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Abstract
Based on the recent work of R. Lindberg on transverse

collective instabilities [1] it was observed that if the ratio
of quadrupolar to dipolar impedance ⇢ is equal to �1 there
is no TMC-instability. This relationship is actually fulfilled
by resistive wall (RW)-impedance on the horizontal plane in
case of a flat vacuum chamber. HEADTAIL [2]-simulations
were carried out to check if this observation can be con-
firmed. Additionally the e�ect of radial modes on the TMC-
instability was studied.

INTRODUCTION
The motion of particles in a single bunch can be de-

scribed by the Vlasov equation as it was found by [3]. The
linearisation of the Vlasov equation was solved by several
authors [4–7]. In particular under the e�ect of dipolar
impedance the transverse motion of particles of a bunch was
described by [13] by decomposition into azimuthal and ra-
dial modes. In the meantime it was found that quadrupo-
lar impedance is significant in many synchrotrons and has
a sensible e�ect on the transverse motion [8–10]. Shortly
after the discovery of its importance its e�ect was just super-
imposed on the dipolar mode detuning. However, R. Lind-
berg showed [1] that its e�ect has to be fully included into
the dynamics of the bunch motion. Therefore the main pur-
pose of this work is to demonstrate the di�erence between
the Lindberg’s description and the more naive descriptions
in the past [11]. Whereas on the vertical plane the naive su-
perposition of the dipolar and quadrupolar detuning corre-
sponds quite well to Lindberg’s result this is no longer true
for the horizontal plane: a naive superposition of the mode
detuning caused by dipolar and quadrupolar impedance in-
deed leads to a zero slope of mode 0 as expected, but mode
0 would still couple with mode -1, but in Lindberg’s descrip-
tion the coupling is not compulsory. In order to support this
observation HEADTAIL simulations were applied.

SUMMARY OF LINDBERG’S MODE
EVOLUTION THEORY

In [1] the Vlasov equation is linearized with the Planck-
Fokker terms included but truncated to a matrix equation.
In the following it is assumed that the TMCI is strong
enough for the disregard of the Planck-Fokker terms. This
leads to the following equation:
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with Ln

p
(x) as general Laguerre-polynomials.1 This formal-

ism can be applied to any type of transverse impedance.
In the first part we will focus on RW-impedance as it ful-
fills the requirement ⇢ = �1 in case of horizontal RW-
impedance of a horizontally flat parallel-plate beam pipe
geometry which is at least approximately very common in
many synchrotrons. The parameters used in the simulations
can be looked up in table 1.

Table 1: simulation parameters used

parameter value unit
E/e 3 GV
!s 59.39 kHz
�⌧ 0.0154 ns
�RW� 4-11 kV

pC

f bbr 1.5, 3, 5 GHz
Qbbr 2.3
�� · Rbbr

� 52.9, 100, 41.1, 17.3 M⌦

RW-impedance
In order to study the evolution of the headtail-modes, the

linearized and truncated Vlasov-equation is solved for a 2-
mode system of two modes m=-1 and m=0 with radial mode
number r = 0 (Higher radial modes are only discussed in
the conclusions.). This was already done in the past by
MOSES [13] for a pure dipolar impedance. In order to
include the quadrupolar impedance the detuning slope re-
lated to it was added to the dipolar mode detuning computed
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Figure 1: Imposing quadrupolar tune shift on the horizontal
mode detuning from dipolar RW-impedance: For ⇢ = �1
mode 0 detuning is �⌦ ⇡ 0, whereas the TMCI threshold
is maintained.

by MOSES (this procedure is called adapted MOSES). All
modes were correspondingly shifted, but the onset of the
TMC-instability did not change (Fig. 1). So in case of hori-
zontal impedance generated in a flat parallel-plate like beam
pipe geometry the dipolar detuning of mode m = 0 was
compensated by the quadrupolar detuning resulting in zero
detuning of the mode. It seemed that mode m=0 still hit
an instability if it met the mode m=-1, now with a strong
positive slope. This was supported by measurements at the
ESRF [11]. It had also the advantage that the measured
threshold current allowed an estimation of the e�ective hor-
izontal impedance even in the case of the zero slope. The
mode evolution can be found from Vlasov’s equation by the
solution of the secular equation here demonstrated for the
2-mode system:
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the coupling parameter and �̃ = 1/4. �� is the horizon-
tal dipolar respectively quadrupolar RW-impedance’s kick
factor of the beam pipe. To account for the quadrupolar
detuning, the term AQ was introduced which is the same
as the dipolar detuning AH apart from the sign. Including
AQ does not change the threshold which can be found by
solving the secular equation and searching for the detuning
�⌦ where it becomes complex. But this description was
obviously not complete as HEADTAIL-simulations cannot
reproduce this behaviour (Fig. 1). If, however, for the con-
sideration of the quadrupolar impedance Lindberg’s formal-
ism is used the secular equation for the 2-mode system looks

1 Actually we stick to the mode expansion of [12].

di�erently:
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As one of the o�-diagonal terms cancels out the coupling
disappears. Both modes still approach and meet, but do not
couple, they just pass through each other (Fig. 2). This is
qualitatively an important change. A couple of questions
pop up: Will there be no TMCI-threshold anymore on the
horizontal plane ? How will it be possible to estimate the ef-
fective horizontal impedance from single-bunch detuning?
Some answers can be found in the next section.

Figure 2: Applying Lindberg’s full theory on horizontal
RW-impedance leads to very good agreement with HEAD-
TAIL. The growth rate (green) is not excited at the meeting
point of the modes.

BBR-impedance
In case of Broad Band Resonator (BBR) impedance

(with (R�,Q,!r ) and Q� =
�

Q2 � 0.25) the quadrupo-
lar impedance is also of importance when the cross section
changing beam pipes generating it are not circular. It will be
shown that the modes principally behave the same as they
do in case of horizontal RW-impedance if the rule ⇢ = �1
is imposed. So initially the spectral distribution of dipo-
lar and quadrupolar impedance are assumed to be the same
in order to demonstrate that qualitatively there is no di�er-
ence to RW-impedance (Fig. 3). The secular equation for
this case turns out to be very similar:
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Figure 3: Modes under the e�ect on the common dipolar
and quadrupolar BBR-impedance essentially show the same
behaviour as in the RW-impedance case [14].

Before we discuss more involved cases for completeness
the vertical mode detuning will be touched upon. As for ver-
tical impedance ⇢ � 0.5, we are far away from the intrigu-
ing case ⇢ = �1. So in Lindberg’s theory the 2 azimuthal
modes m=-1 and m=0 couple (Fig. 4) as they do in adapted
MOSES including the naively superimposed quadrupolar
impedance. However, the threshold current can be di�erent.
But the di�erence between adapted MOSES (with naive su-
perimposed quadrupolar detuning) and Lindberg’s theory
is rather small and above all does not go necessarily in the
desired direction. So at this level of study Lindberg’s the-
ory does not give an explanation for the notorious failure of
matching the measured vertical impedance in single bunch
with the computed one found in electron synchrotrons [15].
The picture becomes a bit more complicated for higher fre-
quency and with the consideration of radial modes, but this
is out of scope of this work.

Figure 4: A low-frequency BBR-impedance HEADTAIL
simulation agrees well with 2-mode case of Lindberg’s the-
ory (red), even better than with the adapted MOSES(cyan).
For higher frequency the radial modes have to be considered
which change the picture slightly.

Finally we assume that the spectral distribution of the
dipolar impedance is di�erent from the quadrupolar one
since it is much more realistic but with still agreeing the kick
factors. This is actually easy to achieve as BBR-impedance

is described by 3 parameters to play with. So instead of
requiring ⇢ = ZQ (!)

ZD (!) = �1 we only require

⇢ =
Ze f f

Q
(!)

Ze f f

D
(!)
= �1 (5)

We keep on studying the horizontal plane. In this case (at
least) 2 BBR-models (here indexed with H for horizontal
and Q for quadrupolar) are needed, one for the dipolar part
and another one for the quadrupolar part. Including both
in the formalism the secular equation for the eigenvalues
amounts to (B :� BH = �BQ):
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(6)
It yields essentially two di�erent cases, one where ↵Q �
↵H < 0 and the other one where ↵Q � ↵H > 0. In the

Figure 5: If the same e�ective dipolar and quadrupolar
BBR-impedance of opposite sign but with di�erent reso-
nance frequencies are assumed modes can still couple as in
this example (↵H > ↵Q) confirmed by HEADTAIL modes
(white) and their growth rate (green).

Figure 6: Essentially the same case as in the precedent
figure, but di�erent coupling coe�cients of dipolar and
quadrupolar BBR-impedance. Mode coupling no longer oc-
curs as confirmed by the low growth rate (green).

first case ↵Q < ↵H , there is coupling (Fig. 5), whereas in
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the second case ↵H < ↵Q (Fig. 6), there is no coupling
anymore. One of most important consequences is that it is
indeed possible that mode 0 and -1 meet without coupling.
This seems also to be possible in more complex impedance
models.

CONCLUSIONS
Now impedance budgeting on the horizontal plane is

rather di�erent from the vertical plane. It cannot be relied
upon the horizontal threshold anymore for the measurement
of the e�ective impedance. There might be even no horizon-
tal threshold at all.

Even the threshold on the vertical plane changes with re-
spect to the results of MOSES. However, the change is much
smaller than on the horizontal plane.

In this report only examples with low BB-resonance fre-
quency are studied. At higher frequency there might be de-
viations between Lindberg’s mode theory and HEADTAIL.

In the future the 2-mode example will be extended to
larger number of modes including also radial modes. It was
already observed that higher radial modes of m=-1 do not
couple with m=0 in the pure case ⇢ = �1.
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