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Abstract

Crystal channeling is a property of crystals resulting from the extreme order in
which the atoms are arranged: the crystalline lattice. Positive charged particles
can get trapped between crystalline planes, and bending highly pure crystals
allows deflecting high energy beams. Thus, they are very interesting for ap-
plications as primary collimator. The crystals installed in the Large Hadron
Collider (LHC) provide a deflection that is equivalent to a magnetic field of
about 300 T ideally acting only on halo particles. The implementation of a
crystal routine in the framework of the collimation tools used at CERN for sim-
ulations of expected beam loss pattern around the entire machine (SixTrack)
is therefore mandatory. The crystal routine presented here is suited for high
statistics tracking simulations in large hadron accelerators. An introduction to
the crystal physics relevant for our purposes is reported, on which the mod-
els implemented in the routine are based. Then, the implementation of these
models in SixTrack is described.
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1 Introduction
Coherent interactions in crystals are a very wide subject with many applications [1]. The main process
of our interest is the planar channeling of positive charged particles. This allows to use efficiently bent
crystals for the manipulation of hadron beams. In particular, the large deflection that can be given
to channeled particles, makes crystals suitable for application as primary collimators. Moreover, the
reduced nuclear interaction rate of particles trapped between crystalline planes with respect to particles
traveling in amorphous materials, lead to a significant reduction of off-momentum losses around the
accelerator [2].

The crystal routine presented here is based on a Monte-Carlo approach, so that interactions ex-
perienced when a particle traverses a crystal are randomly extracted from probability distributions as a
function of the impact parameter. Particles are not tracked step by step inside the crystal volume but
the various interactions possible are defined with a Monte-Carlo approach. This implementation was
motivated by the need of a very fast routine that is suitable for high statistics simulations, i.e. about 107

protons tracked for thousands of turns in the accelerator. However, it can be considered as an emulation
of the interactions that particles experience in a bent crystal, rather than a simulation that would involve
solution of the equation of motion inside a crystalline potential. Although an approach based on first
principles would allow simulations of a any crystalline structure, the time needed to solve the equation
of motion would make complete loss map simulations unfeasible. Given the very high statistics and num-
ber of turns in the machine needed, an approach based on random extraction of interaction experienced
from probability distributions was preferred. This is possible because all the known interactions that can
occur in bent crystals are well described in the literature, and the few free parameters can be tuned using
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experimental data. It is also important to note that this routine, and what is reported later, is only valid
for planar channeling of protons in silicon strip and quasi-mosaic bent crystals.

The tracking in the magnetic lattice of the machine is performed with SixTrack [3–6], which
allows a symplectic, fully chromatic and 6D tracking, taking into account interactions with the ring
collimators and the detailed aperture model of the entire machine. This code represents the standard
tool used for accelerator physics studies at CERN, such as dynamic aperture and beam collimation.
The complete benchmarking of the crystal routine and of its implementation in SixTrack are reported
in [7, 8].

2 Crystal physics
At beginning of the twentieth century, physicists observed that a beam of charged particles can emerge
from crystals, rather than be absorbed completely as happens in any other amorphous material of suffi-
cient thickness. Driven by these observations Stark [9] made the hypothesis that in crystals an ordered
internal structure is present. Thus, subsequent coherent interactions with such an ordered lattice can
allow the particles to emerge from crystals. In amorphous materials the energy released by ionization as
a result of the large number of random scatters leads to particle absorption. Only Si crystals are treated
here, since they are the most suitable candidates to be used as particle deflectors, given their well devel-
oped manufacturing processes that lead to crystalline structures almost without imperfections [10, 11].
If this perfect crystalline structure is well oriented with respect to the incident particles, they will see it
either as ordered planes or rows of atoms. Thus, particles can undergo coherent scattering and become
trapped between planes (planar channeling) or on an axis (axial channeling). Given the higher efficiency
of the planar channeling compared to the axial one, it is preferred for our applications. Moreover, planar
channeling is preferred also because of easier operational manipulations needed to establish stable chan-
neling. An additional degree of freedom would be needed to achieve the right orientation with respect to
the beam envelope to channel particles between crystalline axis.

The theoretical approach reported in this paper is based on a classical treatment of interactions
between particles and crystals, rather than using quantum mechanics. This is justified by two main
reasons:

1. As shown in Section 2.1 particles trapped between crystalline planes oscillate in a harmonic po-
tential. Therefore, their transverse energy is quantized and the number of energy levels is given
by [12]:

n =
dp

~
p
8

p
Umaxm� , (1)

where dp is the distance between crystalline planes, Umax is the maximum of the potential well,
and m� is the relativistic mass of the particle. Thus, if n � 1 it can be approximated as a
continuous spectrum.

2. If the transverse de Broglie wavelength (� = h/p, where p is the particle momentum) is much
smaller than the channel width, the tunneling effect can be neglected.

At 120 GeV, the lowest energy of interest for collimation test purposes at CERN, one obtains: n ⇠ 1013

and � ⇠ 10�17 m where Umax ⇠ 20 eV and dp = 1.92 Å are used. Thus, the two conditions above are
always fulfilled by ultra-relativistic particles.

2.1 Straight crystals
In order to derive a theoretical formulation of channeling phenomena, the potential between a particle
and an atom is required. According to the Thomas-Fermi model the potential (V (r)) can be described
as:
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Fig. 1: Potential given by a single (110) silicon plane in the Molière approximation at room temperature.

V (r) =
ZiZe

2

r
�(

r

aTF
) , (2)

where Zie is the charge of the impinging particle, Z is the atomic number of the target atom, r is the
relative distance, and �( r

aTF
) is a Molière screening function that takes into account the electronic cloud

around the nucleus [13]. Lindhard [14] asserts that: “under the hypothesis of small impact angle of the
impinging particle with respect to the crystalline plane, we can consider the average potential generated
from the entire crystalline plane as a continuous potential” given by:

Up(x) = Nd

ZZ +1

�1
V (x, y, z)dydz , (3)

where x is the coordinate perpendicular to the crystal planes, N is the atomic density, d the distance
from the plane and V (x, y, z) is the potential in equation (2). Thermal agitation must also be taken
into account. Considering this motion as independent of the location in the crystal and using a Gaussian
spatial distribution for the atoms in the plane, the potential is given by the average over this distribution.
The potential seen by a positive charged particle from an entire crystalline plane is illustrated in Fig.1.

Superimposing two planes, it is easily understandable that the potential (close to the minimum)
seen by a particle between them will be a harmonic potential. This follows from the assumption that
particles are influenced only by the potential of the closest planes; thus the entire potential well affecting
the particle motion between crystalline planes can be approximated as:

U(x) ⇡ Up(
dp

2
� x) + Up(

dp

2
+ x) ⇡ Umax

✓
2x

dp

◆2

. (4)

The outcome of exact calculation and the harmonic approximation of the potential above is shown in
Fig. 2. A particle can be trapped between crystalline planes if its transverse momentum is lower than the
maximum of the potential well. This implies the presence of a maximum impacting angle with respect to
cristalline planes, the so called critical channeling angle (✓c), below which channeling can occur. This
angle depends on the particle momentum (pv) as [1]:

✓c =

s
2Umax

pv
. (5)
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Fig. 2: Potential seen by a proton entering between crystalline planes at a small angle [1]. a) in silicon strip crystals
where (110) planes are used, and with dashed line its harmonic approximation. b) in silicon quasi-mosaic crystals
where (111) planes are used, with their characteristic ratio 1:3 of subsequent planes.

Using the harmonic approximation of the potential in which channeled particles are confined, they
will follow a sinusoidal trajectory described by [1]:

x(z) =
dp

2

s
Et

Umax

sin(
2⇡z

�
+ �) . (6)

The oscillation phase � is determined by the conditions at the entry of the crystal, and the oscillation
period in the channel (�) is given by:

� = ⇡dp

r
pv

2Umax

. (7)

In conclusion, particles undergoing planar channeling will oscillate between crystalline planes,
in a relatively empty space compared to what is present in an amorphous material. This is one of the
most important features of crystals used in a particle accelerator to coherently steer particles for halo
collimation purposes. It is worth introducing here the two main families of bent crystals: Strip (ST)
and Quasi Mosaic (QM) crystals. In ST crystals the (110) planes are used to channel particles, while in
QM crystals the (111) planes. The main difference is that the (110) planes are equidistant, whereas a
ratio 1:3 is present in subsequent (111) planes, leading to the potential in Fig. 2 a) and b), respectively.
This difference can be neglected in terms of channeling efficiency if protons are channeled, while it may
become significant in case of channeling of heavy ions. The difference could be explained by the higher
probability to experience nuclear interactions when heavy ions are trapped in the smaller channel of QM
crystals.

2.2 Bent crystals
When a crystal is bent, the behavior of channeled particles does not differ significantly compared to
what occurs in straight crystals. One can demonstrate that bent crystals can be simulated by adding a
centrifugal force contribution to the potential of equation (4) [12]. Therefore, it is possible to define an
effective potential as:

Ueff (x) = U(x) +
pv

R
x . (8)

where pv/R is the term of centrifugal force in a crystal with bending radius R. The trajectory performed
between crystalline planes is still sinusoidal, but ranges around a new equilibrium point due to the cen-
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Fig. 3: Effective potential in bent strip silicon crystals [1]. Solid line refers to straight crystals, whereas dashed
and dotted lines correspond to centrifugal forces of pv

R = 1 and 2 [GeV/cm], respectively.

Fig. 4: Deflection given to particles channeled for the whole crystal length.

trifugal force. The dependence of this potential on the particle energy and the crystal bending radius is
shown in Fig. 3. From this picture it is easy to infer the presence of a critical bending radius depending
on the particle energy, after which the process of planar channeling is no longer possible, because of the
insufficient depth of the potential well. The critical radius (Rc) can be understood as the radius for which
the centrifugal force is equal to the maximum interplanar field. Thus the critical radius Rc for a given
particle energy can be calculated from:

Rc =
pv

U
0 (xmax)

' pvxmax

2Umax

, (9)

where U
0 (xmax) ⇡ 5 GeV/m in Si crystals [15], and is calculated in xmax = dp/2 � aTF and not in

x = dp/2 because of the finite atomic charge distribution.
The new equilibrium point can be derived using the assumptions of equation (4) (but using now

xmax instead of dp/2) in the equation (8), which gives:

Ueff (x) = Umax

✓
x

xmax

◆2

+
pv

R
x . (10)

Thus the minimum of the potential above will be at:

xmin = � pvx
2
max

2RUmax

= �xmax

Rc

R
, (11)
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Fig. 5: Geometrical bending of a strip [10] (left) and a quasi-mosaic [16] (right) crystal, together with typical
dimensions of crystals used for tests in the SPS.

In this condition, the reduced depth of the potential well1 can be calculated as:

U
b

max = Ueff (xmax)� Ueff (xmin) = Umax

✓
1� Rc

R

◆2

, (12)

and the critical angle in a bent crystal is then:

✓
b

c = ✓c

✓
1� Rc

R

◆
. (13)

The equation of motion for particles channeled between bent crystalline planes can then be expressed as:

x = �xmin + xmax

s
Et

U
b

max

sin

✓
2⇡z

�
+ �

◆
, (14)

which describes a sinusoidal trajectory, as in straight crystals, but oscillating around a new minimum

xmin, with a different amplitude
✓
xmax

q
Et/U

b

max

◆
, and same oscillation period �. If the channeling

regime is maintained for the whole length of the crystal, the channeled particle is deflected by an angle
equal to the geometrical crystal bending:

✓b =
l

R
, (15)

where l is the crystal length, as shown in Fig. 4. Obviously, this can only be achieved with pure crystals
where the crystalline planes maintain a uniform bending along the whole crystal length, which is nowa-
days ensured by new bending techniques [10, 16]. An example of crystal bending in the case of ST and
QM crystals is shown in Fig. 5, left and right respectively.

1i.e. the maximum transverse energy for which channeling is still possible.
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1.2. Particle interactions with crystals. 21

Figure 1.9: “Transverse energy - transverse position” space for straight and bent
crystals. The red point indicates the initial conditions of the particle. The blue
arrow indicates a change in the transverse energy of the crystal. The dechanneling
effect is illustrated.

- Negative transverse energy change: Volume capture
The volume capture of feed-in effect is presented in Figure 1.8: the initial
state of the particle in the “transverse energy - transverse position” space is
indicated by the red point, for both straight and bent crystals. If the particle
loses some transverse energy (in one ore more collisions), it could be trapped
in a potential well, and then follow the crystal curvature: this effect is called
volume capture. The collisions are most likely to happen when the particle
is close to an atomic plane (because the density of electrons is higher). The
probability of being trapped is higher if the energy required to be trapped is
smaller, that is if the particle is almost aligned with an atomic plane: for this
reason the volume capture is a competitor to the volume reflection effect.

- Positive transverse energy change: Dechanneling
The dechanneling or feed-out effect (in Figure 1.9) is the opposite of the volume
capture effect. It is possible that a particle in channeled mode gains some
transverse energy in one or more collisions with the electrons. Obviously, in
total analogy with volume capture, the collisions are more likely to happen
where the electron density is higher, therefore close to the atomic planes. If
the energy gain is large enough, the particle can exit the channeling mode.
It can be shown [10] that, in a straight crystal, the number of channeled
particles decreases exponentially with the length of the crystal:

N = N0 e�z/LD (1.20)

where LD0 is the dechanneling length ( for Si crystals, of the order of centime-
ters in the GeV-TeV energy range). Using the harmonic potential described in

Fig. 6: Illustration of the dechanneling process.

20 1. Crystal Physics and Theory

the curvature. In the bent crystal, as crossing the atomic planes, the kinetic energy
of the particle decreases: this is because the relative angle with respect to the atomic
plane direction decreases. If the crystal is long enough, the particle arrives up to a
plane where the particle is reflected back by the potential barrier.

1.2.3 Inelastic processes: volume capture and dechanneling
All the effects presented up to now are compatible with the conservation of the to-
tal transverse energy, as defined in equation 1.8 for straight crystals and equation
1.15 for bent crystals. However, there is a probability larger than zero that, when
transversing the length of the crystal, the particle undergoes one or more interactions
that change its total energy or its direction. If this happens, the transverse energy
of the particle is not conserved anymore. In this section a qualitative introduction
to two effects that can arise from a change in transverse energy of the particle is
given: the volume capture and the dechanneling effect. A detailed description of
these effects is beyond the scope of this thesis: a exhaustive overview can be found
in [10].

In this section we use the formalism introduced in Section 1.2.2.1, where the
reference system for bent crystals is introduced and the effective potential is derived.
Both volume capture (Figure 1.8) and dechanneling effects (1.9) require a change
in the transverse energy of the particle. Since a change in transverse energy is
associated not only with a total energy variation, but may be to a mere change in
the orientation of the particle, then both negative and positive changes of the energy
are possible.

Figure 1.8: “Transverse energy - transverse position” space for straight and bent
crystals. The red point indicates the initial conditions of the particle. The blue
arrow indicates a change in the transverse energy of the crystal. The volume capture
effect is illustrated.

Fig. 7: Illustration of the Volume capture process.

2.3 Dechanneling and Volume Capture
When a particle is channeled between crystalline planes its transverse energy is not conserved, due to the
scattering by electrons and nuclei. Channeled particles might therefore vary their transverse energy at
each interaction, and can lose the condition for channeling if the interaction results in a total transverse
energy above the maximum of the potential well. This condition is referred to as dechanneling (DC) and
contributes to decrease the initial population of channeled particles, as shown in Fig. 6. On the other
hand, a particle can enter the crystal structure with an energy slightly above the potential barrier. If the
interaction results in a total transverse energy below the maximum of the potential well, a new energy
state compatible with a bounded motion between crystalline planes can be achieved. This process is
called volume capture (VC) and is shown in Fig. 7. Thus, the DC and VC processes can be considered
as mutual to each other.

Let us now focus on the dechanneling process. As described above, channeled particles can in-
crease their transverse momentum because of scattering from electrons in the channel, nuclei in the lattice
or possible imperfections. Given the well established manufacturing process, the presence of imperfec-
tions can be neglected [11]. As discussed in [1, 12], the DC process can be described as an exponential
decay of the initial population of channeled particles, which can be treated therefore as:

N(x) = N0 exp

✓
� x

LD

◆
, (16)

where N0 is the initial number of particles that respect the channeling conditions at the crystal entrance,
and N(x) is the number of particles still in channeling after a path x in the channel, for a given char-
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1.2. Particle interactions with crystals. 19

Table 1.1: Different effects in a bent crystal as a function of the initial impacting
angle (�i) of the particle, and the kick �k associated with each case. With �c0 we
refer to the critical angle for the straight crystal, while �c is the critical angle for
bent crystals. Only the effects that satisfy the conservation of transverse energy
(equation 1.15) are listed. The angle in this table are calculated based on the purely
geometrical model described in the text.

Impacting angle Effect Kick
�i>�c no change in angle �k =0
��i�<�c channeling �k ⇡ �b

��c0>�i>��c Reflection on the
first atomic plane

2�c < �k <2�c0

��b��c0>�i>��c0 Volume Reflection 2�c < �k <2�c0
�i<��b��c0 no change in angle �k =0

It must be stressed that in this table only the effects that satisfy the conservation of
transverse energy are listed.
The explanation of the volume reflection effect using the conservation of the total
transverse energy is analogous. For understanding the analogy it is important to
remember that, if the total energy of the particle is fixed, its transverse kinetic
energy is proportional to the square of the impacting angle �i (see equation 1.15). A

Figure 1.7: Effective potential for straight and bent crystals. The red point is the
initial condition of the particle. Volume reflection for bent crystals is shown.

picture of the particle in the “transverse energy-transverse position” space is shown
in Figure 1.7. The initial conditions of the particle are indicated by the red point,
and the red arrow indicates the initial direction of the motion toward the interior of

Fig. 8: Illustration of the volume reflection process.

acteristic dechanneling length (LD). Using diffusion theory it is possible to derive the contribution
given by interactions with electrons in the crystalline channel [1], leading to the characteristic electronic
dechanneling length, which can be written as:

L
e

D =
256

9⇡2

pv

ln(2mec
2
�/I)� 1

aTFdp

Ziremec
2 , (17)

where I is the ionization potential (I ' 172 eV in Si), Zi the electric charge of the channeled particle
with its relativistic �, while re and me are, respectively, the classical radius and rest mass of the electron.
However, electronic dechanneling only describes a “slow" dechanneling regime, due to the very small
variation in momentum from scattering with electrons in the channel, leading to an incomplete treatment
of the whole process. Hard scattering on nuclei can lead to “fast" dechanneling as a result of single
interactions. Therefore, a characteristic nuclear dechanneling length must also be taken into account
for a reliable parameterization of the entire dechanneling process. This characteristic length for nuclear
dechanneling can be derived by appropriate scaling of the electronic value, based on fine tuning using
experimental data, as clarified in Section 3.2.1.

A solid theoretical analysis is needed to describe the probability that an incident particle will be
captured in the crystal volume. This can be found in [17], where the dependence of such a probability is
derived as a function of the particle energy E and crystal bending radius R, and can be written as:

PV C = k

✓
R

Rc

� 0.7

◆
E

0.2
, (18)

where k is a constant tuned using comparisons between simulations and experimental data. When the
particle is captured, it is treated as channeled and the possibility of a subsequent dechanneling interaction
should be taken into account, as explained in Section 3.2.1.

2.4 Volume reflection
Particles that impinge on bent crystals with an incident angle in the range ✓c < ✓ < ✓b, where ✓c and
✓b are the critical angle and bending angle of the crystal, can experience what is called volume reflection
(VR). Protons that undergo this process are literally reflected by the interaction with the averaged poten-
tial of crystalline planes. In particular the reflection takes place when particles impinge on a crystalline
plane with their momentum tangential to it. The extension of the angular range over which this tangency
condition can be reached is determined by geometrical considerations only. It is clear that this condition
can be achieved quite easily by particles entering bent crystals2 with an angle slightly above the critical

2In direction of the bending.
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one (where bounded states are no longer possible). If particles enter a bent crystal with an angle larger
than the crystal bending, it will be impossible to reach a condition in which the momentum is parallel to
the crystalline planes. An example is shown in Fig. 8.

Another key feature of the reflection process is how much the incident angle is modified, which is
linked to the critical channeling angle in straight crystals. From simulation studies [18] it was possible
to derive that, for crystals with R � Rc, the average deflection given to reflected protons is ⇠ 1.6✓c.
This has been experimentally proven in [19]. The dependence of such deflections as a function of the
important crystal parameters was then derived. A good description [17] that fits experimental data for
both the average deflection (✓V R) and its spread(�✓V R), is:

✓V R = c1 ✓c

✓
1� c2

Rc

R

◆
(19)

�✓V R = c3 ✓c
Rc

R
(20)

where c1, c2 and c3 are empirical coefficients tuned to reproduce experimental data, as explained in
section 3.2.1.

3 Simulation tools
In large accelerating machines such as the Large Hadron Collider (LHC), the prediction of how particle
losses are distributed along the ring is crucial. This is mainly because superconducting magnets are
used, and energy deposited in them could cause quenches that must be avoided at any time. A very
complex multi-stage collimation system composed of about fifty collimators per beam is used at the
LHC. To adequately evaluate losses of the order of 10�5, statistics of 106–107 particles intercepted by
the collimation system are needed. For the present system, these particles are tracked typically for 200
turns. It is easy to understand that the results of interactions with obstacles along the particle trajectories
are a mandatory feature of any simulation tool that aims to carry out collimation studies. Therefore, it
is clear that very fast simulation routines are crucial to describe interactions with collimator jaws, and to
obtain results in a reasonable computing time.

In the case of studies on crystal-assisted collimation for the LHC, the requirement to have a very
fast routine that describes the interaction of protons with a bent crystal is even more critical. This is
because the system is designed to provide beam losses of the order of 10�6, meaning that statistics of
more than 107 protons intercepted by the crystal are needed. Also note that when a crystal of a few
mm of silicon is acting as a scraper (i.e. the crystal is not oriented for optimal steering of halo particles
by crystal channeling), particles have to be tracked for about 3000 turns before being absorbed by the
collimation chain, mainly due to the small angular spread given by multiple Coulomb scattering. Protons
must traverse such a misoriented crystal many times in order to accumulate a kick that is enough to
reach the next collimation stage. Therefore, a crystal routine suitable for such complex and demanding
simulations has to determine the interaction experienced by any proton based on just a few extractions
of random numbers.

The standard tool used at CERN for collimation studies is based on the particle tracking code
named SixTrack [3]. It is written in Fortran 77 and was originally developed to study non-linearities
and the dynamic aperture in circular accelerators. Over the years it was modified in order to track large
numbers of particles, also taking into account interactions with collimator jaws. This led to a collimation
version of SixTrack [5,6,20], in which a routine that treats the interactions of protons with bent crystals
was implemented. This code allow to estimate the density of proton lost per meter on the geometrical
machine aperture along the entire ring, with a resolution of 10 cm.
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3.1 The scattering routine
When a proton intercepts a collimator jaw along its path, a dedicated routine is called in SixTrack to
simulate the interactions with matter. A description of the initial routine based on the K2 code is given
in [21]. This routine is regularly maintained. A detailed discussion of the physics models implemented,
and the latest improvements, can be found in [22] and [23], respectively. This scattering routine is one
of the key components for simulations of expected beam loss pattern around the entire accelerator, as
a function of collimation settings and machine parameters. The benchmarking of simulated beam loss
pattern in the LHC with respect to the measured one is reported in [24]. In this section only a list of the
interactions treated is given. The same concepts and models have been implemented in the scattering
routine used by the crystal routine described in section 3.2.

The interactions present in the scattering routine can be divided into two families: nuclear point-
like and continuous interactions.

– Continuous interactions:

– Multiple Coulomb scattering, where particles are stochastically scattered from components
of matter.

– Rutherford scattering, which takes place when particles have a small impact parameter on
the material constituent leading to a larger scattering angle compared to Coulomb scattering.

– Energy loss by ionization, i.e. the energy released to atomic electrons along the path inside
the material.

– Nuclear point-like interactions:

– Deep inelastic scattering, where the incident protons “disappear". The hadronic shower pro-
duced is not simulated and the proton is considered as absorbed in the collimator jaw at that
spatial point.

– Nuclear elastic scattering: protons emerge from the interaction with their momentum altered
only in direction, but with a value that can be significantly larger than from Coulomb scatter-
ing.

– Proton-proton and proton-neutron elastic scattering. The results of these interactions are the
same as the previous item, but are in this case a consequence of the interaction with an atomic
constituent.

– Single-diffractive events, where protons emerge with their momentum only slightly altered
in direction but significantly changed in magnitude.

3.2 The crystal routine
The crystal routine was originally developed as a stand-alone routine, written by Igor Yazynin in For-
tran 77. It was then inserted in SixTrack by Valentina Previtali as part of her PhD work [25], where
details of its implementation and issues of orientation with respect to the beam envelope can be found.
The inclusion of possible crystal imperfections was also modeled, such as the presence of an amorphous
layer and a miscut angle, further discussed in [25]. The amorphous material is described as a layer that
surrounds the crystal bulk, with a thickness given as an input. When protons are incident on this layer,
they are treated as traveling in an amorphous material. The miscut angle is modeled as an additional
angle applied to protons incident on the crystal front-face, while reduced impact parameters are defined
if protons enter the crystal body from the side facing the circulating beam. In this section a detailed
description of the physics models present in the routine and their range of validity are discussed. The
main body of the crystal routine is composed of three fundamental blocks:

– A routine for the treatment of coherent interactions in bent crystals.
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64 3. Methods and Tools

The reference system of the crystal routine is shown in Figure 3.4, and the
(x, z, s) reference system corresponds, in the intermediate routine, to the reduced
crystal reference system (xRcry, zRcry, zRcry) described in Section 3.1.2.1. The front

Figure 3.4: Crystal reference system as in
the original crystal subroutine. An amor-
phous layer of thickness � is considered.

face of the crystal lays on the s=0 plane, and its transverse dimensions are:

0 < x < xmax

�zmax
2 < z < zmax

2

where xmax and zmax are specified in the collimator database. The bulk of the crystal
lays in the s > 0 volume, and the kick is given in the x direction towards positive x.
(x’ increasing) . The particle initial longitudinal position is always s=0. It is also
possible to define an amorphous layer of thickness � > 0; in this case the crystal
edge is surrounded by a frame where the crystal planes are considered damaged,
and cannot interact coherently. The only possible interaction in this region is the
amorphous interaction.

When a particle hits the crystal, different processes can take place, depending on
the particle energy, orientation with respect to the crystal planes, and on the crystal
material. For an introduction to the different possible effects, it is referred to the
Chapter 1 of this thesis. Here we briefly summarize the effects which are considered
in the routine.

- out: the particle does not hit the crystal, a drift in space is considered.

- amorphous: the particle is not aligned with the crystal planes, or it hits the
amorphous layer. In this case the particle interacts with the crystal as an
amorphous material.

- planar channeling: the particle is trapped in the potential hole between two
crystalline planes, and follows their orientation.

Fig. 9: Crystal routine reference system. The presence of a possible amorphous layer that surrounds the crystal
bulk is also shown [25]

– A scattering routine, that treats the contributions of continuous and nuclear point-like interactions
(see section 3.1).

– A routine that calculates the energy loss from ionization, described in [8].

3.2.1 Coherent interactions
The processes described in the routine are channeling for the whole crystal length, dechanneling, volume
reflection, volume capture and dechanneling after volume capture. Inputs required by the routine, in the
crystal reference system shown in Fig. 9, are:

– Crystal length (l) and bending radius (R).
– Momentum (p), and transverse coordinates (x) and (x0) of the incident proton.
– The coordinates (z) and (z0) are used only to evaluate if a proton is incident on a possible amor-

phous layer. Crystals are considered flat along this direction, which is an adequate approximation
because of the very small dimensions of the beam compared to the crystal size (the usual crystal
height is about 5 cm, whereas the beam halo has dimensions ⌧ 1 mm).

Using the quantities above it is possible to evaluate the critical channeling angle in straight (✓c)
and bent (✓bc) crystals together with the critical bending radius (Rc), using equations (5), (13) and (9)
respectively. Then, the average deflection (✓V R) and spread (�✓V R) given by volume reflection are
calculated together with the probability of volume capture (PV C), using equations (19), (20) and (18)
respectively. The free parameters used in these last three equations were tuned on experimental data
taken in the framework of the H8-RD22 collaboration [19]. For strip crystals they are equal to:

c1 = �1.5 , c2 =1.6667 , c3 = 1.7 , (21)

k = 7 · 10�4
.

For quasi-mosaic crystals c1 is decreased by 7%, while c3 is increased by 5%.
After calculation of all the parameters introduced above, a first selection based on incident angle

is performed. It consists of checking that ✓in < ✓
b

c, where ✓in is the linear sum of x0 including a possible
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miscut angle and crystal tilt with respect to the beam envelope. If this condition is satisfied the probability
of capture between crystalline planes is calculated as follows:

PCH =

q
✓
b

c

2
� ✓in

2

✓c

. (22)

This formula was derived to reproduce the channeling efficiency obtained with analytical simulation
tools for a wide range of crystal parameters, i.e. length and bending, at a fixed energy. Using equation
(13), if one assumes that a proton is incident with angle ✓in that is a fraction ↵ of the critical value, thus:

✓in = ↵ ✓
b

c = ↵ ✓c

✓
1� Rc

R

◆
, (23)

equation (22) can be expanded as follows:

PCH =

✓
1� Rc

R

◆q
1� ↵

2
. (24)

It is clear that equation (24) gives a PCH = 1 in case of an incident beam with uniform divergence
and optimal angle (i.e. ↵ = 0), on straight crystals (i.e. R ! 1). This feature is not realistic, and
such an approximation would be valid only if the protons were incident in the middle of the interplanar
channel with transverse dimensions much less than the channel width. To allow the possibility for some
incident protons to strike a crystalline plane, which precludes capture between two planes, equation (24)
is replaced with:

PCH =

✓
1� Rc

R

◆q
0.9� 0.9↵2

. (25)

The maximum probability of capture between crystalline planes “saturates" at 95%. This value was
adopted to fit experimental data for crystals with very small bending, as discussed in [8]. In particular,
the difference between measured and simulated channeling efficiency was improved from about 10% to
a few % for such crystals, while simulations of larger bending are not affected.

A random number with a uniform distribution in the range [0, 1] is then generated, and if it is below
the probability calculated using equation (25) protons are considered as initially trapped, otherwise they
are flagged as being in the transition region between amorphous interactions and the volume reflection
process. Then, for protons in this transition region, the deflection given is a linear interpolation between
multiple Coulomb scattering (i.e. average deflection zero) and the expected value from the volume
reflection process (i.e. ✓V R of equation 19). The incoming angle is modified as:

x
0 = x

0 + 0.45

 
x
0

✓
b

c

+ 1

!
✓V R . (26)

The spatial coordinates are moved to the middle of the path in the crystal volume, where the scattering
routine is called to evaluate the contribution of amorphous interactions along the whole path. The five
particle coordinates (p, x, x0, y, y0) are then propagated up to the exit from the crystal volume. The energy
loss by ionization is also calculated for the whole path using a dedicated routine. This approach is denoted
as the thin lens approximation: the full path in the amorphous material is divided into two steps, with the
results of the interactions that take place applied at the mid-point and then used to propagate the proton
coordinates as it leaves the volume. This approach is valid because the crystal dimensions (a few mm) are
small compared to the radiation and interaction lengths (about 9 cm and 46 cm in silicon, respectively).
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For protons that are considered trapped between crystalline planes the characteristic electronic
dechanneling length is calculated. In bent crystals the equation (17) is modified as [1]:

L
e

D =
256

9⇡2

pv

ln(2mec
2
�/I)� 1

aTFdp

Ziremec
2

✓
1� Rc

R

◆2

. (27)

As explained in section 2.3 a characteristic nuclear dechanneling length is needed for full description
of the dechanneling process. Unfortunately an analytical formula is not yet available in the literature.
However, a characteristic length can be derived from an opportune scaling of the electronic value, and
fine tuning was carried out to evaluate the best scaling constant, as explained in [26]. The characteristic
nuclear dechanneling length is calculated in the routine as:

L
n

D =
L
e

D

200
. (28)

This length is not calculated for all channeled protons but only a subset of them. The number of such
protons is given by the ratio between the interplanar distance and the width of a crystalline plane. The
width of a plane can be estimated using the Thomas-Fermi constant aTF , while the interplanar distance
for (110) silicon crystal planes is dp = 1.92 Å [1]. Thus:

aTF

dp

=
0.8853aBZ

�1/3

1.92
⇡ 0.194

1.92
⇡ 0.1 , (29)

where aB = 0.529 [1]. Thus, the nuclear dechanneling length is applied to only 10% of the protons
initially channeled. Since the dechanneling process can be considered as an exponential decay of the
initial population of trapped particles as a function of the distance travelled between crystalline planes,
the possible point where dechanneling could take place is estimated as:

L = �LD ln(r) , (30)

where LD is the value calculated using either equation (27) or (28), and r is a uniform random number
in the range [0, 1]. Thus, if L is smaller than the crystal length, the dechanneling process takes place
at that depth in the crystal. Hence, protons are transported up to this point as channeled (described
below), and then are propagated up to the exit from the crystal as traveling in an amorphous material,
using the thin lens approximation. If L is larger than the crystal length, the proton is considered trapped
between crystalline planes for the whole path in the crystal. The coordinates of the protons are modified
as follows:

x
0 =

l

R
+

✓
b

c

2
rg , (31)

x = x+ l sin

✓
x
0

2
+m

◆
,

y = y + l y
0
,

where m is the miscut angle and rg is a random number with a normalized gaussian distribution. The
energy loss from ionization is also calculated, together with the probability to experience nuclear inter-
actions between crystalline planes as described later.

Let us move to protons incident with ✓in > ✓
b

c. Initially the possible point where volume reflection
could take place (lV R), and its projection along s (sV R), are evaluated as:
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lV R = R ✓in , (32)

sV R = sin

✓
✓in

2
+m

◆
lV R .

The possible reflection point lV R is compared with the crystal length l. If lV R > l the volume reflection
process cannot take place, and the proton is transported along its whole path in the crystal as in an
amorphous material using the thin lens approximation. In the other case (i.e. lV R < l) the probability of
volume capture (PV C) is calculated using equation (18). A uniform random number r in the [0, 1] range
is generated, and if r > PV C the proton is considered as reflected in the crystal volume. In this case,
its coordinates are transported to the reflection point and the deflection given by the volume reflection
process is applied. This is computed as:

x = x+ x
0
sV R , (33)

y = y + y
0
sV R ,

x
0 = x

0 + ✓V R + rg �✓V R .

The proton is transported along the path in the crystal as in an amorphous material using the thin lens
approximation. If r < PV C the volume capture process takes place, and the coordinates (x, y) are
transported to sV R and a new dechanneling length is calculated. This length is based on an empirical
model that fits experimental data taken in the framework of the H8-RD22 collaboration [27], and is equal
to:

LV C = L
e

D

⇣p
0.01� ln(r)� 0.1

⌘2
. (34)

Then this length is compared to the remaining path length in the crystal. If it is larger, the proton is
considered captured between crystalline planes up to the end of its path, with consistent coordinate mod-
ifications. Otherwise, the proton undergoes dechanneling after the capture between planes. Then the
proton is transported to the point of capture, then translated to the dechanneling point as for the channel-
ing condition, and finally propagated up to the exit from the crystal using the thin lens approximation.
Energy loss from ionization is calculated consistently for each different regime.

3.2.2 Scattering routine
The scattering routine is called when protons treated by the main crystal routine travel in amorphous
silicon, as listed in the previous section. This routine includes the same physics models used in the
standard routine of SixTrack to treat the interaction with collimator jaws, introduced in section 3.1.
Thus, consistent modeling of nuclear point-like and continuous interactions with respect to standard
CERN collimation tools is included in the crystal routine, maintaining the stand-alone nature of the
routine.

The possibility to experience nuclear point-like interactions for particles trapped between crys-
talline planes is done by applying the scattering routine also during the path between crystalline planes,
but considering only nuclear point-like interactions and using cross-sections scaled to the average nu-
clear density at the appropriate location. This is done in the assumption that the nuclear density between
crystalline planes can be described as [1]:

⇢(x) = Nam

dpq
2⇡u21

"
exp

 
� x

2

2u21

!
+ exp

 
�
�
x� dp

�2

2u21

!#
, (35)
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Fig. 10: Nuclear density between (110) planes of silicon, calculated with equation (35).

where x is the transverse distance from the crystalline planes placed at x = 0 and x = dp, Nam is the
density of misoriented silicon, and u1 = 0.075 is the thermal vibration amplitude [1]. The nuclear density
obtained using equation (35) is shown in Fig. 10. Using the equation of motion of protons between
bent crystalline planes (equation (14)) it is possible to evaluate the maximum (xM ) and minimum (xm)
excursion from the equilibrium point, as:

xm = �
dp

2

Rc

R
�

dp

2

s
Et

U
b

max

, (36)

xM = �
dp

2

Rc

R
+

dp

2

s
Et

U
b

max

.

These two extremes oscillation amplitudes are calculated from the centre of the crystalline channel; a
consistent shift of �dp/2 must be applied to both of them in order to use the same reference frame as
equation (35). Calculating the integral of equation (35) gives:

Z
⇢(x) dx = Nam

dp

2

2

4erf

0

@ xq
2u21

1

A� erf

0

@dp � x
q
2u21

1

A

3

5 . (37)

The average density seen along the trajectory can be calculated analytically, as:

⇢̄ =

R
xM
xm

⇢(x) dx

xM � xm

. (38)

The equation above allows to avoid any numerical solution of complex integrals, maintaining the speed of
the routine. What is obtained with this approximation is shown in Fig. 11. The average nuclear density
seen by 400 GeV/c protons incident on a silicon strip crystal, 1.94 mm long and and with a 10.26 m
bending radius, is plotted as a function of transverse energy. The detailed benchmarking with respect to
experimental data of nuclear interaction rate in bent crystals is reported in [7, 8].

3.2.3 Limitations
It is crucial to have a clear understanding of possible limitations of any simulation routine in order to
avoid those “working points”. The weakness of the routine implemented in SixTrack is represented by
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Fig. 11: Average nuclear density as a function of the transverse energy of 400 GeV/c protons, captured between
(110) planes of silicon crystals 1.94 mm long and with a 10.26 m bending radius, as calculated using equation (38).

the description of nuclear dechanneling for extremely large bending angles. In these cases the poten-
tial well between crystalline planes is almost absent, and the few trapped particles are oscillating very
close to the atoms. This condition is reached for a bending radius below three times the critical bend-
ing radius. An analytical treatment of such regimes is not yet available in the literature, and it could
be reproduced only by simulation codes based on the integration of the equation of motion along the
crystalline potential. Thus SixTrack simulations for crystals with R < 3Rc cannot be fully reliable due
to underestimated nuclear processes for such bending conditions.

4 Conclusions
The crystal routine and its implementation in SixTrack was described, together with the physics models
used and their range of validity. This routine is suited for high statistics tracking simulations for beam
loss pattern predictions in large hadron accelerators. The complete benchmarking of the crystal routine
and of its implementation in SixTrack are reported in [7, 8]. The tools discussed allowed the design of
a crystal collimation test stand in the LHC [8,28] that led to the first observation of crystal channeling at
the record energy of 6.5 TeV [29].
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