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Abstract
The role of beam-beam interactions in coherent instabili-

ties in high energy colliders is discussed with a particular
emphasis on the circulant matrix model. This model, based
on the development of a one-turn matrix including all lin-
earised coherent forces, is particularly suited for the study
of the stability of complex configurations involving different
forces. Thus it allows for the study of interplays, e.g. be-
tween the effect of the beam-beam interactions and the beam
coupling impedance. Experimental evidence compatible
with this model is reported.

INTRODUCTION
In a high energy collider, the stability of both beams needs

to be considered in a common framework due to the elec-
tromagnetic interaction between the beams, that strongly
couple their dynamics. In some configurations, the coherent
beam-beam modes can be neglected and the effect of the
beam-beam interaction on the beam stability is limited to
its impact on the amplitude detuning and consequently on
Landau damping [1, 2]. Here we focus on regimes where
the models that consider the dynamic of the two beams
separately, so-called weak-strong regimes, do not represent
accurately the dynamics of the two beams. This applies to
colliders where both beams feature a high brightness, i.e.
most electron-positron or proton-proton colliders.
We start by deriving the coherent force between the two
beams. Based on this force, we introduce the rigid bunch
model to obtain the coherent modes of oscillation in the
most simplistic configuration and then extend this model
to the circulant matrix model. Two methods used to make
predictions beyond the linearised model are discussed. Fi-
nally, observations of coherent beam-beam modes showing
the accuracy of the model are reported.

THE COHERENT BEAM-BEAM FORCE
The beam-beam kick on a point-like particle, called the

incoherent beam-beam kick, can be obtained by integration
of Poisson’s equation [3]. Using a Gaussian distribution of
particles, with r.m.s. transverse beam size σ = σx = σy ,
one obtains the kick felt by a test particle at a position (x, y)
with respect to the other beam’s centroid [4] :
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where we have introduced N the number of charges in the
beam, r0 the classical radius, r =

√
x2 + y2 and the rela-

tivistic γ factor. Since the opposing beam is not point-like,

the total beam-beam kick, called coherent kick, is obtained
by integration of the single particle kicks over the beam
distribution Ψ(x, y) :

∆x ′coh(x, y) =
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dXdY∆x ′(X,Y )Ψ(X − x,Y − y). (2)

Assuming a round Gaussian distribution and using Eqs. 1
and 2, we have [5] :
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For x, y << σ, we find that the coherent kick is half the
single particle kick, whereas for large separation, i.e for
long-range interactions, the difference between coherent and
incoherent vanishes.

THE RIGID BUNCH MODEL
In order to obtain a description of the coherent beam-beam

modes, we want to solve the equations of motion of the two
beams self-consistently. We use as dynamical variables the
average transverse positions and momenta (xl , x ′l ) of the two
beams (l = 1,2) with respect to their closed orbits assuming
that their particle distribution remains Gaussian with fixed
sizes in all degrees of freedom. By linearising all forces, we
may derive the one-turn matrix of this periodic dynamical
system and perform a normal mode analysis, including the
beam-beam interactions self-consistently, thus describing
the coherent modes of oscillation. Let us start by defining
the one-turn matrix of a single beam with a transverse tune
Q and using the optical β function at the interaction point
β∗ as M1B giving its coordinate at turn k + 1 with respect
to the ones at turn k :(
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For the two identical beams, we may define M2B as the
two-beam one-turn matrix :
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with In the identity matrix of size n. Within this basis,
the matrix for a beam-beam interaction may be derived by



linearising Eq. (3) around (x0, y0) the closed orbit difference
between the two beams at the interaction point :

∆x ′coh(x, y) ≈ ∆x ′coh(x0, y0) +
∂∆x ′coh
∂x

(x0, y0)∆x, (6)

with :
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Defining k0 ≡
∂∆x ′coh
∂x

(x0, y0), one can then write the cou-
pling matrix between the two beams, due to the beam-beam
interaction :

MBB =

*....
,

1 0 0 0
−k0 1 k0 0
0 0 1 0
k0 0 −k0 1

+////
-

. (8)

Thus we can write the one-turn matrix of the two beams
including a single beam-beam interaction :
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The normal mode analysis reveals two frequencies each cor-
responding to two degenerate modes. The first mode corre-
sponds to in-phase oscillation of the two beams (σ-mode),
its coherent tune is the unperturbed machine tune Qσ = Q.
The second mode of oscillation corresponds to out-of-phase
oscillation of the two beams (π-mode), we have :

cos(2πQπ ) = cos(2πQ) − β∗k0sin(2πQ). (10)

The stability of the beam-beam modes is given by the imag-
inary part of the eigenvalues of the matrix given by Eq. (9),
which is reported in Fig. 1. Comparing to Eq. (10), we see
that the stability boundary is given by the resonance con-
dition 2Qπ = n. Since we have limited our description of
the lattice and of the beam-beam interactions to first order,
only the lowest order resonances are visible. In principle
higher order resonances could also drive the coherent beam-
beam modes [6]. It is therefore important to make sure there
exist damping mechanisms for these modes, the descrip-
tion of which will be discussed when extending beyond the
linearised model.

The circulant matrix model
The circulant matrix model [7–9] offers a convenient way

to describe the transverse oscillation of the two beams, in-
cluding not only the effect of beam-beam interactions, but

Figure 1: Largest imaginary part of the eigenvalues of
Eq. (9), defining the stable area in terms of unperturbed
tune Q0 and beam-beam parameter ξ.

2π
Ns

r1
rN r

δ σδ/

/s σs

Figure 2: Discretisation of the longitudinal phase space into
Ns slices and Nr rings.

also other important components of the coherent dynamic
of the beam, in particular the effect of the transverse wake
fields. This model is an extension of the rigid bunch model,
allowing for different parts of the longitudinal phase space
to oscillate independently, thus enabling the description of
head-tail modes. The longitudinal phase space is discretised
in polar coordinates using so-called slices and rings as il-
lustrated in Fig. 2. The transverse motion of each discrete
element can be treated as in the rigid bunch model, except
that all the combinations of beam-beam interactions between
the elements needs to be considered. Equation (6) becomes :

∆xi = k0

*.....
,

NsNr∑
j=0

Q j x j

NsNr∑
j=0

Q j

− xi

+/////
-

. (11)



As an example, let us use two slices and a single ring and
start from Eq. (9) :
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where xi, j,k refer to the position of slice j from beam i at
turn k. The lattice matrix M2B can easily be extended since
all slices go through the same lattice and the beam-beam
coupling matrix becomes :

MBB =

*.............
,

1 0 0 0 0 0 0 0
−k0 1 0 0 k0/2 0 k0/2 0
0 0 1 0 0 0 0 0
0 0 −k0 1 k0/2 0 k0/2 0
0 0 0 0 1 0 0 0

k0/2 0 k0/2 0 −k0 1 0 0
0 0 0 0 0 0 1 0

k0/2 0 k0/2 0 0 0 −k0 1

+/////////////
-

.

(13)
Such amatrix can be built in a systematic way for an arbitrary
number of slices and rings, and for complex configurations
of beam-beam interactions involving multiple bunches and
multiple interaction points, including the longitudinal varia-
tions of the beam-beam force due to a crossing angle or to
the variation of the β function over the interaction [10]. In
order to introduce the effect of the wake, we need to take

a closer look at the discretisation of the longitudinal phase
space, in particular the longitudinal position of the discrete
elements needs to be defined. The definition of the discreti-
sation is somewhat arbitrary, however it is convenient to
split the phase space such that the charge contained in each
element is identical, as was implicitly assumed when deriv-
ing Eq. (13). For a Gaussian distribution of particles, the
slices are uniformly distributed, we have θi = 2πi/Ns and
the radius of the rings set such that :

e−r j+1 − e−r j =
1
Nr
, (14)

where r j =
√

(s j/σs )2 + (δ j/σδ )2 is the radius of the j th

ring in the normalised longitudinal phase space, i.e. σs

and σδ are the bunch length and relative momentum spread.
Therefore we obtain the longitudinal position si, j and mo-
ment deviations δi, j of the ith slice and j th ring :{

si, j = r jσscosθi
δi, j = r jσδsinθi

. (15)

Thus we can write the interaction between the discrete el-
ements of the distribution through the beam coupling by
using the integrated dipolar and quadrupolar wake functions
Wdip(∆s) and Wquad(∆s) [11]:

∆x ′i =
NsNr∑
j=0

Wdip(s j − si )x j +Wquad(s j − si )xi . (16)

This can be written in a matrix form, in our two-
slice model and assuming that the two beams
experience identical impedances, we have :

MZ =
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,

1 0 0 0 0 0 0 0
Wquad(s1 − s0) 1 Wdip(s1 − s0) 0 0 0 0 0

0 0 1 0 0 0 0 0
Wdip(s0 − s1) 0 Wquad(s0 − s1) 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 Wquad(s1 − s0) 1 Wdip(s1 − s0) 0
0 0 0 0 0 0 1 0
0 0 0 0 Wdip(s0 − s1) 0 Wquad(s0 − s1) 1

+/////////////
-

, (17)

such that the equation of motion becomes :
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We have written the transverse one-turn matrix for the lon-
gitudinal distribution, yet the longitudinal motion has been

put aside. Thanks to the choice of decomposition of the
longitudinal phase space, the longitudinal motion can be
introduced rather simply, as it consists of a rotation of the
slices within each ring. The longitudinal one-turn matrix is
given by the circulant matrix :

Sr = PNsQs

Ns
, (19)



where Qs is the synchrotron tune and PNs is a permutation
matrix :

PNs =
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,

0 1
0 1

. . .
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1 0 1

+/////
-

. (20)

Since the rotation is identical for all rings and for both beams
and considering NB1 and NB2 number of bunches in the two
beams, the matrix in the same basis can be built using the
outer product with identity matrices :

Ms = INB1+NB2 ⊗ INr ⊗ Sr . (21)

The full one-turn matrix, including the synchro-betatron
motion, the beam coupling and beam-beam interactions is
then given by :

M = MZ · MBB · Ms ⊗ M1B , (22)

and its stability can be studied through normal mode
analysis. Let us discuss a simple configuration of two
identical bunches colliding at a single interaction point
without crossing angle or variations of the β function over
the interaction length and assuming that the lattice and
the impedance experienced by both beams are identical.
Figure 3a shows the frequency of the two normal modes
obtained with a single slice and a single ring. As expected,
we find back the solution of the rigid bunch model, where
the σ-mode frequency stays unperturbed, while the π-mode
frequency is shifted by −ξ. Figure 3b shows the same
result with a single ring and 10 slices, allowing to see the
frequency of azimuthal modes, appearing as sidebands
of the betatron tune. Their frequencies are shifted by
−ξ/2 due to the beam-beam interaction. This difference
between the behaviour of the sidebands can be understood
by looking at Eq. (11), where we observe that the sum over
the positions of the slices is actually the dipolar moment
of the oscillation. Since only the azimuthal mode 0 has a
dipolar component, the other modes are only affected by
the beam-beam interaction in an incoherent way. In other
words, the frequency of the modes are shifted, however the
corresponding sidebands of the two beams do not oscillate
coherently. In the presence of wake fields, the situation is
different, since the perturbed azimuthal modes may also
have a dipolar component. Figure 4a illustrates the impact
of a resistive wall impedance on the frequency of the normal
mode in the same configuration. The perturbed modes have
indeed acquired a dipolar moment, which allows them to
interact through the beam-beam interaction. This effect
manifests strongly as a mode coupling instability where the
frequency of the π-mode reaches the one of the azimuthal
mode -1 and where the frequency of the azimuthal mode 1
reaches the one of the σ-mode.
Moving towards more realistic configurations, the chro-
maticity also perturbs the head-tail modes, allowing them
to couple through the beam-beam force at any beam-beam
parameter, as shown by Fig. 4b. From this plot it is clear

(a) 1 ring, 1 slice

(b) 1 ring, 10 slices

Figure 3: Eigenfrequencies of the coherent mode of oscil-
lation of two round symmetric beams colliding head-on in
one single interaction point for different beam-beam param-
eters. The points are colour coded according to their dipole
moment, the σ and π modes are purely dipolar (red), while
the synchrotron sidebands have no dipolar moment (blue).
The eigenvalues are all real in absence of other mechanisms.

that an efficient damping mechanism is needed in order to
maintain the stability of colliding beams. This point will be
further discussed in the next section.

By construction the circulant matrix is well suited to
study any linearised transverse force depending on the longi-
tudinal position, such as the effect of an RF-quadrupole [12]
or chromaticities of any order. The effect of a transverse
feedback may also be considered [7].
As the model is based on the construction of a one-turn
matrix, the modelling of multiturn effects, e.g. due to a
long-range impedance source, is implicitly neglected. This
limitation may be overcome by extending Eq. (16) such that
the effect of previous turns is taken into account, assuming
a given phase relation between the motion of the discretised
element turn after turn. In other words, such a model
would be based on an ad-hoc assumption on the mode
of oscillation, which is not necessarily valid in complex
configurations of beam-beam interactions.

Considering the one-turn matrix of multiple consecutive
bunches in a given lattice, it is clear that it has several
degenerate eigenvalues since every bunch has the same tune.
The normal mode analysis of such a non-normal matrix is
known to fail to describe its long term behaviour [13]. In
accelerators, such effects were already observed as the beam
breakup instability in a linear accelerator. Conceptually, the
configuration of multiple bunches in a ring with a negligible
multiturn wake is analogous to a linear accelerator. For



(a) Q′ = 0

(b) Q′ = 2

Figure 4: Eigenfrequencies of the coherent mode of oscil-
lation of two round symmetric beams colliding head-on in
one single interaction point for different beam-beam param-
eters in the presence of a resistive-wall type of impedance.
In absence of chromaticity, a coupling instability appears
when the frequencies of the coherent beam-beam modes
reach the ones of the synchrotron sidebands. In the presence
of chromaticity, the coherent interaction between the two
beams has an impact on the stability of head-tail modes, at
any beam-beam parameter.

example a short train of bunches in the LHC matches these
assumptions, the circulant matrix model allows for a proper
description of its behaviour, nevertheless the tools needed
to analyse the stability of the one-turn matrix have to be
adapted [10].

A major limitation of the circulant matrix lies in the lin-
earisation of the forces which results in an inaccuracy of the
frequency of the coherent modes [14] and prevents the study
of transverse Landau damping.

BEYOND THE LINEARISED MODEL
Going beyond the linearised model is crucial to under-

stand Landau damping. Analytically, this can be achieved by

Figure 5: Estimation of the coherent modes of oscillation
with the circulant matrix model using the code BimBim [10]
for the nominal HL-LHC configuration [15] with a single
interaction point based on the wake field of the HL-LHC
model at top energy [16], which is largely dominated by the
resistive wall impedance of the collimators. The dots are
color coded with the dipolar component of the correspond-
ing mode from yellow (min) to red (max). The spectrogram
of the oscillation obtained with the macroparticle simula-
tions (COMBI) is shown in the backgrown of the upper plot,
together with the exponential fit of the growth rate as a blue
line in the lower plot. The dark lines represent the extension
of the incoherent spectrum and its synchrotron side bands.
Courtesy [17].

relaxing the constraint of the rigid bunch model and instead
write the equation of motion of the particle distribution of
both beams in a coupled system of Vlasov equations. Such
a derivation can be found in [18], showing that in the simple
configuration studied in the previous section of two identi-
cal beams colliding in a single interaction point, no Landau
damping is expected for neither the σ nor the π modes due
to the shift of the coherent mode frequencies that exceeds
the shift of the frequency of oscillation of the single particles
due to the non-linearity of the beam-beam force, constitut-
ing the so-called incoherent spectrum. The same model
predicts qualitatively Landau damping for beam-beam tune
shifts exceeding the synchrotron tune, due to an interplay of
the coherent beam-beam modes with the synchrotron side
bands of the incoherent spectrum. In order to quantify the
strength of the Landau damping in the presence of a given
impedance, self-consistent macro-particle simulations need
to be performed. As an example, the result of an analysis of
the stability of the two beams in the HL-LHC using the code
COMBI [10] is shown in Fig. 5, using a 6 dimensional model



Figure 6: Measured (circles) and computed (lines) synchro-
betatron coherent beam-beam mode tunes as a function
of the beam-beam parameter ξ at BINP’s VEPP-2M, with
Qx = 0.101, Qs = 0.0069, β∗ = 6 cm, σs = 0.7·β∗ and a
beam energy of 440 MeV. Courtesy [19].

of the coherent kick taking into account the variation of the
β function along the interaction length, the so-called hour-
glass effect [17]. Similarly to the chromaticity, the hourglass
effect allows the beam-beam mode to couple and generate
an instability at any beam-beam parameter, as shown by the
prediction of the circulant matrix. As long as the frequencies
of the coherent modes lie outside of the incoherent spectrum
as well as its synchrotron side bands, the macro-particle
simulations are consistent with the linearised model. As the
π-mode frequency enters the lower sideband and the upper
sideband overlaps with the σ-mode frequency, the instability
predicted in the linearised model vanishes in the full model
as predicted qualitatively by Vlasov perturbation theory. The
remaining instability at low beam-beam parameter may be
stabilised for example with a transverse feedback [9].

OBSERVATIONS
VEPP-2000

In absence of beam instabilities, the frequency of the head-
tail coherent modes, or synchro-betatron coherent beam-
beam modes, may still be investigated by exciting the beam
and measuring its response in the frequency domain. This
was tested at the VEPP-2M with a remarkable agreement
between the circulant matrix model and the measurement
(Fig. 6). Worth noting that since VEPP-2M is an electron-
positron collider, the tune shift due to the beam-beam inter-
action is positive as opposed to the other examples discussed
here from the (HL-)LHCwhich collides particles of identical
charge.

LHC
As opposed to BINP’s VEPP-2M, CERN’s LHC features

a strong impedance mainly due to the collimation system,
which may excite the coherent beam-beam modes. A short
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Figure 7: Spectrogram of the transverse beam oscillation
during an experiment with two bunches per beam colliding
with a varying transverse offset at the interaction point. The
normalised separation between the beams at the IP (black
line) is deduced from the measured luminosity reduction
factor.

experiment was dedicated to the measurement of coupling in-
stability with beams colliding with a transverse offset, at the
end of a special fill with two bunches per beam [9]. Before
t = 0, in Fig. 7, a series of spikes in the oscillation ampli-
tude mark a few tests of the stability of separated beams
without transverse feedback, by switching it off and on again
when an instability was observed. At t = 0, the beams were
brought into collision at one interaction point with the trans-
verse feedback on. Once the beams were colliding HO, the
transverse feedback was no longer required to maintain the
beams stability. The beams were then re-separated transver-
sally in steps, visible in Fig. 7. At each step, the stability
without transverse feedback was tested, as previously. It
was observed that the beams are stable without transverse
feedback for separations below 0.7 σ and from 1.8 to 6 σ,
whereas unstable from 0.7 to 1.8 σ and at 6 σ. Also, the
instability at intermediate separations has different charac-
teristics than for 6 σ separation. The frequency of the mode
with separated beams is consistent with a head-tail mode
with na = −1, whereas the frequencies of the modes with
intermediate separations are consistent with the ones of co-
herent beam-beam modes. Also, at intermediate separations
both beams are unstable simultaneously, whereas at large
separations, only one of the beams experienced instabilities.
The small range of separations, and therefore of beam-beam
tune shifts, are consistent with the circulant matrix model
prediction, as well as the capacity of the transverse feedback
to maintain the beam stability for any separation.
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