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Abstract
We discuss several analytical models for impedances of

very short bunches. The approximate analytical models are
compared with direct solution of Maxwell’s equations.

INTRODUCTION
We consider only relativistic case where the longitudinal

w‖ and the transverse ®w⊥ wake functions for a relativistic
point charge q are defined as [1]

w‖(s) = −
1
q

∫ ∞

−∞
Ez(z, t)|t= z+s

c
dz,

∂

∂s
®w⊥ = ∇w‖ . (1)

The coupling impedance is given by the Fourier transform
of the wake function

®Z(k) = 1
c

∫ ∞

0
®w(s)eiksds,

where c is a velocity of light.
For very short bunches the difficulty of numerical calcula-

tion of wakefields can be associated with a small parameter
σz/a, where σz is the rms bunch length and a is the typical
size of the structure. Indeed, for a closed structure of typ-
ical size a the calculation time of the wake potential with
finite-difference code [2] is proportional to (a/σz)4. This
scaling follows from linear dependence of the calculation
time on the number of mesh points, (a/σz)3, multiplied by
the number of time steps, (a/σz).
If the structure is open, f.e. supplied with an outgoing

pipe, then the calculation time increases considerably as we
have to propagate the field in the outgoing pipe along the
formation length a2/σz [3] to reach an accurate estimation
of the improper integral in Eq.(1). For the typical parameters
of the European FEL linac [4], the rms bunch length σz =

25µm and the aperture radius a = 35mm, the formation
length of the wake potential is approx. 25m. Application of
an “indirect integration” method [5] allows to replace the
improper integral in Eq.(1) with a proper one in the outgoing
pipe cross-section. It returns the calculation time back to
(a/σz)4, but the numerical burden remains huge for very
short bunches, σz << a.
On the other hand the small parameter σz/a allows to

develop asymptotic analytical models and to avoid time-
consuming numerical simulations. At this paper we will
review several analytical models for the impedances of very
short relativistic bunches and compare them with direct nu-
merical solution of Maxwell’s equations.

OPTICAL MODEL
In order to estimate the high frequency impedance of

short transitions an optical model was developed in [6, 7].
∗ Igor.Zagorodnov@desy.de

In this approximation we assume that the electromagnetic
fields carried by a short bunch propogate along straight lines
equivalent to rays in the geometric optics. An obstacle inside
the beam pipe can intercept the rays and reflect them away
from their original direction. The energy in the reflected rays
is associated with the energy radiated by the beam, which
can then be related to the impedance.

Figure 1: An example of transition geometry.

Consider a short transition with aperture Sap between two
pipes with apertures SA and SB as shown in Fig. 1. Under
aperture area Sap we mean the minimal cross section in the
structure if we project it along z-axis. Let a is a characteristic
size of the aperture Sap . If the bunch has a short rms length
σz ,σz << a, and the transition length L between the ingoing
pipe aperture SA and the outgoing pipe aperture SB is much
shorter than the formation length, L << a2/σz , then the
high frequency longitudinal impedance is a constant which
can be calculated by relation

Z ‖(®r1, ®r2) = −2ε0
c

∫
∂Sap

φB(®r2, ®r)∂®nφA(®r1, ®r)dl, (2)

where ®n is the outward pointing unit normal to the line el-
ement dl, ε0 is the permittivity of free space, ®r1 and ®r2 are
offsets of the leading and the trailing particles, correspond-
ingly, and φA, φB are the Green’s functions for the Laplacian
in the ingoing and the outgoing pipe cross-sections (see [6]
for details). Let us apply this method to the undulator inter-

Figure 2: The geometry of the vacuum chamber in the un-
dulator intersections.

section at the European XFEL. Here the vacuum chamber
changes from an elliptical pipe to a round one. At the posi-
tion of the elliptical-to-round transition (E2R) an elliptical
absorber of a smaller cross-section is placed as shown in
Fig. 2. At the beginning let us consider a simple case without
the absorber. In this case we have only an elliptical-to-round
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Figure 3: The geometry of transition from round pipe to
elliptical one.

(E2R) pipe transition. The geometry of the transition is
shown in Fig. 3.
The Green’s function for the Laplacian inside the circle

of radius R can be written as

φR(®r1, ®r) = 1
4πε0
<

(
2 ln

z∗z1 − R2

R(z − z1)

)
,

®r = (x, y)T , , z = x + iy.

The Green’s function for the Laplacian inside the ellipse
with half axes w and g can be written as [8]

φE (®r1, ®r) = φ0
E (®r1, ®r) − φ0

E (®r1, ®r0), ®r0 = (0, g)T ,

φ0
E (®r1, ®r) = − 1

πε0

( ∞∑
n=1

e−nu

n
Fn − 1

4
ln | |®r − ®r1 | |2

)
,

Fn =
<Tn( x+iyd )<Tn( x1+iy1

d )
cosh(nu) +

=Tn( x+iyd )=Tn( x1+iy1
d )

sinh(nu) ,

d =
√
w2 − g2, u = coth−1(w/g),

where Tn(z) are the Chebyshev polynomials of the first kind.
For the round-to-eliptical (R2E) pipe transition the

Green’s functions has to be assigned as φA = φR, φB = φE .
The aperture Sap is shown in Fig. 3.

The longitudinal impedance on the axis can be found as
one-dimensional integral

ZR2E
‖ =

4
cπ

∫ ϕ0

0
φE (ϕ, R)dϕ, (3)

ϕ0 = tan−1 ©«
g

w

√
w2 − R2

R2 − g2
ª®¬
,

where φE (ϕ, r) ≡ φE (®0, (r cos(ϕ), r sin(ϕ))T ).
In order to calculate the longitudinal impedance of the

elliptical-to-round (E2R) pipe transition we can use the di-
rectional symmetry relation from [5]

ZE2R
‖ = ZR2E

‖ − 2
c
[φE (®0, ®0) − φR(®0, ®0)].

We evaluate the one dimensional integral, Eq. 3, numeri-
cally. The right graph in Fig. 4 presents the results for the
fixed size of the elliptical pipe (w = 7.5mm, g = 4.4mm)
and the Gaussian beam with rms length σz = 25µm. The
black dots show the numerical results from CST Particle
Studio [9] obtained for the bunch length σz = 100µm and
scaled to the bunch length σz = 25µm (in the optical model

Figure 4: Dependence of the loss factor from the radius of
the round pipe. The left graph presents the results without
the absorber, the right graph presents the results with the
absorber included. The black dots show the numerical results
from CST Particle Studio.

the loss factor is inversally proportional to the bunch length,
see Eq.(13) in [10]).
Let us now consider the geometry with the absorber in-

cluded. Here we consider the absorber as a long collimator.
The absorber has the half width w1 = 4.5mm and the half
height g1 = 4mm. The transition from the elliptical pipe to
the absorber (E2A) can be considered as in-step transition
and we have ZE2A

‖ = 0. The contribution of the absorber to
round pipe (A2R) transition can be found from Eq. (2) with
w1 and g1. The final result is presented in Fig. 4 in the right
graph. We can conclude that the optimal radius of the round
pipe in the undulator intersection is 45-50 mm.
In the example considered the longitudinal impedance

is written as one-dimensional integral Eq. (3). The trans-
verse impedance dipole and quadrupole terms in the Taylor
expansion can be written in closed analytical form [7].
The application of the optical approximation to estimate

the high frequency impedances of different transitions in
the vacuum chamber of the European XFEL can be found
in [10]. The bunch used for the European XFEL operation
is very short and the analytical results obtained are quite
accurate approximations to the coupling impedances. Most
analytical results presented in [10] are new and supplement
those already published in [7]. The method of the optical
approximation is powerful and allows to study analytically a
truly large class of transitions when the analytical form of
2D Green functions of the pipe cross-sections are known.

Usually the vacuum elements in the accelerators are con-
nected with round, elliptical or rectangular pipes, for which
the analytical Green functions are well known. For a general
case the Green functions can be found through numerical
solution of 2D Poisson’s equations.

DIFFRACTION MODEL
The optical theory ignores diffraction effects. It predicts

zero impedance for the pillbox cavity or periodic array of
irises. Indeed, in this case, all the three cross-sections SA,
Sap and SB are equal and Eq. (2) immediately gives a zero
result.

The diffraction theory takes into account the fact that radi-
ated electromagnetic fields do not propogate along straight
line. A Fresnel type integral from the diffraction theory
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Figure 5: An axysimmetric deep pillbox cavity.

of light is used to evaluate the electromagnetic energy that
enters into the cavity region. This energy is associated with
the energy lost by the beam and is thus related to the real
part of the impedance.

For the deep pillbox cavity shown in Fig. 5 the diffraction
theory gives the high-frequency longitudinal (on the axis)
impedance as (see, e.g. [1])

Z ‖(k) =
Z0(1 + i)
2π3/2a

√
g

k
, (4)

where a is the pipe radius and g is the length of the cavity.
The reason for the optical approximation not reproducing

the result of the diffraction theory is that Eq. (4) corre-
sponds to the next order approximation in the small parame-
ter σzg/a2 [6].

For axysimmetric geometry the transverse impedance near
the axis can be approximated as

®Z⊥(k) = (Zx, Zy)T = Zd(k)(x0, y0)T ,

where x0, y0 are coordinates of source particle. The diffrac-
tion model at high-frequencies gives [1]

Zd(k) = Z0(1 + i)
2π3/2a3k

√
g

k
, (5)

The corresponding wake functions in the time domain
read [11]

w‖(s) =
Z0c√
2π2a

√
g

s
, wd(s) = Z0c21.5

π2a3
√
gs.

For the Gaussian bunch with rms length σz we can easily to
calculate the loss and the kick factors

k ‖ =
∫

w‖(s)λ(s)ds =
Z0c

4π2.5a
Γ(0.25)

√
g

σz
,

kd =
∫

wd(s)λ(s)ds =
Z0c2
π2.5a3 Γ(0.75)√gσz,

where λ(s) is the Gaussian charge density and Γ is a gamma
function.

The same estimations for the impedances of pillbox cavity
are obtained from parabolic equation method in [12].

The longitudinal impedance of one isolated pillbox cavity,
Eq.(4), has k−0.5 high frequency behavior. For an array

Figure 6: Periodic array of deep cavities.

of cavities with period p (see Fig.6) the high frequency
behaviour is quite different. It scales as k−1.5. The high
frequency impedance of an infinite cavity array was found
in [13, 14] and it reads

Z ‖(k) =
Z0

2πa

[
1

η(k) − ik
a
2

]−1
, (6)

η(k) =
[
1 − i

2
α

(
g

p

)
p

√
kπ
g

]−1

, (7)

α(x) = 1 − 0.465
√

x − 0.070x.

Inverse Fourier transforming, one obtains an analytical
expression for the wake function:

w
(1)
‖ (s) = −

Z0c
πa2 es/s0erfc(

√
s/s0), (8)

with the distance scale factor s0 = a2g/(2πα2p2).

Figure 7: Longitudinal wake of periodic array of thin di-
aphragms (g/p=1).

We have compared this analytical estimation, Eq.(6), with
accurate numerical solution of Maxwell’s equations by code
ECHO [2]. We will refer to the numerical solution as "exact"
one.
We consider a chain of pillbox cavities with period p =

0.5mm. The cavities have radius b = 1.2mm and are joined
with a pipe of radius a = 0.7mm. The bunch is Gausian
with rms length σz = 10µm.

Our first example is a structure with periodic array of thin
diaphragms, g/p = 0.98. Fig. 7 shows the longitudinal wake

ANALYTICAL IMPEDANCE MODELS FOR VERY SHORT BUNCHES

135



Figure 8: Longitudinal wake of periodic array of short cavi-
ties (g/p=0.1).

potential

W‖(s) =
∫ s

−∞
w‖(s′)λ(s − s′)ds′. (9)

The dashed curve labeled as "ECHO" is the numerical result,
the gray dashed curve labeled as "W1(s)" is the analytical
result, Eq.(6), which disagrees slightly with the "exact" so-
lution. Fig. 8 shows the results for another case where the
cavity gap is much smaller than the period, g/p = 0.1. In
this case the disagreement between the "exact" solution and
the approximation, Eq.(6), is large.

For the case of periodic array of infinitely thin diaphragms,
g/p = 1, an accurate approximation of the impedance was
found earlier by G. Stupakov [15]. In the high frequency
approximation it gives

η(k) =
[
1 − i

2
α(1)

√
pkπ +

1
2

]−1
. (10)

It can be seen that Stupakov’s solution contains the addi-
tional term, which improves the agreement with the "exact"
solution considerably. We would like to have the same order
term in the more general case for arbitrary gap g < p. We
combine Eq.(7) with Eq.(10) and suggest a more general
equation

η(k) =
[
1 − i

2
α

(
g

p

)
p

√
kπ
g
+

1
2

p
g

]−1

. (11)

This equation differs from Eq.(7) by additional term p/(2g)
and it reduces to Stupakov’s result for infinitely thin irises,
g = p.
There is no exact Fourier transform of this impedance.

We introduce here an approximate wake function:

w
(2)
‖ (s) = −

Z0c
πa2 e−

√
s/s1−s/s2,

s1 = s0
π

4
, s2 = s1

(
1
2
− π

4
+

s1p
ag

)−1
.

This wake function has the same Taylor expansion up to the
third order as the exact Fourier transform of Eq.(11). The

corresponding wake potentials labeled as "W2" are shown
by black solid lines in Figs. 7- 8. It can be seen a good
agreement with the "exact" numerical solution.
The high frequency transverse impedance is related to

the longitudinal impedance according to Zd = 2Z ‖/(ka2).
Hence the transverse dipole wake function can be found as

w
(2)
d
(s) = 2

a2

∫ s

−∞
w
(2)
‖ (s′)ds′.

In the next section we will argue that the introduced func-
tion η(k) can be treated as a surface impedance of corrugated
waveguide of arbitrary cross-section.

SURFACE IMPEDANCE
The impedance of a round metallic pipe of radius a with

conductivity κ has long been known [1] and is given by
Eq. (6) with resistive surface impedance

η = ηc =
1
Z0

√
iωµ
κ
, ω = kc.

Let us consider a case when the elements of the vacuum
chamber that generate the beam impedance are small and
uniformly distributed over the surface of the wall. One ex-
ample of such an impedance is that due to surface roughness.
Another example is a corrugated structure [16]. While ex-
act calculation of the impedance in such cases is difficult
the effect on the beam can often be represented by a surface
impedance. In the accelerator context the surface impedance
was previously employed by Balbekov for the treatment of
small obstacles in a vacuum chamber [17]. For a rough
surface it was introduced by Dohlus [18].
It was shown in [18,19] that the effect of the oxide layer

and the roughness can be taken into account through the
inductive part of the surface impedance

η = ηc + iω
L
Z0
,

L = µ0((1 − ε−1
r )doxide + 0.01drough),

where doxide, εr are the thickness of the oxide layer and
it’s relative permittivity, drough is a rms roughness parame-
ter [18].
If the surface impedance is known then we can consider

an arbitrary (smooth enough) cross section of waveguide
with the impedance boundary condition.

Let us consider a structure having rectangular cross sec-
tion, where the material at top and bottom can vary as func-
tion of longitudinal coordinate but the width and side walls
remain fixed and are perfectly electric conducting. The
impedance of such structure of halfwidth w (in x-direction)
can be written as [20]

Z ‖(k) =
1
w

∞∑
m=1

Z(y0, y, km
x , k) sin(km

x x0) sin(km
x x), (12)

Z(y0, y, kx, k) = Zc(kx, k) cosh(kx y0) cosh(kx y)+
Zs(kx, k) sinh(kx y0) sinh(kx y),
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where km
x = (πm)(2w)−1 is a transverse harmonic number.

Using the surface impedace for calculating of high fre-
quency impedance in flat geometry was considered in [21,
22]. It was found that the coefficients in Eq.(12) can be
written in the form

Zc(kx, k) = Z0c
2a

sech2(akx)
[
η−1 − ika

tanh(akx)
akx

]−1
,

Zs(kx, k) = Z0c
2a

csch2(akx)
[
η−1 − ika

coth(akx)
akx

]−1
.

If we use Eq.(7) or Eq.(11) for the surface impedance in
the latter expressions then we obtain the high-frequency
impedance of the rectangular corrugated structure. Follow-
ing this approach analytical approximations for the wake
functions in flat/rectangular corrugated structures are de-
rived in [22–24].

WAKE ASYMPTOTICS AT THE ORIGIN
The limit of high frequencies corresponds to small dis-

tances behind a point charge. For infinitely long cylindrically
symmetric disk-loaded accelerator structure, the steady-state
wakes at the origin are

w‖(0+) = −
Z0c
πa2 ,

∂

∂s
w⊥(0+) = 2Z0c

πa4 .

The same is true for a resistive pipe, a pipe with small peri-
odic corrugations, and a dielectric tube within a pipe. It was
assumed in [3, 25] that it is generally true. For a non-round
structure the constants are different, but again dependent
only on transverse dimensions and independent of material
properties. This statement for an arbitrary slow down layer
was rigorously derived in [26, 27] and it was shown there
that for planar, square, and other cross section geometries,
one can obtain a corresponding form factor coefficient by
using a conformal mapping of these shapes onto the disk.
The asymptotics of the wakes at origin for a short transi-

tion and an isolated cavity are different. We summarize the
asymptotic behavior at the origin of the considered models
in Table 1.

Table 1: Asymptotics of wake functions at the origin

Model w‖(s) w⊥(s)
Optical (short transition) ∼ δ(s) O(1)
Diffraction (cavity) O(1/√s) O(√s)
Diffraction (cavity chain) O(1) O(s)
Slow down layer O(1) O(s)

In Table 1 δ() is a Dirac delta-function and symbol O is
"big O" asymptotic notation.

COMBINING COMPUTATIONS AND
ANALYTICS

The real geometry of accelerator vacuum chamber is quite
complicated and it is a challenge to give a short range wake

Figure 9: Three TESLA cryomodules.

functions for it. However in many situations it is possible
to combine the considered above analytical models with
numerical computations.

The first possibility is to take an analytical model for a sim-
ple geometry and to assume that the real vacuum chamber
can be described by the same model with different coeffi-
cients. These coefficients can be found from fitting of the
model to results of numerical simulations. Such approach
was elaborated in [28,29] in order to estimate the wake func-
tions in TESLA linac of the Eropean XFEL and FLASH at
DESY.

Figure 10: Comparison of analytical and numerical longitu-
dinal wake potentials in the third cryomodule.

Figure 11: Comparison of analytical and numerical trans-
verse wake potentials in the third cryomodule.

The TESLA linac consists of a long chain of cryomodules.
The cryomodule of total length 12m contains 8 cavities and
9 bellows as shown in Fig. 9. The iris radius is 35mm and
beam tubes radius is 39mm. The wakefields for Gaussian
bunches up to σz = 50µm have been studied. In order to
reach the steady state solution the structure of 3 cryomodules
with total length 36m was considered. It was shown that as
for periodic structure the loss factor becomes independent
from the bunch length and the kick factor decreases linearly
with the bunch length (see Table 1).
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After fitting of coefficients in Bane’s model [31] the fol-
lowing wake functions (for one cryomodule) are obtained

w‖(s) = −344e−
√
s/s0

[
V
pC

]
, s0 = 1.74mm, s1 = 0.92mm,

w⊥(s) = 103
(
1 −

(
1 +

√
s
s1

)
e
−
√

s
s1

) [
V

pCm

]
.

Fig. 10 shows numerical (gray solid lines) and analytical
(black dashed lines) wake potentials for bunches with σz =

500, 250, 125, 50µm. The deviation of the curves for the
shortest bunch can be explained by insufficiency of the 3
cryomodules to reach the steady state solution. At the right
side of Fig. 10 the wakes (gray solid lines) together with the
analytical wake function (black dashed line) are shown. The
analytical wake function tends to be the envelope function to
all wakes. Fig. 11 shows likewise the results for transverse
wakes.

It can be seen from Table 1 that the behavior of wake
functions for infinite periodic structure and for isolated cavity
are different. In [32] we have combined two models in
order to obtain wake functions of high harmonic module
and transverse deflecting structure used at FLASH facility
at DESY.
Recently another method was suggested in [33]. The

idea behind the method is to use a combination of computer
simulations with an analytical form of the wake function
for a given geometry in the high-frequency limit (optical
or diffraction model). For example, the longitudinal wake
function of round step-out transition can be well aproximated
as

w‖(s) = wopt (s) + d(s),

wopt (s) = − 1
πε0

ln(ba−1)δ(s),
d(s) = (α + βs).

The crucial element of the method is that the smooth func-
tion d(s) can be obtained from simulations with long bunch
by fitting to the formula. This method that combines a (pro-
cessed) long-bunch wake from an EM solver and a singular
analytical wake model allows one to accurately obtain wake
fields of short bunches, including that of a point-charge.

IMPEDANCE DATABASE MODEL AND
BEAM DYNAMICS SIMULATIONS

The European XFEL contains hundreds of sources of the
coupled impedances. In order to obtain the wake functions
of different elements we have used analytical and numerical
methods. The wake functions of relativistic charge have
usually singularities and can be described only in terms
of distributions (generalized functions). An approach to
tabulate such functions and use them later to obtain wake
potentials for different bunch shapes was introduced in [34–
36].

The longitudinal wake function near the reference trajec-
tory ®ra can be presented through the second order Taylor

expansion

wz(®r, s) = wz( ®ra, s)+ < ∇wz( ®ra, s),∆®r > +
1
2
< ∇2wz( ®ra, s)∆®r,∆®r > +O(∆®r3),

where we have incorporated in one vector the transverse
coordinates of the source and the witness particles, ®r =
(x0, y0, x, y)T , ∆®r = ®r − ®ra, and s is a distance between these
particles.

For arbitrary geometry without any symmetry the Hessian
matrix ∇2wz( ®ra, s) contains 8 different elements:

∇2wz( ®ra, s) =
©«

h11 h12 h13 h14
h12 −h11 h23 h24
h13 h23 h33 h34
h14 h24 h34 −h33

ª®®®¬
,

where we have taken into account the harmonicy of the
wake function in coordinates of the source and the witness
particles [20].
Hence in general case we use 13 one-dimensional func-

tions to represent the longitudinal component of the wake
function for arbitrary offsets of the source and the wittness
particles near to the reference axis. Geometric symmetries of
vacuum chamber reduce the number of the one-dimensional
functions considerably (see, for example, [37]). For each of
these coefficients we use the representation [34]

h(s) = w0(s) + 1
C
+ Rcδ(s) + c

∂

∂s
(Lcδ(s) + w1(s)) , (13)

where w0,w1 are non-singular functions, which can be tab-
ulated easily and constants R, L,C have meaning of resis-
tivity, inductance and capacitance, correspondingly. The
wake potential for arbitrary bunch shape λ(s) can be found
by formula

Wh(s) = w0 ∗ λ(s) + 1
C

∫ s

−∞
λ(s′)ds′ + Rcλ(s)+

c2Lλ′(s) + cw1(s) ∗ λ′(s),
where λ′ is a derivative of λ′.

In order to model the beam dynamics in the presence
of wakefields we use the open source code OCELOT [38].
We have developed and tested the wakefield module. The
implementation follows closely the approach described
in [34], [35]. The wakefield impact on the beam is included
as series of kicks. In [36] we have studied a possibility to
extend the bandwidth of the radiation at the European XFEL
with the help of a special compression scenario together
with the corrugated structure insertion. We have derived an
accurate modal representation of the wake function of corru-
gated structure and have applied this fully three dimensional
wake function in beam dynamics studies with OCELOT in
order to estimate the change of the electron beam properties.

CONCLUSION
We have discussed several analytical models for

impedances excited by short bunches in accelerators. We
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have reviewed some of what has been learned in the last
years concerning analytical approaches to the high frequency
impedance estimation. The results from analytical models
have been compared with direct solution of Maxwell’s equa-
tion. Several techniques for combining of numerical com-
putations and analytics to obtain wake functions of point
charge have been considered. An approach to keeping of
these wake functions in database and using them in beam
dynamics simulations is presented.
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