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Abstract
A previous formula for longitudinal beam impedance was

developed by S. Heifets, A. Wagner and B. Zotter and con-
sists of 13 terms. The formula by Heifets, Wagner and Zotter
is developed up to terms of second order in the transverse
offsets. In this report we develop a new formula, which use
symmetries from the Lorentz reciprocity principle and the
multipolar decomposition of transverse fields to reduce the
number of terms from 13 to 8. This new formula is also de-
veloped up to second order, but could of course be developed
up to any higher order. The transverse beam impedances
(for horizontal and vertical planes) can be by obtained by
differentiation of this new formula.

INTRODUCTION
The previous formula for the longitudinal impedance by

S. Heifets, A. Wagner and B. Zotter in Ref. [1] (See also Ref.
[2]) and it gives the longitudinal beam coupling impedance
as a function of the position of the transverse positions of
the drive and test particles (See Ref. [3] for a definition of
the drive and test particles). The new formula shown in this
paper is based on additional constrains to Heifets, Wagner
and Zotter’s formula. These constraints comes from two
physical principles: The Lorentz reciprocity principle and
the Multipolar expansion of 2D fields. It is important to
note that both the Heifets, Wagner and Zotter formula and
the new formula gives the beam coupling impedance only -
neither includes direct nor indirect space charge impedance.

The Lorentz reciprocity principle
The Lorentz reciprocity principle says that the longitu-

dinal beam impedance must stays unchanged if the drive
and test particles are interchanged. The principle can be
illustrated with two antenna. Injecting a current in the first
antenna will give a voltage on the second antenna. Revers-
ing the situation, and now injecting the same current in the
second antenna, we will get exactly the same voltage in the
first antenna as we had in the second antenna (see Fig. 1):

Figure 1: Injecting a current in the antenna to the left, will
induce a voltage in the antenna to the right. The Lorentz
reciprocity principle says that injecting the same current in
the antenna to the right will produce exactly the same voltage
in the antenna to the left.

The Lorentz reciprocity principle describes what is also
called the mutual impedance. Mutual impedance is best
illustrated by transformers. (see Fig. 2). In this example a
current I1 (this is an oscillating current) is injected on the
primary winding. This current will induce a flux ÏĘ in the
iron core: φ = B · A, where φ is the flux, B is the B-field and
A is the area of the transformer core. Using Amperes law:∮
C

B dl = µ0µr I1 · N1, where C is the circumference of the
transformer; µ0 and µr are the permeability of free space
and the relative permeability of the iron in the transformer;
I1 is the current in the primary winding and N1 is the number
of windings on the primary side. Making the approximation
that the circumference is everywhere the same, then the flux
will be: φ = A · µ0µr · N1

C · I1. The induced voltage on
the secondary windings from this flux is: V2 = −N2 · dφdt =
−A · µ0µr · N1∗N2

C · dI1dt . With a similar argument, the voltage
on the primary winding can be calculated as a function of
the secondary current: V1 = −A · µ0µr · N1∗N2

C · dI2dt . If I1
is identical to I2 then the voltages V1 and V2 will also be
identical and the Lorentz reciprocity principle is shown for
a transformer.

Figure 2: Injecting the current “ I1” in the primary winding,
will give a voltage “ V2” on the secondary winding. In
the same way, if we would inject the same current in the
secondary winding, the voltage on the primary winding
would be exactly the same. The Lorentz reciprocity principle
is clear if the number of windings would have been the
same on both the primary and secondary sides, because then
currents and voltages would also be the same on both sides.

It is interesting to note that the beam impedance coming
from the wall currents is more precisely called the beam cou-
pling impedance. The reason is that a beam going through
a vacuum chamber represents a current. This current will
induce currents on the chamber walls, because just like a
transformer they are coupled like the currents in the primary
(i.e. the the beam current) and secondary windings (i.e the
wall currents) of a transformer.

Whether the path of the drive particle works as the trans-
mitting antenna while the path of the test particle works as
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the receiving antenna or vise-versa i.e. The longitudinal
beam coupling impedance is the same when the drive and
test particle positions are interchanged: Z | |(xd, xt, yd, yt ) =
Z | |(xt, xd, yt, yd). This feature was already documented by
S.Heifets and B.Zotter in Ref. [4].

Multipolar expansion in 2D
Multipolar expansion is described in Ref. [5] and the

expansion in cartesian coordiantes is detailed in Ref. [6].
Multipolar expansion is well known for accelerator magnets,
where e.g. dipole magnet bends the beam in circular trajec-
tories, and quadrupolar magnets (i.e. 4 poles, 2 North and 2
South) acts as special bending magnets that bends the beam
more the further the beam is from the center. Fig. 3 shows
the shape of the fields. For each order of multipole there
are two types of fields, called Normal and Skew fields. The
Normal or Skew types of field depends on the azimuthal
angle of the magnet:

Figure 3: Normal field patterns up to third order for re-
spectively a dipole, quadrupole and sextupole magnet. The
potentials are:
Dipole: x Quadrupole: x2

2 − y2

2 Sextupole: x3

3 − xy2

Figure 4: Skew field patterns up to third order for respec-
tively a dipole, quadrupole and sextupole magnet. The po-
tentials are:
Dipole: y Quadrupole: x · y Sextupole: x2y − y3

3

There is no limit to how high the order can be. In LHC
there are correction magnets up to 12’th order (Dodecapole).
The idea of multipolar decomposition is the same as in
Fourier Transforms, where a function is decomposed into
a sum of Sin[] and Cos[] functions. The new formula for
longitudinal beam coupling impedance has only terms up
to second order i.e. only terms up to quadrupolar order are
included. Please note that multipolar decomposition only
works for realistic field patterns i.e. field patterns that occurs
in nature. In this sense the decomposition is an analytical
function (See Ref. [7] ).

DERIVATION OF THE NEW FORMULA
Standard Taylor series evaluation, up to second order,

gives the longitudinal beam coupling impedance with 15
terms. Each term consist of a function of frequency multi-
plied with a combination of transverse positions of the drive
and test particles:
Z[xd, xt, yd, yt ] = Z1[w]+ Z2[w]xd + Z3[w]xt + Z4[w]yd +
Z5[w]yt + Z6[w]x2

d
+ Z7[w]x2

t + Z8[w]y2
d
+ Z9[w]y2

t +

Z10[w]xdxt + Z11[w]xdyd + Z12[w]xdyt + Z13[w]xt yd +
Z14[w]xt yt + Z15[w]ydyt
Using the multipolar decomposition, the following relations
are obtained: Z6[w] = Z7[w] = −Z8[w] = −Z9[w]
The formula for the longitudinal beam coupling impedance is
now reduced to 13 terms and these terms are identical to the
terms in Heifets, Wagner and Zotter’s formula (See Ref. [1]
equation (24) ). By using the Lorentz reciprocity principle
i.e. that the longitudinal beam coupling impedance is the
same when the drive and test particle positions are inter-
changed: Z | |[xd, xt, yd, yt ] = Z | |[xt, xd, yt, yd] the number
of terms in the formula is reduced from 13 to 8 terms and
the new formula is obtained:

Z | |[xd, xt, yd, yt ] = Z0

+ Z1,x(xd + xt ) + Z1,y(yd + yt )
+ Z2,A(xd2 + xt2 − yd

2 − yt
2)

+ Z2,B(xdyd + xt yt ) + Z2,C(xdyt + xt yd)
+ Z2,D(xdxt ) + Z2,E (ydyt ) (1)

where xd and yd are the transverse positions of the drive
particle i.e. generally the beam moves along the this path.
xt and yt are the transverse positions of the test particle i.e.
the induced voltage is measured along this path.

To illustrate the Lorentz reciprocity principle, a sim-
ulation with CST (See Ref. [8]) was done on a collimator
type structure, see Fig. 5:

Figure 5: CST simulation of a collimator type structure.
The jaws (yellow) have a conductivity of 105 [S/m]

where the jaws are made of lossymetal with a conductivity of
105 [S/m]. The result is shown in Fig. 6 and clearly demon-
strates that the Longitudinal beam coupling impedance is
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identical when the path of the drive and test particles are
interchanged:

Beam=H0,1L Test=H3,-2L
Beam=H3,-2L Test=H0,1L
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Figure 6: Result of the CST simulations of the collimator
in Fig. 5. The longitudinal beam coupling impedance is
identical when the path of the drive and test particles are
interchanged. Red curve: The drive particle have the trans-
verse coordinates: (x,y)=(0,1) and the test particle has the
coordinates: (x,y)=(3,-2). Blue curve: The drive particle
have the transverse coordinates: (x,y)=(3,-2) and the test
particle has the coordinates: (x,y)=(0,1).

The new formula in equation (1) make several predictions,
one of which is that changing the product xdyd should give
the same effect on the Z | | as changing the product xt yt , i.e.
both these product have the same coefficient Z2,B. This is
again illustrated with a CST simulation of the structure in
Fig. 5, but this time the conductivity of the jaws is 102 [S/m].
This is done to avoid the classical thick wall regime, where
the real and imaginary parts of Z | | are always equal to each
other. Using a conductivity in the jaws equal to 102 [S/m]
ensures that the real and imaginary parts are different. The
simulation result is shown in Figure 7:

Figure 7: Result of the CST simulations of the collimator
in Fig. 5 illustrating that the coefficient Z2,B is the same for
both the product of XTYT as the product of XDYD.

The new formula in equation (1) for the longitudinal
beam coupling impedance can, in combination with the

Panofsky-Wenzel theorem, be used to calculate the trans-
verse impedances: Z⊥,x=

βc
ω

dZ| |
dxt

and Z⊥,y=
βc
ω

dZ| |
dyt

.
Looking at the horizontal transverse beam impedance terms:
Z⊥,x=Z1,x +2 βcω Z2,Axt +

βc
ω Z2,Byt +

βc
ω Z2,C yd+

βc
ω Z2,D xd

we see the two well known transverse impedance terms, the
dipolar impedance: βcω Z2,D and the quadrupolar impedance:
2 βcω Z2,A.
Conventionally an equipment is characterized by only

five parameters: Z0 = Longitudinal impedance; 2 βcω Z2,D =

Dipolar impedance (horizontal plane); 2 βcω Z2,A =

Quadrupolar impedance (horizontal plane); βcω Z2,E = Dipo-
lar impedance (vertical plane) and finally −2Ûβcω Z2,A =
Quadrupolar impedance (vertical plane). However, since the
quadrupolar impedances for horizontal and vertical planes
have the same amplitude, but opposite signs, there are in fact
only four distinct parameters. To characterize an equipment
with the above four parameters neglects the additional four
other parameters: Z1,x ; Z1,y; Z2,B and Z2,C . Even though
the parameters Z1,x ; Z1,y; Z2,B and Z2,C are often zero be-
cause of symmetries (see next chapter SYMMETRIC VAC-
UUM CHAMBERS AND THEIR EFFECT ON BEAM
IMPEDANCE), they should not be forgotten in asymmetric
structures.

SYMMETRIC VACUUM CHAMBERS AND
THEIR EFFECT ON BEAM IMPEDANCE
Vacuum chamber symmetries will reduce the number of

parameters in the longitudinal beam coupling impedance
formula (1). A Left/right symmetric vacuum chamber gives
Z1,X = 0, Z2,B = 0 and Z2,C = 0. (this results from solving
the equation: Z | |[xd, xt, yd, yt ] = Z | |[−xd,−xt, yd, yt ])
Similarly an up/down symmetric structure, see Figure 8,
gives Z1,Y = 0, Z2,B = 0 and Z2,C = 0:

Figure 8: Up/Down symmetric structure. The transverse
wake potentials of this structure is simulated with CST and
the result of these simulations are shown in Fig. 9 and 10

:

For the Up/Down symmetric structure in Fig. 8 above, the
transverse horizontal beam impedance is:
Z⊥,x=Z1,x +2 βcω Z2,Axt +

βc
ω Z2,Byt +

βc
ω Z2,C yd+

βc
ω Z2,D xd
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If Z2,B and Z2,C are zero, then the transverse horizontal wake
potential should stay constant when the vertical position of
either the drive- or the test particles are changed. This is
illustrated in Fig. 9 and 10.

Figure 9: CST simulation of the transverse horizontal wake
potential for the Up/Down symmetric structure in Fig. 8.
The red curve is the transverse wake potential for yt = 0.0
mm. The green curve is the transverse wake potential for yt
= 0.5 mm. Since the two curves are identical, Z2,B must be
zero.

Figure 10: CST simulation of the transverse horizontal wake
potential for the Up/Down symmetric structure in Fig. 8. as
a function of the vertical position of the drive particle. The
red curve is the transverse wake potential for yd = 0.0 mm.
The green curve is the transverse wake potential for yd = 0.5
mm. Since the two curves are identical, Z2,C must be zero.

A 90 degrees symmetric structure, i.e. a structure which is
unchanged when rotated by 90 degrees (see Fig. 11), only
have dipolar tranverse impedance.

Figure 11: Structure with 90 degrees symmetry. Because
of the 90 degrees symmetry, this structure only have dipolar
beam impedance.

This means that only the horizontal dipolar term Z2,D and
the vertical dipolar term Z2,E are different from zero while
all the other transverse parameters:
Z1,x, Z1,y, Z2,A, Z2,B and Z2,C are all zero (See Ref. [9]).
is interesting to note also that the horizontal and vertical
dipolar terms are equal for 90 degrees symmetric structures
Z2,D = Z2,E - in fact the dipolar impededance is the same
in any direction - i.e. independent of the angle that it is
measured - see Fig. 12:

Figure 12: PBCI (See Ref. [10]) simulation of the 90 degrees
symmetric structure in Fig. 11. The dipolar wakefields
are identical for any rotation angle of the structure in Fig.
11, confirming that structures with 90 degrees symmetry
have the same dipolar beam impedance in any direction.
Simulation courtesy of Dr. E. Gjonaj TU Darmstadt

MORE WORK TO BE DONE

More work needs to be done to better understand the new
formula for the longitudinal beam coupling impedance. The
formula is presently developed to second order, but should
be developed to third order, so that feed-down analysis can
be done. Feed-down analysis will show the beam impedance
if the beam does not go through the center, but is offset
from the center. The principle of feed-down analysis is best
known from accelerator magnets and is shown in Ref. [11].
It was shown recently that the quadrupolar beam

impedance for circular vacuum chambers is only zero if
the beam moves at ultra-relativistic speeds i.e. γ = ∞ (See
Ref. [12]). The formula for the quadrupolar beam impedance
per unit length, was gives as: dZy (quad)

dz =
k0Zs

4πbβγ2I2
0 (

k0b
βγ )

and we can indeed see that it will only be zero if γ → ∞.
However, this formula looks very much like it describes a
space charge beam impedance, and if this is indeed the case,
then the new formula for the beam coupling impedance in
(1) could still be true for γ < ∞, as it only describes beam
coupling impedance and not space charge impedance.
Another very interesting prospect for multipolar expan-

sion is that possibly one could eliminate all transverse beam
impedance in collimators (and other structures) by shaping
the collimator as a very high order multipole (See Ref. [13])
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