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This report includes a collection of studies devoted to a discussion of (i) the status of theoretical
efforts towards the calculation of higher-order Standard Model (SM) corrections needed for the
FCC-ee precision measurement programme, (ii) the possibility of making discoveries in physics
by means of these precision measurements, and (iii) methods and tools that must be developed
to guarantee precision calculations of the observables to be measured. This report originates
from presentations at the 11th FCC-ee Workshop: Theory and Experiments, 8–11 January 2019,
CERN, Geneva [1], with 117 registered participants and 42 talks on theory.

1 The FCC-ee electroweak factory
In the 2018 report [2], we focused on theoretical issues of the FCC-ee Tera-Z, which will be a
e+e− collider working at the Z resonance energy region. However, the FCC-ee collider project
will work in several energy regions, making it a complete electroweak factory, covering the
direct production of all massive bosons of the SM and the top quark. This plan is summarised
in Table A.1.1.

Table A.1.1: Run plan for FCC-ee in its baseline configuration with two experiments. The WW
event numbers are given for the entirety of the FCC-ee running at and above the WW threshold.

Phase Run duration Centre-of-mass Integrated Event
(years) energies luminosity statistics

(GeV) (ab−1)
FCC-ee-Z 4 88–95 150 3× 1012 visible Z decays
FCC-ee-W 2 158–162 12 108 WW events
FCC-ee-H 3 240 5 106 ZH events
FCC-ee-tt 5 345–365 1.7 106 tt̄ events

The exceptional precision of the FCC-ee comes from several features of the programme.

1. Extremely high statistics of 5× 1012 Z decays, 108 WW, 106 ZH, and 106 tt̄ events.
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2. High-precision (better than 100 keV) absolute determination of the centre-of mass energies
at the Z pole and WW threshold, thanks to the availability of transverse polarisation and
the resonant depolarisation. This is a unique feature of the circular lepton colliders, e+e−
and µ

+
µ
−. At higher energies, WW, ZZ, and Zγ production can be used to constrain the

centre-of-mass energy with precisions of 2 and 5 MeV, at the ZH cross-section maximum
and at the tt̄ threshold, respectively. At all energies, e+e− → µ

+
µ
− events, which occur

at a rate in excess of 3 kHz at the Z pole, provide, by themselves, in a matter of minutes,
the determination of the centre-of mass energy spread, the residual difference between
the energies of e+ and e− beams and (relative) centre-of-mass energy monitoring with a
precision that is more than sufficient for the precision needs of the programme.

3. The clean environmental conditions and an optimised run plan allow a complete pro-
gramme of ancillary measurements of currently precision-limiting input quantities for the
precision EW tests. This is the case for the top quark mass from the scan of the tt̄
production threshold; of the unique, direct, measurement of the QED running coupling
constant at the Z mass from the Z–γ interference; of the strong coupling constant by
measurements of the hadronic-to-leptonic branching fractions of the Z, the W, and the τ

lepton; and, of course, of the Higgs and Z masses themselves.

For the reader’s convenience, we also include Table A.1.2 from the CDR, showing some
of the most significant FCC-ee experimental accuracies compared with those of the current
measurements. More on the experimental precision of the FCC-ee can be found in volumes 1
and 2 of the CDR documents [3, 4]. The experimenters are working hard to reduce systematic
uncertainties by devising dedicated methods and ancillary measurements; the task of the the-
oretical community will be to ensure that the SM predictions will be precise enough so as not
to spoil the best foreseeable experimental accuracies, i.e., the statistical uncertainties.

If future theory uncertainties match the FCC-ee experimental precision, the many different
measurements from the FCC-ee will provide the capability of exhibiting and deciphering signs
of new physics. Here are two examples: the EFT analysis searching for signs of heavy particles
physics with SM couplings shows the potential to exhibit signs of new particles up to around
70 TeV; with a very different but characteristic pattern, observables involving neutrinos would
show a significant deviation if these neutrinos were mixed with a heavy counterpart at the level
of one part in 100 000, even if those were too heavy to be directly produced.

Table A.1.2 shows that the FCC-ee has the potential to achieve (at least) a 20–100 times
higher precision or better in electroweak precision measurements over the present state-of-the-
art situation. This includes such input quantities as the Z, Higgs, and top masses, and the strong
and QED coupling constants at the Z scale. This extremely favourable situation will require
leap-jumps in the precision of the theoretical computations for Standard Model phenomena,
for all quantities given in Table A.1.2. The theory calculation must also be able to include the
improved input parameters [2,5], which, in the particular case of the FCC-ee, will be measured
within the experimental programme.

The quantities listed in Table A.1.2 are called electroweak precision observables (EWPO)
and encapsulate experimental data after extraction of well-known and controllable QED and
QCD effects, in a model-independent manner. They provide a convenient bridge between real
data and the predictions of the SM, or of the SM plus new physics. Contrary to raw experimental
data (like differential cross-sections), EWPOs are also well-suited for archiving and long-term
use. Archived EWPOs can be exploited over long periods of time for comparisons with steadily
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Table A.1.2: Measurement of selected electroweak precision observables (EWPOs) at the
FCC-ee, compared with the current precision. The systematic uncertainties are initial esti-
mates and might improve on further examination. This set of measurements, together with
those of the Higgs properties, achieves indirect sensitivity to new physics up to a scale Λ of
70 TeV in a description with dimension-6 operators, and possibly much higher in some specific
new physics models.

Observable Current FCC-ee FCC-ee Comment,
value ± Error stat. syst. dominant experimental error

mZ (keV) 91186700 ± 2200 4 100 From Z line shape scan,
beam energy calibration

ΓZ (keV) 2495200 ± 2300 7 100 From Z line shape scan,
beam energy calibration

RZ
` (×103) 20767 ± 25 0.06 0.2–1 Ratio of hadrons to leptons,

acceptance for leptons
αs(mZ) (×104) 1196 ± 30 0.1 0.4–1.6 From RZ

`

Rb (×106) 216290 ± 660 0.3 <60 Ratio of bb̄ to hadrons,
stat. extrapolated from SLD

σ0
had (×103) (nb) 41541 ± 37 0.1 4 Peak hadronic cross-section,

luminosity measurement
Nν(×103) 2991 ± 7 0.005 1 Z peak cross-sections,

luminosity measurement
sin2θeff

W (×106) 231480 ± 160 3 2–5 From Aµµ

FB from Aµµ

FB at Z peak,
beam energy calibration

1/αQED(mZ)(×103) 128952 ± 14 4 Small From Aµµ

FB off peak
Ab

FB, 0 (×104) 992 ± 16 0.02 1-3 b quark asymmetry at Z pole,
from jet charge

Apol,τ
FB (×104) 1498 ± 49 0.15 <2 τ polarisation and charge asymmetry,

τ decay physics
mW (MeV) 80350 ± 15 0.5 0.3 From WW threshold scan,

beam energy calibration
ΓW (MeV) 2085 ± 42 1.2 0.3 From WW threshold scan,

beam energy calibration
αs(mW)(×104) 1170 ± 420 3 Small From RW

`

Nν(×103) 2920 ± 50 0.8 Small Ratio of invisible to leptonic,
in radiative Z returns

mtop (MeV/c2) 172740 ± 500 17 Small From tt̄ threshold scan,
QCD errors dominate

Γtop (MeV/c2) 1410 ± 190 45 Small From tt̄ threshold scan,
QCD errors dominate

λtop/λ
SM
top 1.2 ± 0.3 0.10 Small From tt̄ threshold scan,

QCD errors dominate
ttZ couplings ± 30% 0.5 – 1.5% Small From ECM = 365 GeV run
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improving theoretical calculations of the SM predictions, and for validations of the new physics
models beyond the SM. They are also useful for the comparison and combination of results from
different experiments. However, removing trivial but sizeable QED or QCD effects from EWPOs
might induce additional sources of uncertainty. The work needed is well-known concerning QED,
more significant conceptual work may need to be done for QCD.

Let us summarise briefly the mandatory improvements of the calculations of QED effects
in EWPOs according to recent work [6]:

1. improved calculation of the additional light fermion pair emissions (for Z boson mass and
width);

2. better calculation of the final-state radiation effects in the presence of cut-offs (for RZ
` );

3. implementation of a new QED matrix element in the Monte Carlo (MC) event gener-
ator for low-angle Bhabha processes (for the luminosity determination in view of the
measurement of σ0

had and other cross-sections);

4. O(α2) calculation for e+e− → Zγ (for the determination of Nν);

5. improved MC simulation of τ decays (for the effective weak mixing angle and tau branching
ratio measurements);

6. QED effects at the W pair production threshold (for measurement of the W mass and
width);

7. initial–final-state interference (e.g., for the forward–backward charge asymmetry of lepton
pairs around the Z peak).

For more on the related subject of the separation of QED effects from weak quantities
at the FCC-ee precision and generally on the improvements in the definition of EWPOs, see
recent discussions in Ref. [2]. A similar systematic discussion of the QCD effects in EWPOs is
in progress, see Ref. [2] and Section B.2 in this report.

For the FCC-ee data analysis, owing to the rise of non-factorisable QED effects above
the experimental uncertainties, direct use of MC programs might become the standard for
fitting EWPOs to the data, even at the Tera-Z stage [2, 6, 7]. New MC event generators will
have to provide built-in provisions for an efficient direct fitting of EWPOs to data, which are
not present in the LEP legacy MCs. Section C.3 of Ref. [2] describes possible forms of future
EWPOs at FCC-ee experiments and specifies the new required MC software. It is emphasized
there that, owing to non-factorisable QED contributions, the multiphoton QED effects will have
to be factorised at the amplitude level. Additional quantities available in tau and heavy flavour
physics will reach 10−5 precision and are likely to need similar attention.

Very precise determinations of MW at the FCC-ee will rely on the precise measurement
of the cross-section of the e+e− → W+W− process near the threshold. A statistical precision
of 0.04% of this cross-section translates into 0.6MeV experimental uncertainty on MW, com-
pared with the current 3MeV theoretical uncertainty for MW. Therefore, improved theoretical
calculations are required for the generic e+e− → 4f process near the WW threshold with an
improvement of one order of magnitude. The most economical solution will be to combine the
O(α1) calculation for the e+e− → 4f process with the O(α2) calculation for the doubly resonant
e+e− →W+W− subprocess. The former calculation is already available [8]. The latter will need
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to be developed; inclusion of the resummed QED corrections will be mandatory. For details,
see Chapter B and Ref. [9].

In the case of the FCC-ee-H, MH will be obtained from the e+e− → HZ process with a
precision better than 10MeV [3,10]. Theory uncertainties (mainly owing to final-state radiation
effects) will be subdominant. The main focus will be on calculations of Higgs boson branching
ratios and self-couplings. See Chapters B and E.

The anticipated experimental uncertainty on the mt measurement at FCC-ee-tt [2] is
O(20) MeV. On the theory side, there are several sources of uncertainties: (i) the perturbative
uncertainty for the calculation of the threshold shape with higher-order QCD corrections; (ii)
the threshold mass definition translated into the MS scheme; and (iii) the precision of αs.
Combining these three sources of uncertainty, a theoretical uncertainty close to the experimental
one and less than 50 MeV formt appears feasible.∗ In addition, a very accurate determination of
the efficiency of experimental acceptances and selection cuts is needed. This task will require the
inclusion of higher-order corrections and resummation results in a Monte Carlo event generator;
next-to-leading-order (NLO) QCD corrections for off-shell tt̄ production, and matching between
these contributions, complement previous semi-analytic results.

In this report, we are especially interested in the discussion of input parameters and of
EWPOs connected with W, H, and top production physics. These are masses of heavy SM
particles, their couplings, and also αQED and αQCD, which, as running quantities, must be
adjusted carefully at the considered high-energy regions. These issues will be discussed in this
report.

2 What this theory report brings: an overview
The report is divided into four basic chapters. Both the workshop and this report are mainly
devoted to precision theoretical calculations. It is a most important subject because the value
of most of the FCC-ee experimental analyses relies on the precision of the Standard Model and
BSM predictions.

In Chapter B, the status and prospects for measurements and determination of αQED and
αs at the FCC-ee are given, but also issues of QED and QCD resummations, an EFT radiative
correction approach to W boson production, heavy quarkonia, analysis of the weak mixing angle
from data (important, as it definitely has non-perturbative effects different from those in α),
QCD vertex functions beyond two loops, EFT and QED in flavour physics, top pair production
and mass determination, and a summary of SM precision predictions for partial Higgs decay
widths.

In Chapter C, numerical and analytical methods for precision multiloop calculations are
presented and recent advances in the field are discussed. The chapter is an addition to the 2018
report [2]. We mentioned already that Monte Carlo generators are very important, as they link
pure experimental data with theory. Generators for precision e+e− simulations, τ , top, and W
boson physics, heritage projects, and the need for proper software preservation with Monte
Carlo generators are also discussed in Chapter C.

Chapter D consists of only one contribution. SMEFT theory is a bridge between SM
physics and the analysis of extended gauge models. The chapter is connected with this issue
and a specific code is presented. For another discussion, see the talk by J. de Blas [12].

∗Examples show that estimations of higher-order corrections can differ from actual calculations by factors of
three to five [7, 11].
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In Chapter E, finally, three contributions are collected, about Higgs models that go beyond
the Standard Model theory.
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