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Abstract
Stability diagrams allow one to determine whether a sys-

tem is stable due to the presence of incoherent tune spread
in a beam, a phenomenon known as Landau damping. This
paper presents an overview of the mathematical foundations
that underpin stability diagrams. I first describe stability
diagrams as a mapping between two complex planes: the
space of eigenvalues of the underlying Vlasov equation, and
a space which can most easily be described as the product
of beam current and an e�ective impedance. I go on to
describe the circumstances when the Vlasov description of
impedance-driven instabilities can or can not be formulated
to construct a stability diagram. Finally I outline how this
is applied to impedance-driven collective e�ects in particle
accelerators.

INTRODUCTION
Stability diagrams allow one to determine whether a beam

is stabilized by Landau damping by plotting the result of
a relatively simple calculation involving the accelerator
impedance and beam current on the same plane as a curve;
the stability of the beam depends upon which side of the
curve the point lies. The earliest use of stability diagrams
was by Pease [1] for the case of longitudinal stability of un-
bunched beams. Several papers [2–4] expanded up on this
with more examples and including the case of transverse
stability of unbunched beams. Zotter [5] appears to be the
first showing longitudinal bunched beam stability diagrams,
and Chin [6] introduces transverse bunched beam stability
diagrams.

The intention of this paper is to describe some mathemat-
ical foundations for the use of stability diagrams to calculate
the point at which Landau damping is lost. I will describe
the mathematics of the problem in terms of eigenmodes:
complex (in the mathematical sense of “complex numbers”)
distributions of particles that are invariant in all phase space
variables except for the independent variable (for particle
accelerations, often the length along a reference curve, but
time for some applications). The dependence on the inde-
pendent variable is exponential in the independent variable,
with 8 times the coe�cient being the eigenfrequency.

These eigenmodes can be divided into what are known
as incoherent and coherent modes. Incoherent modes have
a continuous spectrum for the eigenfrequency: the number
of modes is uncountable (in the mathematical sense); the
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spectrum is generally a union of intervals on the real line.
Incoherent modes appear even in the absence of collective
interactions. Their frequencies are the single particle fre-
quencies we refer to as tunes, or multiples thereof. They
have a spread in frequencies due to tune shift with ampli-
tude, or chromaticity in the absence of longitudinal focusing.
Their modes are distributions along a single line of constant
action, and constant energy in the absence of longitudinal
focusing.

The coherent modes have a discrete spectrum: there is a
region in the complex plane around any mode in which there
are only a finite number of modes. There are a countable
(in the mathematical sense: the number could be infinite)
number of such modes. These coherent modes are what one
computes when the equations for collective e�ects are solved
in the absence of tune shift with amplitude or chromaticity
caused by the magnetic lattice or potential-well distortion.

In single particle dynamics, there is a phenomenon known
as filamentation which is directly related to Landau damp-
ing. Imagine one starts with a distribution whose shape is
not “matched” with the lines of constant amplitude. When
there is a tune spread in amplitude, particles with di�erent
amplitudes rotate in phase at di�erent rates, leading to a
distribution which is e�ectively uniform in phase, without
any particle actually changing its own amplitude. Simplisti-
cally, Landau damping occurs when the rate at which this
filamentation occurs for the incoherent modes, which have
real eigenvalues and therefore no change in their amplitude,
is greater than the growth rate of the coherent modes.

For collective e�ects in particle accelerators, generally
there is an intensity threshold below which the eigenvalue
equation has no discrete modes: this is the mathematical
manifestation of Landau damping. A stability diagram is a
diagrammatic technique that can, for some restricted cases,
allow one to quickly compute where this threshold lies. For
cases where a stability diagram can be applied to a problem,
one can plot the complex coherent mode frequencies in the
absence of tune spread, or equivalently impedances, in the
complex plane, and in the same plane draw a curve (the
stability diagram); if the frequency lies on the inside the
curve, the mode is said to be stabilized by Landau damping.
In reality it is a statement that there is no such discrete mode.

GENERIC FORMULATION OF
EIGENVALUE EQUATION

The equations describing the evolution of a distribution
including collective e�ects can be Fourier transformed in
the independent variable, and become an eigenvalue equa-
tion where the eigenvalue is the frequency corresponding to
that independent variable. A generic form of the resulting
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eigenvalue equation is

[⌦ � l(G)] 5 (G) = _
π

 (G, Ḡ) 5 (Ḡ) 3Ḡ (1)

For particle accelerators: l can be the tune (in which case
G is an action variable) or an orbit frequency (G will be
the energy); _ will be proportional to the beam current;  
will be proportional to the impedance; and the phase space
distribution will be contained in  . This description is very
simplistic (in particular G can be a vector of variables, and
these can be matrix equations), but su�cient for this initial
discussion.

If l(G) does not depend on G and  is su�ciently well-
behaved, 5 (G), the beam distribution in the frequency do-
main, can be written as a sum of coe�cients times basis
functions. The eigenvalue problem then becomes a linear al-
gebra problem for the coe�cients, with the matrix elements
being integrals of products of  and the basis functions:

(⌦ � l)2< = _
’
=

/<=2= (2)

5 (G) =
’
:

2:⌫: (G) 2: =
π
⇠
⇤

:
(G) 5 (G) 3G (3)

/<= =
π
⇠
⇤

<
(G) (G, Ḡ)⌫= (G) 3G 3Ḡ (4)

A complete basis can be chosen so that the basis functions re-
quired to represent an arbitrary function is countably infinite.
The resulting eigenvalue spectrum is also countably infinite
but discrete. On formulating the linear algebra problem, one
necessarily would take a finite number of basis functions,
but as one increases the number of basis functions, the co-
e�cients of the basis functions already included and their
corresponding eigenvalues are expected to converge.

When l(G) does depend on G, instead one develops a
continuous, and therefore uncountably infinite, set of eigen-
value and eigenvectors for the problem. The eigenvalues
in the continuous spectrum for Eq. (1) are just the range of
l(G), and therefore are real, for values of G where  (G, Ḡ) is
nonzero. The resulting eigenfunctions are not true functions
but “distributions” [7]:

5⇠ (G,⌦) = X
�
G � l

�1
(⌦)

�
+ PV

6(G,⌦)
G � l�1 (⌦)

(5)

6(G,⌦) can be computed by plugging 5⇠ into Eq. (1) if so
desired.

In addition, when l(G) depends on G, there may still be
a discrete eigenvalue spectrum with a countable number of
eigenvalues as well, for which the eigenfunctions are non-
singular ordinary functions. A generic distribution written
in the domain of the independent variable (C here) will be a
combination of the discrete and continuous modes:

5 (G, C) =
π

2(⌦) 5⇠ (G,⌦)4�8⌦C3⌦

+

’
=

2= 5⇡= (G)4
�8⌦=C (6)

For a su�ciently smooth 2(⌦), the moments of 5 (G, C),
which lead to nonzero values on the right hand side of Eq. (1),
that arise from the continuous part of Eq. (6) will decrease
with time. Note that the coe�cients in Eq. (6) are not chang-
ing in amplitude: particle amplitudes are not decreasing,
only the moments that drive collective e�ects are. Any
discrete modes (the second term in Eq. (6)) can still be ex-
ponentially increasing. However, for su�ciently small _,
there may not be any discrete modes: this disappearance of
discrete modes is Landau damping.

GENERIC FORMULATION OF
STABILITY DIAGRAMS

To determine when a system is “Landau damped,” one
needs to find _ for which Eq. (1) has no discrete modes. The
equation itself is not amenable to direct numerical solution
due to the mixture of singular and non-singular modes and
the uncountable eigenvalue spectrum. A stability diagram
is an attempt to avoid this direct numerical simulation while
still finding the _ for which the system has no discrete modes.
5 (G) can be expanded as a series of basis functions and

Eq. (1) can be written similarly to Eqs. (2–4), but with ⌦ �

l(G) moved to the side of the equation with  (G, Ḡ):

2< = _
’
=

 <= (⌦)2= (7)

 <= (⌦) =
π

⇠
⇤
<
(G) (G, Ḡ)⌫= (Ḡ)

⌦ � l(G)
3G 3Ḡ (8)

Consider the properties of the functions  <= (⌦).
| <= (⌦) | ⇠ $ ( |⌦|

�1
) as |⌦| ! 1.  <= (⌦) is defined

everywhere except for the line where ⌦ is in the range
of l(G) for G real and  (G, Ḡ) is nonzero. Thus  <= (⌦)
defines a mapping of the entire complex plane, except for
that line, to a bounded region of the complex plane:

!

The boundary of the region can be found by evaluating
 <= (l(G) ± 8n) for real G and infinitesimal n .

Now consider a simplification of Eq. (7) where the matrix
 <= (⌦) is diagonal. Then the equation becomes

_ = 1/ << (⌦) (9)

The right hand side of Eq. (9) is a mapping of the complex
⌦ plane, except for the line mentioned above, to the complex
plane with a hole in it:

!
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Now consider the definition of  <= (⌦) from Eq. (8), and
assume that l(G) did not depend on G; then

 <= (⌦) =
/<=

⌦ � l
(10)

where /<= is defined in Eq. (4). If  <= (⌦) were diago-
nal, then /<= would be as well, in which case (if l were
constant), the equation for the eigenvalue ⌦0 would be

⌦0 � l = _/<< (11)

Combining Eq. (11) with Eq. (9), we have

⌦0 � l =
/<<

 << (⌦)
(12)

Equation 12 is the general form for any stability diagram,
and indicates how a stability diagram is used. The eigenvalue
equation is first solved without frequency spread (Eq. (11)),
then the di�erence of the eigenvalue from l is plotted in the
same plane as the range of /<=/ <= (⌦). In practice one
plots the boundary /<=/ <= (⌦ ± 8n) for ⌦ real. If ⌦0 � l

is outside the range of /<=/ <= (⌦ ± 8n) (i.e., on the origin
side of the boundary), then such a solution cannot exist as
a discrete mode: it is Landau damped. If ⌦0 � l is within
the range of /<=/ <= (⌦), then its frequency and growth
rate can be determined by solving Eq. (12) for ⌦. Note that
/<=/ <= (⌦) = ⌦ +$ (1) for large ⌦.

If diagonalizing the problem is not acceptable, then one
could start with the eigenvalue problem in Eq. (7), and treat
it as an eigenvalue problem for _�1 for fixed ⌦. One can
plot each eigenvalue as a function of ⌦0 ± 8n for ⌦0 real.
That will give a closed curve for each eigenvalue; the region
outside the closed curves for all of the eigenvalues is the
region corresponding to values of _ that will result in no
discrete eigenvalues for the original problem with ⌦ as the
eigenvalue. _ will be a (possibly complex) constant times the
beam current; taking a line along the appropriate direction
in that region will allow one to determine the maximum
current that is stable from Landau damping.

FORMULATION FOR PARTICLE
ACCELERATORS

Now consider the accelerator problem. Equation (9) will
usually (but not always) take the form

1 = �8⇠
�/e�,m

⇢

π m ·
mk0

mP

⌦ � m · 8(P)
3P (13)

where � is the beam current, ⇢ is the beam energy, /e�,m an
e�ective impedance (the impedance weighted by a function
of frequency), andk0 is a phase space distribution. 8(P) can
be a tune that varies with amplitude or an orbit period that
varies with energy, or both. The phase space distribution is
often Gaussian or a distribution that goes to zero reasonably
smoothly at some number of f [8, 9]. Using distributions
with step truncations (“truncated Gaussian” distributions,

Figure 1: Stability diagrams for longitudinal motion and
an unbunched beam. Di�erent curves are for distributions
smoothly truncated at a certan number of standard deviations,
and a Gaussian distribution.

for instance) should be avoided for these computations, since
one e�ectively picks up a discrete mode at the truncation
(though collimation might make something similar occur).

Using Eq. (13) in Eq. (12), the impedance, current, and
energy all disappear from the right hand side. Thus the sta-
bility diagram only depends on the phase space distribution
k0 and the mode m under consideration.

In the following subsections I outline the common cases
for particle accelerators. These are meant only to summarize
the characteristics of the behavior of these systems. I will
leave out constants that do not serve to illustrate the points
I am making. More detailed discussions are left to other
references. I adopt the conventions of [9] for dimensionless
functions used in constructing stability diagrams (Eqs. 14–17
are derived in detail there).

Longitudinal Impedance, Unbunched Beam
For a longitudinal impedance with no RF, the eigenvalue

equation becomes

1

⌫̄ k

✓
:l0 � l

:l0[2fX

◆ = 8⇠
�

⇢[2f
2

X

/ k (:l0)

:l0

(14)

⌫ k is dimensionless, only depending on the shape (and not
the scale) of the energy distribution in the beam. It’s behavior
di�ers from what was described previously in that 1/⌫ k (G) is
proportional to G2, not G, for large G. Curves of 1/⌫ k (G± 8n)

are plotted in Fig. 1 for both a Gaussian distribution and a
distribution that goes smoothly to zero at 3 and 5 standard
deviations [8, 9]. Note that the curve for 1/⌫ k (G � 8n) lies
on top of the curve for 1/⌫ k (G + 8n); this behavior is unique
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Figure 2: Stability diagrams for transverse motion and an
unbunched beam where frequency spread arises from energy
spread.

to the longitudinal unbunched case. To use this stability
diagram, one plots the right hand side of Eq. (14) in the
plane with the stability diagram; if the right hand side is
inside the curve, then the mode is stable.

The longitudinal diagram gives the known behavior: the
beam is stable for highly inductive impedances for [2 > 0

and for highly capacitive impedance for [2 < 0 due to the
long tail in that direction; the tail is reduced for a more
truncated distribution; and stability is lost when [2 = 0.

Transverse Unbunched, Energy Spread
For a transverse impedance with no RF and a frequency

spread arising from energy spread, the eigenvalue equation
becomes

fX [(:l0 ± l?)[2 ⌥ l?b]

⌫̄?

✓
:l0 ± l? � l

fX [(:l0 ± l?)[2 ⌥ l?b]

◆ =

� 8⇠
�/? (:l0 ± l?)

⇢

(15)

⌫̄? (G) is dimensionless and for large G is approximately
G
�1. Figure 2 shows plots of 1/⌫? (G ± 8n) for the same

distributions as in Fig. 1. The upper curve and lower curves
are for the two signs in G ± 8n . Due to the symmetry of the
impedance (assuming feedback is not included), the right
hand side of Eq. (15) must be between both of the curves
for stability, since even if it on the stable side of both of the
curves for one of the ± signs in Eq. (15), it will be on the
unstable side of both curves for the other sign of ± (and the
negative :) in that equation.

Figure 3: Stability diagrams for transverse motion and an
unbunched beam where frequency spread arises from trans-
verse tune spread. Tune shifts with amplitude are in opposite
directions for the two planes.

Transverse Tune Spread
When variation in transverse amplitude is the dominant

source of frequency spread, the formulations for bunched
and unbunched beams are very similar. This is because it is
the longitudinal motion that creates the distinction between
bunched and unbunched beams, and that longitudinal motion
is e�ectively integrated out.

When there is no RF and the energy spread gives a small
contribution to the frequency spread (for instance when
(:l0 ± l?)[2 ⌥ l?b reaches its smallest value), the tune
shift with transverse amplitude may become the dominant
contribution to the frequency spread. In this case the eigen-
value equation takes the form

l � :l0 � lH

)̄H

✓
l � :l0 � lH

UGH � llGbGnG/2
,

l � :l0 � lH

UGH � llGbGnG/2

◆ =

� 8⇠
�/? (lH + :l0)

⇢

(16)

There should be a ± in various places in this equation, but
that can be generally ignored, at least if there is feedback.
The two arguments to )̄H take into account tune shift with
amplitude in the two horizontal planes. If the tune shift with
amplitude is negative, the tail of the stability diagram will
correspond to an inductive impedance. If the tune shifts with
amplitudes have opposite signs, the stability diagram will
have tails in both directions (Fig. 3). The top and bottom
curves are drawn for the two signs in H/)̄H (G ± 8n , H ± 8n),
and for stability the right hand side needs to be between the
two curves due to the symmetry in the impedance.
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The case of bunched beam with transverse tune spread
is nearly the same as the transverse unbunched case. The
first important di�erence is that an “e�ective impedance” is
used, which is an integral or sum over the impedance times
a weighting function. The weighting function is shifted by a
frequency bl0/[2 , breaking the symmetries mentioned ear-
lier, meaning that we could have damped discrete modes that
do not have corresponding growing discrete modes. The sec-
ond important di�erence is that multiples of the synchrotron
frequency enter in, as well as the amplitude dependence of
those tune shifts, while the chromaticity terms are no longer
present in the arguments to )̄H . The chromaticity terms seen
when there is no RF in Eqs. (15) and (16) are still present
in the bunched case, they manifest themselves in the shift
in frequency in the weight function when computing the
e�ective impedance (and that frequency shift can be seen in
Eq. (15)). The stability diagram is valid for individual modes
for either the single or multi-bunch case. Thus, one solves
the corresponding uncoupled problem for the eigenvalue ⌦,
and plots ⌦ � lH � <lI on the same diagram as

⌦ � lH � <lI

)̄H

✓
⌦ � lH � <lI

UHG + <UIG
,

⌦ � lH � <lI

UHG + <UIG

◆ (17)

evaluated at ⌦ = l + 8n for l real.
With coupling between modes with di�erent <, this for-

mulation can still be used because the integrals only depend
on the distribution and the form of the tune shift with am-
plitude. One does not use a stability diagram: the coupled
nonlinear equations are solved, and Eq. (17) is evaluated at
an arbitrary complex ⌦; since < is di�erent for each mode,
the function must be evaluated at a number of di�erent points.
Chin et al. [6, 10] appear do this.

Longitudinal Tune Spread
Incorporating longitudinal tune spread in a bunched beam

for a calculation for Landau damping presents the largest
challenge for accelerator applications. But doing so is desir-
able since the longitudinal tune shift with amplitude can be
the largest source of tune spread in the system. The challenge
can be seen in the computation of  (⌦). This computation
requires integrals of the form

8>>>>>>>>>>;

[⇠
⇤

<
(P)�Hm · (mk0/mP)⌫< (P

0
)/ (l)

�< (
p

2�IVIl)�< (
p

2�
0
I
VIl)]

⌦ � lH (P) � <lI (P)

3P 3P
0
3l (18)

This is the form for transverse modes, but the form for lon-
gitudinal modes is similar. The problem is the appearance
of l in the argument of the Bessel functions. The integrals
of P and P

0 create a frequency-dependent weight function
that multiplies the impedance. If the tunes in the denomi-
nator depend on �I , then that weighting function depends
on ⌦, and their is not a single stability diagram that can be

drawn. One approach that can be taken is to expand the first
Bessel function form small arguments [5]; unfortunately,
this can get the high-frequency contribution for the e�ective
impedance wrong. Initial experiments indicated that this
approximation is optimistic [8]. Chin et al. [10] approach
the di�culty with an additional summation.

For transverse instabilities, the tails in the stability di-
agrams are lost because modes with opposite signs of <
generally have similar e�ective impedances (at least if the
chromaticity is zero), but the tail of the stability diagram
along the real frequency shift axis is in opposite directions
for the two signs of <, so the resulting stability diagram
has a very reduced area [8]. This problem is not present for
longitudinal impedances.
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