relevant examples of are PYTHIA 6 and
PYTHIA 8 [29, 30], HERWIG [31], HERWIG++ [32], and SHERPA [33]. A very clear and exhaustive
presentation of parton shower generators can be found in Ref. [34].

6.2 Matrix-element merging (ME+PS)
In parton showers algorithms QCD radiation is generated in the collinear and soft approximation, using
Markov chain techniques based on Sudakov form factors. Hard and widely separated jets are thus poorly
described in this approach. On the other hand, tree-level fixed order amplitudes can provide reliable
predictions in the hard region, while failing in the collinear and soft limits. To combine both descriptions
and avoid double counting or gaps between samples with different multiplicity, an appropriate merging
method is required.

Matrix-element merging [35] aims at correcting as many large-angle emissions as possible with the
corresponding tree-level accurate prediction, rather than only small-angle accurate. This is achieved by
generating events up to a given (high) multiplicity using a matrix-element generator, with some internal
jet-resolution parameter Qcut on the jet separation, such that practically all emissions above this scale
are described by corresponding tree-level matrix elements. Their contributions are corrected for running-
coupling effects and by Sudakov form factors. Radiation below Qcut on the other hand is generated by
a parton-shower program, which is required to veto radiation with separation larger than Qcut. As far as
the hardest emission is concerned, matrix-element merging is as accurate as matrix-element corrections
(when these are available) or NLO+PS. Since they lack NLO virtual corrections, however, they do not
reach NLO accuracy for inclusive quantities. Nevertheless, they are capable to achieve leading-order
accuracy for multiple hard radiation, beyond the hardest only, while NLO+PS programs, relying on the
parton shower there are only accurate in the collinear and/or soft limit for these quantities.

Several merging schemes have been proposed, which include the CKKW scheme [35–37] and its
improvements [38, 39], the MLM matching [40], and the kT -MLM variation [41]. The MLM schemes
have been implemented in several matrix element codes such as ALPGEN [22], MADGRAPH [23],
through interfaces to PYTHIA/HERWIG, while SHERPA [33] and HERWIG++ [32] have adopted the
CKKW schemes and rely on their own parton showers. In Ref. [42] a detailed, although somewhat
outdated description of each method has been given and a comparative study has been performed.

6.3 NLO+PS in a nutshell
Several proposals have been made for the full inclusion of complete NLO effects in PS generators. At this
moment, only two of them have reached a mature enough stage to be used in practice: MC@NLO [43]
and POWHEG [44]. Both methods correct – in different ways – the real-emission matrix element to
achieve an exact tree-level emission matrix element, even at large angle. As we have seen in the previous
subsection, this is what is also achieved with matrix-element corrections in parton showers, at least for
the simplest processes listed earlier. This, however, is not sufficient for the NLO accuracy, since the
effect of virtual corrections also needs to be included. In both methods, the real-emission cross section
is split into a singular and non-singular part, R = Rs +Rf . One then computes the total NLO inclusive
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cross section, excluding the finite contribution, at fixed underlying Born kinematics, defined as

B̄s = B(ΦB) +

[
V (ΦB) +

∫
dΦR|BR

s(ΦR|B)
]
, (62)

and uses the formula

dσNLO+PS = dΦBB̄
s(ΦB)

[
∆s(pmin

⊥ ) + dΦR|B
Rs(ΦR)

B(ΦB)
∆s(pT(Φ))

]
+ dΦRR

f (ΦR) (63)

for the generation of the events. In this formula, the term B̄ can be understood as a local K-factor
reweighting the soft matrix-element correction part of the simulation. Clearly, employing the fact that
the term in the first square bracket integrates to unity, as before, the cross section integrates to the full
NLO cross section.

In MC@NLO one chooses Rs to be identically equal to the term B ⊗ P that the PS generator
employs to generate emissions. Within MC@NLO, n -body events are obtained using the B̄s function,
and then fed to the PS, which will generate the hardest emission according to Eq. (62). These are called S
events in the MC@NLO language. An appropriate number of events are also generated according to the
Rf cross section, and are directly passed to the PS generator. These are called H events. In MC@NLO,
Rf = R − Rs is not positive definite, and it is thus necessary to generate negative weighted events in
this framework. A library of MC@NLO Higgs processes (gluon fusion, vector-boson associated pro-
duction, and charged Higgs associated with top) is available at Ref. [45], which is interfaced to HERWIG

and HERWIG++. A fully automatized approach, AMC@NLO [46] implemented in the MADGRAPH

framework, is now available that allows to compute and combine all necessary ingredients (Born, real,
virtual matrix elements plus counterterms) at the user’s request.

In POWHEG, one chooses Rs ≤ R, and in many cases even Rs = R, so that the finite cross
section Rf vanishes. In this case, the hardest emission is generated within POWHEG itself, and the
process is passed to the parton shower only after the hardest radiation is generated. Positive weighted
events are obtained, since Rf can always be chosen to be positive definite. In all cases the chosen Rs

has exactly the same singularity structure as R, so that Rf always yield a finite contribution to the cross
section. Implementations of Higgs production processes with the POWHEG method are available in
HERWIG++ [47], in the POWHEGBOX [48] (interfaced to both HERWIG and PYTHIA) and recently in
SHERPA [49].

6.4 Improved descriptions of Higgs production
Being of primary importance, Higgs kinematic distributions are now quite well predicted and also avail-
able via public codes such as ResBos [50] and HqT [27,51]. Differential pTH distributions accurate to LO
yet featuring the exact bottom- and top-quarks mass loop dependence (and therefore can be used also for
predictions of scalar Higgs in BSM) can be obtained via HIGLU [52] as well as via HPro [53]. However,
in experimental analyses, it is also crucial to get as precise predictions as possible for exclusive observ-
ables that involve extra jets, such as the jet pT spectra and the jet rates, at both parton and hadron level.
To optimize the search strategies and in particular to curb the very large backgrounds, current analyses
both at Tevatron and at the LHC select 0-,1- and 2-jet events and perform independent analyses on each
sample. The final systematic uncertainties are effected by both the theoretical and experimental ones
of such a jet-bin based separation. In the HEFT, fully exclusive parton- and hadron-level calculations
can now be performed by Parton Shower (PS) programs or with NLO QCD codes matched with parton
showers: via the MC@NLO and POWHEG methods. Beyond the HEFT, fully exclusive predictions
ME+PS and NLO+PS techniques has become available only recently [54, 55]. The reason is that one
needs to compromise between the validity of HEFT and the complexity of higher loop calculations.

Fig. 12 shows a comparison of the predictions of the pT of the Higgs at LHC7 as obtained in
HEFT from:
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Fig. 12: Higgs pTH spectrum for a Higgs of mH = 140 GeV as predicted by a series of improved predictions:
NNLL+NNLO resummed (red solid), MC@NLO + Pythia (blue dashes), matrix-element + Pythia merged results
(magenta dashes), POWHEG + Pythia (cyan dashes). All predictions display similar features, i.e. a peak between
10-20 GeV and a similar shape at high-pTH with differences that lie within their respective uncertainties (not shown).

– a full analytical resummation at NNLL;
– MC@NLO (w/ PYTHIA);
– ME+PS merging (MADGRAPH+PYTHIA);
– POWHEG (w/ PYTHIA).

We first stress (again) that this observable which is at NLO at high-pT only in the Hqt predictions.
The ME+PS approach is built to be LO for all observables, while MC@NLO and POWHEG predic-
tions are based on the NLO calculation for the total cross section, the same performed in these notes.
Notwidthstanding we see that given the expected uncertainties which are quite large above all at high-pT

the shapes are in substantial agreement both in the low and high-pT ranges. In Fig. 13 the pT distribu-
tions for the first and second jets are shown comparing the ME+PS prediction based on the HEFT and
one with the full top-mass depedence and PYTHIA. Even in this case the agreeement between the various
approaches is extremely good for a light Higgs. For a very heavy Higgs difference in the pT distributions
of the extra jets become visibile at quite a high pT , a region not very relevant phenomenologically.

7 Conclusions
Progress in the field of QCD predictions for the LHC in the form of MC tools usable by both theorists and
experimentalists has made tremendous progress in the last years. It is fair to say that we are now able (or
close to be able in some specific very challenging cases) to compute automatically or semi-automatically
any interesting cross section for Standard Model and Beyond processes at NLO accuracy and interface
it with parton shower programs for event generation. In the LHC era the lowest acceptable accuracy for
any serious phenomenological and experimental study is via an NLO event generator. LHC precision
physics is now at NNLO in QCD and NLO in EW. Any physicist interested in making discoveries at the
LHC needs to be familiar with the ideas, the physics and the reach of the current QCD simulation tools.

To this aim, we have considered pp → H +X as a case study. We have illustrated how accurate
and useful predictions for cross sections and other observables can be obtained in QCD, starting from
the calculation of Born amplitude (at one loop) and the corresponding hadronic cross section. We have
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Fig. 13: Jet pT distributions for associated jets in gluon fusion production ofmH = 140GeV andmH = 500GeV
Higgs bosons at 7 TeV LHC.

then considered Higgs production at NLO in the HEFT and discussed the limitations of fixed-order
predictions. Finally, we have briefly discussed how fully exclusive predictions are obtained with modern
tools, that allow to reach the accuracy of NLO predictions together with the full exclusivity of a parton
shower approach.

Appendix
Splitting functions and collinear counterterms
We define the 4-dimensional splitting functions as in (4.94) of the ESW book:

Pqq(z) = CF pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
(64)

Pqg(z) = TR pqg(z) = TR
[
z2 + (1− z)2

]
(65)

Pgq(z) = CF pgq(z) = CF

[
1 + (1− z)2

z

]
(66)

Pgg(z) = CA pgg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+ b0 δ(1− z) , (67)

where b0 = 11/6CA−2nfTF /3. We also define the following quantities as the extension of the splitting
functions in d-dimensions:

P d
ij(z) = Pij(z) + ǫP ǫ

ij(z) (68)

where

P ǫ
qq(z) = CF pǫqq(z) = −CF (1− z) (69)

P ǫ
qg(z) = TR pǫqg(z) = −TR2z(1− z) (70)

P ǫ
gq(z) = CF pǫgq(z) = −CF z (71)

P ǫ
gg(z) = 0 (72)

factorisation of the collinear divergences is performed through the addition of the following counterterm
for each parton in the initial state:

σCDR
c.t. = σCDR

0

αS

2π

[(
µ2

µ2F

)ǫ
cΓ
ǫ
Pij(z)

]
(73)
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where σSCHEME
0 is the LO cross section and its value depends on the scheme (see the example for Drell-

Yan)]. In CDR, when there is a collinear divergence, the cross section behaves as

σcollR ∼ −1

ǫ
P d
ij(z)σ

CDR
0 + other terms . (74)

Adding the counterterm (73), leaves a finite part

σMS
R ∼ −P ǫ

ij(z) (σ
CDR
0 |ǫ→0) + other terms . (75)
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Abstract
We explain the many reasons for the interest in flavor physics. We describe
flavor physics and the related CP violation within the Standard Model, and
explain how the B-factories proved that the Kobayashi-Maskawa mechanism
dominates the CP violation that is observed in meson decays. We explain the
implications of flavor physics for new physics, with emphasis on the “new
physics flavor puzzle”, and present the idea of minimal flavor violation as a
possible solution. We explain why the values flavor parameters of the Standard
Model are puzzling, present the Froggatt-Nielsen mechanism as a possible so-
lution, and describe how measurements of neutrino parameters are interpreted
in the context of this puzzle. We show that the recently discovered Higgs-
like boson may provide new opportunities for making progress on the various
flavor puzzles.

1 What is flavor?

The term “flavors” is used, in the jargon of particle physics, to describe several copies of the same gauge
representation, namely several fields that are assigned the same quantum charges. Within the Standard
Model, when thinking of its unbrokenSU(3)C × U(1)EM gauge group, there are four different types of
particles, each coming in three flavors:

– Up-type quarks in the(3)+2/3 representation:u, c, t;

– Down-type quarks in the(3)−1/3 representation:d, s, b;

– Charged leptons in the(1)−1 representation:e, µ, τ ;

– Neutrinos in the(1)0 representation:ν1, ν2, ν3.

The term “flavor physics” refers to interactions that distinguish between flavors. By definition,
gauge interactions, namely interactions that are related to unbroken symmetries and mediated therefore
by massless gauge bosons, do not distinguish among the flavors and do not constitute part of flavor
physics. Within the Standard Model, flavor-physics refers to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within the Stan-
dard Model, these are the nine masses of the charged fermions and the four “mixing parameters” (three
angles and one phase) that describe the interactions of the charged weak-force carriers (W±) with quark-
antiquark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos, one
should add to the list three neutrino masses and six mixing parameters (three angles and three phases)
for theW± interactions with lepton-antilepton pairs.

The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-
portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are flavor-
universal. An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions
of the Higgs particle are flavor diagonal.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor) are
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different. In “flavor changing charged current” processes, both up-type and down-type flavors, and/or
both charged lepton and neutrino flavors are involved. Examples are (i) muon decay viaµ → eν̄iνj , and
(ii) K− → µ−ν̄j (which corresponds, at the quark level, tosū → µ−ν̄j). Within the Standard Model,
these processes are mediated by theW -bosons and occur at tree level. In “flavor changing neutral
current” (FCNC) processes, either up-type or down-type flavors but not both, and/or either charged
lepton or neutrino flavors but not both, are involved. Example are (i) muon decay viaµ → eγ and (ii)
KL → µ+µ− (which corresponds, at the quark level, tosd̄ → µ+µ−). Within the Standard Model, these
processes do not occur at tree level, and are often highly suppressed.

Another useful term is “flavor violation”. We explain it later in these lectures.

2 Why is flavor physics interesting?
– Flavor physics can discover new physics or probe it before it is directly observed in experiments.

Here are some examples from the past:

– The smallness ofΓ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;

– The size of∆mK led to a successful prediction of the charm mass;

– The size of∆mB led to a successful prediction of the top mass;

– The measurement ofεK led to predicting the third generation.

– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP
violating parameter, the Kobayashi-Maskawa phaseδKM [1]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes thenew physics flavor
puzzle.

– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model
does not provide any explanation of these features. This is theStandard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

3 Flavor in the Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) The
symmetries of the Lagrangian and the pattern of spontaneous symmetry breaking; (ii) The representations
of fermions and scalars. The Standard Model (SM) is defined as follows:
(i) The gauge symmetry is

GSM = SU(3)C × SU(2)L × U(1)Y. (1)

It is spontaneously broken by the VEV of a single Higgs scalar,φ(1, 2)1/2
(
〈φ0〉 = v/

√
2
)
:

GSM → SU(3)C × U(1)EM. (2)

(ii) There are three fermion generations, each consisting of five representations ofGSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1. (3)
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3.1 The interaction basis

The Standard Model Lagrangian,LSM, is the most general renormalizable Lagrangian that is consistent
with the gauge symmetry (1), the particle content (3) and the pattern of spontaneous symmetry breaking
(2). It can be divided to three parts:

LSM = Lkinetic + LHiggs + LYukawa. (4)

As concerns the kinetic terms, to maintain gauge invariance, one has to replace the derivative with
a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igWµ

b Tb + ig′BµY. (5)

HereGµ
a are the eight gluon fields,Wµ

b the three weak interaction bosons andBµ the single hypercharge
boson. TheLa’s areSU(3)C generators (the3 × 3 Gell-Mann matrices12λa for triplets,0 for singlets),
theTb’s areSU(2)L generators (the2×2 Pauli matrices12τb for doublets,0 for singlets), and theY ’s are
theU(1)Y charges. For example, for the quark doubletsQL, we have

Lkinetic(QL) = iQLiγµ

(
∂µ +

i

2
gsG

µ
aλa +

i

2
gWµ

b τb +
i

6
g′Bµ

)
δijQLj , (6)

while for the lepton doubletsLI
L, we have

Lkinetic(LL) = iLLiγµ

(
∂µ +

i

2
gWµ

b τb −
i

2
g′Bµ

)
δijLLj . (7)

The unit matrix in flavor space,δij , signifies that these parts of the interaction Lagrangian are flavor-
universal. In addition, they conserve CP.

The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2φ†φ− λ(φ†φ)2. (8)

For the Standard Model scalar sector, where there is a single doublet, this part of the Lagrangian is also
CP conserving.

The quark Yukawa interactions are given by

−Lq
Y = Y d

ijQLiφDRj + Y u
ijQLiφ̃URj + h.c., (9)

(whereφ̃ = iτ2φ
†) while the lepton Yukawa interactions are given by

−Lℓ
Y = Y e

ijLLiφERj + h.c.. (10)

This part of the Lagrangian is, in general, flavor-dependent (that is,Y f 6∝ 1) and CP violating.

3.2 Global symmetries

In the absence of the Yukawa matricesY d, Y u andY e, the SM has a largeU(3)5 global symmetry:

Gglobal(Y
u,d,e = 0) = SU(3)3q × SU(3)2ℓ × U(1)5, (11)

where

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2ℓ = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (12)
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Out of the fiveU(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y), which are respected by the Yukawa interactions. The two remainingU(1) groups can
be identified with the PQ symmetry whereby the Higgs andDR, ER fields have opposite charges, and
with a global rotation ofER only.

The point that is important for our purposes is thatLkinetic+LHiggs respect the non-Abelian flavor
symmetryS(3)3q × SU(3)2ℓ , under which

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (13)

where theVi are unitary matrices. The Yukawa interactions (9) and (10) break the global symmetry,

Gglobal(Y
u,d,e 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (14)

(Of course, the gaugedU(1)Y also remains a good symmetry.) Thus, the transformations of Eq. (13) are
not a symmetry ofLSM. Instead, they correspond to a change of the interaction basis. These observations
also offer an alternative way of defining flavor physics: it refers to interactions that break theSU(3)5

symmetry (13). Thus, the term “flavor violation” is often used to describe processes or parameters that
break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the globalSU(3)3q symmetry
(but are neutral underU(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q
, Y d ∼ (3, 1, 3̄)SU(3)3q

, (15)

and of the lepton Yukawa couplings as spurions that break the globalSU(3)2ℓ symmetry (but are neutral
underU(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2ℓ
. (16)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavor suppression factors (see Section 5), and the idea of minimal flavor violation (see Section 5.3).

3.3 Counting parameters

How many independent parameters are there inLq
Y? The two Yukawa matrices,Y u andY d, are3×3 and

complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of them
are, however, physical. The pattern ofGglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three3× 3 unitary matrices minus the phase
related toU(1)B). For example, we can use the unitary transformationsQL → VQQL, UR → VUUR

andDR → VDDR, to lead to the following interaction basis:

Y d = λd, Y u = V †λu, (17)

whereλd,u are diagonal,

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), (18)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we will identify
the nine real parameters as six quark masses and three mixing angles, while the single phase isδKM.

How many independent parameters are there inLℓ
Y? The Yukawa matrixY e is 3×3 and complex.

Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however, freedom
to remove 6 real and 9 imaginary parameters (the number of parameters in two3 × 3 unitary matrices
minus the phases related toU(1)3). For example, we can use the unitary transformationsLL → VLLL

andER → VEER, to lead to the following interaction basis:

Y e = λe = diag(ye, yµ, yτ ). (19)
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We conclude that there are 3 real lepton flavor parameters. In the mass basis, we will identify these
parameters as the three charged lepton masses. We must, however, modify the model when we take into
account the evidence for neutrino masses.

3.4 The mass basis

Upon the replacementRe(φ0) → v+h0√
2

, the Yukawa interactions (9) give rise to the mass matrices

Mq =
v√
2
Y q. (20)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always find unitary matri-
cesVqL andVqR such that

VqLMqV
†
qR = Mdiag

q ≡ v√
2
λq. (21)

The four matricesVdL, VdR, VuL andVuR are then the ones required to transform to the mass basis. For
example, if we start from the special basis (17), we haveVdL = VdR = VuR = 1 andVuL = V . The
combinationVuLV

†
dL is independent of the interaction basis from which we start this procedure.

We denote the left-handed quark mass eigenstates asUL andDL. The charged current interactions
for quarks [that is the interactions of the chargedSU(2)L gauge bosonsW±

µ = 1√
2
(W 1

µ ∓ iW 2
µ)], which

in the interaction basis are described by (6), have a complicated form in the mass basis:

−Lq
W± =

g√
2
ULiγ

µVijDLjW
+
µ + h.c.. (22)

whereV is the3 × 3 unitary matrix (V V† = V †V = 1) that appeared in Eq. (17). For a general
interaction basis,

V = VuLV
†
dL. (23)

V is the Cabibbo-Kobayashi-Maskawa (CKM)mixing matrixfor quarks [1, 2]. As a result of the fact
thatV is not diagonal, theW± gauge bosons couple to quark mass eigenstates of different generations.
Within the Standard Model, this is the only source offlavor changingquark interactions.

Exercise 1:Prove that, in the absence of neutrino masses, there is no mixing in the lepton sector.

Exercise 2:Prove that there is no mixing in theZ couplings. (In the physics jargon, there are no
flavor changing neutral currents at tree level.)

The detailed structure of the CKM matrix, its parametrization, and the constraints on its elements
are described in Appendix A.

4 Testing CKM

Measurements of rates, mixing, and CP asymmetries inB decays in the two B factories, BaBar abd
Belle, and in the two Tevatron detectors, CDF and D0, signified a new era in our understanding of CP
violation. The progress is both qualitative and quantitative. Various basic questions concerning CP and
flavor violation have received, for the first time, answers based on experimental information. These
questions include, for example,

– Is the Kobayashi-Maskawa mechanism at work (namely, isδKM 6= 0)?

– Does the KM phase dominate the observed CP violation?

As a first step, one may assume the SM and test the overall consistency of the various measurements.
However, the richness of data from the B factories allow us to go a step further and answer these questions
model independently, namely allowing new physics to contribute to the relevant processes. We here
explain the way in which this analysis proceeds.
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4.1 SψKS

The CP asymmetry inB → ψKS decays plays a major role in testing the KM mechanism. Before
we explain the test itself, we should understand why the theoretical interpretation of the asymmetry is
exceptionally clean, and what are the theoretical parameters on which it depends, within and beyond the
Standard Model.

The CP asymmetry in neutral meson decays into final CP eigenstatesfCP is defined as follows:

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (24)

A detailed evaluation of this asymmetry is given in Appendix B. It leads to the following form:

AfCP
(t) = SfCP

sin(∆mt)− CfCP
cos(∆mt),

SfCP
≡ 2 Im(λfCP

)

1 + |λfCP
|2 , CfCP

≡ 1− |λfCP
|2

1 + |λfCP
|2 , (25)

where
λfCP

= e−iφB (AfCP
/AfCP

) . (26)

HereφB refers to the phase ofM12 [see Eq. (B.23)]. Within the Standard Model, the corresponding
phase factor is given by

e−iφB = (V ∗
tbVtd)/(VtbV

∗
td) . (27)

The decay amplitudesAf andAf are defined in Eq. (B.1).

d or s

b q

q′

q

V
∗
qb

Vqq′

B
0

or

Bs
f

(a) tf

d or s

b q′

q

q

V
∗
q
u
b Vq

u
q′

q
u

B
0

or

Bs
f

(b) pf
qu

Fig. 1: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing toB0 → f or Bs → f via a
b̄ → q̄qq̄′ quark-level process.

TheB0 → J/ψK0 decay [3,4] proceeds via the quark transitionb̄ → c̄cs̄. There are contributions
from both tree (t) and penguin (pqu , wherequ = u, c, t is the quark in the loop) diagrams (see Fig. 1)
which carry different weak phases:

Af = (V ∗
cbVcs) tf +

∑

qu=u,c,t

(
V ∗
qubVqus

)
pquf . (28)

(The distinction between tree and penguin contributions is a heuristic one, the separation by the operator
that enters is more precise. For a detailed discussion of the more complete operator product approach,
which also includes higher order QCD corrections, see, for example, ref. [5].) Using CKM unitarity,
these decay amplitudes can always be written in terms of just two CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (29)
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whereTψK = tψK + pcψK − ptψK andP u
ψK = puψK − ptψK . A subtlety arises in this decay that is

related to the fact thatB0 → J/ψK0 andB
0 → J/ψK0. A common final state, e.g.J/ψKS , can

be reached viaK0 − K0 mixing. Consequently, the phase factor corresponding to neutralK mixing,
e−iφK = (V ∗

cdVcs)/(VcdV
∗
cs), plays a role:

AψKS

AψKS

= −
(VcbV

∗
cs)TψK + (VubV

∗
us)P

u
ψK(

V ∗
cbVcs

)
TψK +

(
V ∗
ubVus

)
P u
ψK

× V ∗
cdVcs

VcdV
∗
cs

. (30)

The crucial point is that, forB → J/ψKS and other̄b → c̄cs̄ processes, we can neglect theP u

contribution toAψK , in the SM, to an approximation that is better than one percent:

|P u
ψK/TψK | × |Vub/Vcb| × |Vus/Vcs| ∼ (loop factor)× 0.1× 0.23 ∼< 0.005. (31)

Thus, to an accuracy better than one percent,

λψKS
=

(
V ∗
tbVtd

VtbV
∗
td

)(
VcbV

∗
cd

V ∗
cbVcd

)
= −e−2iβ , (32)

whereβ is defined in Eq. (A.9), and consequently

SψKS
= sin 2β, CψKS

= 0 . (33)

(Below the percent level, several effects modify this equation [6–9].)

Exercise 3: Show that, if theB → ππ decays were dominated by tree diagrams, thenSππ =
sin 2α.

Exercise 4:Estimate the accuracy of the predictionsSφKS
= sin 2β andCφKS

= 0.

When we consider extensions of the SM, we still do not expect any significant new contribu-
tion to the tree level decay,b → cc̄s, beyond the SMW -mediated diagram. Thus, the expression
ĀψKS

/AψKS
= (VcbV

∗
cd)/(V

∗
cbVcd) remains valid, though the approximation of neglecting sub-dominant

phases can be somewhat less accurate than Eq. (31). On the other hand,M12, theB0−B
0

mixing ampli-
tude, can in principle get large and even dominant contributions from new physics. We can parametrize
the modification to the SM in terms of two parameters,r2d signifying the change in magnitude, and2θd
signifying the change in phase:

M12 = r2d e
2iθd MSM

12 (ρ, η). (34)

This leads to the following generalization of Eq. (33):

SψKS
= sin(2β + 2θd), CψKS

= 0 . (35)

The experimental measurements give the following ranges [10]:

SψKS
= +0.68± 0.02, CψKS

= +0.005± 0.017 . (36)

4.2 Self-consistency of the CKM assumption

The three generation standard model has room for CP violation, through the KM phase in the quark
mixing matrix. Yet, one would like to make sure that indeed CP is violated by the SM interactions,
namely thatsin δKM 6= 0. If we establish that this is the case, we would further like to know whether the
SM contributions to CP violating observables are dominant. More quantitatively, we would like to put
an upper bound on the ratio between the new physics and the SM contributions.

As a first step, one can assume that flavor changing processes are fully described by the SM, and
check the consistency of the various measurements with this assumption. There are four relevant mixing
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Fig. 2: Allowed region in theρ, η plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub/Vcb|), mass differences in theB0 (∆md) andBs (∆ms) neutral meson systems, and CP violation
in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), andB → DK (γ). Taken from [12].

parameters, which can be taken to be the Wolfenstein parametersλ, A, ρ andη defined in Eq. (A.4). The
values ofλ andA are known rather accurately [11] from, respectively,K → πℓν andb → cℓν decays:

λ = 0.2254± 0.0007, A = 0.811+0.022
−0.012. (37)

Then, one can express all the relevant observables as a function of the two remaining parameters,ρ and
η, and check whether there is a range in theρ− η plane that is consistent with all measurements. The list
of observables includes the following:

– The rates of inclusive and exclusive charmless semileptonicB decays depend on|Vub|2 ∝ ρ2+η2;

– The CP asymmetry inB → ψKS , SψKS
= sin 2β = 2η(1−ρ)

(1−ρ)2+η2
;

– The rates of variousB → DK decays depend on the phaseγ, whereeiγ = ρ+iη√
ρ2+η2

;

– The rates of variousB → ππ, ρπ, ρρ decays depend on the phaseα = π − β − γ;

– The ratio between the mass splittings in the neutralB andBs systems is sensitive to|Vtd/Vts|2 =
λ2[(1− ρ)2 + η2];

– The CP violation inK → ππ decays,ǫK , depends in a complicated way onρ andη.

The resulting constraints are shown in Fig. 2.

The consistency of the various constraints is impressive. In particular, the following ranges forρ
andη can account for all the measurements [11]:

ρ = +0.131+0.026
−0.013, η = +0.345± 0.014. (38)
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One can make then the following statement [13]:
Very likely, CP violation in flavor changing processes is dominated by the Kobayashi-Maskawa
phase.

In the next two subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

4.3 Is the KM mechanism at work?

In proving that the KM mechanism is at work, we assume that charged-current tree-level processes are
dominated by theW -mediated SM diagrams (see, for example, [14]). This is a very plausible assumption.
I am not aware of any viable well-motivated model where this assumption is not valid. Thus we can use
all tree level processes and fit them toρ andη, as we did before. The list of such processes includes the
following:

1. Charmless semileptonicB-decays,b → uℓν, measureRu [see Eq. (A.8)].

2. B → DK decays, which go through the quark transitionsb → cūs andb → uc̄s, measure the
angleγ [see Eq. (A.9)].

3. B → ρρ decays (and, similarly,B → ππ andB → ρπ decays) go through the quark transition
b → uūd. With an isospin analysis, one can determine the relative phase between the tree decay
amplitude and the mixing amplitude. By incorporating the measurement ofSψKS

, one can subtract
the phase from the mixing amplitude, finally providing a measurement of the angleγ [see Eq.
(A.9)].

In addition, we can use loop processes, but then we must allow for new physics contributions, in
addition to the(ρ, η)-dependent SM contributions. Of course, if each such measurement adds a separate
mode-dependent parameter, then we do not gain anything by using this information. However, there is a
number of observables where the only relevant loop process isB0−B0 mixing. The list includesSψKS

,
∆mB and the CP asymmetry in semileptonicB decays:

SψKS
= sin(2β + 2θd),

∆mB = r2d(∆mB)
SM,

ASL = −Re

(
Γ12

M12

)SM sin 2θd
r2d

+ Im
(

Γ12

M12

)SM cos 2θd
r2d

. (39)

As explained above, such processes involve two new parameters [see Eq. (34)]. Since there are three
relevant observables, we can further tighten the constraints in the(ρ, η)-plane. Similarly, one can use
measurements related toBs − Bs mixing. One gains three new observables at the cost of two new
parameters (see, for example, [15]).

The results of such fit, projected on theρ− η plane, can be seen in Fig. 3. It gives [12]

η = 0.44+0.05
−0.23 (3σ). (40)

[A similar analysis in Ref. [16] obtains the3σ range(0.31 − 0.46).] It is clear thatη 6= 0 is well
established:
The Kobayashi-Maskawa mechanism of CP violation is at work.

Another way to establish that CP is violated by the CKM matrix is to find, within the same proce-
dure, the allowed range forsin 2β [16]:

sin 2βtree = 0.80± 0.03. (41)

Thus,β 6= 0 is well established.

The consistency of the experimental results (36) with the SM predictions (33,41) means that the
KM mechanism of CP violation dominates the observed CP violation. In the next subsection, we make
this statement more quantitative.
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Fig. 3: The allowed region in theρ− η plane, assuming that tree diagrams are dominated by the Standard Model
[12].

4.4 How much can new physics contribute toB0 − B0 mixing?

All that we need to do in order to establish whether the SM dominates the observed CP violation, and
to put an upper bound on the new physics contribution toB0 − B0 mixing, is to project the results of
the fit performed in the previous subsection on ther2d − 2θd plane. If we find thatθd ≪ β, then the
SM dominance in the observed CP violation will be established. The constraints are shown in Fig. 4(a).
Indeed,θd ≪ β.

An alternative way to present the data is to use thehd, σd parametrization,

r2de
2iθd = 1 + hde

2iσd . (42)

While therd, θd parameters give the relation between the full mixing amplitude and the SM one, and
are convenient to apply to the measurements, thehd, σd parameters give the relation between the new
physics and SM contributions, and are more convenient in testing theoretical models:

hde
2iσd =

MNP
12

MSM
12

. (43)

The constraints in thehd−σd plane are shown in Fig. 4(b). We can make the following two statements:

1. A new physics contribution toB0 −B
0

mixing amplitude that carries a phase that is significantly
different from the KM phase is constrained to lie below the 20-30% level.

2. A new physics contribution to theB0−B
0

mixing amplitude which is aligned with the KM phase
is constrained to be at most comparable to the CKM contribution.

One can reformulate these statements as follows:
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Fig. 4: Constraints in the (a)r2d − 2θd plane, and (b)hd − σd plane, assuming that NP contributions to tree level
processes are negligible [12].

1. The KM mechanism dominates CP violation inB0 −B
0

mixing.

2. The CKM mechanism is a major player inB0 −B
0

mixing.

5 The new physics flavor puzzle

5.1 A model independent discussion

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales abovemPlanck ∼ 1019

GeV:

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV;

3. The fine-tuning problem of the Higgs mass suggests that the scale where the SM is replaced with
a more fundamental theory is actually much lower,mtop−partners ∼< a few TeV.

4. If the dark matter is made of weakly interacting massive particles (WIMPs) then, again, a low scale
of new physics is likely,mwimp ∼< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physicsΛNP. For example, the lowest
dimension non-renormalizable terms are dimension five:

−Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c.. (44)

These are the seesaw terms, leading to neutrino masses.

Exercise 5:How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify these
parameters in the mass basis.
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Table 1: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating
sd ∆mK/mK = 7.0× 10−15 ǫK = 2.3× 10−3

cu ∆mD/mD = 8.7× 10−15 AΓ/yCP ∼< 0.2
bd ∆mB/mB = 6.3× 10−14 SψK = +0.67± 0.02
bs ∆mBs/mBs = 2.1× 10−12 Sψφ = −0.04± 0.09

Table 2: Lower bounds on the scale of new physicsΛNP, in units of TeV. The bounds from CP conserving

(violating) observables scale like
√
zij (

√
zIij).

ij CP-conserving CP-violating
sd 1× 103 2× 104

cu 1× 103 3× 103

bd 4× 102 8× 102

bs 7× 101 2× 102

As concerns quark flavor physics, consider, for example, the followingdimension-six, four-fermion,
flavor changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the termL∆B=2 ∝ (dLγµbL)

2 contributes to∆mB, the mass difference between the two

neutralB-mesons. We useMB
12 =

1
2mB

〈B0|L∆F=2|B0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B0〉 = −1

3
m2

Bf
2
BBB. (46)

This leads to∆mB/mB = 2|MB
12|/mB ∼ (|zbd|/3)(fB/ΛNP)

2. Analogous expressions hold for the
other neutral mesons.

The experimental results for CP conserving and CP violating observables related to neutral meson
mixing (mass splittings and CP asymmetries in tree level decays, respectively) are given in Table 1.

The measurements quoted in Table 1 lead, for a given value of|zij | andzIij ≡ Im(zij), to lower
bounds on the scaleΛNP. In Table 2 we give the bounds that correspond to|zij | = 1 and tozIij = 1. The

bounds scale like
√
zij and

√
zIij , respectively.

We conclude that if the new physics has a generic flavor structure, that iszij = O(1), then its scale
must be above103 − 104 TeV. If the leading contributions involve electroweak loops, the lower bound
is somewhat lower, of order102 − 103 TeV. The bounds from the corresponding four-fermi terms with
LR structure, instead of the LL structure of Eq. (45), are even stronger.If indeedΛNP ≫ TeV , it means
that we have misinterpreted the hints from the fine-tuning problem and the dark matter puzzle.

There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV )2,
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zcu ∼< 5× 10−7 (ΛNP/TeV )2,

zbd ∼< 5× 10−6 (ΛNP/TeV )2,

zbs ∼< 2× 10−4 (ΛNP/TeV )2, (47)

zIsd ∼< 6× 10−9 (ΛNP/TeV )2,

zIcu ∼< 1× 10−7 (ΛNP/TeV )2,

zIbd ∼< 1× 10−6 (ΛNP/TeV )2,

zIbs ∼< 2× 10−5 (ΛNP/TeV )2. (48)

It could be that the scale of new physics is of order TeV, but its flavor structure is far from generic.
Specifically, if new particles at the TeV scale couple to the SM fermions, then there are two ways in which
their contributions to FCNC processes, such as neutral meson mixing, can be suppressed: degeneracy
and alignment. Either of these principles, or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale isΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, thezij coefficients are suppressed byα2

2. To identify the relevant flavor suppression factor, one
can employ the spurion formalism. For example, the flavor transition that is relevant toB0 −B0 mixing
involvesdLbL which transforms as(8, 1, 1)SU(3)3q

. The leading contribution must then be proportional to

(Y uY u†)13 ∝ y2t VtbV
∗
td. Indeed, an explicit calculation, using VIA for the matrix element and neglecting

QCD corrections, gives (a detailed derivation can be found in Appendix B of [17])

2MB
12

mB
≈ −α2

2

12

f2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (49)

wherexi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[
1− 11x

4
+

x2

4
− 3x2 lnx

2(1− x)

]
. (50)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavor suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

Im(zSMcu ) ∼ α2
2y

2
b |VubVcb|2 ∼ 2× 10−14,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (51)

Note that we did not includezSMcu in the list. The reason is tha it requires a more detailed consider-
ation. The naively leading short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5× 10−13. However,

higher dimension terms can replace ay2s factor with(Λ/mD)
2 [18]. Moreover, long distance contribu-

tions are expected to dominate. In particular, peculiar phase space effects [19, 20] have been identified
which are expected to enhance∆mD to within an order of magnitude of the its measured value. The CP
violating part, on the other hand, is dominated by short distance physics.

It is clear then that contributions from new physics atΛNP ∼ 1 TeV should be suppressed by
factors that are comparable or smaller than the SM ones. Why does that happen? This is the new physics
flavor puzzle.
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Table 3: The phenomenological upper bounds on(δqLL)ij and 〈δqij〉 =
√
(δqLL)ij(δ

q
RR)ij . Hereq = u, d and

M = L,R. The constraints are given formq̃ = 1 TeV andx = m2
g̃/m

2
q̃ = 1. We assume that the phases could

suppress the imaginary part by a factor of∼ 0.3. Taken from Ref. [22].

q ij (δqLL)ij 〈δqij〉
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.2 0.07
u 12 0.1 0.008

The fact that the flavor structure of new physics at the TeV scale must be non-generic means that
flavor measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

5.2 The supersymmetric flavor puzzle

We consider, as an example, the contributions from the box diagrams involving the squark doublets of the
second and third generations,Q̃L2,3, to theBs−Bs mixing amplitude. The contributions are proportional
toKd∗

3i K
d
2iK

d∗
3jK

d
2j , whereKd is the mixing matrix of the gluino couplings to a left-handed down quark

and their supersymmetric squark partners (∝[(δdLL)23]2 in the mass insertion approximation, described
in Appendix C.1). We work in the mass basis for both quarks and squarks. A detailed derivation [21] is
given in Appendix C.2. It gives:

M s
12 =

α2
smBsf

2
Bs
BBsηQCD

108m2
d̃

[11f̃6(x) + 4xf6(x)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
32K

d
22)

2. (52)

Heremd̃ is the average mass of the two squark generations,∆m2
d̃

is the mass-squared difference, and

x = m2
g̃/m

2
d̃
.

Eq. (52) can be translated into our generic language:

ΛNP = mq̃, (53)

zbs1 =
11f̃6(x) + 4xf6(x)

18
α2
s

(
∆m̃2

d̃

m2
d̃

)2

(Kd∗
32K

d
22)

2 ≈ 10−4(δLL23 )2,

where, for the last approximation, we took the example ofx = 1 [and used, correspondingly,11f̃6(1) +
4f6(1) = 1/6], and defined

δLL23 =

(
∆m̃2

d̃

m2
d̃

)
(Kd∗

32K
d
22). (54)

Similar expressions can be derived for the dependence ofK0 −K0 on (δdMN )12, B0 −B0 on (δdMN )13,
andD0 − D0 on (δuMN )12. Then we can use the constraints of Eqs. (47,48) to put upper bounds on
(δqMN )ij . Some examples are given in Table 3 (see Ref. [22] for details and list of references).

We learn that, in most cases, we needδqij/mq̃ ≪ 1/TeV. One can immediately identify three
generic ways in which supersymmetric contributions to neutral meson mixing can be suppressed:

1. Heaviness:mq̃ ≫ 1 TeV ;
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2. Degeneracy:∆m2
q̃ ≪ m2

q̃ ;

3. Alignment:Kq
ij ≪ 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [23], the squarks are
very heavy and supersymmetry no longer solves the fine tuning problem. (When the first two squark
generations are mildly heavy and the third generation is light, as in effective supersymmetry [24], the
fine tuning problem is still solved, but additional suppression mechanisms are needed.) If we want to
maintain supersymmetry as a solution to the fine tuning problem, either degeneracy or alignment or a
combination of the two is needed. This means that the flavor structure of supersymmetry is not generic,
as argued in the previous section.

Take, for example,(δdLL)12 ≤ 0.03. Naively, one might expect the alignment to be of order
(VcdV

∗
cs) ∼ 0.2, which is far from sufficient by itself. Barring a very precise alignment (|Kd

12| ≪ |Vus|)
[25,26] and accidental cancelations, we are led to conclude that the first two squark generations must be
quasi-degenerate. Actually, by combining the constraints fromK0 −K0 mixing andD0 −D0 mixing,
one can show that this is the case independently of assumptions about the alignment [27–29]. Analogous
conclusions can be drawn for many TeV-scale new physics scenarios: a strong level of degeneracy is
required (for definitions and detailed analysis, see [30]).

Exercise 9:DoesKd
31 ∼ |Vub| suffice to satisfy the∆mB constraint with neither degeneracy nor

heaviness? (Use the two generation approximation and ignore the second generation.)

Is there a natural way to make the squarks degenerate? Degeneracy requires that the3×3 matrix of
soft supersymmetry breaking mass-squared termsm̃2

QL
≃ m̃2

q̃1. We have mentioned already that flavor
universality is a generic feature of gauge interactions. Thus, the requirement of degeneracy is perhaps a
hint that supersymmetry breaking isgauge mediatedto the MSSM fields.

5.3 Minimal flavor violation (MFV)

If supersymmetry breaking is gauge mediated, the squark mass matrices forSU(2)L- doublet and
SU(2)L-singlet squarks have the following form at the scale of mediationmM :

M̃2
UL

(mM ) =
(
m2

Q̃L
+DUL

)
1+MuM

†
u,

M̃2
DL

(mM ) =
(
m2

Q̃L
+DDL

)
1+MdM

†
d ,

M̃2
UR

(mM ) =
(
m2

ŨR
+DUR

)
1+M †

uMu,

M̃2
DR

(mM ) =
(
m2

D̃R
+DDR

)
1+M †

dMd, (55)

whereDqA = (T3)qA − (QEM)qAs
2
Wm2

Z cos 2β are theD-term contributions. Here, the only source of
theSU(3)3q breaking are the SM Yukawa matrices.

This statement holds also when the renormalization group evolution is applied to find the form of
these matrices at the weak scale. Taking the scale of the soft breaking termsmq̃A to be somewhat higher
than the electroweak breaking scalemZ allows us to neglect theDqA andMq terms in (55). Then we
obtain

M̃2
QL

(mZ) ∼ m2
Q̃L

(
r31+ cuYuY

†
u + cdYdY

†
d

)
,

M̃2
UR

(mZ) ∼ m2
ŨR

(
r31+ cuRY

†
uYu

)
,

M̃2
DR

(mZ) ∼ m2
D̃R

(
r31+ cdRY

†
d Yd

)
. (56)

Herer3 represents the universal RGE contribution that is proportional to the gluino mass (r3 = O(6)×
(M3(mM )/mq̃(mM ))) and thec-coefficients depend logarithmically onmM/mZ and can be ofO(1)
whenmM is not far below the GUT scale.
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Models of gauge mediated supersymmetry breaking (GMSB) provide a concrete example of a
large class of models that obey a simple principle calledminimal flavor violation(MFV) [31]. This
principle guarantees that low energy flavor changing processes deviate only very little from the SM
predictions. The basic idea can be described as follows. The gauge interactions of the SM are universal
in flavor space. The only breaking of this flavor universality comes from the three Yukawa matrices,Y u,
Y d andY e. If this remains true in the presence of the new physics, namelyY u, Y d andY e are the only
flavor non-universal parameters, then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions that
we presented in section 3.2. The Standard Model with vanishing Yukawa couplings has a large global
symmetry (11,12). In this section we concentrate only on the quarks. The non-Abelian part of the flavor
symmetry for the quarks isSU(3)3q of Eq. (12) with the three generations of quark fields transforming
as follows:

QL(3, 1, 1), UR(1, 3, 1), DR(1, 1, 3). (57)

The Yukawa interactions,
LY = QLY

dDRH +QLY
uURHc, (58)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions with the

following transformation properties underSU(3)3q [see Eq. (15)]:

Y u ∼ (3, 3̄, 1), Y d ∼ (3, 1, 3̄). (59)

When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields which transform
under the flavor symmetry, and then require that all the Lagrangian terms, constructed from the SM
fields,Y d andY u, must be (formally) invariant under the flavor groupSU(3)3q . Of course, in reality,LY

breaksSU(3)3q precisely becauseY d,u arenotfields and do not transform under the symmetry.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be applied in two
ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension operators, con-
structed from SM-fields andY -spurions, are formally invariant underGglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators, constructed from
SM and the new fields, and fromY -spurions, are formally invariant underGglobal.

Exercise 10: Use the spurion formalism to argue that, in MFV models, theKL → π0νν̄ decay
amplitude is proportional toy2t VtdV

∗
ts.

Exercise 11: Find the flavor suppression factors in thezbsi coefficients, if MFV is imposed, and
compare to the bounds in Eq. (47).

Examples of MFV models include models of supersymmetry with gauge-mediation or with anomaly-
mediation of its breaking.

5.3.1 Testing MFV at the LHC

If the LHC discovers new particles that couple to the SM fermions, then it will be able to test solutions
to the new physics flavor puzzle such as MFV [32]. Much of its power to test such frameworks is based
on identifying top and bottom quarks.

To understand this statement, we notice that the spurionsY u andY d can always be written in
terms of the two diagonal Yukawa matricesλu andλd and the CKM matrixV , see Eqs. (17,18). Thus,
the only source of quark flavor changing transitions in MFV models is the CKM matrix. Next, note that
to an accuracy that is better thanO(0.05), we can write the CKM matrix as follows:

V =




1 0.23 0
−0.23 1 0

0 0 1


 . (60)
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Exercise 12:The approximation (60) should be intuitively obvious to top-physicists, but definitely
counter-intuitive to bottom-physicists. (Some of them have dedicated a large part of their careers to
experimental or theoretical efforts to determineVcb andVub.) What does the approximation imply for the
bottom quark? When we take into account that it is only good toO(0.05), what would the implications
be?

We learn that the third generation of quarks is decoupled, to a good approximation, from the first
two. This, in turn, means that any new particle that couples to an odd number of the SM quarks (think, for
example, of heavy quarks in vector-like representations ofGSM), decay into either third generation quark,
or to non-third generation quark, but not to both. For example, in Ref. [32], MFV models with additional
charge−1/3, SU(2)L-singlet quarks –B′ – were considered. A concrete test of MFV was proposed,
based on the fact that the largest mixing effect involving the third generation is of order|Vcb|2 ∼ 0.002:
Is the following prediction, concerning events ofB′ pair production, fulfilled:

Γ(B′B′ → Xq1,2q3)

Γ(B′B′ → Xq1,2q1,2) + Γ(B′B′ → Xq3q3)
∼< 10−3. (61)

If not, then MFV is excluded. One could similarly test various versions of minimal lepton flavor violation
(MLFV) [33–38].

Analogous tests can be carried out in the supersymmetric framework [39–45]. Here, there is also
a generic prediction that, in each of the three sectors (QL, UR, DR), squarks of the first two generations
are quasi-degenerate, and do not decay into third generation quarks. Squarks of the third generation can
be separated in mass (though, for smalltanβ, the degeneracy in thẽDR sector is threefold), and decay
only to third generation quarks.

We conclude that measurements at the LHC related to new particles that couple to the SM fermions
are likely to teach us much more about flavor physics.

6 The Standard Model flavor puzzle

The SM has thirteen flavor parameters: six quark Yukawa couplings, four CKM parameters (three angles
and a phase), and three charged lepton Yukawa couplings. (One can use fermions masses instead of the
fermion Yukawa couplings,Yf =

√
2mf/v.) The orders of magnitudes of these thirteen dimensionless

parameters are as follows:

Yt ∼ 1, Yc ∼ 10−2, Yu ∼ 10−5,

Yb ∼ 10−2, Ys ∼ 10−3, Yd ∼ 10−4,

Yτ ∼ 10−2, Yµ ∼ 10−3, Ye ∼ 10−6,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, δKM ∼ 1. (62)

Only two of these parameters are clearly ofO(1), the top-Yukawa and the KM phase. The other flavor
parameters exhibit smallness and hierarchy. Their values span six orders of magnitude. It may be that
this set of numerical values are just accidental. More likely, the smallness and the hierarchy have a
reason. The question of why there is smallness and hierarchy in the SM flavor parameters constitutes
“The Standard Model flavor puzzle."

The motivation to think that there is indeed a structure in the flavor parameters is strengthened by
considering the values of the four SM parameters that are not flavor parameters, namely the three gauge
couplings and the Higgs self-coupling:

gs ∼ 1, g ∼ 0.6, e ∼ 0.3, λ ∼ 0.2. (63)

This set of values does seem to be a random distribution of order-one numbers, as one would naively
expect.
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A few examples of mechanisms that were proposed to explain the observed structure of the flavor
parameters are the following:

– An approximate Abelian symmetry (“The Froggatt-Nielsen mechanism" [46]);

– An approximate non-Abelian symmetry (seee.g.[47]);

– Conformal dynamics (“The Nelson-Strassler mechanism" [48]);

– Location in an extra dimension [49].

We will take as an example the Froggatt-Nielsen mechanism.

6.1 The Froggatt-Nielsen mechanism

Small numbers and hierarchies are often explained by approximate symmetries. For example, the small
mass splitting between the charged and neural pions finds an explanation in the approximate isospin
(globalSU(2)) symmetry of the strong interactions.

Approximate symmetries lead to selection rules which account for the size of deviations from the
symmetry limit. Spurion analysis is particularly convenient to derive such selection rules. The Froggatt-
Nielsen mechanism postulates aU(1)H symmetry, that is broken by a small spurionǫH . Without loss of
generality, we assignǫH aU(1)H charge ofH(ǫH) = −1. Each SM field is assigned aU(1)H charge. In
general, different fermion generations are assigned different charges, hence the term ‘horizontal symme-
try.’ The rule is that each term in the Lagrangian, made of SM fields and the spurion should be formally
invariant underU(1)H .

The approximateU(1)H symmetry thus leads to the following selection rules:

Y u
ij = ǫ

|H(Q̄i)+H(Uj)+H(φu)|
H ,

Y d
ij = ǫ

|H(Q̄i)+H(Dj)+H(φd)|
H ,

Y e
ij = ǫ

|H(L̄i)+H(Ej)−H(φd)|
H . (64)

As a concrete example, we take the following set of charges:

H(Q̄i) = H(Ui) = H(Ei) = (2, 1, 0),

H(L̄i) = H(Di) = (0, 0, 0),

H(φu) = H(φd) = 0. (65)

It leads to the following parametric suppressions of the Yukawa couplings:

Y u ∼



ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 ǫ
ǫ2 ǫ 1


 , Y d ∼ (Y e)T ∼



ǫ2 ǫ2 ǫ2

ǫ ǫ ǫ
1 1 1


 . (66)

We emphasize that for each entry we give the parametric suppression (that is the power ofǫ), but each
entry has an unknown (complex) coefficient of order one, and there are no relations between the order
one coefficients of different entries.

The structure of the Yukawa matrices dictates the parametric suppression of the physical observ-
ables:

Yt ∼ 1, Yc ∼ ǫ2, Yu ∼ ǫ4,

Yb ∼ 1, Ys ∼ ǫ, Yd ∼ ǫ2,

Yτ ∼ 1, Yµ ∼ ǫ, Ye ∼ ǫ2,
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|Vus| ∼ ǫ, |Vcb| ∼ ǫ, |Vub| ∼ ǫ2, δKM ∼ 1. (67)

For ǫ ∼ 0.05, the parametric suppressions are roughly consistent with the observed hierarchy. In partic-
ular, this set of charges predicts that the down and charged lepton mass hierarchies are similar, while the
up hierarchy is the square of the down hierarchy. These features are roughly realized in Nature.

Exercise 13: Derive the parametric suppression and approximate numerical values ofY u, its
eigenvalues, and the three angles ofV u

L , for H(Qi) = 4, 2, 0, H(Ui) = 3, 2, 0 andǫH = 0.2

Could we explain any set of observed values with such an approximate symmetry? If we could,
then the FN mechanism cannot be really tested. The answer however is negative. Consider, for example,
the quark sector. Naively, we have 11U(1)H charges that we are free to choose. However, theU(1)Y ×
U(1)B ×U(1)PQ symmetry implies that there are only 8 independent choices that affect the structure of
the Yukawa couplings. On the other hand, there are 9 physical parameters. Thus, there should be a single
relation between the physical parameters that is independent of the choice of charges. Assuming that the
sum of charges in the exponents of Eq. (64) is of the same sign for all 18 combinations, the relation is

|Vub| ∼ |VusVcb|, (68)

which is fulfilled to within a factor of 2. There are also interesting inequalities (herei < j):

|Vij | ∼> m(Ui)/m(Uj), m(Di)/m(Dj). (69)

All six inequalities are fulfilled. Finally, if we order the up and the down masses from light to heavy, then
the CKM matrix is predicted to be∼ 1, namely the diagonal entries are not parametrically suppressed.
This structure is also consistent with the observed CKM structure.

6.2 The flavor of neutrinos

Five neutrino flavor parameters have been measured in recent years (seee.g. [50]): two mass-squared
differences,

∆m2
21 = (7.5± 0.2)× 10−5 eV2, |∆m2

32| = (2.5± 0.1)× 10−3 eV2, (70)

and the three mixing angles,

|Ue2| = 0.55± 0.01, |Uµ3| = 0.64± 0.02, |Ue3| = 0.15± 0.01. (71)

These parameters constitute a significant addition to the thirteen SM flavor parameters and provide, in
principle, tests of various ideas to explain the SM flavor puzzle.

The numerical values of the parameters show various surprising features:

– |Uµ3| > any |Vij |;
– |Ue2| > any |Vij |;
– |Ue3| is not particularly small (|Ue3| 6≪ |Ue2Uµ3|);
– m2/m3 ∼> 1/6 > any mi/mj for charged fermions.

These features can be summarized by the statement that, in contrast to the charged fermions, neither
smallness nor hierarchy have been observed so far in the neutrino related parameters.

One way of interpretation of the neutrino data comes under the name of neutrino mass anarchy
[51–53]. It postulates that the neutrino mass matrix has no structure, namely all entries are of the same
order of magnitude. Normalized to an effective neutrino mass scale,v2/Λseesaw, the various entries are
random numbers of order one. Note that anarchy means neither hierarchy nor degeneracy.

19

FLAVOUR PHYSICS AND CP VIOLATION

141



If true, the contrast between neutrino mass anarchy and quark and charged lepton mass hierarchy
may be a deep hint for a difference between the flavor physics of Majorana and Dirac fermions. The
source of both anarchy and hierarchy might, however, be explained by a much more mundane mech-
anism. In particular, neutrino mass anarchy could be a result of a FN mechanism, where the three
left-handed lepton doublets carry the same FN charge. In that case, the FN mechanism predict paramet-
ric suppression of neither neutrino mass ratios nor leptonic mixing angles, which is quite consistent with
(70) and (71). Indeed, the viable FN model presented in Section 6.1 belongs to this class.

Another possible interpretation of the neutrino data is to takem2/m3 ∼ |Ue3| ∼ 0.15 to be small,
and require that they are parametrically suppressed (while the other two mixing angles are order one).
Such a situation is impossible to accommodate in a large class of FN models [54].

The same data, and in particular the proximity of|Ue2| to 1/
√
3 ≃ 0.58 and the proximity of

|Uµ3| to 1/
√
2 ≃ 0.71 led to a very different interpretation. This interpretation, termed ‘tribimaximal

mixing’ (TBM), postulates that the leptonic mixing matrix is parametrically close to the following special
form [55]:

|U |TBM =




2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

1√
2


 . (72)

Such a form is suggestive of discrete non-Abelian symmetries, and indeed numerous models based on an
A4 symmetry have been proposed [56,57]. A significant feature of of TBM is that the third mixing angle
should be close to|Ue3| = 0. Until recently, there have been only upper bounds on|Ue3|, consistent with
the models in the literature. In the last year, however, a value of|Ue3| close to the previous upper bound
has been established [58], see Eq. (71). Such a large value (and the consequent significant deviation
of |Uµ3| from maximal bimixing) puts in serious doubt the TBM idea. Indeed, it is difficult in this
framework, if not impossible, to account for∆m2

12/∆m2
23 ∼ |Ue3|2 without fine-tuning [59].

7 Higgs physics: the new flavor arena

A Higgs-like bosonh has been discovered by the ATLAS and CMS experiments at the LHC [60, 61].
The fact that for thef = γγ andf = ZZ∗ final states, the experiments measure

Rf ≡ σ(pp → h)BR(h → f)

[σ(pp → h)BR(h → f)]SM
, (73)

of order one (seee.g.[62]),

RZZ∗ = 1.1± 0.2, (74)

Rγγ = 1.1± 0.2, (75)

is suggestive that theh-production via gluon-gluon fusion proceeds at a rate similar to the Standard
Model (SM) prediction, giving a strong indication thatYt, thehtt̄ Yukawa coupling, is of order one. This
first determination ofYt signifies a new arena for the exploration offlavor physics.

In the future, measurements ofRbb̄ andRτ+τ− will allow us to extract additional flavor parameters:
Yb, thehbb̄ Yukawa coupling, andYτ , thehτ+τ− Yukawa coupling. For the latter, the current allowed
range is already quite restrictive:

Rτ+τ− = 1.0± 0.4. (76)

It may well be that the values ofYb and/orYτ will deviate from their SM values. The most likely
explanation of such deviations will be that there are more than one Higgs doublets, and that the doublet(s)
that couple to the down and charged lepton sectors are not the same as the one that couples to the up
sector.
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A more significant test of our understanding of flavor physics, which mightprovide a window into
new flavor physics, will come further in the future, whenRµ+µ− is measured. (At present, there is an
upper bound,Rµ+µ− < 9.8.) The ratio

Xµ+µ− ≡ BR(h → µ+µ−)
BR(h → τ+τ−)

, (77)

is predicted within the SM with impressive theoretical cleanliness. To leading order, it is given by
Xµ+µ− = m2

µ/m
2
τ , and the corrections of orderαW and of orderm2

µ/m
2
τ to this leading result are

known. It is an interesting question to understand what can be learned from a test of this relation [63,64].

It is also possible to search for the SM-forbidden decay modes,h → µ±τ∓ [65–68]. A measure-
ment of, or an upper bound on

Xµτ ≡ BR(h → µ+τ−) + BR(h → µ−τ+)
BR(h → τ+τ−)

, (78)

would provide additional information relevant to flavor physics. Thus, a broader question is to understand
the implications for flavor physics of measurements ofRτ+τ− , Xµ+µ− andXµτ [63].

Let us take as an example how we can use the set of these three measurements if there is a single

light Higgs boson. A violation of the SM relationY SM
ij =

√
2mi
v δij , is a consequence of nonrenormaliz-

able terms. The leading ones are thed = 6 terms. In the interaction basis, we have

Ld=4
Y = −λij f̄

i
Lf

j
Rφ+ h.c., (79)

Ld=6
Y = −

λ′
ij

Λ2
f̄ i
Lf

j
Rφ(φ

†φ) + h.c. ,

where expanding around the vacuum we haveφ = (v + h)/
√
2. DefiningVL,R via

√
2m = VL

(
λ+

v2

2Λ2
λ′
)
V †
Rv, (80)

wherem = diag(me,mµ,mτ ), and defininĝλ via

λ̂ = VLλ
′V †

R, (81)

we obtain

Yij =

√
2mi

v
δij +

v2

Λ2
λ̂ij . (82)

To proceed, one has to make assumptions about the structure ofλ̂. In what follows, we consider
first the assumption of minimal flavor violation (MFV) and then a Froggatt-Nielsen (FN) symmetry.

7.1 MFV

MFV requires that the leptonic part of the Lagrangian is invariant under anSU(3)L × SU(3)E global
symmetry, with the left-handed lepton doublets transforming as(3, 1), the right-handed charged lepton
singlets transforming as(1, 3) and the charged lepton Yukawa matrixY is a spurion transforming as
(3, 3̄).

Specifically, MFV means that, in Eq. (79),

λ′ = aλ+ bλλ†λ+O(λ5), (83)
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wherea andb are numbers. Note that, ifVL andVR are the diagonalizing matrices forλ, VLλV
†
R = λdiag,

then they are also the diagonalizing matrices forλλ†λ, VLλλ
†λV †

R = (λdiag)3. Then, Eqs. (80), (81)
and (82) become

√
2m

v
=

(
1 +

av2

2Λ2

)
λdiag +

bv2

2Λ2
(λdiag)3,

λ̂ = aλdiag + b(λdiag)3 = a

√
2m

v
+

2
√
2bm3

v3
,

Yij =

√
2mi

v
δij

[
1 +

av2

Λ2
+

2bm2
i

Λ2

]
, (84)

where, in the expressions forλ̂ andY , we included only the leading universal and leading non-universal
corrections to the SM relations.

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has no flavor off-diagonal couplings:

Yµτ , Yτµ = 0. (85)

2. The values of the diagonal couplings deviate from their SM values. The deviation is small, of order
v2/Λ2:

Yτ ≈
(
1 +

av2

Λ2

) √
2mτ

v
. (86)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value. The deviation is, however, very small, of orderm2

ℓ/Λ
2:

Yµ
Yτ

=
mµ

mτ

(
1−

2b(m2
τ −m2

µ)

Λ2

)
. (87)

The predictions of the SM with MFV non-renormalizable terms are then the following:
(
σ(pp → h)SM

σ(pp → h)

Γtot

ΓSM
tot

)
Rτ+τ− = 1 + 2av2/Λ2,

Xµ+µ− = (mµ/mτ )
2(1− 4bm2

τ/Λ
2),

Xτµ = 0. (88)

Thus, MFV will be excluded if experiments observe theh → µτ decay. On the other hand, MFV allows
for a universal deviation ofO(v2/Λ2) of the flavor-diagonal dilepton rates, and a smaller non-universal
deviation ofO(m2

τ/Λ
2).

7.2 FN

An attractive explanation of the smallness and hierarchy in the Yukawa couplings is provided by the
Froggatt-Nielsen (FN) mechanism [46]. In this framework, aU(1)H symmetry, under which different
generations carry different charges, is broken by a small parameterǫH . Without loss of generality,ǫH is
taken to be a spurion of charge−1. Then, various entries in the Yukawa mass matrices are suppressed
by different powers ofǫH , leading to smallness and hierarchy.

Specifically for the leptonic Yukawa matrix, takingh to be neutral underU(1)H , H(h) = 0, we
have

λij ∝ ǫ
H(Ej)−H(Li)
H . (89)
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We emphasize that the FN mechanism dictates only the parametric suppression. Each entry has an
arbitrary order one coefficient. The resulting parametric suppression of the masses and leptonic mixing
angles is given by [69]

mℓi/v ∼ ǫ
H(Ei)−H(Li)
H , |Uij | ∼ ǫ

H(Lj)−H(Li)
H . (90)

SinceH(φ†φ) = 0, the entries of the matrixλ′ have the same parametric suppression as the
corresponding entries inλ [26], though the order one coefficients are different:

λ′
ij = O(1)× λij . (91)

This structure allows us to estimate the entries ofλ̂ij in terms of physical observables:

λ̂33 ∼ mτ/v,

λ̂22 ∼ mµ/v,

λ̂23 ∼ |U23|(mτ/v),

λ̂32 ∼ (mµ/v)/|U23|. (92)

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has flavor off-diagonal couplings:

Yµτ = O
( |U23|vmτ

Λ2

)
,

Yτµ = O
(

vmµ

|U23|Λ2

)
. (93)

2. The values of the diagonal couplings deviate from their SM values:

Yτ ≈
√
2mτ

v

[
1 +O

(
v2

Λ2

)]
. (94)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value:

Yµ
Yτ

=
mµ

mτ

[
1 +O

(
v2

Λ2

)]
. (95)

The predictions of the SM with FN-suppressed non-renormalizable terms are then the following:

(
σ(pp → h)SM

σ(pp → h)

Γtot

ΓSM
tot

)
Rτ+τ− = 1 +O(v2/Λ2),

Xµ+µ− = (mµ/mτ )
2(1 +O(v2/Λ2)),

Xτµ = O(v4/Λ4). (96)

Thus, FN will be excluded if experiments observe deviations from the SM of the same size in both
flavor-diagonal and flavor-changingh decays. On the other hand, FN allows non-universal deviations of
O(v2/Λ2) in the flavor-diagonal dilepton rates, and a smaller deviation ofO(v4/Λ4) in the off-diagonal
rate.
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8 Conclusions

(i) Measurements of CP violatingB-meson decays have established that the Kobayashi-Maskawa mech-
anism is the dominant source of the observed CP violation.

(ii) Measurements of flavor changingB-meson decays have established the the Cabibbo-Kobayashi-
Maskawa mechanism is a major player in flavor violation.

(iii) The consistency of all these measurements with the CKM predictions sharpens the new
physics flavor puzzle: If there is new physics at, or below, the TeV scale, then its flavor structure must be
highly non-generic.

(iv) Measurements of neutrino flavor parameters have not only not clarified the standard model
flavor puzzle, but actually deepened it. Whether they imply an anarchical structure, or a tribimaximal
mixing, it seems that the neutrino flavor structure is very different from that of quarks.

(v) If the LHC experiments, ATLAS and CMS, discover new particles that couple to the Standard
Model fermions, then, in principle, they will be able to measure new flavor parameters. Consequently,
the new physics flavor puzzle is likely to be understood.

(vi) If the flavor structure of such new particles is affected by the same physics that sets the flavor
structure of the Yukawa couplings, then the LHC experiments (and future flavor factories) may be able
to shed light also on the standard model flavor puzzle.

(vii) The recently discovered Higgs-like boson provides an opportunity to make progress in our
understanding of the flavor puzzle(s).

The huge progress in flavor physics in recent years has provided answers to many questions. At
the same time, new questions arise. The LHC era is likely to provide more answers and more questions.

Appendices

A The CKM matrix

The CKM matrixV is a3× 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in definingV in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses,i.e. (u1, u2, u3) →
(u, c, t) and(d1, d2, d3) → (d, s, b). The elements ofV are written as follows:

V =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (A.1)

(ii) There is further freedom in the phase structure ofV . This means that the number of physical
parameters inV is smaller than the number of parameters in a general unitary3× 3 matrix which is nine
(three real angles and six phases). Let us definePq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of usingVqL andVqR for the rotation (21) to the mass basis we useṼqL andṼqR, defined
by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis sinceMdiag

q remains
unchanged by such transformations. However,V does change:

V → PuV P ∗
d . (A.2)

This freedom is fixed by demanding thatV has the minimal number of phases. In the three generation
caseV has a single phase. (There are five phase differences between the elements ofPu andPd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phaseδKM which is the single source of CP violation in the quark sector of the Standard Model [1].
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

Fig. A.1: Graphical representation of the unitarity constraintVudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a triangle in the

complex plane.

The fact thatV is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [70]

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 , (A.3)

wherecij ≡ cos θij andsij ≡ sin θij . The θij ’s are the three real mixing parameters whileδ is the
Kobayashi-Maskawa phase. It is known experimentally thats13 ≪ s23 ≪ s12 ≪ 1. It is convenient to
choose an approximate expression where this hierarchy is manifest. This is the Wolfenstein parametriza-
tion, where the four mixing parameters are(λ,A, ρ, η) with λ = |Vus| = 0.23 playing the role of an
expansion parameter andη representing the CP violating phase [71,72]:

V =




1− 1
2λ

2 − 1
8λ

4 λ Aλ3(ρ− iη)
−λ+ 1

2A
2λ5[1− 2(ρ+ iη)] 1− 1

2λ
2 − 1

8λ
4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2λ

2)(ρ+ iη)] −Aλ2 + 1
2Aλ

4[1− 2(ρ+ iη)] 1− 1
2A

2λ4


 . (A.4)

A very useful concept is that of theunitarity triangles. The unitarity of the CKM matrix leads to
various relations among the matrix elements,e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (A.5)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (A.6)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (A.7)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles", though the
term “unitarity triangle" is usually reserved for the relation (A.7) only. The unitarity triangle related to
Eq. (A.7) is depicted in Fig. A.1.

The rescaled unitarity triangle is derived from (A.7) by (a) choosing a phase convention such that
(VcdV

∗
cb) is real, and (b) dividing the lengths of all sides by|VcdV

∗
cb|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters(ρ, η). The area of the rescaled unitarity
triangle is|η|/2.

Depicting the rescaled unitarity triangle in the(ρ, η) plane, the lengths of the two complex sides
are

Ru ≡
∣∣∣∣
VudVub

VcdVcb

∣∣∣∣ =
√
ρ2 + η2, Rt ≡

∣∣∣∣
VtdVtb

VcdVcb

∣∣∣∣ =
√
(1− ρ)2 + η2. (A.8)

25

FLAVOUR PHYSICS AND CP VIOLATION

147



The three angles of the unitarity triangle are defined as follows [73,74]:

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (A.9)

They are physical quantities and can be independently measured by CP asymmetries inB decays. It is
also useful to define the two small angles of the unitarity triangles (A.6,A.5):

βs ≡ arg

[
−VtsV

∗
tb

VcsV ∗
cb

]
, βK ≡ arg

[
− VcsV

∗
cd

VusV ∗
ud

]
. (A.10)

B CPV in B decays to final CP eigenstates

We define decay amplitudes ofB (which could be charged or neutral) and its CP conjugateB to a
multi-particle final statef and its CP conjugatef as

Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , (B.1)

whereH is the Hamiltonian governing weak interactions. The action of CP on these states introduces
phasesξB andξf according to

CP |B〉 = e+iξB |B〉 , CP |f〉 = e+iξf |f〉 ,
CP |B〉 = e−iξB |B〉 , CP |f〉 = e−iξf |f〉 , (B.2)

so that(CP )2 = 1. The phasesξB andξf are arbitrary and unphysical because of the flavor symmetry
of the strong interaction. If CP is conserved by the dynamics,[CP ,H] = 0, thenAf andAf have the
same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (B.3)

A state that is initially a superposition ofB0 andB0, say

|ψ(0)〉 = a(0)|B0〉+ b(0)|B0〉 , (B.4)

will evolve in time acquiring components that describe all possible decay final states{f1, f2, . . .}, that
is,

|ψ(t)〉 = a(t)|B0〉+ b(t)|B0〉+ c1(t)|f1〉+ c2(t)|f2〉+ · · · . (B.5)

If we are interested in computing only the values ofa(t) andb(t) (and not the values of allci(t)), and
if the timest in which we are interested are much larger than the typical strong interaction scale, then
we can use a much simplified formalism [75]. The simplified time evolution is determined by a2 × 2
effective HamiltonianH that is not Hermitian, since otherwise the mesons would only oscillate and not
decay. Any complex matrix, such asH, can be written in terms of Hermitian matricesM andΓ as

H = M − i

2
Γ . (B.6)

M andΓ are associated with(B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and on-shell
(absorptive) intermediate states, respectively. Diagonal elements ofM andΓ are associated with the
flavor-conserving transitionsB0 → B0 andB0 → B0 while off-diagonal elements are associated with
flavor-changing transitionsB0 ↔ B0.

The eigenvectors ofH have well defined masses and decay widths. We introduce complex pa-
rametersp andq to specify the components of the strong interaction eigenstates,B0 andB0, in the light
(BL) and heavy (BH ) mass eigenstates:

|BL,H〉 = p|B0〉 ± q|B0〉 (B.7)
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with the normalization|p|2 + |q|2 = 1. The special form of Eq. (B.7) is related to the fact that CPT
imposesM11 = M22 andΓ11 = Γ22. Solving the eigenvalue problem gives

(
q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
. (B.8)

If either CP or T is a symmetry ofH, thenM12 andΓ12 are relatively real, leading to

(
q

p

)2

= e2iξB ⇒
∣∣∣∣
q

p

∣∣∣∣ = 1 , (B.9)

whereξB is the arbitrary unphysical phase introduced in Eq. (B.2).

The real and imaginary parts of the eigenvalues ofH corresponding to|BL,H〉 represent their
masses and decay-widths, respectively. The mass difference∆mB and the width difference∆ΓB are
defined as follows:

∆mB ≡ MH −ML, ∆ΓB ≡ ΓH − ΓL. (B.10)

Note that here∆mB is positive by definition, while the sign of∆ΓB is to be experimentally determined.
The average mass and width are given by

mB ≡ MH +ML

2
, ΓB ≡ ΓH + ΓL

2
. (B.11)

It is useful to define dimensionless ratiosx andy:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (B.12)

Solving the eigenvalue equation gives

(∆mB)
2 − 1

4
(∆ΓB)

2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ
∗
12). (B.13)

All CP-violating observables inB andB decays to final statesf andf can be expressed in terms
of phase-convention-independent combinations ofAf , Af , Af andAf , together with, for neutral-meson

decays only,q/p. CP violation in charged-meson decays depends only on the combination|Af/Af |,
while CP violation in neutral-meson decays is complicated byB0 ↔ B0 oscillations and depends,
additionally, on|q/p| and onλf ≡ (q/p)(Af/Af ).

For neutralD, B, andBs mesons,∆Γ/Γ ≪ 1 and so both mass eigenstates must be considered
in their evolution. We denote the state of an initially pure|B0〉 or |B0〉 after an elapsed proper timet as
|B0

phys(t)〉 or |B0
phys(t)〉, respectively. Using the effective Hamiltonian approximation, we obtain

|B0
phys(t)〉 = g+(t) |B0〉 − q

p
g−(t)|B0〉,

|B0
phys(t)〉 = g+(t) |B0〉 − p

q
g−(t)|B0〉 , (B.14)

where

g±(t) ≡
1

2

(
e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt

)
. (B.15)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=

(
|Af |2 + |(q/p)Af |2

)
cosh(yΓt) +

(
|Af |2 − |(q/p)Af |2

)
cos(xΓt)
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+ 2Re((q/p)A∗
fAf ) sinh(yΓt)− 2 Im((q/p)A∗

fAf ) sin(xΓt) , (B.16)

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=

(
|(p/q)Af |2 + |Af |2

)
cosh(yΓt)−

(
|(p/q)Af |2 − |Af |2

)
cos(xΓt)

+ 2Re((p/q)AfA
∗
f ) sinh(yΓt)− 2 Im((p/q)AfA

∗
f ) sin(xΓt) , (B.17)

whereNf is a common normalization factor. Decay rates to the CP-conjugate final statef are obtained
analogously, withNf = Nf and the substitutionsAf → Af andAf → Af in Eqs. (B.16,B.17). Terms

proportional to|Af |2 or |Af |2 are associated with decays that occur without any netB ↔ B oscilla-
tion, while terms proportional to|(q/p)Af |2 or |(p/q)Af |2 are associated with decays following a net
oscillation. Thesinh(yΓt) andsin(xΓt) terms of Eqs. (B.16,B.17) are associated with the interference
between these two cases. Note that, in multi-body decays, amplitudes are functions of phase-space vari-
ables. Interference may be present in some regions but not others, and is strongly influenced by resonant
substructure.

One possible manifestation of CP-violating effects in meson decays [76] is in the interference
between a decay without mixing,B0 → f , and a decay with mixing,B0 → B0 → f (such an effect
occurs only in decays to final states that are common toB0 andB0, including all CP eigenstates). It is
defined by

Im(λf ) 6= 0 , (B.18)

with

λf ≡ q

p

Af

Af
. (B.19)

This form of CP violation can be observed, for example, using the asymmetry of neutral meson decays
into final CP eigenstatesfCP

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (B.20)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation forB mesons),AfCP
has a particularly

simple form [77–79]:

Af (t) = Sf sin(∆mt)− Cf cos(∆mt),

Sf ≡ 2 Im(λf )

1 + |λf |2
, Cf ≡ 1− |λf |2

1 + |λf |2
, (B.21)

Consider theB → f decay amplitudeAf , and the CP conjugate process,B → f , with decay
amplitudeAf . There are two types of phases that may appear in these decay amplitudes. Complex
parameters in any Lagrangian term that contributes to the amplitude will appear in complex conjugate
form in the CP-conjugate amplitude. Thus their phases appear inAf andAf with opposite signs. In the
Standard Model, these phases occur only in the couplings of theW± bosons and hence are often called
“weak phases”. The weak phase of any single term is convention dependent. However, the difference
between the weak phases in two different terms inAf is convention independent. A second type of phase
can appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is the possible
contribution from intermediate on-shell states in the decay process. Since these phases are generated by
CP-invariant interactions, they are the same inAf andAf . Usually the dominant rescattering is due to
strong interactions and hence the designation “strong phases” for the phase shifts so induced. Again,
only the relative strong phases between different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-transformation
phases of Eq. (B.3). Those spurious phases are due to an arbitrary choice of phase convention, and do
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not originate from any dynamics or induce any CP violation. For simplicity, we set them to zero from
here on.

It is useful to write each contributionai toAf in three parts: its magnitude|ai|, its weak phaseφi,
and its strong phaseδi. If, for example, there are two such contributions,Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (B.22)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (B.23)

Each of the phases appearing in Eqs. (B.22,B.23) is convention dependent, but combinations such as
δ1−δ2, φ1−φ2, φM −φΓ andφM +φ1−φ1 (whereφ1 is a weak phase contributing toAf ) are physical.

In the approximations that only a single weak phase contributes to decay,Af = |af |ei(δf+φf ), and
that |Γ12/M12| = 0, we obtain|λf | = 1 and the CP asymmetries in decays to a final CP eigenstatef
[Eq. (B.20)] with eigenvalueηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf ). (B.24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are involved in the
extraction of its value fromIm(λf ).

C Supersymmetric flavor violation

C.1 Mass insertions

Supersymmetric models provide, in general, new sources of flavor violation. We here present the for-
malism of mass insertions. We do that for the charged sleptons, but the formalism is straightforwardly
adapted for squarks.

The supersymmetric lepton flavor violation is most commonly analyzed in the basis in which the
charged lepton mass matrix and the gaugino vertices are diagonal. In this basis, the slepton masses are
not necessarily flavor-diagonal, and have the form

ℓ̃∗Mi(M
2
eℓ
)MN
ij ℓ̃Nj = (ℓ̃∗Li ℓ̃

∗
Rk)

(
M2

Lij Ailvd
Ajkvd M2

Rkl

)(
ℓ̃Lj
ℓ̃Rl

)
, (C.1)

whereM,N = L,R label chirality, andi, j, k, l = 1, 2, 3 are generational indices.M2
L andM2

R are
the supersymmetry breaking slepton masses-squared. TheA parameters enter in the trilinear scalar
couplingsAijφdℓ̃Liℓ̃

∗
Rj , whereφd is the down-type Higgs boson, andvd = 〈φd〉. We neglect small

flavor-conserving terms involvingtanβ = vu/vd.

In this basis, charged LFV takes place through one or more slepton mass insertion. Each mass
insertion brings with it a factor of

δMN
ij ≡ (M2

eℓ
)MN
ij /m̃2, (C.2)

wherem̃2 is the representative slepton mass scale. Physical processes therefore constrain

(δMN
ij )eff ∼ max

[
δMN
ij , δMP

ik δPN
kj , . . . , (i ↔ j)

]
. (C.3)

For example,

(δLR12 )eff ∼ max
[
A12vd/m̃

2,M2
L1kAk2vd/m̃

4, A1kvdM
2
Rk2/m̃

4, . . . , (1 ↔ 2)
]
. (C.4)
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Note that contributions with two or more insertions may be less suppressed than those with only one.

It is useful to express theδMN
ij mass insertions in terms of parameters in the mass basis. We can

write, for example,

δLLij =
1

m̃2

∑

α

KL
iαK

L∗
jα∆m̃2

Lα. (C.5)

Here, we ignoreL−R mixing, so thatKL
iα is the mixing angle in the coupling of a neutralino toℓLi− ℓ̃Lα

(with ℓi = e, µ, τ denoting charged lepton mass eigenstates andℓ̃α = ℓ̃1, ℓ̃2, ℓ̃3 denoting charged slepton
mass eigenstates), and∆m̃2

Lα = m2
eℓLα

− m̃2. Using the unitarity of the mixing matrixKL, we can write

m̃2δLLij =
∑

α

KL
iαK

L∗
jα (∆m̃2

Lα + m̃2) = (M2
eℓ
)LLij , (C.6)

thus reproducing the definition (C.2).

In many cases, a two generation effective framework is useful. To understand that, consider a case
where (no summation overi, j, k)

|KL
ikK

L∗
jk | ≪ |KL

ijK
L∗
j |,

|KL
ikK

L∗
jk ∆m2

eℓLk
eℓLi

| ≪ |KL
ijK

L∗
j ∆m2

eℓLj
eℓLi

|, (C.7)

where∆m2
eℓjeℓi

= m2
eℓLj

− m2
eℓLi

. Then, the contribution of the intermediatẽℓk can be neglected and,

furthermore, to a good approximationKL
iiK

L∗
ji +KL

ijK
L∗
jj = 0. For these cases, we obtain

δLLij =
∆m2

eℓLj
eℓLi

m̃2
KL

ijK
L∗
jj . (C.8)

C.2 Neutral meson mixing

We consider the squark-gluino box diagram contribution toD0 − D
0

mixing amplitude that is propor-
tional toKu

2iK
u∗
1i K

u
2jK

u∗
1j , whereKu is the mixing matrix of the gluino couplings to left-handed up

quarks and their up squark partners. (In the language of the mass insertion approximation, we calculate
here the contribution that is∝ [(δuLL)12]

2.) We work in the mass basis for both quarks and squarks.

The contribution is given by

MD
12 = −i

4π2

27
α2
smDf

2
DBDηQCD

∑

i,j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j )(11Ĩ4ij + 4m̃2

gI4ij). (C.9)

where

Ĩ4ij ≡
∫

d4p

(2π)4
p2

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )

=
i

(4π)2

[
m̃2

g

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃4

i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2
ln

m̃2
i

m̃2
g

+
m̃4

j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2
ln

m̃2
j

m̃2
g

]
, (C.10)

I4ij ≡
∫

d4p

(2π)4
1

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )
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=
i

(4π)2

[
1

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃2

i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2
ln

m̃2
i

m̃2
g

+
m̃2

j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2
ln

m̃2
j

m̃2
g

]
. (C.11)

We now follow the discussion in refs. [21, 80]. To see the consequences of the super-GIM mech-
anism, let us expand the expression for the box integral around some valuem̃2

q for the squark masses-
squared:

I4(m̃
2
g, m̃

2
i , m̃

2
j ) = I4(m̃

2
g, m̃

2
q + δm̃2

i , m̃
2
q + δm̃2

j )

= I4(m̃
2
g, m̃

2
q , m̃

2
q) + (δm̃2

i + δm̃2
j )I5(m̃

2
g, m̃

2
q , m̃

2
q , m̃

2
q)

+
1

2

[
(δm̃2

i )
2 + (δm̃2

j )
2 + 2(δm̃2

i )(δm̃
2
j )
]
I6(m̃

2
g, m̃

2
q , m̃

2
q , m̃

2
q , m̃

2
q) + · · · ,(C.12)

where

In(m̃
2
g, m̃

2
q , . . . , m̃

2
q) ≡

∫
d4p

(2π)4
1

(p2 − m̃2
g)

2(p2 − m̃2
q)

n−2
, (C.13)

and similarly forĨ4ij . Note thatIn ∝ (m̃2
q)

n−2 and Ĩn ∝ (m̃2
q)

n−3. Thus, usingx ≡ m̃2
g/m̃

2
q , it is

customary to define

In ≡ i

(4π)2(m̃2
q)

n−2
fn(x), Ĩn ≡ i

(4π)2(m̃2
q)

n−3
f̃n(x). (C.14)

The unitarity of the mixing matrix implies that
∑

i

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) =

∑

j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) = 0. (C.15)

Consequently, the terms that are proportionalf4, f̃4, f5 andf̃5 vanish in their contribution toM12. When
δm̃2

i ≪ m̃2
q for all i, the leading contributions toM12 come fromf6 and f̃6. We learn that for quasi-

degenerate squarks, the leading contribution is quadratic in the small mass-squared difference. The
functionsf6(x) andf̃6(x) are given by

f6(x) =
6(1 + 3x) lnx+ x3 − 9x2 − 9x+ 17

6(1− x)5
,

f̃6(x) =
6x(1 + x) lnx− x3 − 9x2 + 9x+ 1

3(1− x)5
. (C.16)

For example, withx = 1, f6(1) = −1/20 and f̃6 = +1/30; with x = 2.33, f6(2.33) = −0.015 and
f̃6 = +0.013.

To further simplify things, let us consider a two generation case. Then

MD
12 ∝ 2(Ku

21K
u∗
11 )

2(δm̃2
1)

2 + 2(Ku
22K

u∗
12 )

2(δm̃2
2)

2 + (Ku
21K

u∗
11K

u
22K

u∗
12 )(δm̃

2
1 + δm̃2

2)
2

= (Ku
21K

u∗
11 )

2(m̃2
2 − m̃2

1)
2. (C.17)

We thus rewrite Eq. (C.9) for the case of quasi-degenerate squarks:

MD
12 =

α2
smDf

2
DBDηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Ku
21K

u∗
11 )

2. (C.18)

For example, forx = 1, 11f̃6(x) + 4xf6(x) = +0.17. Forx = 2.33, 11f̃6(x) + 4xf6(x) = +0.003.
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QCD under extreme conditions: an informal discussion

E.S. Fraga∗

J. W. Goethe-University, Frankfurt am Main, Germany

Abstract
We present an informal discussion of some aspects of strong interactions under
extreme conditions of temperature and density at an elementary level. This
summarizes lectures delivered at the 2013 CERN – Latin-American School of
High-Energy Physics and is aimed at students working in experimental high-
energy physics.

1 Introduction and motivation: why, where and how

Quantum Chromodynamics (QCD) is an extremely successful theory of strong interactions that has
passed numerous tests in particle accelerators over more than 40 years [1]. This corresponds to the
behavior of hadrons in the vacuum, including not only the spectrum but also all sorts of dynamical pro-
cesses. More recently strong interactions, and therefore QCD, has also started being probed in a medium,
under conditions that become more and more extreme [2]. Although quite involved theoretically, this is
not just an academic problem. In order to make it clear, one should consider three very basic questions,
that should always be asked in the beginning: why? where? how?

1.1 Why?

It was realized since the very beginning that strong interactions exhibit two remarkable features that are
related but represent properties of complementary sectors of the energy scale. The first one is asymptotic
freedom [3], which can be perturbatively demonstrated by an explicit computation of the beta function
to a give loop order in QCD [4]. The second, which is consistent with the first but should be seen as
totally independent, since it is a property of the nonperturbative vacuum of strong interactions, is color
confinement [5]. Even though reality constantly shows that confinement is a property of strong interac-
tions, and therefore should somehow be built in QCD, this proof remains a theoretical open problem so
far. Even for the pure Yang-Mills theory, where the bound states correspond to glueballs, the existence
of a mass gap is still to be shown after more than half a century of the original paper on nonabelian gauge
theories [6]. For this reason, confinement is ranked in the Clay Mathematics Institute list of unsolved
Millennium problems [7].

Much more than a cute (and very tough) mathematical problem, this is certainly among the most
important theoretical and phenomenological problems in particle physics, since hidden there is the real
origin of mass, as we feel in our everyday lives and experience with ordinary (and not so ordinary) matter.
Although the Higgs mechanism provides a way to give mass to elementary particles in the Standard
Model [8], most of what constitutes the masses of hadrons come from interactions. For instance, more
than90% of the proton mass originates in quark and gluon condensates [9]. So, in spite of the fantastic
success of the Standard Model [8], we do not understand a few essential mechanisms.

Extremely high temperatures and densities bring us to an energy scale that facilitates deconfine-
ment, and matter under such extreme conditions can behave in unexpected ways due to collective effects.
This is, of course, a way to study the mechanism of confinement (by perturbing or modifying this state of
matter). This leads us also to a deeper yet childish motivation, that of understanding what happens if we
keep making things hotter and hotter, or keep squeezing things harder and harder [10]. These questions
can be reformulated in a more technical fashion as ’what is the inner structure of matter and the nature
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of strong interactions under extreme conditions of temperature and density?’. In experiments, one needs
to “squeeze”, “heat” and “break”. From the theoretical point of view, one needs a good formulation of
in-medium quantum field theory, using QCD or effective theories.

It is clear that the challenge is enormous. Although confinement seems to be a key feature of
hadrons, and manifests also in relevant scales such asfπ or ΛQCD, it only seemsto be present in QCD.
So far, controlled lattice simulations show strong evidence of confinement in the pure gauge theory
[11]. As hinted previously, however, the theory is nonperturbative at the relevant scales, so that analytic
methods are very constrained. And, although lattice simulations have developed to provide solid results
in several scenarios, they are not perfect. And, more important, they are not Nature. To make progress
in understanding, or at least collecting important facts, one needs it all: experiments and observations,
lattice simulations, the full theory in specific (solvable to some extent) limits and effective models. And
also combinations, whenever possible, to diminish the drawbacks of each approach.

Plasma
Quark-Gluon

Hadrons

µ
N

neutron stars
nuclei

Color
Superconductivity

early universe

RHIC

µ

T

Tc

cm  / 3

Fig. 1: Cartoon of a phase diagram for strong interactions. Extracted from Ref. [12]

Whichever the framework chosen, collective phenomena will play a major role. Although some-
what put aside in the so-called microscopic “fundamental” particle physics, collective effects can affect
dramatically the behavior of elementary particles in a medium under certain conditions. Besides the
well-known examples of BCS and BEC phases in condensed matter systems [13], and also in dense
quark matter [14], it was recently found that photons can form a Bose-Einstein condensate [15]. In fact,
the textbook case of water and its different phases is quite illustrative of the richness that comes from col-
lective phenomena that would hardly be guessed from the case of very few or non-interacting elementary
particles.

In terms of the thermodynamics, or many-body problem, the basic idea is to perturb the (confined)
vacuum to study confinement by heating (temperature), squeezing or unbalancing species (chemical
potentials for baryon number, isospin, strangeness, etc) and using classical external fields (magnetic,
electric, etc), so that the system is taken away from the confined phase and back. One can also relate
(or not) confinement to other key properties of strong interactions, such as chiral symmetry. And, from
the theorist standpoint, draw all possible phase diagrams of QCD and its “cousin theories” (realizations
of QCD with parameters, such as the number of colors or flavors, or the values of masses, that are not
realized in Nature) to learn basic facts. There are several examples, one well-known being the ‘Columbia
plot’, where one studies the nature of the phase transitions and critical lines on the(mu = md,ms)
plane. Nevertheless, if one draws a cartoon of the phase diagram in the temperature vs. quark chemical
potential, for instance Fig. 1, and compares it to computations from effective models, lattice simulations
and freeze-out points extracted from high-energy heavy ion collision data, one sees that the points still
scatter in a large area [16]. So, there is still a long way ahead.
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1.2 Where?

According to the Big Bang picture and the current description of the evolution of the early universe [17],
we expect that at about10−5s after the Big Bang a soup of quark-gluon plasma (in the presence of
electrons, photons, etc) has undergone a phase transition to confined hadrons. This was, of course, the
first realization of a QCD transition. This process was thermally driven and happened at very low baryon
chemical potential.

It is quite remarkable that the scales of strong interactions allow for the experimental reproduction
of analogous conditions in high-energy ultra-relativistic heavy ion collisions in the laboratory [18]. In
a picture by T. D. Lee, these collisions are seen as heavy bulls that collide and generate new states of
matter [19]. Such experiments are under way at BNL-RHIC [20] and CERN-LHC [21], and will be part
of the future heavy ion programs at FAIR-GSI [22] and NICA [23].

For obvious reasons, it is common to refer to such experiments as “Little Bangs”. However, one
should be cautious with this point. In spite of the fact that the typical energy scales involved need to
be the same, as well as the state of matter created, the so-called quark-gluon plasma [24], the relevant
space-time scales differ by several orders of magnitude. Using a simple approximation for the equation
of state,

3p ≈ ǫ ≈ π2

30
N(T )T 4 , (1)

wherep is the pressure,ǫ the energy density andN(T ) the number of relevant degrees of freedom, we
can easily estimate the typical sizes involved. The radius of the universe at the QCD phase transition
epoch, as given by the particle horizon in a Robertson-Walker space-time [25], where the scale factor
grows asa(t) ∼ tn, is given by (n= 1/2 andN(T ) ∼ 50 at this time for QCD)

Luniv(T ) ≈
1

4π

(
1

1− n

)(
45

πN(T )

)1/2 MPl

T 2
=

1.45× 1018

(T/GeV)2
√
N(T )

fm . (2)

HereMPl is the Planck mass, and it is clear that the system is essentially in the thermodynamic limit.

Fig. 2: Cartoon representing non-central heavy ion collisions and how they affect the size of the system.

On the other hand, in heavy ion collisions the typical length scale of the system isLQGP .
10− 15 fm, so that the system can be very small, especially if one considers non-central collisions [26]
(see Fig. 2). One can develop analogous arguments for the time scales given by the expansion rates,
finding that the whole process in the early universe happens adiabatically, whereas in heavy ions it is
not even clear whether the system can achieve thermal equilibrium, given the explosive nature of the
evolution in this case. So, there are certainly large differences (in time and length scales) between Big
and Little Bangs...

Keeping this caveat in mind, heavy ion experiments have been investigating new phases of matter
at very high energies for more than a decade, producing an awesome amount of interesting data and a
richer picture of strong interactions (see Ref. [27] for a review).

In the realization of the Big and Little Bangs one is always in the high temperature and low
density (small baryon chemical potential) sector of the phase diagram of strong interactions. However,
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high densities (at very low temperatures) can also probe new states of hadronic matter, and that is what
is expected to be found in the core of compact stars [28]. There, new phases, condensates and even color
superconductivity may be present. In particular, the deconfinement and chiral transitions might affect
significantly the explosion mechanism in supernovae [28] via modifications in the equation of state.

After a neutron (or hybrid) star is formed, densities in its core can in principle reach several times
the nuclear saturation densityn0 = 0.16 fm−3 = 3× 1014g/cm3, which corresponds to squeezing∼ 2
solar masses into a sphere of∼ 10 km of radius. To describe these objects, one needs General Relativity
besides in-medium quantum field theory.

1.3 How?

The reader is hopefully already convinced that, in order to describe the phenomenology of the phase
structure and dynamics of strong interactions under extreme conditions, one needs all possibilities at
disposal: theory, effective modeling, etc. We do not have one problem ahead, but a myriad of different
problems. So, one has to make a choice. Our focus here will be the equation of state, of which we will
discuss a few aspects.

At this point, we are lead again to the “why” question. And the answer is because, besides carry-
ing all the thermodynamic equilibrium information we may be interested in, it is also the basic crucial
ingredient for dynamics, structure, etc. In fact, the phase diagram topology is determined in every detail
by the full knowledge of the pressurep(T, µ,B, . . . ). This will determine all phases present as we dial
different knobs, or control parameters, such as temperature or chemical potentials.

The structure of a compact star, for instance, is given by the solution of the Tolman-Oppenheimer-
Volkov (TOV) equations [28], which encode Einstein’s General Relativity field equations in hydrostatic
equilibrium for a spherical geometry:

dp

dr
= − GM(r)ǫ(r)

r2
[
1− 2GM(r)

r

]
[
1 +

p(r)

ǫ(r)

] [
1 +

4πr3p(r)

M(r)

]
, (3)

dM
dr

= 4πr2ǫ(r) ; M(R) = M . (4)

Given the equation of statep = p(ǫ), one can integrate the TOV equations from the origin until the
pressure vanishes,p(R) = 0. Different equations of state define different types of stars (white dwarfs,
neutron stars, strange stars, quark stars, etc) and curves on the mass-radius diagram for the families of
stars.

Furthermore, to describe the evolution of the hot plasma created in high-energy heavy ion colli-
sions, one need to make use of hydrodynamics, whose fundamental equations encode the conservation
of energy-momentum (∂µTµν = 0) and of baryon number (or different charges) (∂µnBv

µ = 0, with
vµvµ = 1). These represent only five equations for six unknown functions, the additional constraint
provided by the equation of state. Hence, it is clear that we really need the equation of state to make any
progress.

In principle, we have all the building blocks to compute the equation of state. The Lagrangian of
QCD is given, so one would have “simply” to compute the thermodynamic potential, from which one can
extract all relevant thermodynamic functions. The fact that the vacuum of QCD is highly nonperturbative,
as discussed previously, makes it way more complicated from the outset. As we know, QCD matter
becomes simpler at very high temperatures and densities,T andµ playing the role of the momentum
scale in a plasma, but very complicated in the opposite limit. On top of that,T andµ are, unfortunately,
not high enough in the interesting cases, so that the physically relevant region is way before asymptotic
freedom really kicks in. Perturbative calculations are still an option, but then one has to recall that finite-
temperature perturbative QCD is very sick in the infrared, and its naïve formulation breaks down at a
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Equation of state - naïve field map !

Fig. 3: Cartoon of the naïve field map for the equation of state for strong interactions.

scale given byg2T [29]. This is known as Linde’s problem: at this scale, for a(ℓ+ 1)-loop diagram for
the pressure, forℓ > 3 all loops contribute to the term of orderg6 even for weak coupling [29].

The situation does not look very promising, as illustrated by the cartoon of Fig. 3 which shows
that there is no appropriate formalism to tackle with the problem in the physically relevant region for the
phase structure, namely the critical regions. However, there are several ways out. Some popular examples
being: very intelligent and sophisticated “brute force” (lattice QCD), intensive use of symmetries (ef-
fective field theory models), redefining degrees of freedom (quasiparticle models), “moving down” from
very high-energy perturbative QCD, “moving up” from hadronic low-energy (nuclear) models. And we
can and should also combine these possibilities, as discussed previously.

2 Symmetries of QCD and effective model building

2.1 The simplest approach: the bag model

Before discussing the building of effective models based on the symmetries, or rather approximate sym-
metries, of QCD, let us consider a very simple description: the MIT bag model [29] applied to describe
the thermodynamics of strong interactions.

The model incorporates two basic ingredients, asymptotic freedom and confinement, in the sim-
plest and crudest fashion: bubbles (bags) of perturbative vacuum in a confining medium, including even-
tual O(αs) corrections. Asymptotic freedom is implemented by considering free quarks and gluons
inside color singlet bags, whereas confinement is realized by imposing that the vector current vanishes
on the boundary.

Then, confinement is achieved by assuming a constant energy density for the vacuum (negative
pressure), encoded in the so-called bag constantB, a phenomenological parameter extracted from fits
to hadron masses.B can also be viewed as the difference in energy density between the QCD and the
perturbative vacua. A hadron energy (for a spherical bag) receives contributions from the vacuum and
the kinetic energy, so that its minimum yields

Emin
h =

16

3
πR3

hB , (5)
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and the hadron pressure (at equilibrium)

ph =
∂Eh

∂V
= −B +

const

4πR4
= 0 . (6)

Assuming the existence of a deconfining transition, the pressure in the quark-gluon plasma phase
within this model is given by

pQGP =

(
νb +

7

4
νf

)
π2T 4

90
−B , (7)

whereas the pressure in the hadronic phase (taking, for simplicity, a pion gas) is given by

pπ = νπ
π2T 4

90
, (8)

neglecting masses. Here, we have the following numbers of degrees of freedom:νπ = 3, νb = 2(N2
c −1)

andνf = 2NcNf for pions, gluons and quarks, respectively.

For instance, forNc = 3 , Nf = 2 andB1/4 = 200 MeV, we obtain the following critical
temperature:

Tc =

(
45B

17π2

)
≈ 144 MeV (9)

and a first-order phase transition as is clear from Fig. 4. The value of the critical temperature is actually
very good as compared to recent lattice simulations [30], considering that this is a very crude model. On
the other hand the nature of the transition, a crossover, is almost by construction missed in this approach.
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Fig. 4: Pressures in the bag model description.

2.2 Basics of effective model building in QCD

To go beyond in the study of the phases of QCD, one needs to know its symmetries, and how they are
broken spontaneously or explicitly. But QCD is very involved. First, it is a non-abelianSU(Nc) gauge
theory, with gluons living in the adjoint representation. Then, there areNf dynamical quarks who live in
the fundamental representation. On top of that, these quarks have masses which are all different, which
is very annoying from the point of view of symmetries. So, in studying the phases of QCD, we should
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do it by parts, and consider many “cousin theories” which are very similar to QCD but simpler (more
symmetric). In so doing, we can also study the dependence of physics on parameters which are fixed in
Nature.

Fig. 5 illustrates the step-by-step process one can follow in assembling the symmetry features
present in QCD and learning from simpler theories, as well as cousin theories. Notice that the full
theory, whose parameters are given by comparison to the experimental measurements, has essentially no
symmetry left. Yet, some symmetries are mildly broken so that a “memory” of them remains. This fact
allows us to use “approximate order parameters”, for instance, a concept that is very useful in practice to
characterize the chiral and deconfinement transitions.

Fig. 5: Basic hierarchy in the step-by-step approach to QCD.

2.3 SU(Nc), Z(Nc) and the Polyakov loop

In the QCD Lagrangian with massless quarks,

L =
1

2
TrFµνF

µν + q̄iγµDµq , (10)

Dµ ≡ (∂µ − igAµ) , (11)

Fµν =
i

g
[Dµ(A), Dν(A)] , (12)

we have invariance under localSU(Nc). In particular, we have invariance under elements of the center
groupZ(Nc) (for a review, see Ref. [31])

Ωc = ei
2nπ
Nc 1 . (13)

At finite temperature, one has also to impose the following boundary conditions:

Aµ(~x, β) = +Aµ(~x, 0) , (14)

q(~x, β) = −q(~x, 0) . (15)

Any gauge transformation that is periodic inτ will do it. However, ‘t Hooft noticed that the class of
possible transformations is more general. They are such that

Ω(~x, β) = Ωc , Ω(~x, 0) = 1 , (16)
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keeping the gauge fields invariant but not the quarks.

For pure glue thisZ(Nc) symmetry is exact and we can define an order parameter - the Polyakov
loop:

L(~x) =
1

Nc
Tr P exp

[
ig

∫ β

0
dτ τaAa

0(~x, τ)

]
, (17)

with L transforming as

L(~x) 7→ Ωc L(~x) 1 = ei
2nπ
Nc L(~x) . (18)

At very high temperatures,g ∼ 0, andβ 7→ 0, so that

〈ℓ〉 = ei
2nπ
Nc ℓ0 , ℓ0 ∼ 1 , (19)

and we have aN -fold degenerate vacuum, signaling spontaneous symmetry breaking of globalZ(Nc).
At T = 0, confinement implies thatℓ0 = 0. Then,ℓ0 = 0 can be used as an order parameter for the
deconfining transition:

ℓ0 = 0 , T < Tc ; ℓ0 > 0 , T > Tc . (20)

Usually the Polyakov loop is related to the free energy of an infinitely heavy test quark via (confinement:
no free quark)

〈ℓ〉 = e−Ftest/T . (21)

See, however, the critical discussion in Ref. [31].

Fig. 6: Effective potential for the Polyakov loop forT < Tc (upper) andT > Tc (lower). Extracted from Ref. [32].

The analysis above is valid only for pure glue, i.e. with no dynamical quarks. However, we can still
ask whetherZ(3) is an approximate symmetry in QCD. On the lattice, in full QCD, one sees a remarkable
variation ofℓ aroundTc, so that it plays the role of an approximate order parameter [33]. Notice, however,
thatZ(3) is broken at high, not lowT , just the opposite of what is found in the analogous description of
spin systems, such as Ising, Potts, etc [13]. The effective potential for the Polyakov loop is illustrated in
Fig. 6.
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2.4 Adding quarks: chiral symmetry

In the limit of massless quarks, QCD is invariant under global chiral rotationsU(Nf )L×U(Nf )R of the
quark fields. One can rewrite this symmetry in terms of vector (V= R + L) and axial (A= R − L)
rotations

U(Nf )L × U(Nf )R ∼ U(Nf )V × U(Nf )A . (22)

AsU(N) ∼ SU(N)× U(1), one finds

U(Nf )L × U(Nf )R ∼ SU(Nf )L × SU(Nf )R × U(1)V × U(1)A , (23)

where we see theU(1)V from quark number conservation and theU(1)A broken by instantons.

In QCD, the remainingSU(Nf )L×SU(Nf )R is explicitly broken by a nonzero mass term. Take,
for simplicity,Nf = 2. Then,

L =
1

4
F a
µνF

aµν + ψLγ
µDµψL + ψRγ

µDµψR −mu(uLuR + uRuL)−md(dLdR + dRdL) , (24)

so that, for non-vanishingmu = md, the only symmetry that remains is the vector isospinSU(2)V .
In the light quark sector of QCD, chiral symmetry is just approximate. Then, for massless QCD, one
should find parity doublets in the vacuum, which is not confirmed in the hadronic spectrum. Thus, chiral
symmetry must be broken in the vacuum by the presence of a quark chiral condensate, so that

SU(Nf )L × SU(Nf )R 7→ SU(Nf )V , (25)

and the broken generators allow for the existence of pions, kaons, etc.

Hence, for massless QCD, we can define an order parameter for the spontaneous breaking of chiral
symmetry in the vacuum - the chiral condensate:

〈0|ψψ|0〉 = 〈0|ψLψR|0〉+ 〈0|ψRψL|0〉 , (26)

so that this vacuum expectation value couples together theL andR sectors, unless in the case it vanishes.
For very high temperatures or densities (lowαs), one expects to restore chiral symmetry, melting the
condensate that is a function ofT and quark masses and plays the role of an order parameter for the
chiral transition in QCD.

Again, the analysis above is valid only for massless quarks. However, we can still ask whether
QCD is approximately chiral in the light quark sector. On the lattice (full massive QCD), one sees a
remarkable variation of the chiral condensate aroundTc, so that the condensate plays the role of an
approximate order parameter [33].

In summary, there are two relevant phase transitions in QCD, associated with spontaneous symme-
try breaking mechanisms for different symmetries of the action: (i) an approximateZ(Nc) symmetry and
deconfinement, which is exact for pure gaugeSU(Nc) with an order parameter given by the Polyakov
loop; (ii) an approximate chiral symmetry and chiral transition, which is exact for massless quarks, with
an order parameter given by the chiral condensate.

One can try to investigate these phase transitions by building effective models based on such
symmetries of the QCD action. Then, the basic rules would be: (i) keeping all relevant symmetries
of the action; (ii) trying to include in the effective action all terms allowed by the chosen symmetries;
(iii) developing a mimic of QCD at low energy using a simpler field theory; (iv) providing, whenever
possible, analytic results at least for estimates and qualitative behavior. Well-known examples are the
linear sigma model, the Nambu-Jona-Lasinio model, Polyakov loop models and so on [24]. Although
they represent just part of the story, combined with lattice QCD they may provide good insight.
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3 A final comment

Instead of conclusions, just a final comment on a point we have already made in the discussion above.
To make progress in understanding, or at least in collecting facts about, (de)confinement and chiral sym-
metry, we need it all: experiments and observations, lattice simulations, theory developments, effective
models, and also combinations whenever possible. In that vein, it is absolutely crucial to have theorists
and experimentalists working and discussing together.
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Ultra-High Energy Cosmic Rays
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Abstract
The origin of the ultra high energy cosmic rays (UHECR) with energies above
E > 1017eV, is still unknown. The discovery of their sources will reveal
the engines of the most energetic astrophysical accelerators in the universe.
This is a written version of a series of lectures devoted to UHECR at the 2013
CERN-Latin-American School of High-Energy Physics. We present an intro-
duction to acceleration mechanisms of charged particles to the highest ener-
gies in astrophysical objects, their propagation from the sources to Earth, and
the experimental techniques for their detection. We also discuss some of the
relevant observational results from Telescope Array and Pierre Auger Obser-
vatory. These experiments deal with particle interactions at energies orders of
magnitude higher than achieved in terrestrial accelerators.

1 Introduction
Extreme physical systems provide the best scenario to study the fundamental physical laws. In this
direction the research on ultra high energy cosmic rays is a crucial element, contributing to progress
in both astrophysics and particle physics. UHECR open a window to energy and kinematic regions
previously unexplored in the study of fundamental interactions and continue to motivate current and
future cosmic ray experiments. In this note we summarize a series of lectures given at the 7th CERN-
Latin-American School of High-Energy Physics on ultra high energy cosmic rays, the highest-energy
particles measured on Earth with energy E > 1017eV.

UHECR are mainly protons and nuclei, accelerated in astrophysical objects. The requirements
for these objects to be sources of UHECR are quite stringent, as in addition to be able to accelerate to
extremely high energies, they should also have the luminosity that can account for the observed fluxes.
UHECR must survive during acceleration, escape and propagation through the intergalactic space, los-
ing energy in the interactions with the Infrared/optical (IR/O), Cosmic Microwave Background (CMB)
or Radio Background photons. We begin with a brief introduction to cosmic rays. Then, we introduce
basic concepts of acceleration mechanisms, and the main energy loss processes for UHECR during prop-
agation. The opacity of the CMB to the propagation of these particles is a key issue in the search for the
origin of UHECR, leading to a modification of the energy spectrum and a strong constraint on the prox-
imity of UHECR sources. At this point we give a short description of the main experimental techniques
for the detection of UHECR and discuss observational results of the cosmic ray spectrum. UHECR are
also deflected in the intergalactic and galactic magnetic fields in the propagation volume, what limits
the search for correlations of the arrival direction of UHECR with possible sources and distributions of
astrophysical objects in our vicinity. Here we present studies of anisotropy at the highest energies. Next,
we summarize the phenomenology of cosmic ray air showers, including the dominant electromagnetic
processes driving the shower evolution. We also present the hadronic interaction models used to extrap-
olate results from collider data to ultrahigh energies. Finally, we describe the main observables sensitive
to primary composition, the most challenging issue to understand the nature and origin of UHECR.

2 Cosmic Rays
In 1912, Victor Hess carried out a series of balloon flights taking an electroscope to measured the ioniz-
ing radiation as a function of altitude. He discovered that the ionization rate increased by at least a factor
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of two at around 5 km above the Earth’s surface [1]. He received the Nobel prize in 1936 for the discov-
ery of this “penetrating radiation” coming from space, later called cosmic rays. In 1938, Pierre Auger
and his colleagues first reported the existence of extensive air showers (EAS), showers of secondary
particles caused by the collision of primary high energy particles with air molecules. On the basis of
his measurements, Auger concluded that he had observed showers with energies of 1015eV [2, 3]. The
literature abounds in historical introductions to cosmic rays, we recommend the heart-warming notes by
J. Cronin at the 30th International Cosmic Ray Conference [4]. See also the lectures notes presented in
Refs. [5, 6].

For primary energy above 1011eV, the observed cosmic ray flux can be described by a series of
power laws with the flux falling about three orders of magnitude for each decade increase in energy.
Figure 1 shows the “all-particle” spectrum. The differential energy spectrum has been multiplied by
E2.6 in order to display the features of the steep spectrum that are otherwise difficult to discern [7]. A
change of the spectral index ( E−2.7 to E−3.0) at an energy of about 1015eV is known as the cosmic ray
knee. This feature is generally believed to correspond to the steepening of the galactic proton spectrum,
either because a change of the propagation regime or because of maximum limitations at the source,
[8–10]. The same effect for heavier nuclei may cause the softer spectrum above the knee. In this context,
subsequent steepenings of the spectrum are predicted at Emax ∼ Z × 1015eV reaching ∼ 8 × 1016eV
for the iron group. The KASCADE-Grande collaboration provided the first observation of this sequence
of changes [11]. Above several ∼ 1018eV the magnetic field in the vicinity of the Galaxy would not trap
very effectively even the very heaviest nuclei, so the detected cosmic rays must be extragalactic [12].
The onset of an extragalactic contribution could be indicated by the so-called second knee, a further
steepening of the spectrum at about 1017.7eV. The flattening around 1018.5eV is called the ankle of the
spectrum. The simplest way of producing this feature is that of intersecting the steep galactic spectrum
with a flatter extragalactic one. Under this assumption, several models have been developed. In the
“ankle model” [13, 14], the transition appears at 1018.5eV. This model needs a new high energy galactic
component between the iron knee and the onset of the extragalactic component. In the “dip model”,
the ankle appears as an intrinsic part of the pair-production dip, a feature predicted in the spectrum of
extragalactic protons that can be directly linked to the interaction of UHECR with the CMB [15–17].
In this model the transition from the galactic to the extragalactic component begins at the second knee
and is completed at the beginning of the dip at E ∼ 1018eV. In “mix composition models” [18], the
transition occurs at 3 × 1018eV with mass composition changing from the galactic iron to extragalactic
mixed composition of different nuclei. For a recent comprehensive review of the transition models see
Ref. [19].

The Large Hadron Collider (LHC) will collide in 2015 protons at
√
s ' 14 TeV. This impressive

energy is still about a factor of 50 smaller than the centre-of-mass energy of the highest energy cosmic
ray so far observed, assuming primary protons.

For cosmic ray energies above 1015eV, the flux becomes so low that direct detection of the primary
using devices in or above the upper atmosphere is, for all practical purposes, impossible. Fortunately, in
such cases the primary particle has enough energy to initiate a particle cascade in the atmosphere large
enough that the products are detectable at ground. There are several techniques which can be employed
in detecting these extensive air showers (EAS), ranging from sampling of particles in the cascade to
measurements of fluorescence, Čerenkov or radio emissions produced by the shower.

3 Acceleration of cosmic rays
There are two types of mechanisms able to accelerate charged particles to reach ultrahigh energies and
at the same time give a power law injection spectrum. One is the acceleration of particles directly to
very high energy by an extended electric field [20], such as the case of unipolar inductors in relativistic
magnetic rotators (e.g. neutron stars [21]) or black holes with magnetized disks that lose rotational
energy in jets. They have the advantage of being fast, however, they suffer from the circumstance that

2

G.T. DOVA

170



 [eV]E
1310 1410 1510 1610 1710 1810 1910 2010

]
-1

 sr
-1  s

-2
 m

1.
6

 [G
eV

F(
E)

2.
6

E

1

10

210

310

410
Grigorov
JACEE
MGU
Tien-Shan
Tibet07
Akeno
CASA-MIA
HEGRA
Fly’s Eye
Kascade
Kascade Grande 2011
AGASA
HiRes 1
HiRes 2
Telescope Array 2011
Auger 2011

Knee

Ankle

Fig. 1: All-particle spectrum of cosmic rays. From Ref. [7]

the acceleration occurs in astrophysical sites of very high energy density, where new opportunities for
energy loss exist. In addition, they predict a hard injection spectrum that cannot be reconciled with the
currently observed slope. In 1949, Fermi introduced a statistical acceleration mechanism [22]. In his
publication, Fermi considered the scattering of cosmic particles on moving magnetized clouds which
led to a fractional energy gain ξ = 〈∆E〉/E ∝ β2 where β is the average velocity of the scattering
centres in units of c. There is a net transfer of the macroscopic kinetic energy from the moving cloud
to the particle, but the average energy gain is very small. Nowadays, this process is called “second
order Fermi acceleration”. The first really successful theory of high energy cosmic ray acceleration was
identified in [23] to be the Fermi acceleration in nonrelativistic shock waves in supernova remnants. The
diffusion of cosmic rays in moving magnetized plasmas in the upstream and downstream of the shocks,
force particles to repeatedly cross the shock front, hence gaining energy by numerous encounters, this
results in ξ ∝ β. When measured in the stationary upstream frame, β is the speed of the shocked fluid
in units of c. This mechanism is known as “first order Fermi acceleration”. Shock waves for UHECR
acceleration are Gamma Ray Bursts (GRB) shocks, jets and hot spots of Active Galactic Nuclei (AGN),
and gravitational accretion shocks.

Following [24], we provide here a simple calculation to obtain the power law predictions from first
order Fermi processes under the “test particle approximation”, in which the back-reaction of accelerated
CRs on the shock properties is neglected. The energy En of a cosmic particle after n acceleration cycles
is:

En = E0(1 + ξ)n (1)

and the number of cycles to reach E results from Eq. (1)

n = ln

(
E

E0

)
/ ln(1 + ξ) (2)

where E0 is the energy at injection into the acceleration site. If the escape probability Pesc per encounter

3

ULTRA-HIGH-ENERGY COSMIC RAYS

171



is constant, then the probability to stay in the acceleration region after n cycles is (1 − Pesc)
n. The

fraction of particles accelerated to energies > E, the integral spectrum, is:

N(> E) ∝ (1− Pesc)n
Pesc

∝ 1

Pesc

(
E

E0

)−γ
(3)

with γ ∝ Pesc/ξ for ξ � 1 and Pesc � 1. Note that both first and second order Fermi acceleration
produce a power law energy spectrum.

The escape probability from the acceleration site depends on the characteristic time for the accel-
eration cycle and the characteristic time for escape from the acceleration site. In the rest frame of the
shock the conservation relations imply that the upstream velocity uup is much higher than the down-
stream velocity udown. The compression ratio r = uup/udown = ndown/nup can be determined by
requiring continuity of particle number, momentum, and energy across the shock. Here nup (ndown) is
the particle density of the upstream (downstream) plasma. For an ideal gas the compression ratio can
be related to the specific heat ratio and the Mach number of the shock. In the case of highly supersonic
shocks, r = 4 [25]. To determine the spectrum we need to calculate γ. For the case of shock accelera-
tion, ξ = 4β /3 = 4 (uup − udown)/3 and the escape probability can be obtained as the ratio of the loss
flux, downstream away from the shock, and the crossing flux. Assuming the configuration of a large,
plane shock the escape probability results as Pesc = 4udown/c. Finally, we obtain the spectral index of
the integral energy spectrum:

γ ∝ Pesc/ξ ∝
3

uup/udown − 1
∝ 1 (4)

This injection spectrum should be compared with the observed flux of cosmic rays, dN/dE ∝
E−2. The result is in good agreement although additional effects, like energy losses or an energy depen-
dence of the escape probability, could have an important impact on the shape of the injection spectrum.
For a comprehensive review of shock acceleration theory, see Ref. [25]. For a discussion about different
acceleration mechanisms we recommend Ref. [26].

The requirements for astrophysical objects to be sources of UHECR are stringent. The Larmor
radius of a particle with charge Ze increases with its energy E according to

rL =
1.1

Z

(
E

1018eV

)(
B

µG

)−1

kpc . (5)

The search for UHECR extralagalactic sources was motivated by the fact that rL in the galactic magnetic
field is much larger than the thickness of the galactic disk, hence, confinement in the galaxy is not main-
tained for UHECR. The famous Hillas criteria states that the Larmor radius of the accelerated particles
cannot exceed the size of the source (Rsource), setting a natural limit in the particle’s energy.

Emax ' Z
(
B

µG

)(
Rsource

kpc

)
× 1018 eV . (6)

This limitation in energy can be seen in the so-called Hillas plot [27] shown in Fig. 2 where candidate
sources are placed in a plane of the characteristic magnetic field B versus their characteristic size R. For
protons, the only sources for the UHECR that seem to be plausible are radio galaxy lobes and clusters
of galaxies. Exceptions may occur for sources which move relativistically in the host-galaxy frame, in
particular jets from AGN and GRB. In this case the maximal energy might be increased due to a Doppler
boost by a factor ∼ 30 or ∼ 1000, respectively. For a survey of cosmic ray sources shown in Fig. 2 and
their signatures, see Refs. [26, 28]. An interesting point is that if acceleration takes place in GRB, one
may expect a strong neutrino signature due to proton interactions with the radiative background [29].
Such a signature is now being probed by the Ice Cube experiment [30].
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4 Propagation of extragalactic cosmic rays
4.1 Energy losses of protons
There are three main energy loss processes for protons propagating over cosmological distances: Adia-
batic energy losses due to the expansion of the universe, −dE/dt = H0, pair production (pγ → pe+e−)
and pion-production pγ → πN on photons of the cosmic microwave background (CMB). Collisions
with optical and infrared photons give a negligible contribution.

The fractional energy loss due to interactions with the cosmic background radiation at a redshift
z = 0 is determined by the integral of the nucleon energy loss per collision multiplied by the probability
per unit time for a nucleon collision in an isotropic gas of photons [32]. For interactions with a blackbody
field of temperature T , the photon density is that of a Planck spectrum, so the fractional energy loss is
given by

− 1

E

dE

dt
= − ckT

2π2Γ2(c~)3

∑

j

∫ ∞

ω0j

dωr σj(ωr) yj ωr ln(1− e−ωr/2ΓkT ) , (7)

where ωr is the photon energy in the rest frame of the nucleon, and yj is the inelasticity, i.e. the average
fraction of the energy lost by the photon to the nucleon in the laboratory frame for the jth reaction
channel. The sum is carried out over all channels and dω, σj(ωr) is the total cross section of the jth
interaction channel, Γ is the usual Lorentz factor of the nucleon, and ω0j is the threshold energy for the
jth reaction in the rest frame of the nucleon.

At energies E � memp/kT = 2.1 × 1018eV, the reaction (pγ → pe+e−) takes place on the
photons from the high energy tail of the Planck distribution. The cross section of the reaction approxi-

mated by the threshold values is σ(ωr) = π
12 α r

2
0

(
ωr
me
− 2
)3

, α is the fine structure constant and r0 is
the classical radius of the electron [33]. The inelasticity at threshold results y = 2 me

mp
. The fractional
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energy loss due to pair production is then,

− 1

E

(
dE

dt

)
=

16c

π

me

mp
α r2

0

(
kT

hc

)3 (ΓkT

me

)2

exp
(
− me

ΓkT

)
. (8)

At higher energies (E > 1019eV) the photopion reactions pγ → pπ0 and pγ → π+n on the tail of
the Planck distribution give the main contribution to proton energy loss. The photons are seen blue-
shifted by the cosmic rays in their rest frames and the reaction becomes possible. The cross sections
of these reactions are well known. It strongly increase at the ∆(1232) resonance, which decays into
the one pion channels π+n and π0p at a photon energy in the proton rest frame of 145 MeV. At higher
energies, heavier baryon resonances occur and the proton might reappear only after successive decays of
resonances. The cross section in this region can be described by a sum of Breit-Wigner distributions over
the main resonances produced in Nγ collisions with πN , ππN and KΛ (Λ → Nπ) final states [34].
For the cross section at high energies the fits from the CERN-HERA and COMPAS Groups to the high-
energy pγ cross section [35] can be used. Assuming that reactions mediated by baryon resonances have
spherically symmetric decay angular distributions, the average energy loss of the nucleon after n resonant
collisions is given by

yπ(mR0) = 1− 1

2n

n∏

i=1

(
1 +

m2
Ri
−m2

M

m2
Ri−1

)
, (9)

wheremRi
denotes the mass of the ith resonant system of the decay chain,mM the mass of the associated

meson, mR0
=
√
s is the total energy of the reaction in the c.m., and mRn

the mass of the nucleon. It is
well established from experiments that, at very high energies (

√
s > 3 GeV), the incident nucleons lose

one-half their energy via pion photoproduction independent of the number of pions produced ( “leading
particle effect”) [36].

A fit to Eq. (7) for the region
√
s < 2 GeV with the exponential behavior derived from the values

of cross section and fractional energy loss at threshold, gives [37]

− 1

E

(
dE

dt

)

π

= A exp[−B/E] , (10)

A = (3.66± 0.08)× 10−8 yr−1, B = (2.87± 0.03)× 1011 GeV . (11)

The fractional energy loss at higher c.m. energies (
√
s & 3 GeV) is roughly a constant,

− 1

E

(
dE

dt

)

π

= C = (2.42± 0.03)× 10−8 yr−1 . (12)

From the values determined for the fractional energy loss, it is straightforward to compute the energy
degradation of UHECRs in terms of their flight time. This is given by,

A t − Ei (B/E) + Ei (B/E0) = 0 , for 1010 GeV . E . 1012 GeV , (13)

and
E(t) = E0 exp[−C t ] , for E & 1012 GeV , (14)

where Ei is the exponential integral. Figure 3 shows the proton energy degradation as a function of
the mean propagation distance. Notice that, independent of the initial energy of the nucleon, the mean
energy values approach 1020eV after a distance of ≈ 100 Mpc. This fact contrains the proximity to the
Earth of the sources of UHECR with energies above 5 × 1019eV.
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Fig. 3: Energy attenuation length of protons in the intergalactic medium. For proton sources beyond ≈ 100 Mpc,
the observed proton energy is < 1020eV regardless its initial value. From Ref. [37].

4.2 Energy losses of nuclei
The relevant mechanisms for the energy loss of nuclei during propagation are: Compton interactions,
pair production in the field of the nucleus, photodisintegration and hadron photoproduction. For nuclei
of energy E > 1019eV the dominant loss process is photodisintegration. In the nucleus rest-frame,
pair production has a threshold at ∼ 1 MeV, photodisintegration is particularly important at the peak
of the giant dipole resonance (15 to 25 MeV), and photomeson production has a threshold energy of
∼ 145 MeV. Compton interactions result in only a negligibly small energy loss for the nucleus [38].

For a nucleus of mass A and charge Ze, the energy loss rate due to photopair production is Z2/A
times higher than for a proton of the same Lorentz factor [39], whereas the energy loss rate due to pho-
tomeson production remains roughly the same. The latter is true because the cross section for photome-
son production by nuclei is proportional to the mass number A [40], while the inelasticity is proportional
to 1/A. However, it is photodisintegration rather than photopair and photomeson production that deter-
mines the energetics of ultrahigh energy cosmic nuclei. During this process some fragments of the nuclei
are released, mostly single neutrons and protons. Experimental data of photonuclear interactions are con-
sistent with a two-step process: photoabsorption by the nucleus to form a compound state, followed by a
statistical decay process involving the emission of one or more nucleons.

The disintegration rate with production of i nucleons is given by [41]

RAi =
1

2Γ2

∫ ∞

0
dw

n(w)

w2

∫ 2Γw

0
dwr wrσAi(wr) (15)

where n(w) is the density of photons with energy w in the system of reference in which the cosmic
microwave background (CMB) is at 2.7 K and wr is the energy of the photons in the rest frame of the
nucleus. As usual, Γ is the Lorentz factor and σAi is the cross section for the interaction.

Here, the soft photon background is taken as the sum of a 2.7 K Planckian spectrum that dominates
at energies w ∈ (2.0 × 10−6 eV , 4 × 10−3 eV), and the infrared radiation as estimated in Ref. [42].
Parameterizations of the photodisintegration cross section for the different nuclear species are given in
Ref. [38]. Summing over all possible channels for a given number of nucleons, one obtains the effective
nucleon loss rate R =

∑
i iRAi. The effective nucleon loss rate for light elements, as well as for those in
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the carbon, silicon and iron groups can be scaled as in [38]

dA

dt

∣∣∣∣
A

∼ dA

dt

∣∣∣∣
Fe

(
A

56

)
= R|

Fe

(
A

56

)
, (16)

with the photodisintegration rate parametrized by [43]

R56(Γ) = 3.25× 10−6 Γ−0.643 exp(−2.15× 1010/Γ) s−1 (17)

for Γ ∈ [1.0× 109, 36.8× 109], and

R56(Γ) = 1.59× 10−12 Γ−0.0698 s−1 (18)

for Γ ∈ [3.68× 1010, 10.0× 1010].

For photodisintegration, the averaged fractional energy loss results equal to the fractional loss in
mass number of the nucleus, because the nucleon emission is isotropic in the rest frame of the nucleus.
During the photodisintegration process the Lorentz factor of the nucleus is conserved, unlike the cases
of pair production and photomeson production processes which involve the creation of new particles that
carry off energy. The total fractional energy loss is then

− 1

E

dE

dt
=

1

Γ

dΓ

dt
+
R

A
. (19)

For ωr . 145 MeV the reduction in Γ comes from the nuclear energy loss due to pair production [44].
For Γ > 1010 the energy loss due to photopair production is negligible, and thus

E(t) ∼ 938 A(t) Γ MeV ∼ E0 e
−R(Γ)|

Fe
t/56

. (20)

Figure 4 shows the energy of the heaviest surviving nuclear fragment as a function of the propa-
gation time, for initial iron nuclei. The solid curves are obtained using Eq. (20), whereas the dashed and
dotted-dashed curves are obtained by means of Monte Carlo simulations [45]. One can see that nuclei
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with Lorentz factors above 1010 cannot survive for more than 10 Mpc. For these distances, the approx-
imation given in Eq. (20) always lies in the region which includes 95% of the Monte Carlo simulations.
When the nucleus is emitted with a Lorentz factor Γ0 < 5 × 109, pair production losses start to be
relevant, significantly reducing the value of Γ as the nucleus propagates distances of O(100 Mpc). The
effect has a maximum for Γ0 ≈ 4 × 109 but becomes small again for Γ0 ≤ 109, for which appreciable
effects only appear for cosmological distances (> 1000 Mpc), see for instance Ref. [45].

Note that Eq. (20) imposes a strong constraint on the location of nucleus-sources: less than 1%
of iron nuclei (or any surviving fragment of their spallations) can survive more than 3 × 1014 s with an
energy > 1020.5 eV. It is important to keep in mind that a light propagation distance of 1.03 × 1014 s
corresponds to 1 Mpc.

In recent years the interest in the propagation of UHECR nuclei has significantly grown. A com-
plete review with a detailed list of references can be found in [46]. Most recent calculations of UHECR
proton propagation use the Monte Carlo generator SOPHIA [47] for photomeson interaction of protons,
based on available data and phenomenological models. For the case of nuclei propagation, existing
propagation codes are CRPropa [48] and the complete nuclei propagation tool presented in Ref. [49].

5 Cosmic ray observations at the highest energies: Hybrid instruments
For primary cosmic ray energies above 1014eV, the flux becomes so low that individual events cannot
longer be detected directly. Fortunately, in such cases the primary particle has enough energy to initiate
an extended air shower (EAS) in the atmosphere. Only the secondary particles are detected and used
to infer the properties of the primary particle. There are several techniques which can be employed in
detecting EAS.

The most commonly used detection method involves sampling the shower front at a given altitude
using an array of sensors spread over a large area. The classical set up consists of an array of plastic
scintillators, registering charged particles from the shower (also some converted photons). Another tech-
nique is to use water Čerenkov detectors (WCD), that allow the detection of the very numerous photons
present in showers. They are deep compare with scintillators, so they have larger response to inclined
showers. An initial estimate of the shower direction is obtained from the relative arrival times of signal
at a minimum of 3 non-collinear detectors, treating the shower front as if it were planar. The density of
particles falls off with the distance to the shower core and this can be parameterized by a lateral distribu-
tion function (LDF), which, of course, depends on the characteristics of the detectors used. The particle
density at a large distance from the shower core is commonly used as an energy estimator. Muons in the
EAS have higher energies than electromagnetic particles, which in addition suffer significant scattering
and energy loss. Thus, the muonic component tends to arrive earlier and over a shorter period of time
than the electromagnetic one. These signatures may also help to distinguish µ’s from electrons and γ’s
providing a useful tool to determine the primary composition.

Another highly successful air shower detection method involves measurement of the longitudinal
development of the cascade by sensing the fluorescence light produced via interactions of the charged
particles in the atmosphere. As an extensive air shower develops, it dissipates much of its energy by
exciting and ionizing air molecules along its path. Excited nitrogen molecules fluoresce producing radia-
tion in the 300 - 400 nm ultraviolet range, to which the atmosphere is quite transparent. Under favourable
atmospheric conditions EAS can be detected at distances as large as 20 km, though observations can only
be made on clear moonless nights, yielding a duty cycle of about 10%. The shower development appears
as a rapidly moving spot of light whose angular motion depends on both the distance and the orientation
of the shower axis. The fluorescence technique provides the most effective way to measure the energy of
the primary particle. The amount of fluorescence light emitted is proportional to the number of charged
particles in the showers allowing a direct measurement of the longitudinal development of the EAS in
the atmosphere. For this, the sky is viewed by many segmented eyes using photomultipliers. From the
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measured shower profile the position of the shower maximum Xmax, which is sensitive to primary com-
position, can be obtained. The energy in the electromagnetic component is calculated by integrating the
measured shower profile, after corrections for atmospheric attenuation of the fluorescence light and con-
tamination of the signal by C̆erenkov light. Finally, to derived the total energy of the shower, an estimate
of the missing energy carried to the ground by neutrinos and high energy muons must be made based on
assumptions about the primary mass and the appropriate hadronic interaction models.

In this note we focus on the two high energy cosmic ray experiments currently operating: the
Pierre Auger Observatory [50] and the Telescope Array (TA) [51]. The Pierre Auger Observatory, the
largest UHECR experiment in the world, is located in Malargüe, Argentina (35◦12′S, 69◦12′W). It has
an accumulated exposure of about 30000 km2 sr yr. The Telescope Array located in Millard County,
Utah, USA (39.3◦N, 112.9◦W), due to a later start and its more than 4 times smaller area, has collected
about 10 times less events. Both the Pierre Auger Observatory and TA are hybrid detectors employing
two complementary detection techniques for the ground-based measurement of air showers induced by
UHECR: a surface detector array (SD) and a fluorescence detector (FD).

The ground array of the Pierre Auger Observatory consists of 1600 stations spaced by 1.5 km
covering an area of 3000 km2.. Each detector is a cylindrical, opaque tank of 10 m2 and a water depth of
1.2 m, where particles produce light by C̆erenkov radiation. The filtered water is contained in an internal
coating which diffusely reflects the light collected by three photomultipliers (PMT) installed on the top.
The large diameter PMTs (≈ 20 cm ) hemispherical photomultiplier are mounted facing down and look
at the water through sealed polyethylene windows that are integral part of the internal liner. Due to the
size of the array the stations have to work in an autonomous way. Thus the stations operate on battery-
backed solar power and communicate with a central station by using wireless LAN radio links. The time
information is obtained from the Global Positioning Satellite (GPS) system. This array is fully efficient
at energies above E > 3× 1018eV. Additional detectors with 750 m spacing have been nested within the
1500 m array to cover an area of 25 km2 with full efficiency above E > 3× 1017eV. The SD is sensitive
to electromagnetic and muonic secondary particles of air showers and has a duty cycle of almost 100%.
The surface array is overlooked by 27 optical telescopes grouped in 5 buildings on the periphery of the
array [52]. The field of view of each telescope is 30 ◦ in azimuth, and 1.5 ◦ to 30 ◦ in elevation, except for
three of them, for which the elevation is between 30 ◦ and 60 ◦ (HEAT telescopes [53] ). Light is focused
with a spherical mirror of 13 m2 on a camera of 440 hexagonal PMTs. The FD can only operate during
dark nights, which limits its duty cycle to 13%. Stable data taking with the SD started in January 2004
and the Observatory has been running with its full configuration since 2008.

In Figure 5 (left panel) we present a schematic description of a water C̆erenkov detector installed
at the Pierre Auger Observatory. Mounted on top of the tank are the solar panel, electronic enclosure,
mast, radio antenna and GPS antenna for absolute and relative timing. A battery is contained in a box
attached to the the tank. The main components of a fluorescence eye are shown on the right panel of
Figure 5: a large spherical mirror with a radius of curvature of 3.4 m, a pixel camera in the focal surface
and a diaphragm with an entrance glass window. This filter allows reduction of night background with
respect to the fluorescence signal and also serves to protect the equipment from dust.

The TA surface array consists of 507 detector units deployed in a square grid with 1.2 km spacing
to cover a total area of approximately 700 km2. Each unit consists of a plastic scintillation counter of
3 m2 surface and 1.2 cm thickness, with 2 layers of plastic scintillators viewed by PMT at each end.
The entire system is powered by a solar panel and battery. The communication is done with WLAN
modem. The SD array is fully efficient for cosmic rays with energies greater than 1018.8eV [54]. Three
FD stations are placed around the SD array, with a total of 38 telescopes. Each telescope is comprised of
a cluster of photo-tubes and a reflecting mirror of 3.3 m diameter. A PMT camera consisting of 16× 16
PMTs is set at a distance of 3000 mm from the mirror. The field of view of each PMT is approximately
1 ◦ and that of the FD station is from 3 ◦ to 33 ◦ in elevation and 108 ◦ in azimuth. See Ref. [51] for
details of the TA detectors.
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Fig. 5: Left: A typical surface detector of the Auger Observatory. Right: A fluorescence telescope. See the text
for the description of the components.

6 Flux measurements
Surface arrays, with its near 100% duty cycle, give the larger data sample used to obtain the energy
spectrum. The comparison of the shower energy, measured using fluorescence, with the SD energy
parameter for a subset of hybrid events is used to calibrate the energy scale for the array.

The first step towards the flux measurement with the SD array is the reconstruction of arrival
direction and core position of air showers. Then, a stable parameter from the SD which correlates with
the primary energy is reconstructed. This parameter is the signal at an optimal distances to the shower
core at which the spread in the signal size is minimum [55]. In the following we distinguish between
vertical events (θ < 60◦) and inclined events (62◦ ≤ θ < 80◦). For the case of Auger, the optimal
distance is 1000 m for the main array and 450 m for the “infill”, while for TA is 800 m. For vertical
events the signals at the optimal distance obtained from a LDF fit, have to be corrected for their zenith
angle dependence due to air shower attenuation in the atmosphere. This is done in Auger with a Constant
Intensity Cut (CIC) method [56]. The equivalent signal at median zenith angle of 38 ◦ (35 ◦) is then used
to infer the energy for the 1500 m (750 m) array [57, 58]. Events that have independently triggered the
SD array and FD telescopes are used for the energy calibration of SD data [59]. The correlation between
the different energy estimators and the energy obtained from the FD is shown in Figure 6 (left panel)
superimposed with the calibration functions resulting from maximum-likelihood fits. For the case of
TA, the energy is estimated by using a look-up table in S(800) and zenith angle determined from an
exhaustive Monte Carlo simulation. The uncertainty in energy scale of the Monte Carlo simulation of
an SD is large, and possible biases associated with the modelling of hadronic interactions are difficult to
determine. Therefore, the SD energy scale is corrected to the TA FD using hybrid events. The observed
differences between the FD and SD events are well described by a simple proportionality relationship,
where the SD energy scale is 27% higher than the FD [60].

Water Čerenkov detectors from the Pierre Auger Observatory SD, have larger response to inclined
showers. These EAS are characterized by the dominance of secondary muons at ground, as the elec-
tromagnetic component is largely absorbed in the large atmospheric depth traversed by the shower [61].
The reconstruction is based on the estimation of the relative muon content N19 with respect to a simu-
lated proton shower with energy 10× 1019eV [62]. N19 is used to infer the primary energy for inclined
events, as shown in the left pannel of Figure 6.

The energy spectra obtained from the three SD datasets are shown in the right panel of Figure 6.
To characterize the spectral features, the Auger collaboration describes the data with a power law below
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Fig. 6: Left: The correlation between the different energy estimators S38, S35 and N19 (see text) and the energy
determined by FD. Right: Energy spectra, corrected for energy resolution, derived from SD and from hybrid data.
From Ref. [57].

the ankle J(E) ∝ E−γ1 and a power law with smooth suppression above:

J(E;E > Ea) ∝ E−γ2
[
1 + exp

(
log10E − log10E1/2

log10Wc

)]−1

.

γ1, γ2 are the spectral indices below/above the ankle at Ea. E1/2 is the energy at which the flux has
dropped to half of its peak value before the suppression, the steepness of which is described with
log10Wc. The data in Figure 6 clearly exhibit the ankle at 1018.7eV and a flux suppression above
1019.6eV. The Pierre Auger Observatory has confirmed the GZK feature of the spectrum with a sig-
nificance greater than 20 σ obtained by comparison to a power law extrapolation. This observation
seems to indicate that acceleration in extragalactic sources can explain the high energy CR spectrum,
ending the need for exotic alternatives designed to avoid the flux suppression. However, the possibility
that this feature in the spectrum is due to the maximum energy of acceleration at the sources is not easily
dismissed.

We present here only the energy spectrum from the Pierre Auger Observatory, details of the cor-
responding spectrum obtained by the Telescope Array collaboration are presented in Ref. [63]. As dis-
cussed in Ref. [64], it is found that the energy spectra determined by these experiments are consistent
in normalization and shape after energy scaling factors are applied. Those scaling factors are within
systematic uncertainties in the energy scale quoted by the experiments.

7 Correlation with astrophysical objects
Since the UHECR are charged particles, they not only lose energy in the interaction with background
photons, but also they are deflected by galactic and extragalactic magnetic fields. The galactic magnetic
field (GMF) can be modelled as the sum of a regular (large scale fluctuations) and a turbulent (smaller
scale fluctuations) components. The directions on the sky in which cosmic rays are deflected strongly
depend on the GMF model, however, averaged quantities such as the average UHECR deflection angle
are much less model dependent [65]. Extragalactic magnetic fields are expected to be stronger in the
large scale structure of the Universe and significantly weaker in voids. UHECR deflections in such fields
are poorly constrained ranging from negligible to more than ten degrees, even for 100 EeV protons (See
Ref. [26] and references therein). Attempts to detect anisotropies at ultrahigh energies are based on the
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Fig. 7: Left: The 69 arrival directions of cosmic rays with energy E > 55 EeV detected by the Pierre Auger
Observatory up to December 2009 are plotted as black dots in an Aitoff-Hammer projection of the sky in galactic
coordinates. The solid line represents the field of view of the Southern Observatory for zenith angles smaller than
60◦. Blue circles of radius 3.1◦ are centred at the positions of the 318 AGN in the VCV catalogue that lie within
75 Mpc and that are within the field of view of the Observatory. Darker blue indicates larger relative exposure. The
exposure-weighted fraction of the sky covered by the blue circles is 21%. Right: Fraction of events correlating
with AGN as a function of the cumulative number of events, starting after the exploratory data. The expected
correlating fraction for isotropic cosmic rays is shown by the dotted line. From Ref. [68]

selection of events with the largest magnetic rigidity to study whether they can be correlated with the
direction of possible sources or distributions of astrophysical objects in our vicinity (less than 100 Mpc).

The most recent discussion of anisotropies in the sky distribution of ultrahigh energy events began
when the Pierre Auger Observatory reported a correlation of its highest energy events with AGN [66] in
the 12th Veron-Cetty & Veron (VCV) catalogue [67]. To calculate a meaningful statistical significance
in such an analysis, it is important to define the search procedure a priori in order to ensure it is not
inadvertently devised especially to suit the particular data set after having studied it. With the aim of
avoiding accidental bias on the number of trials performed in selecting the cuts, the Auger anisotropy
analysis scheme followed a pre-defined process. First an exploratory data sample was employed for
comparison with various source catalogues and for tests of various cut choices. The results of this
exploratory period were then used to design prescriptions to be applied to subsequently gathered data.
The first 14 events were used for an exploratory scan and the correlation was most significant for AGN for
energy threshold 5.5×1019eV with redshifts z < 0.018 (distances< 75 Mpc) and within 3.1◦ separation
angles. The subsequent 13 events established a 99% confidence level for rejecting the hypothesis of
isotropic cosmic ray flux. The reported fraction of correlation events was 69+11

−13%. An analysis with
data up to the end of 2009 (69 events in total, as seen in the left panel of Figure 7) indicated that the
correlation level decreased to 38+7

−6% [68]. In the right panel of Figure 7 we show the most likely value
of the fraction of the correlated events with objects in the VCV catalogue as a function of the total
number of time-ordered events (the events used in the exploratory scan are excluded). The 1σ and 2σ
uncertainties in this value are indicated. The current estimate of the fraction of correlating cosmic rays
is 33 ± 5% (28 events correlating from a total of 84 events) with 21% expected under the isotropic
hypothesis [69].

The Telescope Array Collaboration has also searched for correlation with AGN in the VCV cat-
alogue [70, 71]. The TA exposure is peaked in the Northern hemisphere so the AGN visible to TA are
not the same as the ones visible to Auger, though there is some overlap. When the distribution of nearby
AGN is taken into account, and assuming equal AGN luminosities in UHECR, the correlating fraction
would be 40%.

A complete report on the current status for anisotropy searches can be found in [72]. The report
includes, in the region around 1018eV, constraints from measuring the first harmonic modulation in the
right ascension distribution of arrival directions, and search for point-like sources that would be indicative
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of a flux of neutrons (see also Ref. [73]); at higher energies, searches for clustering in arrival directions,
and correlations with nearby extragalactic objects (see also Ref. [74]) or the large scale structure of the
Universe.

8 Mass composition estimate: the biggest challenge
A determination of primary composition is invaluable in revealing the origin of cosmic rays as this
information would provide important bounds on sources and on possible production and acceleration
mechanisms. In addition, a proper interpretation of anisotropy information requires knowledge of the
primary mass due to the influence on propagation of the galactic and intergalactic magnetic fields. A
detailed analysis of composition data from various experiments has been presented in Ref. [75]. We first
present a brief description of the general signatures of the EAS (See Ref. [76] for a summary of the
phenomenology of these giant air showers). After that, we introduce the shower observables sensitive to
primary species.

8.1 Signatures of Extensive Air Showers
The evolution of an extensive air shower is dominated by electromagnetic processes. The interaction of
a baryonic cosmic ray with an air nucleus high in the atmosphere leads to a cascade of secondary mesons
and nucleons. The first few generations of charged pions interact again, producing a hadronic core, which
continues to feed the electromagnetic and muonic components of the showers. Up to about 50 km above
sea level, the density of atmospheric target nucleons is n ∼ 1020 cm−3, and so even for relatively low
energies, say Eπ± ≈ 1 TeV, the probability of decay before interaction falls below 10%. Ultimately,
the electromagnetic cascade dissipates around 90% of the primary particle’s energy, and hence the total
number of electromagnetic particles is very nearly proportional to the shower energy.

By the time a vertically incident 1020eV proton shower reaches the ground, there are about 1011

secondaries with energy above 90 keV in the the annular region extending 8 m to 8 km from the shower
core. Of these, 99% are photons, electrons, and positrons, with a typical ratio of γ to e+e− of 9 to 1.
Their mean energy is around 10 MeV and they transport 85% of the total energy at ground level. Of
course, photon-induced showers are even more dominated by the electromagnetic channel, as the only
significant muon generation mechanism in this case is the decay of charged pions and kaons produced in
γ-air interactions [77].

It is worth mentioning that these figures dramatically change for the case of very inclined showers.
For a primary zenith angle, θ > 70◦, the electromagnetic component becomes attenuated exponentially
with atmospheric depth, being almost completely absorbed at ground level. As a result, most of the
energy at ground level from an inclined shower is carried by muons.

In contrast to hadronic collisions, the electromagnetic interactions of shower particles can be cal-
culated very accurately from quantum electrodynamics. Electromagnetic interactions are thus not a
major source of systematic errors in shower simulations. The first comprehensive treatment of electro-
magnetic showers was elaborated by Rossi and Greissen [78]. This treatment was recently cast in a more
pedagogical from by Gaisser [24], which we summarize in the subsequent paragraphs.

The generation of the electromagnetic component is driven by electron bremsstrahlung and pair
production [79]. Eventually the average energy per particle drops below a critical energy, ε0, at which
point ionization takes over from bremsstrahlung and pair production as the dominant energy loss mech-
anism. The e± energy loss rate due to bremsstrahlung radiation is nearly proportional to their energy,
whereas the ionization loss rate varies only logarithmically with the e± energy. Throughout this note we
take the critical energy to be that at which the ionization loss per radiation length is equal to the electron
energy, yielding ε0 = 710 MeV/(Zeff + 0.92) ∼ 86 MeV [80]. The changeover from radiation losses
to ionization losses depopulates the shower. One can thus categorize the shower development in three
phases: the growth phase, in which all the particles have energy > ε0; the shower maximum, Xmax; and
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the shower tail, where the particles only lose energy, get absorbed or decay.

Most of the general features of an electromagnetic cascade can be understood in terms of the toy
model due to Heitler [81]. In this model, the shower is imagined to develop exclusively via bremsstrahlung
and pair production, each of which results in the conversion of one particle into two. These physical pro-
cesses are characterized by an interaction length X0. One can thus imagine the shower as a particle tree
with branches that bifurcate every X0, until they fall below a critical energy, ε0, at which point energy
loss processes dominate. Up to ε0, the number of particles grows geometrically, so that after n = X/X0

branchings, the total number of particles in the shower is N ≈ 2n. At the depth of shower maximum
Xmax, all particles are at the critical energy, ε0, and the energy of the primary particle, E0, is split among
all the Nmax = E0/ε0 particles. Putting this together, we get:

Xmax ≈ X0
ln(E0/ε0)

ln 2
. (21)

Even baryon-induced showers are dominated by electromagnetic processes, so this toy model is
still enlightening for such cases. In particular, for proton showers, Eq. (21) tells us that the Xmax scales
logarithmically with primary energy, while Nmax scales linearly. Moreover, to extend this discussion
to heavy nuclei, we can apply the superposition principle as a reasonable first approximation. In this
approximation, we pretend that the nucleus comprises unbound nucleons, such that the point of first
interaction of one nucleon is independent of all the others. Specifically, a shower produced by a nucleus
with energy EA and mass A is modelled by a collection of A proton showers, each with A−1 of the
nucleus energy. Modifying Eq. (21) accordingly one easily obtains Xmax ∝ ln(E0/A).

Changes in the mean mass composition of the cosmic ray flux as a function of energy will manifest
as changes in the mean values of Xmax. This change of Xmax with energy1 is commonly known as the
elongation rate theorem [82]:

De =
δXmax

δ lnE
. (22)

For purely electromagnetic showers,Xmax(E) ≈ X0 ln(E/ε0) and then the elongation rate isDe ≈ X0.
For proton primaries, the multiplicity rises with energy, and thus the resulting elongation rate becomes
smaller. This can be understood by noting that, on average, the first interaction is determined by the
proton mean free path in the atmosphere, λN . In this first interaction the incoming proton splits into
〈n(E)〉 secondary particles, each carrying an average energy E/〈n(E)〉. Assuming that Xmax(E) de-
pends logarithmically on energy, as we found with the Heitler model described above, it follows that,

Xmax(E) = λN +X0 ln[E/〈n(E)〉] . (23)

If we assume a multiplicity dependence 〈n(E)〉 ≈ n0E
∆, then the elongation rate becomes,

δXmax

δ lnE
= X0

[
1− δ ln〈n(E)〉

δ lnE

]
+

δλN
δ lnE

(24)

which corresponds to the form given in [83],

De = X0

[
1− δ ln〈n(E)〉

δ lnE
+
λN
X0

δ ln(λN )

δ lnE

]
= X0 (1−B) . (25)

Using the superposition model and assuming that

B ≡ ∆− λN
X0

δ lnλN
δ lnE

(26)

1The elongation rate is commonly reported per decade of energy, D10 = ∂〈Xmax〉/∂ logE, where D10 = 2.3De.
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is not changing with energy, one obtains for mixed primary composition [83]

De = X0 (1−B)

[
1− ∂〈lnA〉

∂ lnE

]
. (27)

Thus, the elongation rate provides a measurement of the change of the mean logarithmic mass with
energy.

In Ref. [84], a precise calculation of a hadronic shower evolution has been presented assuming
that hadronic interactions produce exclusively pions. The first interaction diverts 1/3 of the available
energy (E0/3) into the EM component via the π0’s, while the remaining 2/3 continue as hadrons. Us-
ing pp data [85], we parametrized the charged particle production in the first interaction as Nπ± =
41.2(E0/1 PeV)1/5. The depth of shower maximum is thus the same as for an electromagnetic shower
of energy E0/(3Nπ±), giving for a proton initiated shower:

Xp
max = X0 +XEM ln[E0/(6Nπε0)]

= (470 + 58 log10[E0/1 PeV]) g/cm2 . (28)

For protons the elongation rate results≈ 58 g/cm2 per decade of energy, in good agreement with calcula-
tions that model the shower development using the best estimates of the relevant features of the hadronic
interactions. Muons are produced from the pion decay when they reach the critical energy ( ξπc ) after nc
generations. Introducing β = ln(2Nπ)/ ln(3Nπ), the total number of muons is:

Nµ = (E0/ξ
π
c )β . (29)

ForNπ = 5, β = 0.85. Unlike the electron number, the muon multiplicity does not grow linearly with the
primary energy, but at a slower rate. The precise value of β depends on the average pion multiplicity used.
It also depends on the inelasticity of the hadronic interactions. The critical pion energy ξπc ≈ 20GeV in
a shower generated by 1 PeV proton.

Using the superposition model, we obtain for a nucleus of mass A.

NA
µ = A

[
(E0/A)

ξπc

]β
. (30)

From the discussion above, it follows that the depth of shower maximum and the number of muons
depend on the mass of the primary particle: iron initiated showers develop faster in the atmosphere,
having smallerXmax than proton initiated shower, while larger number of muons are expected for heavier
nuclei.

While the Heitler model is very useful for imparting a first intuition regarding global shower
properties, the details of shower evolution are far too complex to be fully described by a simple analytical
model. Full Monte Carlo simulation of interaction and transport of each individual particle is required
for precise modelling of the shower development. At present two Monte Carlo packages are available to
simulate EAS: CORSIKA (COsmic Ray SImulation for KAscade) [86] and AIRES (AIR shower Extended
Simulation) [87]. Both programs provide fully 4-dimensional simulations of the air showers initiated by
protons, photons, and nuclei. A comparative study using these codes can be found in Ref. [88]. Different
hadronic interaction models are used in these event generators, such as SIBYLL [89], QGSJET [90] and
EPOS [91,92]. The LHC data, particularly those measured in the extreme forward region of the collisions,
is of great importance to the physics of EAS. As an example, EPOS has been modified to reproduce in
detail LHC data from various experiments [93].

8.2 Measurement of mass sensitive observables
In this section, we discuss how baryonic species may, to some extent, be distinguished by the signatures
they produce in the atmosphere. The estimate of primary masses is the most challenging task in high en-
ergy cosmic ray physics as such measurements rely on comparisons of data to models. EAS simulations
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are subject to uncertainties mostly because hadronic interaction models need to be extrapolated at energy
ranges several order of magnitude higher than those accessible to current particle accelerators. In what
follows, we consider both surface array and fluorescence detector observables.

The main purpose of fluorescence detectors is to measure the properties of the longitudinal devel-
opment. The shower longitudinal profile is usually parameterized with a function, such as the Gaisser-
Hillas function [94] used by the Pierre Auger Observatory. Using this parametrization, fluorescence
detectors can measure Xmax with a statistical precision typically around 30 g/cm2. The speed of shower
development is the clearest indicator of the primary composition. It was shown in Sec. 8 using the su-
perposition model that there is a difference between the depth of maximum in proton and iron induced
showers. In fact, nucleus-induced showers develop faster, having Xmax higher in the atmosphere. From
Monte Carlo simulations, one finds that the difference between the averageXmax for protons and iron nu-
clei is about 90 – 100 g/cm2. However, because of shower-to-shower fluctuations, it is not possible to ob-
tain meaningful composition estimates from Xmax on a shower-by-shower basis, though one can derive
composition information from the magnitude of the fluctuations themselves. For protons, the depth of
first interaction fluctuates more than it does for iron, and consequently the fluctuations ofXmax are larger
for protons as well. In Figure 8 the 〈Xmax〉 measurements of 〈Xmax〉 with non-imaging Cherenkov de-
tectors (Tunka [96], Yakutsk [97], CASA-BLANCA [98]) and fluorescence detectors (HiRes/MIA [99],
HiRes [100], Auger [101] and TA [102] compared to air shower simulations using several hadronic in-
teraction models are presented. The conclusion of the detailed study in Ref. [75] indicates that, around
the region of the ankle of the cosmic ray spectrum, the measurements are compatible within their quoted
systematic uncertainties and the 〈Xmax〉 is close to the prediction for air showers initiated by a predom-
inantly light composition. However, at higher energies, the experimental uncertainties are still too large
to draw conclusions from the data. In addition, the systematic differences between different type of
measurements are very sensitive to the particular interaction model used for the interpretation.

The electromagnetic component of an EAS suffers more scattering and energy loss than the
muonic component and consequently, muons tend to arrive earlier and over a shorter period of time.
This means that parameters characterizing the time structure of the EAS, as measured by surface arrays,
will be correlated withXmax and hence with primary mass. An early study of the shower signal observed
in water Čerenkov detectors arrays [103] established the utility of a shower property known as risetime in
estimating the primary composition. Specifically, the risetime, t1/2, is defined as the time for the signal
to rise from 10% to 50% of the full signal.

In ground array experiments the analysis is usually performed by projecting the signals registered
by the detectors into the shower plane (perpendicular to the shower axis) and thus, neglecting the further
shower evolution of the late regions. As a consequence, for inclined showers, the circular symmetry
in the signals of surface detectors is broken. This results in a dependence of the signal features on the
azimuth angle in the shower plane [104,105]. A detailed study based on Monte Carlo simulations [106],
showed that for showers arriving with zenith angle θ > 30◦, this is mainly due to the attenuation of the
electromagnetic component of the shower as it crosses additional atmosphere to reach a late detector.
For a given primary energy E, the risetime asymmetry in water Čerenkov detectors array, as in the Pierre
Auger Observatory, depends on zenith angle θ of the primary cosmic ray in such a way that its behaviour
versus sec θ is reminiscent of the longitudinal development of the shower. In Ref. [106], it was shown
that the zenith angle at which the risetime asymmetry becomes maximum, Θmax, is correlated with the
shower development and hence with the primary species.

Using the time information of the signals recorded by the water Čerenkov detectors, it is also pos-
sible to obtain information about the longitudinal development of the hadronic component of extensive
air showers and the first interaction point in an indirect way. In particular, a method was developed to
reconstruct the Muon Production Depth (MPD), the distance to the production of the muon measured
parallel to the shower axis, using the signals of detectors far from the core [107]. The MPD technique
allows one to convert the time distribution of the signal recorded by the SD detectors into muon produc-
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Fig. 8: Measurements of 〈Xmax〉 with non-imaging Cherenkov detectors (Tunka [96], Yakutsk [97], CASA-
BLANCA [98]) and fluorescence detectors (HiRes/MIA [99], HiRes [100], Auger [101] and TA [102] compared
to air shower simulations using hadronic interaction models. HiRes and TA data have been corrected for detector
effects as indicated by the 〈∆〉 values, to allow comparison with the unbiased measurement from Auger. This
picture is taken from Ref. [75].

tion distances using an approximate relation between production distance, transverse distance and time
delay with respect the shower front plane. From the MPDs a new observable can be defined, Xµ

max, as
the depth along the shower axis where the number of produced muons reaches a maximum, which is
sensitive to primary mass.

The evolution of Xµ
max, Θmax, 〈Xmax〉 and RMS(Xmax) with energy, as measured by the Pierre

Auger Observatory with data up to 2010 [108], is presented in Figure 9. For a very complete discussion of
these results see Ref. [109]. It is worth noting that the these analyses come from completely independent
techniques that have different sources of systematic uncertainties. Concerning the RMS, a variety of
compositions can give rise to large values of the RMS, because the width of the Xmax is influenced
by both, the shower-to-shower fluctuations of individual components and their relative displacement
in terms of 〈Xmax〉. These measurements from Auger may be interpreted as a transition to a heavier
composition that may be caused by a Peters-cycle [110] in extragalactic sources similar to what has been
observed at around the knee [75, 109].

Updated studies of Xµ
max, 〈Xmax〉 and RMS(Xmax) from the Pierre Auger Observatory can be

found in Ref. [111]. The most recent results on 〈Xmax〉 measurements from the TA experiment were
presented in Refs. [112, 113].
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LHC Results Highlights

O. González
CIEMAT, Spain

Abstract
The good performance of the LHC provided enough data at 7 TeV and 8 TeV
to allow the experiments to perform very competitive measurements and to ex-
pand the knowledge about the fundamental interaction far beyond that from
previous colliders. This report summarizes the highlights of the results ob-
tained with these data samples by the four large experiments, covering all the
topics of the physics program and focusing on those exploiting the possibilities
of the LHC.

1 Introduction

The standard model (SM) [1–3] of particles and interactions is currently the most successful theory de-
scribing the Universe at the smallest distances, or equivalently, highest energies. Such task is performed
with the use of three families of fermions and a number of bosons associated to the interactions as given
by theSU(3)C × SU(2)L × U(1)Y symmetry group. Since in Nature theSU(2)L × U(1)Y is not an
exact symmetry, we require an additional field, the so-called Higgs field, which sponteneously breaks the
symmetry according to the BEH mechanism [4], giving rise to the weak and electromagnetic interactions
as they are observed at lower energies. In addition this field is responsible to give mass to the fermions.

Although successful, the SM does not appear to be complete since several esperimental evidences
are not included in the model. In this group, it should be remarked that gravitational effects are not
described, neither are all the related effects, such as Dark Matter or Dark Energy. In addition the current
structure of the SM does not include enough CP violation to justify the observed matter-antimatter im-
balance in the Universe. Finally the neutrinos in the model are assumed to be massless, something that
currently is experimentally discarded after the measurements of neutrino mixing.

In addition to the missing parts in the SM there are several points in which the model is not com-
pletely satisfactory, concretely related to theoretical aspects of it. Several issues are always mentioned
in this context, but they are summarized in three main issues: the need of fine-tuning to understand the
low scale of the electroweak symmetry breaking and other parameters (the hierarchy problem), the lack
of understanding on why there are three families with double-nature sets (i.e. quark and leptons) and the
lack of apparent relation between the different interactions (i.e. the origin of the observed values for cou-
plings, including fermionic masses). In practice, the SM has clear limitations since it misses too many
explanations about why things are as they are and it requires too many parameters to actually describe
things as they are.

The proposed solution to both the experimentally-motivated limitations and the theoretical dissat-
isfaction is to add more interactions or particles which complete the model. In such scenario, the SM
would become a low-energy approximation, or visible part, of a larger theory. By increasing the energy
in our studies we gain access to the additional particles and effects, which are usually referred to as “new
physics” or “physics beyond the SM” (BSM). These effects that are not explained by the SM will pro-
vide additional information about the limitations of the SM, opening the correct doors towards a more
accurate description of our Universe.

With this motivation we are led to the design of a powerful hadronic collider which maximizes the
reach in sensitivity to the possible BSM physics. This is achieved by maximizing the available energy,
which would provide the possibility to produce more massive particles, and the number of collisions per
time unit (luminosity), which increase the yield for the produced particles and effects. This is exactly
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the motivation for the Large Hadron Collider (LHC) [5] located at CERN, near Geneva (Switzerland),
which is recognized as “the discovery machine” for physics beyond the SM providing a large amount of
energy per collision and a large amount of collisions.

In the following sections we will describe the LHC and the related experiments and report on the
main results for the different part of the program, designed to take advantage of all the possibilities given
by such powerful machines.

2 The LHC and the experiments

The LHC is the most energetic and most challenging collider up to date. It is designed to collide protons
or heavy ions at a maximum energy of 14 TeV of energy and very high collision rates. Technical lim-
itations has prevented it to reach its design parameters, and the collected datasets contains collisions at
7 or 8 TeV of total center-of-mass energies. In any case this represents more than 3 times more energy
than the previously most energetic collider (The Tevatron at Fermilab, USA). This allows to reach energy
scales that were not accessible before, both for particle and heavy-ion physics.

But the LHC is not just about large energy: it also provides the largest collision rate ever reached,
allowing to collect sizable data samples in record time. To quantify the amount of data, the previously
mentioned concept of luminosity is used. The integrated luminosity relates the number of a type of
events in a sample and the cross section for that type of event. Experimentally, this allows to compute
the luminosity (“calibrate” the size of the sample) using a very well known process and count the number
of events from it, and soL = N/σ whereL is the luminosity,N the number of events andσ the cross
section of the process. Once the sample luminosity is known, the value is used to measure cross sections
of processes of interest, asσ = L/N . Finally, knowing the cross section of a process, one estimates the
number of expected events from that process in the sample withN = L · σ. These are the basic tools to
perform analysis of the data samples.

At the LHC during the first years of operations, samples of reasonable size were obtained at
7 TeV (in 2010 and 2011), accounting for 6 fb−1 of luminosity for proton-proton collisions and 170µb−1

for lead-lead collisions. Additionally, data at 8 TeV were obtained for proton-proton collisions, account-
ing to 23.3 fb−1, and proton-lead collisions with a luminosity of 32 nb−1. The results described in this
report have been obtained by using these data samples.

The collisions provided by the LHC occur at four interaction points along the 27-km ring. At
those points, several experiments are located. The main four experiments are ALICE, ATLAS, CMS and
LHCb and are located as shown in Fig. 1. These four experiments collect the data from the collisions
and provide the results of the physics analyses, as described in the following sections.

In addition to the main experiments, other threeminorexperiments are intended for more dedicated
studies: TOTEM [6], LHCf [7] and MoEDAL [8]. Neither their results nor plans will be covered here
since their scientific output is very specific and beyond the aim of this report. However, this should not
minimize their importance in order to understand forward production (as it is the case of the first two) or
dedicated search for magnetic monoples (as it is the aim of MoEDAL).

Each of the main experiments deserved some specific description to put into context the physics
output they provide.

2.1 The ATLAS experiment

ATLAS [9] is the largest experiment at the LHC. It is intended to study all possible physics topic by
analysing the full final state of the LHC collisions. It is characterized by its great capabilities in tracking
and calorimetry surrounded by huge muon-detection chambers in a toroidal field.

The detector has almost full solid-angle coverage with a forward-backward symmetric distribution.
It is also azimuthally symmetric, as expected for the physics in the collisions. The hermetic design allows
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Fig. 1: Schematic layout of the LHC and the main experiments, identified at their location in the accelerator ring.

to infer the presence of undetected particles via the transverse momentum embalanace, the so-called
“missingET ” (Emiss

T ), which can be computed as:

Emiss
T =

√[∑
px

]2
+

[∑
py

]2
;

where the sum runs over the observed particles (regardless on the way they are detected and recon-
structed).

This quantity is expected to be small due to the conservation of the momentum and therefore a
significantly large value is interpreted as the presence of particle(s) that escape detection, as if the case of
neutrinos and other weakly-interacting particles which do not interact with matter by mean of the nuclear
or electromagnetic forces.

In order to quantify the coverage of the detector, another interesting variable is the pseudorapidity,
an alternative to the polar angleθ defined as:

η = − ln
[
tan

(
θ/2

)]
=

1

2
ln
[ |p|+ pz
|p| − pz

]

which is well suited for cylindrical description of events, as it is the case of collisions involving hadrons
in the initial state.

The structure of ATLAS allows to reconstruct jets up to|η| ∼ 4.5, muons up to|η| ∼ 3 and
electrons and photons up to|η| ∼ 2.47, providing a very large coverage for the main pieces to study the
final states in the LHC collisions.

2.2 The CMS experiment

CMS [10] is the other multipurpose detector of the LHC. Similar to ATLAS in aim and capabilities,
it present a more compact structure for a similar performance due to its stronger magnetic field. It is
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also hermetic and provides an impressive energy resolution for electrons and photons, for a coverage of
|η| < 2.5. Muons are detected up to|η| ∼ 2.4 with a more traditional approach that takes advantage of
the redundancy with the inner tracking. Finally jets are reconstructed up to|η| ∼ 4.5.

When comparing both detectors, the strong point of CMS is the great resolution in the inner
tracking, which becomes the core of the detector, specifically when used as redundancy for reconstruction
of muons and other particles. On the other hand, ATLAS has better global calorimetry and more precise
and sophisticated muon detection.

However, these differences are in practice more technical than real, since the treatment of the data
in the reconstruction of objects allows both collaborations to obtain very comparable results. The idea
is to compensate the limitations of the detectors with the information coming from the stronger parts or
redundant informations from other components.

One good example of this is provided by the concept ofparticle flow that has been extensively
used in the last years, specially in the CMS analyses. The idea is that instead of reconstructing the event
quantities from the detector information (calorimeter cells, tracks), an intermediate step is taken and that
detector information is combined to identify “objects” that are associated to particles. From the detector
information, the kinematic recontruction of each “object” is performed in an optimal way, since each
class of object (lepton, photon, neutral or charge hadron and so on) is treated differently. It is then from
these “objects” that the event quantities are then reconstructed.

These idea represent a big gain since each object is treated as close as possible to its expected
behaviour with the detector components. Additionally, the combination of the detector parts allows to
get the most of the detector information as a whole, leading to the final goal of having a global event
description. The case of CMS is extremely clear since the particle-flow approach allows to use as much
tracking information as possible, reducing the impact of the lower quality hadronic reconstruction in the
calorimeters.

By the use of this kind of ideas and even more sophisticated techniques, the LHC experiments
have been able to extract the most of the data samples, going beyond the most optimistic expectations,
as we will describe in future sections.

2.3 The LHCb experiment

The LHCb detector [11] has been designed to perform studies on flavour physics, specifically of hadrons
containing bottom quarks. Since their production is specially large in the forward region, the detector
design is mostly oriented to maximize rate and provide very accurate reconstruction instead of maximaz-
ing the coverage. It therefore detects particles in the forward region and it reaches an impresive track and
vertex reconstruction due to dedicated sophisticated components.

The main limitation of the measurements in the forward region is the high sensitivity to processes
in which multiplicities are large. For this reason, the LHCb did not collect lead-lead data and required
luminosity levelingto keep the number of collisions in the same event at reasonable levels. This leveling
is the reason why the integrated luminosity of the data samples is smaller for this experiment.

On the other hand, its great coverage in the forward region allows this detector to perform mea-
surements beyond the coverage of ATLAS and CMS, providing a nice complementarity at the LHC that
is not limited to the topics for which the LHCb was intended. As we will see below, the LHCb exper-
iment is providing nice and competetive results in areas where CMS and ATLAS were expected to be
dominant.

2.4 The ALICE experiment

The ALICE detector [12] has been designed to maximize the physics output from heavy-ion collisions.
The aim of the experiment is not the detection of exotic or striking signatures but to maximize the
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particle identification in order to retrieve as much information as possible about the properties of the
medium created in the collision and how it affects the behaviour of the produced particles. Therefore,
the detector components mostly focus on measurements that allows to study the dependence of statistical
properties of the final states with respect of variables that correlates with the production of new matter
states, i.e. the production of high energy density, high temperature and high pression states.

Due to this, the strong point of ALICE with respect to the other LHC experiments is the impressive
particle identification, in order to identify relevant particles immersed in high multiplicity events. The
limitations that this impose is the reduced coverage for each type of particle and the lack of symmetry
in the detector: more types of different subdetectors covering different solid angle regions. This makes
that the muon coverage is limited to the forward region (2.5< η < 4) while electrons and photons are
detected centrally (η <0.9).

The specific design of the ALICE detector makes the results from ATLAS and CMS also very
atractive for heavy-ion physics, due to its complementarity to ALICE, although they are not in competi-
tion when the particle identification is a key part of the study, as we will discuss later in this report.

2.5 Data adquisition and event reconstruction at the LHC experiments

The data-acquisition (DAQ) systems of the experiments have been designed to collect the information
of the collisions happening at the LHC. They are very sophisticated in order to efficiently collect the
information from all the detector components and store it to tape for future analysis.

On the other hand, the DAQ need to deal with the problem that having collisions every 50 ns (or
25 ns in the future) it is impossible to store all or even part of the information for every single event.
For that it is needed to have an automated decision system which selects the events as soon as they are
produced in order to reduce the amount of data that is physically stored to a manageable level. This
system, calledtrigger, has therefore the goal of reducing the rate from tens of MHz to hundreds of Hz,
providing data of 100 MB/s, which is a storable quantity.

Although the concept is simple, it should be noticed that events that are not accepted by the trigger
are lost forever, implying a big responsability. Additionally, the trigger conditions at the LHC are very
challenging and represent a new frontier in data acquisition due to high rates and event sizes. However,
there is the need for those required rates ans event sizes since the aim of the experiments is to study rare
processes with high precision, even at the cost of suffering at the DAQ level.

In addition to the DAQ challenges, other difficulty arises from the high rate: since the collision
cross section is so large, it is very likely that several proton-proton pairs collide in the same event (i.e.
crossing). Most of the collisions are soft uninteresting collisions that would appear at the same time as
interesting ones. This situation is usually referred aspile-upcollisions and it complicates the reconstruc-
tion of interesting events since it becomes harder to distinct them from usual background, something
that is specially dramatic at the trigger level. The reason underneath being that reconstructed quantities,
specially the global ones like theEmiss

T , are modified and led to misleading values.

This problem with thepile-up is what motivated the luminosity leveling at the LHCb interaction
point: to avoid the deterioration of the performance due to the overlap of collisions. Since statistics is
not really the issue due to the large cross section, it is more practical to reduce the collision rate to collect
higher purity events than just reject good events due to trigger limitations. It should be noticed that a
similar idea may be required for the other experiments in the future when running at the highest rates.

After the data has been collected and stored in tape, it is analyzed to investigate the characterization
of the physics producing it. The analysis consists on the identification and quantification of the objects
contained in the event.

We have already described how to reconstruct theEmiss
T quantity that allows to associate unde-

tected particles to the event. Additionally we also described how the reconstruction of the final state may
be simplified with the use of the concept ofparticle flow.
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As a specific case of the later, the presence of leptons in the final state is a fundamental tool in a
hadron collider to recognize important physic events. Electrons are identified using the properties of its
interaction with the calorimeters. Muons are identified using the chambers specifically designed for its
detection, using the property that they are charged and highly penetrating.

Photons are also identified using the deposits in the calorimeters, where they look similar to elec-
trons, but are distinguishable from them due to the absence of electric charge, and therefore the lack of
hits in the tracking system.

Theτ leptons are the hardest objects to identify in a detector, but their use is strongly motivated
by their common presence in final states for BSM physics, or for Higgs searches, as we will see later.
Their leptonic decays are hard to distinguish from electrons and muons, but their hadronic decays, the
dominant ones, are separated from other hadron production due to their low multiplicity and the kine-
matical properties. The main issue is that is commonly hard to separate them from the large background
of hadron production, and specially at the trigger, where the usable resources are more limited. On the
other hand the experiments at LHC has used experience at previous colliders to really exploit all the
possibilities of analysis withτ leptons, as it is described below.

Finally, apart from leptons and photons, it is very common the production of hadrons. They
are originated from quarks and gluons that are not observed because the strong force confines them
within colourless hadrons. The mechanisms transforming those coloured particles into hadrons cannot
be understood in the pertubartion approach used to perform estimations from the theory, but fortunately
they can be treated in such a way that their effects do not affect too much the predictions. The simpler
technique to reduce this effect is by usingjetsof hadrons to reconstruct and characterize the final states.

The idea is that the processes that are not perturbately calculable occur at energy scales that are
much lower than the usual hard processes taking part in the LHC collisions. Therefore they do not modify
sustantially the global topology of the event and hadrons appear as collimated bunches of particles that
are kinematically close to that of the hard partons produced in the event.

This qualitative description, only valid for studies of hard parton production, should be quantified
with the use of a specific and well-suited algorithm that reconstruct the jets. The results are usually
dependent on the algorithm, but when the same algorithm is used for comparing measurements and
theory, the conclusions are independent of the algorithm, if the application is sounded.

Data analyses at the LHC experiments are performed with all these objects: leptons, photons,
Emiss

T , hadrons and jets, with very satisfactory results, mostly due to the high quality of the data acquisi-
tion and reconstruction.

3 Measurements to rediscover the SM

As mentioned above, the aim of the LHC is to produce unknown particles and increase sensitivity to new
possible interactions by colliding protons at high energies. However, on top of the possible interesting
processes there are other SM-related processes that tend to hide the most interesting ones. For a hadron
collider, QCD jet production has a so large cross section that is the basic process happening in the
collisions.

In fact, this makes the LHC a QCD machine aiming for discovery. Independently of what is
actually done, everything depends on QCD-related effects: parton radiaton, parton distribution func-
tions (PDFs) of the initial-state protons, hadronization processes for the final-state partons and so. Un-
fortunately most of these cannot be calculated due to our limited knowledge on how to deal with the
QCD theory and therefore, in order to understand them requires the realization of measurements which
allow to refine the existing phenomenological models used to obtain predictions on what to expect in the
proton-proton collisions at the LHC.

For this reason it is impossible to simply ignore the “less interesting” events which are considered
as background of the events containing effects and particles beyond the SM. In fact, at the LHC, as in
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any other hadron collider, the understanding of QCD is not just something needed nor a priority: it is the
only possibility.

As a good example, it is needed to realize that the first measurements performed at the LHC are
the total cross section and the differential cross sections for producing charged particles. They are not
calculable in the pertubative approach of QCD, but they are required to perform realistic predictions (via
the tuningsof the model generators). They were performed at the beginning of the collisions by all the
experiments (see e.g. [13, 14]) and from the beginning have become important tools to understand the
collisions at the several energies the LHC has been operating.

In addition, even in these preliminary studies the LHC experiments proved that the LHC is cross-
ing the lines to a new regime: an interesting effect observed looking at the correlations between charged
particles: CMS observed [15] that in addition to the usuallarge ∆φ correlations (i.e. opposite hemi-
spheres), there are additionalnear-side(i.e. small∆φ and large∆η) correlations in events with very
high multiplicities, specifically with more than 100 produced charged particles.

Figure 2 shows the mentioned observation of the so-called “rigde”. Similar effects were observed
previosly in heavy-ion collisions, although it is not completely clear the source of them is the same.
Currently there is not a clear explanation of the source, but the LHC data has confirmed its presence in
lead-lead and proton-lead collisions, see e.g. [16].

3.1 Studies of jet production at the LHC

Apart from these soft-QCD measurements that are a fundamental piece to adjust the phenomenological
models, measurements related to hard QCD are also performed at the LHC experiments in order to
validate the QCD expectations on the perturbative regime, and to learn about the interactions between
partons at the shortest distances and also about the partonic content of the proton.

Measurements are done for inclusive jet production, as those by ATLAS in [17], and compared
to the NLO predictions, which are able to reproduce the data after soft-physics corrections (that are
not large). Some kinematic regions are sometimes off, but they are correlated to problematic areas,
in which proton PDFs are not well known or the effects from higher orders or soft physics are large.
Similar conclusions are drawn from studies of multijet production, in which the sensitivity to QCD is
enhanced using ratios, as the three-to-two jet ratio by CMS [18], in which many uncertainties cancel and
the senstitivity to QCD shows up via the emission of hard partons. In fact the direct sensitivity to the
strong coupling constant,αS(Q), allows a measurement of this value for the first time beyond 400 GeV,
confirming the expectation from the running of that coupling.

With a different aim, instead of measuring quantities that are more accurately known, there is
interest in measuring in regions where uncertainties may be larger, but sensitive to unknown quantities,
as it is the case of the PDFs. Measurements at the LHC experiments [19, 20] are sensitive to PDFs in
regions where they are not well constrained and able to distinguish between prediction of different sets.
Specially useful for the high-x gluon and sea quark PDF which is loosely constrained by the HERA
data. It is worth to remark that even if the LHC aims for discovering of BSM physics, it is a very useful
machine to increase the knowledge about the internal structure of the proton, via the measurements
sensitive to the PDFs. In incoming sections this will be mentioned a few times.

When studying the production of jets, an important topic by its own is the measurement of produc-
tion of heavy-flavour (charm and bottom) jets. Since they are not present in the proton in a sizable way,
its study provides important information about QCD, specially for specific flavour production, something
which is not possible for the light quarks and gluons. The fact that it is possible to perform separated
studies for charm and bottom jets is due to the possibility of tagging the jets as originating/containing a
heavy-flavour quark.

This has been a recent possibility due to the improvement in tracking, specifically at the closest
distances to the collision. After surpassing the challenges involved in the LEP and Tevatron experiments,
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the detectors have reached to possibility to reconstruct vertices so precisely, that resolving secondary
vertices coming from “long lived” hadrons containing a bottom and a charm quark has become a standard
tool in accelerator physics.

The fact behind thisheavy-flavour taggingis the presence of hadrons that live long enough so their
decay products appear in the detector as displaced tracks and vertices within jets that are incompatible
with originating at the so-called primary vertex, in which the interaction took place. These displaced
tracks and vertices are resolved and conveniently used to tag jets containing these heavy-flavour hadrons
and therefore likely to originate from a charm or bottom quark. The information provided by them is
used either on a simple and straightforward way (that is safer and more traditional) or on multivariate
techniques that allow to increase performance of the tagger. The later has become more popular as
expertise with this kind of tool is well established.

Making use of the tagging tools it is possible to study the production of jets originating from a
bottom quark, or b-jets. Measurements by the two collaborations has been made [21, 22] and compared
to QCD precitions for heavy-flavour production computed with the MC@NLO [23] program. As shown
in Fig. 3, a good agreement is observed overall although there are some small discrepancies in specific
kinematic regions, similarly at what was observed in inclusive jet production. It should be noticed
that the level of agreement is good due to the improvements in the theoretical calculations during the
last decade. Predictions are difficult for the kind of process under study, so the level of discrepancy
observed is considered a complete success of the QCD calculations. Of course further work is still
needed, emphasizing the importance of the precise measurements at the LHC.

In a similar topic, one important measurement at the LHC experiments will be to try to disentangle
the production of jets containing two heavy-flavour quarks. In the past the quality of the heavy-flavour
tagging only allowed the separation of jets with at least a heavy-flavour quark. However, at the LHC,
the improved detection techniques and the experience with tagging tools will also allow to investigate
the production of multi-b jets, which are of importance in topologies with merged jets or to reject the
presence of gluon jets containing a gluon-splitting process into heavy-flavour quarks.

Exploiting the subtle differences in the displacement of tracks, studies are performed on this is-
sue [24], and good rejection power of gluon jets has been observed while keeping a big fraction of the
single b jets. More dedicated studies will be needed to improve the related tools for rejecting this back-
ground, but current results has confirmed its feasibility and also that the heavy-flavour taggers at the LHC
experiments are taking advantage of the improved detector capabilities.

Regarding the LHC in a new kinematic regime, it should be remarked the development during the
last years of tools to investigate the production of boosted objects. Since available energies at the LHC
are much larger than the masses of the SM particles, it is likely to observe their production with very large
transverse momenta, giving rise to the merging of objects. This is specially worrisome in the case of jets
since they are hard to separate after their constituents have been merged together. For that reason, several
dedicated studies and the development of new techniques has been done at the LHC experiments [25,26]
in order to deal with the topology of boosted jets. The idea is to exploit the properties of the internal
structure to recover information of the original partons whose jets have been merged, and separate them
from single parton jets that are boosted in the transverse direction, i.e. produced with large transverse
momentum.

Many techniques have been developed and tested in the identification of merged jet and check how
the simulation reproduce the characteristics of the jets allowing the distinction of the jets containing one
or more “hard” partons. Currently its performance has been proven to identify merged jets coming from
boosted W bosons and top quarks, and used for searches. However its principal motivation is still the
need of this kind of tools for the future running at higher energy.
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Fig. 2: Relative distribution of the charged particles in
proton-proton at 7 TeV as measured by CMS in sev-
eral selections in the∆η − ∆φ plane. Apart from the
expected back-to-back correlation, a near-side correla-
tion is observed even at large∆η for high-multiplicity
events (plots below).

Fig. 3: Differential cross section of bottom jet produc-
tion at the LHC with a center of mass energy of 7 TeV.
Measurements in different rapidity regions (dots) are
plotted as a function of the transverse momentum of the
jet and compared to the MC@NLO predictions (lines).

3.2 Studies of soft QCD physics at the LHC

Apart from particle and jet production via QCD processes, the experiments are able to perform studies
related to QCD via more complicated mechanisms. Among this, one that has become really important is
the possibility of observing more than one partonic collision from the same protons. Since a proton is a
bunch of partons it is not uncommon to have several partons colliding at the same time. And the LHC
allows to have very hard collisions since the energy of the protons is very large.

These multiparton interactions are a complicated topic since it is not clear up to which level each
collision can be considered independent of the others. In addition, the probability associated to the
additional collisions to happen is not calculable and require models whose parameters require some
tuning in order to improve the modeling of the underlying event. The validity test of the models is
usually done in samples that are reasonably understood and trying to extract the maximum possible
information to get the proper parameterization. With this aim, ATLAS has measured the contribution
from double-parton interaction for W+dijet events [27] to be0.16 ± 0.01(stat)± 0.03(syst), in good
agreement with the expectations that were tuned to previous data.

Related to QCD in strange regions, the LHC allows studies for diffractive and forward produc-
tion of particles and jets at higher scales than previous hadron colliders. These are relevant in order
to understand hadron interaction at softer scales, and also to adjust the models describing this kind of
process.

Even the LHCb experiments has produced results for forward hadron production, which are very
competitive due to the optimization of the detector for particle ID and its very forward coverage. Results
of these studies [28] have been compared to the predictions obtained by traditional event generator and
also those used in the simulation of cosmic-ray events, which are very sensitive to this kind of processes.

Another example of new kind of QCD measurements is the study of exclusive diboson (WW)
production via the collision of photons performed by CMS [29]. This makes the LHC a photon collider
at high energies, which allows dedicated studies of the electroweak interaction. The result with the
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dataset collected at 7 TeV allows to measure the cross section with still a low significance, implying the
need of more data. However, using the sample with highest transverse momentum, it was possible to set
limits on the production via anomalous quartic couplings, showing the potential of this kind of studies.

3.3 Electroweak boson and diboson production at the LHC

Although the measurements described above allow to test the predictions by QCD and even of the elec-
troweak sector in some cases, the most sensitive studies to validate the SM predictions are coming from
the events containing photons or weak bosons. The idea is that these events are usually simple to recog-
nize and the perturbative calculations of the processes and the backgrounds are usually very accurate.

The most common process of this kind is the production of photons, whose interest have been
demonstrated in the past hadron colliders, in which this was considered a “QCD study” since it provided
direct information on the quarks. Hard photons radiated from quarks are good probes of the interation
since they are not affected by soft processes and they are able to distinguish mong different kind of
quarks. In addition the large cross section of theγ+jet allows its use as a fundamental calibration tool.

Additionally, studies of diphoton production yield to very stringent test of the SM predictions,
specially for a final state that is an important background in many interesting searches of new particles,
decaying in photon final states. The study by ATLAS [30] performed measurements of the photon pair
production as a function of several variables and compared them to several event generators, at different
orders in QCD and types of partonic showers in order to evaluate the level of performance of the available
production tools.

However, when talking on boson production, the studies related to the weak bosons become a
fundamental test of the SM predictions that were performed at the LHC in order to also check the perfor-
mance of the detectors and tools for analyses. Even after the first analyses, the studies of events with W
and Z bosons are fundamental tools for calibration and understanding of the object identification and re-
construction. Measurements at several energies, as the one at 8 TeV by CMS [31], have been performed
and show very good agreemeent with the expectations by the SM and also confirming the excelent pre-
dictions of the SM at several energies for measurements performed for W and Z production during the
last three decades, as shown in Fig.. 4.

Although the basic goal for studying the production of weak bosons is to confirm the performance
of the detectors and of the basic SM prediction, dedicated measurements related to them are also a fun-
damental part of the LHC program. This is the case for measurements sensitive to the internal structure
of the proton and also of the SM details that could not be tested before at the level of precision reachable
at the LHC. This affects both kind of processes: final states that were never available in a proton-proton
collider before, like the ratio of W+ to W− measured by ATLAS [32], or whose yield was too small, like
the measurement of Z→ 4l (as in [33]) which is a calibration piece for the Higgs searches.

This explains the large effort at the LHC to measure the properties of the production of weak
bosons. Some of the properties are measurements for confirmation and validation purposes, but some
are really motivated by the new possibilities opened at the LHC experiments. This is seen even in exper-
iments that are not intended for boson studies, like the results at LHCb, in which the very forward de-
tection makes measurements of Z and W production very competitive even with lower acceptances [34],
since they are measured in kinematic regions that are not available for the main detectors. Even events
compatible with forward Z bosons decaying intoτ leptons have been observed at the LHCb [35], indi-
cating an important benchmark for the performance of the experiment to obtain results beyond flavour
physics.

In the case of W production, Fig. 5 shows the lepton charge asymmetry as a function ofη also
confirms the complementarity of the several experiments at the LHC, in this case how the LHCb is able to
extend the region reachable by the ATLAS and CMS, even with a reduced yield. All these measurements
of forward production will have a big impact in the fits to extract the parton content of the proton, since
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Fig. 4: Cross sections of weak boson production
in hadron colliders at several center-of-mass ener-
gies. SM predictions for proton-antiproton and proton-
proton collisions are compared to the measurements
shown as different types of dots.

Fig. 5: Lepton charge asymmetry of W production as a
function ofη at the LHC with the 7-TeV data from the
ATLAS, CMS and LHCb experiment. The inclusion of
the later experiment allows to extend the measurement
to very forward regions never reached before.

most of the current uncertainty is reduced by forward production of particles, more sensitive to the less
constrained partonic content, as gluons and sea quarks at high-x.

But not only the proton structure benefits from the large yields at the LHC for producing weak
bosons since the presence of a massive object allows studies of QCD processes in an environment where
perturbative calculations are accurate enough to bring very stringent tests of the expectations.

The typical example is the use of bosons as “probes” of the underlying hard process involving the
partons, whose rules are naturally dictacted by strong interactions. This is the case of the measurment
of jet production in association to a Z or W, as in [36, 37], which are sensitive to the partons interacting
and also major backgrounds to most of the new models for BSM physics. The measurements are able to
constrain the room for the new physics, and, in other kienmatic regions, to check the validity of the tools
used to estimate these final states. It should be noted that not only the yields are interesting, but also
the kinematic distributions of the final state objects, specially those sensitive to unexpected underlying
physics, as in [38, 39], in which specific distributions of bosons and jets are studied in order to perform
accurate tests of the SM predictions, taking advantage of the large yields.

Similarly, another topic that directly benefits from the high cross section and luminosity at the
LHC is the production of heavy flavour quarks in association with a weak boson. Being very sensitive
to the SM structure, some of the processes have not being accurately tested due to the limited statistics
at previous colliders. In fact, results at the Tevatron have been controversial regarding the way the event
generators reproduce the measurements. The larger statistics at the LHC allows the improvement in the
precision of the measurement. This is the case for the W+b-jet measurement by ATLAS [40], which
clearly shows that description by event generators could be improved, which is not a trivial case, since
it is a background for many studies for BSM physics. Understanding this discrepancy should be a clear
priority of the physics at LHC, from the theoretical and experimental point of view.

Another final state that has benefit a lot by the new frontier set at the LHC is the production of
charm in association with a W boson. Its interest is given by the fact that since W is able to change
the flavour of a quark, the production of single charm is dominated by interactions involving down and
strange quarks in the proton. Therefore directly sensitive to the strange content of the proton. In addition,
the charge of the produced W is completely correlated to the charge of the charm and down/strange quark.
As mentioned above, the W is used as a direct probe of the structure of the underlaying parton collision.
In this case the result of the measurement by CMS [41] is presented as the fraction of charm jets in W+jet
events and also of the ratio of W+ to W− in events with a charm produced in association with the W.
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Both quantities are sensitive to the PDF of the strange quark and antiquark. The measurements are in
good agreement with the expectations and they will allow to improve the accuracy of the proton PDFs.

In the case of the Z boson, the low cross sections prevented detailed studies of the production
associated with heavy flavour quarks to be performed at the Tevatron. Again the LHC has brought the
possibility to study this in detail. The analyses studying the production of Z+b-jet, as in [42], show that
the event generators, in this case MADGRAPH [43], are able to describe the distributions. However,
with the explicit requirement of two b-jets the agreement get clearly worse [44], implying that some
theoretical work may be required: although the processes (and calculation diagrams) are the same, the
relative weight is different due to the kinematic requirements on the second jet.

Finally, the last topic entering the scene when talking about weak bosons and jets is the study
for electroweakly produced bosons, the so-calledVector-boson fusion(VBF) production. In this case
the boson is produced in association of two jets that tends to be forward, due to the kinematics. Those
forward jets are used to “VBF-tag” the event and separate them from the main processes, weak radiation
from partons or parton annihilation. Measurement by CMS [45] allowed to measure a cross section in
agreement with NLO calculations. In addition, this kind of analysis also contributes to understand the
production of jets in the forward region, which is less understood due to the challenges in experimental
studies and also in theoretical calculations.

It should be remarked that the interest of all the results involving jet production in association
with weak bosons will be kept in the future, as the measurements get more precise, implying larger
challenges for the modeling of very important processes at the LHC, either for their own interest or just
as background estimations for searches of all kind.

3.4 Diboson production at the LHC

As it is well known, the production of more than one boson is one of the most sensitive test of the non-
abelian structure of the electroweak sector of the SM, so it is very sensitive to deviation produced by new
couplings involving the SM bosons.

The main limitation is that precisely the presence of several weak couplings makes the cross
section small, and the observation of these final states has been very difficult. However, the LHC has
open a new era for this kind of studies since large samples are available to perform detailed studies,
allowing precise studies of diboson production for the first time. In fact, the LHC will allow in the
future the observation of multiboson production, which has never been observed. In addition, the large
samples available has allowed that diboson production has become a standard reference for calibration
in advanceed analyses.

The basic processes testing the SM structure and with large cross section is the production of a
weak boson and a photon (Wγand Zγ) which are directly sensitive to the unification of the electromag-
netic and weak interactions. The results of the analysis, like [46], shown that data are in good agreement
with expectations, even at higher transverse momenta, which may be sensitive to new physics affecting
the unification of interactions.

In the case of two massive boson, the process with the highest cross section is the production of two
W bosons, in which the samples are large enough to allow detailed comparisons with the predictions by
the event generators, even via differential distributions [47]. The conclusion of the studies is that the SM
predictions reproduce very well the shapes of the observed distributions in data, but they underestimate
the total cross section.

This discrepancy has been observed by the two collaborations and at the two energies of the LHC.
Investigation of the origin of it is under study. Similarly, studies of the production of two Z bosons shows
a slight excess in the data with respect to the expectations [47,48]. In this case, the yields are small and
the excess is not as significant, but the clean final state, requiring four isolated leptons, leads to very
straightforward conclusions. This channel, which leads to a pure sample of ZZ events and with fully
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Fig. 6: Summary of the measurements by ATLAS for massive particles (weak bosons and top quarks) in single
and double mode at the LHC with a center-of-mass energy of 7 TeV.

reconstructed kinematics, provides the best test bed for diboson studies, specially with the amount of
events expected at the LHC.

In addition to the pure leptonic channels, that are much cleaner in a hadron collider, the semilep-
tonic channels are also exploited at the LHC, since it is the most precise way to study the hadronic
decays of Z and W bosons, not available in the inclusive production due to the large dijet backgrounds.
The performed measurements in the W+dijet sample [39, 49] yield the observation of the diboson sig-
nal. Separation of the Z and W in the hadronic channel is not possible due to resolution, and therefore
this final state is able to measure the mixture of WW and WZ events. The result is in agreement with
the observation, and the analysis has also tested the W+dijet background, whose interest was mentioned
above. Finally it should be remarked that WZ has been also measured in the fully leptonic channel [50]
which provides the topology of three charged leptons andEmiss

T which has a large relevance in searches
for new physics, in particular supersymmetry, and therefore the understanding of the kinematics in this
diboson process is a fundamental part of the program.

In conclusion, it should be remarked that even if the LHC is intended to discover the physics
beyond the SM, measurements of the know processes has produced many interesting results, some to
confirm the observations at previous colliders, but also new results that were not previously accessible.
In this sense, and as summarized in Fig. 6, the impressive agreement of the measurements provides a solid
base on which the experiments are building the tools and confidence for the observation of unexpected
results, when higher precision or new final states are reachable in the data.

4 Measurements on bottom and charm hadrons

The spectroscopy of hadrons has been a fundamental source of information in particle physics, since it
has allowed to detect effects beyond the reachable energy scale and since it provides the only direct way
to understand quarks and QCD at low energies.

The case of heavy flavour hadrons, which include at least a bottom or charm quark, is of a broader
interest due to the higher masses involved that allows to perform more accurate theoretical calculations
related to the properties of the hadrons. With the measurements in hadron spectroscopy, it is possible to
perform several classes of studies, as the properties of bound states, production of new states, measure
branching ratios and interference effects. All of them provide information about possible BSM physics
or improve the knowledge about partons in confinement states.
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It should be remarked that in order to perform studies with hadrons, it is needed to reconstruct
them. This sets a very different approach to the ones described above in which the hadrons are just
merged together in jets that are related to the original partons. The goal in the physics with hadrons
is to explicitly identify the interesting objects. This is achieved in several steps: The first consists in
the identification of the detected particles, as pions, kaons and more commonly muons and electrons.
Some of these objects are (pseudo)stable and are identified as tracks or similar. Sometimes the nature of
the particle is also inferred by using specifically designed detectors, but in other cases the nature is just
assumed as part of the reconstruction process.

After the detected particles are identified, they are combined to reconstruct “mother” particles that
may have decayed into them. The usual method is to reconstruct the invariant mass of several identi-
fied objects and find events in which they are coming from another particle (over a possible continuous
background) as a resonant excess. Those events associated to a decaying particle may be used to ex-
tract information about the particle, apart from the direct identification of the particle itself in the mass
distribution. Furthermore, the particles identified this way via its decay products may be further used to
reconstruct other partental particles in a recursive reconstruction that allows the full identification of the
decay chain of the original particle.

With these tools and the goal of measuring the hadron properties in mind, the LHC experiments
have been able to identify hadrons, some of them completely unknown. One example is the observation
by ATLAS of the new exited state,χb(3P), belonging to the bottomonium family decaying intoΥ(1S/2S)
by the emission of a photon [51]. The mass distribution showing the resonances produced by the new
state is shown in Fig. 7 centered at a mass of10.530 ± 0.005(stat)± 0.009(syst) GeV. Also the CMS
experiments was able to find theΞ∗

b → Ξ∓
b π

± state, which has been the first baryon and fermion found
at the LHC, and with a mass of5945.0± 0.7(stat)± 0.3(syst)]± 2.7(PDG) MeV [52].

However, and as expected, it is the main experiment focusing in heavy-flavour physics, LHCb
with its larger samples with higher purity who is able to measure the properties of bottom hadrons with
higher precision. Specially about the recently discovered baryons, for which this experiment has already
relatively large samples with high purity selection. The measurements forΛb, Ω

−
b andΞ−

b documented
in [53] required very detailed understanding of the detector momentum scales, in order to get the most
precise mass measurements in the World.

Additionally the LHCb is also leading the effort in searching for rare decays of known hadrons.
These decays are of interest for its possible sensitivity to new interactions involving quarks because they
include loop diagrams or interesting vertices that could be affected by unknown effects. Among the rare
decays, one of the most attractive ones isBs/B

0 → µµ since it is associated to a well-controlled and
easily identifiable final state. Additionally, the branching ratio is very small but expected to be enhanced
in several of the possible BSM extensions. This explains the intensive search for this signal in the last
decade at the Tevatron, where exclusion limit approached the SM expectation. However, the large sample
collected by the LHCb experiment allowed to get evidence of the decay, with a significance of3.5σ, for
Bs that is in good agreement with the SM value [54]. The decay forB0, searched in the same analysis,
is also in agreement with the SM, but significance of the excess is smaller. The absence of discrepancy
has set strong limits on possible new physics affecting the decay, confirming the negative results from
direct searches at the other LHC experiments, as described in sections 8 and 9.

Another interesting decay under study isB0 → K∗µµ, whose branching fraction in the SM is not
that small but whose kinematics is sensitive to the presence of new physics. One is the forward-backward
asymmetry as a function of the invariant mass of the muons, measured by LHCb [55] and observed to be
in agreement with the SM calculations.

All these measurements confirm the good performance of the detectors for heavy hadron physics,
although the measurements are not bringing information about the possible BSM physics, but setting
stringent constraints on the way the new physics may modify the interaction between quarks.
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Fig. 7: Invariant mass distribution ofµ+µ−γ to ob-
serve the resonances decaying intoΥ(1S/2S) and a
photon. A clear state at 10.5 GeV is observed in both
decays, compatible with being theχb(3P) state of the
bottomonium family.

Fig. 8: Raw mixing asymmetry forB0 → D−π+ as a
function of the decay time. The solid black line is the
projection of the mixing asymmetry of the combined
probability function for the sample.

4.1 Mixing and oscillations

Within the properties of hadrons, one that has become of large relevance is that of the mixing of neutral
mesons, in which the flavour eigenstates differ from the mass eigenstates, leading to a change in its nature
according to the quantum mechanics rules. These oscillations are well steblished for theK0, B0 andB0

s

and are starting to become accessible for theD0.

In the case of theB0, the LHCb samples are reaching unprecedent precision and even providing
new channels of observation. Figure 8 shows the result of the oscillations for the very pure sample
of B0 → D−π+ as a function of the decay time [56]. As it can be observed, the measurements are
well reproduced by the expectation obtained taking into account the composition of the sample used to
compute the raw asymmetry.

In the case of theD0, the oscillations are now becoming accessible thanks to the large samples,
specially at the LHCb. Its study is strongly motivated since charm is the only up-type quark in which
mixing and CP violation are accessible. It can also provide surprises since it is a previously unexplored
region. The study of the mixing and oscillations for theD0 is done by exploiting the interference between
the mixing and the double-Cabibbo-suppressed decays. The same channel provide a right sign and a
wrong sign set of candidates that are used to perform the measurement. The first set is not sensitive to
the mixing and therefore provides a perfect reference sample.

In order to reduce uncertainties in the production, the initialD0 state is tagged by using the decay
product of theD∗ → D0πs. Using all these events, it is possible to measure the mixing and the LHCb
has provided the first observation from a single measurement, with a significance of 9.1σ[57]. The result
is in good agreement with previous measurements, but the increased significance is another proof of the
reach available at the LHC even for studies of low-mass objects.

4.2 Measurements of the CKM matrix and CP violation

As remarked several times, the main goal of the studies in flavour physics is to investigate the details
of the fermion families, specially the relationship among them. In the case of the quarks, the relation
between the flavour eigenstates (from the point of view of the weak interaction) and the mass eigenstates.
is given by the so-called CKM matrix [58] which is expected to be unitary (when all families are included)
and that can be parameterized with three mixing angles and one complex phase. The unitary condition
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allows the representation of combinations of elements in rows and columns of the matrix as a triangle
whose area is related to the CP violation in the family mixing.

The goal is therefore to identify the processes that are sensitive to combinations of elements in
the matrix and extract the associated information about the matrix and the triangle. The measurement
of single elements in the matrix is associated to processes that are not observable in hadron physics.
However, that is not a complete limitation, as proben by the large set of results in the last decade related to
the CKM and CP violation parameters. Still, certain measurements are newly coming from the LHC. As
an example, the LHCb experiment has measured the angleγ using the tree processesB± → D0K± [59]
which has the advantage of being very clean: as we mentioned before, processes with loops are sensitive
to new physics, so the values measured at tree level are dominated by SM-only physics. The measured
value,γ = (71.1+16.6

−15.7)
◦ is in agreement with the World average, with comparable uncertainty.

Other interesting result from the LHCb is the study of CP violation in charmless three-body de-
cays of B mesons [60], that are sensitive to transitions between the first and third generation. The
observed asymmetry is interesting because it is opposite inπ±π+π− (enhacement forB−) with respect
toK+K−π± (enhacement forB+) and it seems to be enhanced locally for some kinematics regions.

In the case of the mixing, one of the most important channel isBs → J/ψφ since it is sensitive
to new physics affecting the CP violation. Measurements [61] agree with the SM expectations, and they
were also used to obtain the first measurement of the width difference of the mass eigenstates which is
not compatible with zero (∆Γs = 0.116± 0.018(stat)± 0.006(syst) ps−1).

Finally, the last open topic for CP violation is its study in charm decays, which has been measured
by the LHCb collaboration [62] to be significantly different from zero, an unexpected result since most of
the SM-based predictions suggest almost no violation. Although calculations are difficult and the usual
estimations may underestimate the value, the measured value, confirmed at other experiments, seems a
bit large, which may be pointing to some BSM effects.

As with most of the discrepancies observed, more data is needed to increase our knowledge, but
theoretical development is an additional requirement to quantify the level of disagreeement observed and
before its origin is further investigated.

5 Results on the top quark

In the hadron physics described in the previous section, one quark is not investigated: the top. Being the
most massive of the quarks (and of any observed fundamental particle) it is hard to produce and also it
does not hadronize but directly decays into a W and a bottom quark. Additionally, its exceptionally high
value of the mass makes him the best candidate to be related to new physics, so its study is mandatory
and one of the big goals of the LHC program: the top quark may lead the path to BSM physics, in the
same way as neutrinos are leading the path in non-collider results.

At the LHC the dominant process to produce a top quark is QCD pair-production that has a large
cross section. In fact the LHC is the first machine that is able to produce top quarks at high rate, allowing
detailed studies to be performed. This also applies to other production mechanisms, as that of single-top
andtW production, the latter being available at the LHC for the first time. In fact the production cross
sections of processes involving top are so large that it is also a very common background in many types
of searches, which is an additional motivation for studying its properties.

The study of the top quark at the LHC follows a similar strategy developed at Tevatron: channels
are identified with the number and type of leptons in the final state. Depending on that, events are
analyzed to extract all available information in a sample as clean as possible. Additionally all channels
are considered, in order to investigate all possible events and the presence of discrepancies with respect
to the SM expectations.
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Fig. 9: Distribution of the number of jets in events with
an electron or positron, a b-jet and significantEmiss

T as
measured by ATLAS at 7 TeV. Sample composition is
split into the main components.

Fig. 10: Invariant mass distribution for three jets form-
ing a top candidate in fully-hadronic of top-pair pro-
duction events. Measurement by ATLAS at 7 TeV. Ex-
pectations for the top-pair signal and the multijet back-
ground (histograms) are shown and compared to the
data (dots).

5.1 Measurements of the top-pair production cross section

The first property to be measured for the top quark is the production cross section in the main mechanism
(pair production) and the simpler channel: the semileptonic events in which there is a good identified
lepton and at least one jet tagged as coming from a bottom quark. Results were obtained for the sample
collected at 7 TeV by ATLAS, giving a cross section of165 ± 2(stat)± 17(syst)± 3(lumi) pb [63].
Distribution of the number of jets is presented for events with an electron in Fig.9, showing the clear
signal yield for high jet multiplicities.

It should be noted that the semileptonic events apply only to electrons and muons, not to theτ
lepton that is considered aside. That channel has also being studied since it is very important for the
possible new physics related to the third generation and the measurements (like the one in [64]) are
found to be in good agreement with the expectations. Additionally the all-hadronic channel has also
being investigated [65] in order to confirm the expectations. These two channels used the invariant mass
distribution of the top quark candidates, as shown in Fig. 10, in order to separate the large backgrounds.
It should be remarked that the lack of precision for these channels is basically driven by the systematic
uncertainties affecting the background or the acceptances.

On the other extreme, channels containing two leptons (electrons and muons) provide the cleanest
signature. At the Tevatron this channel was not precise because of the lower yield, but the LHC has
proven this is no longer an issue with the single most precise measurement of the cross section from the
dilepton channel at CMS [66],161.9± 2.5(stat)+5.1

−5.0(syst)± 3.6(lumi) pb, again at 7 TeV.

All these channels provide experimentally independent measurements of the production cross sec-
tion that have been combined [67] to give a value of173.3 ± 2.3(stat)± 9.8(syst) pb. The combination
has also proven the good consistency among the different channels and the two experiments. In addition
to these results at 7 TeV, the two collaborations are working on getting a similar picture with the data col-
lected at 8 TeV and measure the top-pair production cross section, whose interest is to test the model at
higher energies but also to open the possibility of performing ratios of energies (and even double ratios
with the addition of the Z-boson production cross section) which will enhance the sensitivity to BSM
physics. The first measurements of the cross section at 8 TeV are reported in [68] and [69].
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However it should be remarked that the large samples of top events are also allowing new sets
of studies that were not available at Tevatron: measuring SM quantities using events containing top
quarks. Those provide good tests of the SM, but also a useful frame to perform precise measurements.
One example is the extraction ofαS from the top-pair production cross section [70], which leads to a
competitive value because it is determined in an energy regime that has only been accessible to a reduced
amount of measurements.

Besides of the total production cross section, the experiments are measuring differential cross
sections [71, 72]. These studies provide very stringent test of the SM predictions and of the modeling
in simulation. In addition the sensitivity to possible discrepancies is enhanced, since such discrepancies
could appear in tails of distributions, as expected from possible new physics, and not affect the bulk of
them in any visible way.

The results of the measurements does not present any significant discrepancy and good agreement
is observed, which increases the confidence on the predictive power of the theoretical tools. These are
going to be fundamental when larger samples are investigated, as those collected in 2012 at 8 TeV, since
precision will be much larger and the challenges and sensitivity to new physics increases to previously
unknown levels.

5.2 Measurement of the properties of the top quark

Until more data is available for detailed studies of the production mechanism, the current data samples
allow the measurement of the properties of the top quark to an unprecendent precision. The first one is
the determination of the mass, since it ia a parameter that determines many other properties, and its high
value is already a motivation by itself.

The LHC experiments are exploiting the experience at the Tevatron and are already measuring the
mass of the top quark with very advanced techniques: template fits, jet calibration in-situ and similar.
In addition the measurements are performed in several samples that are later combined, even to get a
combined LHC result, as summarized in Fig. 11 and documented by the collaborations [73]. It should be
remarked that the achieved precision will be very hard to improve, but still the mass of the top quark is
a relevant quantity of study at the LHC. Specfically larger samples will allow differential measurements
of the mass, dMt/dX, which provides additional information and constraints.

In addition to the direct measurement of the mass, the LHC experiments are also measuring the
mass indirectly from the measured cross section and the comparison to the theoretical expectations.
The value extracted from this [74, 75] is not as precise as the direct measurements, but the comparison
provides a new handle to find inconsistencies in the theory predictions (and therefore opening the way
to possible BSM physics). The results are in good agreement, confirming the impressive performance of
the SM predictions for top production and properties.

Additionally to the mass there are other several quantities that have been measured for the top at
the LHC by CMS and ATLAS. As an incomplete summary, here are brief references to them:

– Electric charge

Within the SM there is a fixed expectation for the electric charge of the top quark (+2/3 of that of
the positron). However, some models would allow a charge of -4/3 (same units) which is still fully
compatible with the observed decays since the inclusive measurements do not relate the charge of the
lepton from the W boson and that of the bottom quark, specially due to the difficulties to measure the
latter.

However performing studies of the charge asasociated to the bottom quark (and the jet) and the
pairing of jet and W boson to identify the ones coming from the same top, it is possible to obtain sen-
sitivity to the charge of the top quark. Even with limited luminosities, analyses by the two collabora-
tions [76, 77] by testing the two models again sensitive distributions are excluding the alternative value
beyond any reasonable doubt.

18

O. GONZÁLEZ

208



– Mass difference for top and antitop

CMS has measured the mass difference between the quark and the antiquark version of the top [78],
which provides a stringent test of the CPT invariance in Nature and of the possible compositeness of the
top quark state. The result is in agreement with the SM expectation in which there is no difference.

– Polarization and spin correlations

Due to the short lifetime of the top quark, its decay happens before a change of the spin. This allows to
perform studies related to the spin that are not available to any other quark.

In pair production the polarization of the top quark is investigated by using the angle between
the quark and the lepton. Measurements by CMS in the dilepton channel [79] and by ATLAS in the
lepton+jet sample [80] has confirmed that the polarization is in agreement with the SM expectation: top
quarks are produced unpolarized.

However, the SM predicts that even if the quarks are not polarized, the spins of que quark and anti-
quark are correlated. The degree of correlation as measured by ATLAS in helicity basis is0.40+0.09

−0.08 [81],
in perfect agreement with NLO SM predictions, which sets additional constraints to possible anomalous
production, i.e. BSM physics.

– Helicity of W from top decays

Due to the characteristics of the coupling of the W boson to fermions, we expect that helicity of the W
decaying from top quarks to be fully determined. This property is parameterized in different components
that are accessible by studying the angular ditributions between the lepton from the W boson and the top
quark in the W rest frame.

Measurements performed by the two collaborations [82,83] are in agreement with the SM expec-
tations and the results are used to set limits on anomalous couplings between the W boson and the top
quark, basically testing the V-A structure of the weak coupling of the only quark in which it is directly
accessible.

– Forward-Backward asymmetry in top-pair production

In top-quark pair production a stricking assymetry was observed at the Tevatron regarding the foward-
backward production of the quarks, which a clear preference of the top quark to be produced in the
direction of the proton (and the antiquark in that of the antiproton).

Although this is somewhat expected, the observed value is much larger than the NLO predictions.
Some uncertainties involved in the calculations may be large but the effect may be also produced by
some unknown effect, specially because the effect increases with the mass of the produced pair.

At the LHC the available energy and production yield motivates a more precise study of the effect.
However, the symmetric initial state prevents the realization of exactly the same measurement. On the
other hand, the matter-dominated initial state introduces differences in the rapidity distributions of the
quark and antiquark that is related to the distribution studied at the Tevatron experiments.

The measurements of the asymmetry for the quantity∆|y| = |yt| − |yt| performed by the two
experiments [85, 86] show good agreement with the SM expectations. It should be remarked this does
not exclude the Tevatron result, since there are no final model explaining the asymmetry. However, the
LHC results exclude some proposed models and adds some additional information that is very useful
for this subject, that is a good candidate to be one of the hot topics for the incoming years, specifically
regarding top physics.

– Study of tt+X production

Since the pair production cross section of top quarks is so large, it has become possible to start studying
the properties of the top quark with the associated production of additional objects, usually radiated
from the top. Sizes of the current datasamples do not allow detailed studies of the most interesting
processes, as the production of a pair of tops and electroweak bosons, but current studies are showing
the possibilities for the future running.

19

LHC RESULTS HIGHLIGHTS

209



Fig. 11: Summary of the more relevant measurements
of the top-quark mass at the LHC, including the com-
bined from the two experiments and the comparison
with the best Tevatron combination.

Fig. 12: Measurements of the single-top production
cross section in the t-channel by CMS at 7 TeV and
8 TeV. For comparison, measurements at the Tevatron
experiments are also shown.

On the other hand, other processes that have not been studied in detail are already reachable for
accurate comparison with the SM predictions. Two examples are given by the production of jets in
association with a top pair [87] or even the production of bottom jets [88]. These measurements are in
good agreement with expectations and are setting strong constraints on the model predictions in regions
that were not investigated before.

In summary, the LHC has been proven as atop factoryallowing a high rate of produced top quarks
to perform very detailed measurements of its properties. It is expected that the precision of these will
increase with the future samples, providing information and constraints for models related to the less
known of the quarks in the standard model. Therefore it is not an exaggeration to claim that particle
physics has already entered in the era of precision in top-quark physics.

5.3 Single-top production

A very important topic regarding top production is that ofsingle topthat is dominated by electroweak
production of top quarks. The process, observed at the Tevatron, has not being studied in detail until the
arrival of the LHC, in which the available yields allow accurate comparison to the theory.

In the production of single top there are traditionally three channels under consideration: the
t-channel (via a W exchange) which is the one with the highest cross section and sensitive to the bottom-
quark content of the proton, the s-channel (via virtual W production) and Wtproduction, which was
not observed at the Tevatron. From them, the t-channel is relatively easy to be studied at the LHC
and current results have reached a good precision and even allowed separate sudies of the quark and
antiquark production. Figure 12 show the measurements at CMS at 7 TeV and 8 TeV [89] and comparison
with Tevatron measurements. Similar studies has been produced by ATLAS, with similar reach and
conclusions [90]. Additionally, results on the s-channel were able to set limits on the process that are
around 5 times the SM predictions [91]. However, the current analysis does not include the full data
available. With more data the results will become much more relevant. It should be noted that the
s-channel is more sensitive to possible anomalous production of particles.

Regarding the third channel, the associated production of a W boson and a top quark, both exper-
iments reached the level of evidence using the 7 TeV sample [92, 93]. The observed distributions are
in agreement with the SM expectations, but more data is needed to perform accurate comparisons. The
8 TeV data should allow the observation and first precise measurements of this process, although the
analysis is a bit challenging due to the harder conditions.
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Fig. 13: Summary of all the direct determinations of the CKM elementVtb at the Tevatron and LHC experiments
from single-top production.

Once the production of single-top events has been established, the study of them allows to provide
information about the electroweak couplings of the top quark, specifically due to the sensitivity of the
production mechanism to the CKM elementVtb ruling the coupling between the top quark, the bottom
quark and the W boson. Several determinations of this quantity have been performed at Tevatron and
LHC, as summarized in Fig. 13.

In conclusion, studies of the single-top production are starting to reach a precision that will put
the SM under test in the unexplored sector of electroweak physics with top quarks. Without doubt, this
will also contribute in the next years to complete the picture we have of this quark as a key piece of the
SM and its link to its possible extensions.

6 Results on heavy-ion collisions

Although the main goal of the LHC is to understand the interactions at the highest energies (or shortest
distances), this collider also allows to produce extreme conditions in terms of energy density, pressure
affecting baryonic matter. This is achieved by colliding heavy-ion nuclei, as it is the case of lead. The
main goal is to try to study the strong interaction at lower levels, i.e. investigate concepts as confinement,
thermal phenomena, chiral symmetry and so on, more closely related to the conditions affecting quarks
and gluons in the early universe than the clean parton-parton collisions usually studied at the LHC when
colliding protons.

Also in the case of the LHC the increase in energy represents a big step forward in studies of
heavy-ion collisions: the experiments at RHIC were intended to discover the production of strongly-
interacting perfect fluid. The LHC experiments shall characterize the details of this new class of matter
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with the increased precision. For that, one of the most useful quantities is theelliptic flow, defined as the
second momentum of the azimuthal distribution of produced particles. It contains very important physics
information because larger values of the quantity indicates the presence of viscosity in the medium at
the early times after the collision. Such values were observed at RHIC and by ALICE [94], confirm-
ing the expectations from hydrodynamic models. Adiditionally, ALICE has measured the elliptic flow
and production yields (and ratios) for specific particles, as e.g. in [95] identified via its sophisticated
detector subsystems. Some of the results are a bit unexpected, as the reduced production of baryons
with respect to pions, which may be pointing to some presence of hadronic rescattering, an effect never
observed. Other interesting measurements have already been performed by the collaborations with the
aim of quantifying the characteristics of the collisions, as studies of higher-order harmonics (as in [96]),
or particle correlations, and the studies related to the measurements sensitive to the Chiral Margnetic
Effect [97] which is a fundamental study in the heavy-ion program at the LHC after the first hints at
RHIC.

However, most of the current studies in heavy-ion collisions are more pointing to the confirmation
of the results found at RHIC in order to tests new tools and fix a solid base to go beyond in terms of
energy and sizes of data samples. In fact, it is in terms of hard probes of the created medium where the
LHC experiments have clearly go beyond previous experiments.

ATLAS was the first one presented a result on jet quenching [98], in which one expect dijet events
produced from hard parton interactions in lead-lead collisions are observed as assymetric production
of jets: opposite to a produced jet with large transverse momentum it is not straightforward to find a
second jet, as in the usual proton-proton collisions. In fact a factor 2 of suppresion in central collision
is observed, very independent of the jet momentum. This is explained by the presence of a strongly
interacting medium which affects more one hard parton than its companion, and therefore giving the
impression of disappearence of jets.

In addition to jets, it has been very common the use of hard photons as probes of the medium.
Photons are transparent to the medium, so they are perfect to quantify effects on jet quenching in the
production ofγ+jet, as in [99]. However, photons may also be coming from the hadrons in the medium,
or in the final state, so they represent as small limitation that the LHC experiments may avoid with the use
of more massive probes that were not available at RHIC: the weak bosons. Currently the experiments
have been focusing on detecting the presence of those bosons, since available data samples does not
allow its use as actual probes, e.g. in Z+jet production. However, the detection of leptonic Z bosons by
CMS [100] and ATLAS [101] have already allowed the first differential measurements to characterize
the production of these ideal probes, completely insensitive to initial state or hadronization and for which
the medium is transparent. Studies of the W bosons have also been performed [102] and have already
provided interesting confirmation regarding proton-neutron differences: isospin effect yields a reduced
asymmetry in charge with respect to proton-proton collisions at the same energy per nucleon. Again
larger samples are needed for more detailed studies, but the LHC is probing all its potential in heavy-ion
collisions.

Another area in which the LHC allows to reach much further than RHIC is the sudy of heavy-
flavour production. As in the case of proton-proton collisions, the possibility of identifying secondary
vertices allows specific studies to be performed. In fact ALICE has shown its great capabilities with the
reconstruction of open-charm mesons, D mesons [103] which are not only nicely observed but also used
to perform measurements, like the one shown in Fig. 14, which probes the confirmation of suppression
for open charm in central collisions, in good agreement with more inclusive studies. The aim of using
open-charm mesons (and perhaps B mesons) is that they bring the possibility of quantifying differences
in the energy loss in the medium between heavy or light quarks and even gluons.

But the identification of heavy-flavour states is much more powerful in the dilepton resonances,
specifically for the quarkonia states. They have a long history of being studied in heavy-ion collisions
due to their clean signature and the big theoretical/phenomenological knowledge on them. Regardless
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Fig. 14: The nuclear modification factor with respect
to proton-proton measured in lead-lead collisions for
D mesons in the most central events as measured by
ALICE. Data (black dots) are compared to the nuclear
modification factors of charged particles (open circles)
and non-promptJ/ψ from CMS (squares).

Fig. 15: Invariant mass of dimuon pairs measured by
CMS in the region of theΥ family as produced in
heavy-ion collisions (dots and red-line fit). Compari-
son to the data from proton-proton collisions normal-
ized to theΥ(1S) peak (blue dashed line) shows the
sequential suppression of the family in heavy-ion col-
lisions.

of being colourless they are sensitive to the medium since they rely on the strong force to keep the
two quarks bounded. In fact these states are affected by screening effect and they become an actual
thermometer of the medium: the larger the radius of the system (larger for e.g. 2S states than 1S)
the larger the screening. Therefore we expect to observe asequential suppresionor meltingwithin the
quarkonia families: less bound states are more suppressed than those that are more bound. This has
been clearly observed in measurements by CMS [104] for theΥ family, as shown in Fig. 15. Clearly
the excited states are affected more in relative terms than the ground state when comparing reasults from
lead-lead collisions with those of proton-proton at the same energy per nucleon. This is an additional
confirmation that a strongly interacting medium is created in the relativistic heavy-ion collisions at the
LHC.

It should be noted however that even if the qualitative picture seems clean, the quantitative details
do not completely fit, so further measurements and theoretical developments will be needed in order to
fully understand the generated medium. Such kind of studies are already in place, as the measurements of
J/ψ suppresion by CMS [105] (in central rapidities) and ALICE [106] (in forward rapidities), probing
the nice complementarity between experiments. However the agreement in the suppression does not
apply to the observation by CMS thatψ(2S) is less suppressed than theJ/ψ for transverse momenta
larger than 3 GeV, something not confirmed by the ALICE measurements.

In conclusion the heavy-ion program of the LHC experiments is already providing interesting
results bringing the field to unexplored areas with a new energy regime and new possibilities, like the
use of new available tools and probes. The propects for the future, with further analyses of the data,
including the 30 nb−1 collected for proton-lead collisions (as the previews in [107, 108]), will help
towards the ultimate goal of the program: detailed characterization of QCD thermal matter by means of
precise measurements from heavy-ion collisions at LHC.
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7 Searches for the SM Higgs boson

The SM structure and its implications in the description of the Universe is based on the presence of a field,
known asHiggs fieldthat is responsible for the symmetry breaking giving rise to the electromagnetic and
weak interaction and also to give masses to the weak bosons. In this process, a single degree of freedom
is translated into a scalar particle,the Higgs boson, that should be observed and whose coupling to the
fermions are introduced in such a way that these last ones acquire the masses that are forbidden by the
symmetry before it gets broken.

This particle is therefore the missing keystone of the SM and it was extensively searched for in
previous colliders without success. The good performance of the SM strongly motivated the existence
of the particle, and the measurements and fits from pre-LHC colliders pointed to a mass of around
100 GeV [109].

Under this situation, the LHC started collecting the data that should provide light to the existence
of this boson and eventually find it. This was the most important search for the first years of the LHC
experiments and for this reason it deserves a full section describing the analyses and the strategy to
follow in order to observe the presence of the boson and also the related measurements wich are aiming
to confirm whether the observed resonance actually matches the properties expected for the SM Higgs
boson.

7.1 Strategy to search for the boson at the LHC

Before the LHC had collected enough data for being competitive in searches of the Higgs boson, the
results from LEP and the Tevatron were the richest source of information. In fact, LEP had excluded at
95% C.L. the SM Higgs boson below 114 GeV and its measurements had constrained the mass of the
Higgs to be around 100 GeV.

In the case of Tevatron, the direct searches were excluding a Higgs aroung 165 GeV, leaving the
available regions to be clearly separated into two: The low-mass region, for masses between 115 and
160 GeV, that was very strongly motivated. The second region, with relatively high masses beyond
170 GeV, was less motivated, but still not discarded, specially considering that the motivation was as-
suming negligible effects from possible BSM physics (or more complex Higgs models).

The first step therefore for the LHC was to look into these two regions and during 2011 all channels
were considered to investigate all the mass ranges. For low masses, although the decay is dominated by
that to bottom quarks, the involved channels were those having the Higgs decaying into ZZ (in 4 leptons)
or γγ, with some information from the WW,τ+τ− andbb decays in all accessible production modes.
For high masses the most useful channels were those involving decays into WW and ZZ in all posible
signatures. With this approach the two experiments presented results on December 13th 2011 with the
data collected at 7 TeV. The results presented at that time led to a complete exclusion of the Higgs boson
in the high-mass region (up to more than 400-500 GeV) and most of the low-mass one, leaving alone a
small window around 125 GeV.

In that window the exclusion was not possible because both experiments saw an excess, not com-
pletely significant but enough to prevent exclusion of the presence of a SM Higgs boson. the excess
was appearing in several of the channels Naturally, the presence of a resonance in the most motivated
channels to detect the SM Higgs boson was a clear suggestion that such boson was the responsible for
the excess, so all the focus from that moment was to intensively search for a possible boson with a mass
around 125 GeV whose properties were close to those expected for the SM Higgs boson.

This effort was designed to be applied to the 8 TeV data collected right after the Winter in 2012
and the idea was to maximize sensitivity in the two most sensitive channels at that mass (4-lepton ZZ and
γγ) and also look at the complementary channels (WW,τ+τ− andbb) that could provide some further
sensitivity and also some additional information regarding the nature of the boson: more couplings
involved.
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Fig. 16: On the left, 95% C.L. limit on the ratio of the cross section over the SM expectation for the production
of a Higgs boson as a function of its mass as obtained by ATLAS at the time of ICHEP-2012. Observed limit is
compared with the expected limit (in absence of such a particle) and the uncertainty intervals. On the right, the
local p-values for a similar study in several analyses by CMS. In both cases a very significant excess is observed
around 125 GeV that is interpreted as observation of a new particle, likely the SM Higgs boson.

In parallel more analyses were still considered in order to complete the pictures, even those that
were looking (and excluding) the presence of a SM Higgs boson at higher and higher masses.

All these analyses are described in the following sections.

7.2 Analyses for the discovery (ICHEP-2012 results and afterwards)

At the time of ICHEP-2012 the size of the available data at 8 TeV was comparable to that collected
at 7 TeV, allowing already enough sensitivity to perform statements on the boson. Both collaborations
presented results in the main channels on Julyth 2012, and they confirmed the presence of a new boson at
the discovery (5σ) level. The presented results are summarized by the plots in Fig. 16, where the results
from the statistical analyses of the studies are shown.

The measurements performed at 8 TeV also increased the precision on the knowledge of the boson
and in general tend to confirm its nature as that of the SM Higgs boson. Later improvements to the
analyses and the addition of the data that was provided by the LHC during 2012 have brought additional
support for this hypothesis. However, some questions are still to be investigated and further data would
allow more precise measurements in the future. Here we will discuss some of the more relevant results
bringing to the current knowledge about the boson dicovered at a mass of 125 GeV.

In the case of CMS, theH → γγ search [110] is performed by using several categories of diphoton
(for inclusive production mode) and two categories for tagging Vector-Boson Fusion (VBF) processes.
It should be noted that VBF is very important because it is sizable (mostly because the leading Higgs
production occurs via loops) and it involves different couplings than the dominant mechanism, e.g. it is
very important for fermiophobic models.

With all those categories, the analysis is able to achieve a significant excess of4.1σ with a yield a
bit higher than expectation.

In addition to that, the 4-lepton search was dealt in this collaboration with the use of a kinematic
discriminant that accounts for the fact that the Higgs boson is a scalar. This kind of tools have made that
this analysis [111] is the central reference for measuring the properties of the boson, as described below.
As shown in Fig. 17 the channel has very little background and the signal is clearly observed in spite of
the low yield. The significance of the excess at a mass of 126 GeV is very high, although in this case the
yield comes a bit lower than the SM expectation, but still in agreement.
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Fig. 17: On the left, the mass distribution of 4 leptons in events selected for the Higgs search at CMS. Data (dots)
are compared to the background expectation (solid histograms) and a Higgs signal withm(H)=126 GeV (red line).
On the right, local p-values associated to the same analysis, with a clear excess for a Higgs mass around 125 GeV.

In addition with the most sensitive channels, CMS has put a lot of effort on the secondary channels
which are giving additional constraints about the boson, with a small sensitivity. Specifically, the WW
decay also suggests the existence of a boson, but with a yield on the lower side [112]. Theτ+τ− shows
clear limitations on the size of the data sample and although the result is compatible with a SM Higgs, it
is also in agreement with the background-only hypothesis [113]. A similar conclusion is extracted from
the decay into bottom quarks [114], in which the Higgs need to be observed in the production associated
with a weak boson, in order to keep the dijet background under reasonable limits. The studies of diboson
production described in section 3.4, specifically in the semileptonic channels, provide a solid support to
the search of the boson in this decay channel. In any case, more data will provide stronger constraints on
the fermionic decay channels, currently compatible with the existence of the SM Higgs boson but with
small significance.

From the ATLAS side, also several updates came after ICHEP-2012, bringing further confirmation
to the signal and, as in the CMS case, higher precision in the results. The diphoton search [115], per-
formed with several categories, has lead to a very strong signal, which approaches the level of being very
high when compared to the SM expectation with a signal strength value approaching a factor of 2 (being
1 the SM prediction). Dedicated studies of this value in a per-channel basis does not indicate anything
striking, but uncertainties in those cases are large since it is the combination of them which is bringing
the high significance of the signal. Plot on the left of Fig. 18 shows the invariant mass distribution of
diphotons in which the resonance at a mass around 125 GeV is clearly observed.

As in the diphoton search, the 4-lepton channel in ATLAS gives a signal strength higher than
the expectation, although in this case in agreement with the SM value (and with the CMS result). The
study of this final state [116] is performed by exploiting the kinematical properties of the decay products
from a spin-0 particle. As shown in the plot on the right of Fig. 18, the signal is clearly observed with
a reasonable amount of background, which leads to this channel as the main reference to measure the
properties of the boson, as in the case of CMS.

Regarding the complementary channels, ATLAS also puts a big effort on those with similar con-
clusions to those obtained by CMS. In the case of the decay into bottom quarks [117], sensitivity has not
yet reached the level to allow quantitative statements about the boson to be made. The other two chan-
nels [118, 119] give higher yields than expected, but still with large uncertainties. In the case ofτ+τ−,
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Fig. 18: On the left, invariant mass of two photons in the search for the Higgs decaying into diphotons per-
formed by ATLAS. The fitted background is subtracted in the plot below in order to enhance a resonant excess
close to 125 GeV. On the right, invariant mass distribution of 4 leptons in events selected for the Higgs search at
ATLAS.Data are compared to the background and a signal hypothesis withm(H)=125 GeV.

the value seems to be high in the case of the main production channel, but in VBF and in associated
production with a weak boson (VH) the signal strength is clearly on the low side [119]. It is too early to
be considered a problem since the uncertainty is still large enough to cover the SM value within1σ.

7.3 Post-discovery goals: measuring the properties

As described in the previous section, a new boson has been observed and its properties are compatible to
those expected from the Higgs boson of the SM. With the additional analysis the picture is getting more
complete, but precision needs to be improved to extract further conclusions.

One of the goals in the incomingpost-discoveryyears is the measurements of all the properties.
This has been already started, and some answers are already provided, as we will discuss here.

The first set of results is the comparison of the signal strength for the several channels that have
been investigated. The results are summarized in the plots of Fig. 19. As mentioned in the previous
section, values are not completely matching the expectations from the SM, but they are not significantly
discrepant. More data will be needed to reduce the uncertainty and investigate possible anomalies in the
production and decay mechanisms. Explicit disentangling of the couplings show they are fully compati-
ble with the SM expectations, as in [120].

After the production mechanism has been checked, the first obvious property to measure is the
mass of the found resonance. Dedicated studies has been performed at the two collaborations using the
most sensitive channels. In the case of CMS, the last study has been based on the 4-lepton sample and
provides a mass value ofm(H) = 126.2± 0.6(stat)± 0.2(syst) GeV [121]. In the same analysis, studies
of the spin and the parity leads to the conclusion that the data clearly favours a pure scalar versus a
pseudoscalar. Additionally, data is not precise enough to distinguish between spin-0 and spin-2 particles
in this channel.

In the case of ATLAS, the results presented in [122] show some tension between the masses ex-
tracted from the 4-lepton and the diphoton channels. In the first case a value ofm(H) = 123.5 ±
0.9(stat)± 0.3(syst) GeV is obtained. For the second, the value ism(H) = 126.6 ± 0.3(stat)±
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Fig. 19: Signal strength in the several channels sensitive to a Higgs boson with a mass close to 125 GeV in
CMS (on the left) and ATLAS (on the right). SM prediction should be centered at 1, which is compatible with the
measured values and with the combined average.

0.7(syst) GeV, in better agreement with the measured value at CMS using the 4-lepton channel. This
discrepancy will require some further investigation and perhaps data to be understood. It should be
added to the issue that the signal strength values as measured by ATLAS tend to be higher than the SM
expectations.

In addition to the mass measurement, studies of the spin and parity has also been performed by
ATLAS [123]. They are similar to those by CMS, but more complete since information is also extracted
from theH → γγ analysis. This has allow to add more sensitivity to the distinction between sipn-0 and
spin-2 particles.

7.4 Other searches for SM-like Higgs and within models of new physics

Even though a boson that is a good candidate to be the Higgs as predicted by the SM has been found,
other analyses looking for SM-like Higgs bosons are still of interest. The main motivation is that they
may be sensitive to scalar resonances with a mass larger than that of the boson, or smaller but with lower
production cross sections.

Most of these searches are following very closely the searches for the SM Higgs at the corre-
spondent masses, since they inherit from analyses performed before the boson was observed. They are
naturally diverging from the optimal search for the SM Higgs, in order to look for similar particles, but
not with exactly those properties of the SM Higgs. Many searches has been performed by ATLAS [124]
and CMS [125] and have computed limits for possible presence of particles that are SM-Higgs alike,
since no hint for a resonant scalar has been seen.

Furthermore, several BSM theories include the modification of the Higgs-sector, which implies
that other Higgs particles may be present in Nature, even with the presence of the SM one. The suggested
discrepancies in the Higgs properties add further motivations for this kind of models. Note we discussed
them here even if searches for BSM physics are included in sections 8 and 9.

As usual in searches for new physics, supersymmetric models are the most attractive to be con-
sidered. In the case of Higgses, Supersymmetry (SUSY) requires the presence of at least five Higgses,
one basically like that predicted in the SM and others that are relevant due to their properties: charged
Higgses and Higgses with enhanced couplings to bottom quarks andτ leptons. This later case motivated
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the search for a Higgs decaying intoτ+τ− interpreted in SUSY models. Lack of any observed signal
bring the experiments to use the results [126,127] to set constraints in the SUSY parameter space.

In addition, searches for charged Higgs have been performed in order to look for their presence in
decays of the top quark. CMS has focused on theτ channel [128], looking for an anomalous presence
of τ -based decays with respect to other leptonic channels. Limits were set for several models due to
the good agreement of the data with the W-only-decay hypothesis. In the case of ATLAS, one of the
investigated channel wasH± → cs [129], in which the presence of a dijet resonance not peaking at
the mass of the W boson will be identified as a signal. In addition, we expect a lower yield due to the
competing channel that is purely hadronic (assuming that the charged Higgs decay preferably into that
channel). Data does not confirm these expected anomalies, so additional limits are set for this kind of
model.

Aside for the basic SUSY models, other extensions of the SM incorporate modifications of the
Higgs sector and therefore they have been searched for. There are many possibilities here, and several
classes of Higgses show up. However, we should emphasize that some of them yield topologies that may
have been missed due to kinematic selection, as it is the case of Higgses with low masses (as the dimuon
resonance search in [130]) which may be produced just as boosted objects due to their own couplings.
Other possible exotic particle in the Higgs sector is the presence of doubly-charged particles whose
searches, as the one in [131], have not reported any visible discrepancy with respect to the expected SM
backgrounds.

In conclusion, no significant hint of alternative or extended Higgs sectors has been found to com-
plement the boson observed at a mass around 125 GeV. However, this does not imply that the physics
beyond the SM is out of reach, since the Higgs sector is well known for providing very elusive particles.
For this reason, searches of new particles have been performed independently of the discovery of the
possible Higgs, as discussed in the following sections.

8 Searches for new physics

As it has been discussed before, the LHC is intended as a machine to bring information about new physics
beyond the SM. The possibility that the Higgs boson has been found does not only confirm the validity
of the SM, but also its limitations that should be investigated to find even more correct answers about the
structure of the Universe at the smallest distances.

Finding these answers at the LHC requires a huge effort in order to cover the many possibilities,
and therefore corners of the parameter space. This makes the search topic a very broad field of inves-
tigation. In this report we just summarize the most interesting searches of all those developed at the
LHC.

Within the searches for BSM physics, the models involving SUSY are strongly motivated due to
their good theoretical performance to solve the SM limitations. Specifically the doubling of the parti-
cle spectrum, in order to have a supersymmetric partner to each SM particle, allows a very reach phe-
nomenology that translates into many analyses investigating several types of final state topologies. Those
are discussed in section 9.

On the other hand, there are well-defined alternatives to supersymmetric models that also provide
possible explanations to the issues of the SM as the full description of the Universe. In the following
subsections we focus on summarizing the searches for these alternative models.

8.1 Searches for unknown high-mass resonances

When looking for new physics, the more direct approach is to look for particles that are not included in the
SM spectrum. For that, the search for resonances decaying into detectable and well-known particles is the
simplest approach. Some of these resonances are naturally predicted in extensions of the SM, specially
with the addition of new interactions. Figure 20 show the invariant mass of dileptons as measured by
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Fig. 20: Invariant mass distributions of electron-positron (left) and dimuon (right) in dilepton events collected by
ATLAS. Data (dots) are compared with the SM predictions (solid histograms) and some expectations for BSM
resonances (lines).

ATLAS when looking for a massive resonance that would appear as a peak in those distributions. The
comparison of the data with the SM expectation show very good agreement and results [132] (and [133]
for CMS) are used to set limits on the production cross section for resonances, and lower mass limits on
possible Z-like particles in the order of 2.5-3 TeV.

Similar to the lepton search, the production of dijet resonances has also been considered, as in the
CMS result documented in [134], in which special treatment has been performed in order to separate
between resonances decaying into gluons or into quarks (or a mix). Also in this case, a good agreement
has been observed, but the main issue is how to handle the huge background at the lower invariant mass,
that forces to reject events even at the trigger level.

This has been the testing analysis of a new technique, calleddata scouting, which allows to collect
interesting events passing around the trigger limits. The idea is to collect events at a higher rate but
storing only the final reconstructed objects, which allows the reduction of the data content per event. This
permitted CMS to trigger and perform studies for lower invariant masses with competitive results [135]
even with a reduced datasample of 0.13 fb−1.

When looking for resonances, the presence of neutrinos is not a limitation, and the search is also
extended to the use of thetransverse massof a lepton and theEmiss

T , defined as

MT =
√
2 · pT,ℓ · Emiss

T · (1− cos∆φℓ,ν)

to investigate the presence of new resonances decaying into a charged lepton and a neutrino. In the case
of a resonance, this variable shows a Jacobian peak that is on top of a smooth background. The current
results, as those in [136], do not show any hint of such type of structure, and limits on production of
W-like particles has been set.

However, when we talk about limits on very massive W-like particle, a possible decay channel is
into a top and a bottom quark, which is not allowed for the W. This was investigated by ATLAS [137]
and found no sign of a resonance decaying into those quarks, and independently of the number of the
identified b-jets. It should be noted that the searches of this kind of resonance have become very powerful
at the LHC due to the available energy for producing high-mass resonances decaying to the most massive
particles in the SM spectrum. This is also confirmed in the study of resonances decaying to weak bosons,
which are predicted to appear in several BSM theories. A result by ATLAS has taken advantage of the
trilepton final state to look for resonances decaying into WZ [138], providing a very competitive result,
although usually this kind of search is performed with semileptonic or fully hadronic channels to make
use of the larger branching ratio.
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In fact, the energy at the LHC is so large and the possibility for producing resonance so large,
that very massive object could appear and the decay products will be boosted, which may lead to dijet
(e.g. from W) merged into one reconstructed jet. This has been turned into a benefit to enhance signal,
by using merged jets to tag the presence of hadronically decayed bosons. The result of the analysis by
CMS [139] shows the good performance of the boosted-jet tools. Unfortunately no sign of new physics
was found.

A similar analysis by ATLAS looking for a resonance decaying into ZZ in the semileptonic chan-
nel [140] also exploits the merged jet topology to increase acceptance to very massive resonances and
set a much constraining limit than that accessible by the obvious dijet topology.

Among the searches for resonances indicating BSM physics, one common topic is the studies of
possible excited states of fundamental particles, which could be related to new physics (e.g. contact
interactions or internal substructure). This is the case for the search of excited muon states decaying into
a muon and a photon as the one by ATLAS [141] looking for the Drell-Yan production of a muon and an
excited muon. The results are in good agreement with SM predictions for the most discriminant variable:
the invariant mass of the two muons and the photon, which allows to set stringent limits in the possible
scale for such a excited state to exist.

In addition to the searches for resonant states in the two-body decays, the high masses accesibles
at the LHC allows the searches for more complicated topologies, with more objects in the final state.
One example is the search for boosted resonances decaying into three jets. The search performed by
CMS [142] assumes pair-production of these objects, and therefore the idea is to study three-jet ensam-
bles whose transverse momentum is large but the corresponding mass may show a peak structure related
to a decaying resonance. The requirement of large transverse momentum allows the reduction of the
combinatorial background, for which the mass and the transverse momentum will show a correlation.
Although the result of the analysis does not show hints of any possible resonance, the used technique can
be used in other searches in the future. In the current case, limits are set on the existence of resonances.

Another alternative that is open at the LHC is the cascade decay with initial massive objects se-
quentally decaying into states. A very syummetric case considered at CMS consists on the pair produc-
tion of objects (e.g. technicolour particles) decaying into pairs of particles (e.g. other lighter state in the
technicolour spectrum) which decay into dijet. This process will lead to an 8-jet topology in which there
are resonant peaks in four dijet masses, two 4-jet masses and perhaps in the 8-jet mass in case the original
pair-production occurs from the decay of a single-produced particle. All this information is combined
into an artificial Neural-Network to enhance signal-like topologies. The results [143] show that there is
no peak structure on top of the combinatorial background coming from usually-produced 8-jet events
and limits has been set for models motivating this kind of signature.

8.2 Searches for leptoquarks

One special case of pair-produced resonances that are motivated by unification models isleptoquarks,
particles having both lepton and baryon numbers. They are detected via their decay into a lepton and a
quark, which gives a resonant peak in the invariant mass (in the case of charged leptons) or significant
excess inEmiss

T -related variables (in the case of neutrinos).

Since these particles carry colour, they are pair-produced with a large cross-section, giving rise
to clean signatures due to the leptons in the decay. Furthermore, they also have a rich phenomenology,
since these particles could be of different classes (scalar, vector) and also appear in different generations,
although they are usually not mixing fermions of different families.

The basic analyses, mostly oriented to the first two generations are easily identified by the kind
of lepton, which determines the generation we are focusing. Searches by ATLAS [144] show good
agreement with the SM expectations for theeejj andµµjj final states. These results are used to set
limits that are going beyond previous searches of these particles.
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Since the first generations are not providing hints of leptoquarks, even inthe channels with neu-
trinos, searches have also been focused on the third generation, whereτ leptons and bottom quarks are
expected. Specifically the search by CMS [145] with the use of b-jets exploits the sensitivity given by
the scalar sum of the transverse momenta of the decay products. The results are in good agreement with
the SM expectations, and they are used to set limits on the leptoquark production, but also on the pro-
duction of scalar tops within R-parity (RP )-Violating SUSY models (see details in section 9.3), giving
an explicit proof that searches of new physics are usually sensitive to several classes of models bringing
similar final states, an in similar areas of the phase space.

8.3 Extradimensions and graviton searches

The extensions of the SM do not only consider the extension of the particle spectrum or the interaction
sector. Several models introduce the modification of the structure of the Universe by incorporating addi-
tional dimensions, that would be microscopic and whose existence may explain the large scale difference
between the electroweak interaction and gravitation. The idea is that the new dimensions will be forbiden
to the SM particles and effects, while gravity expands in all the available dimensions. The signatures will
be striking with the production of gravitons (producing largeEmiss

T since they escape detection) and SM
particles, leading to single-photon (monophoton) or single-jet (monojet) topologies,

These have been looked for by the collaborations. As an example, ATLAS has looked for events
with a photon with large transverse momentum that is accompanied with largeEmiss

T , which is the most
significant variable to identify the presence of new physics [146]. Good agreement is observed with
respect to the SM expectations for this signature, dominated by undetected weak bosons (neutrino de-
cays) in association with a photon. Also some background contribution is present due to detector effects
generating artificial kinematics looking like the signal.

Furthermore, ATLAS and CMS have also looked for the monojet topology [147, 148]. Although
the main motivation for this signature is the production of gravitons produced in association with quarks,
there has been an increase use of this kind of search for studying the production of invisible particles (as
generic Dark Matter candidates) in a model-independent way, being the jet balancing theEmiss

T produced
by initial-state radiation. This keeps a small fraction of the total signal, but allows to look for hard-to-
detect particles that may be copiously produced at the LHC collisions. It should be remarked that this
makes a strong case when compared to the more clean monophoton signature: results are more sensitive
to other classes of models.

The results of the monojet searches has also found good agreeement with the SM predictions.
Figure 21 shows theEmiss

T distribution of the ATLAS analysis [147], that has also been used to set limits
in the production of gravitino from the decays of squarks and gluinos.

Another possiblity related to extra-dimensions and accessible production of graviton is that par-
ticles may appear as Kaluza-Klein towers which sequentally decay into less massive objects. Specifi-
cally, gravitons may appear as diphoton resonances, which is an easy-to-identify signature, but it suffers
from large backgrounds. Anyway, they have been investigated by the LHC experiments, as the analysis
in [149], and no hint of such a resonance has been found on top of the diphoton high-mass spectrum, as
shown in Fig. 22, which also includes the expectation from a resonance as those predicted by Randall-
Sundrum models and the expected effect due to a more generic model including additional dimensions.

8.4 New physics in the top sector and new generations

As discussed before, the top quark is usually suggested as the primary candidate to open the path towards
new physics. Its large mass and coupling to the Higgs, which are the basic quantities related to the loose
ends of the SM, make this quark a very attractive place to search for discrepancies with respect to the
SM expectations, Since the first step to fix the hierarchy problem is to have a partner canceling the top-
induced corrections to the Higgs mass, such a partner should be at reach of the LHC independently of its
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Fig. 21: Distribution of theEmiss
T variable in events

with a single jet with large transverse momentum.
Data (dots) are compared to the background expecta-
tions (filled histograms) and possible signals for BSM
physics (coloured lines).

Fig. 22: Distribution of the diphoton invariant mass in
events with two photons with large transverse momen-
tum. Data (dots) are compared to the background ex-
pectations (filled histograms) and possible signals for
BSM physics (coloured lines) containing a Randall-
Sundrum resonance or a generic extradimention model.

nature. Although the most obvious choice is a SUSY partner (see section 9.2), alternative options have
been made, including the possibility of the existence of a very massive 4th generation.

One option considered by ATLAS [150] is the search for the pair-production of a top partner
having an electric charge of 5/3 (of that of the positron). Appearing in several models, the decay into a
top quark and a W boson allows to have good acceptance with same-sign dileptons and also to use the
hardness of the event (scalar sum of transverse momenta of final objects) as discriminating variable. No
significant discrepancy has been observed with respect to the low expected SM background.

As a general rule, the existence of additional generations (containing canonical or exotic particles)
that would contain coloured particles more masive than the SM ones leads to very busy final states in
terms of multiplicity and of energy. This is used in the optimization looking for this kind of topolo-
gies, being very common the requirement of hard events or with rare combination of objects (same-sign
leptons, leptons and b-jets in high multiplicities and similar requirements). The performed analyses
searching for a 4th generation, as those in [151,152]. All searches have brought the conclusion that there
are no hints for the existence of a 4th generation (in the reachable masses) nor of any new physics that
may look like massive particles regarding busy final-state topologies.

8.5 Searches for very exotic signatures

The lack of success to find hint of straightforward BSM physics has open the possibility that Nature is not
as predictable as we might think and the new physics may appear in some even more exotic signatures
than those considered for the theoretically-motivated BSM final states. This has led to the study of
final states that could have escaped the more traditional selection or based on models less related to the
confirmed SM predictions, which bring to new classes of final states.

One option that has been considered is the production of microscopic black holes at the LHC colli-
sions. Some generic properties of them from quantum gravity provide general rules of final-state expec-
tations: high multiplicities and democratic treatment of objects. The search for this kind of events [153]
was performed by exploting that the scalar sum of transverse energies for the SM background presents
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a shape that is independent of the multiplicity. Therefore the lower multiplicity events are used to get
the shape that is compared to the data with high multiplicities. Good agreement has been observed and
limits in a model-independent approach are set.

Other rare topology that is not commonly considered is the presence of long-lived particles that
may escape even the trigger selection. Some of these particles appear in several models as quasi-stable
particles. In this context, searches for charged massive particles (CHAMPs) by CMS [154] or more ded-
icated searches like the stable chargino using track-disappearance by ATLAS [155] are good examples
of the possibilities beyond the usual approaches and how the detectors <re used with non-standard event
reconstructions to look for unexpected classes of particles. In this, we should also mention the search
for magnetic monopoles (as that by ATLAS in [156]), whose existence is very strongly motivated due
to the electric charge quantization and as part of the electromegnetic unification. The need for specific
reconstruction of the events (since these particles are not electric charges, and behave very differently
inside magnetic fields) add some complication to the analysis, but still the results are very competitive
when compared to direct searches because of the possibility to produce them with high cross section at
the LHC. In any case no hint for production of monopoles has been observed and further data will help to
increase the sensitivity, specially with the addition of the dedicated experiment for this (MoEDAL [8]).

In conclusion, after the first datasamples provided by the LHC collisions have been analyzed, no
discrepancy with the SM prediction has been found that could be considered as a significant hint of
new physics or particles beyond the SM spectrum. The future running of the LHC at a higher energy
and higher luminosities, discussed in section 10, should provide more information on the possible BSM
physics.

9 Searches for supersymmetry

In SUSY models the particle spectrum is at least doubled [157], bringing a lot of possible processes that
could distort the measured values with respect to the SM expectations. Depending on the considered
process, the final state to be investigated is different, providing a rich phenomenology.

However, since at the LHC the initial state is based on partons, the dominant production mech-
anism is usually the production of coloured superpartners. In usual models they are produced in pairs
since R-parity (RP , a quantity being 1 for particles and -1 for superpartners) is conserved. In addition, the
conservation ofRP implies that the lightest SUSY particle (LSP) is stable and a Dark Matter candidate.

These basic properties allow to make general analysis in searches for SUSY which focus on spe-
cific parts of the spectrum. In addition, this also brought a new way of interpreting the results which
are based on “simplified models” which provide well-determined processes for the given final states.
This has simplified the interpretation of the results in terms of the possible theoretical models. On the
other hand, the more traditional, “full model”, approach are still advantageous to interpret results from
different analysis and experiments within a common framework.

Independently of the model the most basic search for SUSY is to look for jets andEmiss
T . The latter

being a hint of the stable LSP, and the jets appearing as the decay products of coloured superpartners,
which are the ones associated with larger production cross sections: squarks and gluinos. These analyses
are just dependent on the reconstruction of theEmiss

T and they try to quantify its presence with variables
that are less sensitive to misreconstruction. In addition several categories are investigated in order to be
sensitive to different kind of SUSY processes. The categories are usually identified by the hardness of
the event (withEmiss

T or momenta of jets), the multiplicity of jets, or the multiplicity of b-jets.

The analyses by the collaborations, as those in [158,159], do not show any significant discrepancy
with respect to the expected backgrounds. Results are used to set limits in several types of models, and
are typically excluding the presence of squarks (of the first generations) and gluinos below 1-1.5 TeV.

In the case of massive squarks, it is feasible to produce gauginos that are lighter but still hard to
produce directly from the proton collisions. These gauginos may decay in leptons with large transverse
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momenta which simplify the identification of the events at the trigger and reconstruction levels. Both
collaborations have searched for SUSY events in final states with leptons, jets and significantEmiss

T [160,
161] and the results shows good agreement with the SM expectation. Results have been used to set limits
on the production of SUSY particles that produce leptons in the final state. It should be noted that the
studies with leptons include theτ lepton (as in [162]) since they provide increased sensitivity to the case
of Higgsino-like gauginos.

When one consider leptons in the final state, the presence of multileptons may be a good hint of
SUSY due to the reduced SM backgrounds. Specially when there are at least three leptons and significant
Emiss

T , which is the golden final state detecting the production of a pair of chargino and neutralinos
decaying leptonically or even production of scalar leptons. The background of these kind of studies [163,
164] is dominated by diboson (or multiboson) production in which leptons are the decay products of the
massive weak bosons.

Again, the presence ofτ leptons is fundamental is some areas of the parameter space since the
gauginos may not be as “flavour symmetric” as the corresponding SM bosons. In any case, no significant
excess has been observed and the results are used to set limits on the production of gauginos. It should be
noted that this kind of final state is sensitive to a different area of the SUSY parameter space, so they are
complementary to the search of events in which coloured superpartners are producted and sequentially
decay into SM particles.

9.1 Gauge-mediated Supersymmetry breaking

After the simplest topologies have been investigated and report negative results regarding the existence
of SUSY, other models providing significant differences in the final states need to be considered. A
qualitative change is set by models in which SUSY is broken in a hidden sector and communicated via
gauge interaction [165], since the LSP is the gravitino and the phenomenology depends on the next-to-
lightest SUSY particles (NLSP) because most of the decays go preferably via that particle.

In the cases where such particle is a scalar lepton, usually the scalarτ , the final state contains
leptons that are easy to identify. Searches by both collaborations [166, 167] show good agreement with
expectations in several types of final states.

Other case that is very relevant is when the NLSP is a neutralino, decaying into a gauge boson
(usually a photon) and the gravitino. This is also a relatively simple final state, since the presence of
photons helps to make the event selection much cleaner. The analysis searching for diphoton andEmiss

T

by CMS [168] observed a good agreement between the observed data and the expected SM backgrounds,
as displayed in Fig. 23, where theEmiss

T distribution in events with two photons is shown, including some
possible signals to explicitly shown the sensitivity to a signal in this variable.

Even if the considered final state in models with gauge-mediated SUSY breaking was able to avoid
limits set for MSSM-inspired searches, the results are not showing any significant discrepancy that could
be attributed to the production of SUSY particles.

9.2 Natural SUSY and third generation squarks

After the studies of the more obvious SUSY final states, the obtained limits are moving the SUSY
scale to high values so it starts to approach the decoupling with respect to the electroweak scale. Since
the motivation for SUSY is to fix problems at this latter scale, new concepts are required to keep the
connections between the two scales and, at the same time, avoid the current limits from more inclusive
final states.

In this sense the two obvious things is first to keep the neutralino (or equivalent) as the LSP in
order to have a Dark Matter candidate that is stable and weakly coupled. Secondly, we need the lightest
scalar top to be light enough to keep the divergences in the Higgs mass as smaller as possible. This means
m(t̃) . 400 GeV. This expression also requires a gluino not far from 2 TeV to avoid a strong correction
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on the scalar top mass. With these requirements, all other SUSY particles may have any value, since
their influence is much smaller. Therefore current limits on general searches are avoided.

However, this “natural” SUSY becomes only completely natural when other superpartners are
associated to the needed ones. For this reason it is not uncommon to have also light scalar bottom quarks
or scalarτ (as mentioned above). Additionally, the LSP could be a family of degenerated gauginos of
several classes. It should be noted that in spite of the reduced number of superparticles involved, the
possible final states are very complex due to the involvement of the third generation of fermions.

For example, with the described spectrum, it is feasible to have gluino-pair production as the
process with higher cross section. These gluinos decay into quarks andEmiss

T . In the case the scalar
bottom is available, the gluinos may give rise to final states containingEmiss

T and four bottom quarks,
that may be identified as b-jets. This topology is very clean due to the reduced backgrounds and therefore
sensitivity may be enhanced by the b-jet requirements, allowing some additional room with respect to the
more inclusive limits, where the limitation was the huge backgrounds. The study done by ATLAS [169]
shows no hint for anomalous production of multi-b-jets and significantEmiss

T , a selection sensitive to this
final state. Limits in SUSY and other models are set. Regarding the interpretation, it should be noted
that this analysis is also sensitive to the decay into top quarks, since also four bottom-quarks appear in
the final state.

On the other hand, the case of top and scalar top quarks produced via gluino production is much
richer than just the presence of b-jets, due to the large multiplicity of W bosons. It is possible then to
identify the events containing four top quarks and significantEmiss

T in several approaches and with very
challenging final states for the SM expectations: analyses in this topic [170, 171] are testing the SM
predictions in very specific corners of the phase space, and specifically in regions that were not tested
before. Even there the SM predictions provide a very good description of the measurements, which
translates into further contraints to SUSY production.

Even if the use of gluino-mediated production allows the use of striking signatures, it is more
attractive the direct production of squarks of the third generation which are those strongly motivated
to be relatively light, according to “naturalness”. Therefore experiments performed searches of scalar
bottom quarks as that in [172] in which the identification of b-jets is fundamental to reduce the SM
background. In addition, searches for direct production of scalar top quarks [173–176] still provide
enough complexity in the final state to allow several classes of searches. This is seen in summary plots
as that displayed in Fig. 24, containing the exclusion areas from several searches of direct production of
scalar top.quarks.

As the summary plot shows, the several assumptions on the decay and kinematics of the final states
allows to exclude large areas of the parameter space. But in summary, the lack of observation of hints
for scalar top quarks just bring the scale for SUSY (in this case given by the mass of the scalar top) to
higher values, similarly of the results in more inclusive searches. Threfore, it seems that SUSY may not
show up in the most obvious way to fix the issues of the SM and particle physics.

9.3 Searches forRP -Violating SUSY

Although usually it is assumed thatRP is conserved because it directly provides a Dark Matter candidate,
it is obvious that there is no reason a priori why that quantity needs to be conserved. By relaxing the
conservation condition it is possible to avoid many of the most stringent limits, since they are usually
obtained with the requirement onEmiss

T , which is inspired by the assumption of conservingRP . In
addition, the phenomenology becomes much richer due to the possibilities in the spectrum and in the
possible interactions. For example with the presence of unusual resonances in the final state (likeν̃τ →
eµ).

One general characteristic of theRP -Violating signatures is that since all the superpartners decay
into SM particles, the final state usually is related with high multiplicity of objects, and involving many
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Fig. 23: Distribution of theEmiss
T in diphoton events as

measured by the CMS collaboration. Data (dots) are
compared to the SM predictions (solid histograms) and
to possible models of new physics (lines).

Fig. 24: Summary of the limits for scalar tops from
the available analyses by ATLAS, drawn in the neu-
tralino (LSP)-stop plane according to the assumptions
of all the channels.

different types of them. This also brings the fact that basically every final state is available inRP -
Violating SUSY due to the rich phenomenology.

As reference analyses, we should mention the multilepton searches, as that by ATLAS [177] look-
ing for anomalous production of events containing 4 or more leptons having either largeEmiss

T or large
energy activity (quantified via the concept of effective mass). Reasonable agreement with the small SM
expectations has been observed.

Other typical search in the context ofRP -Violating models is the search for resonances decaying
into two leptons of different type, as the one performed by ATLAS in [178], wich considers the case of
eµ, eτ andµτ resonances. No hint of such states was found and limits were set in the relevant models.
It should be noted that the open possibilities in this set of models have the clear disadvantage that the
application of the limits is very reduced in comparison with the parameter space.

A last analysis that needs to be discussed is the search for events containing multileptons and
identified b-jets, that has been investigated by CMS [179]. The interest of this search is not only about
possible presence of new physics, but also since it is sensitive to very rare SM processes, whose obser-
vation is as interesting as the search for BSM physics. This includes some of the associated production
of top quark and weak bosons mentioned in section 5.2. Although no hint of new physics has beeen
observed, the analysis already probes the sensitivity to the rare SM processes that should be investigated
in future datasamples collected at the LHC.

10 Future of the LHC experiments and physics

After the running ended in March 2013, the LHC accelerator is currently in a shutdown period which is
needed for maintenance and repair work which will allow the running at the highest energy and luminos-
ity conditions. This shutdown will last until 2015 and it is also used by the experiments for additional
improvements and work.

The plan after the shutdown is to run for a few years at nominal energy (probably 13 TeV) and
collect a sample of 100 fb−1 . Afterwards a new shutdown is expected to bring the luminosity to the
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design value and run for a few more years (2019-2022) to collect additional 350 fb−1 at a center of mass
energy of 14 TeV.

Afterwards a third shutdown will bring the machine to a Phase-2 upgrade that may allow to collect
additional 3000 fb−1 along the next decade. All these data will allow accurate studies for particles and
interactions observed during the first runs of the collider. An alternative will be to upgrade the LHC so it
may be able to reach higher energies and set a new frontier on the investigated energy scales.

In addition to the improvements by the accelerator, the experiments are getting ready to upgrade
their components in order to exploit the possibilities the several stages of the LHC will provide. ATLAS
and CMS will need to face new challenges in terms of collection rate, luminosity and radiation and are
therefore working on improvements for the DAQ and trigger selection, upgrades of the internal parts of
the detectors and replacements of the parts that may be limiting factors in the incoming phases.

In the case of ALICE, the main goal is to have the best possible detector for the run after the
second shutdown, in order to get all the reachable information about the heavy ion program of the LHC,
hopefully understanding the Quark-Gluon Plasma with unprecendent accuracy and being able to provide
enough information for the theoretical characterization of its properties. It is not completely clear yet
whether ALICE will be present in the LHC running beyond 2022,

The case of the LHCb is special due to the reduced need for luminosity. The plan is to collect
5 fb−1 after the current shutdown and then collect 50 fb−1 during the main part of the main run of the
current LHC. As in the case of ALICE, it is not clear whether LHCb will be present in future improve-
ments of the LHC projects, either in terms of luminosity or of new energy regimes.

To summarize, the LHC is planning the future runnings with improved performance in order to
provide large amount of data that will yield to important measurements during the several stages of the
accelerator. The expected program and the results from the experiments are awaited from the particle-
physics community to confirm and improve the results already obtained at the LHC and described in
previous sections.

However, it should be remarked that even the current datasample are still providing important and
relevant results, as reported on the web pages of the experiments [180].

11 Overview and conclusions

The LHC experiments have finished a very sucessfulRun I with very important milestones and discov-
eries in all the topics planned for the program. Confirmations of the SM expectations, measurements of
heavy-flavour and top quark physics and results related to heavy-ion collisions have clearly overrule most
of the previous achievements due to the new energy frontier, the good performance of the accelerator and
the detectors and also to the high quality of the studies.

In the part dedicated to searches for new particles, which is the main goal of the LHC, the current
results already made the first big discovery by finding of a new boson having a mass of 125 GeV. For
other possible particles expected in extensions of the SM, new limits have been set, highly increasing the
constraints for BSM physics.

The properties of the new boson has been measured in the current datasample and they seem to
confirm that this boson may be the long-awaited Higgs boson expected in the standard model, the last
missing piece of this theory. Further studies are on-going, and others waiting for further running of the
LHC, in order to increase the precision of the measurements and confirm this extrem.

Expectations for the future running in 2015 at 13 TeV are getting higher with the increase in reach
for possible new particles and also the improved precision of the measurements with the larger data
samples expected. Specifically, precision measurements of the properties of the new boson and of other
observations that have been accessible at the LHC keep the focus on the LHC results as the more-likely
door to the new discoveries in the second half of this decade.
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CERN, Geneva, Switzerland

Abstract
This report summarizes a series of three lectures aimed at giving an overview
of basic particle detection principles, the interaction of particles with matter,
the application of these principles in modern detector systems, as well tech-
niques to read out detector signals in high-rate experiments.

1 Introduction
“New directions in science are launched by new tools much more often than by new concepts” is a fa-
mous quote from Freeman Dyson’s book Imagined Worlds. This is certainly true for the field of particle
physics, where new tools such as the cloud chamber, bubble chamber, wire chamber, solid-state detectors,
accelerators, etc. have allowed physicists to enter into unchartered territory and to discover unexpected
phenomena, the understanding of which has provided a deeper insight into the nature of matter. Looking
at all Nobel Prize winners connected to the Standard Model of particle physics, one finds many more ex-
perimentalists and “instrumentalists” than theoretically orientated physicists, which is a strong indicator
of the essence of new tools for advancing our knowledge.

This report will first discuss a few detector systems in order to illustrate the detector needs and
specifications of modern particle physics experiments. Then the interaction of particles with matter,
which is of course at the heart of particle detection, will be reviewed. Techniques for tracking with gas
detectors and solid-state detectors as well as energy measurement with calorimeters are then elaborated.
Finally, the tricks on how to process the signals from these detectors in modern high-rate applications
will be discussed.

2 Examples of detector systems
The Large Hadron Collider (LHC) experiments ATLAS, CMS, ALICE and LHCb are currently some
of the most prominent detectors because of their size, complexity and rate capability. Huge magnet
systems, which are used to bend the charged particles in order to measure their momenta, dominate the
mechanical structures of these experiments. Proton collision rates of 1 GHz, producing particles and
jets of TeV-scale energy, present severe demands in terms of spectrometer and calorimeter size, rate
capability and radiation resistance. The fact that only about 100 of the 109 events per second can be
written to disk necessitates highly complex online event selection, i.e. “triggering’. The basic layout of
these collider experiments is quite similar. Close to the interaction point there are several layers of pixel
detectors that allow the collision vertices to be distinguished and measured with precision on the tens of
micrometres level. This also allows short-lived B and D mesons to be identified by their displaced decay
vertices. In order to follow the tracks along their curved path up to the calorimeter, a few metres distant
from the collision point, one typically uses silicon strip detectors or gas detectors at larger radii. CMS has
an “all-silicon tracker” up to the calorimeter, while the other experiments use also gas detectors like so-
called straw tubes or a time projection chamber. The trackers are then followed by the electromagnetic
and hadron calorimeter, which measures the energy of electrons, photons and hadrons by completely
absorbing them in very large amounts of material. The muons, the only particles able to pass through
the calorimeters, are then measured at even larger radii by dedicated muon systems. The sequence of
vertex detector, tracker for momentum spectrometry, calorimeter for energy measurement followed again
by tracking for muons is the classic basic geometry that underlies most collider and even fixed-target
experiments. It allows one to distinguish electrons, photons, hadrons and muons and to measure their
momenta and energies.
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The ALICE and LHCb experiments use a few additional detector systems that allow different
hadrons to be distinguished. By measuring the particle’s velocity in addition to the momentum, one can
identify the mass and therefore the type of hadron. This velocity can be determined by measuring time of
flight, the Cerenkov angle or the particle’s energy loss. ALICE uses, in addition, the transition radiation
effect to separate electrons from hadrons, and has therefore implemented almost all known tricks for
particle identification. Another particle detector using all these well-established techniques is the Alpha
Magnetic Spectrometer (AMS) that has recently been installed on the International Space Station. It is
aimed at measuring the primary cosmic-ray composition and energy distribution.

More “exotic” detector geometries are used for neutrino experiments, which demand huge detector
masses in order to make the neutrinos interact. The IceCube experiment at the South Pole uses one cubic
kilometre of ice as the neutrino detection medium to look for neutrino point sources in the Universe.
Neutrinos passing through the Earth from the Northern Hemisphere interact deep down under the ice
and the resulting charged particles are travelling upwards at speeds larger than the speed of light in
the ice. They therefore produce Cerenkov radiation, which is detected by a series of more than 5000
photon detectors that are immersed into the ice and look downwards. An example of an accelerator-
based neutrino experiment is the CERN Neutrino to Gran Sasso (CNGS) beam. A neutrino beam is sent
from CERN over a distance of 732 km to the Gran Sasso laboratory in Italy, where some large neutrino
detectors are set up. One of them, the OPERA detector, uses more than 150 000 lead bricks as neutrino
target. The bricks are built up from alternating sheets of lead and photographic emulsion, which allows
tracking with the micrometre precision necessary to identify the tau leptons that are being produced by
interaction of tau neutrinos. This “passive” detector is followed by trigger and tracking devices, which
detect secondary particles from the neutrino interactions in the lead bricks and identify the bricks where
an interesting event has taken place. To analyse the event, the bricks have then to be removed from the
assembly and the photographic emulsion must be developed.

These are only a few examples from a large variety of existing detector systems. It is, however,
important to bear in mind that there are only a few basic principles of particle interaction with matter that
underly all these different detectors. It is therefore worth going through them in detail.

3 Basics of particle detection
The Standard Model of particle physics counts 17 particles, namely six quarks, six leptons, photon,
gluon, W and Z bosons, and the hypothetical Higgs particle. Quarks, however, are not seen as free
particles; rather, they combine into baryons and mesons, of which there are hundreds. How can we
therefore distinguish all these different particle types in our detectors? The important fact is that, out
of the hundreds of known hadrons, only 27 have a lifetime that is long enough such that they can leave
a track > 1 µm in the detector. All the others decay “on the spot” and can only be identified and
reconstructed through kinematic relations of their decay products like the “invariant mass”. Out of these
27 particles, 13 have lifetimes that make them decay after a distance between a few hundred micrometres
and a few millimetres at GeV energies, so they can be identified by their decay vertices, which are only a
short distance from the primary collision vertex (secondary vertex tagging). The 14 remaining particles
are the only ones that can actually “fly” though the entire detector, and the following eight are by far
the most frequent ones: electron, muon, photon, charged pion, charged kaon, neutral kaon, proton and
neutron. The principle task of a particle detector is therefore to identify and measure the energies and
momenta of these eight particles.

Their differences in mass, charge and type of interaction are the key to their identification, which
will be discussed in detail later. The electron leaves a track in the tracking detector and produces a shower
in the electromagnetic (EM) calorimeter. The photon does not leave a track but also produces a shower
in the EM calorimeter. The charged pion, charged kaon and the proton show up in the tracker but pass
through the EM calorimeter and produce hadron showers in the hadron calorimeter. The neutral kaon and
the neutron do not show tracks and shower in the hadron calorimeter. The muon is the only particle than
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manages to pass through even the hadron calorimeter and is identified by tracking detectors behind the
calorimeters. How to distinguish between pion, kaon and proton is typically the task of specific particle
identification (PID) detectors.

4 Interaction of particles with matter
The processes leading to signals in particle detectors are now quite well understood and, as a result
of available computing power and simulation programs like GEANT or GARFIELD, one can simulate
detector responses to the level of a few percent based on fundamental microphysics processes (atomic and
nuclear cross-sections). By knowing the basic principles and performing some “back-of-the-envelope
calculations”, it is possible to estimate detector response to the 20–30% level.

It sounds obvious that any device that is to detect a particle must interact with it in some way. In
accelerator experiments, however, there is a way to detect neutrinos even if they do not interact in the
detector. Since the total momentum of the colliding particles is known, the sum of all momenta of the
produced particles must amount to the same number, owing to momentum conservation. If one uses a
hermetic detector, the measurement of missing momentum can therefore be used to detect the momentum
vector of the neutrino!

The electromagnetic interaction of charged particles with matter lies at the heart of all particle
detection. We can distinguish six types of these interactions: atomic excitation, atomic ionization,
bremsstrahlung, multiple scattering, Cerenkov radiation and transition radiation. We will discuss them
in more detail in the following.

4.1 Ionization and excitation
A charged particle passing through an atom will interact through the Coulomb force with the atomic
electrons and the nucleus. The energy transferred to the electrons is about 4000 times larger compared to
the energy transferred to the nucleus because of the much higher mass of the nucleus. We can therefore
assume that energy is transferred only to the electrons. In a distant encounter between a passing particle
and an electron, the energy transfer will be small – the electron will not be liberated from the atom but
will just go to an excited state. In a close encounter the energy transfer can be large enough to exceed
the binding energy – the atom is ionized and the electron is liberated. The photons resulting from de-
excitation of the atoms and the ionization electrons and ions are used in particle detectors to generate
signals that can be read out with appropriate readout electronics.

The faster the particle is passing through the material, the less time there is for the Coulomb force
to act, and the energy transfer for the non-relativistic regime therefore decreases with particle velocity
v as 1/v2. If the particle velocity reaches the speed of light, this decrease should stop and stay at a
minimum plateau. After a minimum for Lorentz factors γ = 1/

√
1− v2/c2 of≈ 3, however, the energy

loss increases again because the kinematically allowed maximum energy that can be transferred from the
incoming particle to the atomic electron is increasing. This rise goes with log γ and is therefore called
the relativistic rise. Bethe and Bloch devised a quantum-mechanical calculation of this energy loss in the
1930s. For ultra-relativistic particles, the very strong transverse field will polarize the material and the
energy loss will be slightly reduced.

The energy loss is, in addition, independent of the mass of the incoming particle. Dividing the
energy loss by the density of the material, it becomes an almost universal curve for all materials. The
energy loss of a particle with γ ≈ 3 is around 1–2× ρ[g/cm3] MeV/cm. Taking iron as an example, the
energy for a high-energy particle due to ionization and excitation is about 1 GeV/m. The energy loss is
also proportional to the square of the particle charge, so a helium nucleus will deposit four times more
energy compared to a proton of the same velocity.

Dividing this energy loss by the ionization energy of the material, we can get a good estimate of
the number of electrons and ions that are produced in the material along the track of the passing particle.
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Since the energy deposited is a function of the particle’s velocity only, we can use it to identify particles:
measuring the momentum by the bending in a magnetic field and the velocity from the energy loss, we
can determine the mass of the particle in certain momentum regions.

If a particle is stopped in a material, the fact that the energy loss of charged particles increases
for smaller velocities results in large energy deposits at the end of the particle track. This is the basis of
hadron therapy, where charged particles are used for tumour treatment. These particles deposit a large
amount of dose inside the body at the location of the tumour without exposing the overlying tissue to
high radiation loads.

This energy loss is, of course, a statistical process, so the actual energy loss will show fluctua-
tions around the average given by the Bethe–Bloch description. This energy-loss distribution was first
described by Landau and it shows a quite asymmetric tail towards large values of the energy loss. This
large fluctuation of the energy loss is one of the important limiting factors of tracking detector resolution.

4.2 Multiple scattering, bremsstrahlung and pair production
The Coulomb interaction of an incoming particle with the atomic nuclei of the detector material results
in deflection of the particle, which is called multiple scattering. A particle entering a piece of material
perpendicular to the surface will therefore have a probability of exiting at a different angle, which has
a Gaussian distribution with a standard deviation that depends on the particle’s properties and the mate-
rial. This standard deviation is inversely proportional to the particle velocity and the particle momentum,
so evidently the effect of multiple scattering and related loss of tracking resolution and therefore mo-
mentum resolution is worst for low-energy particles. The standard deviation of the angular deflection
is, in addition, proportional to the square root of the material thickness, so clearly one wants to use the
thinnest possible tracking devices. The material properties are summarized in the so-called radiation
length X0, and the standard deviation depends on the inverse root of that. Materials with small radiation
length are therefore not well suited to the volume of tracking devices. This radiation lengthX0 is propor-
tional to A/ρZ2 where A, ρ and Z are the nuclear number, density and atomic number of the material.
Tracking systems therefore favour materials with very low atomic number like beryllium for beampipes,
carbon fibre and aluminium for support structures, and thin silicon detectors or gas detectors as tracking
elements.

The deflection of the charged particle by the nuclei results in acceleration and therefore emission
of electromagnetic radiation. This effect is called “bremsstrahlung” and it plays a key role in calorimetric
measurements. The energy loss of a particle due to bremsstrahlung is proportional to the particle energy
and inversely proportional to the square of the particle mass. Since electrons and positrons are very
light, they are the only particles where energy loss due to bremsstrahlung can dominate over energy
loss due to ionization at typical present accelerator energies. The energy of a high-energy electron or
positron travelling a distance x in a material decreases as exp(−x/X0), where X0 is again the above-
mentioned radiation length. The muon, the next lightest particle, has about 200 times the electron mass,
so the energy loss from bremsstrahlung is 40 000 times smaller at a given particle energy. A muon must
therefore have an energy of more than 400 GeV in order to have an energy loss from bremsstrahlung that
dominates over the ionization loss. This fact can be used to distinguish them from other particles, and it
is at the basis of electromagnetic calorimetry through a related effect, the so-called pair production.

A high-energy photon has a certain probability of converting into an electron–positron pair in the
vicinity of a nucleus. This effect is closely related to bremsstrahlung. The average distance that a high-
energy photon travels in a material before converting into an electron–positron pair is also approximately
given by the radiation length X0. The alternating processes of bremsstrahlung and pair production result
in an electromagnetic cascade (shower) of more and more electrons and positrons with increasingly
degraded energy until they are stopped in the material by ionization energy loss. We will come back to
this in the discussion of calorimetry.
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4.3 Cerenkov radiation
Charged particles passing through material at velocities larger than the speed of light in the material
produce an electromagnetic shock wave that materializes as electromagnetic radiation in the visible and
ultraviolet range, the so-called Cerenkov radiation. With n being the refractive index of the material,
the speed of light in the material is c/n, so the fact that a particle does or does not produce Cerenkov
radiation can be used to apply a threshold to its velocity. This radiation is emitted at a characteristic
angle with respect to particle direction. This Cerenkov angle Θc is related to the particle velocity v by
cos Θc = c/nv, so by measuring this angle, one can determine the velocity of a charged particle.

4.4 Transition radiation
Transition radiation is emitted when a charged particle crosses the boundary between two materials of
different permittivity. The probability of emission is proportional to the Lorentz factor γ of the particle
and is only appreciable for ultra-relativistic particles, so it is mainly used to distinguish electrons from
other hadrons. As an example a particle with γ = 1000 has a probability of about 1% to emit a photon on
the transition between two materials, so one has to place many layers of material in the form of sheets,
foam or fibres in order to produce a measurable amount of radiation. The energy of the emitted photons
is in the keV region, so the fact that a charged particle is accompanied by X-rays is used to identify it as
an electron or positron.

5 Detector principles
In the previous section we have seen how charged particles leave a trail of excited atoms and electron–ion
pairs along their track. Now we can discuss how this is used to detect and measure them. We will first
discuss detectors based on atomic excitation, so-called scintillators, where the de-excitation produces
photons, which are reflected to appropriate photon detectors. Then we discuss gaseous and solid-state
detectors based on ionization, where the electrons and ions (holes) drift in electric fields, which induces
signals on metallic readout electrodes connected to readout electronics.

5.1 Detectors based on scintillation
The light resulting from complex de-excitation processes is typically in the ultraviolet to visible range.
The three important classes of scintillators are the noble gases, inorganic crystals and polycyclic hydro-
carbons (plastics). The noble gases show scintillation even in their liquid phase. An application of this
effect is the liquid argon time projection chamber where the instantaneous light resulting from the pas-
sage of the particle can be used to mark the start signal for the drift-time measurement. Inorganic crystals
show the largest light yield and are therefore used for precision energy measurement in calorimetry ap-
plications and also in nuclear medicine. Plastics constitute the most important class of scintillators owing
to their cheap industrial production, robustness and mechanical stability. The light yield of scintillators is
typically a few percent of the energy loss. In 1 cm of plastic scintillator, a high-energy particle typically
loses 1.5 MeV, of which 15 keV goes into visible light, resulting in about 15 000 photons. In addition
to the light yield, the decay time, i.e. the de-excitation time, is an important parameter of the scintillator.
Many inorganic crystals such as NaI or CsI show very good light yield, but have decay times of tens,
even hundreds, of nanoseconds, so they have to be carefully chosen considering the rate requirements of
the experiments. Plastic scintillators, on the other hand, are very fast and have decay times on only the
nanosecond scale, and they are therefore often used for precision timing and triggering purposes.

The photons produced inside a scintillator are internally reflected to the sides of the material,
where so-called “light guides” are attached to guide the photons to appropriate photon detection devices.
A very efficient way to extract the light is to use so-called wavelength shifting fibres, which are attached
to the side of the scintillator materials. The light entering the fibre from the scintillator is converted into
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a longer wavelength there and it can therefore not reflect back into the scintillator. The light stays in the
fibre and is internally reflected to the end, where again the photon detector is placed.

The classic device used to convert these photons into electrical signals is the so-called photo-
multiplier. A photon hits a photocathode, a material with very small work function, and an electron is
liberated. This electron is accelerated in a strong electric field to a dynode, which is made from a mate-
rial with high secondary electron yield. The one electron hitting the surface will therefore create several
electrons, which are again guided to the next dynode, and so on, so that out of the single initial electron
one ends up with a sizeable signal of, for example, 107–108 electrons.

In recent years, the use of solid-state photomultipliers, the so-called avalanche photodiodes (APDs),
has become very popular, owing to their much lower price and insensitivity to magnetic fields.

5.2 Gaseous detectors
A high-energy particle leaves about 80 electron–ion pairs in 1 cm of argon, which is not enough charge
to be detected above the readout electronics noise of typically a few hundred to a few thousand electrons,
depending on the detector capacitance and electronics design. A sizeable signal is only seen if a few
tens or hundreds of particles cross the gas volume at the same time, and in this operational mode such
a gas detector, consisting of two parallel metal electrodes with a potential applied to one of them, is
called an “ionization chamber”. In order to be sensitive to single particles, a gas detector must have
internal electron multiplication. This is accomplished most easily in the wire chamber. Wires of very
small diameter, between 10 and 100 µm, are placed between two metallic plates a few millimetres apart.
The wires are at a high voltage of a few kilovolts, which results in a very high electric field close to the
wire surface. The ionization electrons move towards the thin wires, and, in the strong fields close to
the wires, the electrons are accelerated to energies above the ionization energy of the gas, which results
in secondary electrons and as a consequence an electron avalanche. Gas gains of 104–105 are typically
used, which makes the wire chambers perfectly sensitive to single tracks. In this basic application, the
position of the track is therefore given by the position of the wire that carries a signal, so we have a
one-dimensional positioning device.

One has to keep in mind that the signal in the wire is not due to the electrons entering wire; rather,
the signal is induced while the electrons are moving towards the wire and the ions are moving away from
it. Once all charges arrive at the electrode, the signal is terminated. The signals in detectors based on
ionization are therefore induced on the readout electrodes by the movement of the charges. This means
that we find signals not only on electrodes that receive charges but also on other electrodes in the detector.
For the wire chamber one can therefore segment the metal plates (cathodes) into strips in order to find
the second coordinate of the track along the wire direction. In many applications, one does not even
read out the wire signals but instead one segments the cathode planes into square or rectangular pads
to get the full two-dimensional information from the cathode pad readout. The position resolution is in
this case not limited by the pad size. If one uses pad dimensions of the order of the cathode-to-wire
distance, one finds signals on a few neighbouring pads, and, by using centre-of-gravity interpolation, one
can determine the track position, which is only 1/10 to 1/100 of the pad size. Position resolution down
to 50 µm and rate capabilities of hundreds of kHz of particles per cm2 per second can be achieved with
these devices.

Another way to achieve position resolution that is far smaller than the wire separation is the so-
called drift chamber. One determines the time when the particle passes the detector by an external device,
which can be a scintillator or the accelerator clock in a collider experiment, and one uses the arrival time
of the ionization electrons at the wire as the measure of the distance between the track and the wire. The
ATLAS muons system, for instance, uses tubes of 15 mm radius with a central wire, and the measurement
of the drift time determines the track position to 80 µm precision.

The choice of the gas for a given gas detector is dominated by the transport properties of electrons
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and ions in gases, because these determine the signal and timing characteristics. In order to avoid the
ionization electrons getting lost on their way to the readout wires, one can use only gases with very small
electronegativity. The main component of detector gases are therefore the noble gases like argon or neon.
Other admixtures like hydrocarbons (methane, isobutane) or CO2 are also needed in order to “tune” the
gas transport properties and to ensure operational stability. Since hydrocarbons were shown to cause
severe chamber ageing effects at high rates, the LHC detectors use almost exclusively argon, neon and
xenon together with CO2 for all wire chambers.

Typical drift velocities of electrons are in the range of 5–10 cm/µs. The velocity of the ions that are
produced in the electron avalanche at the wire and are moving back to the cathodes is about 1000–5000
times smaller than the electron velocity. The movement of these ions produced long signal tails in wire
chambers, which have to be properly removed by dedicated filter electronics.

During the past 10–15 years a very large variety of new gas detectors have entered particle physics
instrumentation, the so-called micropattern gas detectors like the GEM (gas electron multiplier) or the
MICROMEGA (micro mesh gas detector). In these detectors the high fields for electron multiplication
are produced by micropattern structures that are realized with photolithographic methods. Their main
advantages are rate capabilities far in excess of those achievable in wire chambers, low material budget
construction and semi-industrial production possibilities.

5.3 Solid-state detectors
In gaseous detectors, a charged particle liberates electrons from the atoms, which are freely bouncing
between the gas atoms. An applied electric field makes the electrons and ions move, which induces
signals on the metal readout electrodes. For individual gas atoms, the electron energy levels are discrete.

In solids (crystals), the electron energy levels are in “bands”. Inner-shell electrons, in the lower
energy bands, are closely bound to the individual atoms and always stay with “their” atoms. However,
in a crystal there are energy bands that are still bound states of the crystal, but they belong to the entire
crystal. Electrons in these bands and the holes in the lower band can move freely around the crystal, if
an electric field is applied. The lowest of these bands is called the “conduction band”.

If the conduction band is filled, the crystal is a conductor. If the conduction band is empty and
“far away” from the last filled band, the valence band, the crystal is an insulator. If the conduction band
is empty but the distance to the valence band is small, the crystal is called a semiconductor.

The energy gap between the valence band and the conduction band is called the band gap Eg. The
band gaps of diamond, silicon and germanium are 5.5, 1.12 and 0.66 eV, respectively. If an electron in
the valence band gains energy by some process, it can be excited into the conduction band and a hole
in the valence band is left behind. Such a process can be the passage of a charged particle, but also
thermal excitation with a probability proportional to exp(−Eg/kT ). The number of electrons in the
conduction band therefore increases with temperature, i.e. the conductivity of a semiconductor increases
with temperature.

It is possible to treat electrons in the conduction band and holes in the valence band similar to
free particles, but with an effective mass different from elementary electrons not embedded in the lattice.
This mass is furthermore dependent on other parameters such as the direction of movement with respect
to the crystal axis. If we want to use a semiconductor as a detector for charged particles, the number
of charge carriers in the conduction band due to thermal excitation must be smaller than the number
of charge carriers in the conduction band produced by the passage of a charged particle. Diamond can
be used for particle detection at room temperature; silicon and germanium must be cooled, or the free
charge carriers must be eliminated by other tricks like “doping”.

The average energy to produce an electron–hole pair for diamond, silicon and germanium, respec-
tively, is 13, 3.6 and 2.9 eV. Compared to gas detectors, the density of a solid is about a factor of 1000
larger than that of a gas, and the energy to produce an electron–hole pair for silicon, for example, is
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a factor 7 smaller than the energy to produce an electron–ion pair in argon. The number of primary
charges in a silicon detector is therefore about 104 times larger than in a gas and, as a result, solid-state
detectors do not need internal amplification. While, in gaseous detectors, the velocities of electrons and
ions differ by a factor of 1000, the velocities of electrons and holes in many semiconductor detectors are
quite similar, which results in very short signals of a few tens of nanosecond length.

The diamond detector works like a solid-state ionization chamber. One places diamond of a few
hundred micrometres thickness between two metal electrodes and applies an electric field. The very large
electron and hole mobilities of diamond result in very fast and short signals, so, in addition to tracking
application, the diamond detectors are used as precision timing devices.

Silicon is the most widely used semiconductor material for particle detection. A high-energy
particle produces around 33 000 electron–hole pairs in 300 µm of silicon. At room temperature there
are, however, 1.45 × 1010 electron–hole pairs per cm3. To apply silicon as a particle detector at room
temperature, one therefore has to use the technique of “doping”. Doping silicon with arsenic makes it
an n-type conductor (more electrons than holes); doping silicon with boron makes it a p-type conductor
(more holes that electrons). Putting an n-type and p-type conductor in contact realizes a diode.

At a p–n junction the charges are depleted and a zone free of charge carriers is established. By
applying a voltage, the depletion zone can be extended to the entire diode, which results in a highly
insulating layer. An ionizing particle produces free charge carriers in the diode, which drift in the electric
field and therefore induce an electrical signal on the metal electrodes. As silicon is the most commonly
used material in the electronics industry, it has one big advantage with respect to other materials, namely
highly developed technology.

Strip detectors are a very common application, where the detector is segmented into strips of a few
50–150 µm pitch and the signals are read out on the ends by wire bonding the strips to the readout elec-
tronics. The other coordinate can then be determined, either by another strip detector with perpendicular
orientation, or by implementing perpendicular strips on the same wafer. This technology is widely used
at the LHC, and the CMS tracker uses 445 m2 of silicon detectors.

In the very-high-multiplicity region close to the collision point, a geometry of crossed strips results
in too many “ghost” tracks, and one has to use detectors with a chessboard geometry, so-called pixel
detectors, in this region. The major complication is the fact that each of the chessboard pixels must be
connected to a separate readout electronics channel. This is achieved by building the readout electronics
wafer in the same geometry as the pixel layout and soldering (bump bonding) each of the pixels to its
respective amplifier. Pixel systems in excess of 100 million channels are successfully operating at the
LHC.

A clear goal of current solid-state detector development is the possibility of integration of the
detection element and the readout electronics into a monolithic device.

6 Calorimetry
The energy measurement of charged particles by completely absorbing (“stopping”) them is called
calorimetry. Electromagnetic (EM) calorimeters measure the energy of electrons and photons. Hadron
calorimeters measure the energy of charged and neutral hadrons.

6.1 Electromagnetic calorimeters
As discussed above, high-energy electrons suffer significant bremsstrahlung owing to their small mass.
The interplay of bremsstrahlung and pair production will develop a single electron or photon into a
shower of electrons and positrons. The energy of these shower particles decreases exponentially until all
of them are stopped due to ionization loss. The total amount of ionization produced by the electrons and
positrons is then a measure of the particle energy. The characteristic length scale of this shower process
is called the radiation length X0, and in order to fully absorb a photon or electron one typically uses a
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thickness of about 25X0. One example of such an EM calorimeter at the LHC is the crystal calorimeter
of CMS, which uses PbW4 crystals. The radiation length X0 of this crystal is 9 mm, so with a length
of 22 cm one can fully absorb the high-energy electron and photon showers. In these crystals the light
produced by the shower particles is used as the measure of the energy.

Liquid noble gases are the other prominent materials used for EM calorimetry. In these devices, the
total amount of ionization is used as a measure of the energy. The NA48 experiment uses a homogeneous
calorimeter of liquid krypton, which has a radiation length of 4.7 cm. Liquid argon has a radiation length
of 14 cm, so one would need a depth of 350 cm to fully absorb the EM showers. Since this is not
practicable, one interleaves the argon with absorber material of smaller radiation length, such as lead,
to allow a more compact design of the calorimeter. Such an alternating assembly of absorber material
and active detector material is called a sampling calorimeter. Although the energy resolution of such a
device is worse compared to a homogeneous calorimeter, for many applications it is good enough. The
ATLAS experiment uses such a liquid argon sampling calorimeter. Other calorimeter types use plastic
scintillators interleaved with absorber materials.

The energy resolution of calorimeters improves as 1/
√
E where E is the particle energy. This

means that the energy measurement becomes “easier” at high-energy colliders. For homogeneous EM
calorimeters, energy resolutions of σE/E = 1%/

√
E (GeV) are achieved; typical resolutions of sam-

pling calorimeters are in the range of σE/E = (10–20%)/
√
E (GeV).

6.2 Hadron calorimeters
While only electrons and photons have small enough masses to produce significant EM bremsstrahlung,
there is a similar “strong-interaction bremsstrahlung effect” for hadrons. High-energy hadrons radiate
pions in the vicinity of a nucleus, and a cascade of these pions develops, which also fully absorbs the
incident hadron, and the total ionization loss of this cascade is used to measure the particle energy.
The length scale of this shower development is the so-called hadronic interaction length λ, which is
significantly larger than the radiation length X0. For iron the radiation length X0 is 1.7 cm, whereas the
hadronic interaction length λ is 17 cm. Hadron calorimeters are therefore significantly larger and heavier
than EM calorimeters. The energy resolution of hadron calorimeters is typically worse than that of EM
calorimeters because of the more complex shower processes. About 50% of the energy ends up in pions,
20% ends up in nuclear excitation and 30% goes into slow neutrons, which are usually not detected. A
fraction of the produced pions consists of π0, which instantly decay into two photons, which in turn start
an EM cascade. The relative fluctuations of all these processes will result in a larger fluctuation of the
calorimeter signal and therefore reduced resolution. Hadron calorimeters are also typically realized as
sampling calorimeters with lead or steel plates interleaved with scintillators or liquid noble gases. Energy
resolutions of σE/E = (50–100%)/

√
E (GeV) are typical.

7 Particle identification
By measuring the trajectory of a particle in a magnetic field, one measures the particle’s momentum, so
in order to determine the particle type, i.e. the particle’s mass, one needs an additional measurement.
Electrons, positrons and photons can be identified by electromagnetic calorimetry, and muons can be
identified by the fact that they traverse large amounts of material without being absorbed. To distinguish
between protons, kaons and pions is a slightly more subtle affair, and it is typically achieved by measuring
the particle’s velocity in addition to the momentum.

For kinetic energies that are not too far from the rest mass of the particle, the velocity is not yet
too close to the speed of light, such that one can measure the velocity by time of flight. With precision
timing detectors like scintillators or resistive plate chambers, time resolutions of less than 100 ps are
being achieved. For a time-of-flight distance of 1 m, this allows kaon/pion separation up to 1.5 GeV/c,
and proton/pion separation up to about 3 GeV/c.
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The energy loss of a particle also measures its velocity, so particle identification up to tens of GeV
for pions and protons can be achieved. In gas detectors with pad readout and charge interpolation, the
signal pulse height is measured for centre-of-gravity interpolation in view of precision tracking. Since
the pulse height is a measure of the energy loss, it can in addition be used for particle identification. Time
projection chambers are the best examples of combined tracking and particle identification detectors.

For larger velocities, one can use the measurement of the Cerenkov angle to find the particle
velocity. This radiation is emitted at a characteristic angle that is uniquely related to the particle velocity.
Using short radiators this angle can be determined simply by measuring the radius of the circle produced
by the photons in a plane at a given distance from the radiator. Another technique uses a spherical mirror
to project the photons emitted along a longer path onto a plane that also forms a circle. Detectors of this
type are called ring imaging Cerenkov detectors (RICH). Since only a “handful” of photons are emitted
over typical radiator thicknesses, very efficient photon detectors are the key ingredient to Cerenkov
detectors. Using very long gas radiators with very small refractive index, kaon/pion separation up to
momenta of 200 GeV/c has been achieved.

8 Signal readout
Many different techniques to make particle tracks visible were developed in the last century. The cloud
chamber, the bubble chamber and the photographic emulsion were taking actual pictures of the particle
tracks. Nowadays we have highly integrated electronic detectors that allow high particle rates to be
processed with high precision. Whereas bubble chambers were almost unbeatable in terms of position
resolution (down to a few micrometres) and the ability to investigate very complex decay processes, these
detectors were only able to record a few events per second, which is not suitable for modern high-rate
experiments. The LHC produces 109 proton–proton collisions per second, of which, for example, 100
produce W bosons that decay into leptons, 10 produce a top quark pair and 0.1 produce a hypothetical
Higgs particle of 100 GeV. Only around 100 of the 109 events per second can be written to tape, which
still results in petabytes of data per year to be analysed. The techniques to reduce the rate from 109 to
100 Hz by selecting only the “interesting” events is the realm of the so-called trigger and data acquisition.
With a bunch crossing time of 25 ns, the particles produced in one collision have not even reached the
outer perimeter of the detector when the next collision is already taking place. The synchronization of
the data belonging to one single collision is therefore another very challenging task. In order to become
familiar with the techniques and vocabulary of trigger and data acquisition, we discuss a few examples.

If, for example, we want to measure temperature, we can use the internal clock of a PC to peri-
odically trigger the measurement. If, on the other hand, we want to measure the energy spectrum of the
beta-decay electrons of a radioactive nucleus, we need to use the signal itself to trigger the readout. We
can split the detector signal caused by the beta electron and use one path to apply a threshold to the sig-
nal, which produces a “logic” pulse that can “trigger” the measurement of the pulse height in the second
path. Until this trigger signal is produced, one has to “store” the signal somewhere, which is done in the
simplest application by a long cable where the signal can propagate.

If we measure the beta electrons, we cannot distinguish the signals from cosmic particles that are
traversing the detector. By building a box around our detector that is made from scintillator, for example,
we can determine whether a cosmic particle has entered the detector or whether it was a genuine beta-
decay electron. Triggering the readout on the condition of a detector signal in coincidence with the
absence of a signal in the scintillator box, we can therefore arrive at a pure beta spectrum sample.

Another example of a simple “trigger” logic is the measurement of the muon lifetime with a stack
of three scintillators. Many of the cosmic muons will pass through all three scintillators, but some of
them will have lower energy such that they traverse the first one and get stuck in the central one. After a
certain time the muon will decay and the decay electron produces a signal in the central and the bottom
scintillators. By starting a clock with a signal condition of 1 AND 2 ANDNOT 3 and stopping the clock
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with NOT 1 AND 2 AND 3, one can measure the lifetime of the muons.

At the LHC experiment some typical trigger signals are high-energy events transverse to the proton
beam direction, which signify interesting high-energy parton collisions. High-energy clusters in the
calorimeters or high-energy muons are therefore typical trigger signals, which start the detector readout
and ship the data to dedicated processing units for further selection refinement.

In order to cope with high rates, one has to find appropriate ways to deal with the “processing”
time, i.e. the time while the electronics is busy with reading out the data. This we discuss in the following.
First we assume a temperature sensor connected to a PC. The PC has an internal clock, which can be
used to periodically trigger the temperature measurement and write the values to disk. The measurement
and data storage will take a certain time τ , so this “deadtime” limits the maximum acquisition rate. For
a deadtime τ = 1 ms, we have a maximum acquisition rate of f = 1/τ = 1 kHz.

For the example of the beta spectrum measurement, we are faced with the fact that the events
are completely random and it can happen that another beta decay takes place while the acquisition of the
previous one is still ongoing. In order to avoid triggering the readout while the acquisition of the previous
event is still ongoing, one has to introduce a so-called “busy logic”, which blocks the trigger while the
readout is ongoing. Because the time between events typically follows an exponential distribution, there
will always be events lost even if the acquisition time is smaller than the average rate of events. In order
to collect 99% of the events, one has to overdesign the readout system with a deadtime of only 10% of the
average time between events. To avoid this problem, one uses a so-called FIFO (first-in first-out) buffer
in the data stream. This buffer receives as input the randomly arriving data and stores them in a queue.
The readout of the buffer happens at constant rate, so by properly choosing the depth of the buffer and
the readout rate, it is possible to accept all data without loss, even for readout rates close to the average
event rate. This transformation from random input to clocked output is call “de-randomization”.

In order to avoid “storing” the signals in long cables, one can also replace them by FIFOs. At
colliders, where the bunch crossing comes in regular intervals, the data are stored in so-called front-end
pipelines, which sample the signals at the bunch crossing rate and store them until a trigger decision
arrives.

The event selection is typically performed at several levels of increasing refinement. The fast trig-
ger decisions in the LHC experiments are performed by specialized hardware on or close to the detector.
After a coarse events selection, the rates are typically low enough to allow a more refined selection using
dedicated computer farms that do more sophisticated analysis of the events. The increasing comput-
ing power, however, drives the concepts of trigger and data acquisition into quite new directions. The
concepts for some future high-energy experiments foresee so-called “asynchronous” data-driven read-
out concepts, where the signal of each detector element receives a time stamp and is then shipped to a
computer farm where the event synchronization and events selection is carried out purely by software
algorithms.
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Practical Statistics for the LHC

K. Cranmer
Center for Cosmology and Particle Physics, Physics Department, New York University, USA

Abstract
This document is a pedagogical introduction to statistics for particle physics.
Emphasis is placed on the terminology, concepts, and methods being used at
the Large Hadron Collider. The document addresses both the statistical tests
applied to a model of the data and the modeling itself. I expect to release
updated versions of this document in the future.

1 Introduction
It is often said that the language of science is mathematics. It could well be said that the language of
experimental science is statistics. It is through statistical concepts that we quantify the correspondence
between theoretical predictions and experimental observations. While the statistical analysis of the data
is often treated as a final subsidiary step to an experimental physics result, a more direct approach would
be quite the opposite. In fact, thinking through the requirements for a robust statistical statement is an
excellent way to organize an analysis strategy.

In these lecture notes1 I will devote significant attention to the strategies used in high-energy
physics for developing a statistical model of the data. This modeling stage is where you inject your
understanding of the physics. I like to think of the modeling stage in terms of a conversation. When
your colleague asks you over lunch to explain your analysis, you tell a story. It is a story about the signal
and the backgrounds – are they estimated using Monte Carlo simulations, a side-band, or some data-
driven technique? Is the analysis based on counting events or do you use some discriminating variable,
like an invariant mass or perhaps the output of a multivariate discriminant? What are the dominant
uncertainties in the rate of signal and background events and how do you estimate them? What are the
dominant uncertainties in the shape of the distributions and how do you estimate them? The answer to
these questions forms a scientific narrative; the more convincing this narrative is the more convincing
your analysis strategy is. The statistical model is the mathematical representation of this narrative and
you should strive for it to be as faithful a representation as possible.

Once you have constructed a statistical model of the data, the actual statistical procedures should
be relatively straight forward. In particular, the statistical tests can be written for a generic statistical
model without knowledge of the physics behind the model. The goal of the RooStats project was
precisely to provide statistical tools based on an arbitrary statistical model implemented with the RooFit
modeling language. While the formalism for the statistical procedures can be somewhat involved, the
logical justification for the procedures is based on a number of abstract properties for the statistical
procedures. One can follow the logical argument without worrying about the detailed mathematical
proofs that the procedures have the required properties. Within the last five years there has been a
significant advance in the field’s understanding of certain statistical procedures, which has led to to some
commonalities in the statistical recommendations by the major LHC experiments. I will review some of
the most common statistical procedures and their logical justification.

1These notes borrow significantly from other documents that I am writing contemporaneously; specifically Ref. [1], docu-
mentation for HistFactory [2] and the ATLAS Higgs combination.
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2 Conceptual building blocks for modeling
2.1 Probability densities and the likelihood function
This section specifies my notations and conventions, which I have chosen with some care.2 Our statistical
claims will be based on the outcome of an experiment. When discussing frequentist probabilities, one
must consider ensembles of experiments, which may either be real, based on computer simulations, or
mathematical abstraction.

Figure 1 establishes a hierarchy that is fairly general for the context of high-energy physics. Imag-
ine the search for the Higgs boson, in which the search is composed of several “channels” indexed by c.
Here a channel is defined by its associated event selection criteria, not an underlying physical process.
In addition to the number of selected events, nc, each channel may make use of some other measured
quantity, xc, such as the invariant mass of the candidate Higgs boson. The quantities will be called “ob-
servables” and will be written in roman letters e.g. xc. The notation is chosen to make manifest that the
observable x is frequentist in nature. Replication of the experiment many times will result in different
values of x and this ensemble gives rise to a probability density function (pdf) of x, written f(x), which
has the important property that it is normalized to unity

∫
f(x) dx = 1 .

In the case of discrete quantities, such as the number of events satisfying some event selection, the
integral is replaced by a sum. Often one considers a parametric family of pdfs

f(x|α) ,

read “f of x given α” and, henceforth, referred to as a probability model or just model. The parameters
of the model typically represent parameters of a physical theory or an unknown property of the detector’s
response. The parameters are not frequentist in nature, thus any probability statement associated with α
is Bayesian.3 In order to make their lack of frequentist interpretation manifest, model parameters will be
written in greek letters, e.g.: µ, θ, α, ν.4 From the full set of parameters, one is typically only interested
in a few: the parameters of interest. The remaining parameters are referred to as nuisance parameters,
as we must account for them even though we are not interested in them directly.

While f(x) describes the probability density for the observable x for a single event, we also need
to describe the probability density for a dataset with many events, D = {x1, . . . , xn}. If we consider the
events as independently drawn from the same underlying distribution, then clearly the probability density
is just a product of densities for each event. However, if we have a prediction that the total number of
events expected, call it ν, then we should also include the overall Poisson probability for observing n
events given ν expected. Thus, we arrive at what statisticians call a marked Poisson model,

f(D|ν, α) = Pois(n|ν)

n∏

e=1

f(xe|α) , (1)

where I use a bold f to distinguish it from the individual event probability density f(x). In prac-
tice, the expectation is often parametrized as well and some parameters simultaneously modify the ex-
pected rate and shape, thus we can write ν → ν(α). In RooFit both f and f are implemented with
a RooAbsPdf; where RooAbsPdf::getVal(x) always provides the value of f(x) and depending on
RooAbsPdf::extendMode() the value of ν is accessed via RooAbsPdf::expectedEvents().

2As in the case of relativity, notational conventions can make some properties of expressions manifest and help identify
mistakes. For example, gµνxµyν is manifestly Lorentz invariant and xµ + yν is manifestly wrong.

3Note, one can define a conditional distribution f(x|y) when the joint distribution f(x, y) is defined in a frequentist sense.
4While it is common to write s and b for the number of expected signal and background, these are parameters not observ-

ables, so I will write νS and νB . This is one of few notational differences to Ref. [1].
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The likelihood function L(α) is numerically equivalent to f(x|α) with x fixed – or f(D|α) with
D fixed. The likelihood function should not be interpreted as a probability density for α. In particular,
the likelihood function does not have the property that it normalizes to unity

���
���

��:Not True!∫
L(α) dα = 1 .

It is common to work with the log-likelihood (or negative log-likelihood) function. In the case of a
marked Poisson, we have what is commonly referred to as an extended likelihood [3]

− lnL(α) = ν(α)− n ln ν(α)︸ ︷︷ ︸
extended term

−
n∑

e=1

ln f(xe) + lnn!︸ ︷︷ ︸
constant

.

To reiterate the terminology, probability density function refers to the value of f as a function of x given
a fixed value of α; likelihood function refers to the value of f as a function of α given a fixed value of x;
and model refers to the full structure of f(x|α).

Probability models can be constructed to simultaneously describe several channels, that is several
disjoint regions of the data defined by the associated selection criteria. I will use e as the index over
events and c as the index over channels. Thus, the number of events in the cth channel is nc and the
value of the eth event in the cth channel is xce. In this context, the data is a collection of smaller datasets:
Dsim = {D1, . . . ,Dcmax} = {{xc=1,e=1 . . . xc=1,e=nc}, . . . {xc=cmax,e=1 . . . xc=cmax,e=ncmax

}}. In RooFit
the index c is referred to as a RooCategory and it is used to inside the dataset to differentiate events as-
sociated to different channels or categories. The class RooSimultaneous associates the dataset Dc with
the corresponding marked Poisson model. The key point here is that there are now multiple Poisson
terms. Thus we can write the combined (or simultaneous) model

fsim(Dsim|α) =
∏

c∈channels

[
Pois(nc|ν(α))

nc∏

e=1

f(xce|α)

]
, (2)

remembering that the symbol product over channels has implications for the structure of the dataset.

2.2 Auxiliary measurements
Auxiliary measurements or control regions can be used to estimate or reduce the effect of systematic
uncertainties. The signal region and control region are not fundamentally different. In the language that
we are using here, they are just two different channels.

A common example is a simple counting experiment with an uncertain background. In the fre-
quentist way of thinking, the true, unknown background in the signal region is a nuisance parameter,
which I will denote νB .5 If we call the true, unknown signal rate νS and the number of events in the
signal region nSR then we can write the model Pois(nSR|νS + νB). As long as νB is a free parameter,
there is no ability to make any useful inference about νS . Often we have some estimate for the back-
ground, which may have come from some control sample with nCR events. If the control sample has no
signal contamination and is populated by the same background processes as the signal region, then we
can write Pois(nCR|τνB), where nCR is the number of events in the control region and τ is a factor used
to extrapolate the background from the signal region to the control region. Thus the total probability
model can be written fsim(nSR, nCR|νS , νB) = Pois(nSR|νS + νB) · Pois(nCR|τνB). This is a special
case of Eq. 2 and is often referred to as the “on/off’ problem [4].

Based on the control region alone, one would estimate (or ‘measure’) νB = nCR/τ . Intuitively the
estimate comes with an ‘uncertainty’ of

√
nCR/τ . We will make these points more precise in Sec. 3.1, but

5Note, you can think of a counting experiment in the context of Eq. 1 with f(x) = 1, thus it reduces to just the Poisson
term.
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Experiment
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C

Legend:
A "has many" Bs. 
B "has a" C.
Dashed is optional.

Fig. 1: A schematic diagram of the logical structure of a typical particle physics probability model and dataset
structures.

the important lesson here is that we can use auxiliary measurements (ie. nCR) to describe our uncertainty
on the nuisance parameter νB statistically. Furthermore, we have formed a statistical model that can be
treated in a frequentist formalism – meaning that if we repeat the experiment many times nCR will vary
and so will the estimate of νB . It is common to say that auxiliary measurements ‘constrain’ the nuisance
parameters. In principle the auxiliary measurements can be every bit as complex as the main signal
region, and there is no formal distinction between the various channels.

The use of auxiliary measurements is not restricted to estimating rates as in the case of the on/off
problem above. One can also use auxiliary measurements to constrain other parameters of the model.
To do so, one must relate the effect of some common parameter αp in multiple channels (ie. the signal
region and a control regions). This is implicit in Eq. 2.

2.3 Frequentist and Bayesian reasoning
The intuitive interpretation of measurement of νB to be nCR/τ ±

√
nCR/τ is that the parameter νB has

a distribution centered around nCR/τ with a width of
√
nCR/τ . With some practice you will be able

to immediately identify this type of reasoning as Bayesian. It is manifestly Bayesian because we are
referring to the probability distribution of a parameter. The frequentist notion of probability of an event
is defined as the limit of its relative frequency in a large number of trials. The large number of trials
is referred to as an ensemble. In particle physics the ensemble is formed conceptually by repeating the
experiment many times. The true values of the parameters, on the other hand, are states of nature, not the
outcome of an experiment. The true mass of the Z boson has no frequentist probability distribution. The
existence or non-existence of the Higgs boson has no frequentist probability associated with it. There is
a sense in which one can talk about the probability of parameters, which follows from Bayes’s theorem:

P (A|B) =
P (B|A)P (A)

P (B)
. (3)
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Bayes’s theorem is a theorem, so there’s no debating it. It is not the case that Frequentists dispute whether
Bayes’s theorem is true. The debate is whether the necessary probabilities exist in the first place. If one
can define the joint probability P (A,B) in a frequentist way, then a Frequentist is perfectly happy using
Bayes theorem. Thus, the debate starts at the very definition of probability.

The Bayesian definition of probability clearly can’t be based on relative frequency. Instead, it
is based on a degree of belief. Formally, the probability needs to satisfy Kolmogorov’s axioms for
probability, which both the frequentist and Bayesian definitions of probability do. One can quantify
degree of belief through betting odds, thus Bayesian probabilities can be assigned to hypotheses on
states of nature. In practice human’s bets are not generally not ‘coherent’ (see ‘dutch book’), thus this
way of quantifying probabilities may not satisfy the Kolmogorov axioms.

Moving past the philosophy and accepting the Bayesian procedure at face value, the practical
consequence is that one must supply prior probabilities for various parameter values and/or hypotheses.
In particular, to interpret our example measurement of nCR as implying a probability distribution for νB
we would write

π(νB|nCR) ∝ f(nCR|νB)η(νB) , (4)

where π(νB|nCR) is called the posterior probability density, f(nCR|νB) is the likelihood function, and
η(νB) is the prior probability. Here I have suppressed the somewhat curious term P (nCR), which can
be thought of as a normalization constant and is also referred to as the evidence. The main point here is
that one can only invert ‘the probability of nCR given νB’ to be ‘the probability of νB given nCR’ if one
supplies a prior. Humans are very susceptible to performing this logical inversion accidentally, typically
with a uniform prior on νB . Furthermore, the prior degree of belief cannot be derived in an objective
way. There are several formal rules for providing a prior based on formal rules (see Jefferey’s prior and
Reference priors), though these are not accurately described as representing a degree of belief. Thus,
that style of Bayesian analysis is often referred to as objective Bayesian analysis.

Some useful and amusing quotes on Bayesian and Frequentist reasoning:

“Using Bayes’s theorem doesn’t make you a Bayesian, always using Bayes’s theorem makes
you a Bayesian.” –unknown

“Bayesians address the questions everyone is interested in by using assumptions that no
one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to
anyone.”- Louis Lyons

2.4 Consistent Bayesian and Frequentist modeling of constraint terms
Often a detailed probability model for an auxiliary measurement are not included directly into the model.
If the model for the auxiliary measurement were available, it could and should be included as an addi-
tional channel as described in Sec. 2.2. The more common situation for background and systematic
uncertainties only has an estimate, “central value”, or best guess for a parameter αp and some notion
of uncertainty on this estimate. In this case one typically resorts to including idealized terms into the
likelihood function, here referred to as “constraint terms”, as surrogates for a more detailed model of the
auxiliary measurement. I will denote this estimate for the parameters as ap, to make it manifestly fre-
quentist in nature. In this case there is a single measurement of ap per experiment, thus it is referred to as
a “global observable” in RooStats. The treatment of constraint terms is somewhat ad hoc and discussed
in more detail in Sec. 4.1.6. I make it a point to write constraint terms in a manifestly frequentist form
f(ap|αp).

Probabilities on parameters are legitimate constructs in a Bayesian setting, though they will always
rely on a prior. In order to distinguish Bayesian pdfs from frequentist ones, greek letters will be used for
their distributions. For instance, a generic Bayesian pdf might be written π(α). In the context of a main
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measurement, one might have a prior for αp based on some estimate ap. In this case, the prior π(αp)
is really a posterior from some previous measurement. It is desirable to write with the help of Bayes
theorem

π(αp|ap) ∝ L(αp)η(αp) = f(ap|αp)η(αp) , (5)

where η(αp) is some more fundamental prior.6 By taking the time to undo the Bayesian reasoning into
an objective pdf or likelihood and a prior we are able to write a model that can be used in a frequentist
context. Within RooStats, the care is taken to separately track the frequentist component and the prior;
this is achieved with the ModelConfig class.

If one can identify what auxiliary measurements were performed to provide the estimate of αp and
its uncertainty, then it is not a logical fallacy to approximate it with a constraint term, it is simply a con-
venience. However, not all uncertainties that we deal result from auxiliary measurements. In particular,
some theoretical uncertainties are not statistical in nature. For example, uncertainty associated with the
choice of renormalization and factorization scales and missing higher-order corrections in a theoretical
calculation are not statistical. Uncertainties from parton density functions are a bit of a hybrid as they are
derived from data but require theoretical inputs and make various modeling assumptions. In a Bayesian
setting there is no problem with including a prior on the parameters associated to theoretical uncertain-
ties. In contrast, in a formal frequentist setting, one should not include constraint terms on theoretical
uncertainties that lack a frequentist interpretation. That leads to a very cumbersome presentation of re-
sults, since formally the results should be shown as a function of the uncertain parameter. In practice,
the groups often read Eq. 5 to arrive at an effective frequentist constraint term.

I will denote the set of parameters with constraint terms as S and the global observables G = {ap}
with p ∈ S. By including the constraint terms explicitly (instead of implicitly as an additional channel)
we arrive at the total probability model, which we will not need to generalize any further:

ftot(Dsim,G|α) =
∏

c∈channels

[
Pois(nc|νc(α))

nc∏

e=1

fc(xce|α)

]
·
∏

p∈S
fp(ap|αp) . (6)

3 Physics questions formulated in statistical language
3.1 Measurement as parameter estimation
One of the most common tasks of the working physicist is to estimate some model parameter. We do it
so often, that we often don’t realize it. For instance, the sample mean x̄ =

∑n
e=1 xe/n is an estimate for

the mean, µ, of a Gaussian probability density f(x|µ, σ) = Gauss(x|µ, σ). More generally, an estimator
α̂(D) is some function of the data and its value is used to estimate the true value of some parameter α.
There are various abstract properties such as variance, bias, consistency, efficiency, robustness, etc [5].
The bias of an estimator is defined as B(α̂) = E[α̂] − α, where E means the expectation value of
E[α̂] =

∫
α̂(x)f(x)dx or the probability-weighted average. Clearly one would like an unbiased estima-

tor. The variance of an estimator is defined as var[α̂] = E[(α − E[α̂])2]; and clearly one would like
an estimator with the minimum variance. Unfortunately, there is a tradeoff between bias and variance.
Physicists tend to be allergic to biased estimators, and within the class of unbiased estimators, there is
a well defined minimum variance bound referred to as the Cramér-Rao bound (that is the inverse of the
Fisher information, which we will refer to again later).

The most widely used estimator in physics is the maximum likelihood estimator (MLE). It is
defined as the value of α which maximizes the likelihood function L(α). Equivalently this value, α̂,
maximizes logL(α) and minimizes − logL(α). The most common tool for finding the maximum likeli-
hood estimator is Minuit, which conventionally minimizes − logL(α) (or any other function) [6]. The
jargon is that one ‘fits’ the function and the maximum likelihood estimate is the ‘best fit value’.

6Glen Cowan has referred to this more fundamental prior as an ’urprior’, which is based on the German use of ’ur’ for
forming words with the sense of ‘proto-, primitive, original’.
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When one has a multi-parameter likelihood function L(α), then the situation is slightly more
complicated. The maximum likelihood estimate for the full parameter list, α̂, is clearly defined. The
various components α̂p are referred to as the unconditional maximum likelihood estimates. In the physics
jargon, one says all the parameters are ‘floating’. One can also ask about maximum likelihood estimate
of αp is with some other parameters αo fixed; this is called the conditional maximum likelihood estimate
and is denoted ˆ̂αp(αo). These are important quantities for defining the profile likelihood ratio, which
we will discuss in more detail later. The concept of variance of the estimates is also generalized to
the covariance matrix cov[αp, αp′ ] = E[(α̂p − αp)(α̂p′ − αp′)] and is often denoted Σpp′ . Note, the
diagonal elements of the covariance matrix are the same as the variance for the individual parameters, ie.
cov[αp, αp] = var[αp].

In the case of a Poisson model Pois(n|ν) the maximum likelihood estimate of ν is simply ν̂ = n.
Thus, it follows that the variance of the estimator is var[ν̂] = var[n] = ν. Thus if the true rate is ν one
expects to find estimates ν̂ with a characteristic spread around ν; it is in this sense that the measurement
has a estimate has some uncertainty or ‘error’ of

√
n. We will make this statement of uncertainty more

precise when we discuss frequentist confidence intervals.

When the number of events is large, the distribution of maximum likelihood estimates approaches
a Gaussian or normal distribution.7 This does not depend on the pdf f(x) having a Gaussian form. For
small samples this isn’t the case, but this limiting distribution is often referred to as an asymptotic dis-
tribution. Furthermore, under most circumstances in particle physics, the maximum likelihood estimate
approaches the minimum variance or Cramér-Rao bound. In particular, the inverse of the covariance
matrix for the estimates is asymptotically given by

Σ−1
pp′(α) = E

[
−∂

2 log f(x|α)

∂αp∂p′

∣∣∣∣ α
]
, (7)

where I have written explicitly that the expectation, and thus the covariance matrix itself, depend on the
true value α. The right side of Eq. 7 is called the (expected) Fisher information matrix. Remember
that the expectation involves an integral over the observables. Since that integral is difficult to perform
in general, one often uses the observed Fisher information matrix to approximate the variance of the
estimator by simply taking the matrix of second derivatives based on the observed data

Σ̃−1
pp′(α) = −∂

2 logL(α)

∂αp∂p′
. (8)

This is what Minuit’s Hesse algorithm8 calculates to estimate the covariance matrix of the parameters.

3.2 Discovery as hypothesis tests
Let us examine the statistical statement associated to the claim of discovery for new physics. Typically,
new physics searches are looking for a signal that is additive on top of the background, though in some
cases there are interference effects that need to be taken into account and one cannot really talk about
’signal’ and ’background’ in any meaningful way. Discovery is formulated in terms of a hypothesis
test where the background-only hypothesis plays the role of the null hypothesis and the signal-plus-
background hypothesis plays the roll of the alternative. Roughly speaking, the claim of discovery is a
statement that the data are incompatible with the background-only hypothesis. Consider the simplest
scenario where one is counting events in the signal region, nSR and expects νB events from background
and νS events from the putative signal. Then we have the following hypotheses:

7There are various conditions that must be met for this to be true, but skip the fine print in these lectures. There are two
conditions that are most often violated in particle physics, which will be addressed later.

8The matrix is called the Hessian, hence the name.
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symbol statistical name physics name probability model
H0 null hypothesis background-only Pois(nSR|νB)
H1 alternate hypothesis signal-plus-background Pois(nSR|νS + νB)

In this simple example it’s fairly obvious that evidence for a signal shows up as an excess of events and
a reasonable way to quantify the compatibility of the observed data n0

CR and the null hypothesis is to
calculate the probability that the background-only would produce at least this many events; the p-value

p =
∞∑

n=n0
SR

Pois(n|νB) . (9)

If this p-value is very small, then one might choose to reject the null hypothesis.

Note, the p-value is not a to be interpreted as the probability of the null hypothesis given the data –
that is a manifestly Bayesian statement. Instead, the p-value is a statement about the probability to have
obtained data with a certain property assuming the null hypothesis.

How do we generalize this to more complicated situations? There were really two ingredients in
our simple example. The first was the proposal that we would reject the null hypothesis based on the
probability for it to produce data at least as extreme as the observed data. The second ingredient was
the prescription for what is meant by more discrepant; in this case the possible observations are ordered
according to increasing nSR. One could imagine using difference between observed and expected, nSR−
νB , as the measure of discrepancy. In general, a function that maps the data to a single real number is
called a test statistic: T (D)→ R. How does one choose from the infinite number of test statistics?

Neyman and Pearson provided a framework for hypothesis testing that addresses the choice of
the test statistic. This setup treats the null and the alternate hypotheses in an asymmetric way. First,
one defines an acceptance region in terms of a test statistic, such that if T (D) < kα one accepts the
null hypothesis. One can think of the T (D) = kα as defining a contour in the space of the data, which
is the boundary of this acceptance region. Next, one defines the size of the test, α,9 as the probability
the null hypothesis will be rejected when it is true (a so-called Type-I error). This is equivalent to
the probability under the null hypothesis that the data will not be found in this acceptance region, ie.
α = P (T (D) ≥ kα|H0). Note, it is now clear why there is a subscript on kα, since the contour level is
related to the size of the test. In contrast, if one accepts the null hypothesis when the alternate is true,
it is called a Type-II error. The probability to commit a Type-II error is denoted as β and it is given by
β = P (T (D) < kα|H1). One calls 1 − β the power of the test. With these definitions in place, one
looks for a test statistic that maximizes the power of the test for a fixed test size. This is a problem for
the calculus of variations, and sounds like it might be very difficult for complicated probability models.

It turns out that in the case of two simple hypotheses (probability models without any parameters),
there is a simple solution! In particular, the test statistic leading to the most powerful test is given by the
likelihood ratio TNP (D) = f(D|H1)/f(D|H0). This result is referred to as the Neyman-Pearson lemma,
and I will give an informal proof. We will prove this by considering a small variation to the acceptance
region defined by the likelihood ratio. The solid red contour in Fig. 2 represents the rejection region
(the complement to the acceptance region) based on the likelihood ratio and the dashed blue contour
represents a small perturbation. If we can say that any variation to the likelihood ratio has less power,
then we will have proved the Neyman-Pearson lemma. The variation adds (the left, blue wedge) and
removes (the right, red wedge) rejection regions. Because the Neyman-Pearson setup requires that both
tests have the same size, we know that the probability for the data to be found in the two wedges must be
the same under the null hypothesis. Because the two regions are on opposite sides of the contour defined
by f(D|H1)/f(D|H0), then we know that the data is less likely to be found in the small region that we
added than the small region we subtracted assuming the alternate hypothesis. In other words, there is

9Note, α is the conventional notation for the size of the test, and has nothing to do with a model parameter in Eq. 2.
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less probability to reject the null when the alternate is true; thus the test based on the new contour is less
powerful.

P (x|H1)

P (x|H0)
< k�

P (x|H1)

P (x|H0)
> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

Fig. 2: A graphical proof of the Neyman-Pearson lemma.

How does this generalize for our most general model in Eq. 6 with many free parameters? First
one must still define the null and the alternate hypotheses. Typically is done by saying some parameters
– the parameters of interest αpoi – take on specific values takes on a particular value for the signal-
plus-background hypothesis and a different value for the background-only hypothesis. For instance,
the signal production cross-section might be singled out as the parameter of interest and it would take
on the value of zero for the background-only and some reference value for the signal-plus-background.
The remainder of the parameters are called the nuisance parameters αnuis. Unfortunately, there is no
equivalent to the Neyman-Pearson lemma for models with several free parameters – so called, composite
models. Nevertheless, there is a natural generalization based on the profile likelihood ratio.

Remembering that the test statistic T is a real-valued function of the data, then any particular
probability model ftot(D|α) implies a distribution for the test statistic f(T |α). Note, the distribution for
the test statistic depends on the value of α. Below we will discuss how one constructs this distribution,
but lets take it as given for the time being. Once one has the distribution, then one can calculate the
p-value is given by

p(α) =

∫ ∞

T0

f(T |α)dT =

∫
f(D|α) θ(T (D)− T0) dD = P (T ≥ T0|α) , (10)

where T0 is the value of the test statistic based on the observed data and θ(·) is the Heaviside function.10

Usually the p-value is just written as p, but I have written it as p(α) to make its α-dependence explicit.

Given that the p-value depends on α, how does one decide to accept or reject the null hypothesis?
Remembering that αpoi takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of αnuis or take

10The integral
∫
dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events

and an integral over the values of xe for each of those events.
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its maximal (or supremum) value

psup(αpoi) = sup
αnuis

p(αnuis) . (11)

As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5σ
criterion – which is a conventional way to refer to α = 2.87 · 10−7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5σ criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3.3 Excluded and allowed regions as confidence intervals
Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical
parameters are allowed or excluded given available data. Figure 3 shows two examples. Figure 3(a)
shows an example withαpoi = (σ/σSM ,MH), where σ/σSM is the ratio of the production cross-section
for the Higgs boson with respect to its prediction in the standard model and MH is the unknown Higgs
mass parameter in the standard model. All the parameter points above the solid black curve correspond
to scenarios for the Higgs boson that are considered ‘excluded at the 95% confidence level’. Figure 3(b)
shows an example with αpoi = (mW ,mt) where mW is the mass of the W -boson and mt is the mass
of the top quark. We have discovered the W -boson and the top quark and measured their masses. The
blue ellipse ‘is the 68% confidence level contour’ and all the parameter points inside it are considered
‘consistent with data at the 1σ level’. What is the precise meaning of these statements?
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Fig. 3: Two examples of confidence intervals.

In a frequentist setting, these allowed regions are called confidence intervals or confidence regions,
and the parameter points outside them are considered excluded. Associated with a confidence interval
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is a confidence level, i.e. the 95% and 68% confidence level in the two examples. If we repeat the
experiments and obtain different data, then these confidence intervals will change. It is useful to think of
the confidence intervals as being random in the same way the data are random. The defining property of
a 95% confidence interval is that it covers the true value 95% of the time.

How can one possibly construct a confidence interval has the desired property, that it covers the
true value with a specified probability, given that we don’t know the true value? The procedure for
building confidence intervals is called the Neyman Construction [7], and it is based on ‘inverting’ a
series of hypothesis tests (as described in Sec. 3.2). In particular, for each value of α in the parameter
space one performs a hypothesis test based on some test statistic where the null hypothesis is α. Note,
that in this context, the null hypothesis is changing for each test and generally is not the background-
only. If one wants a 95% confidence interval, then one constructs a series of hypothesis test with a size
of 5%. The confidence interval I(D) is constructed by taking the set of parameter points where the null
hypothesis is accepted.

I(D) = {α|P (T (D) > kα |α) < α} , (12)

where the final α and the subscript kα refer to the size of the test. Since a hypothesis test with a size
of 5% should accept the null hypothesis 95% of the time if it is true, confidence intervals constructed in
this way satisfy the defining property. This same property is usually formulated in terms of coverage.
Coverage is the probability that the interval will contain (cover) the parameter α when it is true,

coverage(α) = P (α ∈ I |α) . (13)

The equation above can easily be mis-interpreted as the probability the parameter is in a fixed interval
I; but one must remember that in evaluating the probability above the data D, and, thus, the corre-
sponding intervals produced by the procedure I(D), are the random quantities. Note, that coverage is a
property that can be quantified for any procedure that produces the confidence intervals I . Intervals pro-
duced using the Neyman Construction procedure are said to “cover by construction”; however, one can
consider alternative procedures that may either under-cover or over-cover. Undercoverage means that
P (α ∈ I |α) is smaller than desired and over-coverage means that P (α ∈ I |α) is larger than desired.
Note that in general coverage depends on the assumed true value α.

Since one typically is only interested in forming confidence intervals on the parameters of interest,
then one could use the supremum p-value of Eq. 11. This procedure ensures that the coverage is at least
the desired level, though for some values of α it may over-cover (perhaps significantly). This procedure,
which I call the ‘full construction’, is also computationally very intensive when α has many parameters
as it require performing many hypothesis tests. In the naive approach where each αp is scanned in a
regular grid, the number of parameter points tested grows exponentially in the number of parameters.
There is an alternative approach, which I call the ‘profile construction’ [8, 9] and which statisticians call
an ‘hybrid resampling technique’ [10, 11] that is approximate to the full construction, but typically has
good coverage properties. We return to the procedures and properties for the different types of Neyman
Constructions later.

Figure 4 provides an overview of the classic Neyman construction corresponding to the left panel
of Fig. 5. The left panel of Fig. 5 is taken from the Feldman and Cousins’s paper [12] where the parameter
of the model is denoted µ instead of θ. For each value of the parameter µ, the acceptance region in x
is illustrated as a horizontal bar. Those regions are the ones that satisfy T (D) < kα, and in the case of
Feldman-Cousins the test statistic is the one of Eq. 53. This presentation of the confidence belt works
well for a simple model in which the data consists of a single measurement D = {x}. Once one has the
confidence belt, then one can immediately find the confidence interval for a particular measurement of x
simply by taking drawing a vertical line for the measured value of x and finding the intersection with the
confidence belt.

Unfortunately, this convenient visualization doesn’t generalize to complicated models with many
channels or even a single channel marked Poisson model where D = {x1, . . . , xn}. In those more
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Fig. 4: A schematic visualization of the Neyman Construction. For each value of θ one finds a region in x

that satisfies
∫
f(x|θ)dx (blue). Together these regions form a confidence belt (green). The intersection of the

observation x0 (red) with the confidence belt defines the confidence interval [θ1, θ2].

complicated cases, the confidence belt can still be visualized where the observable x is replaced with T ,
the test statistic itself. Thus, the boundary of the belt is given by kα vs. µ as in the right panel of Fig. 5.
The analog to the vertical line in the left panel is now a curve showing how the observed value of the test
statistic depends on µ. The confidence interval still corresponds to the intersection of the observed test
statistic curve and the confidence belt, which clearly satisfies T (D) < kα. For more complicated models
with many parameters the confidence belt will have one axis for the test statistic and one axis for each
model parameter.

Note, a 95% confidence interval does not mean that there is a 95% chance that the true value of the
parameter is inside the interval – that is a manifestly Bayesian statement. One can produce a Bayesian
credible interval with that interpretation; however, that requires a prior probability distribution over the
parameters. Similarly, for any fixed interval I one can compute the Bayesian credibility of the interval

P (α ∈ I|D) =

∫
I f(D|α)π(α)dα∫
f(D|α)π(α)dα

. (14)

4 Modeling and the Scientific Narrative
Now that we have established a general form for a probability model (Eq. 2) and we have translated
the basic questions of measurement, discovery, and exclusion into the statistical language we are ready
to address the heart of the statistical challenge – building the model. It is difficult to overestimate how
important the model building stage is. So many of the questions that are addressed to the statistical
experts in the major particle physics collaborations are not really about statistics per se, but about model
building. In fact, the first question that you are likely to be asked by one of the statistical experts is “what
is your model?”

Often people are confused by the question “what is your model?” or simply have not written it
down. You simply can’t make much progress on any statistical questions if you haven’t written down a
model. Of course, people do usually have some idea for what it is that they want to do The process of

12

K. CRANMER

258



FIGURES

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
x

µ

FIG. 1. A generic confidence belt construction and its use. For each value of µ, one draws

a horizontal acceptance interval [x1, x2] such that P (x ∈ [x1, x2] |µ) = α. Upon performing an

experiment to measure x and obtaining the value x0, one draws the dashed vertical line through

x0. The confidence interval [µ1, µ2] is the union of all values of µ for which the corresponding

acceptance interval is intercepted by the vertical line.

20

µ

-log λ(µ)

In many analyses, the contribution of the signal process to the mean number of events is
assumed to be non-negative. This condition e�ectively implies that any physical estimator
for µ must be non-negative. Even if we regard this to be the case, however, it is convenient
to define an e�ective estimator µ̂ as the value of µ that maximizes the likelihood, even this
gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This
will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can
determine the distributions of the test statistics that we consider. Therefore in the following
we will always regard µ̂ as an e�ective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = �2 ln�(µ)

From the definition of ⇥(µ) in Eq. (7), one can see that 0 ⇥ ⇥ ⇥ 1, with ⇥ near 1 implying good
agreement between the data and the hypothesized value of µ. Equivalently it is convenient
to use the statistic

tµ = �2 ln⇥(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-
ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly
as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute
the p-value,

pµ =

� �

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the
pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and
other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed
tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ⇧(x) = (1/
⌅
2⌅) exp(�x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:
the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a
specified threshold � may lie to either side of those values not rejected, i.e., one may obtain
a two-sided confidence interval for µ.
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Fig. 5: Two presentations of a confidence belt (see text). Left panel taken from Ref. [12]. Right panel shows a
presentation that generalizes to more complicated models.

writing down the model often obviates the answer to the question, reveals some fundamental confusion
or assumption in the analysis strategy, or both. As mentioned in the introduction, writing down the model
is intimately related with the analysis strategy and it is a good way to organize an analysis effort.

I like to think of the modeling stage in terms of a scientific narrative. I find that there are three
main narrative elements, though many analyses use a mixture of these elements when building the model.
Below I will discuss these narrative elements, how they are translated into a mathematical formulation,
and their relative pros and cons.

4.1 Simulation Narrative
The simulation narrative is probably the easiest to explain and produces statistical models with the
strongest logical connection to physical theory being tested. We begin with an relation that every particle
physicists should know for the rate of events expected from a specific physical process

rate = (flux)× (cross section)× (efficiency)× (acceptance) , (15)

where the cross section is predicted from the theory, the flux is controlled by the accelerator11, and the
efficiency and acceptance are properties of the detector and event selection criteria. It is worth not-
ing that the equation above is actually a repackaging of a more fundamental relationship. In fact the
fundamental quantity that is predicted from first principles in quantum theory is the scattering proba-
bility P (i→ f) = |〈i|f〉|2/(〈i|i〉〈f |f〉) inside a box of size V over some time interval T , which is then
repackaged into the Lorentz invariant form above.

In the simulation narrative the efficiency and acceptance are estimated with computer simulations
of the detector. Typically, a large sample of events is generated using Monte Carlo techniques. The
Monte Carlo sampling is performed separately for the hard (perturbative) interaction (e.g. MadGraph),
the parton shower and hadronization process (e.g. Pythia and Herwig), and the interaction of particles
with the detector (e.g. Geant). Note, the efficiency and acceptance depend on the physical process
considered, and I will refer to each such process as a sample (in reference to the corresponding sample
of events generated with Monte Carlo techniques).

11In some cases, like cosmic rays, the flux must be estimated since the accelerator is quite far away.
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To simplify the notation, I will define the effective cross section, σeff. to be the product of the total
cross section, efficiency, and acceptance. Thus, the total number of events expected to be selected for
a given scattering process, ν, is the product of the time-integrated flux or time-integrated luminosity, λ,
and the effective cross section

ν = λσeff. . (16)

I use λ here instead of the more common L to avoid confusion with the likelihood function and because
when we incorporate uncertainty on the time-integrated luminosity it will be a parameter of the model
for which I have chosen to use greek letters.

If we did not need to worry about detector effects and we could measure the final state perfectly,
then the distribution for any observable x would be given by

(idealized) f(x) =
1

σeff.

dσeff.

dx
. (17)

Of course, we do need to worry about detector effects and we incorporate them with the detector sim-
ulation discussed above. From the Monte Carlo sample of events12 {x1, . . . , xN} we can estimate the
underlying distribution f(x) simply by creating a histogram. If we want we can write the histogram
based on B bins centered at xb with bin width wb explicitly as

(histogram) f(x) ≈ h(x) =

N∑

i=1

B∑

b=1

θ(|xi − xb|/wb)
N

θ(|x− xb|/wb)
wb

, (18)

where the first Heaviside function accumulates simulated events in the bin and the second selects the bin
containing the value of x in question. Histograms are the most common way to estimate a probability
density function based on a finite sample, but there are other possibilities. The downsides of histograms
as an estimate for the distribution f(x) is that they are discontinuous and have dependence on the location
of the bin boundaries. A particularly nice alternative is called kernel estimation [13]. In this approach,
one places a kernel of probability K(x) centered around each event in the sample:

(kernel estimate) f(x) ≈ f̂0(x) =
1

N

N∑

i=1

K

(
x− xi
h

)
. (19)

The most common choice of the kernel is a Gaussian distribution, and there are results for the optimal
width of the kernel h. Equation 19 is referred to as the fixed kernel estimate since h is common for all the
events in the sample. A second order estimate or adaptive kernel estimation provides better performance
when the distribution is multimodal or has both narrow and wide features [13].

4.1.1 The multi-sample mixture model
So far we have only considered a single interaction process, or sample. How do we form a model
when there are several scattering processes contributing to the total rate and distribution of x? From
first principles of quantum mechanics we must add these different processes together. Since there is no
physical meaning to label individual processes that interfere quantum mechanically, I will consider all
such processes as a single sample. Thus the remaining set of samples that do not interfere simply add
incoherently. The total rate is simply the sum of the individual rates

νtot =
∑

s∈samples

νs (20)

12Here I only consider unweighted Monte Carlo samples, but the discussion below can be generalized for weighted Monte
Carlo samples.
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and the total distribution is a weighted sum called a mixture model

f(x) =
1

νtot

∑

s∈samples

νsfs(x) , (21)

where the subscript s has been added to the equations above for each such sample. With these two
ingredients we can construct our marked Poisson model of Eq. 1 for a single channel, and we can simply
repeat this for several disjoint event selection requirements to form a multi-channel simultaneous model
like Eq. 2. In the multi-channel case we will give the additional subscript c ∈ channels to νcs, fcs(x),
νc,tot, and fc(x). However, at this point, our model has no free parameters α.

4.1.2 Incorporating physics parameters into the model
Now we want to parametrize our model interns of some physical parameters α, such as those that appear
in the Lagrangian of a some theory. Changing the parameters in the Lagrangian of a theory will in
general change both the total rate ν and the shape of the distributions f(x). In principle, we can repeat
the procedure above for each value of these parameters α to form νcs(α) and fcs(x|α) for each sample
and selection channel, and, thus, from fsim(D|α). In practice, we need to resort to some interpolation
strategy over the individual parameter points {αi} where we have Monte Carlo samples. We will return
to these interpolation strategies later.

In some case the only effect of the parameter is to scale the rate of some scattering process νs(α)
without changing its distribution fs(x|α). Furthermore, the scaling is often known analytically, for
instance, a coupling constants produce a linear relationship like ν(αp) = ξαp + ν0. In such cases,
interpolation is not necessary and the parametrization of the likelihood function is straightforward.

Note, not all physics parameters need be considered parameters of interest. There may be a free
physics parameter that is not directly of interest, and as such it would be considered a nuisance parameter.

4.1.2.1 An example, the search for the standard model Higgs boson

In the case of searches for the standard model Higgs boson, the only free parameter in the Lagrangian is
mH . Once mH is specified the rates and the shapes for each of the scattering processes (combinations of
production and decay modes) are specified by the theory. Of course, as the Higgs boson mass changes
the distributions do change so we do need to worry about interpolating the shapes f(x|mH). However
the results are often presented as a raster scan overmH , where one fixesmH and then asks about the rate
of signal events from the Higgs boson scattering process. With mH fixed this is really a simple hypoth-
esis test between background-only and signal-plus-background13, but we usually choose to construct a
parametrized model that does not directly correspond to any theory. In this case the parameter of interest
is some scaling of the rate with respect to the standard model prediction, µ = σ/σSM, such that µ = 0 is
the background-only situation and µ = 1 is the standard model prediction. Furthermore, we usually use
this global µ factor for each of the production and decay modes even though essentially all theories of
physics beyond the standard model would modify the rates of the various scattering processes differently.
Figure 3 shows confidence intervals on µ for fixed values of mH . Values below the solid black curve
are not excluded (since an arbitrarily small signal rate cannot be differentiated from the background-only
and this is a one-sided confidence interval).

4.1.3 Incorporating systematic effects
The parton shower, hadronization, and detector simulation components of the simulation narrative are
based on phenomenological models that have many adjustable parameters. These parameters are nui-

13Note thatH →WW interferes with “background-only”WW scattering process. For low Higgs boson masses, the narrow
Higgs width means this interference is negligible. However, at high masses the interference effect is significant and we should
really treat these two processes together as a single sample.
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sance parameters included in our master list of parameters α. The changes in the rates ν(α) and shapes
f(x|α) due to these parameters lead to systematic uncertainties14. We have already eluded to how one
can deal with the presence of nuisance parameters in hypothesis testing and confidence intervals, but here
we are focusing on the modeling stage. In principle, we deal with modeling of these nuisance parameters
in the same way as the physics parameters, which is to generate Monte Carlo samples for several choices
of the parameters {αi} and then use some interpolation strategy to form a continuous parametrization
for ν(α), f(x|α), and fsim(D|α). In practice, there are many nuisance parameters associated to the
parton shower, hadronization, and detector simulation so this becomes a multi-dimensional interpolation
problem15. This is one of the most severe challenges for the simulation narrative.

Typically, we don’t map out the correlated effect of changing multiple αp simultaneously. Instead,
we have some nominal settings for these parameters α0 and then vary each individual parameter ‘up’
and ‘down’ by some reasonable amount α±p . So if we have NP parameters we typically have 1 + 2NP

variations of the Monte Carlo sample from which we try to form fsim(D|α). This is clearly not an ideal
situation and it is not hard to imagine cases where the combined effect on the rate and shapes cannot be
factorized in terms of changes from the individual parameters.

What is meant by “vary each individual parameter ‘up’ and ‘down’ by some reasonable amount” in
the paragraph above? The nominal choice of the parametersα0 is usually based on experience, test beam
studies, Monte Carlo ‘tunings’, etc.. These studies correspond to auxiliary measurements in the language
used in Sec. 2.2 and Sec. 2.4. Similarly, these parameters typically have some maximum likelihood
estimates and standard uncertainties from the auxiliary measurements as described in Sec. 3.1. Thus our
complete model ftot(D|α) of Eq. 6 should not only deal with parametrizing the effect of changing each
αp but also include either a constraint term fp(ap|αp) or an additional channel that describes a more
complete probability model for the auxiliary measurement.

Below we will consider a specific interpolation strategy and a few of the most popular conventions
for constraint terms. However, before moving on it is worth emphasizing that while, naively, the matrix
element associated to a perturbative scattering amplitude has no free parameters (beyond the physics
parameters discussed above), fixed order perturbative calculations do have residual scale dependence.
This type of theoretical uncertainty has no auxiliary measurement associated with it even in principle,
thus it really has no frequentist description. This was discussed briefly in Sec. 2.4. In contrast, the parton
density functions are the results of auxiliary measurements and the groups producing the parton density
function sets spend time providing sensible multivariate constraint terms for those parameters. However,
those measurements also have uncertainties due to parametrization choices and theoretical uncertainties,
which are not statistical in nature. In short we must take care in ascribing constraint terms to theoretical
uncertainties and measurements that have theoretical uncertainties16.

4.1.4 Tabulating the effect of varying sources of uncertainty
The treatment of systematic uncertainties is subtle, particularly when one wishes to take into account
the correlated effect of multiple sources of systematic uncertainty across many signal and background
samples. The most important conceptual issue is that we separate the source of the uncertainty (for
instance the uncertainty in the calorimeter’s response to jets) from its effect on an individual signal or
background sample (eg. the change in the acceptance and shape of a W+jets background). In particular,
the same source of uncertainty has a different effect on the various signal and background samples.
The effect of these ‘up’ and ‘down’ variations about the nominal predictions νs(α0) and fsb(x|α0) is
quantified by dedicated studies. The result of these studies can be arranged in tables like those below.
The main purpose of the HistFactory XML schema is to represent these tables. And HistFactory is a
tool that can convert these tables into our master model ftot(D|α) of Eq. 6 implemented as a RooAbsPdf

14Systematic uncertainty is arguably a better term than systematic error.
15This is sometimes referred to as ‘template morphing’
16“Note that I deliberately called them theory errors, not uncertainties.” – Tilman Plehn
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with a ModelConfig to make it compatible with RooStats tools. The convention used by HistFactory
is related to our notation via

νs(α)fs(x|α) = ηs(α)σs(x|α) (22)

where ηs(α) represents relative changes in the overall rate ν(α) and σs(x|α) includes both changes
to the rate and the shape f(x|α). This choice is one of convenience because histograms are often not
normalized to unity, but instead in code rate information. As the name implies, HistFactory works
with histograms, so instead of writing σs(x|α) the table is written as σsb(α), where b is a bin index.
To compress the notation further, η+

p=1,s=1 and σ±psb represent the value of when αp = α±p and all other
parameters are fixed to their nominal values. Thus we arrive at the following tabular form for models
built on the simulation narrative based on histograms with individual nuisance parameters varied one at
a time:

Syst Sample 1 . . . Sample N
Nominal Value η0

s=1 = 1 . . . η0
s=N = 1

p=OverallSys 1 η+
p=1,s=1, η−p=1,s=1 . . . η+

p=1,s=N , η−p=1,s=N
...

...
. . .

...
p=OverallSys M η+

p=M,s=1, η−p=M,s=1 . . . η+
p=M,s=N , η−p=M,s=N

Net Effect ηs=1(α) . . . ηs=N (α)

Table 1: Tabular representation of sources of uncertainties that produce a correlated effect in the normalization
individual samples (eg. OverallSys). The η+ps represent histogram when αs = 1 and are inserted into the High
attribute of the OverallSys XML element. Similarly, the η−ps represent histogram when αs = −1 and are inserted
into the Low attribute of the OverallSys XML element. Note, this does not imply that η+ > η−, the± superscript
correspond to the variation in the source of the systematic, not the resulting effect.

Syst Sample 1 . . . Sample N
Nominal Value σ0

s=1,b . . . σ0
s=N,b

p=HistoSys 1 σ+
p=1,s=1,b, σ

−
p=1,s=1,b . . . σ+

p=1,s=N,b, σ
−
p=1,s=N,b

...
...

. . .
...

p=HistoSys M σ+
p=M,s=1,b, σ−p=M,s=1,b . . . σ+

p=M,s=N,b, σ−p=M,s=N,b

Net Effect σs=1,b(α) . . . σs=N,b(α)

Table 2: Tabular representation of sources of uncertainties that produce a correlated effect in the normalization
and shape individual samples (eg. HistoSys ). The σ+

psb represent histogram when αs = 1 and are inserted into
the HighHist attribute of the HistoSys XML element. Similarly, the σ−

psb represent histogram when αs = −1

and are inserted into the LowHist attribute of the HistoSys XML element.

4.1.5 Interpolation Conventions
For each sample, one can interpolate and extrapolate from the nominal prediction η0

s = 1 and the vari-
ations η±ps to produce a parametrized ηs(α). Similarly, one can interpolate and extrapolate from the
nominal shape σ0

sb and the variations σ±psb to produce a parametrized σsb(α). We choose to parametrize
αp such that αp = 0 is the nominal value of this parameter, αp = ±1 are the “±1σ variations”. Need-
less to say, there is a significant amount of ambiguity in these interpolation and extrapolation proce-
dures and they must be handled with care. Bellow are some of the interpolation strategies supported by
HistFactory. These are all ’vertical’ style interpolation treated independently per-bin. Four interpola-
tion strategies are described below and can be compared in Fig 6. The interested reader is invited to look
at alternative ’horizontal’ interpolation strategies, such as the one developed by Alex Read in Ref. [14]
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(the RooFit implementation is called RooIntegralMorph) and Max Baak’s RooMomentMorph. These
horizontal interpolation strategies are better suited for features moving, such as the location of an invari-
ant mass bump changing with the hypothesized mass of a new particle..

Piecewise Linear (InterpCode=0)
The piecewise-linear interpolation strategy is defined as

ηs(α) = 1 +
∑

p∈Syst

Ilin.(αp; 1, η+
sp, η

−
sp) (23)

and for shape interpolation it is

σsb(α) = σ0
sb +

∑

p∈Syst

Ilin.(αp;σ
0
sb, σ

+
psb, σ

−
psb) (24)

with

Ilin.(α; I0, I+, I−) =

{
α(I+ − I0) α ≥ 0

α(I0 − I−) α < 0
(25)

PROS: This approach is the most straightforward of the interpolation strategies.

CONS: It has two negative features. First, there is a kink (discontinuous first derivative) at α = 0
(see Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
Second, the interpolation factor can extrapolate to negative values. For instance, if η− = 0.5 then we
have η(α) < 0 when α < −2 (see Fig 6(c)).

Note that one could have considered the simultaneous variation of αp and αp′ in a multiplicative
way. The multiplicative accumulation is not an option currently.

Note that this is the default convention for σsb(α) (ie. HistoSys ).

Piecewise Exponential (InterpCode=1)
The piecewise exponential interpolation strategy is defined as

ηs(α) =
∏

p∈Syst

Iexp.(αp; 1, η+
sp, η

−
sp) (26)

and for shape interpolation it is

σsb(α) = σ0
sb

∏

p∈Syst

Iexp.(αp;σ
0
sb, σ

+
psb, σ

−
psb) (27)

with

Iexp.(α; I0, I+, I−) =

{
(I+/I0)α α ≥ 0

(I−/I0)−α α < 0
(28)

PROS: This approach ensures that η(α) ≥ 0 (see Fig 6(c)) and for small response to the uncer-
tainties it has the same linear behavior near α ∼ 0 as the piecewise linear interpolation (see Fig 6(a)).

CONS: It has two negative features. First, there is a kink (discontinuous first derivative) at α = 0,
which can cause some difficulties for numerical minimization packages such as Minuit. Second, for
large uncertainties it develops a different linear behavior compared to the piecewise linear interpolation.
In particular, even if the systematic has a symmetric response (ie. η+ − 1 = 1 − η−) the interpolated
response will develop a kink for large response to the uncertainties (see Fig 6(c)).

Note that the one could have considered the simultaneous variation of αp and αp′ in an additive
way, but this is not an option currently.
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Note, that when paired with a Gaussian constraint on α this is equivalent to linear interpolation and
a log-normal constraint in ln(α). This is the default strategy for normalization uncertainties ηs(α) (ie.
OverallSys ) and is the standard convention for normalization uncertainties in the LHC Higgs Com-
bination Group. In the future, the default may change to the Polynomial Interpolation and Exponential
Extrapolation described below.

Polynomial Interpolation and Exponential Extrapolation (InterpCode=4)
The strategy of this interpolation option is to use the piecewise exponential extrapolation as above

with a polynomial interpolation that matches η(α = ±α0), dη/dα|α=±α0 , and d2η/dα2|α=±α0 and the
boundary ±α0 is defined by the user (with default α0 = 1).

ηs(α) =
∏

p∈Syst

Ipoly|exp.(αp; 1, η+
sp, η

−
sp, α0) (29)

with

Ipoly|exp.(α; I0, I+, I−, α0) =





(I+/I0)α α ≥ α0

1 +
∑6

i=1 aiα
i |α| < α0

(I−/I0)−α α ≤ −α0

(30)

and the ai are fixed by the boundary conditions described above.

PROS: This approach avoids the kink (discontinuous first and second derivatives) at α = 0 (see
Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
This approach ensures that η(α) ≥ 0 (see Fig 6(c)).

Note: This option is not available in ROOT 5.32.00, but is available for normalization uncertainties
(OverallSys) in the subsequent patch releases. In future releases, this may become the default.

4.1.6 Consistent Bayesian and Frequentist modeling
The variational estimates η± and σ± typically correspond to so called “±1σ variations” in the source of
the uncertainty. Here we are focusing on the source of the uncertainty, not its affect on rates and shapes.
For instance, we might say that the jet energy scale has a 10% uncertainty. 17 This is common jargon,
but what does it mean? The most common interpretation of this statement is that the uncertain parameter
αp (eg. the jet energy scale) has a Gaussian distribution. However, this way of thinking is manifestly
Bayesian. If the parameter was estimated from an auxiliary measurement, then it is the PDF for that
measurement that we wish to include into our probability model. In the frequentist way of thinking, the
jet energy scale has an unknown true value and upon repeating the experiment many times the auxiliary
measurements estimating the jet energy scale would fluctuate randomly about this true value. To aid in
this subtle distinction, we use greek letters for the parameters (eg. αp) and roman letters for the auxiliary
measurements ap. Furthermore, we interpret the “±1σ” variation in the frequentist sense, which leads to
the constraint term fp(ap|αp). Then, we can pair the resulting likelihood with some prior on αp to form
a Bayesian posterior if we wish according to Eq. 5.

It is often advocated that a “log-normal” or “gamma” distribution for αp is more appropriate
than a gaussian constraint [15]. This is particularly clear in the case of bounded parameters and large
uncertainties. Here we must take some care to build a probability model that can maintain a consistent
interpretation in Bayesian a frequentist settings. Table 3 summarizes a few consistent treatments of the
frequentist pdf, the likelihood function, a prior, and the resulting posterior.

Finally, it is worth mentioning that the uncertainty on some parameters is not the result of an auxil-
iary measurement – so the constraint term idealization, it is not just a convenience, but a real conceptual

17Without loss of generality, we choose to parametrize αp such that αp = 0 is the nominal value of this parameter, αp = ±1
are the “±1σ variations”.
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Fig. 6: Comparison of the three interpolation options for different η±. (a) η− = 0.8, η+ = 1.2, (b) η− = 1.1,
η+ = 1.5, (c) η− = 0.2, η+ = 1.8, and (d) η− = 0.95, η+ = 1.5

PDF Likelihood ∝ Prior π0 Posterior π
G(ap|αp, σp) G(αp|ap, σp) π0(αp) ∝ const G(αp|ap, σp)
Pois(np|τpβp) P Γ(βp|A = τp;B = 1 + np) π0(βp) ∝ const P Γ(βp|A = τp;B = 1 + np)
PLN(np|βp, σp) βp · PLN(βp|np, σp) π0(βp) ∝ const PLN(βp|np, σp)
PLN(np|βp, σp) βp · PLN(βp|np, σp) π0(βp) ∝ 1/βp PLN(βp|np, σp)

Table 3: Table relating consistent treatments of PDF, likelihood, prior, and posterior for nuisance parameter con-
straint terms.

leap. This is particularly true for theoretical uncertainties from higher-order corrections or renormal-
izaiton and factorization scale dependence. In these cases a formal frequentist analysis would not include
a constraint term for these parameters, and the result would simply depend on their assumed values. As
this is not the norm, we can think of reading Table 3 from right-to-left with a subjective Bayesian prior
π(α) being interpreted as coming from a fictional auxiliary measurement.
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4.1.6.1 Gaussian Constraint

The Gaussian constraint for αp corresponds to the familiar situation. It is a good approximation of
the auxiliary measurement when the likelihood function for αp from that auxiliary measurement has a
Gaussian shape. More formally, it is valid when the maximum likelihood estimate of αp (eg. the best fit
value of αp) has a Gaussian distribution. Here we can identify the maximum likelihood estimate of αp
with the global observable ap, remembering that it is a number that is extracted from the data and thus
its distribution has a frequentist interpretation.

G(ap|αp, σp) =
1√

2πσ2
p

exp

[
−(ap − αp)2

2σ2
p

]
(31)

with σp = 1 by default. Note that the PDF of ap and the likelihood for αp are positive for all values.

4.1.6.2 Poisson (“Gamma”) constraint

When the auxiliary measurement is actually based on counting events in a control region (eg. a Poisson
process), a more accurate to describe the auxiliary measurement with a Poisson distribution. It has been
shown that the truncated Gaussian constraint can lead to undercoverage (overly optimistic) results, which
makes this issue practically relevant [4]. Table 3 shows that a Poisson PDF together with a uniform prior
leads to a gamma posterior, thus this type of constraint is often called a “gamma” constraint. This is a
bit unfortunate since the gamma distribution is manifestly Bayesian and with a different choice of prior,
one might not arrive at a gamma posterior. When dealing with the Poisson constraint, it is no longer
convenient to work with our conventional scaling for αp which can be negative. Instead, it is more
natural to think of the number of events measured in the auxiliary measurement np and the mean of the
Poisson parameter. This information is not usually available, instead one usually has some notion of the
relative uncertainty in the parameter σrel

p (eg. a the jet energy scale is known to 10%). In order to give
some uniformity to the different uncertainties of this type and think of relative uncertainty, the nominal
rate is factored out into a constant τp and the mean of the Poisson is given by τpαp.

Pois(np|τpαp) =
(τpαp)

np e−τpαp

np!
(32)

Here we can use the fact that Var[np] =
√
τpαp and reverse engineer the nominal auxiliary measurement

n0
p = τp = (1/σrel

p )2 . (33)

where the superscript 0 is to remind us that np will fluctuate in repeated experiments but n0
p is the value

of our measured estimate of the parameter.

One important thing to keep in mind is that there is only one constraint term per nuisance pa-
rameter, so there must be only one σrelp per nuisance parameter. This σrelp is related to the fundamental
uncertainty in the source and we cannot infer this from the various response terms η±ps or σ±pub.

Another technical difficulty is that the Poisson distribution is discrete. So if one were to say the
relative uncertainty was 30%, then we would find n0

p = 11.11..., which is not an integer. Rounding np
to the nearest integer while maintaining τp = (1/σrel

p )2 will bias the maximum likelihood estimate of αp
away from 1. To avoid this, one can use the gamma distribution, which generalizes more continuously
with

P Γ(αp|A = τp, B = np − 1) = A(Aαp)
Be−Aαp/Γ(B) . (34)

This approach works fine for likelihood fits, Bayesian calculations, and frequentist techniques based on
asymptotic approximations, but it does not offer a consistent treatment of the pdf for the global observable
np that is needed for techniques based on Monte Carlo sampling.
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4.1.6.3 Log-normal constraint

From Eadie et al., “The log-normal distribution represents a random variable whose logarithm follows a
normal distribution. It provides a model for the error of a process involving many small multiplicative
errors (from the Central Limit Theorem). It is also appropriate when the value of an observed variable is a
random proportion of the previous observation.” [15,16]. This logic of multiplicative errors applies to the
the measured value, not the parameter. Thus, it is natural to say that there is some auxiliary measurement
(global observable) with a log-normal distribution. As in the gamma/Poisson case above, let us again say
that the global observable is np with a nominal value

n0
p = τp = (1/σrel

p )2 . (35)

Then the conventional choice for the corresponding log-normal distribution is

PLN(np|αp, κp) =
1√

2π lnκ

1

np
exp

[
− ln(np/αp)

2

2(lnκp)2

]
(36)

while the likelihood function is (blue curve in Fig. 7(a)).

L(αp) =
1√

2π lnκ

1

np
exp

[
− ln(np/αp)

2

2(lnκp)2

]
; . (37)

To get to the posterior for αp given np we need an ur-prior η(αp)

π(αp) ∝ η(αp)
1√

2π lnκ

1

np
exp

[
− ln(np/αp)

2

2(lnκp)2

]
(38)

If η(αp) is uniform, then the posterior looks like the red curve in Fig. 7(b). However, when paired with
an “ur-prior” η(αp) ∝ 1/αp (green curve in Fig. 7(b)), this results in a posterior distribution that is also
of a log-normal form for αp (blue curve in Fig. 7(b)).
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Fig. 7: The lognormal constraint term: (left) the pdf for the global observable ap and (right) the likelihood function,
the posterior based on a flat prior on αp, and the posterior based on a 1/αp prior.

4.1.7 Incorporating Monte Carlo statistical uncertainty on the histogram templates
The histogram based approach described above are based Monte Carlo simulations of full detector sim-
ulation. These simulations are very computationally intensive and often the histograms are sparsely
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populated. In this case the histograms are not good descriptions of the underlying distribution, but are
estimates of that distribution with some statistical uncertainty. Barlow and Beeston outlined a treatment
of this situation in which each bin of each sample is given a nuisance parameter for the true rate, which
is then fit using both the data measurement and the Monte Carlo estimate [17]. This approach would
lead to several hundred nuisance parameters in the current analysis. Instead, the HistFactory employs
a lighter weight version in which there is only one nuisance parameter per bin associated with the total
Monte Carlo estimate and the total statistical uncertainty in that bin. If we focus on an individual bin
with index b the contribution to the full statistical model is the factor

Pois(nb|νb(α) + γbν
MC
b (α)) Pois(mb|γbτb) , (39)

where nb is the number of events observed in the bin, νb(α) is the number of events expected in the
bin where Monte Carlo statistical uncertainties need not be included (either because the estimate is
data driven or because the Monte Carlo sample is sufficiently large), νMC

b (α) is the number of events
estimated using Monte Carlo techniques where the statistical uncertainty needs to be taken into account.
Both expectations include the dependence on the parameters α. The factor γb is the nuisance parameter
reflecting that the true rate may differ from the Monte Carlo estimate νMC

b (α) by some amount. If
the total statistical uncertainty is δb, then the relative statistical uncertainty is given by νMC

b /δb. This
corresponds to a total Monte Carlo sample in that bin of sizemb = (δb/ν

MC
b )2. Treating the Monte Carlo

estimate as an auxiliary measurement, we arrive at a Poisson constraint term Pois(mb|γbτb), where mb

would fluctuate about γbτb if we generated a new Monte Carlo sample. Since we have scaled γ to be a
factor about 1, then we also have τb = (νMC

b /δb)
2; however, τb is treated as a fixed constant and does not

fluctuate when generating ensembles of pseudo-experiments.

It is worth noting that the conditional maximum likelihood estimate ˆ̂γb(α) can be solved analyti-
cally with a simple quadratic expression.

ˆ̂γb(α) =
−B +

√
B2 − 4AC

2A
, (40)

with
A = νMC

b (α)2 + τbν
MC
b (α) (41)

B = νb(α)τ + νb(α)νMC
b (α)− nbνMC

b (α)−mbν
MC
b (α) (42)

C = mbνb(α) . (43)

In a Bayesian technique with a flat prior on γb, the posterior distribution is a gamma distribution.
Similarly, the distribution of γ̂b will take on a skew distribution with an envelope similar to the gamma
distribution, but with features reflecting the discrete values of mb. Because the maximum likelihood
estimate of γb will also depend on nb and α̂, the features from the discrete values of mb will be smeared.
This effect will be more noticeable for large statistical uncertainties where τb is small and the distribution
of γ̂b will have several small peaks. For smaller statistical uncertainties where τb is large the distribution
of γ̂b will be approximately Gaussian.

4.2 Data-Driven Narrative
The strength of the simulation narrative lies in its direct logical link from the underlying theory to the
modeling of the experimental observations. The weakness of the simulation narrative derives from the
weaknesses in the simulation itself. Data-driven approaches are more motivated when they address
specific deficiencies in the simulation. Before moving to a more abstract or general discussion of the
data-driven narrative, let us first consider a few examples.

The first example we have already considered in Sec. 2.2 in the context of the “on/off” problem.
There we introduced an auxiliary measurement that counted nCR events in a control region to estimate
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the background νB in the signal region. In order to do this we needed to understand the ratio of the num-
ber of events from the background process in the control and signal regions, τ . This ratio τ either comes
from some reasonable assumption or simulation. For example, if one wanted to estimate the background
due to jets faking muons j → µ for a search selecting µ+µ− , then one might use a sample of µ±µ±

events as a control region. Here the motivation for using a data-driven approach is that modeling the
processes that lead to j → µ rely heavily on the tails of fragmentation functions and detector response,
which one might reasonably have some skepticism. If one assumes that control region is expected to
have negligible signal in it, that backgrounds that produce µ+µ− other than the jets faking muons, and
that the rate for j → µ− is the same18 as the rate for j → µ+, then one can assume τ = 1. Thus, this
background estimate is as trustworthy as the assumptions that went into it. In practice, several of these
assumptions may be violated. Another approach is to use simulation of these background processes to
estimate the ratio τ ; a hybrid of the data-driven and simulation narratives.

Let us now consider the search forH → γγ shown in Fig. 8 [18,19]. The right plot of Fig. 8 shows
the composition of the backgrounds in this search, including the continuum production of pp → γγ,
the γ+jets process with a jet faking a photon j → γ, and the multi jet process with two jets faking
photons. The continuum production of γγ has a theoretical uncertainty that is much larger than the
statistical fluctuations one would expect in the data. Similarly, the rate of jets faking photons is sensitive
to fragmentation and the detector simulation. These uncertainties are large compared to the statistical
fluctuations in the data itself. Thus we can use the distribution in Fig. 8 to measure the total background
rate. Of course, the signal would also be in this distribution, so one either needs to apply a mass window
around the signal and consider the region outside of the window as a sideband control sample or model
the signal and background contributions to the distribution. In the case of the H → γγ shown in
Fig. 8 [18, 19] the modeling of the distribution signal and background distributions is not based on
histograms from simulation, but instead a continuous function is used as an effective model. I will
discuss this effective modeling narrative below, but point out that here this is another example of a
hybrid narrative.
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Fig. 8: Distribution of diphoton invariant mass distributions in the ATLAS H → γγ search. The left plot shows a
fit of a an effective model to the data and the right plot shows an estimate of the γγ, γ+jet, and diet contributions.

The final example to consider is an extension of the ‘on/off’ model, often referred to as the ‘ABCD’
method. Let us start with the ‘on/off’ model: Pois(nSR|νS + νB) · Pois(nCR|τνB). As mentioned
above, this requires that one estimate τ either from simulation or through some assumptions. The ABCD
method aims to estimate introduce two new control regions that can be used to measure τ . To see this,
let us imagine that the signal and control regions correspond to requiring some continuous variable x

18Given that the LHC collides pp and not pp̄, there is clearly a reason to worry if this assumption is valid.
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being greater than or less than some threshold value xc. If we could introduce a second discriminating
variable y such that the distribution for background factorizes fB(x, y) = fB(x)fB(y), then we have a
handle to measure the factor τ . Typically, one introduces a threshold yc so that the signal contribution
is small below this threshold19. Figure 9 shows an example where xc = yc = 5. With this we these
two thresholds we have four regions that we can schematically refer to as A, B, C, and D. In the case of
simply counting events in these regions we can write the total expectation as

νA = 1 · µ+ νMC
A + 1 · νA (44)

νB = εBµ + νMC
B + τBνA

νC = εCµ + νMC
C + τCνA

νD = εDµ + νMC
D + τBτCνA

where µ is the signal rate in region A, εi is the ratio of the signal in the regions B, C, D with respect to the
signal in region A, νMC

i is the rate of background in each of the regions being estimated from simulation,
νi is the rate of the background being estimated with the data driven technique in the signal region, and τi
are the ratios of the background rates in the regions B, C, and D with respect to the background in region
A. The key is that we have used the factorization fB(x, y) = fB(x)fB(y) to write τD = τBτC . The right
panel of Fig. 9 shows a more complicated extension of the ABCD method from a recent ATLAS SUSY
analysis [20].

An alternative parametrization, which can be more numerically stable is

νA = 1 · µ+ νMC
A + ηCηBνD (45)

νB = εBµ + νMC
B + ηBνD

νC = εCµ + νMC
C + ηCνD

νD = εDµ + νMC
D + 1 · νD

ATLAS statistics forum
Draft 0.0, January 25, 2012

ABCD method in searches

1 Introduction

The ABCD method [1] allows the data-driven estimation of a background rate when events
are selected by a pair of cuts in a plane of two uncorrelated variables such that both of
the cuts enhance the signal to background ratio, as illustrated in Fig. 1. The basic idea is
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Figure 1: Illustration of di↵erent regions in the ABCD method in the plane of two variables
x, y. The points are simulated events from a background distribution with no correlation in
the x�y plane and the color density illustrates a bivariate gaussian distribution of hypothet-
ical signal in the search region (A) with some leakage into the background sideband regions
B, C and D.

that there are su�cient background statistics in sideband (or control) regions B, C and D
to estimate the small background rate in the signal region A: µA = µBµC/µD. This formula
makes several assumptions:

1. There are enough events in regions B, C and D to propagate the statistical uncertainty
linearly to A (and for convenience the uncertainty on µA is propagated to a measurement
or search as if it is sampled from a Gaussian probability distribution).

2. There is no signal leakage to regions B, C, and D.
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4.3 Effective Model Narrative
In the simulation narrative the model of discriminating variable distributions f(x|α) is derived from
discrete samples of simulated events {x1, . . . , xN}. We discussed above how one can use histograms or

19The relative sign of the cut is not important, but has been chosen for consistency with Fig 9.
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kernel estimation to approximate the underlying distribution and interpolation strategies to incorporate
systematic effects. Another approach is to assume some parametric form for the distribution to serve as an
effective model. For example, in the H → γγ analysis shown in Fig. 8 a simple exponential distribution
was used to model the background. The state-of-the-art theoretical predictions for the continuum γγ
background process do not predict exactly an exponentially falling distribution, and the analysis must
(and does) incorporate the systematic associated to the effective model. Similarly, it is common to use
a polynomial in some limited sideband region to estimate backgrounds under a peak. These effective
models can range from very ad hoc 20 to more motivated. For instance, one might use knowledge of
kinematics and phase space and/or detector resolution to construct an effective model that captures the
relevant physics. The advantage of a well motivated effective model is that few nuisance parameters
may describe well the relevant family of probability densities, which is the challenge for generic (and
relatively unsophisticated) interpolation strategies usually employed in the simulation narrative.

4.4 The Matrix Element Method
Ideally, one would not use a single discriminating variable to distinguish the process of interest from
the other background processes, but instead would use as much discriminating power as possible. This
implies forming a probability model over a multi-dimensional discriminating variable (ie. a multivariate
analysis technique). In principle, both the histogram-based and kernel-based approach generalize to
distributions of multi-dimensional discriminating variables; however, in practice, they are limited to only
a few dimensions. In the case of histograms this is particularly severe unless one employs clever binning
choices, while in the kernel-based approach one can model up to about 5-dimensional distributions with
reasonable Monte Carlo sample sizes. In practice, one often uses multivariate algorithms like Neural
Networks or boosted decision trees21 to map the multiple variables into a single discriminating variable.
Often these multivariate techniques are seen as somewhat of a black-box. If we restrict ourselves to
discriminating variables associated with the kinematics of final state particles (as opposed to the more
detailed signature of particles in the detector), then we can often approximate he detailed simulation of
the detector with a parametrized detector response. If we denote the kinematic configuration of all the
final state particles in the Lorentz invariant phase space as Φ, the initial state as i, the matrix element
(potentially averaged over unmeasured spin configurations) asM(i,Φ), and the probability due to parton
density functions for the initial state i going into the hard scattering as f(i), then we can write that the
distribution of the, possibly multi-dimensional, discriminating variable x as

f(x) ∝
∫
dΦ f(i)|M(i,Φ)|2W (x|Φ) , (46)

where W (x|Φ) is referred to as the transfer function of x given the final state configuration Φ. It is
natural to think of W (x|Φ) as a conditional distribution, but here I let W encode the efficiency and
acceptance so that we have

σeff.

σ
=

∫
dx
∫
dΦ |M(i,Φ)|2W (x|Φ)∫
dΦ |M(i,Φ)|2 . (47)

Otherwise, the equation above looks like another application one Bayes’s theorem where W (x|Φ) plays
the role of the pdf/likelihood function and M(i,Φ) plays the role of the prior over the Φ. It is worth
pointing out that this is a frequentist use of Bayes’s theorem since dΦ is the Lorentz invariant phase space
which explicitly has a measure associated with it.

20For instance, the modeling of H → ZZ(∗) → 4l described in [21] (see Eq. 2 of the corresponding section)
21A useful toolkit for high-energy physics is TMVA, which is packaged with ROOT [22].
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4.5 Event-by-event resolution, conditional modeling, and Punzi factors
In some cases one would like to provide a distribution for the discriminating variable x based conditional
on some other observable in the event y: f(x|α, y). For instance, one might want to say that the en-
ergy resolution for electrons depends on the energy itself through a well-known calorimeter resolution
parametrization like σ(E)/E = A/

√
E ⊕ B. These types of conditional distributions can be built in

RooFit. A subtle point studied by Punzi is that if f(y|α) depends on α the inference on α can be bi-
ased [23]. In particular, if one is trying to estimate the amount of signal in a sample and the distribution
of y for the signal is different than for the background, the estimate of the signal fraction will be biased.
This can be remedied by including terms related to f(y|α), colloquially called ‘Punzi Factors’. Impor-
tantly, this means one cannot build conditional models like this without knowing or assuming something
about f(y|α).

5 Frequentist Statistical Procedures
Here I summarize the procedure used by the LHC Higgs combination group for computing frequentist
p-values uses for quantifying the agreement with the background-only hypothesis and for determining
exclusion limits. The procedures are based on the profile likelihood ratio test statistic.

The parameter of interest is the overall signal strength factor µ, which acts as a scaling to the total
rate of signal events. We often write µ = σ/σSM , where σSM is the standard model production cross-
section; however, it should be clarified that the same µ factor is used for all production modes and could
also be seen as a scaling on the branching ratios. The signal strength is called so that µ = 0 corresponds
to the background-only model and µ = 1 is the standard model signal. It is convenient to separate the
full list of parameters α into the parameter of interest µ and the nuisance parameters θ: α = (µ,θ).

For a given data set Dsim and values for the global observables G there is an associated likelihood
function over µ and θ derived from combined model over all the channels including all the constraint
terms in Eq. 6

L(µ,θ;Dsim,G) = ftot(Dsim,G|µ,θ) . (48)

The notation L(µ,θ) leaves the dependence on the data implicit, which can lead to confusion. Thus, we
will explicitly write the dependence on the data when the identity of the dataset is important and only
suppress Dsim,G when the statements about the likelihood are generic.

We begin with the definition of the procedure in the abstract and then describe three implementa-
tions of the method based on asymptotic distributions, ensemble tests (Toy Monte Carlo), and importance
sampling.

5.1 The test statistics and estimators of µ and θ
This definitions in this section are all relative to a given dataset Dsim and value of the global observables
G, thus we will suppress their appearance. The nomenclature follows from Ref. [1].

The maximum likelihood estimates (MLEs) µ̂ and θ̂ and the values of the parameters that max-
imize the likelihood function L(µ,θ) or, equivalently, minimize − lnL(µ,θ). The dependence of the
likelihood function on the data propagates to the values of the MLEs, so when needed the MLEs will
be given subscripts to indicate the data set used. For instance, θ̂obs is the MLE of θ derived from the
observed data and global observables.

The conditional maximum likelihood estimate (CMLEs) ˆ̂
θ(µ) is the value of θ that maximizes

the likelihood function with µ fixed; it can be seen as a multidimensional function of the single variable
µ. Again, the dependence on Dsim and G is implicit. This procedure for choosing specific values of the
nuisance parameters for a given value of µ, Dsim, and G is often referred to as “profiling”. Similarly,
ˆ̂
θ(µ) is often called “the profiled value of θ”.
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Given these definitions, we can construct the profile likelihood ratio

λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
, (49)

which depends explicitly on the parameter of interest µ, implicitly on the data Dsim and global observ-
ables G, and is independent of the nuisance parameters θ (which have been eliminated via “profiling”).

(a) (b)

(c) (d)

Fig. 10: Visualization of a two dimensional likelihood function−2 lnL(µ, θ). The blue line in the plane represents

the profiling operation ˆ̂
θ(µ) and the blue curve along the likelihood surface represents −2 lnλ(µ). Note it is was

to show that the blue line exits the contours of −2 lnL(µ, θ) when they are perpendicular to the µ axis, which
provides the correspondence between the profile likelihood ratio and the description of the Minos algorithm.

In any physical theory the rate of signal events is non-negative, thus µ ≥ 0. However, it is often
convenient to allow µ < 0 (as long as the pdf fc(xc|µ,θ) ≥ 0 everywhere). In particular, µ̂ < 0 indicates
a deficit of events signal-like with respect to the background only and the boundary at µ = 0 complicates
the asymptotic distributions. Ref. [1] uses a trick that is equivalent to requiring µ ≥ 0 while avoiding
the formal complications of a boundary, which is to allow µ < 0 and impose the constraint in the test
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statistic itself. In particular, one defines λ̃(µ)

λ̃(µ) =





L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0

(50)

This is not necessary when ensembles of pseudo-experiments are generated with “Toy” Monte Carlo
techniques, but since they are equivalent we will write λ̃ to emphasize the boundary at µ = 0.

For discovery the test statistic q̃0 is used to differentiate the background-only hypothesis µ = 0
from the alternative hypothesis µ > 0:

q̃0 =

{
−2 ln λ̃(µ) µ̂ > 0

0 µ̂ ≤ 0
(51)

Note that q̃0 is test statistic for a one-sided alternative. Note also that if we consider the parameter of
interest µ ≥ 0, then it is equivalent to the two-sided test (because there are no values of µ less than
µ = 0.

For limit setting the test statistic q̃µ is used to differentiate the hypothesis of signal being produced
at a rate µ from the alternative hypothesis of signal events being produced at a lesser rate µ′ < µ:

q̃µ =

{
−2 ln λ̃(µ) µ̂ ≤ µ
0 µ̂ > µ

=





−2 ln L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0 ,

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(52)

Note that q̃µ is a test statistic for a one-sided alternative; it is a test statistic for a one-sided upper limit.

The test statistic t̃µ is used to differentiate signal being produced at a rate µ from the alternative
hypothesis of signal events being produced at a lesser or greater rate µ′ 6= µ.

t̃µ = −2 ln λ̃(µ) . (53)

Note that t̃µ is a test statistic for a two-sided alternative (as in the case of the Feldman-Cousins technique,
though this is more general as it incorporates nuisance parameters). Note that if we consider the parame-
ter of interest µ ≥ 0 and we the test at µ = 0 then there is no “other side” and we have t̃µ=0 = q̃0. Finally,
if one relaxes the constraint µ ≥ 0 then the two-sided test statistic is written tµ or, simply, −2 lnλ(µ).

5.2 The distribution of the test statistic and p-values
The test statistic should be interpreted as a single real-valued number that represents the outcome of the
experiment. More formally, it is a mapping of the data to a single real-valued number: q̃µ : Dsim,G → R.
For the observed data the test statistic has a given value, eg. q̃µ,obs. If one were to repeat the experiment
many times the test statistic would take on different values, thus, conceptually, the test statistic has
a distribution. Similarly, we can use our model to generate pseudo-experiments using Monte Carlo
techniques or more abstractly consider the distribution. Since the number of expected events ν(µ,θ) and
the distributions of the discriminating variables fc(xc|µ,θ) explicitly depend on θ the distribution of the
test statistic will also depend on θ. Let us denote this distribution

f(q̃µ|µ,θ) , (54)

and we have analogous expressions for each of the test statistics described above.
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The p-value for a given observation under a particular hypothesis (µ,θ) is the probability for an
equally or more ‘extreme’ outcome than observed assuming that hypothesis

pµ,θ =

∫ ∞

q̃µ,obs

f(q̃µ|µ,θ) dq̃µ . (55)

The logic is that small p-values are evidence against the corresponding hypothesis. In Toy Monte Carlo
approaches, the integral above is really carried out in the space of the data

∫
dDsimdG.

The immediate difficulty is that we are interested in µ but the p-values depend on both µ and θ. In
the frequentist approach the hypothesis µ = µ0 would not be rejected unless the p-value is sufficiently
small for all values of θ. Equivalently, one can use the supremum p-value for over all θ to base the
decision to accept or reject the hypothesis at µ = µ0.

psup
µ = sup

θ
pµ,θ (56)

The key conceptual reason for choosing the test statistics based on the profile likelihood ratio
is that asymptotically (ie. when there are many events) the distribution of the profile likelihood ratio
λ(µ = µtrue) is independent of the values of the nuisance parameters. This follows from Wilks’s theo-
rem. In that limit psup

µ = pµ,θ for all θ.

The asymptotic distributions f(λ(µ)|µ,θ) and f(λ(µ)|µ′,θ) are known and described in Sec. 5.5.
For results based on generating ensembles of pseudo-experiements using Toy Monte Carlo techniques
does not assume the form of the distribution f(q̃µ|µ,θ), but knowing that it is approximately independent
of θ means that one does not need to calculate p-values for all θ (which is not computationally feasible).
Since there may still be some residual dependence of the p-values on the choice of θ we would like
to know the specific value of θsup that produces the supremum p-value over θ. Since larger p-values

indicate better agreement of the data with the model, it is not surprising that choosing θsup =
ˆ̂
θ(µ)

is a good estimate of θsup. This has been studied in detail by statisticians, and is called the Hybrid
Resampling method and is referred to in physics as the ‘profile construction’ [8, 11, 24].

Based on the discussion above, the following p-value is used to quantify consistency with the
hypothesis of a signal strength of µ:

pµ =

∫ ∞

q̃µ,obs

f(q̃µ|µ, ˆ̂θ(µ, obs)) dq̃µ . (57)

A standard 95% confidence-level, one-sided frequentist confidence interval (upper limit) is obtained by
solving for p′µup = 5%. For downward fluctuations the upper limit of the confidence interval can be
arbitrarily small, though it will always include µ = 0. This feature is considered undesirable since a
physicist would not claim sensitivity to an arbitrarily small signal rate. The feature was the motivation
for the modified frequentist method called CLs [25–27]. and the alternative approach called power-
constrained limits [28].

To calculate the CLs upper limit, we define p′µ as a ratio of p-values,

p′µ =
pµ

1− pb
, (58)

where pb is the p-value derived from the same test statistic under the background-only hypothesis

pb = 1−
∫ ∞

q̃µ,obs

f(q̃µ|0, ˆ̂θ(µ = 0, obs))dq̃µ . (59)

The CLs upper-limit on µ is denoted µup and obtained by solving for p′µup = 5%. It is worth noting
that while confidence intervals produced with the “CLs” method over cover, a value of µ is regarded

30

K. CRANMER

276



as excluded at the 95% confidence level if µ < µup. The amount of over coverage is not immediately
obvious; however, for small values of µ the coverage approaches 100% and for large values of µ the
coverage is near the nominal 95% (due to 〈pb〉 ≈ 0).

For the purposes discovery one is interested in compatibility of the data with the background-only
hypothesis. Statistically, a discovery corresponds to rejecting the background-only hypothesis. This
compatibility is based on the following p-value

p0 =

∫ ∞

q̃0,obs

f(q̃0|0, ˆ̂θ(µ = 0, obs))dq̃0 . (60)

This p-value is also based on the background-only hypothesis, but the test statistic q̃0 is suited for testing
the background-only while the test statistic q̃µ in Eq. 59 is suited for testing a hypothesis with signal.

It is customary to convert the background-only p-value into the quantile (or “sigma”) of a unit
Gaussian. This conversion is purely conventional and makes no assumption that the test statistic q0 is
Gaussian distributed. The conversion is defined as:

Z = Φ−1(1− p0); (61)

where Φ−1 is the inverse of the cumulative distribution for a unit Gaussian. One says the significance of
the result is Zσ and the standard discovery convention is 5σ, corresponding to p0 = 2.87 · 10−7.

5.3 Expected sensitivity and bands
The expected sensitivity for limits and discovery are useful quantities, though subject to some degree
of ambiguity. Intuitively, the expected upper limit is the upper limit one would expect to obtain if
the background-only hypothesis is true. Similarly, the expected significance is the significance of the
observation assuming the standard model signal rate (at some mH ). To find the expected limit one
needs a distribution f(µup|µ = 0,θ). To find the expected significance one needs the distribution
f(Z|µ = 1,θ) or, equivalently, f(p0|µ = 1,θ). We use the median instead of the mean, as it is invariant
to the choice of Z or p0. More importantly, is that the expected limit and significance depend on the
value of the nuisance parameters θ, for which we do not know the true values. Thus, the expected limit
and significance will depend on some convention for choosing θ. While many nuisance parameters have
a nominal estimate (i.e. the global observables in the constraint terms), others do not (eg. the exponent in
theH → γγ background model). Thus, we choose a convention that treats all of the nuisance parameters
consistently, which is the profiled value based on the observed data. Thus for the expected limit we use

f(µup|0, ˆ̂θ(µ = 0, obs)) and for the expected significance we use f(p0|µ = 1,
ˆ̂
θ(µ = 1, obs)). An

unintuitive and possibly undesirable feature of this choice is that the expected limit and significance
depend on the observed data through the conventional choice for θ.

With these distributions we can also define bands around the median upper limit. Our standard
limit plot shows a dark green band corresponding to µ±1 defined by

∫ µ±1

0
f(µup|0, ˆ̂θ(µ = 0, obs))dµup = Φ−1(±1) (62)

and a light yellow band corresponding to µ±2 defined by
∫ µ±2

0
f(µup|0, ˆ̂θ(µ = 0, obs))dµup = Φ−1(±2) (63)

5.4 Ensemble of pseudo-experiments generated with “Toy” Monte Carlo
The p-values in the procedure described above require performing several integrals. In the case of the
asymptotic approach, the distributions for q̃µ and q̃0 are known and the integral is performed directly.
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When the distributions are not assumed to take on their asymptotic form, then they must be constructed
using Monte Carlo methods. In the “toy Monte Carlo” approach one generates pseudo-experiments in
which the number of events in each channel nc, the values of the discriminating variables {xec} for each
of those events, and the auxiliary measurements (global observables) ap are all randomized according to
ftot. We denote the resulting data Dtoy and global observables Gtoy. By doing this several times one can
build an ensemble of pseudo-experiments and evaluate the necessary integrals. Recall that Monte Carlo
techniques can be viewed as a form of numerical integration.

The fact that the auxiliary measurements ap are randomized is unfamiliar in particle physics. The
more familiar approach for toy Monte Carlo is that the nuisance parameters are randomized. This re-
quires a distribution for the nuisance parameters, and thus corresponds to a Bayesian treatment of the
nuisance parameters. The resulting p-values are a hybrid Bayesian-Frequentist quantity with no consis-
tent definition of probability. To maintain a strictly frequentist procedure, the corresponding operation is
to randomize the auxiliary measurements.

While formally this procedure is well motivated, as physicists we also know that our models
can have deficiencies and we should check that the distribution of the auxiliary measurements does not
deviate too far from our expectations.

Technically, the pseudo-experiments are generated with the RooStats ToyMCSampler, which is
used by the higher-level tool FrequentistCalculator, which is in turn used by HypoTestInverter.

5.5 Asymptotic Formulas
The following has been extracted from Ref. [1] and has been reproduced here for convenience. The
primary message of Ref. [1] is that for a sufficiently large data sample the distributions of the likelihood
ratio based test statistics above converge to a specific form. In particular, Wilks’s theorem [29] can be
used to obtain the distribution f(λ(µ)|µ), that is the distribution of the test statistic λ(µ) when µ is true.
Note that the asymptotic distribution is independent of the value of the nuisance parameters. Wald’s
theorem [30] provides the generalization to f(λ(µ)|µ′,θ), that is when the true value is not the same as
the tested value. The various formulae listed below are corollaries of Wilks’s and Wald’s theorems for
the likelihood ratio test statistics described above. The Asimov data described immediately below was a
novel result of Ref. [1].

5.5.1 The Asimov data and σ = var(µ̂)
The asymptotic formulae below require knowing the variance of the maximum likelihood estimate of µ

σ = var[µ̂] . (64)

One result of Ref. [1] is that σ can be estimated with an artificial dataset referred to as the Asimov dataset.
The Asimov dataset is defined as a binned dataset, where the number of events in bin b is exactly the
number of events expected in bin b. Note, this means that the dataset generally has non-integer number
of events in each bin. For our general model one can write

nb,A =

∫

x∈bin b
ν(α)f(x|α)dx (65)

where the subscript A denotes that this is the Asimov data. Note, that the dataset depends on the value of
α implicitly. For an model of unbinned data, one can simply take the limit of narrow bin widths for the
Asimov data. We denote the likelihood evaluated with the Asimov data as LA(µ). The important result
is that one can calculate the expected Fisher information of Eq. 7 by computing the observed Fisher
information on the likelihood function based on this special Asimov dataset.

A related and convenient way to calculate the variance of µ̂ is

σ ∼ µ√
q̃µ,A

. (66)
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where q̃µ,A is the to use the q̃µ test statistic based on a background-only Asimov data (ie. the one
withµ = 0 in Eq. 65). It is worth noting that higher-order corrections to the formulae below are being
developed to address the case when the variance of µ̂ depends strongly on µ.

5.5.2 Asymptotic Formulas for q̃0
For a sufficiently large data sample, the pdf f(q̃0|µ′) is found to approach

f(q0|µ′) =

(
1− Φ

(
µ′

σ

))
δ(q0) +

1

2

1√
2π

1√
q0

exp

[
−1

2

(√
q0 −

µ′

σ

)2
]
. (67)

For the special case of µ′ = 0, this reduces to

f(q0|0) =
1

2
δ(q0) +

1

2

1√
2π

1√
q0
e−q0/2 . (68)

That is, one finds a mixture of a delta function at zero and a chi-square distribution for one degree of
freedom, with each term having a weight of 1/2. In the following we will refer to this mixture as a half
chi-square distribution or 1

2χ
2
1.

From Eq. (67) the corresponding cumulative distribution is found to be

F (q0|µ′) = Φ

(√
q0 −

µ′

σ

)
. (69)

The important special case µ′ = 0 is therefore simply

F (q0|0) = Φ
(√

q0

)
. (70)

The p-value of the µ = 0 hypothesis is

p0 = 1− F (q0|0) , (71)

and therefore for the significance gives the simple formula

Z = Φ−1(1− p0) =
√
q0 . (72)

5.5.3 Asymptotic Formulas for q̃µ
For a sufficiently large data sample, the pdf f(q̃µ|µ) is found to approach

f(q̃µ|µ′) = Φ

(
µ′ − µ
σ

)
δ(q̃µ)

+





1
2

1√
2π

1√
q̃µ

exp

[
−1

2

(√
q̃µ − µ−µ′

σ

)2
]

0 < q̃µ ≤ µ2/σ2

1√
2πσ

exp
[
−1

2
(q̃µ−(µ2−2µµ′)/σ2)2

(2µ/σ)2

]
q̃µ > µ2/σ2

. (73)

The special case µ = µ′ is therefore

f(q̃µ|µ) =
1

2
δ(q̃µ) +





1
2

1√
2π

1√
q̃µ
e−q̃µ/2 0 < q̃µ ≤ µ2/σ2

1√
2πσ

exp
[
−1

2
(q̃µ+µ2/σ2)2

(2µ/σ)2

]
q̃µ > µ2/σ2 .

(74)
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The corresponding cumulative distribution is

F (q̃µ|µ′) =





Φ
(√

q̃µ − µ−µ′
σ

)
0 < q̃µ ≤ µ2/σ2 ,

Φ
(
q̃µ−(µ2−2µµ′)/σ2

2µ/σ

)
q̃µ > µ2/σ2 .

(75)

The special case µ = µ′ is

F (q̃µ|µ) =





Φ
(√

q̃µ

)
0 < q̃µ ≤ µ2/σ2 ,

Φ
(
q̃µ+µ2/σ2

2µ/σ

)
q̃µ > µ2/σ2 .

(76)

The p-value of the hypothesized µ is as before given by one minus the cumulative distribution,

pµ = 1− F (q̃µ|µ) . (77)

As when using qµ, the upper limit on µ at confidence level 1 − α is found by setting pµ = α and
solving for µ, which reduces to the same result as found when using qµ, namely,

µup = µ̂+ σΦ−1(1− α) . (78)

Note that because σ depends in general on µ, Eq. (78) must be solved numerically.

5.5.4 Expected CLs Limit and Bands
For the CLs method we need distributions for q̃µ for the hypothesis at µ and µ = 0. We find

p′µ =
1− Φ(

√
qµ)

Φ(
√
qµ,A −√qµ)

(79)

The median and expected error bands will therefore be

µup+N = σ(Φ−1(1− αΦ(N)) +N) (80)

with

σ2 =
µ2

qµ,A
(81)

α = 0.05, µ can be taken as µmedup in the calculation of σ. Note that for N = 0 we find the median limit

µmedup = σΦ−1(1− 0.5α) (82)

The fact that σ (the variance of µ̂) defined in Eq. 66 in general depends on µ complicates situations
and can lead to some discrepancies between the correct value of the bands and those obtained with the
equation above. The bands tend to be too narrow. A modified treatment of the bands taking into account
the µ dependence of σ is under development.
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5.6 Importance Sampling
[The following section has been adapted from text written primarily by Sven Kreiss, Alex Read, and
myself for the ATLAS Higgs combination. It is reproduced here for convenience. ]

To claim a discovery, it is necessary to populate a small tail of a test statistic distribution. Toy
Monte-Carlo techniques use the model ftot to generate toy data Dtoy. For every pseudo-experiment
(toy), the test statistic is calculated and added to the test statistic distribution. Building this distribution
from toys is independent of the assumptions that go into the asymptotic calculation that describes this
distribution with an analytic expression. Recently progress has been made using Importance Sampling to
populate the extreme tails of the test statistic distribution, which is much more computationally intensive
with standard methods. The presented algorithms are implemented in RooStats ToyMCSampler.

5.6.1 Naive Importance Sampling
An ensemble of "standard toys" is generated from a model representing the Null hypothesis with µ = 0
and the nuisance parameters θ fixed at their profiled values to the observed data θobs, written
ftot(Dsim,G|µ = 0,θobs). With importance sampling however, the underlying idea is to generate toys
from a different model, called the importance density. A valid importance density is for example the
same model with a non-zero value of µ. The simple Likelihood ratio is calculated for each toy and used
as a weight.

weight =
ftot(Dtoy,Gtoy|µ = 0,θobs)

ftot(Dtoy,Gtoy|µ = µ′,θobs)

The weighted distribution is equal to a distribution of unweighted toys generated from the Null.
The choice of the importance density is a delicate issue. Michael Woodroofe presented a prescription for
creating a well behaved importance density [31]. Unfortunately, this method is impractical for models as
large as the combined Higgs models. An alternative approach is shown below.

5.6.2 Phase Space Slicing
The first improvement from naive importance sampling is the idea of taking toys from both, the null
density and the importance density. There are various ways to do that. Simply stitching two test statistic
distributions together at an arbitrary point has the disadvantage that the normalizations of both distribu-
tions have to be known.

Instead, it is possible to select toys according to their weights. First, toys are generated from the
Null and the simple Likelihood ratio is calculated. If it is larger than one, the toy is kept and otherwise
rejected. Next, toys from the importance density are generated. Here again, the simple Likelihood ratio
is calculated but this time the toy is rejected when the Likelihood ratio is larger than one and kept when
it is smaller than one. If kept, the toy’s weight is the simple Likelihood ratio which is smaller than one
by this prescription.

In the following section, this idea is restated such that it generalizes to multiple importance densi-
ties.

5.6.3 Multiple Importance Densities
The above procedure for selecting and reweighting toys that were generated from both densities can be
phrased in the following way:

– A toy is generated from a density with µ = µ′ and the Likelihoods ftot(Dtoy,Gtoy|µ = 0,θobs)
and ftot(Dtoy,Gtoy|µ = µ′,θobs) are calculated.

– The toy is veto-ed when the Likelihood with µ = µ′ is not the largest. Otherwise, the toy is used
with a weight that is the ratio of the Likelihoods.
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This can be generalized to any number of densities with µi = {0, µ′, µ′′, . . .}. For the toys generated
from model i:

veto: if ftot(Dtoy,Gtoy|µ = µi,θobs) 6= max
{
ftot(Dtoy,Gtoy|µ = µj ,θobs) : µj = {0, µ′, µ′′, . . .}

}

(83)

weight =
ftot(Dtoy,Gtoy|µ = 0,θobs)

ftot(Dtoy,Gtoy|µ = µi,θobs)
(84)

The number of importance densities has to be known when applying the vetos. It should not be
too small to cover the parameter space appropriately and it should not be too large, because too many
importance densities lead to too many vetoed toys which decreases overall efficiency. The value and
error of µ̂ from a fit to data can be used to estimate the required number of importance densities for a
given target overlap of the distributions.

The sampling efficiency in the tail can be further improved by generating a larger number of toys
for densities with larger values of µ. For example, for n densities, one can generate 2k/2n = 2k−n

of the overall toys per density k with k = 0, . . . , n − 1. The toys have to be re-weighted for example
by 2n−1/2k resulting in a minimum re-weight factor of one. The current implementation of the error
calculation for the p-value is independent of an overall scale in the weights.

The method using multiple importance densities is similar to Michael Woodroofe’s [31] prescrip-
tion of creating a suitable importance density with an integral over µ. In the method presented here, the
integral is approximated by a sum over discrete values of µ. Instead of taking the sum, a mechanism that
allows for multiple importance densities is introduced.
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Fig. 11: An example sampling of a test statistic distribution using three densities, the original null density and two
importance densities.

5.7 Look-elsewhere effect, trials factor, Bonferoni
Future versions of this document will discuss the so-called look-elsewhere effect in more detail. Here
we point to the primary development recently: [32, 33].

5.8 One-sided intervals, CLs, power-constraints, and Negatively Biased Relevant Subsets
Particle physicists regularly set upper-limits on cross sections and other parameters that are bounded to
be non-negative. Standard frequentist confidence intervals should nominally cover at the stated value.
The implication that a 95% confidence level upper-limit covers the true value 95% of the time is that it
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doesn’t cover the true value 5% of the time. This is true no matter how small the cross section is. That
means that if there is no signal present, 5% of the time we would be excluding any positive value of
the cross-section. Experimentalists do not like this since we would not consider ourselves sensitive to
arbitrarily small signals.

Two main approaches have been proposed to protect from excluding signals to which we do not
consider ourselves sensitive. The first is the CLs procedure introduced by Read and described above [25–
27]. The CLs procedure produce intervals that over-cover – meaning that the intervals cover the true
value more than the desired level. The coverage for small values of the cross-section approaches 100%,
while for large values of the cross section, where the experiment does have sensitivity, the coverage
converges to the nominal level (see Fig. 12). Unfortunately, the coverage for intermediate values is
not immediately accessible without more detailed studies. Interestingly, the modified frequentist CLs
procedure reproduces the one-sided upper limit from a Bayesian procedure with a uniform prior on the
cross section for simple models like number counting analyses. Even in very complicated models we see
very good numerical agreement between CLs and the Bayesian approach, even though the interpretation
of the numbers is different.

An alternate approach called power-constrained limits (PCL) is to leave the standard frequentist
procedure unchanged while adding an additional requirement for a parameter point to be considered
‘excluded’. The additional requirement is directly a measure of the sensitivity of to that parameter point
based on the notion of power (or Type II error). This approach makes the coverage of the procedure
manifest [28].

Surprisingly, one-sided upper limits on a bounded parameter are a subtle topic that has led to
debates among the experts of statistics in the collaborations and a string of interesting articles from
statisticians. The discussion is beyond the scope of the current version of these notes, but the interested
reader is invited and encouraged to read [34] and the responses from notable statisticians on the topic.
More recently Cousins tried to formalize the sensitivity problem in terms of a concept called Negatively
Biased Relevant Subsets (NBRS) [35]. While the power-constrained limits do not formally emit NBRS,
it is an interesting insight. Even more recently, Vitells has found interesting connections with CLs and
the work of Birnbaum [27,36]. This connection is significant since statisticians have primarily seen CLs
as an ad hoc procedure mixing the notion of size and power with no satisfying properties.
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Fig. 12: Taken from Fig.3 of [28]: (a) Upper limits from the PCL (solid), CLs and Bayesian (dashed), and classical
(dotted) procedures as a function of µ), which is assumed to follow a Gaussian distribution with unit standard
deviation. (b) The corresponding coverage probabilities as a function of µ.
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6 Bayesian Procedures
[This section is far from complete. Some key practical issues and references to other literature are given.]

Unsurprisingly, Bayesian procedures are based on Bayes’s theorem as in Eq. 3 and Eq. 5. The
Bayesian approach requires one to provide a prior over the parameters, which can be seen either as
an advantage or a disadvantage [37, 38]. In practical terms, one typically wants to build the posterior
distribution for the parameter of interest. This typically requires integrating, or marginalizing, over all
the nuisance parameters as in Eq. 14. These integrals can be over very high dimensional posteriors
with complicated structure. One of the most powerful algorithms for this integration is Markov Chain
Monte Carlo, described below. In terms of the prior one can either embrace the subjective Bayesian
approach [39] or take a more ’objective’ approach in which the prior is derived from formal rules. For
instance, Jeffreys’s Prior [40] or their generalization in terms of Reference Priors [41].

Given the logical importance of the choice of prior, it is generally recommended to try a few
options to see how the result numerically depends on the choice of priors (i.e.. sensitivity analysis). This
leads me to a few great quotes from prominent statisticians:

“Sensitivity analysis is at the heart of scientific Bayesianism” –Michael Goldstein

“Perhaps the most important general lesson is that the facile use of what appear to be uninformative
priors is a dangerous practice in high dimensions” -Brad Efron

“Meaningful prior specification of beliefs in probabilistic form over very large possibility spaces
is very difficult and may lead to a lot of arbitrariness in the specification” – Michael Goldstein

“Objective Bayesian analysis is the best frequentist tool around” –Jim Berger

6.1 Hybrid Bayesian-Frequentist methods
It is worth mentioning that in particle physics there has been widespread use of a hybrid Bayesian-
Frequentist approach in which one marginalizes nuisance parameters. Perhaps the most well known
example is due to a paper by Cousins and Highland [42]. In some instances one obtains a Bayesian-
averaged model that depends only on the parameters of interest

f̄(D|αpoi) =

∫
ftot(D|α)η(αnuis) dαnuis (85)

and then proceeds with the typical frequentist methodology for calculating p-values and constructing
confidence intervals. Note, in this approach the constraint terms that are appended to fsim of Eq. 2 to
obtain ftot of Eq. 6 are interpreted as in Eq. 5 and η(αnuts) is usually a uniform prior. Furthermore, the
global observables or auxiliary measurements ap are typically left fixed to their nominal or observed val-
ues and not randomized. In other variants the full model without constraints fsim(D|α) is used to define
the test statistic but the distribution of the test statistic is obtained by marginalizing (or randomizing) the
nuisance parameters as in Eq. 5. See the following references for more details [4, 43–49].

The shortcomings of this approach are that the coverage is not guaranteed and the method uses an
inconsistent notion of probability. Thus it is hard to define exactly what the p-values and intervals mean
in a formal sense.

6.2 Markov Chain Monte Carlo and the Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is used to construct a Markov chain {αi}, where the samples αi
are proportional to the target posterior density or likelihood function. The algorithm requires a proposal
function Q(α|α′) that gives the probability density to propose the point α given that the last point in
the chain is α′. Note, the density only depends on the last step in the chain, thus it is considered a
Markov process. At each step in the algorithm, a new point in parameter space is proposed and possibly
appended to the chain based on its likelihood relative to the current point in the chain. Even when
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the proposal density function is not symmetric, Metropolis Hastings maintains ‘detailed balance’ when
constructing the Markov chain by counterbalancing the relative likelihood between the two points with
the relative proposal density. That is, given the current point α, proposed point α′, likelihood function
L, and proposal density function Q, we visit α′ if and only if

L(α′)
L(α)

Q(α|α′)
Q(α′|α)

≥ Rand[0, 1] (86)

Note, if the proposal density is symmetric, Q(α|α′) = Q(α′|α), then the ratio of the proposal densities
can be neglected (which can be computationally expensive). Above we have written the algorithm to
sample the likelihood function L(α), but typically one would use the posterior π(α). Within RooStats
the Metropolis-Hastings algorithm is implemented with the MetropolisHastings class, which returns
a MarkovChain. Another powerful tool is the Bayesian Analysis Toolkit (BAT) [50]. Note, one can use
a RooFit / RooStats model in the BAT environment.

Note, an alternative to Markov Chain Monte Carlo is the nested sampling approach of Skilling [51]
and the MultiNest implementation [52].

Lastly, we mention that sampling algorithms associated to Bayesian belief networks and graphical
models may offer enormous advantages to both MCMC and nested sampling due to the fact that they can
take advantage of the conditional dependencies in the model.

6.3 Jeffreys’s and Reference Prior
One of the great advances in Bayesian methodology was the introduction of Jeffreys’s rule for selecting
a prior based on a formal rule [40]. The rule selects a prior that is invariant under reparametrization of
the observables and covariant with reparametrization of the parameters. The rule is based on information
theoretic arguments and the prior is given by the square root of the determinant of the Fisher information
matrix, which we first encountered in Eq. 7.

π(α) =
√

det Σ−1
pp′(α) =

√
det

[∫
ftot(D|α)

−∂2 log ftot(D|α)

∂αpαp′
dD
]

(87)

While the right-most form of the prior looks daunting with complex integrals over partial derivatives,
the Asimov data described in Sec. 5.5.1 and Ref. [1] provide a convenient way to calculate the Fisher
information. Fig. 13 and 14 show examples of RooStats numerical algorithm for calculating Jeffreys’s
prior compared to analytic results on a simple Gaussian and a Poisson model.

Unfortunately, Jeffreys’s prior does not behave well in multidimensional problems. Based on a
similar information theoretic approach, Bernardo and Berger have developed the Reference priors [53–
56] and the associated Reference analysis. While attractive in many ways, the approach is fairly difficult
to implement. Recently, there has been some progress within the particle physics context in deriving the
reference prior for problems relevant to particle physics [41, 57].

6.4 Likelihood Principle
For those interested in the deeper and more philosophical aspects of statistical inference, the likelihood
principle is incredibly interesting. This section will be expanded in the future, but for now I simply
suggest searching on the internet, the Wikipedia article, and Ref. [36]. In short the principle says that
all inference should be based on the likelihood function of the observed data. Frequentist procedures
violate the likelihood principle since p-values are tail probabilities associated to hypothetical outcomes
(not the observed data). Generally, Bayesian procedures and those based on the asymptotic properties of
likelihood tests do obey the likelihood principle. Somewhat ironically, the objective Bayesian procedures
such as Reference priors and Jeffreys’s prior can violate the likelihood principle since the prior is based
on expectations over hypothetical outcomes.

39

PRACTICAL STATISTICS FOR THE LHC

285



 RooWorkspace w("w");
  w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,0,10])");
  w.factory("n[10,.1,200]");
  w.factory("ExtendPdf::p(g,n)");
  w.var("n")->setConstant();

  w.var("sigma")->setConstant();
  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
  

Analytic
RooStats numerical

Fig. 13: Example code making a Gaussian distribution (with 10 events expected) and the Jeffreys Prior for µ and
σ calculated numerically in RooStats and compared to the analytic result.

  RooWorkspace w("w");
  w.factory("Uniform::u(x[0,1])");
  w.factory("mu[100,1,200]");
  w.factory("ExtendPdf::p(u,mu)");

  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  //  w.defineSet("obs2","n");

  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

Analytic
RooStats numerical

Fig. 14: Example code making a Poisson distribution (with 100 replications expected) and the Jeffreys Prior for µ
calculated numerically in RooStats and compared to the analytic result.

7 Unfolding
Another topic for the future. The basic aim of unfolding is to try to correct distributions back to the true
underlying distribution before detector ’smearing’. For now, see [58–65].

8 Conclusions
It was a pleasure to lecture at the 2011 ESHEP school in Cheile Gradistei and the 2013 CLASHEP school
in Peru. Quite a bit of progress has been made in the last few years in terms of statistical methodology, in
particular the formalization of a fully frequentist approach to incorporating systematics, a deeper under-
standing of the look-elsewhere effect, the development of asymptotic approximations of the distributions
important for particle physics, and in roads to Bayesian reference analysis. Furthermore, most of these
developments are general purpose and can be applied across diverse models. While those developments
are interesting, the most important area for most physicists to devote their attention in terms of statistics
is to improve the modeling of the data for his or her individual analysis.
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Cosmology

J. García-Bellido
Instituto de Física Teórica IFT-UAM/CSIC, Cantoblanco 28049 Madrid, Spain

Abstract
In these lectures I review the present status of the so-called Standard Cos-
mological Model, based on the hot Big Bang Theory and the Inflationary
Paradigm. I will make special emphasis on the recent developments in ob-
servational cosmology, mainly the acceleration of the universe, the precise
measurements of the microwave background anisotropies, and the formation
of structure like galaxies and clusters of galaxies from tiny primordial fluctua-
tions generated during inflation.

1 Introduction
The last ten years have seen the coming of age of Modern Cosmology, a mature branch of science
based on the hot Big Bang theory and the Inflationary Paradigm. In particular, we can now define rather
precisely a Standard Model of Cosmology, where the basic parameters are determined within small
uncertainties, of just a few percent, thanks to a host of experiments and observations. This precision era
of cosmology has become possible thanks to important experimental developments in all fronts, from
measurements of supernovae at high redshifts to the microwave background anisotropies, as well as to
the distribution of matter in galaxies and clusters of galaxies.

In these lecture notes I will first introduce the basic concepts and equations associated with hot
Big Bang cosmology, defining the main cosmological parameters and their corresponding relationships.
Then I will address in detail the three fundamental observations that have shaped our present knowledge:
the recent acceleration of the universe, the distribution of matter on large scales and the anisotropies in
the microwave background. Together these observations allow the precise determination of a handful of
cosmological parameters, in the context of the inflationary plus cold dark matter paradigm.

2 Big Bang Cosmology
Our present understanding of the universe is based upon the successful hot Big Bang theory, which
explains its evolution from the first fraction of a second to our present age, around 13.6 billion years
later. This theory rests upon four robust pillars, a theoretical framework based on general relativity,
as put forward by Albert Einstein [1] and Alexander A. Friedmann [2] in the 1920s, and three basic
observational facts: First, the expansion of the universe, discovered by Edwin P. Hubble [3] in the 1930s,
as a recession of galaxies at a speed proportional to their distance from us. Second, the relative abundance
of light elements, explained by George Gamow [4] in the 1940s, mainly that of helium, deuterium and
lithium, which were cooked from the nuclear reactions that took place at around a second to a few minutes
after the Big Bang, when the universe was a few times hotter than the core of the sun. Third, the cosmic
microwave background (CMB), the afterglow of the Big Bang, discovered in 1965 by Arno A. Penzias
and Robert W. Wilson [5] as a very isotropic blackbody radiation at a temperature of about 3 degrees
Kelvin, emitted when the universe was cold enough to form neutral atoms, and photons decoupled from
matter, approximately 380,000 years after the Big Bang. Today, these observations are confirmed to
within a few percent accuracy, and have helped establish the hot Big Bang as the preferred model of the
universe.

Modern Cosmology begun as a quantitative science with the advent of Einstein’s general rela-
tivity and the realization that the geometry of space-time, and thus the general attraction of matter, is
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determined by the energy content of the universe [6]

Gµν ≡ Rµν −
1

2
gµνR+ Λ gµν = 8πGTµν . (1)

These non-linear equations are simply too difficult to solve without invoking some symmetries of the
problem at hand: the universe itself.

We live on Earth, just 8 light-minutes away from our star, the Sun, which is orbiting at 8.5 kpc
from the center of our galaxy,1 the Milky Way, an ordinary galaxy within the Virgo cluster, of size a
few Mpc, itself part of a supercluster of size a few 100 Mpc, within the visible universe, approximately
10,000 Mpc in size. Although at small scales the universe looks very inhomogeneous and anisotropic,
the deepest galaxy catalogs like 2dF GRS and SDSS suggest that the universe on large scales (beyond the
supercluster scales) is very homogeneous and isotropic. Moreover, the cosmic microwave background,
which contains information about the early universe, indicates that the deviations from homogeneity and
isotropy were just a few parts per million at the time of photon decoupling. Therefore, we can safely
impose those symmetries to the univerge at large and determine the corresponding evolution equations.
The most general metric satisfying homogeneity and isotropy is the Friedmann-Robertson-Walker (FRW)
metric, written here in terms of the invariant geodesic distance ds2 = gµνdx

µdxν in four dimensions [6]
µ = 0, 1, 2, 3,2

ds2 = −dt2 + a2(t)

[
dr2

1−K r2
+ r2(dθ2 + sin2 θ dφ2)

]
, (2)

characterized by just two quantities, a scale factor a(t), which determines the physical size of the uni-
verse, and a constant K, which characterizes the spatial curvature of the universe,

(3)R =
6K

a2(t)





K = −1 OPEN
K = 0 FLAT
K = +1 CLOSED

(3)

Spatially open, flat and closed universes have different three-geometries. Light geodesics on these uni-
verses behave differently, and thus could in principle be distinguished observationally, as we shall discuss
later. Apart from the three-dimensional spatial curvature, we can also compute a four-dimensional space-
time curvature,

(4)R = 6
ä

a
+ 6

(
ȧ

a

)2

+ 6
K

a2
. (4)

Depending on the dynamics (and thus on the matter/energy content) of the universe, we will have dif-
ferent possible outcomes of its evolution. The universe may expand for ever, recollapse in the future or
approach an asymptotic state in between.

2.1 The matter and energy content of the universe
The most general matter fluid consistent with the assumption of homogeneity and isotropy is a perfect
fluid, one in which an observer comoving with the fluid would see the universe around it as isotropic. The
energy momentum tensor associated with such a fluid can be written as [6]

Tµν = p gµν + (p+ ρ)UµUν , (5)

where p(t) and ρ(t) are the pressure and energy density of the fluid at a given time in the expansion, as
measured by this comoving observer, and Uµ is the comoving four-velocity, satisfying UµUµ = −1. For
such a comoving observer, the matter content looks isotropic (in its rest frame),

Tµν = diag(−ρ(t), p(t), p(t), p(t)) . (6)
1One parallax second (1 pc), parsec for short, corresponds to a distance of about 3.26 light-years or 3.09× 1018 cm.
2I am using c = 1 everywhere, unless specified, and a metric signature (−,+,+,+).
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The conservation of energy (Tµν;ν = 0), a direct consequence of the general covariance of the theory
(Gµν;ν = 0), can be written in terms of the FRW metric and the perfect fluid tensor (5) as

ρ̇+ 3
ȧ

a
(p+ ρ) = 0 . (7)

In order to find explicit solutions, one has to supplement the conservation equation with an equa-
tion of state relating the pressure and the density of the fluid, p = p(ρ). The most relevant fluids in
cosmology are barotropic, i.e. fluids whose pressure is linearly proportional to the density, p = w ρ, and
therefore the speed of sound is constant in those fluids.

We will restrict ourselves in these lectures to three main types of barotropic fluids:

– Radiation, with equation of state pR = ρR/3, associated with relativistic degrees of freedom (i.e.
particles with temperatures much greater than their mass). In this case, the energy density of
radiation decays as ρR ∼ a−4 with the expansion of the universe.

– Matter, with equation of state pM ' 0, associated with nonrelativistic degrees of freedom (i.e.
particles with temperatures much smaller than their mass). In this case, the energy density of
matter decays as ρM ∼ a−3 with the expansion of the universe.

– Vacuum energy, with equation of state pV = −ρV , associated with quantum vacuum fluctuations.
In this case, the vacuum energy density remains constant with the expansion of the universe.

This is all we need in order to solve the Einstein equations. Let us now write the equations of
motion of observers comoving with such a fluid in an expanding universe. According to general relativity,
these equations can be deduced from the Einstein equations (1), by substituting the FRW metric (2) and
the perfect fluid tensor (5). The µ = i, ν = j component of the Einstein equations, together with the
µ = 0, ν = 0 component constitute the so-called Friedmann equations,

(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K

a2
, (8)

ä

a
= − 4πG

3
(ρ+ 3p) +

Λ

3
. (9)

These equations contain all the relevant dynamics, since the energy conservation equation (7) can be
obtained from these.

2.2 The Cosmological Parameters
I will now define the most important cosmological parameters. Perhaps the best known is the Hubble
parameter or rate of expansion today, H0 = ȧ/a(t0). We can write the Hubble parameter in units of 100
km s−1Mpc−1, which can be used to estimate the order of magnitude for the present size and age of the
universe,

H0 ≡ 100h km s−1Mpc−1 , (10)

cH−1
0 = 3000h−1 Mpc , (11)

H−1
0 = 9.773h−1 Gyr . (12)

The parameter h was measured to be in the range 0.4 < h < 1 for decades, and only in the last few years
has it been found to lie within 4% of h = 0.70. I will discuss those recent measurements in the next
Section.

Using the present rate of expansion, one can define a critical density ρc, that which corresponds
to a flat universe,

ρc ≡
3H2

0

8πG
= 1.88h2 10−29 g/cm3 (13)
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= 2.77h−1 1011 M�/(h−1 Mpc)3 (14)

= 11.26h2 protons/m3 , (15)

where M� = 1.989× 1033 g is a solar mass unit. The critical density ρc corresponds to approximately
6 protons per cubic meter, certainly a very dilute fluid!

In terms of the critical density it is possible to define the density parameter

Ω0 ≡
8πG

3H2
0

ρ(t0) =
ρ

ρc
(t0) , (16)

whose sign can be used to determine the spatial (three-)curvature. Closed universes (K = +1) have
Ω0 > 1, flat universes (K = 0) have Ω0 = 1, and open universes (K = −1) have Ω0 < 1, no matter
what are the individual components that sum up to the density parameter.

In particular, we can define the individual ratios Ωi ≡ ρi/ρc, for matter, radiation, cosmological
constant and even curvature, today,

ΩM =
8πGρM

3H2
0

ΩR =
8πGρR

3H2
0

(17)

ΩΛ =
Λ

3H2
0

ΩK = − K

a2
0H

2
0

. (18)

For instance, we can evaluate today the radiation component ΩR, corresponding to relativistic parti-
cles, from the density of microwave background photons, ρCMB = π2k4T 4

CMB/(15~3c3) = 4.5 ×
10−34 g/cm3, which gives ΩCMB = 2.4 × 10−5 h−2. Three approximately massless neutrinos would
contribute a similar amount. Therefore, we can safely neglect the contribution of relativistic particles to
the total density of the universe today, which is dominated either by non-relativistic particles (baryons,
dark matter or massive neutrinos) or by a cosmological constant, and write the rate of expansion in terms
of its value today, as

H2(a) = H2
0

(
ΩR

a4
0

a4
+ ΩM

a3
0

a3
+ ΩΛ + ΩK

a2
0

a2

)
. (19)

An interesting consequence of these definitions is that one can now write the Friedmann equation today,
a = a0, as a cosmic sum rule,

1 = ΩM + ΩΛ + ΩK , (20)

where we have neglected ΩR today. That is, in the context of a FRW universe, the total fraction of
matter density, cosmological constant and spatial curvature today must add up to one. For instance, if we
measure one of the three components, say the spatial curvature, we can deduce the sum of the other two.

Looking now at the second Friedmann equation (9), we can define another basic parameter, the
deceleration parameter,

q0 = −a ä
ȧ2

(t0) =
4πG

3H2
0

[
ρ(t0) + 3p(t0)

]
, (21)

defined so that it is positive for ordinary matter and radiation, expressing the fact that the universe expan-
sion should slow down due to the gravitational attraction of matter. We can write this parameter using
the definitions of the density parameter for known and unknown fluids (with density Ωx and arbitrary
equation of state w(z)) as

q0 = ΩR +
1

2
ΩM − ΩΛ +

1

2

∑

x

(1 + 3w) Ωx . (22)

Uniform expansion corresponds to q0 = 0 and requires a cancellation between the matter and vacuum
energies. For matter domination, q0 > 0, while for vacuum domination, q0 < 0. As we will see in a
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Fig. 1: Parameter space (ΩM , ΩΛ). The green (dashed) line ΩΛ = 1−ΩM corresponds to a flat universe, ΩK = 0,
separating open from closed universes. The blue (dotted) line ΩΛ = ΩM/2 corresponds to uniform expansion,
q0 = 0, separating accelerating from decelerating universes. The violet (dot-dashed) line corresponds to critical
universes, separating eternal expansion from recollapse in the future. Finally, the red (continuous) lines correspond
to t0H0 = 0.5, 0.6, . . . , ∞, beyond which the universe has a bounce.

moment, we are at present probing the time dependence of the deceleration parameter and can determine
with some accuracy the moment at which the universe went from a decelerating phase, dominated by
dark matter, into an acceleration phase at present, which seems to indicate the dominance of some kind
of vacuum energy.

2.3 The (ΩM , ΩΛ) plane
Now that we know that the universe is accelerating, one can parametrize the matter/energy content of
the universe with just two components: the matter, characterized by ΩM , and the vacuum energy ΩΛ.
Different values of these two parameters completely specify the universe evolution. It is thus natural to
plot the results of observations in the plane (ΩM , ΩΛ), in order to check whether we arrive at a consistent
picture of the present universe from several different angles (different sets of cosmological observations).

Moreover, different regions of this plane specify different behaviors of the universe. The bound-
aries between regions are well defined curves that can be computed for a given model. I will now describe
the various regions and boundaries.
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– Uniform expansion (q0 = 0). Corresponds to the line ΩΛ = ΩM/2. Points above this line
correspond to universes that are accelerating today, while those below correspond to decelerat-
ing universes, in particular the old cosmological model of Einstein-de Sitter (EdS), with ΩΛ =
0, ΩM = 1. Since 1998, all the data from Supernovae of type Ia appear above this line, many
standard deviations away from EdS universes.

– Flat universe (ΩK = 0). Corresponds to the line ΩΛ = 1 − ΩM . Points to the right of this line
correspond to closed universes, while those to the left correspond to open ones. In the last few
years we have mounting evidence that the universe is spatially flat (in fact Euclidean).

– Bounce (t0H0 = ∞). Corresponds to a complicated function of ΩΛ(ΩM ), normally expressed as
an integral equation, where

t0H0 =

∫ 1

0
da [1 + ΩM (1/a− 1) + ΩΛ(a2 − 1)]−1/2

is the product of the age of the universe and the present rate of expansion. Points above this line
correspond to universes that have contracted in the past and have later rebounced. At present, these
universes are ruled out by observations of galaxies and quasars at high redshift (up to z = 10).

– Critical Universe (H = Ḣ = 0, Ḧ > 0). Corresponds to the boundary between eternal expansion
in the future and recollapse. For ΩM ≤ 1, it is simply the line ΩΛ = 0, but for ΩM > 1, it is a
more complicated curve,

ΩΛ = 4ΩM sin3
[1

3
arcsin

(ΩM − 1

ΩM

)]
' 4

27

(ΩM − 1)3

Ω2
M

.

These critical solutions are asymptotic to the EdS model.

These boundaries, and the regions they delimit, can be seen in Fig. 1, together with the lines of
equal t0H0 values.

In summary, the basic cosmological parameters that are now been hunted by a host of cosmological
observations are the following: the present rate of expansion H0; the age of the universe t0; the deceler-
ation parameter q0; the spatial curvature ΩK ; the matter content ΩM ; the vacuum energy ΩΛ; the baryon
density ΩB; the neutrino density Ων , and many other that characterize the perturbations responsible for
the large scale structure (LSS) and the CMB anisotropies.

2.4 The accelerating universe
Let us first describe the effect that the expansion of the universe has on the objects that live in it. In the
absence of other forces but those of gravity, the trajectory of a particle is given by general relativity in
terms of the geodesic equation

duµ

ds
+ Γµνλ u

νuλ = 0 , (23)

where uµ = (γ, γvi), with γ2 = 1− v2 and vi is the peculiar velocity. Here Γµνλ is the Christoffel con-
nection [6], whose only non-zero component is Γ0

ij = (ȧ/a) gij ; substituting into the geodesic equation,
we obtain |~u| ∝ 1/a, and thus the particle’s momentum decays with the expansion like p ∝ 1/a. In the
case of a photon, satisfying the de Broglie relation p = h/λ, one obtains the well known photon redshift

λ1

λ0
=
a(t1)

a(t0)
⇒ z ≡ λ0 − λ1

λ1
=
a0

a1
− 1 , (24)

where λ0 is the wavelength measured by an observer at time t0, while λ1 is the wavelength emitted
when the universe was younger (t1 < t0). Normally we measure light from stars in distant galaxies and
compare their observed spectra with our laboratory (restframe) spectra. The fraction (24) then gives the
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redshift z of the object. We are assuming, of course, that both the emitted and the restframe spectra are
identical, so that we can actually measure the effect of the intervening expansion, i.e. the growth of the
scale factor from t1 to t0, when we compare the two spectra. Note that if the emitting galaxy and our own
participated in the expansion, i.e. if our measuring rods (our rulers) also expanded with the universe, we
would see no effect! The reason we can measure the redshift of light from a distant galaxy is because our
galaxy is a gravitationally bounded object that has decoupled from the expansion of the universe. It is
the distance between galaxies that changes with time, not the sizes of galaxies, nor the local measuring
rods.

We can now evaluate the relationship between physical distance and redshift as a function of the
rate of expansion of the universe. Because of homogeneity we can always choose our position to be at
the origin r = 0 of our spatial section. Imagine an object (a star) emitting light at time t1, at coordinate
distance r1 from the origin. Because of isotropy we can ignore the angular coordinates (θ, φ). Then the
physical distance, to first order, will be d = a0 r1. Since light travels along null geodesics [6], we can
write 0 = −dt2 + a2(t) dr2/(1−Kr2), and therefore,

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1−Kr2

≡ f(r1) =





arcsin r1 K = 1
r1 K = 0
arcsinh r1 K = −1

(25)

If we now Taylor expand the scale factor to first order,

1

1 + z
=
a(t)

a0
= 1 +H0(t− t0) +O(t− t0)2 , (26)

we find, to first approximation,

r1 ≈ f(r1) =
1

a0
(t0 − t1) + · · · = z

a0H0
+ . . .

Putting all together we find the famous Hubble law

H0 d = a0H0r1 = z ' vc , (27)

which is just a kinematical effect (we have not included yet any dynamics, i.e. the matter content of
the universe). Note that at low redshift (z � 1), one is tempted to associate the observed change in
wavelength with a Doppler effect due to a hypothetical recession velocity of the distant galaxy. This
is only an approximation. In fact, the redshift cannot be ascribed to the relative velocity of the distant
galaxy because in general relativity (i.e. in curved spacetimes) one cannot compare velocities through
parallel transport, since the value depends on the path! If the distance to the galaxy is small, i.e. z � 1,
the physical spacetime is not very different from Minkowsky and such a comparison is approximately
valid. As z becomes of order one, such a relation is manifestly false: galaxies cannot travel at speeds
greater than the speed of light; it is the stretching of spacetime which is responsible for the observed
redshift.

Hubble’s law has been confirmed by observations ever since the 1920s, with increasing precision,
which have allowed cosmologists to determine the Hubble parameter H0 with less and less systematic
errors. Nowadays, the best determination of the Hubble parameter was made by the Hubble Space
Telescope Key Project [8], H0 = 72± 8 km/s/Mpc. This determination is based on objects at distances
up to 500 Mpc, corresponding to redshifts z ≤ 0.1.

Nowadays, we are beginning to probe much greater distances, corresponding to z ' 1, thanks to
type Ia supernovae. These are white dwarf stars at the end of their life cycle that accrete matter from
a companion until they become unstable and violently explode in a natural thermonuclear explosion
that out-shines their progenitor galaxy. The intensity of the distant flash varies in time, it takes about
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Fig. 2: The Type Ia supernovae observed nearby show a relationship between their absolute luminosity and the
timescale of their light curve: the brighter supernovae are slower and the fainter ones are faster. A simple linear
relation between the absolute magnitude and a “stretch factor” multiplying the light curve timescale fits the data
quite well. From Ref. [7].

three weeks to reach its maximum brightness and then it declines over a period of months. Although
the maximum luminosity varies from one supernova to another, depending on their original mass, their
environment, etc., there is a pattern: brighter explosions last longer than fainter ones. By studying the
characteristic light curves, see Fig. 2, of a reasonably large statistical sample, cosmologists from the
Supernova Cosmology Project [7] and the High-redshift Supernova Project [9], are now quite confident
that they can use this type of supernova as a standard candle. Since the light coming from some of these
rare explosions has travelled a large fraction of the size of the universe, one expects to be able to infer
from their distribution the spatial curvature and the rate of expansion of the universe.

The connection between observations of high redshift supernovae and cosmological parameters
is done via the luminosity distance, defined as the distance dL at which a source of absolute luminosity
(energy emitted per unit time) L gives a flux (measured energy per unit time and unit area of the detector)
F = L/4π d2

L. One can then evaluate, within a given cosmological model, the expression for dL as a
function of redshift [10],

H0 dL(z) =
(1 + z)

|ΩK |1/2
sinn

[∫ z

0

|ΩK |1/2 dz′√
(1 + z′)2(1 + z′ΩM )− z′(2 + z′)ΩΛ

]
, (28)

where sinn(x) = x if K = 0; sin(x) if K = +1 and sinh(x) if K = −1, and we have used the cosmic
sum rule (20).

Astronomers measure the relative luminosity of a distant object in terms of what they call the
effective magnitude, which has a peculiar relation with distance,

m(z) ≡M + 5 log10

[dL(z)

Mpc

]
+ 25 = M̄ + 5 log10[H0 dL(z)] . (29)

Since 1998, several groups have obtained serious evidence that high redshift supernovae appear fainter
than expected for either an open (ΩM < 1) or a flat (ΩM = 1) universe, see Fig. 3. In fact, the universe
appears to be accelerating instead of decelerating, as was expected from the general attraction of matter,
see Eq. (22); something seems to be acting as a repulsive force on very large scales. The most natural
explanation for this is the presence of a cosmological constant, a diffuse vacuum energy that permeates
all space and, as explained above, gives the universe an acceleration that tends to separate gravitationally
bound systems from each other. The best-fit results from the Supernova Cosmology Project [11] give a
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Fig. 3: The Hubble diagram in linear redshift scale. Supernovae with ∆z < 0.05 of eachother have been weighted-
averaged binned. The solid curve represents the best-fit flat universe model, (ΩM = 0.29, ΩΛ = 0.71). Lower
panel: Residuals of the averaged data relative to a ΛCDM universe with fiducial cosmology. Dashed lines corre-
spond to w = −1± 0.1. From Ref. [13].

linear combination
0.8 ΩM − 0.6 ΩΛ = −0.16± 0.05 (1σ),

which is now many sigma away from an EdS model with Λ = 0. In particular, for a flat universe this
gives

ΩΛ = 0.71± 0.05 and ΩM = 0.29± 0.05 (1σ).

Surprising as it may seem, arguments for a significant dark energy component of the universe where
proposed long before these observations, in order to accommodate the ages of globular clusters, as well
as a flat universe with a matter content below critical, which was needed in order to explain the observed
distribution of galaxies, clusters and voids.

9

COSMOLOGY

299



Constant acceleration, q0<0, j0=0 

Constant deceleration, q0>0, j0=0 

Coasting, q0(z)=0 

Constant acceleration, q0<0, j0=0 

Constant deceleration, q0>0, j0=0 

Coasting, q0(z)=0 

Fig. 4: The Supernovae Ia residual Hubble diagram. Upper panel: Ground-based discoveries are represented by
diamonds, HST-discovered SNe Ia are shown as filled circles. Lower panel: The same but with weighted averaged
in fixed redshift bins. Kinematic models of the expansion history are shown relative to an eternally coasting model
q(z) = 0. Adapted from Ref. [13].

Taylor expanding the scale factor to third order,

a(t)

a0
= 1 +H0(t− t0)− q0

2!
H2

0 (t− t0)2 +
j0
3!
H3

0 (t− t0)3 +O(t− t0)4 , (30)

where

q0 = − ä

aH2
(t0) =

1

2

∑

i

(1 + 3wi)Ωi =
1

2
ΩM − ΩΛ , (31)

j0 = +

...
a

aH3
(t0) =

1

2

∑

i

(1 + 3wi)(2 + 3wi)Ωi = ΩM + ΩΛ , (32)

are the deceleration and “jerk” parameters. Substituting into Eq. (28) we find

H0 dL(z) = z +
1

2
(1− q0) z2 − 1

6
(1− q0 − 3q2

0 + j0) z3 +O(z4) . (33)

This expression goes beyond the leading linear term, corresponding to the Hubble law, into the second
and third order terms, which are sensitive to the cosmological parameters ΩM and ΩΛ. It is only recently
that cosmological observations have gone far enough back into the early universe that we can begin to
probe these terms, see Fig. 4.

This extra component of the critical density would have to resist gravitational collapse, otherwise
it would have been detected already as part of the energy in the halos of galaxies. However, if most of the
energy of the universe resists gravitational collapse, it is impossible for structure in the universe to grow.
This dilemma can be resolved if the hypothetical dark energy was negligible in the past and only recently
became the dominant component. According to general relativity, this requires that the dark energy have
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negative pressure, since the ratio of dark energy to matter density goes like a(t)−3p/ρ. This argument
would rule out almost all of the usual suspects, such as cold dark matter, neutrinos, radiation, and kinetic
energy, since they all have zero or positive pressure. Thus, we expect something like a cosmological
constant, with a negative pressure, p ≈ −ρ, to account for the missing energy.

However, if the universe was dominated by dark matter in the past, in order to form structure, and
only recently became dominated by dark energy, we must be able to see the effects of the transition from
the deceleration into the acceleration phase in the luminosity of distant type Ia supernovae. This has been
searched for since 1998, when the first convincing results on the present acceleration appeared. However,
only recently [12] do we have clear evidence of this transition point in the evolution of the universe. This
coasting point is defined as the time, or redshift, at which the deceleration parameter vanishes,

q(z) = −1 +
d lnH(z)

d ln(1 + z)
= 0 , (34)

where

H(z) = H0

[
ΩM (1 + z)3 + Ωx e

3
∫ z
0 (1+w(z′)) dz′

1+z′ + ΩK(1 + z)2
]1/2

, (35)

and we have assumed that the dark energy is parametrized by a density Ωx today, with a redshift-
dependent equation of state, w(z), not necessarily equal to −1. Of course, in the case of a true cos-
mological constant, this reduces to the usual expression.

Let us suppose for a moment that the barotropic parameter w is constant, then the coasting redshift
can be determined from

q(z) =
1

2

[ ΩM + (1 + 3w) Ωx (1 + z)3w

ΩM + Ωx (1 + z)3w + ΩK(1 + z)−1

]
= 0 , (36)

⇒ zc =

(
(3|w| − 1)Ωx

ΩM

) 1
3|w|
− 1 , (37)

which, in the case of a true cosmological constant, reduces to

zc =
(2ΩΛ

ΩM

)1/3
− 1 . (38)

When substituting ΩΛ ' 0.71 and ΩM ' 0.29, one obtains zc ' 0.7, in excellent agreement with recent
observations [13].

Now, if we have to live with this vacuum energy, we might as well try to understand its origin.
For the moment it is a complete mystery, perhaps the biggest mystery we have in physics today [14].
We measure its value but we don’t understand why it has the value it has. In fact, if we naively predict
it using the rules of quantum mechanics, we find a number that is many (many!) orders of magnitude
off the mark. Let us describe this calculation in some detail. In non-gravitational physics, the zero-point
energy of the system is irrelevant because forces arise from gradients of potential energies. However, we
know from general relativity that even a constant energy density gravitates. Let us write down the most
general energy momentum tensor compatible with the symmetries of the metric and that is covariantly
conserved. This is precisely of the form T

(vac)
µν = pV gµν = − ρV gµν , see Fig. 5. Substituting into

the Einstein equations (1), we see that the cosmological constant and the vacuum energy are completely
equivalent, Λ = 8πGρV , so we can measure the vacuum energy with the observations of the acceleration
of the universe, which tells us that ΩΛ ' 0.7.

On the other hand, we can estimate the contribution to the vacuum energy coming from the quan-
tum mechanical zero-point energy of the quantum oscillators associated with the fluctuations of all quan-
tum fields,

ρthV =
∑

i

∫ ΛUV

0

d3k

(2π)3

1

2
~ωi(k) =

~Λ4
UV

16π2

∑

i

(−1)FNi +O(m2
iΛ

2
UV ) , (39)
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where ΛUV is the ultraviolet cutoff signaling the scale of new physics. Taking the scale of quantum grav-
ity, ΛUV = MPl, as the cutoff, and barring any fortuituous cancellations, then the theoretical expectation
(39) appears to be 120 orders of magnitude larger than the observed vacuum energy associated with the
acceleration of the universe,

ρthV ' 1.4× 1074 GeV4 = 3.2× 1091 g/cm3 , (40)

ρobsV ' 0.7 ρc = 0.66× 10−29 g/cm3 = 2.9× 10−11 eV4 . (41)

Even if we assumed that the ultraviolet cutoff associated with quantum gravity was as low as the elec-
troweak scale, the theoretical expectation would still be 60 orders of magnitude too big. This is by far
the worst mismatch between theory and observations in all of science. There must be something seri-
ously wrong in our present understanding of gravity at the most fundamental level. Perhaps we don’t
understand the vacuum and its energy does not gravitate after all, or perhaps we need to impose a new
principle (or a symmetry) at the quantum gravity level to accommodate such a flagrant mismatch.

Fig. 5: Ordinary matter dilutes as it expands. According to the second law of Thermodynamics, its pressure on
the walls should be positive, which excerts a force, and energy is lost in the expansion. On the other hand, vacuum
energy is always the same, independent of the volume of the region, and thus, according to the second law, its
pressure must be negative and of the same magnitude as the energy density. This negative pressure means that
the volume tends to increase more and more rapidly, which explains the exponential expansion of the universe
dominated by a cosmological constant.

In the meantime, one can at least parametrize our ignorance by making variations on the idea of a
constant vacuum energy. Let us assume that it actually evolves slowly with time. In that case, we do not
expect the equation of state p = −ρ to remain true, but instead we expect the barotropic parameter w(z)
to depend on redshift. Such phenomenological models have been proposed, and until recently produced
results that were compatible withw = −1 today, but with enough uncertainty to speculate on alternatives
to a truly constant vacuum energy. However, with the recent supernovae results [12], there seems to be
little space for variations, and models of a time-dependent vacuum energy are less and less favoured. In
the near future, the SNAP satellite [15] will measure several thousand supernovae at high redshift and
therefore map the redshift dependence of both the dark energy density and its equation of state with great
precision. This will allow a much better determination of the cosmological parameters ΩM and ΩΛ.
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2.5 Thermodynamics of an expanding plasma
In this section I will describe the main concepts associated with ensembles of particles in thermal equi-
librium and the brief periods in which the universe fell out of equilibrium. To begin with, let me make
contact between the covariant energy conservation law (7) and the second law of thermodynamics,

T dS = dU + p dV , (42)

where U = ρ V is the total energy of the fluid, and p = w ρ is its barotropic pressure. Taking a comoving
volume for the universe, V = a3, we find

T
dS

dt
=

d

dt
(ρ a3) + p

d

dt
(a3) = 0 , (43)

where we have used (7). Therefore, entropy is conserved during the expansion of the universe, dS = 0;
i.e., the expansion is adiabatic even in those epochs in which the equation of state changes, like in the
matter-radiation transition (not a proper phase transition). Using (7), we can write

d

dt
ln(ρ a3) = −3H w . (44)

Thus, our universe expands like a gaseous fluid in thermal equilibrium at a temperature T . This tem-
perature decreases like that of any expanding fluid, in a way that is inversely proportional to the cubic
root of the volume. This implies that in the past the universe was necessarily denser and hotter. As we
go back in time we reach higher and higher temperatures, which implies that the mean energy of plasma
particles is larger and thus certain fundamental reactions are now possible and even common, giving rise
to processes that today we can only attain in particle physics accelerators. That is the reason why it is
so important, for the study of early universe, to know the nature of the fundamental interactions at high
energies, and the basic connection between cosmology and high energy particle physics. However, I
should clarify a misleading statement that is often used: “high energy particle physics colliders repro-
duce the early universe” by inducing collisions among relativistic particles. Although the energies of
some of the interactions at those collisions reach similar values as those attained in the early universe,
the physical conditions are rather different. The interactions within the detectors of the great particle
physics accelerators occur typically in the perturbative regime, locally, and very far from thermal equi-
librium, lasting a minute fraction of a second; on the other hand, the same interactions occurred within
a hot plasma in equilibrium in the early universe while it was expanding adiabatically and its duration
could be significantly larger, with a distribution in energy that has nothing to do with those associated
with particle accelerators. What is true, of course, is that the fundamental parameters corresponding to
those interactions−masses and couplings− are assumed to be the same, and therefore present terrestrial
experiments can help us imagine what it could have been like in the early universe, and make predictions
about the evolution of the universe, in the context of an expanding plasma a high temperatures and high
densities, and in thermal equilibrium.

2.5.1 Fluids in thermal equilibrium
In order to understand the thermodynamical behaviour of a plasma of different species of particles at high
temperatures we will consider a gas of particles with g internal degrees of freedom weakly interacting.
The degrees of freedom corresponding to the different particles can be seen in Table 1. For example,
leptons and quarks have 4 degrees of freedom since they correspond to the two helicities for both particle
and antiparticle. However, the nature of neutrinos is still unknown. If they happen to be Majorana
fermions, then they would be their own antiparticle and the number of degrees of freedom would reduce
to 2. For photons and gravitons (without mass) their 2 d.o.f. correspond to their states of polarization.
The 8 gluons (also without mass) are the gauge bosons responsible for the strong interaction betwen
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Particle Spin Degrees of freedom (g) Nature

Higgs 0 1 Massive scalar
photon 1 2 Massless vector
graviton 2 2 Massless tensor
gluon 1 2 Massless vector
W y Z 1 3 Massive vector
leptons & quarks 1/2 4 Dirac Fermion
neutrinos 1/2 4 (2) Dirac (Majorana) Fermion

Table 1: The internal degrees of freedom of various fundamental particles.

quarks, and also have 2 d.o.f. each. The vector bosons W± and Z0 are massive and thus, apart from the
transverse components of the polarization, they also have longitudinal components.

For each of these particles we can compute the number density n, the energy density ρ and the
pressure p, in thermal equilibrium at a given temperature T ,

n = g

∫
d3p

(2π)3
f(p) , (45)

ρ = g

∫
d3p

(2π)3
E(p) f(p) , (46)

p = g

∫
d3p

(2π)3

|p|2
3E

f(p) , (47)

where the energy is given by E2 = |p|2 + m2 and the momentum distribution in thermal (kinetic)
equilibrium is

f(p) =
1

e(E−µ)/T ± 1

{
−1 Bose− Einstein

+1 Fermi−Dirac
(48)

The chemical potential µ is conserved in these reactions if they are in thermal equilibrium. For example,
for reactions of the type i + j ←→ k + l , we have µi + µj = µk + µl. For example, the chemical
potencial of the photon vanishes µγ = 0, and thus particles and antiparticles have opposite chemical
potentials.

From the equilibrium distributions one can obtain the number density n, the energy ρ and the
pressure p, of a particle of mass m with chemical potential µ at the temperature T ,

n =
g

2π2

∫ ∞

m
dE

E(E2 −m2)1/2

e(E−µ)/T ± 1
, (49)

ρ =
g

2π2

∫ ∞

m
dE

E2(E2 −m2)1/2

e(E−µ)/T ± 1
, (50)

p =
g

6π2

∫ ∞

m
dE

(E2 −m2)3/2

e(E−µ)/T ± 1
. (51)

For a non-degenerate (µ� T ) relativistic gas (m� T ), we find

n =
g

2π2

∫ ∞

0

E2 dE

eE/T ± 1
=





ζ(3)

π2
g T 3 Bosons

3

4

ζ(3)

π2
g T 3 Fermions

, (52)
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ρ =
g

2π2

∫ ∞

0

E3 dE

eE/T ± 1
=





π2

30
g T 4 Bosons

7

8

π2

30
g T 4 Fermions

, (53)

p =
1

3
ρ , (54)

where ζ(3) = 1.20206 . . . is the Riemann Zeta function. For relativistic fluids, the energy density per
particle is

〈E〉 ≡ ρ

n
=





π4

30ζ(3)
T ' 2.701T Bosons

7π4

180ζ(3)
T ' 3.151T Fermions

(55)

For relativistic bosons or fermions with µ < 0 and |µ| < T , we have

n =
g

π2
T 3 eµ/T , (56)

ρ =
3g

π2
T 4 eµ/T , (57)

p =
1

3
ρ . (58)

For a bosonic particle, a positive chemical potential, µ > 0, indicates the presence of a Bose-Einstein
condensate, and should be treated separately from the rest of the modes.

On the other hand, for a non-relativistic gas (m� T ), with arbitrary chemical potential µ, we find

n = g

(
mT

2π

)3/2

e−(m−µ)/T , (59)

ρ = mn , (60)

p = nT � ρ . (61)

The average energy density per particle is

〈E〉 ≡ ρ

n
= m+

3

2
T . (62)

Note that, at any given temperature T , the contribution to the energy density of the universe coming
from non-relativistic particles in thermal equilibrium is exponentially suppressed with respect to that of
relativistic particles, therefore we can write

ρR =
π2

30
g∗ T 4 , pR =

1

3
ρR , (63)

g∗(T ) =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑

fermions

gi

(
Ti
T

)4

, (64)

where the factor 7/8 takes into account the difference between the Fermi and Bose statistics; g∗ is the
total number of light d.o.f. (m � T ), and we have also considered the possibility that particle species i
(bosons or fermions) have an equilibrium distribution at a temperature Ti different from that of photons,
as happens for example when a given relativistic species decouples from the thermal bath, as we will
discuss later. This number, g∗, strongly depends on the temperature of the universe, since as it expands
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and cools, different particles go out of equilibrium or become non-relativistic (m� T ) and thus become
exponentially suppressed from that moment on. A plot of the time evolution of g∗(T ) can be seen in
Fig. 6. For example, for T � 1 MeV, i.e. after the time of primordial Big Bang Nucleosynthesis (BBN)
and neutrino decoupling, the only relativistic species are the 3 light neutrinos and the photons; since the
temperature of the neutrinos is Tν = (4/11)1/3Tγ = 1.90 K, see below, we have g∗ = 2 + 3 × 7

4 ×(
4
11

)4/3
= 3.36, while g∗S = 2 + 3× 7

4 ×
(

4
11

)
= 3.91.

Fig. 6: The light degrees of freedom g∗ and g∗S as a function of the temperature of the universe. From Ref. [16].

For 1 MeV � T � 100 MeV, i.e. between BBN and the phase transition from a quark-gluon
plasma to hadrons and mesons, we have, as relativistic species, apart from neutrinos and photons, also
the electrons and positrons, so g∗ = 2 + 3× 7

4 + 2× 7
4 = 10.75.

For T � 250 GeV, i.e. above the electroweak (EW) symmetry breaking scale, we have one photon
(2 polarizations), 8 gluons (massless), theW± andZ0 (massive), 3 families of quarks & leptones, a Higgs
(still undiscovered), with which one finds g∗ = 427

4 = 106.75.

At temperatures well above the electroweak transition we ignore the number of d.o.f. of particles,
since we have never explored those energies in particle physics accelerators. Perhaps in the near future,
with the results of the Large Hadron Collider (LHC) at CERN, we may may predict the behaviour of the
universe at those energy scales. For the moment we even ignore whether the universe was in thermal
equilibrium at those temperatures. The highest energy scale at which we can safely say the universe
was in thermal equilibrium is that of BBN, i.e. 1 MeV, due to the fact that we observe the present
relative abundances of the light element produced at that time. For instance, we can’t even claim that the
universe went through the quark-gluon phase transtion, at ∼ 200 MeV, since we have not observed yet
any signature of such an event, not to mention the electroweak phase transition, at ∼ 1 TeV.

Let us now use the relation between the rate of expansion and the temperature of relativistic parti-
cles to obtain the time scale of the universe as a function of its temperature,

H = 1.66 g
1/2
∗

T 2

MP
=

1

2t
=⇒ t = 0.301 g

−1/2
∗

MP

T 2
∼
(

T

MeV

)−2

s , (65)

16

J. GARCÍA-BELLIDO

306



thus, e.g. at the EW scale (100 GeV) the universe was just 10−10 s old, while during the primordial BBN
(1− 0.1 MeV), it was 1 s to 3 min old.

2.5.2 The entropy of the universe
During most of the history of the universe, the rates of reaction, Γint, of particles in the thermal bath
are much bigger than the rate of expansion of the universe, H , so that local thermal equilibrium was
mantained. In this case, the entropy per comoving volume remained constant. In an expanding universe,
the second law of thermodynamics, applied to the element of comoving volume, of unit coordinate
volume and physical volume V = a3, can be written as, see (42),

T dS = d(ρ V ) + p dV = d[(ρ+ p)V ]− V dp . (66)

Using the Maxwell condition of integrability,
∂2S

∂T∂V
=

∂2S

∂V ∂T
, we find that dp = (ρ+p)dT/T , so that

dS = d

[
(ρ+ p)

V

T
+ const.

]
, (67)

i.e. the entropy in a comoving volume is S = (ρ + p)V/T , except for a constant. Using now the first
law, the covariant conservation of energy Tµν;ν = 0, we have

d
[
(ρ+ p)a3

]
= a3 dp =⇒ d

(
(ρ+ p)

a3

T

)
= 0 , (68)

and thus, in thermal equilibrium, the total entropy in a comoving volume, S = a3(ρ + p)/T , is con-
served. During most of the evolution of the universe, this entropy was dominated by the contribution
from relativistic particles,

S =
2π2

45
g∗S (aT )3 = const. , (69)

g∗S(T ) =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑

fermions

gi

(
Ti
T

)3

, (70)

where g∗S is the number of “entropic” degrees of freedom, as we can see in Fig. 8. Above the electron-
positron annihilation, all relativistic particles had the same temperature and thus g∗S = g∗. It may be also
useful to realize that the entropy density, s = S/a3, is propotional to the number density of relativistic
particles, and in particular to the number density of photons, s = 1.80g∗S nγ ; today, s = 7.04nγ .
However, since g∗S in general is a function of temperature, we can’t always interchange s and nγ .

The conservation of S implies that the entropy density satisfies s ∝ a−3, and thus the physical size
of the comoving volume is a3 ∝ s−1; therefore, the number of particles of a given species in a comoving
volume, N = a3n, is proportional to the number density of that species over the entropy density s,

N ∼ n

s
=





45ζ(3) g

2π4 g∗S
T � m, µ

45 g

4π5
√

2 g∗S

(m
T

)3/2
e−

m−µ
T T � m

(71)

If this number does not change, i.e. if those particles are neither created nor destroyed, then n/s remains
constant. As a useful example, we will consider the barionic number in a comoving volume,

nB
s
≡ nb − nb̄

s
. (72)
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As long as the interactions that violate barion number occur sufficiently slowly, the barionic number per
comoving volume, nB/s, will remain constant. Although

η ≡ nB
nγ

= 1.80 g∗S
nB
s
, (73)

the ratio between barion and photon numbers it does not remain constant during the whole evolution
of the universe since g∗S varies; e.g. during the annihilation of electrons and positrons, the number of
photons per comoving volume, Nγ = a3 nγ , grows a factor 11/4, and η decreases by the same factor.
After this epoch, however, g∗ is constant so that η ' 7nB/s and nB/s can be used indistinctly.

Another consequence of Eq, (69) is that S = const. implies that the temperature of the universe
evolves as

T ∝ g−1/3
∗S a−1 . (74)

As long as g∗S remains constant, we recover the well known result that the universe cools as it expands
according to T ∝ 1/a. The factor g−1/3

∗S appears because when a species becomes non-relativistic (when
T ≤ m), and effectively disappears from the energy density of the universe, its entropy is transferred
to the rest of the relativistic particles in the plasma, making T decrease not as quickly as 1/a, until g∗S
again becomes constant.

From the observational fact that the universe expands today one can deduce that in the past it must
have been hotter and denser, and that in the future it will be colder and more dilute. Since the ratio of
scale factors is determined by the redshift parameter z, we can obtain (to very good approximation) the
temperature of the universe in the past with

T = T0 (1 + z) . (75)

This expression has been spectacularly confirmed thanks to the absorption spectra of distant quasars [17].
These spectra suggest that the radiation background was acting as a thermal bath for the molecules in the
interstellar medium with a temperature of 9 K at a redshift z ∼ 2, and thus that in the past the photon
background was hotter than today. Furthermore, observations of the anisotropies in the microwave back-
ground confirm that the universe at a redshift z = 1089 had a temperature of 0.3 eV, in agreement with
Eq. (75).

2.6 The thermal evolution of the universe
In a strict mathematical sense, it is impossible for the universe to have been always in thermal equilibrium
since the FRW model does not have a timelike Killing vector. In practice, however, we can say that
the universe has been most of its history very close to thermal equilibrium. Of course, those periods
in which there were deviations from thermal equilibrium have been crucial for its evolution thereafter
(e.g. baryogenesis, QCD transition, primordial nucleosynthesis, recombination, etc.); without these the
universe today would be very different and probably we would not be here to tell the story.

The key to understand the thermal history of the universe is the comparison between the rates of
interaction between particles (microphysics) and the rate of expansion of the universe (macrophysics).
Ignoring for the moment the dependence of g∗ on temperature, the rate of change of T is given directly
by the rate of expansion, Ṫ /T = −H . As long as the local interactions − necessary in order that the
particle distribution function adjusts adiabatically to the change of temperature − are sufficiently fast
compared with the rate of expansion of the universe, the latter will evolve as a succession of states very
close to thermal equilibrium, with a temperature proportional to a−1. If we evaluate the interaction rates
as

Γint ≡ 〈nσ |v|〉 , (76)

where n(t) is the number density of target particles, σ is the cross section on the interaction and v is the
relative velocity of the reaction, all averaged on a thermal distribution; then a rule of thumb for ensuring
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that thermal equilibrium is maintained is
Γint ∼> H . (77)

This criterium is understandable. Suppose, as often occurs, that the interaction rate in thermal equilib-
rium is Γint ∝ Tn, with n > 2; then, the number of interactions of a particle after time t is

Nint =

∫ ∞

t
Γint(t

′)dt′ =
1

n− 2

Γint

H
(t) , (78)

therefore the particle interacts less than once from the moment in which Γint ≈ H . If Γint ∼> H , the
species remains coupled to the thermal plasma. This doesn’t mean that, necessarily, the particle is out
of local thermal equilibrium, since we have seen already that relativistic particles that have decoupled
retain their equilibrium distribution, only at a different temperature from that of the rest of the plasma.

In order to obtain an approximate description of the decoupling of a particle species in an expand-
ing universe, let us consider two types of interaction:

i) interactions mediated by massless gauge bosons, like for example the photon. In this case, the cross
section for particles with significant momentum transfer can be written as σ ∼ α2/T 2, with α = g2/4π
the coupling constant of the interaction. Assuming local thermal equilibrium, n(t) ∼ T 3 and thus the
interaction rate becomes Γ ∼ nσ |v| ∼ α2 T . Therefore,

Γ

H
∼ α2 MP

T
, (79)

so that for temperatures of the universe T ∼< α2MP ∼ 1016 GeV, the reactions are fast enough and the
plasma is in equilibrium, while for T ∼> 1016 GeV, reactions are too slow to maintain equilibrium and
it is said that they are “frozen-out”. An important consequence of this result is that the universe could
never have been in thermal equilibrium above the grand unification (GUT) scale.

ii) interactions mediated by massive gauge bosons, e.g. like the W± and Z0, or those responsible for the
GUT interactions, X and Y . We will generically call them X bosons. The cross section depends rather
strongly on the temperature of the plasma,

σ ∼





G2
XT

2 T �MX

α2

T 2
T �MX

(80)

where GX ∼ α/M2
X is the effective coupling constant of the interaction at energies well below the mass

of the vector boson, analogous to the Fermi constant of the electroweak interaction,GF = g2/(4
√

2M2
W )

at tree level. Note that for T � MX we recover the result for massless bosons, so we will concentrate
here on the other case. For T ≤MX , the rate of thermal interactions is Γ ∼ nσ |v| ∼ G2

X T
5. Therefore,

Γ

H
∼ G2

XMP T
3 , (81)

such that at temperatures in the range

MX ∼> T ∼> G
−2/3
X M

−1/3
P ∼

(
MX

100 GeV

)4/3

MeV , (82)

reactions occur so fast that the plasma is in thermal equilibrium, while for T ∼< (MX/100 GeV)4/3 MeV,
those reactions are too slow for maintaining equilibrium and they effective freeze-out, see Eq. (78).
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2.6.1 The decoupling of relativistic particles
Those relativistic particles that have decoupled from the thermal bath do not participate in the transfer of
entropy when the temperature of the universe falls below the mass thershold of a given species T ' m; in
fact, the temperature of the decoupled relativistic species falls as T ∝ 1/a, as we will now show. Suppose
that a relativistic particle is initially in local thermal equilibrium, and that it decoples at a temperature
TD and time tD. The phase space distribution at the time of decoupling is given by the equilibrium
distribution,

f(p, tD) =
1

eE/TD ± 1
. (83)

After decoupling, the energy of each massless particle suffers redshift, E(t) = ED (aD/a(t)). The
number density of particles also decreases, n(t) = nD (aD/a(t))3. Thus, the phase space distribution at
a time t > tD is

f(p, t) =
d3n

d3p
= f(p

a

aD
, tD) =

1

eEa/aDTD ± 1
=

1

eE/T ± 1
, (84)

so that we conclude that the distribution function of a particle that has decoupled while being relativistic
remains self-similar as the universe expands, with a temperature that decreases as

T = TD
aD
a
∝ a−1 , (85)

and not as g−1/3
∗S a−1, like the rest of the plasma in equilibrium (74).

2.6.2 The decoupling of non-relativistic particles
Those particles that decoupled from the thermal bath when they were non-relativistic (m � T ) behave
differently. Let us study the evolution of the distribution function of a non-relativistic particle that was
in local thermal equilibrium at a time tD, when the universe had a temperature TD. The moment of
each particle suffers redshift as the universe expands, |p| = |pD| (aD/a), see Eq. (24). Therefore, their
kinetic energy satisfies E = ED (aD/a)2. On the other hand, the particle number density also varies,
n(t) = nD (aD/a(t))3, so that a decoupled non-relativistic particle will have an equilibrium distribution
function characterized by a temperature

T = TD
a2
D

a2
∝ a−2 , (86)

and a chemical potential

µ(t) = m+ (µD −m)
T

TD
, (87)

whose variation is precisely that which is needed for the number density of particle to decrease as a−3.

In summary, a particle species that decouples from the thermal bath follows an equilibrium dis-
tribution function with a temperature that decreases like TR ∝ a−1 for relativistic particles (TD � m)
or like TNR ∝ a−2 for non-relativistic particles (TD � m). On the other hand, for semi-relativistic
particles (TD ∼ m), its phase space distribution does not maintain an equilibrium distribution function,
and should be computed case by case.

2.6.3 Brief thermal history of the universe
I will briefly summarize here the thermal history of the universe, from the Planck era to the present. As
we go back in time, the universe becomes hotter and hotter and thus the amount of energy available for
particle interactions increases. As a consequence, the nature of interactions goes from those described at
low energy by long range gravitational and electromagnetic physics, to atomic physics, nuclear physics,

20

J. GARCÍA-BELLIDO

310



all the way to high energy physics at the electroweak scale, gran unification (perhaps), and finally quan-
tum gravity. The last two are still uncertain since we do not have any experimental evidence for those
ultra high energy phenomena, and perhaps Nature has followed a different path.

The way we know about the high energy interactions of matter is via particle accelerators, which
are unravelling the details of those fundamental interactions as we increase in energy. However, one
should bear in mind that the physical conditions that take place in our high energy colliders are very
different from those that occurred in the early universe. These machines could never reproduce the
conditions of density and pressure in the rapidly expanding thermal plasma of the early universe. Nev-
ertheless, those experiments are crucial in understanding the nature and rate of the local fundamental
interactions available at those energies. What interests cosmologists is the statistical and thermal proper-
ties that such a plasma should have, and the role that causal horizons play in the final outcome of the early
universe expansion. For instance, of crucial importance is the time at which certain particles decoupled
from the plasma, i.e. when their interactions were not quick enough compared with the expansion of the
universe, and they were left out of equilibrium with the plasma.

One can trace the evolution of the universe from its origin till today. There is still some speculation
about the physics that took place in the universe above the energy scales probed by present colliders.
Nevertheless, the overall layout presented here is a plausible and hopefully testable proposal. According
to the best accepted view, the universe must have originated at the Planck era (1019 GeV, 10−43 s)
from a quantum gravity fluctuation. Needless to say, we don’t have any experimental evidence for such
a statement: Quantum gravity phenomena are still in the realm of physical speculation. However, it
is plausible that a primordial era of cosmological inflation originated then. Its consequences will be
discussed below. Soon after, the universe may have reached the Grand Unified Theories (GUT) era (1016

GeV, 10−35 s). Quantum fluctuations of the inflaton field most probably left their imprint then as tiny
perturbations in an otherwise very homogenous patch of the universe. At the end of inflation, the huge
energy density of the inflaton field was converted into particles, which soon thermalized and became the
origin of the hot Big Bang as we know it. Such a process is called reheating of the universe. Since
then, the universe became radiation dominated. It is probable (although by no means certain) that the
asymmetry between matter and antimatter originated at the same time as the rest of the energy of the
universe, from the decay of the inflaton. This process is known under the name of baryogenesis since
baryons (mostly quarks at that time) must have originated then, from the leftovers of their annihilation
with antibaryons. It is a matter of speculation whether baryogenesis could have occurred at energies
as low as the electroweak scale (100 GeV, 10−10 s). Note that although particle physics experiments
have reached energies as high as 100 GeV, we still do not have observational evidence that the universe
actually went through the EW phase transition. If confirmed, baryogenesis would constitute another
“window” into the early universe. As the universe cooled down, it may have gone through the quark-
gluon phase transition (102 MeV, 10−5 s), when baryons (mainly protons and neutrons) formed from
their constituent quarks.

The furthest window we have on the early universe at the moment is that of primordial nucleosyn-
thesis (1 − 0.1 MeV, 1 s – 3 min), when protons and neutrons were cold enough that bound systems
could form, giving rise to the lightest elements, soon after neutrino decoupling: It is the realm of nuclear
physics. The observed relative abundances of light elements are in agreement with the predictions of the
hot Big Bang theory. Immediately afterwards, electron-positron annihilation occurs (0.5 MeV, 1 min)
and all their energy goes into photons. Much later, at about (1 eV, ∼ 105 yr), matter and radiation have
equal energy densities. Soon after, electrons become bound to nuclei to form atoms (0.3 eV, 3 × 105

yr), in a process known as recombination: It is the realm of atomic physics. Immediately after, photons
decouple from the plasma, travelling freely since then. Those are the photons we observe as the cosmic
microwave background. Much later (∼ 1−10 Gyr), the small inhomogeneities generated during inflation
have grown, via gravitational collapse, to become galaxies, clusters of galaxies, and superclusters, char-
acterizing the epoch of structure formation. It is the realm of long range gravitational physics, perhaps
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dominated by a vacuum energy in the form of a cosmological constant. Finally (3K, 13 Gyr), the Sun,
the Earth, and biological life originated from previous generations of stars, and from a primordial soup
of organic compounds, respectively.

I will now review some of the more robust features of the Hot Big Bang theory of which we have
precise observational evidence.

2.6.4 Primordial nucleosynthesis and light element abundance
In this subsection I will briefly review Big Bang nucleosynthesis and give the present observational
constraints on the amount of baryons in the universe. In 1920 Eddington suggested that the sun might
derive its energy from the fusion of hydrogen into helium. The detailed reactions by which stars burn
hydrogen were first laid out by Hans Bethe in 1939. Soon afterwards, in 1946, George Gamow realized
that similar processes might have occurred also in the hot and dense early universe and gave rise to the
first light elements [4]. These processes could take place when the universe had a temperature of around
TNS ∼ 1 − 0.1 MeV, which is about 100 times the temperature in the core of the Sun, while the density
is ρNS = π2

30 g∗T
4
NS
∼ 82 g cm−3, about the same density as the core of the Sun. Note, however, that

although both processes are driven by identical thermonuclear reactions, the physical conditions in star
and Big Bang nucleosynthesis are very different. In the former, gravitational collapse heats up the core of
the star and reactions last for billions of years (except in supernova explosions, which last a few minutes
and creates all the heavier elements beyond iron), while in the latter the universe expansion cools the hot
and dense plasma in just a few minutes. Nevertheless, Gamow reasoned that, although the early period of
cosmic expansion was much shorter than the lifetime of a star, there was a large number of free neutrons
at that time, so that the lighter elements could be built up quickly by succesive neutron captures, starting
with the reaction n+ p→ D + γ. The abundances of the light elements would then be correlated with
their neutron capture cross sections, in rough agreement with observations [6, 18].

Nowadays, Big Bang nucleosynthesis (BBN) codes compute a chain of around 30 coupled nuclear
reactions [19], to produce all the light elements up to beryllium-7. 3 Only the first four or five elements
can be computed with accuracy better than 1% and compared with cosmological observations. These
light elements are H, 4He,D, 3He, 7Li, and perhaps also 6Li. Their observed relative abundance to
hydrogen is [1 : 0.25 : 3 · 10−5 : 2 · 10−5 : 2 · 10−10] with various errors, mainly systematic. The BBN
codes calculate these abundances using the laboratory measured nuclear reaction rates, the decay rate of
the neutron, the number of light neutrinos and the homogeneous FRW expansion of the universe, as a
function of only one variable, the number density fraction of baryons to photons, η ≡ nB/nγ . In fact,
the present observations are only consistent, see Fig. 9 and Ref. [18–20], with a very narrow range of
values of

η10 ≡ 1010 η = 6.2± 0.6 . (88)

Such a small value of η indicates that there is about one baryon per 109 photons in the universe today.
Any acceptable theory of baryogenesis should account for such a small number. Furthermore, the present
baryon fraction of the critical density can be calculated from η10 as

ΩBh
2 = 3.6271× 10−3 η10 = 0.0224± 0.0022 (95% c.l.) (89)

Clearly, this number is well below closure density, so baryons cannot account for all the matter in the
universe, as I shall discuss below.

2.6.5 Neutrino decoupling
Just before the nucleosynthesis of the lightest elements in the early universe, weak interactions were too
slow to keep neutrinos in thermal equilibrium with the plasma, so they decoupled. We can estimate the

3The rest of nuclei, up to iron (Fe), are produced in heavy stars, and beyond Fe in novae and supernovae explosions.
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Fig. 7: The relative abundance of light elements to Hidrogen. Note the large range of scales involved. From
Ref. [18].

temperature at which decoupling occurred from the weak interaction cross section, σw ' G2
FT

2 at finite
temperature T , where GF = 1.2× 10−5 GeV−2 is the Fermi constant. The neutrino interaction rate, via
W boson exchange in n+ ν ↔ p+ e− and p+ ν̄ ↔ n+ e+, can be written as [16]

Γν = nν〈σw|v|〉 ' G2
FT

5 , (90)

while the rate of expansion of the universe at that time (g∗ = 10.75) was H ' 5.4 T 2/MP, where
MP = 1.22 × 1019 GeV is the Planck mass. Neutrinos decouple when their interaction rate is slower
than the universe expansion, Γν ≤ H or, equivalently, at Tν−dec ' 0.8 MeV. Below this temperature,
neutrinos are no longer in thermal equilibrium with the rest of the plasma, and their temperature continues
to decay inversely proportional to the scale factor of the universe. Since neutrinos decoupled before
e+e− annihilation, the cosmic background of neutrinos has a temperature today lower than that of the
microwave background of photons. Let us compute the difference. At temperatures above the the mass
of the electron, T > me = 0.511 MeV, and below 0.8 MeV, the only particle species contributing to
the entropy of the universe are the photons (g∗ = 2) and the electron-positron pairs (g∗ = 4 × 7

8 ); total
number of degrees of freedom g∗ = 11

2 . At temperatures T ' me, electrons and positrons annihilate into
photons, heating up the plasma (but not the neutrinos, which had decoupled already). At temperatures
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T < me, only photons contribute to the entropy of the universe, with g∗ = 2 degrees of freedom.
Therefore, from the conservation of entropy, we find that the ratio of Tγ and Tν today must be

Tγ
Tν

=
(11

4

)1/3
= 1.401 ⇒ Tν = 1.945 K , (91)

where I have used TCMB = 2.725 ± 0.002 K. We still have not measured such a relic background of
neutrinos, and probably will remain undetected for a long time, since they have an average energy of
order 10−4 eV, much below that required for detection by present experiments (of order GeV), precisely
because of the relative weakness of the weak interactions. Nevertheless, it would be fascinating if, in the
future, ingenious experiments were devised to detect such a background, since it would confirm one of
the most robust features of Big Bang cosmology.

2.6.6 Matter-radiation equality
Relativistic species have energy densities proportional to the quartic power of temperature and therefore
scale as ρR ∝ a−4, while non-relativistic particles have essentially zero pressure and scale as ρM ∝ a−3.
Therefore, there will be a time in the evolution of the universe in which both energy densities are equal
ρR(teq) = ρM(teq). Since then both decay differently, and thus

1 + zeq =
a0

aeq
=

ΩM

ΩR
= 3.1× 104 ΩMh

2 , (92)

where I have used ΩRh
2 = ΩCMBh

2 + Ωνh
2 = 3.24× 10−5 for three massless neutrinos at T = Tν . As

I will show later, the matter content of the universe today is below critical, ΩM ' 0.3, while h ' 0.71,
and therefore (1 + zeq) ' 3400, or about teq = 1308 (ΩMh

2)−2yr ' 61, 000 years after the origin of
the universe. Around the time of matter-radiation equality, the rate of expansion (19) can be written as
(a0 ≡ 1)

H(a) = H0

(
ΩR a

−4 + ΩM a−3
)1/2

= H0 Ω
1/2
M a−3/2

(
1 +

aeq

a

)1/2
. (93)

The horizon size is the coordinate distance travelled by a photon since the beginning of the universe,
dH ∼ H−1, i.e. the size of causally connected regions in the universe. The comoving horizon size is
then given by

dH(a) =

∫
da

a2H(a)
=

2cH−1
0√

ΩM(1 + zeq)

(√ a

aeq
+ 1− 1

)
. (94)

Thus the horizon size at matter-radiation equality (a = aeq) is

dH(aeq) ' 14 (ΩMh)−1 Mpc/h . (95)

As we will see later, this scale plays a very important role in theories of structure formation.

2.6.7 Recombination and photon decoupling
As the temperature of the universe decreased, electrons could eventually become bound to protons to
form neutral hydrogen. Nevertheless, there is always a non-zero probability that a rare energetic photon
ionizes hydrogen and produces a free electron. The ionization fraction of electrons in equilibrium with
the plasma at a given temperature is given by the Saha equation [16]

1−Xeq
e

(Xeq
e )2

=
4
√

2ζ(3)√
π

η

(
T

me

)3/2

eEion/T , (96)

where Eion = 13.6 eV is the ionization energy of hydrogen, and η is the baryon-to-photon ratio (88). If
we now use Eq. (75), we can compute the ionization fraction Xeq

e as a function of redshift z. Note that
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the huge number of photons with respect to electrons (in the ratio 4He : H : γ ' 1 : 4 : 1010) implies
that even at a very low temperature, the photon distribution will contain a sufficiently large number of
high-energy photons to ionize a significant fraction of hydrogen. In fact, defining recombination as the
time at which Xeq

e ≡ 0.1, one finds that the recombination temperature is Trec = 0.296 eV � Eion,
for η10 ' 6.1. Comparing with the present temperature of the microwave background, we deduce the
corresponding redshift at recombination, (1 + zrec) ' 1260.

Photons remain in thermal equilibrium with the plasma of baryons and electrons through elastic
Thomson scattering, with cross section

σT =
8πα2

3m2
e

= 6.65× 10−25 cm2 = 0.665 barn , (97)

where α = 1/137.036 is the dimensionless electromagnetic coupling constant. The mean free path of
photons λγ in such a plasma can be estimated from the photon interaction rate, cλ−1

γ ' Γγ = neσT c. For
temperatures above a few eV, the mean free path is much smaller that the causal horizon at that time and
photons suffer multiple scattering: the plasma is like a dense fog. Photons will decouple from the plasma
when their interaction rate cannot keep up with the expansion of the universe and the mean free path
becomes larger than the horizon size: the universe becomes transparent. We can estimate this moment
by evaluating Γγ = H at photon decoupling. Using ne = Xe η nγ , one can compute the decoupling
temperature as Tdec = 0.256 eV, and the corresponding redshift as 1 + zdec ' 1090. Recently, WMAP
and Planck measured this redshift to be 1 + zdec ' 1089 ± 1 [21]. This redshift defines the so called
last scattering surface, when photons last scattered off protons and electrons and travelled freely ever
since. This decoupling occurred when the universe was approximately tdec = 1.5× 105 (ΩMh

2)−1/2 '
380, 000 years old.

Fig. 8: The Cosmic Microwave Background Spectrum seen by the FIRAS instrument on COBE. The CMB black-
body spectrum has a temperature T0 = 2.725± 0.002 K. From Ref. [22].
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2.6.8 The microwave background
One of the most remarkable observations ever made my mankind is the detection of the relic background
of photons from the Big Bang. This background was predicted by George Gamow and collaborators
in the 1940s, based on the consistency of primordial nucleosynthesis with the observed helium abun-
dance. They estimated a value of about 10 K, although a somewhat more detailed analysis by Alpher and
Herman in 1949 predicted Tγ ≈ 5 K. Unfortunately, they had doubts whether the radiation would have
survived until the present, and this remarkable prediction slipped into obscurity, until Dicke, Peebles,
Roll and Wilkinson [23] studied the problem again in 1965. Before they could measure the photon back-
ground, they learned that Penzias and Wilson had observed a weak isotropic background signal at a radio
wavelength of 7.35 cm, corresponding to a blackbody temperature of Tγ = 3.5 ± 1 K. They published
their two papers back to back, with that of Dicke et al. explaining the fundamental significance of their
measurement [6].

Since then many different experiments have confirmed the existence of the microwave background.
The most outstanding one has been the Cosmic Background Explorer (COBE) satellite, whose FIRAS
instrument measured the photon background with great accuracy over a wide range of frequencies (ν =
1− 97 cm−1), see Ref. [22], with a spectral resolution ∆ν

ν = 0.0035. Nowadays, the photon spectrum is
confirmed to be a blackbody spectrum with a temperature given by [22]

TCMB = 2.725± 0.002 K (systematic, 95% c.l.) ± 7 µK (1σ statistical) (98)

In fact, this is the best blackbody spectrum ever measured, see Fig. 8, with spectral distortions below the
level of 10 parts per million (ppm).

Moreover, the differential microwave radiometer (DMR) instrument on COBE, with a resolution
of about 7◦ in the sky, has also confirmed that it is an extraordinarily isotropic background. The devia-
tions from isotropy, i.e. differences in the temperature of the blackbody spectrum measured in different
directions in the sky, are of the order of 20µK on large scales, or one part in 105, see Ref. [24]. There
is, in fact, a dipole anisotropy of one part in 103, δT1 = 3.372 ± 0.007 mK (95% c.l.), in the direction
of the Virgo cluster, (l, b) = (264.14◦ ± 0.30, 48.26◦ ± 0.30) (95% c.l.). Under the assumption that a
Doppler effect is responsible for the entire CMB dipole, the velocity of the Sun with respect to the CMB
rest frame is v� = 371± 0.5 km/s, see Ref. [22].4 When subtracted, we are left with a whole spectrum
of anisotropies in the higher multipoles (quadrupole, octupole, etc.), δT2 = 18 ± 2 µK (95% c.l.), see
Ref. [24] and Fig. 9.

Soon after COBE, other groups quickly confirmed the detection of temperature anisotropies at
around 30µK and above, at higher multipole numbers or smaller angular scales. As I shall discuss below,
these anisotropies play a crucial role in the understanding of the origin of structure in the universe.

2.6.9 Large-scale structure formation
Although the isotropic microwave background indicates that the universe in the past was extraordinarily
homogeneous, we know that the universe today is not exactly homogeneous: we observe galaxies, clus-
ters and superclusters on large scales. These structures are expected to arise from very small primordial
inhomogeneities that grow in time via gravitational instability, and that may have originated from tiny
ripples in the metric, as matter fell into their troughs. Those ripples must have left some trace as temper-
ature anisotropies in the microwave background, and indeed such anisotropies were finally discovered
by the COBE satellite in 1992. The reason why they took so long to be discovered was that they appear
as perturbations in temperature of only one part in 105.

While the predicted anisotropies have finally been seen in the CMB, not all kinds of matter and/or
evolution of the universe can give rise to the structure we observe today. If we define the density contrast

4COBE even determined the annual variation due to the Earth’s motion around the Sun – the ultimate proof of Copernicus’
hypothesis.
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Fig. 9: The Cosmic Microwave Background Spectrum seen by the DMR instrument on COBE. The top figure
corresponds to the monopole, T0 = 2.725 ± 0.002 K. The middle figure shows the dipole, δT1 = 3.372 ± 0.014

mK, and the lower figure shows the quadrupole and higher multipoles, δT2 = 18 ± 2 µK. The central region
corresponds to foreground by the galaxy. From Ref. [24].

as [25]

δ(~x, a) ≡ ρ(~x, a)− ρ̄(a)

ρ̄(a)
=

∫
d3~k δk(a) ei

~k·~x , (99)

where ρ̄(a) = ρ0 a
−3 is the average cosmic density, we need a theory that will grow a density contrast

with amplitude δ ∼ 10−5 at the last scattering surface (z = 1100) up to density contrasts of the order of
δ ∼ 106 for galaxies at redshifts z � 1, i.e. today. This is a necessary requirement for any consistent
theory of structure formation [26].

Furthermore, the anisotropies observed by the Planck satellite correspond to a small-amplitude
scale-invariant primordial power spectrum of inhomogeneities

P (k) = 〈|δk|2〉 ∝ kn , with n = 1 , (100)
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where the brackets 〈·〉 represent integration over an ensemble of different universe realizations. These
inhomogeneities are like waves in the space-time metric. When matter fell in the troughs of those waves,
it created density perturbations that collapsed gravitationally to form galaxies and clusters of galaxies,
with a spectrum that is also scale invariant. Such a type of spectrum was proposed in the early 1970s by
Edward R. Harrison, and independently by the Russian cosmologist Yakov B. Zel’dovich, see Ref. [27],
to explain the distribution of galaxies and clusters of galaxies on very large scales in our observable
universe.

Fig. 10: The IRAS Point Source Catalog redshift survey contains some 15,000 galaxies, covering over 83% of the
sky up to redshifts of z ≤ 0.05. We show here the projection of the galaxy distribution in galactic coordinates.
From Ref. [28].

Today various telescopes – like the Hubble Space Telescope, the twin Keck telescopes in Hawaii
and the European Southern Observatory telescopes in Chile – are exploring the most distant regions of
the universe and discovering the first galaxies at large distances. The furthest galaxies observed so far are
at redshifts of z ' 10 (at a distance of 13.7 billion light years from Earth), whose light was emitted when
the universe had only about 3% of its present age. Only a few galaxies are known at those redshifts, but
there are at present various catalogs like the CfA and APM galaxy catalogs, and more recently the IRAS
Point Source redshift Catalog, see Fig. 10, and Las Campanas redshift surveys, that study the spatial
distribution of hundreds of thousands of galaxies up to distances of a billion light years, or z < 0.1,
or the 2 degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey (SDSS),
which reach z < 0.5 and study millions of galaxies. These catalogs are telling us about the evolution
of clusters and superclusters of galaxies in the universe, and already put constraints on the theory of
structure formation. From these observations one can infer that most galaxies formed at redshifts of the
order of 2 − 6; clusters of galaxies formed at redshifts of order 1, and superclusters are forming now.
That is, cosmic structure formed from the bottom up: from galaxies to clusters to superclusters, and not
the other way around. This fundamental difference is an indication of the type of matter that gave rise to
structure.

We know from Big Bang nucleosynthesis that all the baryons in the universe cannot account for
the observed amount of matter, so there must be some extra matter (dark since we don’t see it) to account
for its gravitational pull. Whether it is relativistic (hot) or non-relativistic (cold) could be inferred from
observations: relativistic particles tend to diffuse from one concentration of matter to another, thus trans-
ferring energy among them and preventing the growth of structure on small scales. This is excluded by
observations, so we conclude that most of the matter responsible for structure formation must be cold.
How much there is is a matter of debate at the moment. Some recent analyses suggest that there is not
enough cold dark matter to reach the critical density required to make the universe flat. If we want to
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make sense of the present observations, we must conclude that some other form of energy permeates the
universe. In order to resolve this issue, 2dFGRS and SDSS started taking data a few years ago. The first
has already been completed, but the second one is still taking data up to redshifts z ' 5 for quasars, over
a large region of the sky. These important observations will help astronomers determine the nature of the
dark matter and test the validity of the models of structure formation.

Before COBE discovered the anisotropies of the microwave background there were serious doubts
whether gravity alone could be responsible for the formation of the structure we observe in the universe
today. It seemed that a new force was required to do the job. Fortunately, the anisotropies were found
with the right amplitude for structure to be accounted for by gravitational collapse of primordial inho-
mogeneities under the attraction of a large component of non-relativistic dark matter. Nowadays, the
standard theory of structure formation is a cold dark matter model with a non vanishing cosmological
constant in a spatially flat universe. Gravitational collapse amplifies the density contrast initially through
linear growth and later on via non-linear collapse. In the process, overdense regions decouple from
the Hubble expansion to become bound systems, which start attracting eachother to form larger bound
structures. In fact, the largest structures, superclusters, have not yet gone non-linear.

The primordial spectrum (100) is reprocessed by gravitational instability after the universe be-
comes matter dominated and inhomogeneities can grow. Linear perturbation theory shows that the grow-
ing mode 5 of small density contrasts go like δ(a) ∝ a, in the Einstein-de Sitter limit [25, 26]. There are
slight deviations for a� aeq, if ΩM 6= 1 or ΩΛ 6= 0, but we will not be concerned with them here. The
important observation is that, since the density contrast at last scattering is of order δ ∼ 10−5, and the
scale factor has grown since then only a factor zdec ∼ 103, one would expect a density contrast today
of order δ0 ∼ 10−2. Instead, we observe structures like galaxies, where δ ∼ 106. So how can this be
possible? The microwave background shows anisotropies due to fluctuations in the baryonic matter com-
ponent only (to which photons couple, electromagnetically). If there is an additional matter component
that only couples through very weak interactions, fluctuations in that component could grow as soon as
it decoupled from the plasma, well before photons decoupled from baryons. The reason why baryonic
inhomogeneities cannot grow is because of photon pressure: as baryons collapse towards denser regions,
radiation pressure eventually halts the contraction and sets up acoustic oscillations in the plasma that
prevent the growth of perturbations, until photon decoupling. On the other hand, a weakly interacting
cold dark matter component could start gravitational collapse much earlier, even before matter-radiation
equality, and thus reach the density contrast amplitudes observed today. The resolution of this mismatch
is one of the strongest arguments for the existence of a weakly interacting cold dark matter component
of the universe.

How much dark matter there is in the universe can be deduced from the actual power spectrum (the
Fourier transform of the two-point correlation function of density perturbations) of the observed large
scale structure. One can decompose the density contrast in Fourier components, see Eq. (99). This is
very convenient since in linear perturbation theory individual Fourier components evolve independently.
A comoving wavenumber k is said to “enter the horizon” when k = d−1

H (a) = aH(a). If a certain
perturbation, of wavelength λ = k−1 < dH(aeq), enters the horizon before matter-radiation equality, the
fast radiation-driven expansion prevents dark-matter perturbations from collapsing. Since light can only
cross regions that are smaller than the horizon, the suppression of growth due to radiation is restricted
to scales smaller than the horizon, while large-scale perturbations remain unaffected. This is the reason
why the horizon size at equality, Eq. (95), sets an important scale for structure growth,

keq = d−1
H (aeq) ' 0.083 (ΩMh)h Mpc−1 . (101)

The suppression factor can be easily computed as fsup = (aenter/aeq)2 = (keq/k)2. In other words, the

5The decaying mode goes like δ(t) ∼ t−1, for all ω.
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Fig. 11: The power spectrum for cold dark matter (CDM), tilted cold dark matter (TCDM), hot dark matter
(HDM), and mixed hot plus cold dark matter (MDM), normalized to COBE, for large-scale structure formation.
From Ref. [29].

processed power spectrum P (k) will have the form:

P (k) ∝
{
k , k � keq

k−3 , k � keq

(102)

This is precisely the shape that large-scale galaxy catalogs are bound to test in the near future, see Fig. 11.
Furthermore, since relativistic Hot Dark Matter (HDM) transfer energy between clumps of matter, they
will wipe out small scale perturbations, and this should be seen as a distinctive signature in the matter
power spectra of future galaxy catalogs. On the other hand, non-relativistic Cold Dark Matter (CDM)
allow structure to form on all scales via gravitational collapse. The dark matter will then pull in the
baryons, which will later shine and thus allow us to see the galaxies.

Naturally, when baryons start to collapse onto dark matter potential wells, they will convert a large
fraction of their potential energy into kinetic energy of protons and electrons, ionizing the medium. As a
consequence, we expect to see a large fraction of those baryons constituting a hot ionized gas surrounding
large clusters of galaxies. This is indeed what is observed, and confirms the general picture of structure
formation.

3 Determination of Cosmological Parameters
In this Section, I will restrict myself to those recent measurements of the cosmological parameters by
means of standard cosmological techniques, together with a few instances of new results from recently
applied techniques. We will see that a large host of observations are determining the cosmological
parameters with some reliability of the order of 10%. However, the majority of these measurements are
dominated by large systematic errors. Most of the recent work in observational cosmology has been

30

J. GARCÍA-BELLIDO

320



the search for virtually systematic-free observables, like those obtained from the microwave background
anisotropies, and discussed in Section 4.4. I will devote, however, this Section to the more ‘classical’
measurements of the following cosmological parameters: The rate of expansion H0; the matter content
ΩM; the cosmological constant ΩΛ; the spatial curvature ΩK , and the age of the universe t0.

3.1 The rate of expansion H0

Over most of last century the value of H0 has been a constant source of disagreement [30]. Around
1929, Hubble measured the rate of expansion to be H0 = 500 km s−1Mpc−1, which implied an age of
the universe of order t0 ∼ 2 Gyr, in clear conflict with geology. Hubble’s data was based on Cepheid
standard candles that were incorrectly calibrated with those in the Large Magellanic Cloud. Later on,
in 1954 Baade recalibrated the Cepheid distance and obtained a lower value, H0 = 250 km s−1Mpc−1,
still in conflict with ratios of certain unstable isotopes. Finally, in 1958 Sandage realized that the bright-
est stars in galaxies were ionized HII regions, and the Hubble rate dropped down to H0 = 60 km s−1

Mpc−1, still with large (factor of two) systematic errors. Fortunately, in the past 15 years there has
been significant progress towards the determination of H0, with systematic errors approaching the 10%
level. These improvements come from two directions. First, technological, through the replacement of
photographic plates (almost exclusively the source of data from the 1920s to 1980s) with charged couple
devices (CCDs), i.e. solid state detectors with excellent flux sensitivity per pixel, which were previously
used successfully in particle physics detectors. Second, by the refinement of existing methods for mea-
suring extragalactic distances (e.g. parallax, Cepheids, supernovae, etc.). Finally, with the development
of completely new methods to determine H0, which fall into totally independent and very broad cate-
gories: a) Gravitational lensing; b) Sunyaev-Zel’dovich effect; c) Extragalactic distance scale, mainly
Cepheid variability and type Ia Supernovae; d) Microwave background anisotropies. I will review here
the first three, and leave the last method for Section 4.4, since it involves knowledge about the primordial
spectrum of inhomogeneities.

3.1.1 Gravitational lensing
Imagine a quasi-stellar object (QSO) at large redshift (z � 1) whose light is lensed by an intervening
galaxy at redshift z ∼ 1 and arrives to an observer at z = 0. There will be at least two different
images of the same background variable point source. The arrival times of photons from two different
gravitationally lensed images of the quasar depend on the different path lengths and the gravitational
potential traversed. Therefore, a measurement of the time delay and the angular separation of the different
images of a variable quasar can be used to determine H0 with great accuracy. This method, proposed in
1964 by Refsdael [31], offers tremendous potential because it can be applied at great distances and it is
based on very solid physical principles [32].

Unfortunately, there are very few systems with both a favourable geometry (i.e. a known mass
distribution of the intervening galaxy) and a variable background source with a measurable time delay.
That is the reason why it has taken so much time since the original proposal for the first results to come
out. Fortunately, there are now very powerful telescopes that can be used for these purposes. The best
candidate to-date is the QSO 0957 + 561, observed with the 10m Keck telescope, for which there is a
model of the lensing mass distribution that is consistent with the measured velocity dispersion. Assuming
a flat space with ΩM = 0.25, one can determine [33]

H0 = 72± 7 (1σ statistical) ± 15% (systematic) km s−1Mpc−1 . (103)

The main source of systematic error is the degeneracy between the mass distribution of the lens and
the value of H0. Knowledge of the velocity dispersion within the lens as a function of position helps
constrain the mass distribution, but those measurements are very difficult and, in the case of lensing by
a cluster of galaxies, the dark matter distribution in those systems is usually unknown, associated with a

31

COSMOLOGY

321



complicated cluster potential. Nevertheless, the method is just starting to give promising results and, in
the near future, with the recent discovery of several systems with optimum properties, the prospects for
measuring H0 and lowering its uncertainty with this technique are excellent.

3.1.2 Sunyaev-Zel’dovich effect
As discussed in the previous Section, the gravitational collapse of baryons onto the potential wells gen-
erated by dark matter gave rise to the reionization of the plasma, generating an X-ray halo around rich
clusters of galaxies, see Fig. 12. The inverse-Compton scattering of microwave background photons
off the hot electrons in the X-ray gas results in a measurable distortion of the blackbody spectrum
of the microwave background, known as the Sunyaev-Zel’dovich (SZ) effect. Since photons acquire
extra energy from the X-ray electrons, we expect a shift towards higher frequencies of the spectrum,
(∆ν/ν) ' (kBTgas/mec

2) ∼ 10−2. This corresponds to a decrement of the microwave background tem-
perature at low frequencies (Rayleigh-Jeans region) and an increment at high frequencies, see Ref. [34].

Fig. 12: The 3C438 cluster of galaxies, seen here in an optical image (left) and an X-ray image (right), taken
by Chandra X-ray Observatory. It is clear that the gas in the center of the cluster is very hot and has no optical
counterpart with any particular galaxy. From Ref. [35].

Measuring the spatial distribution of the SZ effect (3 K spectrum), together with a high resolution
X-ray map (108 K spectrum) of the cluster, one can determine the density and temperature distribution
of the hot gas. Since the X-ray flux is distance-dependent (F = L/4πd2

L), while the SZ decrement is
not (because the energy of the CMB photons increases as we go back in redshift, ν = ν0(1 + z), and
exactly compensates the redshift in energy of the photons that reach us), one can determine from there
the distance to the cluster, and thus the Hubble rate H0.

The advantages of this method are that it can be applied to large distances and it is based on
clear physical principles. The main systematics come from possible clumpiness of the gas (which would
reduce H0), projection effects (if the clusters are prolate, H0 could be larger), the assumption of hy-
drostatic equilibrium of the X-ray gas, details of models for the gas and electron densities, and possible
contaminations from point sources. Present measurements give the value [34]

H0 = 60± 10 (1σ statistical) ± 20% (systematic) km s−1Mpc−1 , (104)
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compatible with other determinations. A great advantage of this completely new and independent method
is that nowadays more and more clusters are observed in the X-ray, and soon we will have high-resolution
2D maps of the SZ decrement from several balloon flights, as well as from future microwave background
satellites, together with precise X-ray maps and spectra from the Chandra X-ray observatory recently
launched by NASA, as well as from the European X-ray satellite XMM launched a few months ago by
ESA, which will deliver orders of magnitude better resolution than the existing Einstein X-ray satellite.

3.1.3 Cepheid variability
Cepheids are low-mass variable stars with a period-luminosity relation based on the helium ionization
cycles inside the star, as it contracts and expands. This time variability can be measured, and the star’s
absolute luminosity determined from the calibrated relationship. From the observed flux one can then
deduce the luminosity distance, see Eq. (28), and thus the Hubble rate H0. The Hubble Space Telescope
(HST) was launched by NASA in 1990 (and repaired in 1993) with the specific project of calibrating the
extragalactic distance scale and thus determining the Hubble rate with 10% accuracy. The most recent
results from HST are the following [36]

H0 = 71± 4 (random) ± 7 (systematic) km s−1Mpc−1 . (105)

The main source of systematic error is the distance to the Large Magellanic Cloud, which provides the
fiducial comparison for Cepheids in more distant galaxies. Other systematic uncertainties that affect the
value of H0 are the internal extinction correction method used, a possible metallicity dependence of the
Cepheid period-luminosity relation and cluster population incompleteness bias, for a set of 21 galaxies
within 25 Mpc, and 23 clusters within z ∼< 0.03.

With better telescopes already taking data, like the Very Large Telescope (VLT) interferometer
of the European Southern Observatory (ESO) in the Chilean Atacama desert, with 8 synchronized tele-
scopes, and others coming up soon, like the Next Generation Space Telescope (NGST) proposed by
NASA for 2008, and the Gran TeCan of the European Northern Observatory in the Canary Islands, for
2010, it is expected that much better resolution and therefore accuracy can be obtained for the determi-
nation of H0.

3.2 Dark Matter
In the 1920s Hubble realized that the so called nebulae were actually distant galaxies very similar to our
own. Soon afterwards, in 1933, Zwicky found dynamical evidence that there is possibly ten to a hundred
times more mass in the Coma cluster than contributed by the luminous matter in galaxies [37]. However,
it was not until the 1970s that the existence of dark matter began to be taken more seriously. At that time
there was evidence that rotation curves of galaxies did not fall off with radius and that the dynamical
mass was increasing with scale from that of individual galaxies up to clusters of galaxies. Since then,
new possible extra sources to the matter content of the universe have been accumulating:

ΩM = ΩB, lum (stars in galaxies) (106)

+ ΩB, dark (MACHOs?) (107)

+ ΩCDM (weakly interacting : axion, neutralino?) (108)

+ ΩHDM (massive neutrinos?) (109)

The empirical route to the determination of ΩM is nowadays one of the most diversified of all
cosmological parameters. The matter content of the universe can be deduced from the mass-to-light ratio
of various objects in the universe; from the rotation curves of galaxies; from microlensing and the direct
search of Massive Compact Halo Objects (MACHOs); from the cluster velocity dispersion with the use
of the Virial theorem; from the baryon fraction in the X-ray gas of clusters; from weak gravitational
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lensing; from the observed matter distribution of the universe via its power spectrum; from the cluster
abundance and its evolution; from direct detection of massive neutrinos at SuperKamiokande; from direct
detection of Weakly Interacting Massive Particles (WIMPs) at CDMS, DAMA or UKDMC, and finally
from microwave background anisotropies. I will review here just a few of them.

3.2.1 Rotation curves of spiral galaxies
The flat rotation curves of spiral galaxies provide the most direct evidence for the existence of large
amounts of dark matter. Spiral galaxies consist of a central bulge and a very thin disk, stabilized against
gravitational collapse by angular momentum conservation, and surrounded by an approximately spher-
ical halo of dark matter. One can measure the orbital velocities of objects orbiting around the disk as a
function of radius from the Doppler shifts of their spectral lines.

The rotation curve of the Andromeda galaxy was first measured by Babcock in 1938, from the
stars in the disk. Later it became possible to measure galactic rotation curves far out into the disk, and
a trend was found [39, 40]. The orbital velocity rose linearly from the center outward until it reached a
typical value of 200 km/s, and then remained flat out to the largest measured radii. This was completely
unexpected since the observed surface luminosity of the disk falls off exponentially with radius [39],
I(r) = I0 exp(−r/rD). Therefore, one would expect that most of the galactic mass is concentrated
within a few disk lengths rD, such that the rotation velocity is determined as in a Keplerian orbit, vrot =
(GM/r)1/2 ∝ r−1/2. No such behaviour is observed. In fact, the most convincing observations come
from radio emission (from the 21 cm line) of neutral hydrogen in the disk, which has been measured
to much larger galactic radii than optical tracers. A typical case is that of the spiral galaxy NGC 6503,
where rD = 1.73 kpc, while the furthest measured hydrogen line is at r = 22.22 kpc, about 13 disk
lengths away. Nowadays, thousands of galactic rotation curves are known, see Fig. 14, and all suggest
the existence of about ten times more mass in the halos of spiral galaxies than in the stars of the disk. The
connection with dark matter halos was emphasized in Ref. [41]. Recent numerical simulations of galaxy
formation in a CDM cosmology [42] suggest that galaxies probably formed by the infall of material in
an overdense region of the universe that had decoupled from the overall expansion.

The dark matter is supposed to undergo violent relaxation and create a virialized system, i.e.
in hydrostatic equilibrium. This picture has led to a simple model of dark-matter halos as isothermal
spheres, with density profile ρ(r) = ρc/(r

2
c + r2), where rc is a core radius and ρc = v2

∞/4πG, with
v∞ equal to the plateau value of the flat rotation curve. This model is consistent with the universal
rotation curves seen in Fig. 6. At large radii the dark matter distribution leads to a flat rotation curve.
The question is for how long. In dense galaxy clusters one expects the galactic halos to overlap and
form a continuum, and therefore the rotation curves should remain flat from one galaxy to another.
However, in field galaxies, far from clusters, one can study the rotation velocities of substructures (like
satellite dwarf galaxies) around a given galaxy, and determine whether they fall off at sufficiently large
distances according to Kepler’s law, as one would expect, once the edges of the dark matter halo have
been reached. These observations are rather difficult because of uncertainties in distinguishing between
true satellites and interlopers. Recently, a group from the Sloan Digital Sky Survey Collaboration claim
that they have seen the edges of the dark matter halos around field galaxies by confirming the fall-off
at large distances of their rotation curves [43]. These results, if corroborated by further analysis, would
constitute a tremendous support to the idea of dark matter as a fluid surrounding galaxies and clusters,
while at the same time eliminates the need for modifications of Newtonian of even Einstenian gravity at
the scales of galaxies, to account for the flat rotation curves.

That’s fine, but how much dark matter is there at the galactic scale? Adding up all the matter in
galactic halos up to a maximum radii, one finds

Ωhalo ' 10 Ωlum ≥ 0.03− 0.05 . (110)

Of course, it would be extraordinary if we could confirm, through direct detection, the existence of dark
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Fig. 13: The rotation curves of several hundred galaxies. Upper panel: As a function of their radii in kpc. Middle
panel: The central 5 kpc. Lower panel: As a function of scale radius.

matter in our own galaxy. For that purpose, one should measure its rotation curve, which is much more
difficult because of obscuration by dust in the disk, as well as problems with the determination of reliable
galactocentric distances for the tracers. Nevertheless, the rotation curve of the Milky Way has been
measured and conforms to the usual picture, with a plateau value of the rotation velocity of 220 km/s.
For dark matter searches, the crucial quantity is the dark matter density in the solar neighbourhood, which
turns out to be (within a factor of two uncertainty depending on the halo model) ρDM = 0.3 GeV/cm3.
We will come back to direct searched of dark matter in a later subsection.
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3.2.2 Baryon fraction in clusters
Since large clusters of galaxies form through gravitational collapse, they scoop up mass over a large
volume of space, and therefore the ratio of baryons over the total matter in the cluster should be rep-
resentative of the entire universe, at least within a 20% systematic error. Since the 1960s, when X-ray
telescopes became available, it is known that galaxy clusters are the most powerful X-ray sources in the
sky [44]. The emission extends over the whole cluster and reveals the existence of a hot plasma with
temperature T ∼ 107 − 108 K, where X-rays are produced by electron bremsstrahlung. Assuming the
gas to be in hydrostatic equilibrium and applying the virial theorem one can estimate the total mass in
the cluster, giving general agreement (within a factor of 2) with the virial mass estimates. From these
estimates one can calculate the baryon fraction of clusters

fBh
3/2 = 0.08 ⇒ ΩB

ΩM
≈ 0.14 , for h = 0.70 . (111)

Since Ωlum ' 0.002 − 0.006, the previous expression suggests that clusters contain far more baryonic
matter in the form of hot gas than in the form of stars in galaxies. Assuming this fraction to be repre-
sentative of the entire universe, and using the Big Bang nucleosynthesis value of ΩB = 0.04± 0.01, for
h = 0.7, we find

ΩM = 0.3± 0.1 (statistical) ± 20% (systematic) . (112)

This value is consistent with previous determinations of ΩM . If some baryons are ejected from the cluster
during gravitational collapse, or some are actually bound in nonluminous objects like planets, then the
actual value of ΩM is smaller than this estimate.

3.2.3 Weak gravitational lensing
Since the mid 1980s, deep surveys with powerful telescopes have observed huge arc-like features in
galaxy clusters. The spectroscopic analysis showed that the cluster and the giant arcs were at very differ-
ent redshifts. The usual interpretation is that the arc is the image of a distant background galaxy which
is in the same line of sight as the cluster so that it appears distorted and magnified by the gravitational
lens effect: the giant arcs are essentially partial Einstein rings. From a systematic study of the clus-
ter mass distribution one can reconstruct the shear field responsible for the gravitational distortion [45].
This analysis shows that there are large amounts of dark matter in the clusters, in rough agreement with
the virial mass estimates, although the lensing masses tend to be systematically larger. At present, the
estimates indicate ΩM = 0.2− 0.3 on scales ∼< 6h−1 Mpc.

3.2.4 Large scale structure formation and the matter power spectrum
Although the isotropic microwave background indicates that the universe in the past was extraordinarily
homogeneous, we know that the universe today is far from homogeneous: we observe galaxies, clusters
and superclusters on large scales. These structures are expected to arise from very small primordial inho-
mogeneities that grow in time via gravitational instability, and that may have originated from tiny ripples
in the metric, as matter fell into their troughs. Those ripples must have left some trace as temperature
anisotropies in the microwave background, and indeed such anisotropies were finally discovered by the
COBE satellite in 1992. However, not all kinds of matter and/or evolution of the universe can give rise
to the structure we observe today. If we define the density contrast as

δ(~x, a) ≡ ρ(~x, a)− ρ̄(a)

ρ̄(a)
=

∫
d3~k δk(a) ei

~k·~x , (113)

where ρ̄(a) = ρ0 a
−3 is the average cosmic density, we need a theory that will grow a density contrast

with amplitude δ ∼ 10−5 at the last scattering surface (z = 1100) up to density contrasts of the order of
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Fig. 14: The 2 degree Field Galaxy Redshift Survey contains some 250,000 galaxies, covering a large fraction of
the sky up to redshifts of z ≤ 0.25. From Ref. [46].

δ ∼ 106 for galaxies at redshifts z � 1, i.e. today. This is a necessary requirement for any consistent
theory of structure formation.

Furthermore, the anisotropies observed by the COBE satellite correspond to a small-amplitude
scale-invariant primordial power spectrum of inhomogeneities

P (k) = 〈|δk|2〉 ∝ kn , with n = 1 , (114)

These inhomogeneities are like waves in the space-time metric. When matter fell in the troughs of those
waves, it created density perturbations that collapsed gravitationally to form galaxies and clusters of
galaxies, with a spectrum that is also scale invariant. Such a type of spectrum was proposed in the early
1970s by Edward R. Harrison, and independently by the Russian cosmologist Yakov B. Zel’dovich [27],
to explain the distribution of galaxies and clusters of galaxies on very large scales in our observable
universe, see Fig. 14.

Since the primordial spectrum is very approximately represented by a scale-invariant Gaussian
random field, the best way to present the results of structure formation is by working with the 2-point
correlation function in Fourier space, the so-called power spectrum. If the reprocessed spectrum of in-
homogeneities remains Gaussian, the power spectrum is all we need to describe the galaxy distribution.
Non-Gaussian effects are expected to arise from the non-linear gravitational collapse of structure, and
may be important at small scales. The power spectrum measures the degree of inhomogeneity in the
mass distribution on different scales, see Fig. 15. It depends upon a few basic ingredientes: a) the pri-
mordial spectrum of inhomogeneities, whether they are Gaussian or non-Gaussian, whether adiabatic
(perturbations in the energy density) or isocurvature (perturbations in the entropy density), whether the
primordial spectrum has tilt (deviations from scale-invariance), etc.; b) the recent creation of inhomo-
geneities, whether cosmic strings or some other topological defect from an early phase transition are
responsible for the formation of structure today; and c) the cosmic evolution of the inhomogeneity,
whether the universe has been dominated by cold or hot dark matter or by a cosmological constant since
the beginning of structure formation, and also depending on the rate of expansion of the universe.

The working tools used for the comparison between the observed power spectrum and the pre-
dicted one are very precise N-body numerical simulations and theoretical models that predict the shape
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Fig. 15: The measured power spectrum P (k) as a function of wavenumber k. From observations of the Sloan Dig-
ital Sky Survey, CMB anisotropies, cluster abundance, gravitational lensing and Lyman-α forest. From Ref. [47].

but not the amplitude of the present power spectrum. Even though a large amount of work has gone
into those analyses, we still have large uncertainties about the nature and amount of matter necessary for
structure formation. A model that has become a working paradigm is a flat cold dark matter model with
a cosmological constant and ΩM ∼ 0.3. This model is now been confronted with the recent very precise
measurements from 2dFGRS [46] and SDSS [47].

3.2.5 The new redshift catalogs, 2dF and Sloan Digital Sky Survey
Our view of the large-scale distribution of luminous objects in the universe has changed dramatically
during the last 25 years: from the simple pre-1975 picture of a distribution of field and cluster galax-
ies, to the discovery of the first single superstructures and voids, to the most recent results showing an
almost regular web-like network of interconnected clusters, filaments and walls, separating huge nearly
empty volumes. The increased efficiency of redshift surveys, made possible by the development of spec-
trographs and – specially in the last decade – by an enormous increase in multiplexing gain (i.e. the
ability to collect spectra of several galaxies at once, thanks to fibre-optic spectrographs), has allowed
us not only to do cartography of the nearby universe, but also to statistically characterize some of its
properties. At the same time, advances in theoretical modeling of the development of structure, with
large high-resolution gravitational simulations coupled to a deeper yet limited understanding of how to
form galaxies within the dark matter halos, have provided a more realistic connection of the models to
the observable quantities. Despite the large uncertainties that still exist, this has transformed the study of
cosmology and large-scale structure into a truly quantitative science, where theory and observations can
progress together.
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Fig. 16: The observed cosmic matter components as functions of the Hubble expansion parameter. The luminous
matter component is given by 0.002 ≤ Ωlum ≤ 0.006; the galactic halo component is the horizontal band, 0.03 ≤
Ωhalo ≤ 0.05, crossing the baryonic component from BBN, ΩB h

2 = 0.0244 ± 0.0024; and the dynamical mass
component from large scale structure analysis is given by ΩM = 0.3 ± 0.1. Note that in the range H0 = 71 ± 3

km/s/Mpc, there are three dark matter problems, see the text. From Ref. [48].

3.2.6 Summary of the matter content
We can summarize the present situation with Fig. 16, for ΩM as a function of H0. There are four bands,
the luminous matter Ωlum; the baryon content ΩB , from BBN; the galactic halo component Ωhalo, and
the dynamical mass from clusters, ΩM . From this figure it is clear that there are in fact three dark matter
problems: The first one is where are 90% of the baryons? Between the fraction predicted by BBN and
that seen in stars and diffuse gas there is a huge fraction which is in the form of dark baryons. They could
be in small clumps of hydrogen that have not started thermonuclear reactions and perhaps constitute the
dark matter of spiral galaxies’ halos. Note that although ΩB and Ωhalo coincide at H0 ' 70 km/s/Mpc,
this could be just a coincidence. The second problem is what constitutes 90% of matter, from BBN
baryons to the mass inferred from cluster dynamics? This is the standard dark matter problem and could
be solved in the future by direct detection of a weakly interacting massive particle in the laboratory. And
finally, since we know from observations of the CMB that the universe is flat, the rest, up to Ω0 = 1,
must be a diffuse vacuum energy, which affects the very large scales and late times, and seems to be
responsible for the present acceleration of the universe, see Section 3. Nowadays, multiple observations
seem to converge towards a common determination of ΩM = 0.25± 0.08 (95% c.l.), see Fig. 17.

3.2.7 Massive neutrinos
One of the ‘usual suspects’ when addressing the problem of dark matter are neutrinos. They are the
only candidates known to exist. If neutrinos have a mass, could they constitute the missing matter?
We know from the Big Bang theory, see Section 2.6.5, that there is a cosmic neutrino background at a
temperature of approximately 2K. This allows one to compute the present number density in the form of
neutrinos, which turns out to be, for massless neutrinos, nν(Tν) = 3

11 nγ(Tγ) = 112 cm−3, per species
of neutrino. Since neutrinos have mass, see Fig. 18, the cosmic energy density in massive neutrinos
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Fig. 17: Different determinations of ΩM as a function of distance, from various sources: 1. peculiar velocities; 2.
weak gravitacional lensing; 3. shear autocorrelation function; 4. local group of galaxies; 5. baryon mass fraction;
6. cluster mass function; 7. virgocentric flow; 8. mean relative velocities; 9. redshift space distortions; 10.
mass power spectrum; 11. integrated Sachs-Wolfe effect; 12. angular diameter distance: SNe; 13. cluster baryon
fraction. While a few years ago the dispersion among observed values was huge and strongly dependent on scale,
at present the observed value of the matter density parameter falls well within a narrow range, ΩM = 0.25± 0.07

(95% c.l.) and is essentially independent on scale, from 100 kpc to 5000 Mpc. Adapted from Ref. [49].

would be ρν =
∑
nνmν = 3

11 nγ
∑
mν , and therefore its contribution today,

Ωνh
2 =

∑
mν

93.2 eV
. (115)

The discussion in the previous Sections suggest that ΩM ≤ 0.4, and thus, for any of the three families
of neutrinos, mν ≤ 40 eV. Note that this limit improves by six orders of magnitude the present bound
on the tau-neutrino mass [20]. Supposing that the missing mass in non-baryonic cold dark matter arises
from a single particle dark matter (PDM) component, its contribution to the critical density is bounded
by 0.05 ≤ ΩPDMh

2 ≤ 0.4, see Fig. 17.

I will now go through the various logical arguments that exclude neutrinos as the dominant compo-
nent of the missing dark matter in the universe. Is it possible that neutrinos with a mass 4 eV ≤ mν ≤ 40
eV be the non-baryonic PDM component? For instance, could massive neutrinos constitute the dark
matter halos of galaxies? For neutrinos to be gravitationally bound to galaxies it is necessary that their
velocity be less that the escape velocity vesc, and thus their maximum momentum is pmax = mν vesc.
How many neutrinos can be packed in the halo of a galaxy? Due to the Pauli exclusion principle,
the maximum number density is given by that of a completely degenerate Fermi gas with momen-
tum pF = pmax, i.e. nmax = p3

max/3π
2. Therefore, the maximum local density in dark matter

neutrinos is ρmax = nmaxmν = m4
ν v

3
esc/3π

2, which must be greater than the typical halo density
ρhalo = 0.3 GeV cm−3. For a typical spiral galaxy, this constraint, known as the Tremaine-Gunn limit,
gives mν ≥ 40 eV, see Ref. [51]. However, this mass, even for a single species, say the tau-neutrino,
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Fig. 18: The neutrino parameter space, mixing angle against ∆m2, including the results from the different solar
and atmospheric neutrino oscillation experiments. Note the threshold of cosmologically important masses, cos-
mologically detectable neutrinos (by CMB and LSS observations), and cosmologically excluded range of masses.
Adapted from Refs. [50] and [95].

gives a value for Ωνh
2 = 0.5, which is far too high for structure formation. Neutrinos of such a low

mass would constitute a relativistic hot dark matter component, which would wash-out structure below
the supercluster scale, against evidence from present observations, see Fig. 18. Furthermore, apply-
ing the same phase-space argument to the neutrinos as dark matter in the halo of dwarf galaxies gives
mν ≥ 100 eV, beyond closure density (115). We must conclude that the simple idea that light neutrinos
could constitute the particle dark matter on all scales is ruled out. They could, however, still play a role
as a sub-dominant hot dark matter component in a flat CDM model. In that case, a neutrino mass of order
1 eV is not cosmological excluded, see Fig. 18.

Another possibility is that neutrinos have a large mass, of order a few GeV. In that case, their num-
ber density at decoupling, see Section 2.5.1, is suppressed by a Boltzmann factor, ∼ exp(−mν/Tdec).
For masses mν > Tdec ' 0.8 MeV, the present energy density has to be computed as a solution
of the corresponding Boltzmann equation. Apart from a logarithmic correction, one finds Ωνh

2 '
0.1(10 GeV/mν)2 for Majorana neutrinos and slightly smaller for Dirac neutrinos. In either case, neu-
trinos could be the dark matter only if their mass was a few GeV. Laboratory limits for ντ of around 18
MeV [20], and much more stringent ones for νµ and νe, exclude the known light neutrinos. However,
there is always the possibility of a fourth unknown heavy and stable (perhaps sterile) neutrino. If it
couples to the Z boson and has a mass below 45 GeV for Dirac neutrinos (39.5 GeV for Majorana neu-
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trinos), then it is ruled out by measurements at LEP of the invisible width of the Z. There are two logical
alternatives, either it is a sterile neutrino (it does not couple to the Z), or it does couple but has a larger
mass. In the case of a Majorana neutrino (its own antiparticle), their abundance, for this mass range,
is too small for being cosmologically relevant, Ωνh

2 ≤ 0.005. If it were a Dirac neutrino there could
be a lepton asymmetry, which may provide a higher abundance (similar to the case of baryogenesis).
However, neutrinos scatter on nucleons via the weak axial-vector current (spin-dependent) interaction.
For the small momentum transfers imparted by galactic WIMPs, such collisions are essentially coherent
over an entire nucleus, leading to an enhancement of the effective cross section. The relatively large
detection rate in this case allowes one to exclude fourth-generation Dirac neutrinos for the galactic dark
matter [52]. Anyway, it would be very implausible to have such a massive neutrino today, since it would
have to be stable, with a life-time greater than the age of the universe, and there is no theoretical reason
to expect a massive sterile neutrino that does not oscillate into the other neutrinos.

Of course, the definitive test to the possible contribution of neutrinos to the overall density of
the universe would be to measure directly their mass in laboratory experiments. There are at present
two types of experiments: neutrino oscillation experiments, which measure only differences in squared
masses, and direct mass-searches experiments, like the tritium β-spectrum and the neutrinoless double-β
decay experiments, which measure directly the mass of the electron neutrino. The former experiments
give a bound mνe ∼< 2.3 eV (95% c.l.) [53], while the latter claim [54] they have a positive evidence
for a Majorana neutrino of mass mν = 0.05 − 0.89 eV (95% c.l.), although this result still awaits
confirmation by other experiments. Neutrinos with such a mass could very well constitute the HDM
component of the universe, ΩHDM ∼< 0.15. The oscillation experiments give a range of possibilities
for ∆m2

ν = 0.3 − 3 eV2 from LSND (not yet confirmed by Miniboone), to the atmospheric neutrino
oscillations from SuperKamiokande (∆m2

ν ' 2.2 ± 0.5 × 10−3 eV2 , tan2 θ = 1.0 ± 0.3) and the
solar neutrino oscillations from KamLAND and the Sudbury Neutrino Observatory (∆m2

ν ' 8.2 ±
0.3 × 10−5 eV2 , tan2 θ = 0.39 ± 0.05), see Ref. [50]. Only the first two possibilities would be
cosmologically relevant, see Fig. 18. Thanks to recent observations by WMAP, SDSS and Planck, we
can put stringent limits on the absolute scale of neutrino masses, see below (Section 3.4).

3.2.8 Weakly Interacting Massive Particles
Unless we drastically change the theory of gravity on large scales, baryons cannot make up the bulk
of the dark matter. Massive neutrinos are the only alternative among the known particles, but they are
essentially ruled out as a universal dark matter candidate, even if they may play a subdominant role as
a hot dark matter component. There remains the mystery of what is the physical nature of the dominant
cold dark matter component. Something like a heavy stable neutrino, a generic Weakly Interacting
Massive Particle (WIMP), could be a reasonable candidate because its present abundance could fall
within the expected range,

ΩPDMh
2 ∼ G3/2T 3

0 h
2

H2
0 〈σannvrel〉

=
3× 10−27 cm3s−1

〈σannvrel〉
. (116)

Here vrel is the relative velocity of the two incoming dark matter particles and the brackets 〈·〉 denote a
thermal average at the freeze-out temperature, Tf ' mPDM/20, when the dark matter particles go out
of equilibrium with radiation. The value of 〈σannvrel〉 needed for ΩPDM ≈ 1 is remarkably close to
what one would expect for a WIMP with a mass mPDM = 100 GeV, 〈σannvrel〉 ∼ α2/8πmPDM ∼
3 × 10−27 cm3s−1. We still do not know whether this is just a coincidence or an important hint on the
nature of dark matter.

There are a few theoretical candidates for WIMPs, like the neutralino, coming from supersymme-
tric extensions of the standard model of particle physics,6 but at present there is no empirical evidence that

6For a review of Supersymmetry (SUSY), see Kazakov’s contribution to these Proceedings.
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Fig. 19: The annual-modulation signal accumulated over 12 years is consistent with a neutralino of mass of
mχ = 59 +17

−14 GeV and a proton cross section of ξσp = 7.0 +0.4
−1.2×10−6 pb, according to DAMA. From Ref. [55].

such extensions are indeed realized in nature. In fact, the non-observation of supersymmetric particles
at current accelerators places stringent limits on the neutralino mass and interaction cross section [56].
If WIMPs constitute the dominant component of the halo of our galaxy, it is expected that some may
cross the Earth at a reasonable rate to be detected. The direct experimental search for them rely on
elastic WIMP collisions with the nuclei of a suitable target. Dark matter WIMPs move at a typical
galactic “virial” velocity of around 200 − 300 km/s, depending on the model. If their mass is in the
range 10 − 100 GeV, the recoil energy of the nuclei in the elastic collision would be of order 10 keV.
Therefore, one should be able to identify such energy depositions in a macroscopic sample of the target.
There are at present three different methods: First, one could search for scintillation light in NaI crystals
or in liquid xenon; second, search for an ionization signal in a semiconductor, typically a very pure
germanium crystal; and third, use a cryogenic detector at 10 mK and search for a measurable temperature
increase of the sample. The main problem with such a type of experiment is the low expected signal rate,
with a typical number below 1 event/kg/day. To reduce natural radioactive contamination one must
use extremely pure substances, and to reduce the background caused by cosmic rays requires that these
experiments be located deeply underground.

The best limits on WIMP scattering cross sections come from some germanium experiments, like
the Criogenic Dark Matter Search (CDMS) collaboration at Stanford and the Soudan mine [57], as well
as from the NaI scintillation detectors of the UK dark matter collaboration (UKDMC) in the Boulby salt
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mine in England [58], and the DAMA experiment in the Gran Sasso laboratory in Italy [55]. Current
experiments already touch the parameter space expected from supersymmetric particles, see Fig. 20,
and therefore there is a chance that they actually discover the nature of the missing dark matter. The
problem, of course, is to attribute a tentative signal unambiguously to galactic WIMPs rather than to
some unidentified radioactive background.

Fig. 20: Exclusion range for the spin-independent WIMP scattering cross section per nucleon from the NaI exper-
iments and the Ge detectors. The blue lines come from the CDMS experiment, which exclude the DAMA region
at more than 3 sigma. Also shown in yellow and red is the range of expected counting rates for neutralinos in the
MSSM. From Ref. [57].

One specific signature is the annual modulation which arises as the Earth moves around the Sun.7

Therefore, the net speed of the Earth relative to the galactic dark matter halo varies, causing a modulation
of the expected counting rate. The DAMA/NaI experiment has actually reported such a modulation
signal, from the combined analysis of their 12-year data, see Fig. 19 and Ref. [55], which provides
a confidence level of 99.6% for a neutralino mass of mχ = 52 +10

−8 GeV and a proton cross section
of ξσp = 7.2 +0.4

−0.9 × 10−6 pb, where ξ = ρχ/0.3 GeV cm−3 is the local neutralino energy density
in units of the galactic halo density. There has been no confirmation yet of this result from other dark
matter search groups. In fact, the CDMS collaboration claims an exclusion of the DAMA region at
the 3 sigma level, see Fig. 20. Hopefully in the near future we will have much better sensitivity at
low masses from the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST)
experiment at Gran Sasso. The CRESST experiment [59] uses sapphire crystals as targets and a new

7The time scale of the Sun’s orbit around the center of the galaxy is too large to be relevant in the analysis.
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method to simultaneously measure the phonons and the scintillating light from particle interactions inside
the crystal, which allows excellent background discrimination. Very recently there has been also the
proposal of a completely new method based on a Superheated Droplet Detector (SDD), which claims to
have already a similar sensitivity as the more standard methods described above, see Ref. [60].

There exist other indirect methods to search for galactic WIMPs [61]. Such particles could self-
annihilate at a certain rate in the galactic halo, producing a potentially detectable background of high
energy photons or antiprotons. The absence of such a background in both gamma ray satellites and
the Alpha Matter Spectrometer [62] imposes bounds on their density in the halo. Alternatively, WIMPs
traversing the solar system may interact with the matter that makes up the Earth or the Sun so that a small
fraction of them will lose energy and be trapped in their cores, building up over the age of the universe.
Their annihilation in the core would thus produce high energy neutrinos from the center of the Earth or
from the Sun which are detectable by neutrino telescopes. In fact, SuperKamiokande already covers a
large part of SUSY parameter space. In other words, neutrino telescopes are already competitive with
direct search experiments. In particular, the AMANDA experiment at the South Pole [63], which has
approximately 103 Cherenkov detectors several km deep in very clear ice, over a volume ∼ 1 km3, is
competitive with the best direct searches proposed. The advantages of AMANDA are also directional,
since the arrays of Cherenkov detectors will allow one to reconstruct the neutrino trajectory and thus its
source, whether it comes from the Earth or the Sun. AMANDA recently reported the detection of TeV
neutrinos [63].

3.3 The age of the universe t0

The universe must be older than the oldest objects it contains. Those are believed to be the stars in the
oldest clusters in the Milky Way, globular clusters. The most reliable ages come from the application
of theoretical models of stellar evolution to observations of old stars in globular clusters. For about 30
years, the ages of globular clusters have remained reasonable stable, at about 15 Gyr [64]. However,
recently these ages have been revised downward [65].

During the 1980s and 1990s, the globular cluster age estimates have improved as both new obser-
vations have been made with CCDs, and since refinements to stellar evolution models, including opaci-
ties, consideration of mixing, and different chemical abundances have been incorporated [66]. From the
theory side, uncertainties in globular cluster ages come from uncertainties in convection models, opac-
ities, and nuclear reaction rates. From the observational side, uncertainties arise due to corrections for
dust and chemical composition. However, the dominant source of systematic errors in the globular clus-
ter age is the uncertainty in the cluster distances. Fortunately, the Hipparcos satellite recently provided
geometric parallax measurements for many nearby old stars with low metallicity, typical of glubular clus-
ters, thus allowing for a new calibration of the ages of stars in globular clusters, leading to a downward
revision to 10 − 13 Gyr [66]. Moreover, there were very few stars in the Hipparcos catalog with both
small parallax erros and low metal abundance. Hence, an increase in the sample size could be critical in
reducing the statatistical uncertaintites for the calibration of the globular cluster ages. There are already
proposed two new parallax satellites, NASA’s Space Interferometry Mission (SIM) and ESA’s mission,
called GAIA, that will give 2 or 3 orders of magnitude more accurate parallaxes than Hipparcos, down
to fainter magnitude limits, for several orders of magnitude more stars. Until larger samples are avail-
able, however, distance errors are likely to be the largest source of systematic uncertainty to the globular
cluster age [30].

The supernovae groups can also determine the age of the universe from their high redshift observa-
tions. The high confidence regions in the (ΩM,ΩΛ) plane are almost parallel to the contours of constant
age. For any value of the Hubble constant less than H0 = 70 km/s/Mpc, the implied age of the universe
is greater than 13 Gyr, allowing enough time for the oldest stars in globular clusters to evolve [66]. In-
tegrating over ΩM and ΩΛ, the best fit value of the age in Hubble-time units is H0t0 = 0.93 ± 0.06 or
equivalently t0 = 14.1± 1.0 (0.65h−1) Gyr, see Ref. [7]. Furthermore, a combination of 8 independent
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recent measurements: CMB anisotropies, type Ia SNe, cluster mass-to-light ratios, cluster abundance
evolution, cluster baryon fraction, deuterium-to-hidrogen ratios in quasar spectra, double-lobed radio
sources and the Hubble constant, can be used to determine the present age of the universe [67]. The best
fit value for the age of the universe is, according to this analysis, t0 = 13.4 ± 1.6 Gyr, about a billion
years younger than other recent estimates [67].

Fig. 21: The anisotropies of the microwave background measured by the Planck satellite with 4 arcminute res-
olution. It shows the intrinsic CMB anisotropies at the level of a few parts in 105. The galactic foreground has
been properly subtracted. The amount of information contained in this map is enough to determine most of the
cosmological parameters to few percent accuracy. From Ref. [93].

3.4 Cosmic Microwave Background Anisotropies
The cosmic microwave background has become in the last five years the Holy Grail of Cosmology, since
precise observations of the temperature and polarization anisotropies allow in principle to determine the
parameters of the Standard Model of Cosmology with very high accuracy. Recently, the WMAP satellite
has provided with a very detailed map of the microwave anisotropies in the sky, see Fig. 21, and indeed
has fulfilled our expectations, see Table 2.

The physics of the CMB anisotropies is relatively simple [68]. The universe just before re-
combination is a very tightly coupled fluid, due to the large electromagnetic Thomson cross section
σT = 8πα2/3m2

e ' 0.7 barn. Photons scatter off charged particles (protons and electrons), and carry
energy, so they feel the gravitational potential associated with the perturbations imprinted in the metric
during inflation. An overdensity of baryons (protons and neutrons) does not collapse under the effect of
gravity until it enters the causal Hubble radius. The perturbation continues to grow until radiation pres-
sure opposes gravity and sets up acoustic oscillations in the plasma, very similar to sound waves. Since
overdensities of the same size will enter the Hubble radius at the same time, they will oscillate in phase.
Moreover, since photons scatter off these baryons, the acoustic oscillations occur also in the photon field
and induces a pattern of peaks in the temperature anisotropies in the sky, at different angular scales, see
Fig. 22. There are three different effects that determine the temperature anisotropies we observe in the
CMB. First, gravity: photons fall in and escape off gravitational potential wells, characterized by Φ in the
comoving gauge, and as a consequence their frequency is gravitationally blue- or red-shifted, δν/ν = Φ.
If the gravitational potential is not constant, the photons will escape from a larger or smaller potential
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Fig. 22: The Angular Power Spectrum of CMB temperature anisotropies, Dl = l(l + 1)Cl/2π, and their residuals
w.r.t. a Standard Cosmological Model with just six parameters. The low (l < 30) multipoles are not used in the fit.
The agreement is impressive, except for a small anomalous deviation around l ' 20. From Ref. [93].

well than they fell in, so their frequency is also blue- or red-shifted, a phenomenon known as the Rees-
Sciama effect. Second, pressure: photons scatter off baryons which fall into gravitational potential wells
and the two competing forces create acoustic waves of compression and rarefaction. Finally, velocity:
baryons accelerate as they fall into potential wells. They have minimum velocity at maximum compres-
sion and rarefaction. That is, their velocity wave is exactly 90◦ off-phase with the acoustic waves. These
waves induce a Doppler effect on the frequency of the photons. The temperature anisotropy induced by
these three effects is therefore given by [68]

δT

T
(r) = Φ(r, tdec) + 2

∫ t0

tdec

Φ̇(r, t)dt +
1

3

δρ

ρ
− r · v

c
. (117)

Metric perturbations of different wavelengths enter the horizon at different times. The largest wave-
lengths, of size comparable to our present horizon, are entering now. There are perturbations with wave-
lengths comparable to the size of the horizon at the time of last scattering, of projected size about 1◦

in the sky today, which entered precisely at decoupling. And there are perturbations with wavelengths
much smaller than the size of the horizon at last scattering, that entered much earlier than decoupling, all
the way to the time of radiation-matter equality, which have gone through several acoustic oscillations
before last scattering. All these perturbations of different wavelengths leave their imprint in the CMB
anisotropies.

The baryons at the time of decoupling do not feel the gravitational attraction of perturbations with
wavelength greater than the size of the horizon at last scattering, because of causality. Perturbations with
exactly that wavelength are undergoing their first contraction, or acoustic compression, at decoupling.
Those perturbations induce a large peak in the temperature anisotropies power spectrum, see Fig. 22.
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Table 2: The parameters of the Standard Cosmological Model. The standard model of cosmology has about 20
different parameters, needed to describe the background space-time, the matter content and the spectrum of metric
perturbations. We include here the present range of the most relevant parameters (with 1σ errors), as determined
by both WMAP and Planck satellites. The rate of expansion is written in units of H = 100h km/s/Mpc.

physical quantity symbol WMAP Planck
total density Ω0 1.02± 0.02 0.9992± 0.0040

baryonic matter ΩBh
2 0.0228± 0.0020 0.02230± 0.00014

cosmological constant ΩΛ 0.73± 0.04 0.6911± 0.0062

cold dark matter ΩM 0.23± 0.04 0.3089± 0.0062

hot dark matter Ωνh
2 < 0.00276 (95% c.l.) < 0.0021 (95% c.l.)

number relativistic species Neff 3.84± 0.40 3.04± 0.33

sum of neutrino masses
∑
mν (eV) < 0.23 (95% c.l.) < 0.194 (95% c.l.)

CMB temperature T0 (K) 2.725± 0.002 2.7235± 0.0012

baryon to photon ratio 1010η 6.1± 0.3 6.09± 0.04

baryon to matter ratio ΩB/ΩM 0.17± 0.01 0.157± 0.002

spatial curvature ΩK < 0.02 (95% c.l.) 0.0008± 0.0040

rate of expansion h 0.71± 0.03 0.6774± 0.0046

age of the universe t0 (Gyr) 13.7± 0.6 13.799± 0.021

age at decoupling tdec (kyr) 379± 8 380.000± 0.120

age at reionization tr (Myr) 180± 100 212± 43

spectral amplitude 1010A2
s 17.35± 3.72 21.30± 0.53

spectral tilt ns 0.98± 0.03 0.9667± 0.0040

spectral tilt variation dns/d ln k −0.031± 0.017 −0.002± 0.013

tensor-scalar ratio r < 0.71 (95% c.l.) < 0.113 (95% c.l.)
reionization optical depth τ 0.17± 0.04 0.06± 0.012

redshift of equality zeq 3233± 200 3371± 23

redshift of decoupling zdec 1089± 1 1089.90± 0.23

width of decoupling ∆zdec 195± 2 144.81± 0.24

redshift of reionization zr 20± 10 8.8± 1.2

Perturbations with wavelengths smaller than these will have gone, after they entered the Hubble scale,
through a series of acoustic compressions and rarefactions, which can be seen as secondary peaks in
the power spectrum. Since the surface of last scattering is not a sharp discontinuity, but a region of
∆z ∼ 100, there will be scales for which photons, traveling from one energy concentration to another,
will erase the perturbation on that scale, similarly to what neutrinos or HDM do for structure on small
scales. That is the reason why we don’t see all the acoustic oscillations with the same amplitude, but in
fact they decay exponentially towards smaller angular scales, an effect known as Silk damping, due to
photon diffusion [68, 69].

From the observations of the CMB anisotropies it is possible to determine most of the parame-
ters of the Standard Cosmological Model with few percent accuracy, see Table 2. However, there are
many degeneracies between parameters and it is difficult to disentangle one from another. For instance,
as mentioned above, the first peak in the photon distribution corresponds to overdensities that have un-
dergone half an oscillation, that is, a compression, and appear at a scale associated with the size of the
horizon at last scattering, about 1◦ projected in the sky today. Since photons scatter off baryons, they
will also feel the acoustic wave and create a peak in the correlation function. The height of the peak
is proportional to the amount of baryons: the larger the baryon content of the universe, the higher the
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peak. The position of the peak in the power spectrum depends on the geometrical size of the particle
horizon at last scattering. Since photons travel along geodesics, the projected size of the causal horizon
at decoupling depends on whether the universe is flat, open or closed. In a flat universe the geodesics
are straight lines and, by looking at the angular scale of the first acoustic peak, we would be measuring
the actual size of the horizon at last scattering. In an open universe, the geodesics are inward-curved tra-
jectories, and therefore the projected size on the sky appears smaller. In this case, the first acoustic peak
should occur at higher multipoles or smaller angular scales. On the other hand, for a closed universe,
the first peak occurs at smaller multipoles or larger angular scales. The dependence of the position of
the first acoustic peak on the spatial curvature can be approximately given by lpeak ' 220 Ω

−1/2
0 , where

Ω0 = ΩM+ΩΛ = 1−ΩK . Present observations by WMAP and other experiments give Ω0 = 1.00±0.02
at one standard deviation [21].

Fig. 23: The (ΩM , ΩΛ) plane with the present data set of cosmological observations − the acceleration of the
universe, the large scale structure and the CMB anisotropies − on the fundamental parameters which define our
Standard Model of Cosmology.

The other acoustic peaks occur at harmonics of this, corresponding to smaller angular scales. Since
the amplitude and position of the primary and secondary peaks are directly determined by the sound
speed (and, hence, the equation of state) and by the geometry and expansion of the universe, they can
be used as a powerful test of the density of baryons and dark matter, and other cosmological parameters.
With the joined data from WMAP, VSA, CBI and ACBAR, we have rather good evidence of the existence
of the second and third acoustic peaks, which confirms one of the most important predictions of inflation
− the non-causal origin of the primordial spectrum of perturbations−, and rules out cosmological defects
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as the dominant source of structure in the universe [70]. Moreover, since the observations of CMB
anisotropies now cover almost three orders of magnitude in the size of perturbations, we can determine
the much better accuracy the value of the spectral tilt, n = 0.98 ± 0.03, which is compatible with the
approximate scale invariant spectrum needed for structure formation, and is a prediction of the simplest
models of inflation. Soon after the release of data from WMAP, there was some expectation at the claim
of a scale-dependent tilt. Nowadays, with better resolution in the linear matter power spectrum from
SDSS [71], we can not conclude that the spectral tilt has any observable dependence on scale.

The microwave background has become also a testing ground for theories of particle physics. In
particular, it already gives stringent constraints on the mass of the neutrino, when analysed together with
large scale structure observations. Assuming a flat ΛCDM model, the 2-sigma upper bounds on the sum
of the masses of light neutrinos is

∑
mν < 1.0 eV for degenerate neutrinos (i.e. without a large hierachy

between them) if we don’t impose any priors, and it comes down to
∑
mν < 0.6 eV if one imposes

the bounds coming from the HST measurements of the rate of expansion and the supernova data on the
present acceleration of the universe [72]. The final bound on the neutrino density can be expressed as
Ων h

2 =
∑
mν/93.2 eV ≤ 0.01. In the future, both with Planck and with the Atacama Cosmology

Telescope (ACT) we will be able to put constraints on the neutrino masses down to the 0.1 eV level.

Moreover, the present data is good enough that we can start to put constraints on the models of in-
flation that give rise to structure. In particular, multifield models of inflation predict a mixture of adiabatic
and isocurvature perturbations,8 and their signatures in the cosmic microwave background anisotropies
and the matter power spectrum of large scale structure are specific and perfectly distinguishable. Nowa-
days, thanks to precise CMB, LSS and SNIa data, one can put rather stringent limits on the relative
fraction and correlation of the isocurvature modes to the dominant adiabatic perturbations [73].

We can summarize this Section by showing the region in parameter space where we stand nowa-
days, thanks to the recent cosmological observations. We have plotted that region in Fig. 23. One could
also superimpose the contour lines corresponding to equal t0H0 lines, as a cross check. It is extraordi-
nary that only in the last few months we have been able to reduce the concordance region to where it
stands today, where all the different observations seem to converge. There are still many uncertainties,
mainly systematic; however, those are quickly decreasing and becoming predominantly statistical. In the
near future, with precise observations of the anisotropies in the microwave background temperature and
polarization anisotropies, thanks to Planck satellite, we will be able to reduce those uncertainties to the
level of one percent. This is the reason why cosmologists are so excited and why it is claimed that we
live in the Golden Age of Cosmology.

4 The Inflationary Paradigm
The hot Big Bang theory is nowadays a very robust edifice, with many independent observational checks:
the expansion of the universe; the abundance of light elements; the cosmic microwave background; a
predicted age of the universe compatible with the age of the oldest objects in it, and the formation of
structure via gravitational collapse of initially small inhomogeneities. Today, these observations are
confirmed to within a few percent accuracy, and have helped establish the hot Big Bang as the preferred
model of the universe. All the physics involved in the above observations is routinely tested in the
laboratory (atomic and nuclear physics experiments) or in the solar system (general relativity).

However, this theory leaves a range of crucial questions unanswered, most of which are initial
conditions’ problems. There is the reasonable assumption that these cosmological problems will be
solved or explained by new physical principles at high energies, in the early universe. This assumption
leads to the natural conclusion that accurate observations of the present state of the universe may shed
light onto processes and physical laws at energies above those reachable by particle accelerators, present

8This mixture is generic, unless all the fields thermalize simultaneously at reheating, just after inflation, in which case the
entropy perturbations that would give rise to the isocurvature modes disappear.
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or future. We will see that this is a very optimistic approach indeed, and that there are many unresolved
issues related to those problems. However, there might be in the near future reasons to be optimistic.

4.1 Shortcomings of Big Bang Cosmology
The Big Bang theory could not explain the origin of matter and structure in the universe; that is, the
origin of the matter–antimatter asymmetry, without which the universe today would be filled by a uniform
radiation continuosly expanding and cooling, with no traces of matter, and thus without the possibility
to form gravitationally bound systems like galaxies, stars and planets that could sustain life. Moreover,
the standard Big Bang theory assumes, but cannot explain, the origin of the extraordinary smoothness
and flatness of the universe on the very large scales seen by the microwave background probes and the
largest galaxy catalogs. It cannot explain the origin of the primordial density perturbations that gave rise
to cosmic structures like galaxies, clusters and superclusters, via gravitational collapse; the quantity and
nature of the dark matter that we believe holds the universe together; nor the origin of the Big Bang itself.

A summary [10] of the problems that the Big Bang theory cannot explain is:

– The global structure of the universe.
- Why is the universe so close to spatial flatness?
- Why is matter so homogeneously distributed on large scales?

– The origin of structure in the universe.
- How did the primordial spectrum of density perturbations originate?

– The origin of matter and radiation.
- Where does all the energy in the universe come from?
- What is the nature of the dark matter in the universe?
- How did the matter-antimatter asymmetry arise?

– The initial singularity.
- Did the universe have a beginning?
- What is the global structure of the universe beyond our observable patch?

Let me discuss one by one the different issues:

4.1.1 The Flatness Problem
The Big Bang theory assumes but cannot explain the extraordinary spatial flatness of our local patch of
the universe. In the general FRW metric (2) the parameter K that characterizes spatial curvature is a free
parameter. There is nothing in the theory that determines this parameter a priori. However, it is directly
related, via the Friedmann equation (8), to the dynamics, and thus the matter content, of the universe,

K =
8πG

3
ρa2 −H2a2 =

8πG

3
ρa2
(Ω− 1

Ω

)
. (118)

We can therefore define a new variable,

x ≡ Ω− 1

Ω
=

const.

ρa2
, (119)

whose time evolution is given by

x′ =
dx

dN
= (1 + 3ω)x , (120)

where N = ln(a/ai) characterizes the number of e-folds of universe expansion (dN = Hdt) and
where we have used Eq. (7) for the time evolution of the total energy, ρa3, which only depends on the
barotropic ratio ω. It is clear from Eq. (120) that the phase-space diagram (x, x′) presents an unstable
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critical (saddle) point at x = 0 for ω > −1/3, i.e. for the radiation (ω = 1/3) and matter (ω = 0) eras.
A small perturbation from x = 0 will drive the system towards x = ±∞. Since we know the universe
went through both the radiation era (because of primordial nucleosynthesis) and the matter era (because
of structure formation), tiny deviations from Ω = 1 would have grown since then, such that today

x0 =
Ω0 − 1

Ω0
= xin

(Tin

Teq

)2
(1 + zeq) . (121)

In order that today’s value be in the range 0.1 < Ω0 < 1.2, or x0 ≈ O(1), it is required that at, say,
primordial nucleosynthesis (TNS ' 106 Teq) its value be

Ω(tNS) = 1± 10−15 , (122)

which represents a tremendous finetuning. Perhaps the universe indeed started with such a peculiar
initial condition, but it is epistemologically more satisfying if we give a fundamental dynamical reason
for the universe to have started so close to spatial flatness. These arguments were first used by Robert
Dicke in the 1960s, much before inflation. He argued that the most natural initial condition for the
spatial curvature should have been the Planck scale curvature, (3)R = 6K/l2P, where the Planck length
is lP = (~G/c3)1/2 = 1.62 × 10−33 cm, that is, 60 orders of magnitude smaller than the present size
of the universe, a0 = 1.38 × 1028 cm. A universe with this immense curvature would have collapsed
within a Planck time, tP = (~G/c5)1/2 = 5.39 × 10−44 s, again 60 orders of magnitude smaller than
the present age of the universe, t0 = 4.1 × 1017 s. Therefore, the flatness problem is also related to the
Age Problem, why is it that the universe is so old and flat when, under ordinary circumstances (based on
the fundamental scale of gravity) it should have lasted only a Planck time and reached a size of order the
Planck length? As we will see, inflation gives a dynamical reason to such a peculiar initial condition.

4.1.2 The Homogeneity Problem
An expanding universe has particle horizons, that is, spatial regions beyond which causal communica-
tion cannot occur. The horizon distance can be defined as the maximum distance that light could have
travelled since the origin of the universe [16],

dH(t) ≡ a(t)

∫ t

0

dt′

a(t′)
∼ H−1(t) , (123)

which is proportional to the Hubble scale.9 For instance, at the beginning of nucleosynthesis the horizon
distance is a few light-seconds, but grows linearly with time and by the end of nucleosynthesis it is a
few light-minutes, i.e. a factor 100 larger, while the scale factor has increased only a factor of 10. The
fact that the causal horizon increases faster, dH ∼ t, than the scale factor, a ∼ t1/2, implies that at any
given time the universe contains regions within itself that, according to the Big Bang theory, were never
in causal contact before. For instance, the number of causally disconnected regions at a given redshift z
present in our causal volume today, dH(t0) ≡ a0, is

NCD(z) ∼
(
a(t)

dH(t)

)3

' (1 + z)3/2 , (124)

which, for the time of decoupling, is of order NCD(zdec) ∼ 105 � 1.

This phenomenon is particularly acute in the case of the observed microwave background. Infor-
mation cannot travel faster than the speed of light, so the causal region at the time of photon decoupling
could not be larger than dH(tdec) ∼ 3× 105 light years across, or about 1◦ projected in the sky today. So
why should regions that are separated by more than 1◦ in the sky today have exactly the same tempera-
ture, to within 10 ppm, when the photons that come from those two distant regions could not have been
in causal contact when they were emitted? This constitutes the so-called horizon problem, see Fig. 24,
and was first discussed by Robert Dicke in the 1970s as a profound inconsistency of the Big Bang theory.

9For the radiation era, the horizon distance is equal to the Hubble scale. For the matter era it is twice the Hubble scale.
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Fig. 24: Perhaps the most acute problem of the Big Bang theory is explaining the extraordinary homogeneity
and isotropy of the microwave background, see Fig. 9. At the time of decoupling, the volume that gave rise to
our present universe contained many causally disconnected regions (top figure). Today we observe a blackbody
spectrum of photons coming from those regions and they appear to have the same temperature, T1 = T2, to one
part in 105. Why is the universe so homogeneous? This constitutes the so-called horizon problem, which is
spectacularly solved by inflation. From Ref. [74].

4.2 Cosmological Inflation
In the 1980s, a new paradigm, deeply rooted in fundamental physics, was put forward by Alan H.
Guth [75], Andrei D. Linde [76] and others [77–79], to address these fundamental questions. According
to the inflationary paradigm, the early universe went through a period of exponential expansion, driven
by the approximately constant energy density of a scalar field called the inflaton. In modern physics, el-
ementary particles are represented by quantum fields, which resemble the familiar electric, magnetic and
gravitational fields. A field is simply a function of space and time whose quantum oscillations are inter-
preted as particles. In our case, the inflaton field has, associated with it, a large potential energy density,
which drives the exponential expansion during inflation, see Fig. 25. We know from general relativity
that the density of matter determines the expansion of the universe, but a constant energy density acts in
a very peculiar way: as a repulsive force that makes any two points in space separate at exponentially
large speeds. (This does not violate the laws of causality because there is no information carried along
in the expansion, it is simply the stretching of space-time.)

This superluminal expansion is capable of explaining the large scale homogeneity of our observ-
able universe and, in particular, why the microwave background looks so isotropic: regions separated
today by more than 1◦ in the sky were, in fact, in causal contact before inflation, but were stretched to
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Fig. 25: The inflaton field can be represented as a ball rolling down a hill. During inflation, the energy density is
approximately constant, driving the tremendous expansion of the universe. When the ball starts to oscillate around
the bottom of the hill, inflation ends and the inflaton energy decays into particles. In certain cases, the coherent
oscillations of the inflaton could generate a resonant production of particles which soon thermalize, reheating the
universe. From Ref. [74].

cosmological distances by the expansion. Any inhomogeneities present before the tremendous expansion
would be washed out. This explains why photons from supposedly causally disconneted regions have
actually the same spectral distribution with the same temperature, see Fig. 24.

Moreover, in the usual Big Bang scenario a flat universe, one in which the gravitational attraction
of matter is exactly balanced by the cosmic expansion, is unstable under perturbations: a small deviation
from flatness is amplified and soon produces either an empty universe or a collapsed one. As we dis-
cussed above, for the universe to be nearly flat today, it must have been extremely flat at nucleosynthesis,
deviations not exceeding more than one part in 1015. This extreme fine tuning of initial conditions was
also solved by the inflationary paradigm, see Fig. 26. Thus inflation is an extremely elegant hypothesis
that explains how a region much, much greater that our own observable universe could have become
smooth and flat without recourse to ad hoc initial conditions. Furthermore, inflation dilutes away any
“unwanted” relic species that could have remained from early universe phase transitions, like monopoles,
cosmic strings, etc., which are predicted in grand unified theories and whose energy density could be so
large that the universe would have become unstable, and collapsed, long ago. These relics are diluted by
the superluminal expansion, which leaves at most one of these particles per causal horizon, making them
harmless to the subsequent evolution of the universe.

The only thing we know about this peculiar scalar field, the inflaton, is that it has a mass and
a self-interaction potential V (φ) but we ignore everything else, even the scale at which its dynamics
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Fig. 26: The exponential expansion during inflation made the radius of curvature of the universe so large that our
observable patch of the universe today appears essentialy flat, analogous (in three dimensions) to how the surface
of a balloon appears flatter and flatter as we inflate it to enormous sizes. This is a crucial prediction of cosmological
inflation that will be tested to extraordinary accuracy in the next few years. From Ref. [74, 78].

determines the superluminal expansion. In particular, we still do not know the nature of the inflaton field
itself, is it some new fundamental scalar field in the electroweak symmetry breaking sector, or is it just
some effective description of a more fundamental high energy interaction? Hopefully, in the near future,
experiments in particle physics might give us a clue to its nature. Inflation had its original inspiration in
the Higgs field, the scalar field supposed to be responsible for the masses of elementary particles (quarks
and leptons) and the breaking of the electroweak symmetry. Such a field has not been found yet, and its
discovery at the future particle colliders would help understand one of the truly fundamental problems in
physics, the origin of masses. If the experiments discover something completely new and unexpected, it
would automatically affect the idea of inflation at a fundamental level.

4.2.1 Homogeneous scalar field dynamics
In this subsection I will describe the theoretical basis for the phenomenon of inflation. Consider a scalar
field φ, a singlet under any given interaction, with an effective potential V (φ). The Lagrangian for such
a field in a curved background is

Linf =
1

2
gµν∂µφ∂νφ− V (φ) , (125)
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whose evolution equation in a Friedmann-Robertson-Walker metric (2) and for a homogeneous field φ(t)
is given by

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (126)

where H is the rate of expansion, together with the Einstein equations,

H2 =
κ2

3

(1

2
φ̇2 + V (φ)

)
, (127)

Ḣ = −κ
2

2
φ̇2 , (128)

where κ2 ≡ 8πG. The dynamics of inflation can be described as a perfect fluid (5) with a time dependent
pressure and energy density given by

ρ =
1

2
φ̇2 + V (φ) , (129)

p =
1

2
φ̇2 − V (φ) . (130)

The field evolution equation (126) can then be written as the energy conservation equation,

ρ̇+ 3H(ρ+ p) = 0 . (131)

If the potential energy density of the scalar field dominates the kinetic energy, V (φ) � φ̇2, then we see
that

p ' −ρ ⇒ ρ ' const. ⇒ H(φ) ' const. , (132)

which leads to the solution

a(t) ∼ exp(Ht) ⇒ ä

a
> 0 accelerated expansion . (133)

Using the definition of the number of e-folds, N = ln(a/ai), we see that the scale factor grows expo-
nentially, a(N) = ai exp(N). This solution of the Einstein equations solves immediately the flatness
problem. Recall that the problem with the radiation and matter eras is that Ω = 1 (x = 0) is an un-
stable critical point in phase-space. However, during inflation, with p ' −ρ ⇒ ω ' −1, we have
that 1 + 3ω ≥ 0 and therefore x = 0 is a stable attractor of the equations of motion, see Eq. (120).
As a consequence, what seemed an ad hoc initial condition, becomes a natural prediction of inflation.
Suppose that during inflation the scale factor increased N e-folds, then

x0 = xin e
−2N

(Trh

Teq

)2
(1 + zeq) ' e−2N 1056 ≤ 1 ⇒ N ≥ 65 , (134)

where we have assumed that inflation ended at the scale Vend, and the transfer of the inflaton energy
density to thermal radiation at reheating occurred almost instantaneously10 at the temperature Trh ∼
V

1/4
end ∼ 1015 GeV. Note that we can now have initial conditions with a large uncertainty, xin ' 1, and

still have today x0 ' 1, thanks to the inflationary attractor towards Ω = 1. This can be understood very
easily by realizing that the three curvature evolves during inflation as

(3)R =
6K

a2
= (3)Rin e

−2N −→ 0 , for N � 1 . (135)

Therefore, if cosmological inflation lasted over 65 e-folds, as most models predict, then today the uni-
verse (or at least our local patch) should be exactly flat, see Fig. 26, a prediction that can be tested with

10There could be a small delay in thermalization, due to the intrinsic inefficiency of reheating, but this does not change
significantly the required number of e-folds.
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great accuracy in the near future and for which already seems to be some evidence from observations of
the microwave background [91].

Furthermore, inflation also solves the homogeneity problem in a spectacular way. First of all, due
to the superluminal expansion, any inhomogeneity existing prior to inflation will be washed out,

δk ∼
(
k

aH

)2

Φk ∝ e−2N −→ 0 , for N � 1 . (136)

Moreover, since the scale factor grows exponentially, while the horizon distance remains essentially
constant, dH(t) ' H−1 = const., any scale within the horizon during inflation will be stretched by the
superluminal expansion to enormous distances, in such a way that at photon decoupling all the causally
disconnected regions that encompass our present horizon actually come from a single region during
inflation, about 65 e-folds before the end. This is the reason why two points separated more than 1◦

in the sky have the same backbody temperature, as observed by the COBE satellite: they were actually
in causal contact during inflation. There is at present no other proposal known that could solve the
homogeneity problem without invoquing an acausal mechanism like inflation.

Finally, any relic particle species (relativistic or not) existing prior to inflation will be diluted by
the expansion,

ρM ∝ a−3 ∼ e−3N −→ 0 , for N � 1 , (137)

ρR ∝ a−4 ∼ e−4N −→ 0 , for N � 1 . (138)

Note that the vacuum energy density ρv remains constant under the expansion, and therefore, very soon
it is the only energy density remaining to drive the expansion of the universe.

4.2.2 The slow-roll approximation
In order to simplify the evolution equations during inflation, we will consider the slow-roll approximation
(SRA). Suppose that, during inflation, the scalar field evolves very slowly down its effective potential,
then we can define the slow-roll parameters [80],

ε ≡ − Ḣ

H2
=

κ2

2

φ̇2

H2
� 1 , (139)

δ ≡ − φ̈

Hφ̇
� 1 , (140)

ξ ≡
...
φ

H2φ̇
− δ2 � 1 . (141)

It is easy to see that the condition

ε < 1 ⇐⇒ ä

a
> 0 (142)

characterizes inflation: it is all you need for superluminal expansion, i.e. for the horizon distance to grow
more slowly than the scale factor, in order to solve the homogeneity problem, as well as for the spatial
curvature to decay faster than usual, in order to solve the flatness problem.

The number of e-folds during inflation can be written with the help of Eq. (139) as

N = ln
aend

ai
=

∫ te

ti

Hdt =

∫ φe

φi

κdφ√
2ε(φ)

, (143)

which is an exact expression in terms of ε(φ).
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In the limit given by Eqs. (139), the evolution equations (126) and (127) become

H2
(

1− ε

3

)
' H2 =

κ2

3
V (φ) , (144)

3Hφ̇
(

1− δ

3

)
' 3Hφ̇ = −V ′(φ) . (145)

Note that this corresponds to a reduction of the dimensionality of phase-space from two to one dimen-
sions, H(φ, φ̇) → H(φ). In fact, it is possible to prove a theorem, for single-field inflation, which
states that the slow-roll approximation is an attractor of the equations of motion, and thus we can al-
ways evaluate the inflationary trajectory in phase-space within the SRA, therefore reducing the number
of initial conditions to just one, the initial value of the scalar field. If H(φ) only depends on φ, then
H ′(φ) = −κ2φ̇/2 and we can rewrite the slow-roll parameters (139) as

ε =
2

κ2

(
H ′(φ)

H(φ)

)2

' 1

2κ2

(
V ′(φ)

V (φ)

)2

≡ εV � 1 , (146)

δ =
2

κ2

H ′′(φ)

H(φ)
' 1

κ2

V ′′(φ)

V (φ)
− 1

2κ2

(
V ′(φ)

V (φ)

)2

≡ ηV − εV � 1 , (147)

ξ =
4

κ4

H ′(φ)H ′′′(φ)

H2(φ)
' 1

κ4

V ′(φ)V ′′′(φ)

V 2(φ)
− 3

2κ4

V ′′(φ)

V (φ)

(
V ′(φ)

V (φ)

)2

+
3

4κ4

(
V ′(φ)

V (φ)

)4

≡ ξV − 3ηV εV + 3ε2V � 1 . (148)

These expressions define the new slow-roll parameters εV , ηV and ξV . The number of e-folds can also
be rewritten in this approximation as

N '
∫ φe

φi

κdφ√
2εV (φ)

= κ2

∫ φe

φi

V (φ) dφ

V ′(φ)
, (149)

a very useful expression for evaluating N for a given effective scalar potential V (φ).

4.3 The origin of density perturbations
If cosmological inflation made the universe so extremely flat and homogeneous, where did the galaxies
and clusters of galaxies come from? One of the most astonishing predictions of inflation, one that was not
even expected, is that quantum fluctuations of the inflaton field are stretched by the exponential expansion
and generate large-scale perturbations in the metric. Inflaton fluctuations are small wave packets of
energy that, according to general relativity, modify the space-time fabric, creating a whole spectrum of
curvature perturbations. The use of the word spectrum here is closely related to the case of light waves
propagating in a medium: a spectrum characterizes the amplitude of each given wavelength. In the
case of inflation, the inflaton fluctuations induce waves in the space-time metric that can be decomposed
into different wavelengths, all with approximately the same amplitude, that is, corresponding to a scale-
invariant spectrum. These patterns of perturbations in the metric are like fingerprints that unequivocally
characterize a period of inflation. When matter fell in the troughs of these waves, it created density
perturbations that collapsed gravitationally to form galaxies, clusters and superclusters of galaxies, with
a spectrum that is also scale invariant. Such a type of spectrum was proposed in the early 1970s (before
inflation) by Harrison and Zel’dovich [27], to explain the distribution of galaxies and clusters of galaxies
on very large scales in our observable universe. Perhaps the most interesting aspect of structure formation
is the possibility that the detailed knowledge of what seeded galaxies and clusters of galaxies will allow
us to test the idea of inflation.
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4.3.1 Reparametrization invariant perturbation theory
Until now we have considered only the unperturbed FRW metric described by a scale factor a(t) and a
homogeneous scalar field φ(t),

ds2 = a2(η)[− dη2 + γij dx
idxj ] , (150)

φ = φ(η) , (151)

where η =
∫
dt/a(t) is the conformal time, under which the background equations of motion can be

written as

H2 =
κ2

3

(
1

2
φ′2 + a2V (φ)

)
, (152)

H′ −H2 = − κ
2

2
φ′2 , (153)

φ′′ + 2Hφ′ + a2V ′(φ) = 0 , (154)

whereH = aH and φ′ = aφ̇.

During inflation, the quantum fluctuations of the scalar field will induce metric perturbations which
will backreact on the scalar field. Let us consider, in linear perturbation theory, the most general line ele-
ment with both scalar and tensor metric perturbations [81],11 together with the scalar field perturbations

ds2 = a2(η)
[
− (1 + 2A)dη2 + 2B|idx

idη +
{

(1 + 2R)γij + 2E|ij + 2hij

}
dxidxj

]
, (155)

φ = φ(η) + δφ(η, xi) . (156)

The indices {i, j} label the three-dimensional spatial coordinates with metric γij , and the |i denotes
covariant derivative with respect to that metric. The gauge invariant tensor perturbation hij corresponds
to a transverse traceless gravitational wave,∇ihij = hii = 0. The four scalar perturbations (A,B,R, E)
are gauge dependent functions of (η, xi). Under a general coordinate (gauge) transformation [81, 82]

η̃ = η + ξ0(η, xi) , (157)

x̃i = xi + γijξ|j(η, x
i) , (158)

with arbitrary functions (ξ0, ξ), the scalar and tensor perturbations transform, to linear order, as

Ã = A− ξ0′ −Hξ0 , B̃ = B + ξ0 − ξ′ , (159)

R̃ = R−Hξ0 , Ẽ = E − ξ , (160)

h̃ij = hij , (161)

where a prime denotes derivative with respect to conformal time. It is possible to construct, however,
two gauge-invariant gravitational potentials [81, 82],

Φ = A+ (B − E′)′ +H(B − E′) , (162)

Ψ = R+H(B − E′) , (163)

which are related through the perturbed Einstein equations,

Φ = Ψ , (164)
k2 − 3K

a2
Ψ =

κ2

2
δρ , (165)

11Note that inflation cannot generate, to linear order, a vector perturbation.
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where δρ is the gauge-invariant density perturbation, and the latter expression is nothing but the Poisson
equation for the gravitational potential, written in relativistic form.

During inflation, the energy density is given in terms of a scalar field, and thus the gauge-invariant
equations for the perturbations on comoving hypersurfaces (constant energy density hypersurfaces) are

Φ′′ + 3HΦ′ + (H′ + 2H2)Φ =
κ2

2
[φ′δφ′ − a2V ′(φ)δφ] , (166)

−∇2Φ + 3HΦ′ + (H′ + 2H2)Φ = −κ
2

2
[φ′δφ′ + a2V ′(φ)δφ] , (167)

Φ′ +HΦ =
κ2

2
φ′δφ , (168)

δφ′′ + 2Hδφ′ −∇2δφ = 4φ′Φ′ − 2a2V ′(φ)Φ− a2V ′′(φ)δφ . (169)

This system of equations seem too difficult to solve at first sight. However, there is a gauge
invariant combination of variables that allows one to find exact solutions. Let us define [82]

u ≡ aδφ+ zΦ , (170)

z ≡ aφ
′

H . (171)

Under this redefinition, the above equations simplify enormously to just three independent equations,

u′′ −∇2u− z′′

z
u = 0 , (172)

∇2Φ =
κ2

2

H
a2

(zu′ − z′u) , (173)
(a2Φ

H
)′

=
κ2

2
zu . (174)

From Equation (172) we can find a solution u(z), which substituted into (174) can be integrated to give
Φ(z), and together with u(z) allow us to obtain δφ(z).

4.3.2 Quantum Field Theory in curved space-time
Until now we have treated the perturbations as classical, but we should in fact consider the perturbations
Φ and δφ as quantum fields. Note that the perturbed action for the scalar mode u can be written as

δS =
1

2

∫
d3x dη

[
(u′)2 − (∇u)2 +

z′′

z
u2
]
. (175)

In order to quantize the field u in the curved background defined by the metric (150), we can write the
operator

û(η,x) =

∫
d3k

(2π)3/2

[
uk(η) âk e

ik·x + u∗k(η) â†k e
−ik·x

]
, (176)

where the creation and annihilation operators satisfy the commutation relation of bosonic fields, and the
scalar field’s Fock space is defined through the vacuum condition,

[âk, â
†
k′ ] = δ3(k− k′) , (177)

âk|0〉 = 0 . (178)

Note that we are not assuming that the inflaton is a fundamental scalar field, but that is can be written as
a quantum field with its commutation relations (as much as a pion can be described as a quantum field).
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The equations of motion for each mode uk(η) are decoupled in linear perturbation theory,

u′′k +
(
k2 − z′′

z

)
uk = 0 . (179)

The ratio z′′/z acts like a time-dependent potential for this Schrödinger like equation. In order to find
exact solutions to the mode equation, we will use the slow-roll parameters (139), see Ref. [80]

ε = 1− H
′

H2
=
κ2

2

z2

a2
, (180)

δ = 1− φ′′

Hφ′ = 1 + ε− z′

Hz , (181)

ξ = −
(

2− ε− 3δ + δ2 − φ′′′

H2φ′

)
. (182)

In terms of these parameters, the conformal time and the effective potential for the uk mode can be
written as

η =
−1

H +

∫
εda

aH , (183)

z′′

z
= H2

[
(1 + ε− δ)(2− δ) +H−1(ε′ − δ′)

]
. (184)

Note that the slow-roll parameters, (180) and (181), can be taken as constant,12 to order ε2,

ε′ = 2H
(
ε2 − εδ

)
= O(ε2) ,

δ′ = H
(
εδ − ξ

)
= O(ε2) .

(185)

In that case, for constant slow-roll parameters, we can write

η =
−1

H
1

1− ε , (186)

z′′

z
=

1

η2

(
ν2 − 1

4

)
, where ν =

1 + ε− δ
1− ε +

1

2
. (187)

We are now going to search for approximate solutions of the mode equation (179), where the
effective potential (184) is of order z′′/z ' 2H2 in the slow-roll approximation. In quasi-de Sitter there
is a characteristic scale given by the (event) horizon size or Hubble scale during inflation, H−1. There
will be modes uk with physical wavelengths much smaller than this scale, k/a � H , that are well
within the de Sitter horizon and therefore do not feel the curvature of space-time. On the other hand,
there will be modes with physical wavelengths much greater than the Hubble scale, k/a � H . In these
two asymptotic regimes, the solutions can be written as

uk =
1√
2k

e−ikη k � aH , (188)

uk = C1 z k � aH . (189)

In the limit k � aH the modes behave like ordinary quantum modes in Minkowsky space-time, ap-
propriately normalized, while in the opposite limit, u/z becomes constant on superhorizon scales. For

12For instance, there are models of inflation, like power-law inflation, a(t) ∼ tp, where ε = δ = 1/p < 1, that give constant
slow-roll parameters.
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approximately constant slow-roll parameters one can find exact solutions to (179), with the effective
potential given by (187), that interpolate between the two asymptotic solutions,

uk(η) =

√
π

2
ei(ν+ 1

2
)π
2 (−η)1/2H (1)

ν (−kη) , (190)

where H (1)
ν (z) is the Hankel function of the first kind [83], and ν is given by (187) in terms of the

slow-roll parameters. In the limit kη → 0, the solution becomes

|uk| =
2ν−

3
2√

2k

Γ(ν)

Γ(3
2)

(−kη)
1
2
−ν ≡ C(ν)√

2k

( k

aH

) 1
2
−ν
, (191)

C(ν) = 2ν−
3
2

Γ(ν)

Γ(3
2)

(1− ε)ν− 1
2 ' 1 for ε, δ � 1 . (192)

We can now compute Φ and δφ from the super-Hubble-scale mode solution (189), for k � aH .
Substituting into Eq. (174), we find

Φ = C1

(
1− H

a2

∫
a2dη

)
+ C2

H
a2
, (193)

δφ =
C1

a2

∫
a2dη − C2

a2
. (194)

The term proportional to C1 corresponds to the growing solution, while that proportional to C2 corre-
sponds to the decaying solution, which can soon be ignored. These quantities are gauge invariant but
evolve with time outside the horizon, during inflation, and before entering again the horizon during the
radiation or matter eras. We would like to write an expression for a gauge invariant quantity that is
also constant for superhorizon modes. Fortunately, in the case of adiabatic perturbations, there is such a
quantity:

ζ ≡ Φ +
1

εH (Φ′ +HΦ) =
u

z
, (195)

which is constant, see Eq. (189), for k � aH . In fact, this quantity ζ is identical, for superhorizon
modes, to the gauge invariant curvature metric perturbation Rc on comoving (constant energy density)
hypersurfaces, see Ref. [81, 84],

ζ = Rc +
1

εH2
∇2Φ . (196)

Using Eq. (173) we can write the evolution equation for ζ = u
z as ζ ′ = 1

εH ∇2Φ, which confirms that
ζ is constant for (adiabatic13) superhorizon modes, k � aH . Therefore, we can evaluate the Newtonian
potential Φk when the perturbation reenters the horizon during radiation/matter eras in terms of the
curvature perturbationRk when it left the Hubble scale during inflation,

Φk =
(

1− H
a2

∫
a2dη

)
Rk =

3 + 3ω

5 + 3ω
Rk =

{ 2
3 Rk radiation era ,

3
5 Rk matter era .

(197)

Let us now compute the tensor or gravitational wave metric perturbations generated during infla-
tion. The perturbed action for the tensor mode can be written as

δS =
1

2

∫
d3x dη

a2

2κ2

[
(h′ij)

2 − (∇hij)2
]
, (198)

13This conservation fails for entropy or isocurvature perturbations, see Ref. [84].
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with the tensor field hij considered as a quantum field,

ĥij(η,x) =

∫
d3k

(2π)3/2

∑

λ=1,2

[
hk(η) eij(k, λ) âk,λ e

ik·x + h.c.
]
, (199)

where eij(k, λ) are the two polarization tensors, satisfying symmetric, transverse and traceless conditions

eij = eji , kieij = 0 , eii = 0 , (200)

eij(−k, λ) = e∗ij(k, λ) ,
∑

λ

e∗ij(k, λ)eij(k, λ) = 4 , (201)

while the creation and annihilation operators satisfy the usual commutation relation of bosonic fields,
Eq. (177). We can now redefine our gauge invariant tensor amplitude as

vk(η) =
a√
2κ

hk(η) , (202)

which satisfies the following evolution equation, decoupled for each mode vk(η) in linear perturbation
theory,

v′′k +
(
k2 − a′′

a

)
vk = 0 . (203)

The ratio a′′/a acts like a time-dependent potential for this Schrödinger like equation, analogous to the
term z′′/z for the scalar metric perturbation. For constant slow-roll parameters, the potential becomes

a′′

a
= 2H2

(
1− ε

2

)
=

1

η2

(
µ2 − 1

4

)
, (204)

µ =
1

1− ε +
1

2
. (205)

We can solve equation (203) in the two asymptotic regimes,

vk =
1√
2k

e−ikη k � aH , (206)

vk = C a k � aH . (207)

In the limit k � aH the modes behave like ordinary quantum modes in Minkowsky space-time, ap-
propriately normalized, while in the opposite limit, the metric perturbation hk becomes constant on
superhorizon scales. For constant slow-roll parameters one can find exact solutions to (203), with effec-
tive potential given by (204), that interpolate between the two asymptotic solutions. These are identical
to Eq. (190) except for the substitution ν → µ. In the limit kη → 0, the solution becomes

|vk| =
C(µ)√

2k

( k

aH

) 1
2
−µ
. (208)

Since the mode hk becomes constant on superhorizon scales, we can evaluate the tensor metric pertur-
bation when it reentered during the radiation or matter era directly in terms of its value during inflation.

4.3.3 Power spectrum of scalar and tensor metric perturbations
Not only do we expect to measure the amplitude of the metric perturbations generated during inflation
and responsible for the anisotropies in the CMB and density fluctuations in LSS, but we should also be
able to measure its power spectrum, or two-point correlation function in Fourier space. Let us consider
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first the scalar metric perturbations Rk, which enter the horizon at a = k/H . Its correlator is given
by [80]

〈0|R∗kRk′ |0〉 =
|uk|2
z2

δ3(k− k′) ≡ PR(k)

4πk3
(2π)3 δ3(k− k′) , (209)

PR(k) =
k3

2π2

|uk|2
z2

=
κ2

2ε

(H
2π

)2 ( k

aH

)3−2ν
≡ A2

S

( k

aH

)ns−1
, (210)

where we have used Rk = ζk = uk
z and Eq. (191). This last equation determines the power spectrum in

terms of its amplitude at horizon-crossing, AS , and a tilt,

ns − 1 ≡ d lnPR(k)

d ln k
= 3− 2ν = 2

(δ − 2ε

1− ε
)
' 2ηV − 6εV , (211)

see Eqs. (146), (147). Note from this equation that it is possible, in principle, to obtain from inflation a
scalar tilt which is either positive (n > 1) or negative (n < 1). Furthermore, depending on the particular
inflationary model [85], we can have significant departures from scale invariance.

Note that at horizon entry kη = −1, and thus we can alternatively evaluate the tilt as

ns − 1 ≡ − d lnPR
d ln η

= −2ηH
[
(1− ε)− (ε− δ)− 1

]
= 2
(δ − 2ε

1− ε
)
' 2ηV − 6εV , (212)

and the running of the tilt

dns
d ln k

= − dns
d ln η

= −ηH
(

2ξ + 8ε2 − 10εδ
)
' 2ξV + 24ε2V − 16ηV εV , (213)

where we have used Eqs. (185).

Let us consider now the tensor (gravitational wave) metric perturbation, which enter the horizon
at a = k/H ,

∑

λ

〈0|h∗k,λhk′,λ|0〉 = 4
2κ2

a2
|vk|2δ3(k− k′) ≡ Pg(k)

4πk3
(2π)3 δ3(k− k′) , (214)

Pg(k) = 8κ2
(H

2π

)2 ( k

aH

)3−2µ
≡ A2

T

( k

aH

)nT
, (215)

where we have used Eqs. (202) and (208). Therefore, the power spectrum can be approximated by a
power-law expression, with amplitude AT and tilt

nT ≡
d lnPg(k)

d ln k
= 3− 2µ =

−2ε

1− ε ' −2εV < 0 , (216)

which is always negative. In the slow-roll approximation, ε � 1, the tensor power spectrum is scale
invariant.

Alternatively, we can evaluate the tensor tilt by

nT ≡ −
d lnPg
d ln η

= −2ηH
[
(1− ε)− 1

]
=
−2ε

1− ε ' −2εV , (217)

and its running by

dnT
d ln k

= − dnT
d ln η

= −ηH
(

4ε2 − 4εδ
)
' 8ε2V − 4ηV εV , (218)

where we have used Eqs. (185).
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4.4 The anisotropies of the microwave background
The metric fluctuations generated during inflation are not only responsible for the density perturbations
that gave rise to galaxies via gravitational collapse, but one should also expect to see such ripples in
the metric as temperature anisotropies in the cosmic microwave background, that is, minute deviations
in the temperature of the blackbody spectrum when we look at different directions in the sky. Such
anisotropies had been looked for ever since Penzias and Wilson’s discovery of the CMB, but had eluded
all detection, until COBE satellite discovered them in 1992, see Fig. 9. The reason why they took so
long to be discovered was that they appear as perturbations in temperature of only one part in 105. Soon
after COBE, other groups quickly confirmed the detection of temperature anisotropies at around 30µK,
at higher multipole numbers or smaller angular scales.

4.4.1 The Sachs-Wolfe effect
The anisotropies corresponding to large angular scales are only generated via gravitational red-shift
and density perturbations through the Einstein equations, δρ/ρ = −2Φ for adiabatic perturbations; we
can ignore the Doppler contribution, since the perturbation is non-causal. In that case, the temperature
anisotropy in the sky today is given by [86]

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q(η0, θ, φ) + 2

∫ η0

ηLS

drΦ′(η0 − r)Q(r, θ, φ) , (219)

where η0 is the coordinate distance to the last scattering surface, i.e. the present conformal time, while
ηLS ' 0 determines that comoving hypersurface. The above expression is known as the Sachs-Wolfe
effect [86], and contains two parts, the intrinsic and the Integrated Sachs-Wolfe (ISW) effect, due to
integration along the line of sight of time variations in the gravitational potential.

In linear perturbation theory, the scalar metric perturbations can be separated into Φ(η,x) ≡
Φ(η)Q(x), where Q(x) are the scalar harmonics, eigenfunctions of the Laplacian in three dimensions,
∇2Qklm(r, θ, φ) = −k2Qklm(r, θ, φ). These functions have the general form [87]

Qklm(r, θ, φ) = Πkl(r)Ylm(θ, φ) , (220)

where Ylm(θ, φ) are the usual spherical harmonics [83].

In order to compute the temperature anisotropy associated with the Sachs-Wolfe effect, we have
to know the evolution of the metric perturbation during the matter era,

Φ′′ + 3HΦ′ + a2Λ Φ− 2K Φ = 0 . (221)

In the case of a flat universe without cosmological constant, the Newtonian potential remains constant
during the matter era and only the intrinsic SW effect contributes to δT/T . In case of a non-vanishing Λ,
since its contribution is negligible in the past, most of the photon’s trajectory towards us is unperturbed,
and the only difference with respect to the Λ = 0 case is an overall factor [90]. We will consider here the
approximation Φ = constant during the matter era and ignore that factor, see Ref. [88].

In a flat universe, the radial part of the eigenfunctions (220) can be written as [87]

Πkl(r) =

√
2

π
k jl(kr) , (222)

where jl(z) are the spherical Bessel functions [83]. The growing mode solution of the metric perturbation
that left the Hubble scale during inflation contributes to the temperature anisotropies on large scales (219)
as

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q =

1

5
RQ(η0, θ, φ) ≡

∞∑

l=2

l∑

m=−l
alm Ylm(θ, φ) , (223)
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where we have used the fact that at reentry (at the surface of last scattering) the gauge invariant Newtonian
potential Φ is related to the curvature perturbation R at Hubble-crossing during inflation, see Eq. (197);
and we have expanded δT/T in spherical harmonics.

We can now compute the two-point correlation function or angular power spectrum, C(θ), of the
CMB anisotropies on large scales, defined as an expansion in multipole number,

C(θ) =

〈
δT

T

∗
(n)

δT

T
(n′)

〉

n·n′=cos θ

=
1

4π

∞∑

l=2

(2l + 1)Cl Pl(cos θ) , (224)

where Pl(z) are the Legendre polynomials [83], and we have averaged over different universe realiza-
tions. Since the coefficients alm are isotropic (to first order), we can compute the Cl = 〈|alm|2〉 as

C
(S)
l =

4π

25

∫ ∞

0

dk

k
PR(k) j2

l (kη0) , (225)

where we have used Eqs. (223) and (209). In the case of scalar metric perturbation produced during
inflation, the scalar power spectrum at reentry is given by PR(k) = A2

S(kη0)n−1, in the power-law
approximation, see Eq. (210). In that case, one can integrate (225) to give

C
(S)
l =

2π

25
A2
S

Γ[3
2 ] Γ[1− n−1

2 ] Γ[l + n−1
2 ]

Γ[3
2 − n−1

2 ] Γ[l + 2− n−1
2 ]

, (226)

l(l + 1)C
(S)
l

2π
=
A2
S

25
= constant , for n = 1 . (227)

This last expression corresponds to what is known as the Sachs-Wolfe plateau, and is the reason why the
coefficients Cl are always plotted multiplied by l(l + 1), see Fig. 3.4.

Tensor metric perturbations also contribute with an approximately constant angular power spec-
trum, l(l + 1)Cl. The Sachs-Wolfe effect for a gauge invariant tensor perturbation is given by [86]

δT

T
(θ, φ) =

∫ η0

ηLS

dr h′(η0 − r)Qrr(r, θ, φ) , (228)

where Qrr is the rr-component of the tensor harmonic along the line of sight [87]. The tensor perturba-
tion h during the matter era satisfies the following evolution equation

h′′k + 3H h′k + (k2 + 2K)hk = 0 , (229)

which depends on the wavenumber k, contrary to what happens with the scalar modes, see Eq. (221). For
a flat (K = 0) universe, the solution to this equation is hk(η) = hGk(η), where h is the constant tensor
metric perturbation at horizon crossing and Gk(η) = 3 j1(kη)/kη, normalized so that Gk(0) = 1 at the
surface of last scattering. The radial part of the tensor harmonic Qrr in a flat universe can be written
as [87]

Qrrkl (r) =

[
(l − 1)l(l + 1)(l + 2)

πk2

]1/2 jl(kr)

r2
. (230)

The tensor angular power spectrum can finally be expressed as

C
(T )
l =

9π

4
(l − 1)l(l + 1)(l + 2)

∫ ∞

0

dk

k
Pg(k) I2

kl , (231)

Ikl =

∫ x0

0
dx

j2(x0 − x)jl(x)

(x0 − x)x2
, (232)
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where x ≡ kη, and Pg(k) is the primordial tensor spectrum (215). For a scale invariant spectrum,
nT = 0, we can integrate (231) to give [89]

l(l + 1)C
(T )
l =

π

36

(
1 +

48π2

385

)
A2
T Bl , (233)

with Bl = (1.1184, 0.8789, . . . , 1.00) for l = 2, 3, . . . , 30. Therefore, l(l + 1)C
(T )
l also becomes

constant for large l. Beyond l ∼ 30, the Sachs-Wolfe expression is not a good approximation and the
tensor angular power spectrum decays very quickly at large l, see Fig. 28.

4.4.2 The consistency relation
In spite of the success of inflation in predicting a homogeneous and isotropic background on which to
imprint a scale-invariant spectrum of inhomogeneities, it is difficult to test the idea of inflation. A CMB
cosmologist before the 1980s would have argued that ad hoc initial conditions could have been at the
origin of the homogeneity and flatness of the universe on large scales, while a LSS cosmologist would
have agreed with Harrison and Zel’dovich that the most natural spectrum needed to explain the formation
of structure was a scale-invariant spectrum. The surprise was that inflation incorporated an understanding
of both the globally homogeneous and spatially flat background, and the approximately scale-invariant
spectrum of perturbations in the same formalism. But that could have been just a coincidence.

What is unique to inflation is the fact that inflation determines not just one but two primordial
spectra, corresponding to the scalar (density) and tensor (gravitational waves) metric perturbations, from
a single continuous function, the inflaton potential V (φ). In the slow-roll approximation, one determines,
from V (φ), two continuous functions, PR(k) and Pg(k), that in the power-law approximation reduces
to two amplitudes, AS and AT , and two tilts, n and nT . It is clear that there must be a relation between
the four parameters. Indeed, one can see from Eqs. (233) and (227) that the ratio of the tensor to scalar
contribution to the angular power spectrum is proportional to the tensor tilt [80],

r ≡ A2
T

A2
S

= 16ε ' −8nT . (234)

This is a unique prediction of inflation, which could not have been postulated a priori by any cosmol-
ogist. If we finally observe a tensor spectrum of anisotropies in the CMB, or a stochastic gravitational
wave background in laser interferometers like LIGO or LISA, with sufficient accuracy to determine their
spectral tilt, one might have some chance to test the idea of inflation, via the consistency relation (234).
For the moment, observations of the microwave background anisotropies suggest that the Sachs-Wolfe
plateau exists, see Fig. 3.4, but it is still premature to determine the tensor contribution. Perhaps in the
near future, from the analysis of polarization as well as temperature anisotropies, with the CMB satellites
MAP and Planck, we might have a chance of determining the validity of the consistency relation.

Assuming that the scalar contribution dominates over the tensor on large scales, i.e. r � 1, one
can actually give a measure of the amplitude of the scalar metric perturbation from the observations of
the Sachs-Wolfe plateau in the angular power spectrum [21],

[
l(l + 1)C

(S)
l

2π

]1/2

=
AS
5

= (0.926± 0.0106)× 10−5 , (235)

n = 0.9667± 0.0040 , (236)

dn

d ln k
= −0.002± 0.013 . (237)

These measurements can be used to normalize the primordial spectrum and determine the parameters
of the model of inflation [85]. In the near future these parameters will be determined with much better
accuracy, as described in Section 4.4.5.
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4.4.3 The acoustic peaks
The Sachs-Wolfe plateau is a distinctive feature of Fig. 24. These observations confirm the existence of a
primordial spectrum of scalar (density) perturbations on all scales, otherwise the power spectrum would
have started from zero at l = 2. However, we see that the spectrum starts to rise around l = 20 towards
the first acoustic peak, where the SW approximation breaks down and the above formulae are no longer
valid.

As mentioned above, the first peak in the photon distribution corresponds to overdensities that
have undergone half an oscillation, that is, a compression, and appear at a scale associated with the size
of the horizon at last scattering, about 1◦ projected in the sky today. Since photons scatter off baryons,
they will also feel the acoustic wave and create a peak in the correlation function. The height of the peak
is proportional to the amount of baryons: the larger the baryon content of the universe, the higher the
peak. The position of the peak in the power spectrum depends on the geometrical size of the particle
horizon at last scattering. Since photons travel along geodesics, the projected size of the causal horizon
at decoupling depends on whether the universe is flat, open or closed. In a flat universe the geodesics
are straight lines and, by looking at the angular scale of the first acoustic peak, we would be measuring
the actual size of the horizon at last scattering. In an open universe, the geodesics are inward-curved
trajectories, and therefore the projected size on the sky appears smaller. In this case, the first acoustic
peak should occur at higher multipoles or smaller angular scales. On the other hand, for a closed universe,
the first peak occurs at smaller multipoles or larger angular scales. The dependence of the position of
the first acoustic peak on the spatial curvature can be approximately given by lpeak ' 220 Ω

−1/2
0 , where

Ω0 = ΩM + ΩΛ = 1 − ΩK . Past observations from the balloon experiment BOOMERANG [91],
suggested clearly a few years ago that the first peak was between l = 180 and 250 at 95% c.l., with an
amplitude δT = 80± 10 µK, and therefore the universe was most probably flat. However, with the high
precision Planck data we can now pinpoint the spatial curvature to less than a tenth of a percent,

Ω0 = 0.9992± 0.0040 (95% c.l.) (238)

Therefore, the universe is spatially flat (i.e. Euclidean), within 0.1% uncertainty, which is much better
than we could ever do before, and is one the most robust predictions of inflation.

With WMAP and specially with Planck, we have now evidence of at least nine distinct acoustic
peaks. These peaks should occur at harmonics of the first one, but are typically much lower because
of Silk damping. Since the amplitude and position of the primary and secondary peaks are directly de-
termined by the sound speed (and, hence, the equation of state) and by the geometry and expansion of
the universe, they can be used as a powerful test of the density of baryons and dark matter, and other
cosmological parameters. By looking at these patterns in the anisotropies of the microwave background,
cosmologists can determine not only the cosmological parameters, but also the primordial spectrum of
density perturbations produced during inflation. It turns out that the observed temperature anisotropies
are compatible with a scale-invariant spectrum, see Eq. (236), as predicted by inflation. This is remark-
able, and gives very strong support to the idea that inflation may indeed be responsible for both the CMB
anisotropies and the large-scale structure of the universe. Different models of inflation have different
specific predictions for the fine details associated with the spectrum generated during inflation. It is these
minute differences that will allow cosmologists to differentiate between alternative models of inflation
and discard those that do not agree with observations. However, most importantly, perhaps, the pattern of
anisotropies predicted by inflation is completely different from those predicted by alternative models of
structure formation, like cosmic defects: strings, vortices, textures, etc. These are complicated networks
of energy density concentrations left over from an early universe phase transition, analogous to the de-
fects formed in the laboratory in certain kinds of liquid crystals when they go through a phase transition.
The cosmological defects have spectral properties very different from those generated by inflation. That
is why it is so important to launch more sensitive instruments, and with better angular resolution, to
determine the properties of the CMB anisotropies.
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4.4.4 The new microwave anisotropy satellites, WMAP and Planck
The large amount of information encoded in the anisotropies of the microwave background is the reason
why both NASA and the European Space Agency have decided to launch two independent satellites to
measure the CMB temperature and polarization anisotropies to unprecendented accuracy. The Wilkinson
Microwave Anisotropy Probe [92] was launched by NASA at the end of 2000, while Planck [93] was
launched by ESA in 2009 and both have fulfilled all our expectations for temperature and E mode po-
larization. There are at the moment other large missiuon proposals like PRISM [99], and CORE+ [100],
which should provide precision measurements of CMB polarization anisotropies and detect for the first
time the primordial B modes of inflation.

As we have emphasized before, the fact that these anisotropies have such a small amplitude allow
for an accurate calculation of the predicted anisotropies in linear perturbation theory. A particular cosmo-
logical model is characterized by a dozen or so parameters: the rate of expansion, the spatial curvature,
the baryon content, the cold dark matter and neutrino contribution, the cosmological constant (vacuum
energy), the reionization parameter (optical depth to the last scattering surface), and various primordial
spectrum parameters like the amplitude and tilt of the adiabatic and isocurvature spectra, the amount of
gravitational waves, non-Gaussian effects, etc. All these parameters can now be fed into very fast CMB
codes called CMBFAST [97] and CAMB [98], that compute the predicted temperature and polarization
anisotropies to better than 0.1% accuracy, and thus can be used to compare with observations.

These two satellites have improved both the sensitivity, down to µK, and the resolution, down to
arc minutes, with respect to the previous COBE satellite, thanks to large numbers of microwave horns
of various sizes, positioned at specific angles, and also thanks to recent advances in detector technology,
with high electron mobility transistor amplifiers (HEMTs) for frequencies below 100 GHz and bolome-
ters for higher frequencies. The primary advantage of HEMTs is their ease of use and speed, with a
typical sensitivity of 0.5 mKs1/2, while the advantage of bolometers is their tremendous sensitivity, bet-
ter than 0.1 mKs1/2, see Ref. [101]. This has allowed cosmologists to extract information from around
3000 multipoles! Since most of the cosmological parameters have specific signatures in the height and
position of the first few acoustic peaks, the higher the resolution, the more peaks one is expected to see,
and thus the better the accuracy with which one will be able to measure those parameters, see Table 2.

Although the satellite probes were designed for the accurate measurement of the CMB temperature
anisotropies, there are other experiments, like balloon-borne and ground interferometers [94]. Probably
the most important objective of the future satellites (beyond WMAP and Planck) will be the measure-
ment of the CMB polarization anisotropies, discovered by DASI in November 2002 [102], and con-
firmed a few months later by WMAP [21], and by Planck [93] with much greater accuracy, see Fig. 27.
These anisotropies were predicted by models of structure formation and indeed found at the level of
microKelvin sensitivities, where the new satellites were aiming at. The complementary information
contained in the polarization anisotropies already provides much more stringent constraints on the cos-
mological parameters than from the temperature anisotropies alone. However, in the future, PRISM and
CORE+ will have much better sensitivities. In particular, the curl-curl component of the polarization
power spectra is nowadays the only means we have to determine the tensor (gravitational wave) con-
tribution to the metric perturbations responsible for temperature anisotropies. If such a component is
found, one could finally confirm the inflationary paradigm [95].

4.5 From metric perturbations to large scale structure
If inflation is responsible for the metric perturbations that gave rise to the temperature anisotropies ob-
served in the microwave background, then the primordial spectrum of density inhomogeneities induced
by the same metric perturbations should also be responsible for the present large scale structure [104].
This simple connection allows for more stringent tests on the inflationary paradigm for the generation
of metric perturbations, since it relates the large scales (of order the present horizon) with the smallest
scales (on galaxy scales). This provides a very large lever arm for the determination of primordial spectra
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Fig. 27: Planck measurements of the TE cross-correlation and EE power spectrum of CMB polarization fluctua-
tions, and residuals w.r.t. a Standard Cosmological Model. We only have upper bounds on the BB power spectrum.
From Ref. [93].

parameters like the tilt, the nature of the perturbations, whether adiabatic or isocurvature, the geometry
of the universe, as well as its matter and energy content, whether CDM, HDM or mixed CHDM.

4.5.1 The galaxy power spectrum
As metric perturbations enter the causal horizon during the radiation or matter era, they create density
fluctuations via gravitational attraction of the potential wells. The density contrast δ can be deduced from
the Einstein equations in linear perturbation theory, see Eq. (165),

δk ≡
δρk
ρ

=

(
k

aH

)2 2

3
Φk =

(
k

aH

)2 2 + 2ω

5 + 3ω
Rk , (239)
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where we have assumed K = 0, and used Eq. (197). From this expression one can compute the power
spectrum, at horizon crossing, of matter density perturbations induced by inflation, see Eq. (209),

P (k) = 〈|δk|2〉 = A

(
k

aH

)n
, (240)

with n given by the scalar tilt (211), n = 1 + 2η − 6ε. This spectrum reduces to a Harrison-Zel’dovich
spectrum (100) in the slow-roll approximation: η, ε� 1.

Since perturbations evolve after entering the horizon, the power spectrum will not remain con-
stant. For scales entering the horizon well after matter domination (k−1 � k−1

eq ' 81 Mpc), the metric
perturbation has not changed significantly, so that Rk(final) = Rk(initial). Then Eq. (239) determines
the final density contrast in terms of the initial one. On smaller scales, there is a linear transfer function
T (k), which may be defined as [80]

Rk(final) = T (k)Rk(initial) . (241)

To calculate the transfer function one has to specify the initial condition with the relative abundance
of photons, neutrinos, baryons and cold dark matter long before horizon crossing. The most natural
condition is that the abundances of all particle species are uniform on comoving hypersurfaces (with
constant total energy density). This is called the adiabatic condition, because entropy is conserved inde-
pendently for each particle species X , i.e. δρX = ρ̇Xδt, given a perturbation in time from a comoving
hypersurface, so

δρX
ρX + pX

=
δρY

ρY + pY
, (242)

where we have used the energy conservation equation for each species, ρ̇X = −3H(ρX + pX), valid to
first order in perturbations. It follows that each species of radiation has a common density contrast δr,
and each species of matter has also a common density contrast δm, with the relation δm = 3

4δr.

Given the adiabatic condition, the transfer function is determined by the physical processes oc-
curing between horizon entry and matter domination. If the radiation behaves like a perfect fluid, its
density perturbation oscillates during this era, with decreasing amplitude. The matter density contrast
living in this background does not grow appreciably before matter domination because it has negligible
self-gravity. The transfer function is therefore given roughly by, see Eq. (102),

T (k) =

{
1 , k � keq

(k/keq)2 , k � keq

(243)

The perfect fluid description of the radiation is far from being correct after horizon entry, because
roughly half of the radiation consists of neutrinos whose perturbation rapidly disappears through free
streeming. The photons are also not a perfect fluid because they diffuse significantly, for scales below
the Silk scale, k−1

S ∼ 1 Mpc. One might then consider the opposite assumption, that the radiation has
zero perturbation after horizon entry. Then the matter density perturbation evolves according to

δ̈k + 2Hδ̇k + (c2
s k

2
ph − 4πGρ) δk = 0 , (244)

which corresponds to the equation of a damped harmonic oscillator. The zero-frequency oscillator defines
the Jeans wavenumber, kJ =

√
4πGρ/c2

s. For k � kJ , δk grows exponentially on the dynamical
timescale, τdyn = Imω−1 = (4πGρ)−1/2 = τgrav, which is the time scale for gravitational collapse.
One can also define the Jeans length,

λJ =
2π

kJ
= cs

√
π

Gρ
, (245)

71

COSMOLOGY

361



which separates gravitationally stable from unstable modes. If we define the pressure response timescale
as the size of the perturbation over the sound speed, τpres ∼ λ/cs, then, if τpres > τgrav, gravitational
collapse of a perturbation can occur before pressure forces can response to restore hydrostatic equilibrium
(this occurs for λ > λJ ). On the other hand, if τpres < τgrav, radiation pressure prevents gravitational
collapse and there are damped acoustic oscillations (for λ < λJ ).

We will consider now the behaviour of modes within the horizon during the transition from the
radiation (c2

s = 1/3) to the matter era (c2
s = 0). The growing mode solution increases only by a factor of

2 between horizon entry and the epoch when matter starts to dominate, i.e. y = 1. The transfer function is
therefore again roughly given by Eq. (243). Since the radiation consists roughly half of neutrinos, which
free streem, and half of photons, which either form a perfect fluid or just diffuse, neither the perfect
fluid nor the free-streeming approximation looks very sensible. A more precise calculation is needed,
including: neutrino free streeming around the epoch of horizon entry; the diffusion of photons around
the same time, for scales below Silk scale; the diffusion of baryons along with the photons, and the
establishment after matter domination of a common matter density contrast, as the baryons fall into the
potential wells of cold dark matter. All these effects apply separately, to first order in the perturbations, to
each Fourier component, so that a linear transfer function is produced. There are several parametrizations
in the literature, but the one which is more widely used is that of Ref. [105],

T (k) =
[
1 +

(
ak + (bk)3/2 + (ck)2

)ν]−1/ν
, ν = 1.13 , (246)

a = 6.4 (ΩMh)−1 h−1 Mpc , (247)

b = 3.0 (ΩMh)−1 h−1 Mpc , (248)

c = 1.7 (ΩMh)−1 h−1 Mpc . (249)

We see that the behaviour estimated in Eq. (243) is roughly correct, although the break at k = keq is not
at all sharp, see Fig. 28. The transfer function, which encodes the soltion to linear equations, ceases to
be valid when the density contrast becomes of order 1. After that, the highly nonlinear phenomenon of
gravitational collapse takes place, see Fig. 28.

Fig. 28: The CDM power spectrum P (k) as a function of wavenumber k, in logarithmic scale, normalized to the
local abundance of galaxy clusters, for an Einstein-de Sitter universe with h = 0.5. The solid (dashed) curve shows
the linear (non-linear) power spectrum. While the linear power spectrum falls off like k−3, the non-linear power-
spectrum illustrates the increased power on small scales due to non-linear effects, at the expense of the large-scale
structures. From Ref. [45].
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4.5.2 The new redshift catalogs, 2dF and Sloan Digital Sky Survey
Our view of the large-scale distribution of luminous objects in the universe has changed dramatically
during the last 25 years: from the simple pre-1975 picture of a distribution of field and cluster galaxies,
to the discovery of the first single superstructures and voids, to the most recent results showing an almost
regular web-like network of interconnected clusters, filaments and walls, separating huge nearly empty
volumes. The increased efficiency of redshift surveys, made possible by the development of spectro-
graphs and – specially in the last decade – by an enormous increase in multiplexing gain (i.e. the ability
to collect spectra of several galaxies at once, thanks to fibre-optic spectrographs), has allowed us not
only to do cartography of the nearby universe, but also to statistically characterize some of its properties,
see Ref. [106]. At the same time, advances in theoretical modeling of the development of structure, with
large high-resolution gravitational simulations coupled to a deeper yet limited understanding of how to
form galaxies within the dark matter halos, have provided a more realistic connection of the models to the
observable quantities [107]. Despite the large uncertainties that still exist, this has transformed the study
of cosmology and large-scale structure into a truly quantitative science, where theory and observations
can progress side by side.

I will concentrate on two of the new catalogs, which are taking data at the moment and which
have changed the field, the 2-degree-Field (2dF) Catalog and the Sloan Digital Sky Survey (SDSS). The
advantages of multi-object fibre spectroscopy have been pushed to the extreme with the construction of
the 2dF spectrograph for the prime focus of the Anglo-Australian Telescope [46]. This instrument is
able to accommodate 400 automatically positioned fibres over a 2 degree in diameter field. This implies
a density of fibres on the sky of approximately 130 deg−2, and an optimal match to the galaxy counts
for a magnitude bJ ' 19.5, similar to that of previous surveys like the ESP, with the difference that
with such an area yield, the same number of redshifts as in the ESP survey can be collected in about 10
exposures, or slightly more than one night of telescope time with typical 1 hour exposures. This is the
basis of the 2dF galaxy redshift survey. Its goal is to measure redshifts for more than 250,000 galaxies
with bJ < 19.5. In addition, a faint redshift survey of 10,000 galaxies brighter than R = 21 will be done
over selected fields within the two main strips of the South and North Galactic Caps. The survey has
now finished, with a quarter of a million redshifts. The final result can be seen in Ref. [46].

The most ambitious and comprehensive galaxy survey currently in progress is without any doubt
the Sloan Digital Sky Survey [47]. The aim of the project is, first of all, to observe photometrically the
whole Northern Galactic Cap, 30◦ away from the galactic plane (about 104 deg2) in five bands, at limiting
magnitudes from 20.8 to 23.3. The expectation is to detect around 50 million galaxies and around 108

star-like sources. This has already led to the discovery of several high-redshift (z > 4) quasars, including
the highest-redshift quasar known, at z = 5.0, see Ref. [47]. Using two fibre spectrographs carrying 320
fibres each, the spectroscopic part of the survey will then collect spectra from about 106 galaxies with
r′ < 18 and 105 AGNs with r′ < 19. It will also select a sample of about 105 red luminous galaxies with
r′ < 19.5, which will be observed spectroscopically, providing a nearly volume-limited sample of early-
type galaxies with a median redshift of z ' 0.5, that will be extremely valuable to study the evolution of
clustering. The data that is coming from these catalogs is so outstanding that already cosmologists are
using them for the determination of the cosmological parameters of the standard model of cosmology.
The main outcome of these catalogs is the linear power spectrum of matter fluctuations that give rise to
galaxies, and clusters of galaxies. It covers from the large scales of order Gigaparsecs, the realm of the
unvirialised superclusters, to the small scales of hundreds of kiloparsecs, where the Lyman-α systems
can help reconstruct the linear power spectrum, since they are less sensitive to the nonlinear growth of
perturbations.

As often happens in particle physics, not always are observations from a single experiment suffi-
cient to isolate and determine the precise value of the parameters of the standard model. We mentioned
in the previous Section that some of the cosmological parameters created similar effects in the tem-
perature anisotropies of the microwave background. We say that these parameters are degenerate with
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respect to the observations. However, often one finds combinations of various experiments/observations
which break the degeneracy, for example by depending on a different combination of parameters. This is
precisely the case with the cosmological parameters, as measured by a combination of large-scale struc-
ture observations, microwave background anisotropies, Supernovae Ia observations and Hubble Space
Telescope measurements. It is expected that in the near future we will be able to determine the param-
eters of the standard cosmological model with great precision from a combination of several different
experiments.

5 Conclusions
In the last ten years we have seen a true revolution in the quality and quantity of cosmological data
that has allowed cosmologists to determine most of the cosmological parameters with a few percent
accuracy and thus fix a Standard Model of Cosmology. The art of measuring the cosmos has developed
so rapidly and efficiently that one may be temped of renaming this science as Cosmonomy, leaving the
word Cosmology for the theories of the Early Universe. In summary, we now know that the stuff we are
made of − baryons − constitutes just about 4% of all the matter/energy in the Universe, while 25% is
dark matter − perhaps a new particle species related to theories beyond the Standard Model of Particle
Physics −, and the largest fraction, 70%, some form of diffuse tension also known as dark energy −
perhaps a cosmological constant. The rest, about 1%, could be in the form of massive neutrinos.

Nowadays, a host of observations − from CMB anisotropies and large scale structure to the age
and the acceleration of the universe − all converge towards these values, see Fig. 25. Fortunately, we
will have, within this decade, new satellite experiments like Planck, CMBpol, SNAP as well as deep
galaxy catalogs from Earth, to complement and precisely pin down the values of the Standard Model
cosmological parameters below the percent level, see Table 2.

All these observations would not make much sense without the encompassing picture of the infla-
tionary paradigm that determines the homogeneous and isotropic background on top of which it imprints
an approximately scale invariant gaussian spectrum of adiabatic fluctuations. At present all observations
are consistent with the predictions of inflation and hopefully in the near future we may have information,
from the polarization anisotropies of the microwave background, about the scale of inflation, and thus
about the physics responsible for the early universe dynamics.
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