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The question of interplay of coherent and incoherent space charge driven resonances and of their
Landau damping has found some interest in beam dynamics of modern high-intensity synchrotrons.
We revisit the theoretical and simulation models describing coherent half-integer parametric res-
onances, analyze their Landau damping in 2D beams on the basis of simulated tune spectra and
conclude that above second order (envelope modes) they play no role in realistic, Gaussian-like
beam models. We also analyze incoherent resonance e↵ects in the beam core regions and find that
their role has been underestimated in part of the literature, in particular with regard to the very
long-term beam evolution as in synchrotrons. We conclude that for such time scales more careful
analysis of realistic simulation models is needed to support synchrotron design and evaluation of
experiments.

I. INTRODUCTION

In linear accelerators space charge resonance e↵ects are
known to occur at su�ciently high intensity and under
structure resonance conditions. Their e↵ect is often not
evident due to limited length; nonetheless satisfactory
comparison of experimental data with theoretical predic-
tions was reported a few years ago by Groening [1, 2].

In circular accelerators the usually very large number
of turns and the presence of external nonlinearities be-
sides space charge lead to additional di�culties, which
make progress more challenging. While coherent e↵ects
in impedance driven instabilities are a common topic, the
role of coherent e↵ects in transverse resonances is not yet
adequately explored. Magnet error induced resonances
with space charge e↵ects in synchrotrons have been ob-
served in detailed studies at the GSI and CERN syn-
chrotrons [3–5]. Relatively satisfactory match between
experiment and simulation models has been achieved in
these studies, but important issues are still pending. The
simplified simulation models, for example, have relied on
so-called frozen space charge models (FSM), which lack
selfconsistency and would suppress any kind of coherent
response - if excited by whatever mechanism. The ex-
tent, to which it helps to update the rms emittance is
yet unclear and requires benchmarking with selfconsis-
tent codes.

In the following some aspects on the interplay of in-
coherent and coherent e↵ects are presented. Section II
reviews some historical and theoretical respectively ex-
perimental aspects of coherent frequency shifts. In Sec-
tion III we discuss the so-called half-integer (paramet-
ric) coherent resonances including their Landau damp-
ing. Section IV is dedicated to incoherent versus coher-
ent resonance e↵ects, Section V to a comparison with
experiments and Section VI attempts an outlook.

⇤ i.hofmann@gsi.de

II. COHERENT RESONANCE EFFECTS

The question of coherent resonant e↵ects was first
brought up by Smith [6] who pointed out - on the basis
of envelope equations - that gradient error driven reso-
nances should occur at the resonance condition for the
coherent tune rather than the incoherent one. Later, his
student Sacherer [7] derived conditions for higher order
magnet driven resonances and their respective selfcon-
sistently calculated coherent shifts in a 1D sheet beam
model using the linearized Vlasov-Poisson equation.

The subject of coherent resonance e↵ects found little
attention in the years to follow. A pioneering selfconsis-
tent simulation study in a synchrotron lattice with half-
integer gradient error resonances using di↵erent beam
distributions, and simulation limited to a few hundred
turns, was carried out by Machida in 1991 [8] - with re-
sults supporting to some extent the conjecture by Smith.

It is helpful to take a quantitative look at the coher-
ence issue on the second order level. For su�ciently split
tunes a straightforward calculation of the envelope mode
oscillation frequency by using the rms envelope equations
yields the well-known result for the coherently shifted fre-
quency (in “smooth approximation”)

! = 2(Q̄xy +
3

8
�Q̄xy), (1)

where Q̄xy ⌘ Q0xy � �Q̄xy is the incoherent tune and
�Q̄xy the space charge tune shift based on KV rms equiv-
alence. Note that the KV-equivalent Q̄xy is to be distin-
guished from the amplitude dependent Qxy in non-KV
beams.

The resulting theoretical coherent resonance condition
for the gradient error case is then

2(Q̄xy +
3

8
�Q̄xy) = n, (2)

where n is an integer depending on the lattice. Condition
Eq. 2 is in contrast with the still widely used second order
incoherent resonance condition 2Q̄xy = n.
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The predicted intensity advantage under the assump-
tion that only the coherent condition matters is not neg-
ligible. The situation is illustrated schematically in Fig. 1
by using the “necktie” diagrams for a 2D Gaussian dis-
tribution with a total spread 2�Q̄xy, and by assuming a
gradient error coherent shift as in Eq. 2. The three cases

FIG. 1. Schematic comparison of di↵erent approaches to res-
onance diagram “neckties” referring to an assumed Gaussian
distribution and a gradient error resonance line (dotted). In-
dicated are the coherent tune �/2 (green circle), Q0xy (yellow
star), the lower tip of Qxy (red star) and Q̄xy (black square).

depicted in Fig. 1 relate to

1. “incoherent limit” (C) assuming that the full foot-
print must be above the resonance

2. “coherent limit” (A): only the coherent frequency
needs to be above the resonance

3. “rms limit” (B): the rms tune Q̄xy is above the
resonance.

Note that the idealized intensity advantage of A com-
pared with C would be a factor 3.2, whereas B relates to
a doubling of intensity. Smith was still pointing at the
full “coherent advantage” (case A), while the simulation
results of Machida have confirmed the less optimistic rms
limit - still with an approximate intensity gain of a factor
2. A similar “benefit” was recently reported from simu-
lations for the JPARC Rapid Cycling Synchrotron with
the finding that no emittance growth or loss is observed
as long as the rms tune stays above the driving resonance
condition [9].

In fact, the coherent frequency approach entirely ig-
nores that besides the coherent envelope frequency there
is also a spectrum of incoherent single particle frequen-
cies Qxy covering the whole range of frequencies. The
question of their role with regard to resonances requires

additional considerations not yet well understood system-
atically.

The idea of coherent shifts in higher than second order,
driven by nonlinear magnet error or structure resonances,
is summarized in the analogous smooth approximation
expression

m(Q̄xy + Fm�Q̄xy) = n. (3)

Corresponding coherent shifts from second to fourth or-
der in a 2D beam Vlasov-Poisson model with arbitrary
(smooth) focusing and emittance ratios, and under the
assumption of no frequency spread, have been derived in
the late 1990’s by Hofmann [10] (see also Ref. [11] for
detailed examples of Fm). For split focusing they result
as: F2 = 3/8, F3 = 5/24 and F4 = 35/256. Note that
for still higher order m it can be assumed that the Fm

further approach zero.
For our discussion of the role of frequency spread it is

helpful to generate di↵erent selfconsistent spectral tune
distributions Qxy and allocate on them the coherent fre-
quencies according to calculated shifts. This is shown
in Fig. 2 comparing a waterbag with a Gaussian distri-
bution for a coasting beam with a working point such
that no significant resonance occurs (here Q0x = 0.158,
Q0y = 0.206 and �Q̄xy = 0.0322).

These spectra can be used also as initial spectra for any
other value of Q0y and �Q̄xy, if appropriately shifted and
re-scaled in width. The spectra shown here are generated
by using the TRACEWIN code [12], for this case with
32.000 particles, transported through a straight FODO
latticed over 3000 cells, where the last 2000 cells are
used to Fourier transform particle orbits and generate
the spectral tune plot. Tunes Q refer to a single FODO
cell as fractions of 360�. The location of coherent frequen-

FIG. 2. Spectral distribution of Qxy for 2D waterbag (l.h.s.)
and Gaussian (r.h.s.) distributions in a largely resonance-
free region. Also shown are locations of expected m = 2...4
coherent mode frequencies, furthermore Q0y and Q̄y; a weak
incoherent coupling resonance 2Qx + 4Qy = 1 exited by the
periodical space charge pseudo-dodecapole component of the
matched beam is also shown.

cies has been corrected from the purely theoretical ones
by using TRACEWIN simulation results for waterbag
beams [13].
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Comparing Fig. 2 with Fig. 1 we note that the higher
order coherent !/m would be closer to Q̄xy than the en-
velope !/2 (green circle). Hence, the theoretical intensity
benefit from the coherent e↵ect shrinks for higher than
second order - an argument speaking in favor of the more
cautious “rms limit” (B).

A review article at the 1998 Shelter Island Workshop
by Baartman [14] once more drew attention to the the-
oretical predictions of space charge shifted coherent res-
onance conditions in all orders for magnet error driven
resonances (similar to Eq. 3, but using a di↵erent nota-
tion for Fm). The basis of Eq. 3, however, continued to be
largely an analytical-theoretical one. Up to the present
day clear benchmarking of the coherent resonance the-
sis with experimental findings for coasting or bunched
beams in circular accelerators is not available.

Therefore, - apparently due to this lack of experimen-
tal evidence - the circular accelerator community widely
continued to use “necktie” resonance diagrams based on
the “incoherent space charge limit”, with the possibly
over-cautious requirement that no significant resonance
line should intercept the necktie at any point.

In their recent article, Kojima et al. [15] take up a
strong position by suggesting that synchrotron resonance
charts should be redefined on the basis of coherent e↵ects.
However, these conditions have so far been studied in 2D
and over a small (few hundred) number of lattice cells
only. The real issue for synchrotrons is long-term be-
havior and the e↵ect of synchrotron motion, which can
be expected to enhance the emphasis on incoherent res-
onance e↵ects - along with Landau damping.

III. HALF-INTEGER (PARAMETRIC)
COHERENT RESONANCES AND LANDAU

DAMPING

The theoretical concept of coherent resonances dis-
cussed in Section II is not limited to the externally driven
resonance cases of Eq. 3. In principle, so-called coher-
ent half-integer parametric resonances driven by space
charge alone and described by a half-integer r.h.s. ac-
cording to

m(Q̄xy + Fm�Q̄xy) =
n

2
, (4)

(with n an odd integer) need to be included as they
potentially lead to additional lines in resonance charts.
Note that the coherent half-integer modes are essen-
tially di↵erent from half-integer or gradient error reso-
nances described by 2Q̄xy = n, or its coherent extension
2(Q̄xy + F2�Q̄xy) = n.

Historically, these coherent half-integer parametric res-
onances have been introduced in a selfconsistent 2D
Vlasov study in periodic focusing lattices by Hofmann
et al. [16]. At that time they were called “180-degree”
modes due to the fact that two lattice periods are needed
to complete one mode period. The today more commonly

used terminology of “parametric resonances” was later
suggested in an analogous 1D sheet beam Vlasov analy-
sis by Okamoto and Yokoya [17], which also allowed for
explicit analytical expressions for coherent frequencies.

Note that these parametric cases are instabilities,
which are “pumped” from noise under a half-integer reso-
nance condition with the periodic focusing. They require
no initial nonlinearity and even exist for uniform density
KV-distributions. An example for a 3D Gaussian short
bunch simulation by the TRACEWIN code in a periodic
FODO lattice is shown in Fig. 3 (see also Ref. [18]). The
primarily excited mode is the coherent parametric insta-
bility of the envelope mode m = 2; n = 1 in Eq. 4 - com-
monly called envelope instability -, which requires Qxy

near the quarter integer. In a FODO lattice this amounts
to a zero-current phase advance per cell k0xy > 90�, and
simultaneously for the space charge depressed rms phase
advance k̄xy < 90�.

FIG. 3. Real space density evolution of a 3D high-intensity
Gaussian bunch subject to parametric envelope instability in
the 90� stopband of a FODO lattice (k0xy = 120�, k̄xy = 73�)
(source: Ref. [18]).

Fig. 3 shows the rapid evolution of an initial fourth
order structure resonance phenomenon (note the four-
fold symmetry insert of transverse phase space), which
is driven by the periodic space charge pseudo octupole
present in the Gaussian density profile and described by
the incoherent resonance condition 4kxy = 360� following
the lattice periodicity. This is followed by the second
order half-integer parametric mode described by 2(k̄xy +
F2�k̄xy) = 1

2 (with F2 = 1
2 for the unsplit tunes in xy).

Note that two lattice periods are needed to complete one
period of the envelope instability. After more than rms
emittance doubling the coherent mode de-coheres again
and results in a beam distribution following again the
lattice periodicity.

Theoretically, as predicted by the analytical theories
of Refs. [16, 17] ignoring Landau damping, such coherent
half-integer parametric modes exist in all orders. Kojima
et al. [15] have suggested that for synchrotron resonance
charts also these coherent half-integer modes need to be
included. Such a step would double the number of lines
compared with so far commonly used charts. This trig-
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gered questions as to how realistic these lines are, if Lan-
dau damping was included (see also a comment [19] and
reply [20] on this article).

In fact, examples of selfconsistent simulations in
FODO lattices using waterbag beams show these half-
integer parametric modes up to fourth order as demon-
strated in Fig. 4 (compare also similar results in Refs. [11,
13, 15]). The simulations have been carried out with the
TRACEWIN code using 128.000 particles. The situation

FIG. 4. Phase space projections for m = 2, 3, 4; n = 1 half-
integer parametric modes and initial waterbag distribution
(�Q̄xy = 0.0322) (source: Ref. [13]).

is di↵erent for Gaussian distributions (truncated at 3�):
simulations in Ref. [11] for the same parameters shown
that the third and fourth order modes are not excited.
For these modes Landau damping works in transverse
tune space with the necessary - not always su�cient -
condition of a negative slope towards higher tunes, which
also means higher amplitudes as shown schematically in
Fig. 5. The exponentially growing parametric modes
are damped, if there is an excess of particles at smaller
frequencies (amplitudes). Apparently, the sharply trun-
cated waterbag distribution lacks Landau damping for
modes with a su�ciently large coherent shift, which is
the case for all modes shown in the spectra of Fig. 2.
The r.h.s. of Fig. 2 also shows that in case of m = 2

FIG. 5. Schematics of Landau damping of a coherent para-
metric mode with frequency � in transverse tune space

there is only a weak overlap at the edge of the Gaus-
sian tune spectrum, which apparently is not su�cient for
Landau damping. In other words, the m = 2 mode is too
strong to be damped by the small amount of particles
near the edge.

The practical consequence following from the tune

spectra is our finding that for Gaussian distributions
all coherent half-integer resonances are expected to be
Landau damped, with the exception of the - in practi-
cal synchrotron lattice design less relevant - second order
envelope instability case. This results in the important
conclusion that the suggestion in Ref. [15] to add half-
integer lines in resonance charts is not supported by the-
ory in case of Gaussian-like distributions. Our Landau
damping argument so far is valid for coasting beams, but
it can be assumed that Landau damping is even further
enhanced by the additional e↵ect of synchrotron oscilla-
tions.

IV. INCOHERENT VERSUS COHERENT
RESONANCES

Of practical importance is the interplay between co-
herent and incoherent resonance e↵ects as described by
Eq. 3. This subject has not been systematically explored
in the context of high intensity synchrotrons, where long-
term e↵ects possibly raise the importance of incoherent
resonance e↵ects compared with coherent ones.

Unquestioned is the dominance of incoherent e↵ects in
the thin tail-halo region of a Gaussian-like distribution.
Regarding incoherent e↵ects in the denser beam core the
discussion has been influenced by generalizing interpreta-
tions of earlier publications, which strongly emphasized
the exclusive role of coherent e↵ects in the core of a beam.
The statement by Baartman [14] “In summary, we see the
core is a↵ected only by coherent core modes, and the tail
a↵ected by incoherent resonance” was originally intended
for the special case of 1D sheet beams and short-term be-
havior of the m = 2 gradient error resonance.

This discussion is taken up again in the book by Ng [21]
who finds “irrelevance of the incoherent tune” for reso-
nances, except in the beam halo. It is unquestioned that
these findings have some justification in the evolution of
relatively short-term gradient error resonances. However,
generalizing this discussion to all orders of resonances and
the long-term behavior in synchrotrons - as recently pos-
tulated in Ref. [15] - needs more careful examination in
a broader context.

In fact, as shown in Section III, Landau damping of the
nonlinear coherent half-integer parametric resonances is
a good example, where the incoherent spectrum of tunes
comes into play with important consequences. For a more
detailed discussion it is appropriate to include the tune
space with the spectral distribution of tunes for a given
phase space distribution instead of relying on short-term
rms emittance evolution data. The importance of tune
spectra is outlined in the following examples.

A first example of a sixth order resonance is indicated
in Fig. 2 with the weak coupling resonance

2Qx + 4Qy = 1 (5)

driven by the periodical pseudo-dodecapole space charge
component of the matched beam. This resonance is a
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local phenomenon involving only a very small neighbor-
hood of tune space around the exact resonance condition.
For this reason it is clearly an incoherent resonance. This
is also reflected by the fact that it accurately satisfies
Eq. 5 with no coherent shift term. Coherent resonances,
on the other hand, may a↵ect the beam even if the co-
herent resonance condition has no overlap with the tune
footprint. This is, for example, the case for the waterbag
beam m = 2, 3, 4 modes in Fig. 2.

Further evidence of an incoherent resonance occurring
deeper in the beam core is demonstrated by lowering Q0y

such that the sixth order non-coupling resonance

6Qy = 1 (6)

is excited slightly below the edge of the Gaussian distri-
bution (cut at 3�), with the resulting phase space projec-
tion shown in Fig. 6. The incoherent resonance is e↵ect-

FIG. 6. Phase space projection in y � y� (at cell 51) with
Q0y = 0.184 showing m = 6 incoherent integer resonance of
Gaussian distribution.

ing the outer tail-halo region of the beam as expected.
Note that the theoretically nearby coherent half-integer
mode m = 3; n = 1/2 (following Eq. 4) is absent for a
Gaussian due to Landau damping as discussed above.

For the slightly higher tune Q0y = 0.1875 we show
the tune spectrum on the l.h.s. graph of Fig. 7, and
for Q0y = 0.1931 in the r.h.s. graph. The incoherent
resonance on the l.h.s. graph actually occurs almost at
the upper edge of the tune spectrum, i.e. tail-halo region,
and Q̄y far below the resonance at Qxy = 1/6. It has -
as expected - a pronounced e↵ect by pushing quite a few
particles above the resonance marked at 6Qy = 1. A 3%
emittance growth occurs over 3000 cells of simulation,
which apparently is still going on.

In the r.h.s. case of Fig. 7, Q̄y is still slightly below the
resonance, but now deep in the beam core. Nonetheless
particles are still shifted from below to above the reso-
nance as indicated by the gap developing under it. The
amount of resonant particles is much less than before,
and the emittance growth only about 0.8%. We have
also checked the still higher working point Q0y = 0.204,

FIG. 7. Spectral distributions of Qxy for Gaussian distri-
butions at Q0y = 0.1875 (l.h.s.) and Q0y = 0.1931 (r.h.s.)
showing the incoherent 6Qy = 1 resonance.

such that the resonance occurs below Q̄y and close to
the maximum of the tune spectrum on the falling slope
of it. In this case no e↵ect of resonance could be detected.
This supports the “rms tune” rule - also encountered in
Section II and Refs. [8, 9] in the context of gradient er-
ror resonances - that no resonant e↵ects should occur as
long as Q̄y stays above the resonance line. This finding
obviously merits further detailed research.

More long-term simulations, also including syn-
chrotron oscillations, are a subject of future studies. Our
point here is that the importance of incoherent reso-
nances is not limited to the tail-halo region - as was sug-
gested in Ref. [15] on the basis of simulations over some
hundreds of cells only -, but they may also occur deeper
in the core and contribute to emittance growth up to the
spectral position of Q̄y. Also, we have not been able to
detect any evidence of a coherent shift in this particular
stopband as conjectured in Ref. [15], which also needs to
be explored in a broader context.

V. COMPARISON WITH EXPERIMENTS

We suggest that these findings on incoherent reso-
nances have a relevance for examining the validity of the
FSM frozen space charge model. It has been used as rel-
atively successful approximate simulation model to inter-
pret experimental data on resonances with space charge
in the CERN and GSI synchrotrons [3–5].

FSM simulation models only include incoherent reso-
nance processes, while any coherent phenomena are sup-
pressed due to the lack of selfconsistent feedback on the
space charge potential. Obviously the credibility of FSM
models gets weakened beyond the point, where signifi-
cant changes in the distribution function or intensity oc-
cur. Nonetheless our findings on incoherent resonances
lend support to the physics basis of FSM - up to some
point.

In fact, the reported agreement between FSM sim-
ulations and experimental data looks better than one
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might have expected in view of the lack of feedback. Re-
sults from the extended SIS18 benchmarking campaign
at GSI [3] are shown in Fig. 8. Shown are the results of

FIG. 8. Results of SIS18 measurements (a) and frozen space
charge (FSM) simulations (b) near a sextupole error reso-
nance at Q0x = 4.333. Shown are relative changes of rms
emittances and current versus the bare tune (here denoted by
Qx) for a coasting beam (left column) as well as for a bunched
beam (right column). Also shown is the length change for the
bunched beam. Source: Ref. [3].

measurements (upper row) and simulations (lower row)
for a coasting (left column) and a bunched beam (right
column). Rms emittance and beam loss have been ob-
tained by scanning the working point across a horizon-
tal third order error resonance given by 3Q0x = 13.
Space charge is simulated for some 105 turns by adopting
the FSM method for initial Gaussian beams consistent
with measured profiles, and for a maximum tune shift
2�Qx = 0.025 for the coasting, and 2�Qx = 0.04 for the
bunched beam.

Note the surprisingly good agreement of the measured
and simulated data as far as center and width of stop-

bands. The conjecture of Section IV and Refs. [8, 9]
that no emittance growth occurs as long as Q̄x is above
the resonance is also surprisingly well reflected here: this
amounts to Q0x > 4.35 for the coasting, respectively
Q0x > 4.36 for the bunched beam case. Also note that
the red hatched area in Fig.8 marks the stopband in the
low intensity regime. The fact that the measured loss
near this area is enhanced compared with simulations
is attributed to the not su�ciently well-known dynamic
aperture. This enhanced measured loss also limits the
growth of rms emittances.

Altogether, comparison of measurements and FSM
simulation justifies the preliminary interpretation that in
long-term resonance response the incoherent resonance
e↵ects are the by far dominant mechanism. Coherent
resonance e↵ects, if noticeable, would have to show in
Fig. 8 within the parameter regions Q0x < 4.35 for the
coasting, respectively Q0x < 4.36 for the bunched beam
case. There is, however, no evidence for this.

VI. OUTLOOK

Our discussion of incoherent space charge e↵ects in
transverse resonances has shown their significance in Lan-
dau damping of the coherent half-integer parametric res-
onances. In the absence of such damping they would jus-
tify the additional doubling of lines in resonance charts
as suggested in Ref. [15]. It is expected that this equally
applies to the - theoretically yet unexplored - selfconsis-
tent behavior in bunched beams.

The role of coherent constituents in externally driven
(integer type) resonances with space charge needs more
quantitative research and benchmarking by simulation.
However, we find that the small coherent shifts for higher
than second order resonances - see Fig. 2 - are unlikely
to have an important e↵ect on the overall resonance re-
sponse in case of long-term behavior. The discussion fol-
lowing Fig. 8 suggest that in long-term resonance dynam-
ics they are most likely overshadowed by the incoherent
e↵ects.

In summary, emphasis of future work should be
on long-term bunched beam simulation studies and
code comparison for di↵erent types of resonances and
strengths of space charge e↵ects, and ideally in realistic
synchrotron lattices.
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