
Status of MERLIN

H. Rafique1 2 3, R. B. Appleby2 3, R. J. Barlow1, J. G. Molson5, S. Tygier2 3, A. Valloni2 4

1University of Huddersfield, Huddersfield, UK, 2University of Manchester, Manchester, UK,
3Cockcroft Institute, Daresbury, UK, 4CERN, Geneva, Switzerland,
5LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

Keywords
MERLIN; collimation; HL-LHC; tracking.

1 Introduction
MERLIN is an accelerator physics library written in C++, created by Nick Walker at DESY in 2000,
to study the International Linear Collider [1] (ILC) beam delivery system ground-motion [2]. Later, the
main linac and damping rings were added, [3] necessitating wakefield, collimation, and synchrotron radi-
ation processes [4]. As the ILC is an electron linac, the TRANSPORT maps were deemed acceptable for
particle tracking. Later, Andy Wolski added synchrotron functionality, including a module to calculate
the Courant-Snyder parameters, closed orbit and dispersion, and symplectic integrators for many turn
simulations.

The current loss map tool for the LHC is SixTrack [5], a particle tracking code that was up-
dated to include the K2 [6] scattering routines for collimation [7] and has also been combined with the
FLUKA [8].

It was decided to update MERLIN to include the requirements for a complementary simulation
of the LHC and future collimation system. MERLIN is written in C++ making it modular, and easy to
modify. It offers thick lens tracking, an on-line aperture check, and a number of physics processes. The
scattering physics has recently been updated to include more advanced proton-nucleon elastic and single
diffractive scattering [9]. These updates, ensure that MERLIN offers a fast, accurate, and future-proofed
tool for ultra-relativistic proton tracking, collimation, and a robust hollow electron lens process [10].

MERLIN has been used for simulating loss maps for the existing and future upgrades to the LHC
collimation systems [11, 12]. The source code is now available on GitHub [13], and is described in
detail in [9] and [10]. In this article we describe the features of MERLIN that are used in collimation
studies. Dedicated articles on MERLIN’s composite materials and hollow electron lens are included in
these proceedings [14, 15].

2 MERLIN
For a typical loss map simulation, MERLIN must be given a set of input files that describe the accelerator
lattice, the machine aperture and the collimator settings. Then a beam of particles is created, based on
the accelerator optics and distribution requested, and tracked around the lattice. When a particle hits a
collimator, the scattering through the material is simulated. Finally, if a particle loses sufficient energy
in a scatter, or hits a non collimator component, its loss is recorded and a loss map is generated.

The user may define their accelerator in the form of an AcceleratorModel, using the MAD
Interface class to read a standard MADX [16] TFS table. Further input files may be read by
the ApertureConfiguration class to define the apertures of the accelerator, and the Collimator
Database to set up collimators. The user may then calculate the lattice functions of the accelerator, and
in turn use these to define a beam, which leads to the construction of a ParticleBunch that is matched
to the accelerator at the desired position. A particle tracker may be constructed, selecting from either
TRANSPORT or SYMPLECTIC integrator sets, and physics processes may be attached to it. Finally, the user

Proceedings of ICFA Mini-Workshop on Tracking for Collimation in Particle Accelerators, CERN, Geneva, Switzerland, 30 October
2015, CERN Yellow Reports: Conference Proceedings, Vol. 2/2018, CERN-2018-011-CP (CERN, Geneva, 2018)

2519-8084 – c� CERN, 2018. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence. 27

https://doi.org/10.23732/CYRCP-2018-002.27.


may run the tracking simulation, and create outputs using one of the existing output functions, or define
their own. This standard flow of data between MERLIN’s main classes for a collimation simulation is
shown in Fig. 1.

ApertureCon�guration

CollimatorDatabase

MADInterface

AcceleratorModelConstructor

AcceleratorModel

LatticeFunctionTable

BeamData

ProtonBunch

CollimationProtonProcess

PartcleTracker

Fig. 1: The data flow of a typical collimation simulation using MERLIN

2.1 Lattice setup
MERLIN stores an accelerator as an AcceleratorModel object. This requires three input files for the
purpose of LHC and HL-LHC collimation, the first for an accurate model of the individual components
of the accelerator, the second to define the apertures of the machine, and the third to define collimator
parameters. In order to translate these inputs into a MERLIN AcceleratorModel, a number of input
interfaces and configuration utilities are required.

The AcceleratorModel is an ordered vector of AcceleratorComponents, which is used by the
ParticleTracker to set the integrators that describe the paths taken by individual particles as they
travel through the elements. Each AcceleratorComponent contains an EM field, a geometry, an aper-
ture, and a wake potential object. Special cases exist, for example a Collimator also contains a jaw
material which is required for scattering. Figure 2 shows the inheritance of the standard Accelerator
Components (including some internal data types prefixed with TAcc), both Collimator and Hollow
ElectronLens elements are tracked as, and therefore derived from, the Drift component (a vacuum
pipe with no field).

Fig. 2: Inheritance diagram of the accelerator components currently available in MERLIN

A standard MADX thick lens TFS table is passed through the MADInterface class to extract the
AcceleratorComponents. MADInterface reads the column headers so that as long as the required
parameters are present, they do not need to be in a fixed order. It iterates through each element and cre-
ates the appropriate AcceleratorComponent, appending it to the AcceleratorModelConstructor, a
standalone class used in MADInterface.

2

H. RAFIQUE ET AL.

28



MERLIN contains all the standard components required for modelling typical synchrotrons,
detailed in Table 1. Any element may be treated as a drift using the MADInterface::
TreatTypeAsDrift() function, though this is unwise for certain magnets. MERLIN currently handles
a small number of elements as drifts as standard because there is no integrator to perform the expected
function, or the expected function cannot be performed using an integrator (for example the hollow
electron lens).

Table 1: Most common accelerator components and their MADX TFS and MERLIN names. For cases
such as MULTIPOLE the appropriate element is selected based on the parameters in the lattice. For
RBEND, MERLIN uses a SectorBend with appropriate pole face rotations.

Component MADX name MERLIN name
Vacuum pipe DRIFT Drift
RF cavity LCAV SWRFStructure
RF cavity RFCAVITY SWRFStructure
Collimator RCOLLIMATOR Collimator
Collimator ECOLLIMATOR Collimator
Collimator COLLIMATOR Collimator
Rectangular dipole RBEND SectorBend
Sector dipole SBEND SectorBend
Multipole MULTIPOLE Sextupole, Octupole
Vertical corrector YCOR YCor
Vertical kicker VKICKER YCor
Horizontal corrector XCOR XCor
Horizontal kicker HKICKER XCor
Quadrupole QUADRUPOLE Quadrupole
Skew quadrupole SKEWQUAD SkewQuadrupole
Solenoid SOLENOID Solenoid
Hollow electron lens - HollowElectronLens
Sextupole SEXTUPOLE Sextupole
Octupole OCTUPOLE Octupole
Skew sextupole SKEWSEXT SkewSextupole
Monitor MONITOR BPM, RMSProfileMonitor
Marker MARKER Marker

2.2 Apertures
MERLIN features on-line aperture checking. Particles’ positions are checked against the local aperture
at each element as they are tracked through the lattice. The aperture can either be used to stop particles
or to trigger the scattering routine in order to simulate the passage through matter.

MERLIN contains a number of aperture shapes, as shown in Fig 3. The basic apertures are defined
by up to four geometric parameters, e.g. radius for CircularAperture and half-width and half-height
for RectangularAperture. All apertures contain a PointInside() function, which takes the spatial
coordinates of a particle (x, y, z), and checks if those coordinates are inside the aperture.

MERLIN provides the InterpolatedAperture set of classes, which allow the geometric param-
eters to vary along the length of an element. This is useful for describing the beam pipe around the
interaction points in the LHC.

For collimator scattering, MERLIN has the CollimatorAperture family of classes. Dur-
ing collimation, if the particle hits the aperture in an element that is a Collimator and has a
CollimatorAperture, then instead of being immediately lost, it is passed to a scattering routine. This
collimator scattering is described in section 2.7.

3

STATUS OF MERLIN

29



a1
a1

a2

a1

a2

a1

a2 a3

a4

a1
a2

a3

a4

Rectangular Circular Elliptical

RectEllipse Octagonal

Fig. 3: Aperture shapes and geometric parameters

The apertures for a lattice can be read in from a TFS file using the ApertureConfiguration
class. This reads an input table containing the shape and geometric parameters of the apertures, and
attaches the appropriate aperture classes to the lattice elements.

2.3 Particle Bunch
MERLIN uses three coordinate pairs, (x, x0), (y, y0), (ct, �), to define a particle as a six dimensional
vector p, as shown in Equation 1. x and y are the transverse horizontal and vertical coordinates, x0 and
y
0 are the corresponding angles, � is the longitudinal energy offset, and ct is the displacement from the

reference position in s.

p =

0

BBBBBB@

x

x
0

y

y
0

ct

�

1

CCCCCCA
. (1)

MERLIN stores particles as PSVectors, a class that contains the particle coordinate vector as
components, as well as a number of other variables, all of which are detailed in Table. 2.

The ParticleBunchConstructor class is used to create an initial bunch matched to the machine
lattice functions at any chosen injection position. In order to do this a BeamData object must be created
and fed to the bunch constructor.

BeamData provides a data structure for definition of the 6D beam phasespace. Using the Lattice
FunctionTable the user may define parameters at the injection position, which are fed to the Particle
BunchConstructor. The components of BeamData are shown in Table 3.

MERLIN provides a number of bunch distributions, all of which are stored in the
ParticleBunchConstructor. The majority are described in [9]. When using the constructor the bunch
is matched to the lattice functions at the position of creation. The user may specify the construction of
the bunch via an input file.

For the study of the HEL in the LHC and HL-LHC, a HEL halo distribution was created. This is
a simple halo bunch that is populated between �xmin and �xmax in x, and �ymin and �ymax in y, thus a
matched halo distribution in xy phasespace is generated, as shown in Fig. 4. The minima and maxima

4

H. RAFIQUE ET AL.

30



Table 2: Components of the PSVector class

Accessor Component Index
x x 0

xp x
0 1

y y 2
yp y

0 3
ct ct 4
dp � 5

type Type of last particle scatter 6
s Location in lattice 7
id Individual particle ID 8
sd Single diffractive flag 9

Table 3: Components of the BeamData class. 1 Must be specified. 2 units are dependent on the type of
distribution selected in the ParticleBunchConstructor.

Component(s) Parameter(s)
x0, xp0, y0, yp0, ct0, dp0 Beam centroid1

beta_x, beta_y, alpha_x, alpha_y Lattice functions1

emit_x, emit_y Emittances1

sig_dp Relative energy spread
sig_z Bunch length

p0 Reference momentum1

c_xy, c_xyp, c_xpy, c_xpyp x-y coupling
Dx, Dxp, Dy, Dyp Dispersion1

charge Particle charge1

min_sig_x, max_sig_x Minimum and maximum beam size in x (in �)2

min_sig_y, max_sig_y Minimum and maximum beam size in y (in �)2

min_sig_z, max_sig_z Minimum and maximum bunch length2

min_sig_dp, max_sig_dp Minimum and maximum energy deviation2

are specified using the BeamData class as discussed previously. All other coordinates are matched to
regular beam parameters and the optics of the machine at the point of injection in the simulation.

2.4 Integrators
Tracking of particles through each lattice element is performed by integrators. An integrator takes the
vector of coordinates of each particle at the beginning of an element and transforms it to the coordinates
at the end. A specific integrator is used for each element type and an integrator set will contain an
integrator for each common element.

MERLIN contains multiple inbuilt integrator sets including TRANSPORT, which uses second order
transport maps and SYMPLECTIC, which defines symplectic integrators for each element. These can be
selected using the SetIntegratorSet() method of the tracker. It is also possible to add additional
integrators or override individual integrators within a set.

5

STATUS OF MERLIN

31



Fig. 4: HEL halo distribution in xy, xx0, yy0, and x
0
y
0 phasespace. Purple points are a ‘core’ bunch

populated between 0-4 �x and �y, green points are a ‘halo’ bunch populated between 4-6 �x and �y.
This bunch is created at an ‘injection’ position of HEL in the nominal LHC.

2.5 Synchrotron Motion
Radiation damping and beam acceleration provide another mechanism for particle loss. The off-
momentum collimation insertion in IR3 of the LHC is designed for this purpose. The RF bucket, and
synchrotron motion in MERLIN is demonstrated in Fig. 5, which shows a Poincaré section, the phases-
pace over multiple turns, from an LHC simulation with collimation disabled.

Figures 6 and 7 show the same synchrotron motion, but now with collimation enabled, first with
only the IR7 transverse primary collimators, and then with both IR7 and the IR3 longitudinal primary
collimators. It can be seen that the IR3 collimation region can be used to tightly control energy spread.

2.6 Lattice Functions
The Courant-Snyder parameters, along with the closed orbit and dispersion, give a description of the
beam envelope and linear optics around the accelerator lattice. They are useful for confirming that
the simulation code has a correct model of the accelerator lattice and accurate modelling of particle
dynamics. They are also needed for setting up collimator jaw positions and initial beam parameters.

For collimator jaw openings we use units of �, which is proportional to the RMS beam emittance

6

H. RAFIQUE ET AL.

32



Fig. 5: Poincaré section in ct, � phasespace of a large initial distribution (black) over 100 turns in the
LHC (red), showing RF bucket and synchrotron motion.

Fig. 6: Poincaré section in ct, � phasespace of a large initial distribution (black) over 100 turns in the
LHC (red) with collimation enabled and the IR7 transverse TCPs in place.

7

STATUS OF MERLIN

33



Fig. 7: Poincaré section in ct, � phasespace of a large initial distribution (black) over 100 turns in the
LHC (red), with collimation enabled and both the IR7 transverse and IR3 longitudinal TCPs in place.

and beta function on the given plane at the requested position in the lattice. For example in the x plane
�x =

p
�x✏x (when dispersion is zero). This means that when setting collimator apertures we require the

lattice functions. Changes in optics – for example the beta squeeze at the experiments – cause a change
in the position of the collimator jaws.

MERLIN calculates the lattice functions by tracking particles, rather than by the transfer matrix
methods found in optics codes. The LatticeFunctionTable class takes the AcceleratorModel and
beam energy to first find the closed orbit and then calculate the lattice functions.

The closed orbit is found iteratively: a set of particles with small offsets in each phasespace
coordinate is tracked through the lattice and a transfer matrix is calculated from the final coordinates.
From this an approximate closed orbit is found, and a new iteration is performed around it. This is
repeated until the closed orbit converges.

The lattice functions are then found by again tracking a set of particles with offsets through the
lattice, recording their positions after every element. From these coordinates the lattice functions at each
element can be calculated.

Figure 8 shows the � function and horizontal dispersion around the full ring for the round 15 cm
squeezed HL-LHC optics. The increased � in the arc adjacent to the high luminosity experiments due
to the ATS optics is clearly visible. Figure 9 shows zoomed views of the � function and horizontal
dispersion at each of the 4 experiments.

The optics functions found by MERLIN using tracking can be compared to those found using
MAD-X’s matrix methods. This is useful to validate the tracking model in MERLIN. Figure 10 shows
the � and ↵ functions from the two codes, and the difference between them. The greatest difference is in
the inner triplets where the � function deviates by 25 mm in 20 km.

8

H. RAFIQUE ET AL.

34



0 5000 10000 15000 20000 25000

S (m)

0

5000

10000

15000

20000

25000

B
E

TX
B

E
TY

(m
)

BETX
BETY
DX

�3

�2

�1

0

1

2

3

D
X

(m
)

Fig. 8: �-functions and dispersion for HL-LHC ring, 15 cm round optics

2.7 Collimation
The CollimatorDatabase is used to construct collimator apertures using an input file. The jaw half
gaps, rotation angle, tilt, and material are defined in the input file and set accordingly when read by the
CollimatorDatabase class.

The modular approach to collimation allows the user to override the definitions of any aspect.
For optimisation the CrossSections class calculates and stores all cross sections for a given

material. These cross sections are called by the ScatteringProcess classes when performing point
like scattering, and in ScatteringModel::PathLength() to retrieve the total mean free path �tot. By
using this class to compute and save the cross sections, MERLIN minimises computation time at the
cost of an inexpensive amount of memory. CrossSections stores the advanced ppElasticScatter
and ppDiffractiveScatter classes (for more details on these classes see [9]), allowing access to them
during the collimation processes.

ScatteringProcess is an abstract base class for individual point-like scattering processes. It
contains a pointer to the Material and CrossSections classes, the process cross section, the beam
energy, and two functions: Configure() and Scatter().

MERLIN contains a number of ScatteringProcesses, including the SixTrack-like variants
(based on K2 scattering); those currently available are shown in Fig. 11.

The user can select from several predefined ScatteringModels. ScatteringModelMerlin
provides the full scattering physics as described in [17]. ScatteringModelSixTrack provides
a model based on the K2 scattering found in SixTrack. ScatteringModelSixTrackIoniz,
ScatteringModelSixTrackElastic, ScatteringModelSixTrackSD provide hybrid models useful
for testing the individual scattering processes independently. Table 4 shows combinations of processes
in each model. It is also possible for the user to create a ScatteringModel and customise it by adding
their required processes.

The ScatteringModel class contains the functions required for performing collimation. A pre-

9

STATUS OF MERLIN

35



�400 �200 0 200 400

S (m)

0

5000

10000

15000

20000

25000
B

E
TX

B
E

TY
(m

)

BETX
BETY
DX

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

D
X

(m
)

(a) ATLAS IR1

13000 13200 13400 13600 13800

S (m)

0

5000

10000

15000

20000

25000

B
E

TX
B

E
TY

(m
)

BETX
BETY
DX

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

D
X

(m
)

(b) CMS IR5

3000 3200 3400 3600 3800

S (m)

0

100

200

300

400

500

600

B
E

TX
B

E
TY

(m
)

BETX
BETY
DX

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

D
X

(m
)

(c) ALICE IR2

23000 23200 23400 23600 23800

S (m)

0

100

200

300

400

500

600

700

800

900

B
E

TX
B

E
TY

(m
)

BETX
BETY
DX

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

D
X

(m
)

(d) LHCb IR8

Fig. 9: �-functions and dispersion for HL-LHC experiments, 15 cm round optics

Table 4: Preset combinations of ScatteringProcesses and ionisation in MERLIN. ST refers to the
SixTrack-like process, M to the MERLIN process, and all combinations include an inelastic process.

Process SixTrack SixTrackElastic SixTrackSD SixTrackIoniz Merlin
Rutherford ST ST ST ST M
pn Elastic ST M ST ST M
pN Elastic ST M ST ST M
Single Diffractive ST ST M ST M
Ionisation ST ST ST M M

defined or user-created combination of ScatteringProcesses may be used, and are handled by the
ScatteringModel in order to compute cross sections, path lengths, and perform bulk (ionisation and
MCS) and point-like scattering. The ScatteringProcess must be attached to the CollimateProton
Process.

The path length is the average distance a proton travels through a material before colliding with
a material nucleus, it is calculated in the PathLength() function for each proton at each iteration of
scattering, using the mean free path.

As a proton travels through a material it collides with electrons, these collisions may result in

10

H. RAFIQUE ET AL.

36



0

5000

10000

15000

20000

25000
B

E
TX

(m
)

madx
merlin

0 5000 10000 15000 20000 25000

S (m)

�0.025

�0.020

�0.015

�0.010

�0.005

0.000

D
iff

er
en

ce
(m

)

(a) �x

0

5000

10000

15000

20000

25000

B
E

TY
(m

)

madx
merlin

0 5000 10000 15000 20000 25000

S (m)

�0.000006

�0.000004

�0.000002

0.000000

0.000002

0.000004

0.000006

D
iff

er
en

ce
(m

)

(b) �y

�800

�600

�400

�200

0

200

400

600

800

A
LF

X

madx
merlin

0 5000 10000 15000 20000 25000

S (m)

�0.0010

�0.0008

�0.0006

�0.0004

�0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

D
iff

er
en

ce

(c) ↵x

�800

�600

�400

�200

0

200

400

600

800

A
LF

Y

madx
merlin

0 5000 10000 15000 20000 25000

S (m)

�1.0

�0.5

0.0

0.5

1.0

1.5

D
iff

er
en

ce

⇥10�7

(d) ↵y

Fig. 10: Difference between MERLIN and MAD-X for � and ↵-functions for full ring 15 cm round
optics.

the removal of electrons, and a loss in proton energy. The interaction is defined by the Bethe-Bloch
equation [18]. MERLIN offers an overloaded EnergyLoss() function to calculate the energy loss that
takes place due to ionisation in a material. The basic function performs energy loss according to the
Bethe-Bloch equation [18]. The overloaded function is a more complete treatment of the energy loss due
to ionisation using higher-order corrections (considered in [9]). In summary, MERLIN only adds the ef-
fects that are relevant to LHC energies: the effect due to the dielectric polarisability of solid materials, the
Mott correction which is an enhancement from close collisions due to spin, and the finite size correction
taking into account the size and structure of the proton. As well as these corrections, the energy spread
of the outgoing proton is sampled using the Landau distribution, which is a more accurate representation
of the physical effect [18].

A proton travelling through a material will perform many small-angle elastic scatters from the
electrons and nuclei, known as multiple Coulomb scattering (MCS), this is performed in the Straggle
function.

ParticleScatter() is called when a particle has travelled its path length and remains in the
material, which means it will interact with a material nucleus or nucleon (i.e. a point-like scatter).

11

STATUS OF MERLIN

37



Fig. 11: Scattering processes currently available in MERLIN

2.8 Outputs
The main output from a collimation simulation is the loss map. This is a count of particle losses binned
either by element or by position around the ring. MERLIN records these using the CollimationOutput
class. Typically, losses from collimators and other elements are recorded together. No significant post
processing is needed, as all the aperture checking happens on-line. Figure 12 shows a loss map for the
LHC ring at the 6.5 TeV squeezed configuration. The losses in the betatron collimation region in IR7 are
clearly visible, as are losses in the TCTs around the experiments.

0 5000 10000 15000 20000 25000

S (m)

10�6

10�5

10�4

10�3

10�2

10�1

100

In
ef

fic
ie

nc
y

�
(m

�
1
)

Melin

Ring

(a) Full LHC ring

19600 19800 20000 20200 20400

S (m)

10�6

10�5

10�4

10�3

10�2

10�1

100

In
ef

fic
ie

nc
y

�
(m

�
1
)

Melin

IR7

(b) Collimation region IR7

Fig. 12: Loss maps on a log scale for LHC at 6.5 TeV squeezed settings. Black, red and blue show
collimators, warm and cold elements respectively.

12

H. RAFIQUE ET AL.

38



MERLIN also provides outputs that are useful for diagnostics and better understanding of the col-
limation process. The ScatteringModel::JawImpact() function outputs the coordinates of particles
that impact the front face of selected collimators. As well as coordinates, the turn at which the impact
occurred is also output, allowing the user to observe any change in the impact parameter over time. This
output is useful for observing the effect of the HEL. An example of this output for a single turn in a
collimation simulation is shown in Fig. 13, showing the correspondence between the initial distribution
(which starts immediately in front of the primary collimator), with the recorded impact coordinates.

Fig. 13: Initial distribution (blue) and impacts recorded on the primary horizontal collimator (orange)
using JawImpact, for the positive (above) and negative (below) collimator jaws. The blue line indicates
the collimator aperture, where the jaw begins. This simulation is for the 6.5 TeV LHC at flat top, using
beam 2.

The ScatteringModel::ScatterPlot() function stores the position of particles at each path
length step in order to plot scattering tracks along the collimator. This function has been a useful tool for
debugging the collimation process, ensuring that aperture checks are performed at appropriate intervals,
and showing the effect of the collimation bin size. In Fig. 14 the effect of the collimation bin size is
illustrated. Particles undergo scattering, MCS, and ionisation energy loss for as long as they are in the
collimator jaw. Even if a particle has exited a collimator jaw, the aperture check cannot take place until
the particle has travelled a path length lpath, or at the end of the collimation bin. This is evident as
particle tracks abruptly stop at 10 cm intervals in the figure. By reducing the bin size, a small path length

13

STATUS OF MERLIN

39



is forced, and computation time will increase, however by using a larger bin size protons may undergo
significantly more bulk scattering (MCS and ionisation energy loss) when they have in fact already left
the collimator jaw. The 10 cm bin size that is used by default allows regular aperture checks without
enforcing too small a path length, or compromising the condition of protons that return to the bunch after
undergoing scattering in a collimator jaw.

Fig. 14: ScatterPlot() output showing the proton tracks taken in a 1 m long copper collimator with
an impact parameter of 1 µm in the y plane, using a 10 cm collimation bin size. The grey area indicates
the collimator jaw, and the particles are not tracked by this output if they exit the collimator jaw.

ScatteringModel::JawInelastic() stores the coordinates of inelastic interactions. This pro-
vides a necessary comparison tool to observe the effect of different collimator materials; an example
histogram of the distribution of losses in a given collimator is shown in Fig. 15.

ScatteringModel::SelecScatter() stores the coordinates of selected interactions, outputting
the momentum transfer t and the polar angle ✓ as well as other quantities. As the raw data files produced
can be very large, the OutputSelectScatterHistogram() function was created to histogram the data
and produce a smaller output. An example of the histogrammed polar angle data is shown in Fig. 16.

3 Development
MERLIN consists of 39k lines of C++ code (LOC), along with 4.8k LOC of examples and 1.8 LOC of
tests. CMake is used as the build system, allowing it to be compiled on a range of platforms. The source
code is held in Git revision control repository [13].

MERLIN has a growing automated test suite. This is run daily on several physical and virtual
machines with a range of operating systems, compilers and CPU architectures. The results uploaded
to the CERN CDash server [19]. This allows rapid identification of issues in new development. The
test suite performs dynamic analysis using the Vagrind toolset [20] to identify memory leaks and other
related errors.

The Git distributed revision system offers a systematic method for making and recording changes
to the source code. New features and fixes can be developed on a branch, and then merged into the master
branch when tested and ready. This keeps the master branch in a usable condition and makes it easy to

14

H. RAFIQUE ET AL.

40



Fig. 15: Inelastic proton interactions (proton losses) in a secondary collimator in the nominal LHC using
the JawInelastic output. Comparing losses in pure carbon (blue) with CFC AC150K (orange).

Fig. 16: Polar angle histogrammed in the OutputSelectScatterHistogram() output function, show-
ing the angular distribution of particles that have undergone inelastic interactions in a collimator made
of CFC AC150K. In reality this angular spread is given by MCS.

15

STATUS OF MERLIN

41



back out a change if it is found to have a negative effect. The master branch is hosted on the GitHub
service, which also provides issue tracking and management of branches and merges.

4 Acknowledgements
This work is supported by STFC (UK) grant High Luminosity LHC : UK (HL-LHC-UK), grant number
ST/N001621/1.

References
[1] International Linear Collider, Linear Collider Collaboration, https://www.linearcollider.

org/ILC, last accessed April 24th 2018.
[2] F. Poirier et al., An ILC Main Linac Simulation Package Based on MERLIN, Proc. 10th European

Particle Accelerator Conference, 2006.
[3] D. Kruecker et al., MERLIN-Based Start-To-End Simulations of Luminosity Stability for the LHC,

Proc. 22nd Particle Accelerator Conference, 2007.
[4] D. Kruecker et al., Simulation Studies on Coupler Wakefield and RF Kicks for the International

Linear Collider with MERLIN, Proc. 11th European Particle Accelerator Conference, 2008.
[5] CERN BE-ABP, SixTrack: Single Particle Tracking Code, http://frs.home.cern.ch/frs/,

last accessed April 24th 2018.
[6] T. Trenkler and J. B. Jeanneret, K2, a software package evaluating collimation systems in circular

colliders (manual), CERNSL/94105 (AP), 1994.
[7] G. Robert-Demolaize et al., A New Version of SixTrack with Collimation and Aperture Interface,

Proc. 21st Particle Accelerator Conference, 2005.
[8] The FLUKA Code: Developments and Challenges for High Energy and Medical Applications,

T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fasso‘, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G.
Smirnov, and V. Vlachoudis, Nuclear Data Sheets 120, 211-214, 2014.

[9] James Molson, Proton scattering and collimation for the LHC and LHC luminosity upgrade, PhD
Thesis, University of Manchester, 2014.

[10] Haroon Rafique, MERLIN for High Luminosity Large Hadron Collider Collimation, PhD Thesis,
University of Huddersfield, 2016.

[11] A. Valloni, H. Rafique, A. Mereghetti, J.G. Molson, R. Appleby, R. Bruce,E. Quaranta, S. Redaelli,
MERLIN Cleaning Studies with Advanced Collimator Materials for HL-LHC, Proc. 7th Interna-
tional Particle Accelerator Conference, 2016.

[12] A. Valloni, H. Rafique, R. B. Appleby, R. Bruce, J. G. Molson, A. Mereghetti, S. Redaelli, S.
C. Tygier, MERLIN Simulations of the LHC Collimation System with 6.5 TeV Beams, Proc. 7th
International Particle Accelerator Conference, 2016

[13] MERLIN on GitHub, MERLIN Collaboration, https://github.com/MERLIN-Collaboration/
MERLIN, last accessed April 24th 2018.

[14] A. Valloni, H. Rafique, R. B. Appleby, R. J. Barlow, J. G. Molson, S. Tygier, MERLIN Composite
Materials, These proceedings, 2017.

[15] H. Rafique, R. B. Appleby, R. J. Barlow, J. G. Molson, S. Tygier, A. Valloni, HL-LHC Hollow
Electron Lens Integration using MERLIN, These proceedings, 2017.

[16] MAD - Methodical Accelerator Design, CERN, http://mad.web.cern.ch, last accessed April
24th 2018.

[17] R. B. Appleby, R. J. Barlow, J. G. Molson, M. Serluca, A. Toader, The practical Pomeron for
high energy proton collimation, Eur. Phys. J. C (2016) 76:520, http://doi.org/10.1140/epjc/
s10052-016-4363-7

16

H. RAFIQUE ET AL.

42



[18] Passage of particles through matter, Particle Data Group, http://durpdg.dur.ac.uk/lbl/
index.htmll, 2005.

[19] CERN ABP CDash server, http://abp-cdash.web.cern.ch/abp-cdash/, last accessed April
24th 2018.

[20] Valgrind, http://www.valgrind.org/, last accessed April 24th 2018.

17

STATUS OF MERLIN

43


	Abstract
	Preface
	Contents
	Status of SixTrack with collimation. R. Bruce et al.
	SixTrack Status. R. De Maria et al.
	FLUKA coupling to Sixtrack. E. Skordis et al.
	Status of MERLIN. H. Rafique et al.
	BDSIM: Automatic Geant4 Models of Accelerators. L. J. Nevay et al.
	MARS15-Based System for Beam Loss and Collimation Studies. N.V. Mokhov and I.S. Tropin
	Simulation Tools for Heavy-Ion Tracking and Collimation. P. D. Hermes et al.
	Crystal implementation in SixTrack for proton beams. D. Mirarchi et al.
	Updated implementation of collimator materials in SixTrack and MERLIN codes. E. Quaranta et al.
	Dynamic simulations in SixTrack. K. Sjobak et al.
	HL-LHC Hollow Electron Lens Integration using MERLIN. H. Rafique et al.
	Simulating off-momentum loss maps using SixTrack. H. Garcia-Morales et al.
	First simulations of collimation cleaning performance for the FCC-hh. M. Fiascaris et al.
	Simulations of collimation losses at RHIC. G. Robert-Demolaize and A. Drees
	Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron. J. Barranco Garcïa and S. Gilardoni
	FLUKA-SIX TRACK Coupling for the SPS Scrapers. R.B. Appleby et al.

