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Abstract
Landau damping is a powerful mechanism to suppress

impedance-driven coherent instabilities in circular acceler-
ators. In the transverse planes it is usually introduced by
means of magnetic octupoles. We will discuss a method to
generate the required incoherent betatron frequency spread
through detuning with the longitudinal rather than the trans-
verse amplitudes. The approach is motivated mainly by
the high-brightness, low transverse emittance beams in fu-
ture colliders where detuning with the transverse amplitudes
from magnetic octupoles becomes significantly less e�ective.
Two equivalent methods are under study: a radio-frequency
quadrupole cavity and the nonlinear chromaticity. The un-
derlying beam dynamics mechanisms are explained based
on a recently extended Vlasov theory and relevant results
are discussed for di�erent longitudinal beam distributions
under specific approximations. Finally, the analytical studies
are benchmarked against numerical simulations employing
a circulant matrix and a macroparticle tracking model.

INTRODUCTION
The use of radio frequency (rf) quadrupole cavities against

coherent beam instabilities has first been discussed in [1, 2]
to suppress coupled-bunch modes, and later in [3,4] to raise
the intensity threshold of the transverse mode-coupling in-
stability (TMCI). Here, rf quadrupoles are considered to
provide Landau damping of weak single-bunch head-tail
modes [5–7]. Detailed theoretical, experimental, and simu-
lation studies of the latter have been reported in [8–12] and
a summary of relevant extracts thereof is given here.

The purpose of the rf quadrupole for Landau damping is to
generate transverse quadrupolar kicks on the beam particles
with a strength that depends on their longitudinal coordi-
nate. Every particle feels a di�erent focusing (defocussing)
force as it passes through the device and hence experiences
a change in its betatron frequencies depending on its longitu-
dinal position within the bunch. The result is an incoherent
betatron frequency spread which leads to Landau damping
in the transverse planes. Other than for magnetic octupoles,
the frequency spread from an rf quadrupole is dependent on
the longitudinal amplitude spread within the bunch [7, 8].
It can be shown that nonlinear chromaticity can introduce
an equivalent longitudinal amplitude dependent frequency
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spread (see e.g. [10]). This result will be used here to discuss
the analytical studies.

Thanks to the orders of magnitude larger spread in the
longitudinal compared to the transverse amplitudes of the
beams in future hadron colliders, a longitudinal amplitude-
dependent frequency spread can be produced very e�ciently
compared to magnetic octupoles. The di�erences are partic-
ularly important at increased beam energies and for reduced
transverse emittances. In addition, the amount of frequency
spread remains una�ected by beam manipulations in the
transverse planes, such as beam halo cleaning through colli-
mation, for example. Recently, it has also been demonstrated
that transverse linear coupling can strongly reduce the inco-
herent betatron frequency distributions generated through
detuning with the transverse amplitudes [13]. This can lead
to a loss of Landau damping and requires an accurate cor-
rection of the linear coupling in future machines [14]. The
shape and amount of frequency spread introduced through
detuning with the longitudinal amplitude, on the other hand,
is not a�ected by linear coupling [15]. It is hence expected
that there is no loss of Landau damping in that case. Another
e�ect that is currently under detailed investigation is trans-
verse noise that can locally significantly reduce the stability
diagrams generated by magnetic octupoles and hence lead
to a loss of Landau damping [16]. It is believed that this
e�ect will not be present for rf quadrupoles or nonlinear
chromaticity thanks to the separation of the longitudinal am-
plitude space and the transverse planes where the frequency
spread is created.

THEORY
Berg and Ruggiero developed the basic formalism for

longitudinal amplitude dependent Landau damping in [17].
They also demonstrated that it di�ers to some extent from
Landau damping introduced by octupole magnets. The the-
ory has been further developed and thoroughly analyzed
in [9]. Only the key equations and a summary of their inter-
pretations are presented here.

The goal is to extend the existing Vlasov formalism by
introducing a general variation �lV (X) of the betatron fre-
quency with arbitrary orders of chromaticity b (=)
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<’
==1

b
(=)

=!
X
=

, (1)

Proceedings of the ICFA mini-Workshop, MCBI 2019, Zermatt, Switzerland

60



with
b
(=) =

1
lV,0

m
=
lV

mX
=

����
X=0

, (2)

lV,0 the zero-amplitude betatron frequency, and X the rela-
tive momentum deviation. One may, analogously, introduce
a general variation of the betatron frequency with the lon-
gitudinal position �lV (I) to describe the frequency spread
from an rf quadrupole. The two approaches eventually lead
to the same results. Here, we assume that the frequency
spread is produced by nonlinear chromaticity.

Following the path laid out by Chao in [6], but using
the general dependence of �lV on b (=) , one can derive an
eigenvalue equation (details in [9])
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 is a constant, /? the dipolar impedance function, 60
the longitudinal particle distribution, l0 the revolution fre-
quency, lB the synchrotron frequency, ⌦(;) the complex
coherent frequency of the ; th azimuthal mode, (A, q) are po-
lar coordinates in longitudinal phase space, and '; the radial
beam modes. The �:

;
functions can be perceived as gener-

alized Bessel functions. They reduce to Bessel functions
of the first kind for a purely linear chromaticity. The term
h�lViq describes the betatron frequency spread introduced
through detuning with the longitudinal amplitude A

h�lViq (A) =
1

2c

π 2c

0
�lV [X(A, q)] 3q. (5)

This term appears in the denominator of the dispersion inte-
gral on the right hand side of Eq. (3) which demonstrates that
it indeed provides Landau damping. One realizes that for odd
orders of chromaticity the average frequency spread vanishes
h�lViq (A) ⌘ 0. This result is independent of the longitudi-
nal particle distribution. Hence, odd orders of chromaticity
do not introduce Landau damping, at least for instabilities
with rise times in the order of several synchrotron periods
where the frequency spread averages to zero1. On the other
hand, even orders of chromaticity introduce a frequency
spread with longitudinal amplitude that does not average
out over time which leads to Landau damping, similarly to
an rf quadrupole operated (anti-) on-crest of the rf wave.
There is yet another mechanism, however. Both odd and
even orders of chromaticity introduce a change of the e�ec-
tive impedance and modify the complex frequencies of the
coherent modes in that manner. This e�ect is described by
1 This is analogous to an rf quadrupole operated at the zero crossing of the

rf wave studied in [3, 4] to increase the TMCI threshold.

the generalized Bessel functions introduced above. The �:

;

functions contain complex, chromaticity-dependent, phase
terms which describe the alteration of the interaction of the
beam with the impedance. The result is that the overlap sum
over index : 0 in Eq. (3) between the �:

0

;
functions and the

impedance changes. In time domain these chromatic phase
terms can be interpreted as a change of the synchronicity
between wake kicks, betatron, and synchrotron motion of the
particles. They lead to a change of the coherent frequencies
of all the modes. Note that such modification of the e�ective
impedance is independent of frequency spread and there is
no increase of the area of stability in the complex frequency
space. Thus, this e�ect is not related to Landau damping.

SOLUTIONS
Solutions to the Vlasov Eq. (3) are determined for two

di�erent types of longitudinal particle distributions. The
analytical results presented here are benchmarked against the
P�H������� macroparticle tracking model and the B��B��
circulant matrix solver [18–20].

Airbag beam
For the airbag model the beam particles are assumed to

populate an infinitesimally thin elliptical shell in the lon-
gitudinal phase space, i.e. they all oscillate with the same
longitudinal amplitude. As a result, the betatron frequency
spread from nonlinear chromaticity or rf quadrupoles van-
ishes and hence there can be no Landau damping. In the
weak-wake approximation considered here, azimuthal mode
coupling can be neglected and one can solve the equations
for all the azimuthal modes ; 2 Z independently of each
other. For an airbag distribution the dispersion integral can
be easily evaluated and one obtains the solutions
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where l0 = :l0 + lV,0 + ;lB. # denotes the bunch popu-
lation, )0 the revolution period, ⇢0 the beam energy, Î the
longitudinal amplitude of the airbag beam, 4 the elementary
charge, and 2 the speed of light. We have obtained an ex-
plicit expression for the coherent frequency shift of every
azimuthal mode. The detuning term h�lViq ( Î) = const.
is now independent of the longitudinal amplitude A and is
identical for all the particles. As expected, the dispersion
integral has disappeared from the equation which can be
interpreted as the absence of Landau damping. Equation (6)
is a generalization of Eq. (6.188) in [6] and is valid for arbi-
trary orders of chromaticity. It reduces to Chao’s equation
for a purely linear chromaticity as shown in [9].

The new formalism is first benchmarked against the well-
known case of a purely linear chromaticity and a broad-band
resonator impedance. The results are summarized in Fig. 1.
The analytical calculations are given by the colored lines and
represent the real (upper plot) and imaginary (lower plot)
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Figure 1: Real (top) and imaginary (bottom) coherent fre-
quency shifts as a function of b (1) for an airbag model.

coherent frequency shifts of the six lowest-order azimuthal
modes vs. b (1) . The real part is measured with respect to
the respective unstable synchrotron side band. It can be
seen that the azimuthal modes for a specific positive and
negative azimuthal number are identical. This will no longer
be the case when introducing second-order chromaticity as
described below. For b (1) < 0 the most unstable mode is
a head-tail mode zero (above transition). For increasing
b
(1)

> 0, the most unstable mode changes from azimuthal
mode one through five. The outputs from B��B�� (red)
and P�H������� (green) after post-processing are shown
on top of the analytical results. The three approaches are in
excellent agreement which confirms that they all work well
for the basic linear chromaticity case.

Figure 2 summarizes the more interesting case in presence
of nonlinear chromaticity. The coherent frequency shifts
obtained from analytical formula [Eq. (6)], P�H�������,
and B��B�� are shown as functions of b (2) for constant b (1) .
Similar to the case with linear chromaticity, b (2) changes
the e�ective impedance and eventually, transitions to other,
more unstable azimuthal modes occur. A major di�erence
with respect to Fig. 1, however, is that the degeneracy in
the azimuthal mode number is lifted. For a certain absolute
value of the mode number, the modes with the two opposite
signs are no longer identical. Additionally, the real part of
the coherent frequency shift is dominated by the constant
and real-valued h�lViq ( Î) which is the same for all the
azimuthal modes. This is specific to the airbag beam and
is again a result of the absence of a spread in longitudinal
amplitude. As for the linear case, the theoretical predictions
are in perfect agreement with both the tracking and circulant
matrix models which confirms that the formalism developed
above is indeed valid for the airbag beam.

Arbitrary distributions
The new theory describes the change of the e�ective

impedance from nonlinear chromaticity very accurately and
produces satisfying results for the airbag model. The next
step is to introduce beam distributions where the particles

Figure 2: Real (top) and imaginary (bottom) coherent fre-
quency shifts as a function of b (2) at fixed b (1) for an airbag
model.

exhibit a spread in their longitudinal amplitudes, for example
Gaussian, to validate the theory also in presence of Landau
damping. Unfortunately, Eq. (3) could not be solved exactly
for the general case. To make the dispersion relation and the
presence of Landau damping more apparent and to bring the
equation into a form that can be solved and benchmarked
against numerical models, strict assumptions are made on
the shape of the transverse dipolar impedance instead

/? (l
0
) =

(
/:0 < 0, : = :0,

0, otherwise.
(7)

Equation (3) then simplifies to
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where lV (A) = lV,0 + h�lViq . Equation (8) is a dispersion
relation. The formula for stability boundary diagrams can
now be easily determined
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where �⌦(;)

lin = ⌦(;)

lin � lV,0 � ;lB and ⌦(;)

lin denotes the
complex coherent frequency of the azimuthal mode ; in
absence of Landau damping. It can be demonstrated that the
dispersion relation derived here is equivalent to the results
found by Berg and Ruggiero in [17] (proof in [9]).

To benchmark the analytical model against P�H�������
tracking simulations we assume a Gaussian beam distribu-
tion and define a scenario which fulfills best the approxi-
mations and assumptions made when deriving Eq. (9). The
main assumption is to use a highly narrow-band resonator
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impedance to mimic the single-peak impedance approxima-
tion. This can be achieved by tuning the quality factor and
the frequency of the resonator accordingly. The parameters
were set to match the spectral maximum of the azimuthal
mode zero while remaining small for all the other modes.
It was verified that the error in both the real and imaginary
coherent frequencies between the single-peak approximation
and the simulation was less than ten percent.

Next, the dispersion relation in Eq. (9) is solved numeri-
cally to obtain the stability boundary diagrams in complex
frequency space. The solutions are displayed in Fig. 3 for
four di�erent values of b (2) , increasing in absolute value
from top left to bottom right. The plots illustrate the in-
crease of the stability boundary (black line, �Im ⌦ = 0) and
hence of the stable area (blue hatched region, �Im ⌦  0)
in complex frequency space. The coherent frequency shift
of the unstable mode under consideration (red cross) is ob-
tained from P�H������� simulations. It is demonstrated
in [9] that the change of the e�ective impedance (chromatic
e�ect) introduced by b (2) is negligible for this particular
instability and that Landau damping is the dominant mecha-
nism here. The unperturbed coherent frequency can hence
be assumed to be independent of b (2) . The colored lines in
the figure refer to constant values of imaginary frequency
shift (�Im ⌦ = const.) and follow the distortion of the fre-
quency space caused by the spread introduced by b (2) . By
means of these isolines one can read o� the e�ective change
of the imaginary frequency shift of the unstable mode as a
function of frequency spread, or b (2) . This illustrates the
damping process: with increasing spread the imaginary part
of the unstable mode is e�ectively reduced, meaning that
the growth rate of the instability decreases. For b (2)  �9.6,
the area of stability has become large enough to include
the unstable mode. At this point the instability is Landau
damped. The final comparison of the imaginary frequency
shifts, or instability growth rates, between stability diagram
theory (red), obtained from the isolines in Fig. 3, and from
P�H������� simulations (green) is shown in Fig. 4. They
are both in excellent agreement with each other. Not only
the stabilizing threshold for the amount of b (2) matches, but
also the intermediate stages of b (2) show a remarkable agree-
ment on the imaginary frequency shifts. This proves that the
theory works successfully and that nonlinear chromaticity or
rf quadrupoles indeed provide Landau damping. It should
be pointed out, however, that the one-sidedness of the sta-
bility diagrams is a limitation of this method. A frequency
spread from b

(2)
< 0, for example, would only be able to

Landau-damp the modes with Re ⌦ < 0. The modes with
Re ⌦ > 0 could potentially be suppressed by means of a
second, complementary method such as frequency spread
from octupole magnets.

CONCLUSIONS
The existing Vlasov theory on transverse dipole modes

has been extended to include the e�ects of nonlinear chro-
maticity up to arbitrary orders. This new formalism made it

Figure 3: Stability boundary diagrams for four di�erent
values of b (2) increasing in absolute value from top left to
bottom right.

Figure 4: Stabilization of the head-tail mode zero vs. b (2) for
a Gaussian beam. P�H������� simulations (green crosses)
are shown together with analytical predictions calculated by
means of stability diagram theory (red diamonds).

possible to confirm the hypothesis that nonlinear chromatic-
ity and rf quadrupoles have two e�ects on the beam dynamics
of transverse coherent modes: (1) they lead to a change of
e�ective impedance; and (2) they introduce Landau damp-
ing thanks to the incoherent betatron frequency spread with
longitudinal amplitude. The two mechanisms have been
identified and studied separately using analytical formulae.
In addition, the theory has been successfully benchmarked
up to second-order chromaticity for an airbag model and a
Gaussian beam. In the first case, there is no Landau damping
due to the missing frequency spread from detuning with lon-
gitudinal amplitude. Analytical results have been validated
both with a tracking model and a circulant matrix solver
which revealed an outstanding agreement. For the Gaussian
beam it has been demonstrated that, given the assumption of
a strongly peaked impedance, analytical predictions from sta-
bility diagram theory are in excellent agreement with track-
ing simulations. This proves that detuning with longitudinal
amplitude indeed provides Landau damping. The results
are also in accordance with experiments and simulations
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that were carried out on the rf quadrupole and on nonlinear
chromaticity in the Large Hadron Collider and provide the
foundation for the interpretation of these results. The study
also demonstrates, however, that beam stabilization with rf
quadrupoles or nonlinear chromaticity is not easily evalu-
ated analytically for arbitrary impedances. Macroparticle
tracking simulations are instead the most accurate way to
study these e�ects.
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