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Abstract
In these proceedings we sketch a general theory for Lan-

dau damping in the transverse plane, in the particular case of
beam-coupling impedance with linear (octupolar) detuning
as the source of tune spread. Using a Hamiltonian formalism
and perturbation theory, we will go beyond the traditional
stability diagram approach to obtain the general non-linear
determinant equation that leads to modes determination.
Limiting cases are studied, and preliminary results of the
full formalism are obtained in an attempt to generalize the
concept of stability diagram.

INTRODUCTION
In particle accelerators and storage rings, the beam can in

principle be a�ected by various mechanisms that can lead
to collective instabilities. Nevertheless, it typically remains
stable thanks to a natural stabilization mechanism originating
from the spread of the particles tune [1]. This phenomenon,
first observed in plasmas, is called Landau damping [2].

When a beam is under the e�ect of a coherent, possibly un-
stable, mode, Landau damping can be understood intuitively
as the de-synchronization of the beam individual particles
from the collective motion, due to the fact that their oscil-
lation frequency (or tune) gets modified, via the spread, as
the amplitude of the unstable mode grows. There are simple
ways to mathematically theorize Landau damping (see e.g.
in Ref. [1]). For instance, in the transverse plane and with a
dipolar beam-coupling impedance as the source of the co-
herent instability, one can simply use Hill equation, with a
collective force depending on the beam average position on
the right hand side of the equation, and integrate the solution
over a continuous distribution of betatron frequencies. Such
a formalism can be very handy to understand quickly the
physics of the phenomenon, but lacks generality, as it is in
particular not able to handle the case when the spread in
frequency is in the same plane as the collective excitation,
unless rather complicated developments are made on top of
the theory [3].

Here we will use phase space distribution functions,
Vlasov equation [4] and linear perturbation theory, to com-
pute coherent modes originating from a beam-coupling dipo-
lar impedance, similarly to what is done in Chao’s book [1],
but adding as additional ingredient a tune spread in the form
of a linear, octupolar detuning. We will derive the com-
plete formalism and get an extension of Sacherer equation,
obtained first by Chin in 1985 [5]. The equation will be
then transformed into a determinant equation, that can be
reduced to the usual stability diagram theory as a limiting
case. Finally, an indirect analysis of the general equation
is performed as an application of the formalism, showing
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that the stability diagram theory can be potentially recovered
also in the general case.

The conventions and notations are identical to those in
Ref. [6], which were inspired from Chao’s book [1].

SACHERER EQUATION WITH LINEAR
AMPLITUDE DETUNING

The system of beam particles is governed by an Hamilto-
nian H split in two parts: the unperturbed Hamiltonian H0
and a first order perturbation �H

H = H0 + �H. (1)

The phase space density is represented by a distribution
function  , also separated into an stationary part  0 (gov-
erned by H0) and a perturbation � :

 =  0 + � . (2)

For a beam of particles, using the coordinates (x, x 0 =
dx

ds
, y, y0 = dy

ds
, z, �) – with s the longitudinal coordinate

along the orbit and � the relative deviation of the longitu-
dinal momentum from that of the synchronous particle, we
consider a lattice without coupling and use the smooth ap-
proximation, including the e�ect of chromaticities (Q0

x
,Q0

y
)

and of linear (octupolar) amplitude detuning:

H0 = !0

⇣
Qx0 +Q0

x
� +

axx

2
Jx +

axy

2
Jy
⌘

Jx

+ !0

⇣
Qy0 +Q0

y
� +

axy

2
Jx +

ayy
2

Jy
⌘

Jy � !sJz, (3)

with Qx0 and Qy0 the unperturbed transverse tunes, !0 the
angular revolution frequency, !s = Qs!0 the angular syn-
chrotron frequency, and the actions (Jx, Jy, Jz) defined by

Jx =
1
2

✓
Qx0

R
x2 +

R
Qx0

x 02
◆
, (4)

Jy =
1
2

✓
Qy0

R
y2 +

R
Qy0

y02
◆
, (5)

Jz =
1
2

✓
!s

v⌘
z2 +

v⌘

!s

�2
◆
, (6)

with R the machine physical radius, v the beam velocity and
⌘ = ↵p �

1
�2 the slippage factor. The corresponding angle

variables are given by

✓x = atan
✓

Rx 0

Qx0x

◆
, (7)

✓y = atan
✓

Ry0

Qy0y

◆
, (8)

� = atan
✓
v⌘�

!sz

◆
. (9)
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In the case of octupoles distributed all around the ring,
the amplitude detuning coe�cients are given by [7]

axx =
3

8⇡

π 2⇡R

0
ds�2

x
(s)

O3(s)
p0
e

,

ayy =
3

8⇡

π 2⇡R

0
ds�2

y
(s)

O3(s)
p0
e

,

axy = �
3

4⇡

π 2⇡R

0
ds�x(s)�y(s)

O3(s)
p0
e

, (10)

with (�x, �y) the beta functions, e the elementary charge,
O3 ⌘

1
6
@3

By

@x3 the octupolar strength in T.m�3 and p0 the
longitudinal momentum of the synchronous particle.

The stationary distribution, solution of Vlasov equa-
tion [4] for the unperturbed Hamiltonian, is in general a
function of the invariants of motion. Since the Hamiltonian
does not depend on the angles ✓x and ✓y , Jx and Jy are
invariants of motion. On the other hand, H0 depends on
� through the chromatic term, but this dependency being
much weaker than the main longitudinal motion (given by
the term �!sJz), the standard approximation is to neglect
it [1, chap. 6], which is equivalent to the assumption

@H0
@�

⇡ 0, (11)

(see Ref. [6] for more details). Moreover, one can neglect
the weak coupling induced by both the indirect amplitude
detuning and the chromaticities, such that it is reasonable
to assume that the stationary distribution can be written by
separating all three degrees of freedom:

 0(x, x 0, y, y0, z, �) = N fx0(Jx) fy0(Jy)g0(Jz), (12)

with N the total number of particles in the full phase space.
The normalization conditions are chosen as:π +1

0
dJx fx0 (Jx) =

1
2⇡
,

π +1

0
dJy fy0

�
Jy
�
=

1
2⇡
,

π +1

0
dJz g0 (Jz) =

1
2⇡
. (13)

The perturbative part of the Hamiltonian�H is assumed to
be responsible for a collective, z-dependent, vertical dipolar
force Fcoh

y
, e.g. to be of the form [6]

�H = �
yFcoh

y
(z; t)

p0
= �

s
2JyR
Qy0

cos ✓y
Fcoh

y
(z; t)

p0
, (14)

using

y =

s
2JyR
Qy0

cos ✓y . (15)

Having defined H0, �H and  0, we want to obtain now at
first order the perturbation of the distribution � . Our start-
ing point will be the linearized Vlasov equation expressed

with Poisson brackets [8]:

@� 

@t
+ [� ,H0] + [ 0,�H] = 0, (16)

with the definition (using action-angle variables as expressed
above):

[F ,G] =
@F

@Jx
@G

@✓x
�
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@✓x

@G
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+
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@✓y
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�
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@�
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, (17)

for two di�erentiable functions F and G. We refer the reader
to Ref. [9] for more details on classical Hamiltonian me-
chanics, and to Refs. [10–12] for a detailed description of
Hamiltonian dynamics in the case of single particle beam
physics. Vlasov equation applied to a distribution of beam
particles, in the context of linear perturbation theory, is thor-
oughly explained in Ref. [1, chap. 6]. A short primer on both
Hamiltonian and Vlasov aspects can be found in Ref. [6].

Neglecting as above @H0
@� , we can write

[� ,H0] ⇡ �
@� 

@✓x

@H0
@Jx

�
@� 

@✓y

@H0
@Jy

�
@� 

@�

@H0
@Jz

⇡ �!0Qx

@� 

@✓x
� !0Qy

@� 

@✓y
+ !s

@� 

@�
, (18)

with

Qx = Qx0 +Q0

x
� + axx Jx + axy Jy, (19)

Qy = Qy0 +Q0

y
� + axy Jx + ayy Jy . (20)

The other Poisson brackets is given by (using the fact that
�H does not depend on ✓x and that  0 does not depend on
any of the angles)

[ 0,�H] = N fx0(Jx)
✓

dfy0

dJy
g0(Jz)

@�H
@✓y

+ fy0(Jy)
dg0
dJz

@�H
@�

◆

= N fx0(Jx)
dfy0

dJy
g0(Jz)

s
2JyR
Qy0

sin ✓y
Fcoh

y
(z; t)

p0

+ N fx0(Jx) fy0(Jy)
dg0
dJz

@�H
@z

@z
@�

⇡ N fx0(Jx)
dfy0

dJy
g0(Jz)

s
2JyR
Qy0

sin ✓y
Fcoh

y
(z; t)

p0
.

(21)

In the above we have neglected @�H
@z . This is a standard

approximation, made in Ref. [1, chap. 6], which has its
grounds in the general idea that we neglect any e�ect of the
transverse coherent force on the longitudinal motion. This
should be valid as long as one remains far from low-order
synchro-betatron resonances Qy0 + lQs = n (and provided
the transverse beam size is small enough).
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The linearized Vlasov equation (16) then takes the form

@� 

@t
�
@� 

@✓x
!0Qx �

@� 

@✓y
!0Qy +

@� 

@�
!s

+ N fx0(Jx)
dfy0

dJy
g0 (Jz)

s
2JyR
Qy0

sin ✓y
Fcoh

y
(z; t)

p0
= 0.

(22)

For convenience we switch to the r coordinate instead of
Jz , as in Ref. [1, chap. 6]:

r =

s
2Jzv⌘
!s

, z = r cos �, � =
!s

v⌘
r sin �. (23)

Then we express the perturbation assuming a single co-
herent mode of complex angular frequency ⌦ = Qc!0, and
decompose it using Fourier series for all three angles, in a
completely general way:

� 
�
Jx, ✓x, Jy, ✓y, r, �; t

�
= e j⌦t

+1’
m=�1

e jm✓x
+1’

p=�1

e jp✓y

⇥ e�
j(mQ0

x+pQ0
y)r cos �

⌘R

+1’
l=�1

e�jl�hm,p,l �Jx, Jy, r � , (24)

where we have introduced, without loss of generality, the
head-tail phase factor

e�
j(mQ0

x+pQ0
y)r cos �

⌘R ,

similarly to what is done in Ref [1, chap. 6]. This phase
factor is a convenience introduced to simplify the equation,
as we will see below. To proceed further, we again assume
that the dependency between the longitudinal and transverse
actions is separable, in other words that

hm,p,l �Jx, Jy, r � = f m,p,l �Jx, Jy � Rl(r). (25)

Now we expand the linearized Vlasov equation from
Eq. (22) as

e j⌦t
+1’

m=�1

+1’
p=�1

+1’
l=�1

e jm✓x e jp✓y e�jl�e�
j(mQ0

x+pQ0
y)r cos �

⌘R ⇥

2666664
jQc � jmQx � jpQy � jlQs +

j!s

⇣
mQ0

x
+ pQ0

y

⌘
r sin �

⌘v

3777775
⇥ !0 f m,p,l �Jx, Jy � Rl(r) = �N fx0(Jx)

dfy0

dJy
g0 (Jz)

⇥

s
2JyR
Qy0

e j✓y � e�j✓y

2 j
Fcoh

y
(z; t)

p0
, (26)

where we have used the identity !0 =
v

R
. In the above, the

expression within square brackets can be simplified further

since the chromatic terms in Eqs. (19) and (20) cancel out
with the term

j!s

⇣
mQ0

x
+ pQ0

y

⌘
r sin �

⌘v
= j

⇣
mQ0

x
+ pQ0

y

⌘
�,

using Eq. (23) – this is the reason why we introduced the
head-tail phase factor in the first place. Then, comparing
the expressions in ✓x and ✓y on both sides of the equation,
term by term identification in the Fourier series gives:

f m,p,l �Jx, Jy � = 0 for any m , 0 and any p , ±1. (27)

Equation (26) thus becomes

e j⌦t
’
p=±1

+1’
l=�1

e jp✓y e�jl�e�
j pQ0

y r cos �
⌘R ⇥

j
⇥
Qc � p

�
Qy0 + axy Jx + ayy Jy

�
� lQs

⇤
⇥ !0 f 0,p,l �Jx, Jy � Rl(r) = �N fx0(Jx)

dfy0
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g0 (Jz)

⇥

s
2JyR
Qy0

e j✓y � e�j✓y

2 j
Fcoh

y
(z; t)

p0
. (28)

Now we make the standard assumption that Qc ⇡ Qy0
such that

��Qc +
�
Qy0 + axy Jx + ayy Jy

�
� lQs

�� >>��Qc �
�
Qy0 + axy Jx + ayy Jy

�
� lQs

�� .
This means that the term for p = �1 can be neglected as

well as e�j✓y on the right-hand side [1, chap. 6], and we end
up with (after simplification by e j✓y )

e j⌦te�
jQ0

y r cos �
⌘R

+1’
l=�1

e�jl� f 0,1,l �Jx, Jy � Rl(r)

⇥ !0
⇥
Qc �

�
Qy0 + axy Jx + ayy Jy

�
� lQs

⇤

= N fx0(Jx)
dfy0

dJy
g0 (Jz)

s
2JyR
Qy0

Fcoh

y
(z; t)

2p0
. (29)

Renaming f 0,1,l
⌘ f l , and re-arranging to put all terms

in Jx and Jy on the left-hand side, we get

!0
N

+1’
l=�1

e�jl�Rl(r)

⇥

8>>><
>>>:

f l
�
Jx, Jy

� ⇥
Qc �

�
Qy0 + axy Jx + ayy Jy

�
� lQs

⇤
fx0(Jx)

d fy0
dJy

q
2JyR
Qy0

9>>>=
>>>;

= e�j⌦te
jQ0

y r cos �
⌘R g0 (Jz)

Fcoh

y
(z; t)

2p0
. (30)

If we take the derivative with respect to Jx , the right-hand
side goes to zero, which means that for any l the term be-
tween curly brackets in the left-hand side must be a constant
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with respect to Jx . The same goes if we take instead the
derivative with respect to Jy . Hence

f l
�
Jx, Jy

�
/

fx0(Jx)
d fy0
dJy

q
2JyR
Qy0

Qc �
�
Qy0 + axy Jx + ayy Jy

�
� lQs

. (31)

The proportionality constant may be included in Rl(r)
– thus we can write the above as an equality rather than a
proportionality relation. We can finally write the full pertur-
bation to the distribution as

� 
�
Jx, ✓x, Jy, ✓y, r, �; t

�
= e j⌦te j✓y e�

jQ0
y r cos �
⌘R

⇥

+1’
l=�1

Rl(r)e�jl�
fx0(Jx)

d fy0
dJy

q
2JyR
Qy0

Qc �
�
Qy0 + axy Jx + ayy Jy

�
� lQs

.

(32)

Up to now, the only assumptions on the coherent force
considered were that it is vertical, dipolar and z-dependent.
To proceed further, we will take the specific case of an
impedance distributed along the ring, i.e. given by [6]

Fcoh

y
(z; t) =

q2

2⇡R

+1’
k=�1

∫
dz̃d�̃Wy(z̃ + 2⇡kR � z)

·

I

dJ̃xd✓̃xdJ̃yd✓̃y� 
✓
J̃x, ✓̃x, J̃y, ✓̃y, r̃, �̃; t � k

2⇡R
v

◆
ỹ,

with q = Ze the charge of each particle, Wy(z) the wake
function, and where the infinite sum stands for the multiturn
e�ect (i.e. the fact that the wake does not decay completely
after one or several turns). Only the perturbed distribution
� enters the expression above as the stationary distribution
is assumed to be perfectly centred and hence not giving rise
to any dipolar force. Plugging Eqs. (15) and (32) into the
above we get

Fcoh

y
(z; t) =

q2

⇡Qy0

+1’
k=�1

e j⌦(t�k 2⇡R
v )

∫
dz̃d�̃

· Wy(z̃ + 2⇡kR � z)
∫

d✓̃xd✓̃ye j ✓̃y cos ✓̃ye�
jQ0

y r̃ cos �̃
⌘R

+1’
l0=�1

Rl0(r̃)e�jl
0�̃

∫ dJ̃xdJ̃y · J̃y · fx0
�
J̃x
�
·
d fy0
dJy

�
J̃y
�

Qc �
�
Qy0 + axy J̃x + ayy J̃y

�
� l 0Qs

.

This can be further simplified thanks to

∫
dz̃d�̃ =

!s

v⌘

∫
r̃dr̃d�̃ =

Qs

⌘R

∫
r̃dr̃d�̃,

π 2⇡

0
d✓̃x = 2⇡,

π 2⇡

0
d✓̃ye j ✓̃y cos ✓̃y = ⇡,

and defining the dispersion integral I(Qc � lQs) using1

I(Q) =

∫ dJxdJy · Jy · fx0 (Jx) ·
d fy0
dJy

Q �
�
Qy0 + axy Jx + ayy Jy

� , (33)

such that we get

Fcoh

y
(z; t) =

2⇡q2Qs

⌘RQy0

+1’
k=�1

e j⌦(t�k 2⇡R
v )

·

∫
r̃ dr̃ d�̃Wy(r̃ cos �̃ + 2⇡kR � r cos �) · e�

jQ0
y r̃ cos �̃
⌘R

·

+1’
l0=�1

Rl0(r̃)e�jl
0�̃
I(Qc � l 0Qs). (34)

Note that analytical expressions exist for the dispersion in-
tegral expressed in Eq. (33), for various kinds of unperturbed
distributions, e.g. Gaussian or parabolic [14, 15].

We can now plug Eq. (34) into Eq. (30), using also Eq. (31)
(taken as an equality) and recalling that !0 =

v

R
, to get

+1’
l0=�1

e�jl
0�Rl0(r) =

N⇡q2Qs

⌘vQy0p0
e

jQ0
y r cos �
⌘R g0 (Jz)

⇥

+1’
k=�1

e�j2⇡kQc

∫
r̃ dr̃ d�̃Wy(r̃ cos �̃ + 2⇡kR � r cos �)

⇥ e�
jQ0

y r̃ cos �̃
⌘R

+1’
l0=�1

Rl0(r̃)e�jl
0�̃
I(Qc � l 0Qs). (35)

Multiplying each side of the equation by e
j l�

2⇡ , integrating
over �, and considering g0 as a function of r , we can write:

Rl(r) =
Nq2Qsg0(r)
2⌘vQy0p0

π 2⇡

0
d�e jl�e

jQ0
y r cos �
⌘R

+1’
k=�1

e�j2⇡kQc

⇥

∫
r̃ dr̃ d�̃Wy(r̃ cos �̃ + 2⇡kR � r cos �) · e�

jQ0
y r̃ cos �̃
⌘R

⇥

+1’
l0=�1

Rl0(r̃)e�jl
0�̃
I(Qc � l 0Qs). (36)

This is an extension of Sacherer integral equation, ex-
pressed with the wake function and including tune spread.
Formally, this is an equation in Qc – the coherent complex
tune shift looked for – and in the unknown functions Rl(r).

The equation can also be expressed with the impedance
Zy(!) instead of the wake function [1, chap. 6], using the

1 Compared to the definition used in the code DELPHI [13], there is an
additional factor 1

4⇡2 due to the normalization chosen in Eqs. (13), i.e.

I
DELPHI

(Q) = 4⇡2
I

here
(Q).
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relation (see Ref [6] for a mathematical derivation):

+1’
k=�1

e�j2⇡kQcWy(r̃ cos �̃ + 2⇡kR � r cos �) ⇡

� j!0
2⇡

+1’
k=�1

Zy

⇥ �
Qy0 + k

�
!0

⇤
e j(Qy0+k)

r̃ cos �̃�r cos �
R , (37)

where we have used again Qc ⇡ Qy0. This gives

Rl(r) =
� jNq2Qsg0(r)

4⇡⌘RQy0p0

π 2⇡

0
d�e jl�e

jQ0
y r cos �
⌘R

⇥

+1’
k=�1

e
� j(Qy0+k)r cos �

R Zy

⇥ �
Qy0 + k

�
!0

⇤

⇥

∫
r̃ dr̃ d�̃ e

j(Qy0+k)r̃ cos �̃
R · e�

jQ0
y r̃ cos �̃
⌘R

⇥

+1’
l0=�1

Rl0(r̃)e�jl
0�̃
I(Qc � l 0Qs), (38)

which we can further simplify using
π 2⇡

0
d�̃e�jl�̃e j� cos �̃ = 2⇡ jl Jl (�) for any �, (39)

from Eq. (9.1.21) of Ref. [16], Jl being the Bessel function
of order l. This gives another version of Sacherer equation,
expressed now with the impedance:

Rl(r) =
� jN⇡q2Qsg0 (r)

⌘RQy0p0

+1’
k=�1

Jl
✓

Qy0 + k �
Q0

y

⌘

◆
r
R

�

⇥ Zy

⇥ �
Qy0 + k

�
!0

⇤ +1’
l0=�1

jl
0
�l
I(Qc � l 0Qs)

⇥

π +1

0
r̃dr̃Rl0(r̃)Jl0

✓
Qy0 + k �

Q0
y

⌘

◆
r̃
R

�
. (40)

A similar equation was obtained by Chin [5], with one-
dimensional transverse tune spread. In the absence of
tunespread, this reduces to the standard Sacherer equa-
tion [1, 6, 17, 18]2, if we put the coe�cients I(Qc � lQs)

into the unknown functions Rl(r) and notice that I(Q) =
�1/

�
4⇡2

(Q � Qy0)
�

(see below).

SOLVING THE EQUATION
One strategy to solve the equation is first to replace the

unknown functions Rl(r) thanks to

⇢l(r) ⌘ I(Qc � lQs)Rl(r).

2 Note that in the impedance term of Eq. (11) in Ref. [18], the signs of the
expressions between brackets in the Bessel functions have been incorrectly
inverted: one should read (!p �!⇠ )⌧ instead of (!⇠ �!p )⌧. Moreover,
the constant factor on the right-hand side of the equation depends on the
normalization conditions chosen for each of the unperturbed functions
fx0, fy0 and g0, which is arbitrary (only the normalization of  0 is fixed).

This gives

⇢l(r)
I (Qc � lQs)

=
� jN⇡q2Qsg0 (r)

⌘RQy0p0
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�
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◆
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R

�
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(41)

Then, one can expand ⇢l(r) and g0(r) over generalized
Laguerre polynomials L↵

n
, as in Refs. [5, 18], i.e.

⇢l(r) =
⇣ r

A

⌘ |l |
e�br

2
+1’
n=0

clnL |l |

n (ar2
), (42)

g0(r) =
⌘R
Qs

e�br
2
+1’
m=0

gmL0
m
(ar2

), (43)

where A , a and b are arbitrary constants that will be speci-
fied later. Note that the change of variable Jz ! r introduces
an additional factor ⌘R

Qs
in the normalization condition of

g0 expressed as an integral over r (see Eqs. (13) and (23)),
hence the proportionality constant in front of the expression
for g0(r). Using the orthogonality relations of the general-
ized Laguerre polynomials [16, chap. 22], the cln and gm

coe�cients can be expressed as

cln =
2a1+ |l | A2 |l |n!
(n + |l |)!

π +1

0
rdr

⇣ r
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⌘ |l |
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(44)

gm = 2a
π +1

0
rdre(b�a)r

2
L0
m
(ar2

)g0(r). (45)

Note that any longitudinal distribution g0(r) can be dealt
with in this way, generalizing the approach of Chin [5,19,20].
Multiplying both sides of Eq. (41) by

2a1+ |l | A2 |l | n!
(n + |l |)!

r
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2
L |l |
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),

and integrating from r = 0 to r = +1 we get
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Now we expand g0(r) and ⇢l0(r) using Eqs. (42) and (43),
obtaining
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(47)

The two integrals above can be computed analytically
using two formulas obtained from Hankel transforms [21,
pp. 42-43]3(using also Eq. (9.1.5) from Ref. [16, p. 358]):
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(48)
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valid for any a > 0, b > 0 and �. Defining then
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3 To obtain Eq. (48), we have corrected a typo in Ref [21, p. 43], Eq. (8):
the two lower indices of the Laguerre polynomials on the right-hand side
were inverted.

and

Iln(�) ⌘ A� |l |

+1π
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(taking the expression to its limit when a = b), Sacherer
equation finally becomes

0 =
+1’

l0=�1

+1’
n0=0

✓
�ll0�nn0

I (Qc � l 0Qs)
+Mln,l0n0

◆
cl0n0, (51)

with the matrix M defined by

Mln,l0n0 =
j1+l0�l⇡Nq2 n!

Qy0p0 2 |l | (n + |l |)!
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. (52)

In the DELPHI code [13, 18], for an initially Gaussian
longitudinal distribution, b = 1

2�2
z

(with �z the RMS bunch
length) and all gm are zero except g0 = b

⇡ to respect the
normalization condition in Eqs. (13). Then the choices a = b
and A = 4�z were found to optimize convergence with
respect to the matrix size in the case without tunespread (see
next section)4.

Non-trivial solutions of Eq. (51) are found if and only if

det
✓ 

�ll0�nn0

I (Qc � l 0Qs)
+Mln,l0n0

� ◆
= 0. (53)

This equation in Qc generalizes the similar determinant
equation obtained in Ref. [5] to the case of a two-dimensional
tune spread and any longitudinal distribution. Mathemati-
cally, it is a transcendental equation, because the dispersion
integral is non-polynomial in general, hence there is a priori
no general strategy to find all possible roots.

As a final remark, one can easily add two extensions to
this formalism, both implemented in the DELPHI code:

• if the beam is made of M > 1 equidistant bunches, and
assuming the intrabunch motion in all the bunches is
identical (only the phase of the oscillation may di�er
from one bunch to another), the equation obtained is

4 In Ref. [18], the functions Gln and Iln were chosen slightly di�erently:

G
Ref. [18]
ln

(!) = v
2⌧�|l |

b
G

here
ln

⇣!
v

⌘
and I

Ref. [18]
ln

(!) = v
�2⌧ |l |

b
I

here
ln

⇣!
v

⌘
,

with ⌧b =
4�z
v . The matrix M of Ref. [18] is also multiplied by !0

4⇡2
with respect to the one written in Eq. (52): the !0 factor is because in
Ref. [18] the problem is expressed in terms of angular frequency shifts
rather than tune shifts, while the 1

4⇡2 factor gets compensated by the
same factor in I(Q) here.
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still of the form (51) but with a slightly modified matrix
M: one has to multiply the matrix given in Eq. (52) by
M and replace [22]

Qy0 + k,

by
[Qy0] + kM + p,

in all the terms of the infinite sum over k, where [·]

indicates the fractional part and 0  p  M � 1 is the
coupled-bunch mode considered (one has to solve the
problem for each coupled-bunch mode, in principle),

• an ideal, bunch-by-bunch transverse damper can be
added by considering it as an impedance proportional
to a delta function and replacing the infinite sum over
k in Eq. (52) by an integral. This gives a matrix D that
can be added to M above, of the form

Dln,l0n0 =
j1+l0�lN⇡q2 n!

Qy0p0 2 |l | (n + |l |)!

⇥ µGln

✓
�

Q0
y

⌘R

◆
Il0n0

✓
�

Q0
y

⌘R

◆
, (54)

with µ a constant adjusted, in the case without tune-
spread (see next section), in such a way as to damp the
rigid-bunch mode in nd turns, with a damping phase '
(the origin ' = 0 being chosen as the perfectly resistive
damper). This means that one chooses µ such that (see
also the first limiting case below) [18]

1
4⇡2 D00,00 =

je j'

2⇡nd
.

LIMITING CASES
One can find two well-known limiting cases to the deter-

minant equation (53). First, in the absence of tune spread,
axy = ayy = 0 and

I(Q) = �
1

4⇡2(Q � Qy0)
, (55)

from the normalization conditions in Eqs. (13). This means
that Eq. (51) becomes

�
Qc � Qy0

�
cn
l
=

+1’
l0=�1

+1’
n0=0

✓
l 0Qs�ll0�nn0 +

1
4⇡2Mln,l0n0

◆
cn

0

l0
,

(56)
which is the usual eigenvalue problem in the absence of tune
spread [1, 18]. The coherent tune shifts looked for can then
be obtained through a diagonalization.

Another limiting case appears in the absence of coupling
between di�erent modes, i.e. when all non-diagonal terms
are zero in the matrix M. Then the determinant equation
becomes

det
✓ 
�ll0�nn0

✓
1

I(Qc � l 0Qs)
+Mln,l0n0

◆� ◆

=

+1÷
l=�1

+1÷
n=0

✓
1

I(Qc � lQs)
+Mln,ln

◆
= 0, (57)

(as the matrix is now diagonal), which means that we get a
set of equations of the form (for each l and n):

� 1 =Mln,ln ⇥ I(Qc � lQs), (58)

which gives one possible coherent tune Qc for each (l, n).
We hence can consider separately the coherent tune shift
and the dispersion integral, in other words we recover the
stability diagram theory [23, 24].

RESULTS
Notwithstanding the di�culty to find all the roots of the

general determinant equation (53), we can try to get a gener-
alization of the concept of stability diagram. To do so, we
simply compute the determinant along lines of constant real
tune shift <(Qc) � Qy0 in the absence of imaginary tune
shift (=(Qc) = 0), and get the one-dimensional minimum
along such curves. At the exact location of the stability dia-
gram (if it exists), this minimum should get to zero. This is
illustrated in Fig. 1, in a case with only a transverse damper
that is set in antidamper mode [25] i.e. with a phase above
⇡/2 in order to create instabilities.

Doing this exercise for a set of configurations that span a
large portion of the complex plane of possible unperturbed
coherent tune shifts (i.e. tune shifts in the absence of tune
spread) thus allows us to find a (potential) stability diagram
by plotting as a color the minimum of such 1D curves. The
way to find a set of configurations that span a large part
of the complex plane is to use an ideal (bunch-by-bunch)
damper with arbitrary phase and gain [25]. The unperturbed
tune shifts that serve as abscissa and ordinate of the plot,
are obtained by diagonalization of the eigenvalue problem
in Eq. (56), using routines from the DELPHI [18] code
with LHC-like parameters, in the absence of impedance (see
Table 1 for details).

In Fig. 2 we show the result of this exercise, in a case
where the chromaticity is zero. Looking at the brightest
region (which represents the closest to zero minima of the
aforementioned 1D curves), we clearly recover the standard
stability diagram as obtained in e.g. [14]. On the other
hand, for Q0 = 5 we see in Fig. 3 that one deviates from the
usual stability diagram for an unperturbed tune shift close
to Qs. Note, still, that one cannot really tell at this stage
if the brightest region really represents a stability diagram,
i.e. that it delimits the boundary between the unstable and
the stable region of unperturbed tune shifts – this is under
investigation.

CONCLUSION
We have derived an extension of Sacherer integral equa-

tion in the case of two-dimensional transverse tune spread,
generalizing several approaches in the literature. This al-
lowed us to obtain both the usual eigenvalue problem and
the stability diagram theory as limiting cases. The final de-
terminant equation turns out to be very challenging to solve
in general; still, preliminary results were obtained, in an
attempt to generalize the concept of stability diagram.
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Figure 1: (Top) Unperturbed modes (color dots) for an ideal
bunch-by-bunch damper at di�erent transverse damper gains,
at a given phase (here a phase of zero means a perfectly
resistive damper, and phase of ⇡ is a perfectly resistive anti-
damper), at Q0 = 0. The standard stability diagram for a
Gaussian transverse distribution is also shown (black curve).
(Bottom) Determinant of Eq. (53) plotted vs. real tune shift
(for an imaginary tune shift of zero).
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