
Dynamic simulations in SixTrack

K. Sjobak, V.K. Berglyd Olsen, R. De Maria, M. Fitterer, A. Santamaría García, H. Garcia-Morales,
A. Mereghetti, J.F. Wagner, S.J. Wretborn
CERN, Geneva, Switzerland

Abstract
The DYNK module allows element settings in SixTrack to be changed on
a turn-by-turn basis. This document contains a technical description of the
DYNK module in SixTrack. It is mainly intended for a developer or advanced
user who wants to modify the DYNK module, for example by adding more
functions that can be used to calculate new element settings, or to add support
for new elements that can be used with DYNK.

Keywords
DYNK; SixTrack; Particle Tracking; Dynamic Kicks; fast failures; ripple.

1 Introduction
The goal of the DYNK module in SixTrack [1–4] is to make it possible to change element settings on a
turn-by-turn basis. This feature was first implemented for simulating the action of scrapers in the SPS [5],
and then re-implemented in a more general form as described in [6]. After this re-implementation, the
module has been and is being used for simulations of crab cavity failures [7–10], asynchronous beam
dumps [11], off-momentum collimation studies through RF detuning [12,13], studies of observed particle
losses at the start of the energy ramp in the LHC [14, 15], and electron lens intensity modulation [16].

The use of the module is described in the SixTrack user manual [17]. For the most up-to-date
version of the user manual, please see the source distribution of SixTrack [18]. This document describes
the technical “inner workings” of the DYNK module, and is intended for those who want to extend the
module with new mathematical functions or to handle new types of elements.

DYNK is designed to be extensible, and has already been extended several times by several people.
It is the hope of the authors that this document will be helpful for those who wish to do this in the future.
Note that it is strongly recommended to read about the usage of DYNK in the most recent version of the
SixTrack user manual before reading this document.

2 Overview
The main code of DYNK is located in the Fortran module dynk found in the dynk.s90 file. The .s90

file format is free form Fortran (.f90) which will be pre-processed by ASTUCE1. All the data associated
with DYNK is contained within the dynk module as saved arrays and variables.

Additionally, the subroutine initialize_element was added to the daten block. It is responsi-
ble for general initialization of SINGLE ELEMENTs at the end of the daten subroutine, whether DYNK is
in use or not. It is also used to re-initialize such elements if they are later changed by DYNK.

The general program flow is illustrated in Figures 1 and 2. These show how DYNK is initialized,
and how it is called. The structure is only shown for 6D thin tracking, however the pattern is the same
for the other options.

1ASTUCE is a source code preprocessor that is used for SixTrack. It assembles the Fortran source files from one or more
decks, typically containing a group of related subroutines; and blocks, small pieces of codes that are in-lined one or more places
in one or more decks, typically used for defining Fortran COMMON blocks and kicks. Furthermore, the ASTUCE “pragmas”
can include conditional statements, used to include or exclude parts of the source code based on compilation flags.

Proceedings of ICFA Mini-Workshop on Tracking for Collimation in Particle Accelerators, CERN, Geneva, Switzerland, 30 October
2015, CERN Yellow Reports: Conference Proceedings, Vol. 2/2018, CERN-2018-011-CP (CERN, Geneva, 2018)

2519-8084 – c� CERN, 2018. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence. 123

https://doi.org/10.23732/CYRCP-2018-002.123.

Start of program maincr Start of subroutine daten

File fort.3

Parse DYNK block
using subroutines

dynk_parseFUN and
dynk_parseSET

dynk

module data

Call dynk_inputsanitycheck

initialize_element

for all elements

End of subroutine daten

dynk_elemdata

Initialization of
RNG, kicks, optics,

etc. in maincr

ithick

Start of subroutine trauthick

. . .

=
=
1

Start of subroutine trauthin
==0

Initialize ktrack etc.

Call dynk_pretrack

Type of
tracking

thin4d

thin6dua

thin6d

(see separate figure)

End of subroutine trauthinEnd of program maincr

Fig. 1: Program flow in SixTrack with DYNK. The details of thin6d is shown in Figure 2. The beginning/end
of processes are in red blocks, orange blocks are actions of interest, blue blocks are I/O, and green blocks are
decisions.

2

K. SJOBAK ET AL.

124

Have selected thin6d

(still in trauthin)

Collimation
version?

Initialize collimation

Begin loop over samples

Load particles in
tracking arrays

yes

Beginning of subroutine thin6d
no

Initialize thin6dBegin loop over turns

Beginning of
subroutine dynk_apply

Initialize dynk_apply,
reset DYNK and elements

if turn=1 (collimation)

Change settings:
1. dynk_computeFUN

2. dynk_setvalue

3. (initialize_element)

Confirm settings (dynk_getvalue),
write to file dynksets.dat

End of dynk_apply

Fi
le

d
y
n
k
s
e
t
s
.
d
a
t

d
y
n
k

m
od

-
ul

e
da

ta
Loop over elements,

apply kicks

End loop over turns

If
m

or
e

tu
rn

s

End of subroutine thin6d
If collimation version:
End loop over samples

End of subroutine trauthin

If
m

or
e

sa
m

pl
es

Fig. 2: Details of program flow when running subroutine thin6d; see Figure 1 for the rest of the program. The
beginning/end of processes are in red blocks, orange blocks are actions of interest, blue blocks are I/O, and green
blocks are decisions.

3

DYNAMIC SIMULATIONS IN SIXTRACK

125

Note that all DYNK-related global variables have names postfixed with _dynk, while all functions
and subroutines related to DYNK bear the prefix dynk_. Since the subroutine initialize_element

is also used outside of DYNK, it does not contain this pre- or post-fix in its name. Furthermore, while
this document is intended to give an overview of how DYNK functions, detailed descriptions of each
subroutine, code stub, and variable are given in the code as comments.

3 Data structure
The configuration of DYNK is stored in the dynk module. These variables and arrays are separated in 3
main categories, as described in the following subsections.

3.1 Overall configuration
Whether DYNK is active at all, i.e. if a DYNK block is present in the fort.3 input file, is controlled
by the ldynk boolean variable. If this is .FALSE., no DYNK functions are called in the tracking loop.
Furthermore, it is possible to enable extra debugging output and run-time checks (ldynkdebug), and to
disable writing of the dynksets.dat output file (ldynkfiledisable).

3.2 Functions

Statement in fort.3 Row Name Type Data 1 Data 2 Data 3

FUN f1 FILE myfile.txt ! 1 1 1 2 1 5
FUN f2 LIN 2.5 3.14 ! 2 3 42 6 -1 -1
FUN f3 ADD f1 f2 ! 3 4 20 1 2 -1

funcs_dynk:

nfuncs_dynk = 3  maxfuncs_dynk

Row Data (string)

1 f1
2 myfile.txt
3 f2
4 f3

cexpr_dynk:

ncexpr_dynk = 4  maxdata_dynk

Row Data (real num.)
1 23.5
2 27.8
3 20.0
4 15.2
5 30.0
6 2.5
7 3.14

fexpr_dynk:

nfexpr_dynk = 7  maxdata_dynk

Fig. 3: Illustration of how three DYNK functions are stored in memory. The colours are used to separate the three
functions used in the example (f1, f2, f3). The function f1 is of type FILE, where the column Data1 points to where
in fexpr_dynk the data begins, and Data2 indicates how much data there is. The function f2 is of type LIN, where
Data1 points to where in fexpr_dynk the two parameters are stored. The function f3 is of type ADD, where Data1
and Data2 indicates which functions should be added by listing their row numbers in funcs_dynk.

At the core of DYNK is the possibility to compute function values. This can for instance be used
to change the strength of elements as a function of the turn number. The details of how this works is
described in Section 5. As illustrated in Figure 3, the configuration for these functions is described in the
table funcs_dynk, with one row per function (FUN statements in fort.3). Each of these rows consist of
five integers, for which the first two have the same meaning for all function types. The meaning of the

4

K. SJOBAK ET AL.

126

last three columns vary. Here, the first column always points to the location in the cexpr_dynk array
where the (user-defined) name of the function is stored, while the second is an index which indicates the
type of the function, and thus the interpretation of the following three columns. The number of function
“slots” currently in use is defined by the variable nfuncs_dynk such that the last row that is currently in
use is row number nfuncs_dynk2. The size of the table, and thus the maximum amount of slots, is given
by the constant parameter maxfuncs_dynk.

Since many functions require the storage of more than three integers, DYNK has an internal mem-
ory allocation mechanism supporting the three main data types: integers, double precision real numbers,
and strings. This is implemented as three large arrays iexpr_dynk, fexpr_dynk, and cexpr_dynk.
Each string has a maximum length maxstrlen_dynk, and the stored strings are generally expected to
be terminated and padded with binary zeros. Similar to nfuncs_dynk, each of these arrays have an
associated integer that keeps track of how many elements are currently in use. These usage counters are
called niexpr_dynk, nfexpr_dynk, and ncexpr_dynk, and should point to the last valid index in their
corresponding data array.

It is the developer’s responsibility to make sure that a new function (1) does not interfere with the
data storage for other functions, and (2) does not exceed the available storage for this data type. For
the first point, this means that the function must not modify the data stored by other functions, and it
must correctly update the usage counters so that the next function to be defined can safely allocate more
memory. In order to help with the second point, the subroutine dynk_checkspace is provided, which
dynamically expands the arrays when needed. The expansion is normally done in chunks of 500 numbers
or 200 strings. If more than this is requested, the allocation is exactly large enough to fit the requested
amount.

3.3 Element settings

Statement in fort.3 Row FUN idx. First Last Shift Element Attribute
SET magnet1 average_ms f3 1 5 0 ! 1 3 1 5 0 magnet1 average_ms

SET magnet1 average_ms f3 6 -1 -5 ! 2 3 6 -1 -5 magnet1 average_ms

SET crabcc1 voltage f2 3 10 -3 ! 3 2 3 10 -3 crabcc1 voltage

nsets_dynk = 3  maxsets_dynk

sets_dynk: csets_dynk:

Row Element Attribute
1 magnet1 average_ms

2 crabcc1 voltage

sets_unique_dynk:

nsets_unique_dynk = 2  maxsets_dynk

Fig. 4: Illustration of how three SET statements are stored in memory.

Similar to the functions, the element settings (SET statements in fort.3) are also stored in a
few tables. However, since all settings are defined by the same fields, the memory management is
considerably simpler. As illustrated in Figure 4 the main table is sets_dynk, which can store up to
maxsets_dynk rows of integers. Each row of this table contains four columns. The first column is
pointing to a row in the funcs_dynk array, indicating which function should be used for this element

2Note the Fortran convention of counting from 1.

5

DYNAMIC SIMULATIONS IN SIXTRACK

127

setting. The two next columns indicate the range of turns for which the setting is active. The last column
is an offset which is applied to the current turn number before computing the value of the function.

Additionally, there is a table csets_dynk, which has one row per SET with the same indexing
as sets_dynk). Each row has two columns, both strings. The first column is the name of the SINGLE

ELEMENT to be changed, and the second column is the name of the attribute that should be changed. This
table is filled in the subroutine dynk_pretrack.

This architecture allows multiple functions to be defined for the same element, as long as the range
of turns they are used for is not overlapping. This is verified by the dynk_pretrack subroutine, which
also verifies that all SETs refer to valid elements and attributes. While this data structure makes it possible
to apply different functions to the same element and attribute for different time periods, in many cases it is
necessary to directly iterate over the element and attribute combinations that are used instead of the indi-
vidual SET statements. To avoid excessive searching when iterating over unique elements and attributes,
the table csets_unique_dynk is used. The table has the same format as csets_dynk, but has no dupli-
cate entries. The number of rows used in this table is kept in the integer variable nsets_unique_dynk.
Furthermore, the array fsets_origvalue_dynk contains the pre-changed value of the elements using
the same indexing as csets_unique_dynk. This is necessary for collimation, where multiple samples
of particles are tracked sequentially, making it necessary to be able to reset the state of the elements to
how it was originally defined in fort.2 and fort.3.

Finally, there are two arrays that are used to keep additional information on the level of structure
elements, of which there may be several per single element. These arrays are named dynk_izuIndex

and dynk_elemdata. The array dynk_izuIndex is used to store the index of the random number used
to set the magnet error of the element in question. The array dynk_elemdata is used to store the various
values needed to initialize certain types of elements, such as accelerating RF cavities, and will most
likely be necessary for handling magnetic multipoles should this be implemented in the future.

4 Changing element settings: dynk_apply
If DYNK is active in the simulation, the subroutine dynk_apply is called in the tracking loop at the
beginning of every turn, as shown in Figure 2. This subroutine then loops over the defined SETs, checking
if it is active in the current turn. If this is the case, the current effective turn is calculated by adding the
turn-shift (which is often 0) to the actual turn. The value of the active function is then calculated using
dynk_computeFUN as described in Section 5.

Note that dynk_apply has an important role in initializing DYNK FUNctions where the output
depends on the internal state created by previous calls. This happens with the FIR and IIR filters, and
also with the RNG-based functions RANDG, RANDU, and RANDON. This is done on the first turn, before any
kicks are applied. The action taken is for example to initialize the “seed” that is updated at every call to
the RNG function, with the initial seed read from fort.3.

4.1 The subroutine dynk_setvalue
When the new value has been calculated, it is applied to the specified element and attribute using
dynk_setvalue. This function modifies the main element setting arrays in the same way as daten

does when reading the input files, doing no calculations. In practice, this means that when changing
single elements, it will write to the ed/ek/el and elens_theta_max arrays. The reason for this is to
make the code, and its testing, as straight forward as possible.

One exception to the “no calculations” rule is that when changing the reference energy E0 us-
ing GLOBAL-VARS, which triggers a recalculation of the reference momentum e0f, relativistic gamma
gammar, and the energy-dependent particle arrays dpsv/dpsv1/dpd/dpsq/oidpsv/rvv.

6

K. SJOBAK ET AL.

128

4.2 The subroutine initialize_element
If any further calculation is needed, this is done afterwards in the subroutine initialize_element. This is
for example used for nonlinear elements, where the actual kick strength is given by an average strength
(ed) and a random component (ek). Furthermore, a unit conversion is also applied.

Another example is crab cavities, which store the phase offset in el when reading the input file,
which is normally used to store the element length. This phase is therefore moved into a separate array
crabph, which has the same shape and indexing as el.

Note that initialize_element is not only used when changing element settings, but also used
just after reading the input files in daten. In this case, the second argument “lfirst” is set to .TRUE..

4.3 The subroutine dynk_getvalue
The function dynk_getvalue returns the setting of an element’s attribute as it was set by
dynk_setvalue. This is used for output to dynksets.dat. When ldynkdebug=.TRUE. it is also
used to confirm that the setting was correctly applied.

4.4 The virtual element GLOBAL-VARS
In order to change certain global settings, such as the reference energy E0, the element name
GLOBAL-VARS is used. Because of this, it is not possible to have an actual element in the single ele-
ments list with this name when DYNK is active.

The GLOBAL-VARS element is also treated specially in the dynk_setvalue and dynk_getvalue

subroutines. Here, this “element name” is tested for and handled near the top of the routine, before trying
to locate the normal elements.

5 How the functions are calculated
As shown in Table 1, many types of functions are available in DYNK. The data used for their evaluation
is stored in the dynk module, as described in Section 3.2. Internally, each function type is given an
integer index, which is used in a select case when evaluating the function. Note that these indices
are grouped by function type, and this grouping should be respected when adding new functions. A
detailed description of the use of each function is given in the user manual, and how they store their data
is documented in comments in the dynk_parseFUN code.

In most cases the DYNK FUNs are functions of the current turn number, including a possible turn-
shift, which may be specified in the SET command. Note that DYNK functions can be chained such that
one function can call another one, which may call yet another, etc. This is done by for example the ADD

function, which calls two other functions, adds their results together, and returns the value. When this
happens, the current turn number – including any turn-shift – is passed on to the next function.

5.1 Calculating the function values f(turn): dynk_computeFUN
The values of the functions are calculated in this Fortran function. It is called with an index into the rel-
evant row in the funcs_dynk table, and the current (possibly shifted) turn number. Using the row index,
it then reads the type index (second column), and executes the case containing the code for that function.
The code may then read or modify any data in the funcs_dynk array and the {c|f|i}expr_dynk arrays.
Note that it is expected that functions should only touch data in the arrays they themselves allocated in
dynk_parseFUN, i.e. the functions should not interact outside of calling each other.

7

DYNAMIC SIMULATIONS IN SIXTRACK

129

Index Name Short description
"System" functions:

0 GET Get original value of element/attribute.
1 FILE Load from file (turn-by-turn).
2 FILELIN Load from file (interpolate non-specified turns).
3 PIPE Get setting from external program.
6 RANDG Gaussian RNG.
7 RANDU Uniform RNG.
8 RANDON Random 1 or 0 with given probability.

Filters:
10 FIR Finite Impulse Response filter.
11 IIR Infinite Impulse Response filter.
Operators (2-operand):
20 ADD Add the results of two other functions.
21 SUB Subtract the results of two other functions.
22 MUL Multiply the results of two other functions.
23 DIV Divide the results of one function by the result of another.
24 POW Exponentiate the result of one function with the result of another.
Operators (1-operand):
30 MINUS Result of another function, with opposite sign.
31 SQRT Square root of the result from another function.
32 SIN Sine of the result from another function.
33 COS Cosine of the result from another function.
34 LOG Natural logarithm of the result from another function.
35 LOG10 Base-10 logarithm of the result from another function.
36 EXP Natural exponential function of the result from another function.
Polynomial functions:
40 CONST Constant value.
41 TURN Current turn (after turn-shift).
42 LIN Linear function of the turn number.
43 LINSEG Linear function of the turn number (alternative input format).
44 QUAD Quadratic function of the turn number.
45 QUADSEG Quadratic function of the turn number (alternative input format).

Transcendental functions:
60 SINF Sine of the turn number, with specified !, �, and A.
61 COSF Cosine of the turn number, with specified !, �, and A.
62 COSF_RIPP Cosne of the turn number (alternate “RIPP” format).
Specialized functions:
80 PELP Parabolic-Exponential-Linear-Parabolic, used for energy ramping [20].
81 ONOFF On for p1 turns, then off for p2 � p1 turns, then repeat.

Table 1: Functions defined in DYNK and their indexes. For a full description, please see the user manual.

8

K. SJOBAK ET AL.

130

5.2 Initializing the functions: dynk_parseFUN
This function is responsible for parsing the user input (FUN statements), filling the funcs_dynk table, and
allocating memory in the {c|f|i}expr_dynk arrays. It is one of the most complex parts of the DYNK
module, and must be modified whenever one wants to add new DYNK functions. In dynk_parseFUN,
each function type is initialized by a block of code. The selection of the code to execute depends on the
function type listed in the second word of the relevant FUN statement. Note that all DYNK functions first
call two support subroutines dynk_checkargs and dynk_checkspace, in order to check that the number
of arguments is as expected for this function, and that there is enough space in the {c|f|i}expr_dynk

arrays. If there is not enough space, it is automatically allocated, as described in Section 3.2.
Please also note that the initialization of the GET function, which returns the initial setting of an

element, is only fully initialized after the dynk_pretrack subroutine has run.

6 Support for collimation version
The collimation version of SixTrack [19] is able to work around the 64 particle limit by tracking multiple
samples of particles, i.e. loading the first 64 particles and then calling thin6d to track them for all turns,
then loading the next 64 particles etc., as illustrated in Figure 2. For this to work correctly, DYNK
must reset all element attributes at the beginning of each tracking simulation. This is accomplished
in dynk_apply, which at the first turn of the first sample saves the original values (retrieved using
dynk_getvalue), and then on the first turn of consecutive samples resets all elements and attributes
touched by DYNK to the stored value. Furthermore, the outputfile dynksets.dat is only written while
processing the first sample.

7 Checkpointing and restarting
The DYNK module supports checkpointing and restarting. For this to work, it must be able to truncate the
dynksets.dat file to its position at the loaded restart point, and to store the current state of the DYNK
functions. As all the current states of the functions are stored in the {c|f|i}expr_dynk arrays and in
fsets_dynk, these arrays are written by the checkpoint/restart routines. Additionally, the array usage
counters n{c|f|i}expr_dynk are also saved and restored. The rest of the state of DYNK is unchanged
after initialization, and is thus recreated when reading the input files and initializing the simulations.

8 Summary and outlook
The DYNK module in SixTrack has been a success and has been in use for more than three years, en-
abling several new studies. Its overall architecture is designed to be extensible, to make it easy to add new
functions, and to support acting on new types of elements and element attributes. The implementation of
DYNK has also been taken as an opportunity to clean up several parts of the SixTrack code, as was done
by implementing initialize_element. Furthermore, it not only supports the standard SixTrack, but
also the collimation version and checkpoint/restart.

For the future, it is likely that several more functions and elements will be added, such as a wider
variety of random distributions, and support for the beam-beam and multipole element. It may be in-
teresting to support the setting of a global non-integer turn shift, in order to easily study the effects on
different bunches along the ring. Furthermore, the performance of dynk_setvalue and dynk_getvalue
might be improved by caching the element index, avoiding the search over all elements every time these
functions are called. Finally, since DYNK can now change the reference energy using the GLOBAL-VARS
mechanism, the large subroutines thin6dua and thck6dua can now in principle be removed, reducing
the amount of code duplication.

9

DYNAMIC SIMULATIONS IN SIXTRACK

131

References
[1] F. Schmidt, “SixTrack Version 4.2.16 Single Particle Tracking Code Treating Transverse Motion

with Synchrotron Oscillations in a Symplectic Manner”, CERN/SL/9456, 2012.
[2] G. Ripken and F. Schmidt, “A symplectic six-dimensional thin-lens formalism for tracking”, DESY

95–63 and CERN/SL/95–12(AP), 1995.
[3] R. De Maria, A. Mereghetti, and K. Sjobak, “SixTrack Status”, these proceedings.
[4] K. Sjobak, R. De Maria, E. McIntosh, A. Mereghetti, J. Barranco, M. Fitterer, V. Gupta, and J.

Molson, “New features of the 2017 SixTrack release”, IPAC’17, THPAB047.
[5] A. Mereghetti et al., “SixTrack-FLUKA active coupling for the upgrade of the SPS scrapers”,

IPAC’13, WEPEA064.
[6] K. Sjobak, H. Burkhardt, R. De Maria, A. Mereghetti, and A. Santamaría García, “General func-

tionality for turn-dependent element properties in SixTrack”, IPAC’15, MOPJE069.
[7] A. Santamaría García, H. Burkhardt, K. Hernández Chahín, A. Macpherson, K. Sjobak, D. Woll-

mann, and B. Yee-Rendón, “Limits on failure scenarios for crab cavities in the HL-LHC”, IPAC’15,
THPF095.

[8] K. Sjobak, R. Bruce, H. Burkhardt, A. MacPherson, A. Santamaría García, and Regina Kwee-
Hinzmann, “Time Scale of Crab Cavity Failures Relevant for High Luminosity LHC” IPAC’16,
THPOY043.

[9] A. Santamaría García, K. Sjobak, R. Bruce, H. Burkhardt, F. Cerutti, R. Kwee-Hinzmann, A. Lech-
ner, and A. Tsinganis, “Machine protection from fast crab cavity failures in the High Luminosity
LHC” IPAC’16, TUPMW025.

[10] R. Apsimon, G. Burt, A. Dexter, P. Baudrenghien, K. Sjobak, and R. Appleby, “Modelling the low
level RF response on the beam during crab cavity quench”, IPAC’17, MOPVA102.

[11] R. Bruce, C. Bracco, R. De Maria, M. Giovannozzi, A. Mereghetti, D. Mirarchi, S. Redaelli, E.
Quaranta, B. Salvachua, “Reaching record-low �⇤ at the CERN Large Hadron Collider using a
novel scheme of collimator settings and optics”, Nuclear Instruments and Methods in Physics Re-
search Section A, Volume 848, 11 March 2017, Pages 19–30, https://doi.org/10.1016/j.
nima.2016.12.039.

[12] H. Garcia-Morales et al., “Simulating off-momentum loss maps using SixTrack”, these proceed-
ings.

[13] H. Garcia-Morales, R. Bruce, and B. Salvachua Ferrando, “Off-momentum loss maps with one
beam”, January 12th, 2016, CERN-ACC-NOTE-2016-0011, https://cds.cern.ch/record/

2121307.
[14] S.J. Wretborn, R. Bruce, H. Garcia Morales, and K. Sjobak, “Study of off-momentum losses at the

start of the ramp in the Large Hadron Collider”, September 6th, 2017, CERN-ACC-NOTE-2017-
0065, http://cds.cern.ch/record/2298696.

[15] J. Wretborn, R. Bruce, H.G. Morales, and K. Sjobak, “Off-momentum collimation at the start
of the ramp” Presented at the 215th LHC Collimation Working Group Meeting, April 3rd 2017,
https://indico.cern.ch/event/626908/.

[16] M. Fitterer, G. Stancari, A. Valishev, R. De Maria, S. Redaelli, K. Sjobak, and J.F. Wagner, “Im-
plementation of hollow electron lenses in SixTrack and first simulation results for the HL-LHC”
IPAC’17, THPAB041.

[17] F. Schmidt, A. Alekou, M. Fitterer, J.F. Wagner, S.J. Wretborn, R. De Maria, S. Kostoglou, K.
Sjobak, and T. Persson, “SixTrack version 4.7.16: Single Particle Tracking Code Treating Trans-
verse Motion with Synchrotron Oscillations in a Symplectic Manner; User’s Reference Manual”,
please see
http://sixtrack.web.cern.ch/SixTrack/doc/manual_dev/six.pdf or

10

K. SJOBAK ET AL.

132

https://github.com/SixTrack/SixTrack/tree/master/Doc/user_manual

for the newest version.
[18] SixTrack sources, https://github.com/SixTrack/SixTrack/
[19] G. Robert-Demolaize, R. Assmann, S. Redaelli, and F. Schmidt, “A new version of SixTrack with

collimation and aperture interface”, PAC’05, FPAT081.
[20] Stephan Russenschuck, “Field Computation for Accelerator Magnets: Analytical and Numerical

Methods for Electromagnetic Design and Optimization”, Wiley-WCH 2010, ISBN 978-3-527-
40769-9.

11

DYNAMIC SIMULATIONS IN SIXTRACK

133

	Abstract
	Preface
	Contents
	Status of SixTrack with collimation. R. Bruce et al.
	SixTrack Status. R. De Maria et al.
	FLUKA coupling to Sixtrack. E. Skordis et al.
	Status of MERLIN. H. Rafique et al.
	BDSIM: Automatic Geant4 Models of Accelerators. L. J. Nevay et al.
	MARS15-Based System for Beam Loss and Collimation Studies. N.V. Mokhov and I.S. Tropin
	Simulation Tools for Heavy-Ion Tracking and Collimation. P. D. Hermes et al.
	Crystal implementation in SixTrack for proton beams. D. Mirarchi et al.
	Updated implementation of collimator materials in SixTrack and MERLIN codes. E. Quaranta et al.
	Dynamic simulations in SixTrack. K. Sjobak et al.
	HL-LHC Hollow Electron Lens Integration using MERLIN. H. Rafique et al.
	Simulating off-momentum loss maps using SixTrack. H. Garcia-Morales et al.
	First simulations of collimation cleaning performance for the FCC-hh. M. Fiascaris et al.
	Simulations of collimation losses at RHIC. G. Robert-Demolaize and A. Drees
	Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron. J. Barranco Garcïa and S. Gilardoni
	FLUKA-SIX TRACK Coupling for the SPS Scrapers. R.B. Appleby et al.

