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Abstract
This paper deals with the problem of defining the wake-

function for two counter-moving charges, i.e. two charges
moving in opposite direction. In this case, the distance be-
tween the charges cannot be considered constant. From the
counter-moving wakefunction the counter-moving wakepo-
tential is derived. An example of this kind of wakepotential
for a lossless pill-box cavity is obtained analitically and
compared with numerical simulations.

INTRODUCTION
During their motion in an accelerator, the beam parti-

cles interact electromagnetically with the accelerator vac-
uum chamber generating the so-called wakefields. These
wakefields dissipate heat on the vacuum chamber materials
(RF-heating) and act back on the beam particles triggering
instabilities. In the case of a single beam traversing the vac-
uum chamber all the particles move in the same direction and
this could be defined as co-moving wakefield [1] or simply
wakefield (refer to Fig. 1a).

The physical model for quantifying the e�ects of the co-
moving wakefield has been object of studies since many
years, and the works of Chao [2], Ng [3], Bane et al. [4] are
well known examples of the current understanding on the
topic.

However, in particle colliders there is an extra compli-
cation due to the presence of two counter-rotating particle
beams. Usually, the two beams pass in two separate vacuum
chambers. However, in the collision regions and, sometimes,
also in other components, they transit in the same vacuum
chamber. In this case, the particles of one beam move in
opposite direction with respect to the particles of the other
beam and one talks about counter-moving wakefield [1],
(refer to Fig. 1b).

In particular, in the Large Hadron Collider (LHC) [5] at
the laboratories of the European Council for Nuclear Re-
search (CERN) two counter-rotating beams circulate. They
transit in the same vacuum chamber in the collision cham-
bers, at the four interaction points, and in few other compo-
nents as the LHC injection absorber also known with the
acronyms TDI [6] (Target dump injection) which is the de-
vice currently installed and TDIS [7] (Target dump injection
segmented) which is the upgrade of the TDI to be installed
in 2020.

The TDI had major issues due to unexpected severe RF-
heating [8] still not fully understood. A possible explanation
could be linked to the RF-heating resulting from the inter-
action of the two counter-rotating beams. In order to avoid
⇤ mauro.migliorati@uniroma1.it

these issues with the TDIS, CERN allocated resources to
investigate the counter-rotating beam e�ects.

Few studies have investigated the interaction between two
counter-moving beams via their wakefield1: Pellegrini [10]
and Wang [1] studied longitudinal and transverse two-beam
instabilities linked to resonant modes for the Large Electron
Positron storage ring (LEP) [11]. Zimmerman [12] discussed
the resistive wall wakefield problem for two counter-moving
beams. Zannini et al. [13, 14] and Grudiev [15] focused on
the RF-heating induced in a vacuum chamber traversed by
the counter-moving beams.

This paper proposes a formal physical model to describe
the counter-moving wakefield e�ects starting from the wake-
field hypotheses. It defines a counter-moving wakefunction
for two point charges, a source charge S and a test charge T.
The counter-moving and co-moving cases are represented
in Fig. 1. In this figure, most of the quantities needed for
understanding the paper are presented.

The paper introduces also the counter-moving wakepoten-
tial. Furthermore, it benchmarks the model against simula-
tions results for a lossless cylindrical resonant cavity. Future
works will test the model to re-obtain the results of Wang,
[1], Zimmerman [12], Zannini et al. [13, 14] and Grudiev
[15].

THE PHYSICAL MODEL
The approximations on which the definition of wakefield

is based are two [3]:

1. Rigid Beam Approximation. The trajectories of S
and T are given, they are straight and parallel with each
other. Furthermore, the speed modulus of T and S is
equal and constant E@( = V@(

2 = E@)
= V@)

2 = E

while the two particles traverse the vacuum chamber.

2. Kick Approximation. The e�ects of the electromag-
netic force, continuously acting on S and T all along
the vacuum chamber, are represented as a lumped kick
acting after the particles passage.

Often in the literature the first hypothesis is reformulated
as follows: the trajectories of S and T are given, they are
straight and parallel with each other and the longitudinal
relative position of T with respect to S (represented as B()
in Fig. 1) during the particle transit in the vacuum chamber
is constant, i.e. time-independent.

The authors want to stress that this is not the rigid beam
approximation but only one of its consequences. The time
1 This is not to be confused with the Beam-Beam interaction [9] that does

not consider the beams environment.
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(a) Co-moving case, S and T move in the same direction.
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(b) Counter-moving case, S and T move in opposite direction.

Figure 1: Source (@() and Test (@) ) charge transiting inside a vacuum chamber. The cartoon underlines the instantaneous
I positions of the two charges I@(

(C) and I@)
(C), their speeds E@(

and E@)
, their longitudinal distance B() (C) and the

transverse position of their trajectories with respect to the main reference frame u) and u( . The fixed reference system O,
with origin in the entrance section of the test particle and the ẑ axis aligned with the test particle velocity vector. The length
of the vacuum chamber ! is also indicated.

independence of the relative position of T with respect to S
can be derived from the rigid beam approximation adding the
extra hypothesis that T and S move in the same direction (co-
moving case). The rigid beam approximation, as stated in
this paper, remains valid also if the relative positions between
the particles is changing inside the vacuum chamber. This is
the case for the counter-moving wakefield scenario where the
particle distance B() changes while T and S are traversing
the vacuum chamber, i.e. B() is time dependent (refer to
Fig. 1b).

The physical formal model that describes quantitatively
the e�ects of the wakefield is well known and tested for the
co-moving case. The interested reader can refer for instance
to the work of Chao [2] for more detail. However, this
model relies on the time independence of the longitudinal
test source distance B() .

If one considers the counter-moving case the longitudinal
test source distance B() is not constant any more and the
formal model used for the co-moving case is not applicable
as it is. However, it can be adapted as it is explained in the
following.

Primarily, one notes that there is a time delay between the
entrance in the vacuum chamber of the source charge S and
of the test charge T. This time entrance delay is defined as:

�C() = C) 8 � C(8 , (1)

where C) 8 is the entrance time of the test particle into the
vacuum chamber and C(8 is the entrance time of the source
particle into the vacuum chamber. For the sake of clarity, the
test particle enters into the vacuum chamber when crosses
the Test Entrance Section, while the source particle enters
into the vacuum chamber when crosses the Source Entrance
Section, (see Fig. 2).

One defines also the space entrance delay as the distance
that T has to cover to enter into the vacuum chamber at the
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Figure 2: Counter-moving Wakefield scenario. The cartoon
represents the position of S and T at the time at which the
source is entering into the vacuum chamber, C(8 . The space
entrance delay �B() is also represented, it is the distance
that T has to cover to enter into the vacuum chamber at the
time at which S is entering.
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Figure 3: Representation of the charge distribution &( and
of the test charge @) as a function of their entrance time into
the vacuum chamber C8 . In the picture C3&(8

is the entrance
time of 3&( , the generic infinitesimal charge composing
the distribution &( , C3&(A8

is the entrance time of 3&(A , the
reference infinitesimal charge of the distribution &( . The
entrance time delay of the test charge @) with respect with
this two charges, �C() and �C&()

is also shown.
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time at which S is entering into the vacuum chamber :

�B() = �C() E, (2)

where E is the particles speed. The authors want to stress
that, in the co-moving case the space entrance delay is coin-
cident with the longitudinal distance between T and S and
the concepts of time entrance delay, space entrance delay
and longitudinal particle distance are equivalent. This is not
the case in the counter-moving scenario.

Subsequently, one has to recall the physical meaning of the
wakefunction: the wakefunction represents the integrated
e�ect (change of energy in the longitudinal direction and
change of transverse momentum in the transverse plane) that
the electromagnetic field excited by the transit of the source
charge S in the vacuum chamber has on the test charge T
that enters the vacuum chamber with a time delay �C() with
respect to S.

Thus, the counter-rotating wakefunction is defined as:

w(u) , u( ,�C() ) =
1

@(@)

⇥

π
C)>

C) 8

F(u) , u( ,�C() , C)E3C,
(3)

where, F is the instantaneous Lorentz force acting on T and
C) > is the exit time of the test particle from the vacuum
chamber. The counter-rotating wakefunction w defined by
Eq. 3 is a vector of three components, the component along
the ẑ axis is called longitudinal and the other two transverse.
Further, the definition of wakefunction given by Eq. 3 is
general and can be used for both the co-moving and counter-
moving cases.

From the counter-moving wakefunction one can pass to
the counter-moving wakepotential considering the source as
a charge distribution &( (C) = @(_( (C) composed by slices
of charge 3&( . Each slice of charge can be thought as a
point charge that enters into the vacuum chamber at a time
C3&( 8

and has a di�erent entrance delay with respect to the
test charge. The charge of each slice can be expressed as
3&( (C3&( 8

) = @(_( (C3&( 8
)3C3&( 8

. It is also useful to de-
fine �C&()

, the time entrance delays between the source

distribution &( and the test charge T, as the entrance delay
between the test charge and a reference slice in the distribu-
tion (as for instance the slice with the highest charge). The
space entrance delay between the source distribution &( and
the test charge T, �B&()

, follows from the time entrance
delay as: �B&()

= E�C&()
.

A visualization of these quantities is given in Fig. 3. The
figure represents the sliced charge distribution &( and the
test charge @) as a function of their entrance time into the
vacuum chamber C8 .

Finally, the counter-moving wakepotential is defined as
the convolution between the wakefunction w and the nor-
malized charged distribution _(:

W(u( , u) ,C) 8) =
π

1

�1

_( (C3&( 8
)

⇥ w(u) , u( , C) 8 � C3&( 8
)3C3&( 8

.

(4)

The longitudinal component of Eq. 4 can be used to obtain
an expression of the energy gained or lost by the test particle,
however, this topic will be discussed in future works.

EXAMPLE: PILL-BOX CAVITY
This section gives an example of counter-moving longitu-

dinal wakepotential for the case of a lossless pill-box cavity.
The wakefunction is obtained semi-analytically integrating
the expression of the longitudinal electric field generated
by a short burst disk of electrons emitted by one side of the
cavity that travels towards the other side at a speed E( , refer
to Fig. 4. The wakefunction is subsequently convolved with
a Gaussian bunch distribution to obtain the wakepotential.
This wakepotential is benchmarked against the results of the
PIC solver [16] of the CST studio suite commercial software.

The analytic expression of transient longitudinal
electric field generated by a disk of electrons mov-
ing from one side of a pill-box cavity of radius 0

and length !, and that travels towards the other side
at a speed E( = V(2, was found by Faust [17] as:
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Figure 4: Pill-Box cavity excited by an electron burst emitted
from one of the circular faces, counter-moving case scenario.
Note that in this case the reference frame in which the wake-
function is needed, O, and the reference frame in which Eq.
5 gives the electric field, O0, are not coincident.

where, # is the number of electrons per square meter, �0 (G)
is the Bessel function of order zero, d< are the roots of the
Bessel function �0, �0 (G) is the modified Bessel function of
order zero,* (C) is the unit function, W( = 1� V
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2. Furthermore,
A@)

(C)
0 and I@)

(C)
0 are the generic radial and longitudinal

position of a test particle T in a reference frame O0 with
origin in the electron emission face and ẑ0 oriented in the
direction of motion of the electrons. The electric field ⇢

0
I

given by Eq. 5 is also expressed in the O0 reference frame.
Finally, C is the generic time. Considering the expression
of the electric field in the device as a function of time, it is
possible to compute the counter-moving wakefunction.

The geometry of the problem is drawn in Fig. 4. In
the counter-rotating wakefield case the reference frame in
which the wakefunction is defined, O, is not the same as
that in which the longitudinal electric field of the electron
disk is given by Eq. 5, O0. Indeed O has its origin in the
test entrance section and its ẑ axis points in the direction of
motion of T while O0 has its origin in the source entrance
section and its ẑ0 axis points in the direction of motion of
the electron burst, that is opposite to the one in which T is
moving in the counter-rotating case, refer to Fig. 4. The
quantities in O0 are linked to the quantities in the O by the
following equations:

A
0

@)
= A@)

I
0

@)
= ! � I@)

⇢
0

I
= �⇢I .

(6)

Considering Eq.s 6, the first two equations can be intu-
itively derived looking at Fig. 4, where both reference frame
O and O0 are represented. The third relation is true because
the I axes of the two frames point in opposite directions.
Thus, if ⇢I is positive in one of the frames, O for example,
i.e. ⇢I is directed as the I, it is naturally negative in the
other, O0, i.e. ⇢I is directed against ẑ.

If C = 0 is chosen as the time at which the electron disk
leaves the emitting face, the relation I@)

(C) = EC � �B()
holds as equation of motion of T. Substituting this relation

into Eq.s 6 one has:

A
0

@)
= A@)

I
0

@)
= ! � EC + �B() = ! � EC + E�C()

⇢
0

I
= �⇢I ,

(7)

where, E = E( = E) and Eq. 2 were used.
The counter-moving wakefunction is defined in a refer-

ence frame with the longitudinal axis towards the direction
of motion of T, the O frame in this case. Thus, using Eq.s 7
into the expression of the longitudinal electric field, Eq. 5,
the electric field can be rewritten in the wanted frame (O)
as a function of time and entrance delay.

Once the electric field is know in the O frame, the lon-
gitudinal counter-moving wakefunction can be computed
using Eq. 3. Note that only the electric field play a role in
the Lorentz force along the direction of motion.

To obtain the counter-moving wakefunction one has to
recall that, since C = 0 has been chosen as the time at which
the source electron burst is emitted from the cavity surface,
�C() represents also the time at which T enters into the
pillbox cavity, thus: C) 8 = �C() and C) > = C) 8 +

!

E
. The

last one of the previous relations is true because of the rigid
beam approximation.

This process was repeated to compute also the longitudi-
nal co-moving wakefunction. To do so, Eq. 3 was used and
the longitudinal electric field acting on the test charge was
computed using Eq. 5, considering the following relations in-
stead of the Eq.s 6 and 7: A 0

@)
= A@)

, I0
@)

= I@)
= EC�E�C() ,

⇢I = ⇢
0
I
. These relations hold because in the co-moving

case the reference systems O and O0 are coincident, i.e. they
have the same origin (the electron emission face that is also
the entrance section of T) and their corresponding axis are
oriented in the same way.

The co and counter-moving wakefunctions were numeri-
cally evaluated for the case in which both the electrons and
the test particle are ultra-relativistic, i.e. V( = 1 and E = 2.
As a function of the entrance delays, they are reported in Fig.
5 and their Fourier Transforms, the co and counter-moving
impedance, in absolute values, are reported in Fig. 6.

Unfortunately, the real and imaginary part of the co-
moving and counter-moving impedance were a�ected by
high noise, thus, in this paper, a comparison of the real
and imaginary part of the co-moving and counter-moving
impedance is not reported. This comparison is left for future
work.

To obtain the wakepotential, the wakefunction was numer-
ically convolved with a beam distribution _( . The consid-
ered beam distribution was Gaussian.

To benchmark the validity of the calculations, numerical
simulations were performed. Using the Particle in Cell (PIC)
solver of CST, the excitation of a loss free pillbox (length ! =
0.6 m and radius 0 = 0.1 m) by a burst of electrons emitted
by one of the circular face was simulated. The cavity material
was set to be perfect electric conductor (PEC), so that the
cavity was loss free. The electrons were emitted uniformly
from the face with a Gaussian longitudinal distribution (f1 =
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0.07 m). One bunch of electrons with a total charge of 1 nC
(6.24 · 109 electrons) was emitted. The kinetic energy of the
electrons was set to an ultra-relativistic value (W = 5 · 1010)
to avoid space charge e�ects. The total simulation time was
set to 20 ns, electric field monitors were set to register and
store the value of the longitudinal electric field every 1.5
mm along the whole cavity axis, that is every 5 · 10�3 ns.
The position of the test particle T is known at every time C

as a function of the entrance delay (I@) (C) = EC � �B() =
EC � E�C() ), i.e. fixing an entrance delay �B() or �C() ,
one knows the T longitudinal position I@)

at the time C. If
I@)

at the time C is known, one can obtain the value of the
longitudinal electric field acting on T at the time C from
the fields monitors. If this operation is repeated for every C

one obtains the longitudinal electric field experienced by T
traversing the cavity as a function of time (or equivalently
as a function of its longitudinal position). Integrating this
longitudinal electric field one has the wakepotential value
for the set entrance delay, and repeating the integration for
di�erent entrance delays gives the whole wakepotential.

The counter-rotating wakepotentials as a function of the
entrance delay between &( and T (�B&()

and �C&()
) ob-

tained from the formal model and the CST PIC solver are
reported and compared in Fig. 7. The agreement between
the two methods is excellent.

DISCUSSION
In Fig. 5 the co-moving and counter-moving wakefield

and wakepotential for a pill-box cavity excited by a burst of
electrons were presented and compared.

Further, in Fig. 6, the co-moving and counter-moving
longitudinal impedance are reported.
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Figure 5: Comparison between the co-moving and the
counter-moving wakefunction of a pill box cavity excited
by a burst of electrons emitted by one of the faces. The
wakefunctions have been obtained with the Faust theory.
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Figure 7: Comparison between the counter-moving wake-
potentials of a burst of ultra-relativistic electrons (1 nC or
6.24 · 109 electrons and V( ! 1 or W( = 5 · 1010) traversing
a pill box cavity (length ! = 0.6 m and radius 0 = 0.1 m)
computed by the proposed model (Using the Faust Theory
[17]) and the CST PIC solver [16]. The electrons are emitted
uniformly from one of the circular faces of the cavity. Their
longitudinal distribution is a Gaussian bunch (f1 = 0.07 m).
The cavity material is perfect electric conductor (PEC), loss
free. Test particle speed is E = 2.
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Let us label as transient the interval of time for which the
source particle is inside the cavity, (�B() < 0.6 m for the
discussed example), and as long range interval the period of
time after the transient, i.e. �B() > 0.6 m.

With reference to Fig. 5, co-moving and counter-rotating
wakefunction are di�erent in the transient region, around null
entrance delay between T and S, while for further entrance
delay they seem to be similar but translated. This indicates
that the e�ects of the transient wakefield generated by S is
experienced in a very di�erent way if T moves in the same
(co-moving wake) or in opposite (counter-moving) direction
with respect to S. However, it appears that the e�ects of
the long range wakefield generated by S are quite similar
in both the co-moving and the counter-moving case. This
makes sense since the long range interval is dominated by
the resonant electromagnetic modes trapped in the pill-box,
and the geometry of the mode fields and the mode resonant
frequency is invariant with respect to the direction of the
test particle. This last observation is backed up by the fact
that, co-moving and counter-moving longitudinal impedance
modulus compare very well, refer to Fig. 6, i.e. the resonant
modes have similar e�ects on the test charge T independently
from its propagation direction.

Finally, Fig. 7 compares the counter-moving wakepoten-
tial obtained using the proposed physical model (with the
Faust equations) and the CST PIC solver simulations. There
is an excellent agreement between the results of the proposed
model and the results of the simulations. This can be thought
both as a first benchmark for the proposed model, and for
the CST software.

CONCLUSION
This paper has introduced a physical model to define and

quantify the wakefunction of two particle moving in opposite
directions. The paper has first reviewed the two approxima-
tions on which the co-moving wakefunction definition is
based, and it has been observed that they can be used also in
the counter-moving case. Furthermore, the paper has intro-
duced the concept of space and time entrance delay. Using
them, a coherent physical model to describe the wakefield ef-
fects in the counter-moving case has been developed. It was
also shown that such a model is suitable both for computing
the co-moving wakefield and the counter moving one. An
example of application of this model has been proposed: the
co-moving and counter-moving wakefield of a lossless pill
box cavity has been computed. The results of the method
(the wakepotential) were benchmarked against numerical
simulations results with excellent agreement.

Despite the results showed in the paper are preliminary,
they are really encouraging because they show that the model
can correctly estimate the wakefield e�ects in simple systems
as a pill-box cavity. Future work will develop further this
model, benchmarking it against other literature results and
expanding it to obtain a quantification of the RF-heating
induced by two counter rotating beams circulating in the
same vacuum chamber. The authors strongly believe that the

application of this model could be crucial in the design of
the future high intensity accelerators interaction chambers
and in the design of all the components traversed by two
beams.
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