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Abstract

The effect of transverse Landau damping in circular
hadron colliders depends strongly on the bunch distribu-
tion. The bunches are often assumed to be Gaussian in the
transverse dimensions, as it fits well to measurements and it
is the expected effect of intra-beam scattering. However, a
small change of the distribution can cause a loss of stability.
We study the effect that external noise excites the transverse
motion of the beam, which produces wakefields, which act
back on the beam and cause a diffusion of incoherent parti-
cles. The diffusion is narrow in frequency space, and thus
also in action space. Macroparticle simulations have shown
a similar change of the distribution, which is only detectable
in action space, not projected in position space. The narrow
diffusion efficiently drills a hole in the stability diagram, at
the location of the unstable mode, eventually leading to an
instability. The advised mitigation technique is to reduce
the drilling rate by operating with a stability margin.

INTRODUCTION

Synchrotrons, such as the Large Hadron Collider (LHC),
are dependent on Landau damping for the beams to avoid
self-amplified coherent oscillations. Landau damping is a
physical process where an ensemble of harmonic oscillators,
that would otherwise be unstable, is stabilized by a spread
in the natural frequencies of the incoherent oscillators [1].
Therefore, it depends on the details of the beam and bunch
distribution and the source of detuning that causes the spread
in frequencies. It is common to study Landau damping with
a linearized Vlasov equation, considering the effect of a
small perturbation on top of an equilibrium perturbation.

In the LHC, multiple instances of instability have been
observed that begin at a significant delay after the last mod-
ification of the machine configuration. The delay will be
referred to as the latency of the instability. Latent instabil-
ities have now also been reproduced in experiments in the
LHC with a controlled noise source [2], detailed in Fig. 1.
These instabilities cannot be attributed to a change of the
machine configuration, and may therefore be attributed to
a change of the beam distribution from the initial equilib-
rium distribution. Furthermore, given the dependence on the
noise amplitude, the noise must be essential to the mecha-
nism. It has previously been hypothesized, and checked with
simulations, that the external noise excites the beam, which
then is amplified by wakefields [3]. This mechanism can
explain parts of the discrepancy between the predicted and
operationally required octupole current in the LHC [4]. The
goal of the work presented here is to describe the mechanism
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Figure 1: Emittance evolution of five bunches subject to a
controlled noise source of relative magnitude given by the
legend. The bunches went unstable in order of decreasing
noise amplitude [2]. The six bunches not affected by noise,
of which only one is displayed, did not go unstable in this
configuration.

analytically as a wake-driven diffusion that causes a loss of
Landau damping. The model will be used to better under-
stand this mechanism, and to guide the search for optimal
machine and beam parameters that mitigate this mechanism,
relevant for the LHC and future projects.

THEORY

In this section, the (angular) frequencies w are referred
to instead of the tunes Q = w/27f,,,. The mathematical
explanation of noise excited wakefields consists of 4 steps:
(i) The wakefields drive eigenmodes with complex eigen-
frequencies w,,, found with the linearized Vlasov equation,
assuming no tune spread and no noise; (ii) Due to the tune
spread, the discrete mode mixes with the incoherent spec-
trum, and the complex eigenfrequencies are changed to Q,,.
If Im{Q,,,} > 0, the mode is already unstable. The interest-
ing case is when Im{(Q,,,} < 0; (iii) An external noise source
of amplitude £ (¢) as a function of time, kicks the bunches
transversely. The noise drives the eigenmodes to finite am-
plitudes that depend on the noise amplitude and damping
rate of the modes; (iv) The non-negligible noise excited
wakefields act on the incoherent particles. By considering
the kicks from the wakefields as a stochastic excitation in the
framework of the Liouville equation, we will derive a diffu-
sion equation modeling the distribution evolution driven by
the noise excited wakefields.
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Wakefield eigenmodes — v,

The standard approach used to study beam stability is with
a linearized Vlasov equation [5, 6]. This method considers
the beam as a continuous distribution ¥ in phase space, con-
sisting of a constant equilibrium distribution and a quickly
oscillating perturbation

=V, + ¥, (1

One can similarly include the impedance as a perturbation
in the Hamiltonian

I = %0 + %wake’ @

where 96 models the unperturbed motion. The equilib-
rium distribution drives no dipolar wakefields. Thus, the
wakefields are proportional to the distribution perturbation,
%wake x \I,1~

The Liouville equation can be solved using the perturbed
distribution in Eq. (1) and Hamiltonian in Eq. (2). One
finds impedance normalized eigenmodes m,, with eigen-
values w,, = g + Aw,, and amplitudes y,,(¢), dependent
on impedance, chromaticity and transverse feedback. The
eigenmodes are complex functions of the longitudinal phase
space coordinates. The distribution perturbation can be writ-
ten as a sum over these modes

¥y =) gt On = m,, 3)
m

where i is the imaginary unit, and the importance of Im{w,,}

as a growth rate is highlighted. The amplitude of the indi-

vidual modes are governed by

“

The frequency without impedance is wg € R. By moving
the tune shift caused by the impedance over to the right hand
side (RHS) one finds the impulse acted on the beam by the
wakefields

.. 2 _
XMy + O X Iy, = 0.
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Damped eigenmodes — €2

m

The discrete modes discussed in the previous subsec-
tion can be stabilized by Landau damping. This can be
assessed by the stability diagram theory when all the (head-
tail) modes can be treated independently, as is the case for
the current LHC operation. In the weak head-tail approxi-
mation, the stability diagram in plane j € {x, y} corresponds
to the curve in the complex plane defined by Aw,,; € C in
the dispersion relation [7]

AW (J,,Jy)
-1 fofodf & i dJ; ©)
A&)m] B 00 Y Qm] - wj(‘lxajy)’

where the real part of Q,,; = wo + AQ,,; € C is scanned,
while it has a vanishing positive imaginary part. This is the

x10~4 x10~*

2 T T : 1.0
A 0.5
1 = -
-
< -~
§ 3
o
S 0.08
P £
E . _
~0.5
_ 1 1 _
110 ~05 0.0 0.5 10 10
Re{AOcoh} x1073

Figure 2: Curves at complex tune shift AQ o = Aw,, /27 frey
of modes, when neglecting Landau damping,
that end up with the same imaginary tune shift
Im{Q;p} = Im{Q,,,}/27f,.y, When including Landau
damping. The grey curve is the stability diagram. The red
curves with positive Im{Q; p} > 0 are calculated directly
with Eq. (6), while the blue curves are equal to the stability
diagram shifted downwards by the corresponding Im{Q; p}.

gray curve in Fig. 2. The source of detuning considered
here is Landau octupoles [8]. The tune shift driven by the
wakefields without detuning, Aw,,,;, can be represented by
a point in the same complex plane. If the point is below the
stability diagram, it is stable, if it is above, it is unstable. The
subscript j will be omitted from here on, when not important.

One can use Eq. (6) to find how the undamped tune shift
Aw,, changes due to the tune spread w;(Jy, J,), by finding
the corresponding Q,, that maps to Aw,,,. This is possible as
long as the discrete mode remains unstable, Im{Q,,,} > 0 [9].

Equation (6) cannot map a mode inside the stability
diagram to Q,,. When Im{Q,,} = 0* - 07, the sign of
Im{Aw,,;} in Eq. (6) is flipped as well. In other words,
there is a hole in the codomain of Eq. (6). The flipping has
been found to be due to a mathematical choice, rather than
based on physics [10].

The physics of what is happening when the most unstable
modes are inside the stability diagram has previously not
been given much attention [11, 12]. One reason why is that
these modes are stabilized by Landau damping, and therefore
are not a problem within linear Vlasov theory. However, due
to noise, the dynamics of modes that are initially stable are
crucial to determine whether the beams will remain stable.
A similar problem has been discussed in plasma physics.
Paraphrasing from [13], it was found for small distribution
perturbations that “[A]n arbitrary initial distribution behaves
(after a short transient time) like a superposition of [...]
slightly damped plane waves, which do obey the dispersion
relation”. We assume for now the same to be true in a particle
beam.

A new algorithm must be designed to calculate the com-
plex frequencies of the Landau damped modes that reside
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inside the stability diagram. For the results that will be
presented here, the hypothesis has been made that one can
extend the mapping in Eq. (6) linearly from Im{Q,,} = 0*
into the area where the imaginary part is negative. This is
illustrated by the blue lines in Fig. 2. This approach neglects
the continuous spectrum of the beam that is believed to be
negligible after a short transient time, when the mode is
close to the stability threshold. Thus, this method is only
believed to be accurate when the least stable modes are close
to the stability diagram. This is the main region of interest
in this paper.

Noise excited eigenmodes

The unavoidable noise in the accelerator has been ne-
glected so far for beam stability considerations. The noise
can be modeled as an additional stochastic perturbation to
the Hamiltonian in Eq. (2)

9 = %O + %wa.ke + %noise' @)

The external noise is expected to act at low frequencies
and thus to be dipolar in nature (i.e. affecting all particles
along the bunch equally). It will be included as a stochastic
impulse £(¢), of zero mean, (£(¢)) = 0 and singular auto-
correlation (£(2)£(s)) = 026(t — s). Tt can be decomposed
as &(t) = £(t.)E(z), where &(¢,) is the noise amplitude at
the core of the bunch longitudinally, while =(z) is a nor-
malized function across the length of the bunch. Under the
assumption of dipolar noise, Z(z) will be a constant. The im-
pact of the noise on a bunch can be integrated in quadrature
into a single kick per turn of variance 62, = To2, where
T = 1/f;ey is the revolution period of the machine. By the
Plancherel theorem, the power spectral density of the noise
is given by [14]

2
O ext

FeP ) = 7 @ E 0T el )
0 , otherwise.

The left hand side is the absolute value squared of the Fourier
transform of the noise signal as a function of the angular
frequency.

The impact of the external noise on the eigenmodes can
be found by including the noise on the RHS of Eq. (4) and
multiplying from the left with 77, and taking the average
over the longitudinal distribution, as

©))

Xm + wrzn)(m = Wy <m_mE> &(te) = 0N (L)

Thus, mode m,,, will on average be affected proportionally to
its dipolar moment 7,,. The mode is modeled as a stochasti-
cally driven damped harmonic oscillator, and one can easily
find that the frequency spectrum of y,,, is

QuinZ [£](w)

e (10)

Flamlw) =

centred and peaked at the frequency of the mode, Q,,. In this
paper, the considered noise spectrum is flat. However, in a
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real machine, what matters is the noise spectrum close to the
mode frequency. Since the mode is damped, Im{Q,,,} # O,
its frequency spectrum is free of singularities.

Wakefield driven diffusion

The main question that remains is how the noise excited
damped modes affect the incoherent particles. The incoher-
ent particles in a bunch, will in either transverse plane be
described by their normalized canonical coordinates [15]

Y
y= = y2J cos(¢),
VBeo
1 dy . (in
p=- e (aY + ﬁa) = —\/ﬁsm((p),

where Y is the offset from the design orbit, s is the position
in the beamline, ¢ and B are the Twiss parameters, & is the
initial beam emittance and ¢ is the canonical conjugate of J,
which is the normalized absolute particle action, given in
units of &.

In the case when ¢ = w(t, where w,, is the constant inco-
herent betatron frequency, and the particle receives impulses
Ap(t), the Hamiltonian can be written as

2 2

9% = wol - yAp = o> —yAp,  (12)
such that Hamilton’s equations read
y=wop, Pp=-woy+Ap, (13)
which lead to the following equation of motion
y+ a)(z)y = woAp. (14)

In our case, the sources of the impulses Ap are the external
noise and wakefields,

Ap =&t Puge =+ Y 23~ 03z (19)
m m

The first term on the RHS will be referred to as the direct
noise term, while the second term will be referred to as the
indirect noise term. The direct impact on beam stability of
the external noise was found to be negligible for the LHC
in [16].

Here, we will consider the second term, the impulses from
the noise excited wakefields. This will be considered by the
perturbed Hamiltonian in Eq. (2), renamed as

%:%0(‘1)+%1(¢’]):%O(J)_ypwa.kc’ (16)

consisting of 96 governing the unperturbed non-stochastic
motion, and the perturbation 34; containing the stochastic
forces. It is important that 34, only depends on the actions,
not the phases ¢ of the particles. If the stochastic forces are
sufficiently weak, and thus can be modeled as a perturbation,
they drive a diffusion that can be modeled by [17, 18]
0¥ 0 0W¥eq
Ty [’Dwakew] '

a7
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Figure 3: Shape of the diffusion coefficient due to a single
stable wake driven mode, given by Eq. (19b).

The wakefield driven diffusion coefficient Dy, is given by

0%, 3%,
¢ a¢

1
= 317 [Pyaie] (@),

1
Dwake(w) = ﬂ< (s)

(18)

where the brackets signify an expectancy value, the bar signi-
fies a complex conjugation required to get a real diffusion co-
efficient, and Py, is stochastic since the beam continuously
is excited by the stochastic noise. The diffusion coefficient
is a function of the angular frequency of the particles.

The absolute value of the Fourier transform squared in
Eq. (18) is the power spectral density of the impulse from the
wakefields. In the interesting regime of this work, the modes
are uncoupled, and the power of the different modes can be
added in quadratures to express the diffusion coefficient as

2
”}gnagxt|Awm|

Dyage (@) = 2eIm(Q )2 B(w)C, (19a)
212
B(w) = Im{€2,) : (19b)
(Re(Q2) — w2)” + Im{Q2,)2
_ Re{w,}og + |Aw, /4 Q.7
C-= Reto]? LE s

The B-function, which is illustrated in Fig. 3, defines the
shape of the diffusion coefficient as a function of the in-
coherent angular frequency w. In the limit |[AQ,,| < |wg|
B(w) has a maximum of 1 and half width [Im{€,,}| at half
maximum. The C-function consists of additional factors
that follow if one includes more than the first order terms. It
is close to 1 for all realistic configurations considered here.
In most cases, one mode will be dominant and be the main
driver of diffusion within the bunch distribution.

The frequency dependent diffusion coefficient in Eq. (19)
becomes amplitude dependent due to the amplitude depen-
dent detuning as

Dwake(‘]x"]y) = Dwake[zﬂfrer(Jx’Jy)]~ (20)
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Figure 4: Evolution of transverse distribution due to wake
driven diffusion with detuning only dependent on the action
in the same plane. The actions at half maximum of the dif-
fusion coefficient is marked by the vertical dashed lines. This
example is intended for explaining the distribution evolution
only.

In this paper, we are interested in the detuning caused by
Landau octupoles, which in plane j can be expressed as [8]

Q]’ = on + aj.lx + bj‘]y’ (21)

excluding the negligible tune shift caused by the perturba-
tions in Eq. (7).

A qualitative understanding of what this diffusion does
to the beam, can be acquired already from the expression
for the diffusion coefficient in Eq. (19). Assuming noise
and diffusion in the horizontal plane only, the half width of
the diffusion coefficient in the horizontal action coordinate
will be W; = Im{Q,,}/27f.va,. The diffusion will lead to
alocal flattening of the distribution, and as it is the derivative
of the distribution function that appears in the dispersion
integral in Eq. (6), a local loss of Landau damping can be
expected. The flattening process will be faster for a smaller
W, assuming the same maximum. For sufficiently large W,
the diffusion will be approximately uniform for all actions,
and only lead to an emittance growth, not a qualitative change
of the distribution.

NUMERICAL METHOD

The diffusion equation in Eq. (17) must be solved numer-
ically. The results that will be presented later have been
produced with a finite volume method (FVM) solver imple-
mented in PyRADISE (Python RAdial DIffusion and Stability
Evolution) [16]. The two dimensional action space has been
discretized into a 500 x 500 grid going from O to J,,,x = 18.
It has been assumed that a single mode is dominant. In
reality, changes in the distribution will lead to a change of
the frequency of the least stable mode, and consequently a
change of the dependence of diffusion on the action. This
evolution has not been calculated during the diffusion pro-
cess in the numerical results presented in this paper. In other
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words, the diffusion coefficients are kept constant through-
out the solving process. Given the shape of the diffusion
coefficient in Eq. (19), and linear detuning driven by Landau
octupoles, the diffusion will lead to a local flattening of the
distribution, which is exemplified and exaggerated for b; = 0
in Fig. 4.

The FVM solver gives as output the evolving distribu-
tion ¥, at discrete times 7. For each of these distributions,
the stability diagram is calculated using a numerical trape-
zoidal integrator in PySSD [19], which has been imported in
PyRADISE. If the stability diagram changes enough, so that
the least stable mode is outside and above it, the bunch will
be considered to have become unstable with a latency.

RESULTS

The following results consider the change of distribution
and corresponding change of the stability diagram accord-
ing to PyRADISE. There are small variations between the
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Figure 5: Evolution of distribution in 10 min in (a) and stabil-
ity diagram in (b), due to diffusion driven by wakefields. The
dashed line in (a) marks the actions where O, (/,, Jy) = Oip-
The cross at AQ., = —107* + 10731 in (b) marks the loca-
tion of the least stable mode.
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configurations. The detuning coefficients in Eq. (21) are al-
ways a, = a, =5x 107 and b, = b, = -=3.5x 107>, The
product of the noise amplitude and the dipole moment of
the considered least stable mode in the horizontal plane is
kept at ., 7,, = 5 x 107, The noise in the vertical plane
has been kept equal to zero. The revolution frequency is that
of the LHC, f., = 11.245kHz.

The first configuration includes a least stable mode
of undamped coherent tune shift AQ,.;, = =107 + 1073i.
Due to Landau damping, this mode has been changed to
AQip = —6.98 x 107 — 1.17 x 1073, according to the al-
gorithm illustrated in Fig. 2. The evolution of the distribution
and stability diagram is presented in Fig. 5. The change of
the distribution after 10 min is a local flattening horizontally
at the actions corresponding to Q. (J,,J,) = Oy p, equiva-
lent to the flattening in Fig. 4. There is a change of the
stability diagram at the real tune shift of the least stable
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Figure 6: Evolution of distribution in 10 min in (a) and stabil-
ity diagram in (b), due to diffusion driven by wakefields. The
dashed line in (a) marks the actions where O, (J,.,J,) = O p-
The cross at AQo, = —107% + 1.5 x 10731 in (b) marks the
location of the least stable mode.
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Figure 7: Evolution of distribution in 10 min in (a) and
stability diagram in (b), due to diffusion driven by wake-
fields and the external noise directly. The dashed line in
(a) marks the actions where Q. (J,,Jy) = O p. The cross at
AQcon = —107* + 1.5 x 10731 in (b) marks the location of
the least stable mode.

mode, but the mode is still well within the stability diagram
after 10 min.

In the second configuration, the least stable mode has
been shifted to AQ,., = —107* + 1.5 x 10734, closer to the
stability threshold. Due to Landau damping, this mode
has been changed to AQ; , = —6.98 x 107> — 6.70 x 107,
with a smaller absolute imaginary part than in the first con-
figuration. The evolution of the distribution and stability
diagram is presented in Fig. 6. Due to the weaker damping
of the mode, the drilling of a hole in the stability diagram is
more efficient, and the least stable mode would have become
unstable after approximately 8 min. This mechanism is thus
able to drive instabilities with latencies of the same order of
magnitude as those measured in the LHC in Fig. 1.

So far, only the diffusion due to the noise excited wake-
fields has been studied. Other types of diffusion may be
able to counteract the local flattening and thereby increase
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Figure 8: Evolution of distribution in 10 min in (a) and
stability diagram in (b), due to diffusion driven by wake-
fields and intra-beam scattering. The dashed line in (a)
marks the actions where Q. (J,,Jy) = Qrp. The cross at
AQcon = —107* + 1.5 x 1073 in (b) marks the location of
the least stable mode.

the latency or even prevent the instability. In this third con-
figuration, the diffusion driven by the direct noise term in
Eq. (15) has been included. This diffusion was studied in
detail in [16] and was found to not be detrimental for stability.
Including a damper gain corresponding to a damping time
of 7, = 20 turns and external noise amplitude o, = 1073,
the evolution of the distribution and stability diagram is pre-
sented in Fig. 7. The additional diffusion is zero for actions
such that O,y Jy) = (0 (Ui, Jy)), which is close to the
tune of the least stable mode. The instability in this con-
figuration occurs 1.3% later, compared to the case without
the direct noise term that was illustrated in Fig. 6. In other
words, the direct noise term has negligible stabilizing impact
in this configuration.

Finally, the uniform diffusion expected due to intra-beam
scattering will be considered. A diffusion corresponding to
an emittance growth of 2 %h~! has been included in both
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planes, and the diffusion due to the direct noise term in
Eq. (15) has been removed. The evolution of the distribu-
tion and stability diagram is presented in Fig. 8. There is
now a weak nonzero diffusion at all actions, but it has not
completely counteracted the local flattening close to Q; p.
The least stable mode would have become unstable after
approximately 10 min, 26% later than without the uniform
diffusion.

MITIGATION

Noise excited wakefields drive a narrow diffusion in fre-
quency that leads to the drilling of a hole in the stability
diagram. There are several possible approaches one can take
to mitigate the total drilling. First of all, one should mini-
mize the time spent in transient phases close to the instability
threshold. In a collider, the most critical phase is between
the end of the energy ramp and the start of collisions. In the
LHC the bunches require stabilization by Landau octupoles
alone during this phase. Second of all, one should minimize
the drilling rate. The magnitude of the diffusion coefficient
in Eq. (19a) is proportional to o2 p2|Aw,,[*/[Im{Q,,}|*.
To reduce the diffusion, one can therefore act with equal
success on either of these factors: (i) Minimize the noise
acting on the beam in the machine; (ii) Operate in a regime
where 7,, <« 1. In a machine with only dipolar noise, one
should therefore operate with positive chromaticity (above
transition) to stabilize the dipolar modes, as is common;
(iii) Minimize the machine impedance to limit |Aw,,|. This
is already desired to minimize the initial stability thresh-
old, neglecting that the diffusion changes the distribution;
(iv) Maximize [Im{,, }|, by operating with a stability mar-
gin. This was further motivated by the numerical results.

Further mitigation techniques can be discussed based on
the numerical calculations. Incoherent noise as intra-beam
scattering or synchrotron radiation can to a certain extent
counteract the drilling. This may explain why such latent
instabilities have not been reported before, neither in lepton
machines, nor in low-energy hadron machines. Since the
drilling of the hole is localized at a certain frequency, it
is possible to gradually change the current in the Landau
octupoles, to avoid continuously flattening the distribution
at the same actions. However, this must be balanced with the
goal of maximizing [Im{Q,,}|. It is also possible to consider
increasing the ratio b;/a; of the detuning coeficients, such
that the width of the diffusion coefficient in action space is
increased while not reducing the overall Landau damping.

If it is not possible to mitigate this mechanism with the
techniques proposed so far, one must consider other sources
of detuning. In addition to limiting the time before the beams
are put in collision in a collider, one can try one of the follow-
ing: electron-lens [20], enhanced octupole detuning due to
the telescopic index [21], and wires designed to counteract
beam-beam detuning [22].
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CONCLUSION

Instabilities of high latencies have been observed in the
LHC, both in regular operation and in dedicated experi-
ments. In this paper, we have shown that such instabilities
can develop in high-energy hadron machines with noise and
impedance, by gradually changing the distribution. The key
mechanism is driven by an external source of noise that
excites the beam, which in return affects incoherent parti-
cles through wakefields. These wakefields cause diffusion
in a narrow frequency range centred at the eigenfrequency
of the least stable wake driven coherent mode. This diffu-
sion efficiently drills a hole in the stability diagram at the
eigenfrequency of the corresponding mode. The recom-
mended mitigation technique is to reduce the drilling rate,
by minimizing the maximum of the diffusion coefficient
D ngtn,zn|Awm|2/|Im{Qm}|2. Other sources of diffusion,
as the direct external noise and intra-beam scattering, can
increase the latency, but does not necessarily mitigate the
drilling process completely.

It is believed that the mechanism presented here, diffu-
sion driven by noise excited wakefields, is important in un-
derstanding the troubling observations in the LHC. Many
aspects of this mechanism require and deserve further in-
vestigation. The description of the Landau damped modes
deserve further studies. The chromatic tune shift of the in-
coherent particles remains to be included, and is believed
to be important in understanding the diffusion of a mode
close to a sideband of the main tune. The numerical method
will be improved to self-consistently calculate the diffusion
coefficient as the distribution evolves. Other types of noise,
such as the crab-cavity amplitude noise, should be studied,
as it is expected to drive head-tail modes as efficiently as
dipolar noise drives dipolar modes. Finally, it will be of in-
terest to compare quantitatively the latencies predicted with
this theory to instability latencies measured in the LHC.
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