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INTRODUCTION
Octupole magnets are the cornerstone of the collective in-

stability mitigation in many hadron synchrotrons, including
the future SIS100 synchrotron [1] of the FAIR project [2].
The betatron tune shifts, and the tune spread, linearly in-
crease with the octupole magnet current, and enhance Lan-
dau damping. On the other hand, a strong octupole field,
as a nonlinearity, can reduce the dynamic aperture [3, 4].
This can put a restriction for the allowable octupole magnet
power. Thus, a good understanding of the octupole magnet
usage for Landau damping of the collective instabilities is
important.

The direct space-charge can produce comparable or
stronger tune shifts than the octupoles. Thus the e�ects
of space-charge should be taken into account in a study
for Landau damping due to octupoles. Space-charge can
have manifold e�ects on Landau damping. Space-charge
can cause loss of Landau damping, it can provide Landau
damping, it changes the incoherent tune distribution and
thus changes Landau damping in the beam.

The bunched beams are considered in this work, with
the focus on the head-tail instability. Head-tail modes [5]
are eigenmodes of the transverse collective bunch oscilla-
tions. Unstable head-tail modes are a major concern for
high-intensity operation in ring accelerators. We consider
unstable head-tail modes with di�erent mode indices k, with
the non-rigid bunch oscillations due to a finite chromaticity,
even the lowest-order mode k = 0.

In the next section we review some properties of Landau
damping in coasting beams and in bunches, the e�ects of
octupoles and space-charge. For this discussion we consider
two dispersion relations. The particle tracking simulations
and the stability study method are described, followed by the
results for the beam stability due to octupoles with space-
charge of di�erent strength. The results and the conclusions
are discussed with the consideration of the incoherent tune
distributions.

THEORY ASPECTS
The space-charge tune shift varies along the bunch,

�Qsc(z) =
g?�(z)rpR
4�3�2"x

, (1)

where �(z) is the line density, (2⇡R) is the ring circum-
ference, � and � are the relativistic parameters, rp =
q2

ion/(4⇡✏0mc2
) is the classical particle radius, "x is the trans-

verse rms emittance. The space-charge tune shift is negative
(a tune depression), the modulus of the tune shift is di�erent
for every individual particle, depending on the transverse
amplitudes and on the longitudinal position along the bunch.

Equation 1 gives the maximal tune shift (for particles with
small transverse amplitudes) for the position z, in a round
beam. The geometric factor g? depends on the transverse
distribution, for the Gaussian profile it is g? = 2. The space-
charge parameter is

q =
�Qsc(0)

Qs

(2)

which is the tune shift for the rms-eqivalent K-V beam [6]
(g? = 1) in the peak of the line density, normalized by the
synchrotron tune Qs .

An octupole magnet of the strength O3 produces the mag-
netic field

Bx = O3(3x2y � y3
),

By = O3(x3
� 3xy2

), (3)

which contributes to the incoherent tune shifts [3] of an
octupole magnet system,

�Qx = �x Jx � �xy Jy ,
�Qy = �y Jy � �xy Jx , (4)

where Jx, Jy are the horizontal and vertical action variables.
For a characteristic tune shift due to octupoles, we use the

parameter

q4 =
�Q�

Qs

, (5)

where �Q� is the tune shift �Qx of a particle with the am-
plitudes ax = �x, ay = 0 (�x is the transverse rms beam
size), which corresponds to Jx = "x/2, Jy = 0.

For calculations of Landau damping due to octupole, the
dispersion relation has been often used [3, 7–10],

�Qcoh

π
1

�Qoct �⌦/!0
Jx
@ ?
@Jx

dJxdJy = 1. (6)

Here, !0 = 2⇡ f0 is the revolution frequency, the incoher-
ent tune shift �Qoct(Jx, Jy) and the distribution function
 ?(Jx, Jy) are two-dimensional dependences. This repre-
sents the important role of the transverse beam profile in
Landau damping. The coherent tune shift�Qcoh results from
the machine impedance in the case of no tune spread, i.e. no
Landau damping. The collective mode frequency ⌦ is the
solution for the given impedance, tune spread, and the beam
distribution. This is the dispersion relation for the horizontal
plane, the corresponding form is for the vertical oscillations.
The dispersion relation Eq. (6) has been derived for a coast-
ing beam, or for rigid dipole oscillations in bunches, but is
has been commonly used also for estimations for the higher-
order head-tail modes. Landau damping due to octupoles
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for non-rigid oscillations of di�erent order modes has been
recently studied in [11].

The e�ects of direct space-charge have been taken into
account in another dispersion relation [12, 13],

π
�Qcoh � �Qsc

�Qoct + �Qsc �⌦/!0
Jx
@ ?
@Jx

dJxdJy = 1. (7)

This is also a 2d case, with the dependency �Qsc(Jx, Jy).
This dispersion relation predicts an important role of nonlin-
ear space-charge [14, 15] for Landau damping. The loss of
Landau damping due to space-charge — the incoherent spec-
trum shifts away from the collective frequency due to linear
space-charge [16–18] — is implicated in Eq. (7). This disper-
sion relation also correctly suggests that there is no Landau
damping due to nonlinear space-charge only [16], even if the
coherent frequency overlaps the incoherent tune spread. Par-
ticle tracking simulations with space-charge [16] confirmed
these conclusions. However, for some (�Qoct+�Qsc)(Jx, Jy)
dependencies Eq. (7) predicts an unphysical antidamping
[16–18].

In the case of head-tail modes in bunches, there are addi-
tional aspects. Due to the chromatic phase advance along the
bunch, already a k = 0 head-tail mode is not a rigid-bunch
oscillation [11], the higher-order modes have more compli-
cated longitudinal structures [5]. The synchrotron motion
plays an important role, the longitudinal density profile �(z)
creates space-charge tune shift variations along the bunch.

In contrast to the case of a coasting beam, the space-
charge induced tune spread provides damping for the modes
k , 0 [19–23]. Damping rates due to the tune spread pro-
duced by the longitudinal bunch density variations have been
demonstrated and quantified in [22], e�ects of tune spreads
in the longitudinal and transverse planes have been studied
in [21,23]. This Landau damping can not be described by the
dispersion relations Eqs. (6, 7) . A combination with the non-
linearities due to octupoles is even more complicated, which
we study in this work using the particle tracking simulations.

PARTICLE SIMULATIONS WITH SPACE
CHARGE AND OCTUPOLES

For the particle tracking simulations we use the particle-
in-cell code PATRIC [22–24, 26] in the PIC mode. The
code has been validated using the exact analytical predic-
tions [22,25,26], for the cases with and without space-charge,
for bunched and for coasting beams. Chromatic e�ects and
the octupole fields Eq. (3) are implemented as transverse
momentum kicks, uniformly distributed over the ring. A
linear rf bucket is used, i.e. the e�ects of the rf nonlinearity
are not taken into account, the synchrotron tune in the simu-
lations of this paper is Qs = 0.01. The machine and beam
parameters for the simulations are inspired by the heavy ion
synchrotron SIS18 [27] at GSI Darmstadt, in our simulations
with the uniform focusing model. The bunch distribution is
3D Gaussian, the beam is round transversally, the resistive-
wall wake W(z) = w0/

p
z is applied in the horizontal plane,

in the longitudinally-sliced manner [25]. For the self-field

space-charge, the self-consistent solver is used in this work.
This is necessary because of changes in the beam profiles
during the beam oscillations with octupoles [11]. The beam
profile modifications should be correctly included into the
self-consistent space-charge structure. Beam losses are in-
volved by an aperture with the radius four times larger than
the initial beam radius.
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Figure 1: Example for an unstable k = 0 head-tail mode
from a simulation without octupoles. The top plot: time
evolution of the bunch o�set (black line), the blue line is
an exponential with the growth rate � = 1.1 ⇥ 10�3. The
bottom plot: related o�set traces along the bunch.

A simulation is started with a tiny perturbation. In the case
without damping mechanism the perturbation grows into a
linear instability, see Fig. 1 for an example. The amplitude
increases exponentially (the blue line in Fig. 1, top) with
the growth rate � = Im(�Qcoh) = 1.1 ⇥ 10�3. The bottom
plot in Fig. 1 shows the transverse o�set overlap from this
simulation, �z is the rms bunch length. It has a typical
pattern of a k = 0 head-tail mode, the wiggles demonstrate
that this is a non-rigid mode.

We study the head-tail modes of di�erent order by shifting
the chromaticity ⇠ and thus the chromaticity phase shift
�b = Q0⇠Lb/(⌘R). For example, the k = 0 mode (Fig. 1)
is the most unstable mode for �b = �1.15 in our case. For
�b = 0.55 the most unstable mode is the k = 1 head-tail
mode (Fig. 2, top plot), for �b = 0.88 the most unstable
mode is k = 2 (Fig. 2, bottom plot).

In our simulation scans we vary the octupole strength
and the space-charge parameter. The wake field and the
chromaticity stay fixed for every head-tail mode. As a result,
the mode drive does not change within the scans. The growth
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Figure 2: Examples for the unstable higher-order head-tail
modes. Transverse o�set traces along the bunch representing
the k = 1 head-tail mode (top plot) and the k = 2 head-tail
mode (bottom plot).

rate from a simulation without any damping for the k = 0
mode is � = 1.1⇥10�3, for the k = 1 mode it is � = 7⇥10�3,
and for the k = 2 mode � = 6 ⇥ 10�3.

The method of our stability study implies finding the
threshold octupole powers (both polarities) of the stability
for a fixed space-charge condition. Figure 3 illustrates a sim-
ulation scan for q = 2 for the k = 0 mode. For the octupoles
with q4 > 0.08 and for the octupoles with q4 < �0.1 the
mode is stabilized, which are determined as the thresholds.
The simulation runs are 104 turns long, which should provide
the resolution for the growth rate well below � = 10�4.
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Figure 3: Output of an octupole power scan from simula-
tions with space-charge (q = 2) for the unstable k = 0 modes.
The red dots show the number of particles remained in the
bunch, the black dots show the final horizontal emittance.

A stable (red lines) and an unstable (black lines) examples
from simulations with octupoles and space-charge are shown
in Fig. 4. The beam losses, the bunch horizontal o�set and
the bunch transverse emittance should be analized. Due
to a strong dependency of the e�ective octupole from the
transverse emittance, there can be a stabilizing emittance
blowup [11]. In the situation with space-charge it is more
complicated, because an emittance blowup also weakens
space-charge.
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Figure 4: Time evolution of the bunch o�set (top plot) and
the transverse emittance (bottom plot) from simulations with
octupoles and with space-charge (q = 2). The black lines
correspond to q4 = 0.048, the red lines are for q4 = 0.1.

Results of the stability studies for the k = 0 mode are
summarized in Fig. 5. The circles show the stability thresh-
olds in the octupole power for the positive octupole polarity,
the squares show the stability thresholds for the negative oc-
tupole polarity. The driving wake and the bunch parameters
besides q are fixed. Thus, in this scan the increasing space-
charge parameter q does not correspond to the increasing
beam intensity, because the driving wake is not changed.
We study Landau damping of a fixed instability for di�erent
space-charge conditions. Figure 6 shows the corresponding
results for the k = 1 mode (top plot) and for the k = 2 mode
(bottom plot).

DISCUSSION
The simulation results in Figs. 5, 6 suggest that more oc-

tupole power is needed for stability at stronger space-charge.
This is similar to the loss of Landau damping due to lin-
ear space-charge in coasting beams. The incoherent tune
distributions in Figs. 7–9 illustrate how space-charge shifts
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Figure 5: Results of the simulations scans for the k = 0
mode: stability thresholds in the octupole power in a depen-
dency from the space-charge parameter q. The red circles
are for the octupole polarity q4 > 0, the black squares are
for the octupole polarity q4 < 0.
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Figure 6: Results of the simulations scans for the k = 1
mode (top plot) and for the k = 2 mode (bottom plot). The
plot notation corresponds to Fig. 5.

particle tunes away from the bare tunes. Octupoles pro-
vide a tune spread, but the combined distribution is still
strongly shifted. As a result, more octupole power is needed
to provide enough tune spread. The coherent tune shifts
of the instabilities are negative, in absolute value equal to
the growth rate, which is a property of the resistive-wall
wake [25]. In our case these values are below 0.01 in modu-
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Figure 7: Tune footprints in a Gaussian bunch for the tune
shifts due to octupoles q4 = 0.8 (top plot), due to space-
charge q = 10 (central plot) and for the combined e�ects
(bottom plot). The color indicates the distribution density
in arb. units, Qs = 0.01.

lus. These tune shifts are small compared to the incoherent
tune shifts, see Figs. 7–9.

Another observation from the results in Figs. 5, 6 is the
"pits" in the q4-growth for the k = 1, 2 modes at medium
space-charge q . 16. This is in agreement with the findings
about Landau damping due to space charge in bunches [19–
23], for example, see Fig. 3 in [22]. In strong contrast, there
is no "pit" in the results for the k = 0 mode (Fig. 5). This
supports the conclusions [22, 23] that there is no additional
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Figure 8: Incoherent tune distribution densities in a Gaus-
sian bunch for the tune shifts due to octupoles q4 = 0.8 (blue
line), due to space-charge q = 10 (black line) and for the
combined e�ects (red line), Qs = 0.01.
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Figure 9: Incoherent tune distribution densities in a Gaus-
sian bunch for the tune shifts due to octupoles q4 = �0.8
(blue line), due to space-charge q = 10 (black line) and for
the combined e�ects (red line), Qs = 0.01.

Landau damping due to direct space-charge for the k = 0
mode.

Comparing the tune spreads due to octupoles of di�erent
polarity (blue lines in Figs. 8, 9), the related asymmetry is
visible. This converts to the stability properties and can be
analized using Eq. (6) or has also been observed in experi-
ments [9]. Our results suggest that there are asymmetries
for di�erent octupole thresholds, see Fig. 3, and Figs. 5, 6.
The polarity q4 > 0 provides more damping and needs less
octupole power for stability than that of q4 < 0, especially
at weak space-charge. For stronger space-charge, the di�er-
ences in octupole thresholds (Figs. 5, 6) between octupole
polarities are moderate. This corresponds to moderate dif-
ferences for the combined space-charge and octupole e�ects
in the tune destributions (red lines in Figs. 8, 9).
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