
LANDAU DAMPING WITH ELECTRON LENSES
V. Gubaidulin⇤, O. Boine-Frankenheim1, TU Darmstadt, 64289 Darmstadt, Germany

V. Kornilov, GSI Helmholtzzentrum, 64289, Darmstadt, Germany
E. Metral, CERN, CH-1211 Geneva, Switzerland

1also at GSI Helmholtzzentrum, 64289 Darmstadt, Germany

Abstract
Electron lenses provide an incoherent betatron tune spread

for Landau damping of transverse coherent beam instabilities.
We investigated the e�ect of the transverse electron beam
size and shape for Landau damping with an electron lens.
Another point of interests is Landau damping provided by
a pulsed electron lens with homogeneous transverse beam
profile. This type of electron lens is developed for space-
charge compensation in SIS18.

INTRODUCTION
Impedance driven transverse beam instabilities in hadron

synchrotrons are damped by either an active feedback sys-
tem or passive mitigation via Landau damping [1] due to
dedicated Landau octupole magnets.

For high energy and high-intensity synchrotrons a number
of proposals of alternative sources of Landau damping have
been proposed [2, 3]. In this contribution, we are comparing
stability boundaries from dispersion relations for an electron
lens proposed in [2] with our simulation results. In addition,
we will analyse Landau damping from a pulsed electron
lens [4].

We compare the stability boundaries obtained from the
dispersion relations with the ones obtained from particle
tracking simulations using an e�ective impedance.

Table 1: LHC and FCC-hh parameters

LHC FCC
Circumference, C [km] 27 100
Beam energy, E [GeV] 7 50
Average beta function, Vavg [m] 72 140
Betatron tune, &G 59.31 111.31
Betatron tune, &H 63.32 109.32
Synchrotron tune, &s 2.2 · 10�3 1.2 · 10�3

Number of octupoles, #oct 168 ⇡ 4200

Landau damping due to octupole magnets
From the dispersion relations, it is possible to obtain an

estimation of the stability area due to Landau damping for
the given tune spread. For octupole magnets the incoherent
betatron tune spread is linear with amplitude:

�&G = 0GG�G/nG + 0HG�H/nG ,

0GG / #>2C �octnn/W
2

⇤ gubaidulin@temf.tu-darmstadt.de

where �oct is octupole current, nn – normalized emittance, W
– relativistic gamma, #oct – number of octupoles.

Assuming that FCC-hh would use LHC-like octupoles
one can obtain for the parameters given in table 1 that FCC-
hh would need ⇡ 25 times the number of octupoles currently
used in the LHC operation to obtain the same order of inco-
herent betatron tune spread. (See Fig. 1.)

For this betatron tune spread we estimate the stability of
the beam in the FCC-hh due to Landau damping from the
dispersion relation. (See Fig. 2.) For the case of the rigid
mode and two-dimensional betatron tune spread dependent
on the transverse amplitudes the dispersion relation has been
derived by F. Ruggiero and J.S. Berg [5]:
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where �G , �H – transverse action variable, k(�G , �H) – parti-
cle distribution function.
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Figure 1: Tune spread for LHC-like octupoles with &s =
1.2 · 10�3, bG,H = 0 and rms tune spread X&rms ⇡ 2.1 · 10�4.

Landau damping due to an electron lens
Electron lenses have been proposed as a potential Landau

damping source [2]. An electron lens creates a non-linear de-
pendence of the incoherent betatron tunes on the transverse
amplitudes:
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Figure 2: Stability diagram for LHC-like octupoles in verti-
cal and horizontal plane.
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where X&max – maximal tune shift, A2 = 2�G sin2

qG +

2�H sin2
qH , 94 (A) – transverse current density distribution

of an electron beam, qG , qH – betatron phases.
In this contribution, we will focus on the case of Gaussian

current distribution of 94 (A). Tune shift from the electron
lens is at it largest for particles with �G , �H = (0, 0) and
it’s decreasing with larger amplitude resulting in a diamond
shape for the electron and proton beams of equal size. For
this case maximal tune shift will be expressed as (See Fig. 3):
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where �4 is electron beam current, �A = <42
3

4
17kA – Alfven

current, <4, <? – masses of electron and proton, f4, fG –
electron and proton beam rms sizes, V4 – relativistic beta of
the electron beam. (It is assumed here that V? ⇡ 1 for the
proton beam.) [2]

Let us fix the maximum tune shift X&max and vary the
electron beam size f4. To give an intuition of how the tune
distribution will be changing let us look at two asymptotic
cases. First, let f4 ⌧ f?. In this situation, most particles
will experience a weak Coulomb force and their tunes will
be close to the unperturbed tune. Second, if f4 � f?,
every particle of the proton beam is lying on the center of
the electron beam, thus these particles will be experiencing
the linear part of the force corresponding to X&max. With
these examples it is clear that changing the electron beam
size leads to a redistribution of particles between (0, 0) and
(X&max, X&max). We can study how this a�ects the stability
area using the dispersion relation from Eq. 1. This leads
us to plot from Fig. 4, from which we can conclude that
decreasing the rms size of the electron beam f4 changes
the stability area significantly towards a enlargement of the
stable area for positive real coherent tune shifts. Increasing

f4 leads only to marginal benefits and f4 = 0.9fG is the
optimal size ratio from the analytical estimation.
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Figure 3: Tune spread from an electron lens with f4 = fG ,
�&max

G,H
= 2 · 10�3 with &s = 1.2 · 10�3, bG,H = 0 and rms

tune spread X&rms ⇡ 3.5 · 10�4.
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Figure 4: Stability diagram with electron lens beam sizes
f4 from, A = 0.6 � 1.3 of proton beam sizes fG .

Pulsed electron lens
For space-charge compensation, a pulsed electron lens

has been proposed for SIS18 at GSI [4]. This type of an
electron lens also creates incoherent betatron tune spread
(Fig. 5), that depends on the longitudinal action �I . This
is similar to Radio Frequency Quadrupole proposed as a
source of Landau damping for FCC-hh [3]. For tune spread
depending on the longitudinal amplitude we are using the
J.S.Berg and F.Ruggiero dispersion relation [5]:
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where �I – longitudinal action variable, < – mode number
(in this contribution we are always assuming < = 0).

In the next section, we are going to establish a method to
reconstruct stability diagrams from particle tracking simula-
tion and compare the results from simulation to the solution
of the dispersion relations. Stability diagrams in this study
are normalised by rms tune spread to compare all three
sources as if they had the same rms tune spread.
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Figure 5: Tune spread from an pulsed electron lens with
f4 = 4fG , �&max

G,H
= 10�3 with &s = 1.2 · 10�3, bG,H = 0,

X&rms ⇡ 2.4 · 10�4. Transverse distribution is assumed to
be homogeneous.

STABILITY DIAGRAM
RECONSTRUCTION

It is necessary to confirm with particle tracking simula-
tions that the actual stability area would correspond to the
one obtained from an analytical estimation of dispersion
relations. Typically, this is done with Beam Transfer Func-
tions(BTFs) both in experiments and in simulations. We
will instead employ an e�ective impedance model to excite
a rigid head-tail mode with a given <�&, =�& similar
to what has been done in [6]. Using this model allows us
to follow the particle o�set evolution and intrabunch mo-
tion during the simulation for all selected coherent tune
shifts (<�&,=�&) and determine individually for each
pair the stability of the beam due to Landau damping. This
method corresponds to the use of a transverse damper as an
impedance source to excite an instability experimentally.

The e�ective impedance [7]
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, where ⇠ is the machine circumference, I is the beam cur-
rent; is implemented as a kick in the tracking code

�G 0 = 4c=�&cohḠ 0 + 4c<�&coh
Ḡ

V̂G

(5)

Ḡ
0 and Ḡ are the o�set and its derivative averaged over

all particles in the bunch and taken at the position of the
kick. Within the above implementation the kick we only
excite rigid (: = 0) bunch modes, which allows a direct
comparison to the dispersion relations given by Eq. 1 and
Eq. 4.

Reconstructed stability diagrams for octupoles and
electron lens

The PyHEADTAIL particle tracking code with ⇡ 30000
macroparticles is used to track the development or damping
of the instability driven by the e�ective impedance for FCC-
hh parameters. In order to determine if for given parameters
the beam is stable or not, we used two simple criteria. First,
if the maximal beam o�set observed during simulation is
greater than a given threshold (5`<), the point is consid-
ered to be unstable. Second, if the beam o�set evolution is
exponential, it is also considered to be unstable even if the
amplitude did not reach the threshold during the run.

In Fig. 6 we can observe the reconstructed stability dia-
gram for LHC-like octupoles with rms tune spread �&rms ⇡
2.1·10�4 showed in Fig. 1. From the simulations, we are only
showing coherent tune shifts for which the beam is stable.
The agreement between the theoretical stability boundary
and one obtained in particle simulation is achieved.
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Figure 6: Stability diagram reconstruction for LHC-like
octupoles using FCC parameters for the vertical plane(bG,H =
0, &s = 1.2 · 10�3), �&rms = 2.1 · 10�4. Solid line is the
theoretical stability boundary and each point is obtained
from particle tracking simulation.

In Fig. 7 we present the result of reconstructing stabil-
ity boundary for an electron lens with X&max = 0.002 and
X&rms ⇡ 3.5 · 10�4 and matched size f4 = fG . This demon-
strates that electron lens is a source of betatron tune spread
that leads to Landau damping. The stability area normalised
by the rms tune spread for electron lens is smaller than for
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octupole magnets but electron lens can achieve larger rms
tune spread by scaling �&max up to 0.01 [2].
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Figure 7: Stability diagram reconstruction for electron lens
matched to the proton beam size(bG,H = 0, &B = 1.2 · 10�3).
Solid line is the theoretical stability boundary and each point
is obtained from particle tracking simulation.

Let us compare results from solving dispersion relation
from Eq. 4 to the results of the simulation with a pulsed
lens with homogeneous transverse profile. Electron beam
sizes was chosen to be f4 = 4fG in order to ensure that tune
spread during the simulation runs comes from the longitu-
dinal amplitude only. In Fig. 8 we can see that similarly to
an RFQ [8, 9] stability boundary is asymmetric with respect
to <�&2>⌘ = 0 line but contrary to the RFQ case pulsed
electron lens provides the same stability diagram in both G

and H planes. It is possible to overcome this asymmetry by
trying a di�erent transverse beam profile for the pulsed lens
or combining it with octupoles. We have achieved a qual-
itative agreement between our simulation with the pulsed
electron lens and existing dispersion relation theory.
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Figure 8: Stability diagram reconstruction for pulsed elec-
tron with f4 = 4fG , �&max

G,H
= 10�3 with &s = 1.2 · 10�3,

bG,H = 0, X&rms ⇡ 2.4 · 10�4. Transverse distribution is
assumed to be homogeneous. Solid line is the theoretical
stability boundary and each point is obtained from particle
tracking simulation.

CONCLUSION
For an e�ective instability model stability diagrams were

reconstructed from particle tracking simulation. We only
account for rigid bunch oscillations and zero chromaticity.
Additionally, the tracking studies account for the dynamic
change in beam size and betatron tune spread over the course
of the simulation, which can a�ect Landau damping[10]. In
both [6, 10] it has been shown that the agreement between
particle tracking and dispersion relations, as expected, is not
perfect and the latter overestimates the stability boundary in
comparison to the former, which agrees with our results.

For a standard electron lens, we showed that relative trans-
verse size of the electron beam f4 can serve as an additional
knob to adjust stability boundary due to Landau damping.
According to the dispersion relation, the relative beam size
slightly smaller than 1.0 (f4/fG 2 (0.8, 1.0)) provides a
marginal benefit over the matched beams.

Our simulations show that both DC and pulsed electron
lenses serve as a source of betatron tune spread that leads
to the stabilisation of the beam due to Landau damping. It
has been demonstrated that electron lens with an incoherent
betatron tune spread of the same order as octupoles provides
similar stability area in the complex tune shift space. Im-
portantly, betatron rms tune spread from electron lens even
with the modest maximal tune shift of �&max = 0.002 is
already two times larger than the tune spread from ⇡ 4200
LHC-like octupoles.

OUTLOOK
Further research into the discrepancy between DC elec-

tron lens simulation and dispersion relation results is neces-
sary.

Firstly, for SIS18/SIS100 at GSI the incoherent space
charge tune spread is significant. We plan to use the same
method to study the stability boundary in the presence of
space charge. Additionally, this method could be used to es-
timate the stability boundary for a combination of octupoles
and RFQ or pulsed electron lens.

Secondly, the study of higher-order modes is especially
necessary for the pulsed electron lens and the RFQ because
dispersion relation in Eq.4 has a |�I |

< dependence on head-
tail mode number < that implies a significant di�erence
between stability diagrams for di�erent modes.
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