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Abstract 
 The paper focuses on two issues important for the de-
sign and operation of bunch-by-bunch transverse damper 
in a very large hadron collider, where fast damping is 
required to suppress beam instabilities and noise induced 
emittance growth. The first issue is associated with kick 
variation along a bunch which affects the damping of 
head-tail modes. The second issue is associated with ef-
fect of damper noise on the instability threshold. The 
paper accounts for developments motivated by the discus-
sions at this conference and carried out after it. 

INTRODUCTION 
 An achievement of maximum luminosity in a collider 
requires large beam current and small emittance. In had-
ron colliders of very large energy the collider size be-
comes so large that the frequency of lowest betatron side-
band approaches kHz range where spectral density of 
acoustic and magnetic field noise is unacceptably large. 
This noise drives the emittance growth resulting in fast 
luminosity decay. Effective suppression of this emittance 
growth may be achieved by fast transverse damping [1,2]. 
Fast emittance growth and its suppression by the damper 
was demonstrated at the LHC commissioning [3,4]. The 
required damper gain grows with the size of the collider 
and approaches few turns for a collider which will follow 
the LHC (like FCC). The instability suppression is typi-
cally less demanding to damping rate but still it is another 
important reason for fast damping.  
 There are many phenomena which limit the maximum 
damper gain [5]. Here we discuss two of them in details.  
(1) A damper gain increase results in a better suppression 
of zeroth order head-tail mode. However, such increase 
may excite higher order head-tail modes, and thus make 
the bunch unstable. This effect is exacerbated by presence 
of non-zero chromaticity and wake-fields which destroy 
symmetry of head-tail motion. As will be seen below an 
introduction of kick non-uniformity along the bunch may 
allow significant reduction of excitation of head-tail 
modes and, consequently, increases the beam stability 
margin.  
(2) Any practical damper has internal noise. Depending 
on damper design it is related to the thermal noise of its 
preamps and/or noise of digitization. This noise drives 
small amplitude beam motion which due to betatron fre-
quency spread results in an emittance growth. The beta-
tron motion non-linearity introduced for suppression of 
head-tail modes makes this noise-induced diffusion de-

pending on a particle betatron amplitude. With time that 
changes the particle transverse distribution and, conse-
quently, may result in a loss of Landau damping. This 
phenomenon was observed in the LHC where the beam 
could lose transverse stability minutes after bringing the 
beams to the collision energy without any visible changes 
in the machine. The effect was pronounced stronger in the 
case of external excitation of transverse motion [6,7]. The 
beam stability study based on the multiparticle tracking is 
reported in Ref. [7]. It showed that the latency of stability 
loss is related to changes in the distribution function in-
duced by the damper noise. In this paper we consider a 
semi-analytical theory which attempts to show details of 
the process in a one-dimensional model.  
 Below we assume that the damper is bunch-by-bunch 
type so that each bunch is damped separately. 

DAMPING OF INTRABUNCH MOTION 
 For analysis of intrabunch motion we use the air-bag 
square-well (ABS) model initially suggested in Ref. [8] 
and actively used by A. Burov for analysis of bunch 
damping (see for example [9]).  
 In this model the bunch is presented by two fluxes 
moving in opposite directions with particle reflection at 
the bucket boundaries. In difference to the linear longitu-
dinal motion in the air-bag model [10] where the bunch 
density is picked at the bunch ends this model has a uni-
form density distribution along bunch. Therefore, ABS 
model better suits for description of damper effect on 
damping of head-tail modes.  
 In dimensionless variables the equations of motion for 
two fluxes are: 
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where x1 and x2 are the transverse coordinates for the 
respective fluxes, � �� �/ /s p pF [ Q '  is the head-tail 

phase, [ is the tune chromaticity, Qs is the synchrotron 
tune, r'p/p represent the momentum deviations for parti-
cles in the positive and negative fluxes, W = Zst is the 
dimensionless time, [0, ]s S�   is the dimensionless longi-
tudinal particle coordinate, q = 'Qsc/Qs is the space charge 
parameter, 'Qsc is the space charge tune shift, and f char-
acterizes the forces coming from the damper and wake-
fields. Following Ref. [9] we introduce the new transverse 
coordinate: 
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Here we also introduced the phase \ describing the syn-
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chrotron motion so that , [ , ]s \ \ S S � � . Performing 
substitutions we can reduce two equations in Eq. (1) to 
one: 
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 The force coming from the wake is determined by the 
following equation: 
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In this paper we consider two wake-functions: the con-
stant wake –   
 0( ) ( )W s W sT  , (5) 
and the resistive wall wake –  
 

0( ) / 4 ( ) /W s W s sS T  . (6) 
The coefficient in the resistive wake definition was cho-
sen so that for the uniform bunch displacement the force 
at the bunch tail would be equal for both wakes.  
 We assume that the force coming from the damper is 
determined by the following equation:  

 
� �

� � � �1 2
0

( ) cos ( / 2 )
2

( ) ( ) cos ( / 2 ) .

k k

p p

Gf s i k s

x s x s k s ds
S

S I
S

S I

 � � � u

c c c c� � �³

  (7) 

Here kp and Ip determine the sensitivity of damper pickup 
to a particle position along the bunch, and kk and Ik de-
termine dependence of the kick on the longitudinal coor-
dinate along the bunch.  
 In the absence of space charge, damping and wakes the 
solutions of Eq. (3) are: 
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In the first order of perturbation theory when only a 
damper is present (no wakes and space charge) we obtain 
the growth rate: 
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As one can see from Eq. (9) all modes are damped (have 
negative growth rates) if kp=kk and Ip = Ik.  
 In the general case we look for a solution in the form: 
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where Nm determines how many harmonics approximate 
the exact solution. Substituting this equation into Eq. (3), 
using definitions of Eqs. (4) and (7), multiplying obtained 
equation by e-in\ and integrating we obtain a system of 
2Nm+1 linear equations. The eigen-values and eigen-
vectors of this matrix equation yield complex frequencies 
for each mode and its structure (xn(\)). To warrant a solu-
tion accuracy, 161 modes (±80) were used. After finding 
the eigen-vectors the modes were renumbered in ascend-

ing order of imaginary part of On (tune shift). 
 First, we consider the instability in the absence of 
damper and the space charge. Calculations show that for 

0F   the transverse mode coupling instability threshold 
is: W0 = Wth | 0.363 for the step-like wake and for W0 = 
Wthr | 0.383 for the resistive wall wake. In the following 
discussion we will characterize the wake strength relative 
to these thresholds.  
 Figure 1 shows dependencies of growth rates on mode 
frequencies for few lowest modes for the wake strengths 
twice above threshold, and for F = 0 and F = -2. For F = 0 
(strong head-tail case) and the wake twice above thresh-
old only 0-th and 1-st modes are coupled making only one 
mode unstable. As one can see from the bottom plot many 
modes became unstable for F = -2. Although growth rates 
for both wakes (step-like and resistive wall) are close the 
tune shifts of the modes are significantly larger for the 
resistive wall wake. 

 
Figure 1: Dependence of growth rate, Re(On), on the mode 
coherent frequency, Im(On), for different modes and the 
wake amplitude twice above threshold; top – F = 0,  bot-
tom – F = -2; red dots – step-like wake, blue circles – 
resistive wall wake. 
 Further we characterize damping by the growth rate of 
the most unstable mode. Typically, it is the mode for 
which n | F. Figure 2 shows the dependence of the 
growth rate of the most unstable mode on the head-tail 
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phase, F, for different damper gains when both pickup 
and kicker have flat responses (kp=kk=0). One can see in 
the top plot that there is no instability for G = 0 and F = 0 
as should be expected below the instability threshold. 
However, for G = 0 the beam is unstable for any other 
(non-zero) head-tail phase. An increase of the damper 
gain reduces the growth rate for the most unstable mode 
everywhere except close vicinity of F = 0. Optimal damp-
ing is achieved at G | 4 where for the case twice below 
threshold the beam is stable for F � [0.5, 1.4] for both 
wakes. Further increase of the gain does not improve 
beam stability. For the wake twice above the threshold the 
beam is unstable for all F. Note that the considered model 
does not have Landau damping (discussed below) which 
stabilizes the beam if the growth rate is sufficiently small 
and these calculations do not show actual stability thresh-
olds. Note also that the oscillations in the growth rates 
with F are related to switching from one to another most 
unstable mode, so that one period represents the growth 
rate for one mode. 

 

 
Figure 2: Dependence of the growth rate of the most un-
stable mode on F for different damper gains (G = 0, 1, 2, 
4, 6, 9, 15) for wake amplitudes twice below (top) and 
twice above the threshold; the step-like wake. Insets show 
dependences near F = 0. 
 Now we consider how changes in the response func-
tions of pickup and kicker affect the beam stability. Figure 
3 presents dependences of the growth rate of the most 
unstable mode on F for different damper responses. As 

one can see for negative F an increase of kp = kk from 0 to 
1 reduces the growth rate of most unstable mode by about 
2 times. One can also see from the top plot that there is an 
area near F = 0 where all modes are stable. Variations of 
Ip and Ik and making kp and kk different did not exhibit 
stability improvement. 

 

 
Figure 3: Dependence of the growth rate of the most un-
stable mode on F for different damper responses for the 
cases of the beam intensity twice less (top) or twice more 
(bottom) than the strong head-tail threshold; the step-like 
wake. 
All calculations were also repeated for the resistive wall 
wake and for different space charge parameter q. The 
results show that there is a reduction of the growth rate of 
most unstable mode by about two times for kp = kk | 1 in 
comparison with kp = kk = 0. Similar improvement hap-
pens in transition from kp | 1, kk = 0 to kp = kk | 1. 
 In the present LHC damper the pickup response to 
particle position is harmonic at 400 MHz frequency. The 
bunch length of 18 cm (~2V) corresponds kp |1.5. That is 
already close to the optimum. However, the present kicker 
response is flat (kk = 0) and as can be seen in Figure 4 that 
negatively affects the beam stability. Thus, making the 
kicker waveform as a few-periods 400 MHz sinusoid 
(short enough to avoid overlapping of signals of different 
bunches) would reduce the excitation of head-tail modes 
by factor of ~2. 
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Figure 4: Dependence of the growth rate of the most un-
stable mode on F for different kicker responses: red lines 
- kk = 1.5, blue lines - kk = 0; top two lines - W is twice 
above threshold, bottom two lines - W is twice below 
threshold;  for all curves: kp = 1.5, Ip = Ik = q =0; the 
resistive wall wake. 

EFFECT OF DAMPER NOISE ON THE 
INSTABILITY THRESHOLD  

 For a continuous beam and the smooth lattice approxi-
mation the equation of a particle motion under external 
force ( ) i tF t F e Z

Z
� is [10]: 

 � � � �
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Here i enumerates particles, Z0 is the circular frequency 
of particle revolution, Q0 is the small amplitude betatron 
tune, ( , )

i i ilat lat x yQ Q J J' { '  is the tune shift of particle 
betatron motion due to lattice non-linearity for a particle 
with betatron actions 

ixJ  and 
iyJ , / (4 )c cwQ Q ig S'  ' �  

is the coherent tune shift which includes the tune shifts 
due to ring impedance, 'Qcw, and due to transverse damp-
er with damping rate per turn equal to g/2. Following the 
standard recipe [11, 12] we obtain the beam response to 
an external perturbation:  
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is the response function in the absence of particle interac-
tion, f = f(Jx,Jy)  is the particle distribution function nor-
malized so that ( , ) 1x y x yf J J dJ dJ  ³  ,  

 ( ) 1 ( )cQ RH GZ GZ � '   (15) 
is the beam permeability, GZ = Z - Zn is the frequency 
deviation from n-th betatron sideband, Zn = (n - Q0)Z0, i0 
determines the rule of pole traversing, and we assume that 
a frequency shift with particle momentum is much small-
er than the shift due to betatron motion non-linearity. That 

allowed us to omit an integration over momentum distri-
bution in Eq. (14). 
 With minor corrections these formulas are also justified 
for a bunched beam in the weak head-tail approximation 
[13]. First, in addition to the betatron sidebands we need 
to account the synchro-betatron sidebands. That yields the 
resonant frequencies to be 0 0( )nm sQ n mQZ Z � � , where 
Qs is the synchrotron tune. Second, we need to account 
that a damper kick may excite multiple synchrotron-
betatron modes. That is accounted by coefficients wm. 
Below we consider how to obtain their values. Conse-
quently, Eq. (13) is modified to the following form:  
 ( )

( )nm

nm
m

nm nm

Rx w FZ Z
GZ

H GZ
  . (16) 

Here GZnm=Z�Znm , and in Eq. (15) we need to account 
that the coherent tune shifts are different for each mode 

nmc cQ Q' o ' so that: 
 ( ) 1 ( )

nmnm nm c nmQ RH GZ GZ � '  , (17) 

where R(GZ) is still determined by Eq. (14).  
 Eq. (16) determines the amplitude of particle motion 
for a given synchro-betatron mode. For small amplitude 
excitation each synchro-betatron mode is excited inde-
pendently and to obtain the total motion in the bunch one 
needs to sum motions of all modes.  
 The instability boundary (i.e. maximum coherent tune 
shift 

nmcQ'  for a given mode is determined by the condi-
tion when with growth 

nmcQ' the beam permeability ap-
proaches zero the first time at any possible detuning. That 
corresponds to the solution of equation, 
 ( ) 0nmH GZ   , (18) 
for real GZ, which determines the stability boundary in 
the complex plane of 'Qc. As follows from Eq. (13) the 
beam response of stable beam for a given mode is ampli-
fied by 1/|Hnm(GZnm)| times.  
 Damper noise drives the transverse beam motion which 
due to spread in the betatron tunes results in an emittance 
growth. In the absence of particle interaction and active 
damping the emittance growth rate is [1]: 
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where Ekick is the horizontal beta-function at the kicker 
location, and PT(Z) is the spectral density of kicker angu-
lar noise normalized so that the rms value of the kicks is: 
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Taking Eq. (16) into account we can rewrite Eq. (19) in 
the following form: 
 � �

0

, ( , )x y x y x y
d D J J f J J dJ dJ
dt
H f

 ³ .  (20) 

Here  
 � � � �22

0
2

, 0

, ,
4 ( ( , ))

m nkick
x y

n m nm lat x y

w P
D J J

Q J J
T ZZ E

S H Z

f

 �f

 
'

¦  (21) 

and we accounted that the spectral density of kicker noise 
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does not change across one synchro-betatron sideband, 
noises at different frequencies do not correlate, and only 
resonant frequencies drive the emittance growth.  
 It is straightforward to find the emittance growth for the 
case of zero chromaticity, when only zero’s synchro-
betatron mode is excited. Assuming strong damping, 

24 max( , )n cwg QS Q' '� , octupole non-linearity in the 
horizontal plane only, ( )lat x xx xQ J a J'  , and Gaussian 
distribution, /( ) /x aJ J

x af J e J� , we obtain: 
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Here 2
xx aa JQ'  is the rms frequency tune spread, Ja is 

the rms action, and gn is the damper gain at the n-th beta-
tron sideband. Substituting diffusion of Eq. (22) into Eq. 
(20) and performing numerical integration one obtains a 
perfect coincidence with the result obtained in Ref. [1]: 
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Note that Eq. (21) is applicable in the general case while 
Eq. (23) in the case of zero chromaticity and far away 
from the instability threshold. Note also that the deriva-
tion of Eq. (23) in Ref. [1] does not actually determine the 
tune relative to which 2Q'  is computed. This question 
is addressed by Eq. (21).  

 
Figure 5: Dependencies of mode magnitudes, |Xn|{ |x1n 
+x2n|, along the bunch for the parameters of the LHC 
damper: F = 1,  kp = 1.5, kk = Ip = Ik = q =0, W = 2Wthr for 
the resistive wall wake. Numbers show the mode num-
bers.  
 To find a change in the instability threshold related to a 
change in the distribution we need to investigate the dis-
tribution function evolution. Considering that the kicks 
are small and uncorrelated; and, consequently, the process 
is very slow relative to the betatron motion the evolution 
can be described by the diffusion equation. In the general 
case of uncoupled betatron motion the diffusion in the 

2D-space of actions is described by the following diffu-
sion equation [14]: 

( , ) ( , )x x x y y y x y
x x y y

f f fJ D J J J D J J
t J J J J

§ ·§ ·w w w w w
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Here the diffusion in the horizontal plane is determined 
by Eq. (21). The vertical plane diffusion is obtained by 
changing corresponding indices.    
 In the presence of impedance and chromaticity each 
kicker kick excites multiple head-tail modes. Only few of 
them are damped by the damper. Figure 5 shows shapes 
of few lowest head-tail modes for the damper model de-
scribed in the previous section for the LHC parameters. 
As one can see all of them have significant variations 
along the bunch while the kicker kick is the same for all 
particles. Therefore, each kick in addition to the zero 
mode excites other modes. To find corresponding contri-
butions we equalize the kick dependence along the bunch 
and the weighted sum of the mode amplitudes: 
 � �� � ˆcos / 2 ( ) .k k m m

m
k i w x\ S I \� �  ¦   (25) 

where xm(\) is determined by Eq. (11) and is additionally 
normalized so that xm(S/2) = 1. The solution of this equa-
tion yields coefficients ˆmw . To obtain coefficients wm 
which determine relative excitation for different head-tail 
modes we additionally need to account how a given mode 
with amplitude ˆmw contributes to the emittance growth. 

That yields: 22 2ˆ( )m m mw x w\ . Figure 6 shows ˆmw for the 
modes presented in Figure 5. One can see that the mode 
zero has the largest contribution, 0ŵ , and the only one 
which has significant damping.  

 
Figure 6: Dependences on the head-tail mode number for 

ˆ nw  (red circles) and the damping rate (blue dots).  

 To demonstrate an effect of damper noise on the beam 
stability boundary we initially assume that only one of the 
head-tail modes is near the threshold and it dominates the 
emittance growth. Applicability of this assumption we 
will discuss later. We also assume that the focusing non-
linearity is in one plane only. That allows us to consider a 
one-dimensional problem. Then, from Eqs. (21) and (24) 
we obtain a simplified diffusion equation:  
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Here we transited to the dimensionless variables so that 
the action Jx is measured in units of rms action Ja, and 
time W is chosen to make the diffusion coefficient equal to 
the one in the absence of beam interaction. We also took 
into account that the diffusion is proportional 1/|H|2 at the 
resonance frequency which is directly related to the action 
as lat xx xQ a J'  . That yields the univocal dependence of 
beam permeability on the action:  
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where Jmax is determined by the ring acceptance.  
 The solution of Eq. (26) with beam permeability of Eq. 
(27) was carried out numerically. Ɍhe action space was 
binned into boxes with boundaries at Jn = n 'J, n�[0, 
Nmax], so that fn 'J is the probability to find a particle in n-
th box and fn is the distribution function in the center of 
the box bounded by Jn and Jn+1. An integration of Eq. (26)
over J through one box yields the particle flux through the 
boundary between boxes n and n+1: 
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Consequently, the change in the distribution is: 
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Time step 't was chosen so that to be well below the 
numerical instability threshold of the difference scheme, 
which is determined by: 

� �2max 4 / 1.n nn
S D J t J{ ' '   

In a typical simulation S did not exceed 0.1, both at the 
instability onset and its initial development. However, 
with instability development and subsequent growth of 
the diffusion this condition was violated and calculations 
were stopped well before S reached 1.  

 
Figure 7: Ratios of coherent tune shifts to the synchrotron 
tune for different modes for parameters of Figure 5. Black 
line presents the stability boundary for Gaussian beam 
with non-linearity parameter axx chosen so that the most 
unstable mode (marked by blue circle) would be 20% 
below stability threshold. 

For a harmonic perturbation Gf cos(NJ) and S << 1 this 
difference scheme yields good approximation for small N. 
However, it reduces damping at the highest frequency of  

/ (2 )max JN S '  by (S/2)2 times. Note that a usage of 
implicit methods typically applied to the diffusion equa-
tion solving is limited by two circumstances. First, a 
computation of diffusion at any point in the action space 
uses the entire particle distribution and therefore compu-
tation of distribution at the next point in time requires 
inversion of NmaxuNmax matrix instead of three-diagonal 
matrix for the case of implicit scheme. Second, as will be 
shown below, the instability is developing at high wave-
numbers in the action space. That requires small 'J. Nu-
merical tests also showed that very small steps in time are 
required.   
 To accelerate computation of the integral in Eq. (27) it 
was reduced to a matrix multiplication so that the vector 
of beam permeability is equal to:  
  İ Rf  . (30) 
Here the vectors H { Hn and f { fn determine the beam 
permeability and the distribution function. The elements 
of matrix R are determined by integration Eq. (27) be-
tween nearby actions Jn using Tailor expansion of f. Nu-
merical tests verified that Eq. (30) results in good approx-
imation of integral (27) in the absence of discontinuities 
in the distribution.  

 
Figure 8: Dependence of dimensionless diffusion (top) 
and distribution function (bottom) on the action for dif-
ferent times, t; axx = 0.02, 'Qc = (-12.6+3.1i)10-3. Red 
curve in the bottom plot shows the initial distribution (left 
scale) and other curves changes of the distribution multi-
plied by 100 (right scale).  
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 Simulations showed that loss of stability due to distri-
bution evolution under kicker noise strongly depends on 
the phase of the coherent tune r = arg(GQn). Figure 7 
presents the dimensionless coherent tune shifts (ratio of 
coherent tune shifts to the synchrotron tune) for different 
head tail modes for the parameters of Figure 5. The stabil-
ity boundary was chosen so that the most unstable mode 
would be 20% below the boundary. The phase of this 
mode on the complex plane is equal to r = 168o (Re(GQn)/ 
Im(GQn) = -4.7). The distance from the stability boundary 
to the next mode closest to the boundary is about twice 
larger, and consequently its effect on the diffusion is 4 
times smaller. Figure 8 shows a typical example of the 
evolution for initially Gaussian distribution. The figure 
also shows the corresponding diffusion. One can see that 
there is a narrow peak growing fast in the diffusion plot at 
J|0.25. The value of 'Qc/axx for Figure 8 calculations 
was chosen so that the beam would be 20% below insta-
bility threshold (see Figure 7). In all simulations (as well 
as in Figure 8) it has been clearly seen that the instability, 
if happens, develops at the highest possible wavenumber 
determined by 'J. An increase of Nmax decreases 'J and 
the span in the distribution where the instability is initially 
developed. However, the location of the instability posi-
tion in the action did not depend on Nmax.  
 To explain the results of the simulations we consider 
the following model. We assume that the instability is 
developed in a small area near the action Jr. In this area 
we look for a solution in the following form:  
 0( , ) ( ) ( )cos( )x xf J t f J f t JG N \ � �  , (31) 
where we assume the wavenumber, N, being very large, 
and the perturbation Gf(t) { Gf to be much smaller than the 
initial distribution f0(Jx). A perturbation in the distribution 
results in a perturbation in the response function. Substi-
tuting the perturbation of Eq. (31)  into Eq. (14) we obtain 
a perturbation of response function: 
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where we accounted that the resonance frequency is 
xx xa JGZ  . For large N the major contribution to the inte-

gral comes from the area near Jx. That allows us to extend 
the lower integration limit to -f.  Then, the integration 
becomes straight forward. It results in:   
 � � ( ) .xi Jx
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Using Eqs. (15) and (26), we obtain the diffusion: 
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where 1r c rQ RH  � '  is the beam permeability for unper-
turbed distribution computed at the resonant tune 
GZ/Z0 = Jraxx, and 21/r rD H  is the corresponding diffu-
sion. In obtaining the second equality we used the Tailor 
expansion and replaced Jx by Jr in the non-oscillating 

term. As one can see a harmonic perturbation of the dis-
tribution results in a harmonic perturbation of the diffu-
sion.  
 Taking into account that we consider only small area in 
the action space in vicinity of Jr and very large wave-
number N (see the definition below) we can replace Jx 
inside / xJw w  in Eq. (26) by Jr. That yields: 
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Accounting that the unperturbed function satisfies the 
following equation: 
 0 0

r r
x x

f fJ D
J JW

§ ·w ww
 ¨ ¸w w w© ¹

  (36) 

and leaving only linear terms in Eq. (35) we obtain a 
linear differential equation for the perturbation     
 0

r r
x x x

ff fJ D D
J J J

G G G
W

§ ·ww w w
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 . (37) 

We look for a solution in the following form: 
 cos( v )f fe IOWG N W� ��  . (38) 
Substituting it into Eq. (37), assuming initial Gaussian 
distribution 0

xJf e� , and using Eq. (34) we obtain the 
damping rate as a function of Jr: 
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For large N the last term can be neglected. Thus, for the 
Gaussian distribution the stability area for given 'Qc is 
determined by following equation, 
 21 Im 0rJr c c

xx r

J Q Qe
a

S
H

� § ·' '
� t¨ ¸

© ¹
 , (40) 

 
Figure 9: Stability diagram computed with accounting 
noise driven diffusion (blue curve) and without it (red 
curve.)  
which must be satisfied for all Jr. Figure 9 presents the 
stability diagrams computed with the help of Eqs. (18) 
(red curve) and (40) (blue curve). One can see that the 
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kicker noise results in significant reduction of the stability 
boundary. However, this reduction is negligible in vicinity 
of arg('Qc) | 105o. We will call the action Jr, at which the 
left-hand side in Eq. (40) approaches zero the first time, 
the resonant action. It shows where instability develops 
when the beam is approaching to the instability boundary. 
Figure 10 shows how this resonant action depends on the 
angle of the coherent tune shift in the complex plane. The 
figure also shows the ratio of stability boundary sizes 
(ratio of |'Qc| for given r = arg(|'Qc|) for curves present-
ed in Figure 9. Numerical simulations verified the reduc-
tion of the stability boundary presented in Figure 9 and 10 
and the location of the resonant action.  
 Taking into account that the considered above instabil-
ity develops at high wavenumbers in the action and the 
resonant actions of different head-tail modes are different, 
we, in the first approximation, can neglect mutual interac-
tion of different modes. That results in that the considered 
above model should be applicable to the situation when 
multiple modes are close to the instability boundary. If 
required it is straightforward to extend this model to mul-
tiple modes introducing summation of different modes in 
Eq. (34).  

 
Figure 10: Dependence of the resonant action and the loss 
in stability on the angle of the coherent tune shift in the 
complex plane.  

CONCLUSIONS 
 An introduction of harmonic variation in the kicker 
waveform looks as a promising method for an increase of 
stability boundary for the LHC. Such a kicker does not 
work well for suppression of emittance growth due to 
injection errors. Therefore, the existing low frequency 
kicker should be retained and used for damping injection 
errors. A new kicker operating at 400 MHz base frequen-
cy could be used for the rest of the accelerating cycle and 
in the collisions. The power and space required for this 
new kicker are determined by the BPM noise and are well 
within the reach. 
 The considered above mechanism for reduction of the 
stability boundary points out underlying reasons behind 
the observations of transverse beam stability loss in the 
LHC. We need to note that in this model we neglected 

other diffusion mechanisms which affect the evolution of 
the distribution. In normal operating conditions the intra-
beam scattering is the major diffusion mechanism. It 
counteracts the effects introduced by the damper noise 
and therefore a reduction of stability boundary due to 
kicker noise should be somewhat smaller. An additional 
noise used in the LHC experiments reduced relative effect 
of the IBS driven diffusion with subsequent reduction of 
the stability boundary observed in the experiments [6].  
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