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Abstract 
Space-charge and beam-beam interaction affect both 

incoherent and coherent motion of particles potentially 
leading to instabilities and deterioration of the beam 
parameters. An overview of these phenomena will be 
given with an emphasis on the observable spectral 
characteristics and the mitigation methods of their 
harmful effects.  

INTRODUCTION 
With the advent of supercomputers with thousands of 

cores massive tracking simulations became the main 
method for studying intensity-related effects such as 
beam-beam and space-charge effects. Still, other methods 
can be useful to get insight in the observed phenomena 
and for preliminary study of mitigation strategies. 

This report is devoted to the eigenvalue analysis of the 
Vlasov equation which fills an important niche between 
analytical calculations and tracking simulations providing 
the insight of the former and accuracy of the latter.  

In the context of the beam-beam interaction this 
approach was successfully used in Ref. [1] and further 
developed by the author of this report [2, 3]. 

An extension of the method on the coherent modes in 
space-charge dominated beam will be discussed here for 
the case of a Gaussian beam in a parabolic RF well.  

COHERENT BEAM-BEAM MODES 
Traditionally the nonlinearity of the unperturbed 

motion is taken into account as the amplitude dependence 
of incoherent tunes entering the dispersion relation. 
However, in the case of strong-strong beam-beam 
interaction the deformation of the charge distribution of 
the beams also should be taken into account [1]. 

Let us emphasize that perturbation is considered 
infinitesimal, it is the unperturbed single particle 
oscillations that are nonlinear. Linearizing w.r.t. the 
perturbation the Liouville equation with self-consistent 
electromagnetic forces we come to the Vlasov equation. 

For a Gaussian unperturbed distribution F0 the Vlasov 
equation for perturbation F1 in the action-angle variables 
I = (Ix, Iy, Is), \ = (\x, \y, \s) has the form 
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where T is the generalized azimuth, k=1,2 is the beam    
number, Nk is the number of particles per bunch, 
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incoherent tunes and emittances in all three planes. 
By performing Fourier expansion in the angle variables 

we obtain from Eq. (1) a system of equations (generally 
coupled) for the Fourier components of F1. Outside of the 
resonances the coupling of the modes can be neglected so 
that they can be treated independently. 

Van Kampen modes  
Yokoya et al. [1] showed that the spectrum of operator 

Â  – let us call it the Vlasov operator – includes 
continuum covering the range of single particle tunes and 
possibly some discrete values lying outside the 
continuum. In particular, they found that out of phase 
dipole oscillations (S-mode) of two round beams with 
equal sizes, intensities and bare lattice tunes have the 
tuneshift 1.214 times the maximum (by absolute value) 
incoherent tuneshift, [, raising question of stability of this 
mode. 

In-phase dipole oscillations (6-mode) also have mixed 
spectrum: a discrete value corresponding to a rigid bunch 
oscillations unaffected by the beam-beam interaction and 
a continuum covering the same range of incoherent tunes. 

 
Figure 1: Spectrum of dipole beam-beam oscillations of 
particles with the same charge sign. 

A crude picture of the spectrum of oscillations excited 
by a dipole kick is presented in Fig. 1 with the discrete 
mode peaks cut for better continuum visibility. Out of the 
6-modes only the discrete one can be seen, the continuum 
6-modes – being orthogonal to it – cannot be excited by a 
dipole kick. 

The continuum modes – despite the coincidence of 
their spectrum with single particle tunes range – are truly 
coherent modes involving all particles in the bunch. 
However, they have a G-function like singularity which 
does not permit to use smooth basis functions in the 
action variable space [2]. 

The physical significance of the continuum modes is 
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that they describe Landau damping as it was shown by 
Van Kampen in the case of plasma oscillations [4].  

 
The Vlasov eigenfunction method not only correctly 

predicts the spectrum, but allowed to understand why the 
coherent beam-beam modes were not always seen in 
practice. First of all, for the strong-strong regime to occur 
the parameters of the colliding beams should be close, in 
particular the weak/strong intensity ratio should exceed 
0.65 for round beams [2]. Another natural mechanism that 
may be also at play is Landau damping by the 
synchrotron sidebands of incoherent tunes [3].  

LHC example 
A number of cures were proposed to suppress the 

discrete modes or move them inside the continuum, 
among them a split in bare lattice tunes between the two 
rings and a difference in phase advances separating two 
main IPs in each ring. Also, the effect of the long-range 
collisions can be minimized with alternating crossing: 
horizontally at one IP and vertically at the other. 

In LHC the difference between IP1 o IP5 phase 
advances that particles see in ring 1 and ring 2 are 0.54 S 
horizontally and -0.18 S vertically. The alternating 
crossing is also implemented with 28 long-range 
collisions around each IP at | 9.5V average separation. 

 
Figure 2: End-of-squeeze coherent beam-beam spectra 
(burgundy) and single particle tune distribution (cyan) at 
indicated values of the phase advance difference. The 
discrete mode peaks are cut. 

Analysis showed that these two measures fight each 
other as far as it concerns the coherent modes. Figure 2 
shows the end-of-squeeze single particle tune distribution 
and spectra of coherent oscillations with and without 
phase advance difference in units of the head-on beam-
beam parameter [0. The neighbouring long-range 
interactions were lumped at each IP.  

Without phase advance difference there is no discrete 
modes, while with the difference as large as in the 
horizontal case there are two peaks of coherent 
oscillations well separated from incoherent tunes. 

This result suggests that the horizontal oscillations are 
more prone to the end-of-squeeze instability. It can be 
damped by the transverse feedback. 

SPACE-CHARGE MODES 
The main distinction of the Vlasov eigenfunction 

method is treating the beams as transversely soft. It can be 

dubbed – making provision for the head-tail modes not 
discussed yet – as the soft-slice approach while the 
traditional approach is to consider the longitudinal slices 
transversely rigid.  

In the case of a coasting beam with space-charge the 
coherent transverse oscillations are similar to the beam-
beam 6-mode. The only observable mode is “rigid-slice” 
mode with tune not shifted by the direct space-charge. In 
absence of other tuneshifts it is not Landau damped. 

For treatment of bunched beam modes it is important 
that the transverse space-charge force is longitudinally 
local. In a sufficiently long bunch the locality can be 
described by G-function. Mathematically this makes the 
use of action-angle variables in the longitudinal plane 
cumbersome. Instead we have to stay with coordinate and 
momentum.  

Introducing normalized variables W = z/Vz, X = 
(p - p0)/Vp, Jx = Ix / Hx we will search for the perturbed 
distribution function in form 
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where in the case of horizontal oscillations in flat beam 
(see Ref.[1] for details) 
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Longitudinally – in absence of external impedances at 
least – operator (3) is well behaved and allows expansion 
in smooth basis functions. For a Gaussian bunch we can 
use the set 
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where Pk(u) are the Legendre polynomials, which is 
orthonormal with weight w=exp(-W2/2). Figure 3 shows a 
few basis functions which look like the head-tail 
waveforms found in Ref. [5] for the rigid slice model. 

 

Figure 3: Longitudinal basis functions. 
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Using this basis the Vlasov operator eigenfunctions can 
be sought as 
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,
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The corresponding eigenvalues will be denoted as Om.  

Landau Damping  of the Head-Tail Modes  
Just like it the case of the coherent beam-beam 

oscillations [1] the spectrum may contain a discrete set as 
well as continuum, the latter covering the range of 
incoherent tunes. A qualitative necessary condition of 
stability is absence of discrete spectrum.   

This condition can be visualized with the help of 
spectral coefficients describing the projection of 
eigenmodes on a pickup and their excitation by a dipole 
kick varying longitudinally as )l(W) 
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where 2/)( xJ
xx eJJ � R  is function describing 

horizontal “rigid-slice” motion. 

 
Figure 4: Spectral density of head-tail modes projection 
on l0=1 and l0=2 basis functions for Qs = 0.2�QSC, QSC 
being the maximum absolute value of the SC tuneshift. 

As Figure 4 shows other head-tail modes of the same 
parity have projection on the given basis function*, not 
only l = l0. 

The peak positions and the Landau damping rate 
estimated from the width of the peaks coincide almost 
exactly with Ref. [6] results obtained by tracking. 

Since the l z 0 modes are intrinsically damped the main 
concern is Landau damping of the l = 0 mode. The 
possibility of employing an electron lens for this purpose 
was discussed at this Workshop [7]. 

 
* It is interesting that in projection on the l0=2 basis function we see the 
l =0 continuum  modes, while in projection on the l0=0 function  only the 
discrete peak at zero tuneshift can be seen, just like in the case of the 
beam-beam 6-mode. 

TMCI with Strong Space Charge 
The main mechanism of the single bunch transverse 
instability is TMCI. There was a long-standing question 
whether a strong space charge can suppress the TMCI 
(see e.g. Refs. [5, 8] and references therein). 

To address the issue the following term originating 
from an external impedance is added to the Vlasov 
operator: 
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with E x being taken at the impedance location. The kick is 
produced by the wake function WA 
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where N is the full number of particles in the bunch, E0 is 
the average velocity in units of the speed of light c and J0 
is the relativistic mass factor. 

The causality requires WA(W) = 0 for W > 0 breaking 
reciprocity and leading to the emergence of complex 
eigenvalues. 

Vanishing TMCI threshold 
Analysis in the simplest case of a step-like wake [9] 

showed that the growth rates go down with increase in the 
ratio QSC/Qs but the threshold in |N�WA| does not go to 
infinity as was suggested on the basis of the rigid-slice 
model (see e.g. [8]) but on the contrary goes to zero†. 

Qualitatively the same behaviour was observed with a 
resonator wake. Figure 5 shows obtained by the described 
method growth rates for the SPS Q26 lattice and beam 
parameters and Rs=10M:/m (CERN units). 

 

Figure 5: TMCI growth rate at the indicated values of the 
space charge strength. 

At large ratio QSC/Qs there is no well-defined threshold 
so that instead of “vanishing TMCI” we have a vanishing 
TMCI threshold. Similar results were independently 
obtained by tracking simulations [10, 11]. 

Tail-to-head feedback 
We come to a conclusion that additional (w.r.t. the 

rigid-slice model) degree of freedom introduces 
 

† The main result of Ref. [8] is that a large number of longitudinal 
eigenfunctions should be taken into account. In the soft-slice approach 
developed here the convergence is better, especially with smooth wakes. 
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qualitatively new effects. To understand them let us look 
at the obtained solutions in more detail. 

Figure 6 shows the dipole moment dx = <x>�exp(-W2/2)  
along the bunch at a number of close moments in time in 
the strong space charge case of Fig. 5. The oscillation 
amplitude grows significantly from head to tail as in the 
case of the convective instability [12]. However, there is 
an appreciable growth rate: Im Q /Qs = 0.21. This means 
that there is a feedback from tail to head which is absent 
in the rigid-slice model.  
 

Figure 6: Dipole moment of the most unstable mode at 
QSC/Qs = 50. The head of the bunch is at W > 0. 

Figure 7 shows the eigenfunction of the mode 
presented in Fig. 6 as a function of the normalized action 
Jx at positions in the head (blue), center (green) and the 
tail (red) of the bunch. For comparison the dashed line 
shows function ( )xJR  which describes the rigid-slice 
mode and was rescaled for convenience. 

 

Figure 7: Eigenfunction of the most unstable mode at 
QSC/Qs = 50 at the indicated positions inside the bunch. 

The point to note here is that particles with larger 
unperturbed amplitudes participate stronger in coherent 
oscillations. This is especially noticeable at the head of 
the bunch. Of course it is not the unperturbed amplitude 
per se that matters but the reduced space-charge tuneshift. 

It appears that particles with Jx marked in Fig. 7 by 
vertical line transfer perturbation from tail to head making 
the instability absolute. This mechanism was revealed by 
A. Burov and called by him the core-halo instability [13]. 

Practical conclusion 
The fact that TMCI with strong space-charge requires 

for development the participation of large-amplitude 

particles with significantly reduced space-charge tuneshift 
suggests a cure: transverse KV distribution which 
equalizes the tuneshifts within a slice. Still – due to the 
longitudinal modulation – there will remain a tunespread 
to suppress other types of transverse instabilities.  

ACKNOWLEDGEMENTS 
The author is grateful to many people with whom he 

had the privilege to discuss the subject of this report, in 
particular to T. Pieloni (CERN/EPFL), A. Burov (FNAL), 
X. Buffat and E. Métral (CERN). 

REFERENCES 
[1] K. Yokoya et al., “Tune Shift of Coherent Beam-

Beam Oscillations”, KEK Preprint 89-14 (1989); 
Particle Accelerators, v.27, p.181 (1990). 

[2]  Y. Alexahin, “On the Landau Damping and 
Decoherence of Transverse Dipole Oscillations in 
Colliding Beams”. CERN SL-96-064 AP, Geneva, 
1996;  'Particle Accelerators', v.59, pp.43-74 (1998). 

[3] Y. Alexahin, “A Study of Coherent Beam-Beam 
Effect in the Framework of the Vlasov Perturbation 
Theory”. LHC Project Report 461 (2001); NIMA 480 
pp.253-288 (2002). 

[4] N.G. Van Kampen, "On the Theory of Stationary 
Waves in Plasmas", Physica, v.21, No.12, pp.949-
963 (1955). 

[5]  A. Burov, “Head-tail modes for strong space charge”, 
Phys. Rev. ST Accel. Beams 12, 044202 (2009). 
Erratum:  Phys. Rev. ST Accel. Beams 12, 109901 
(2009). 

[6]  A. Macridin et al., “Simulation of transverse modes 
with their intrinsic Landau damping for bunched 
beams in the presence of space charge”, Phys. Rev. 
ST Accel. Beams 18, 074401 (2015). 

[7] Y. Alexahin et al., “On Landau Damping Restoration 
with Electron Lenses in Space-Charge Dominated 
Beams”, this Workshop; FERMILAB-CONF-19-
690-APC (2019) 

[8] V. Balbekov, “Transverse mode coupling instability 
threshold with space charge and different 
wakefields”, Phys. Rev. Accel. Beams 20, 034401 
(2017). 

[9]  Y. Alexahin, “Vlasov Theory of Head-Tail Modes in 
Bunched Beams with Strong Space 
Charge”,    https://indico.cern.ch/event/676489/contri
butions/2768943/attachments/1549082/2432938/Vlas
ovTheory_YA_30-10-17.pdf (2017). 

[10] E. Métral et al., “Space charge and transverse 
instabilities at the CERN SPS and LHC”, ICAP’18, 
Key West, Florida, USA, October 2018, pp. 43-49.  

[11] A. Oeftiger, “SPS Impedance-driven Instability with 
Space Charge at Q26”, (2019, unpublished) 

[12] A. Burov, “Space Charge Effects for Transverse 
Collective Instabilities in Circular Machines”, this 
Workshop. 

[13] A. Burov, “Core-Halo Collective Instabilities”, 
https://arxiv.org/abs/1808.08498 

Proceedings of the ICFA mini-Workshop, MCBI 2019, Zermatt, Switzerland

196


