
Chapter B

Precision calculations in the Standard Model

1 αQED, eff(s) for precision physics at the FCC-ee/ILC
Contribution∗ by: F. Jegerlehner [fjeger@physik.hu-berlin.de]

Discovering the ‘physics behind precision’ at future linear or circular colliders (ILC or FCC
projects) requires improved SM predictions based on more precise input parameters. I will
review the role of αQED, eff at future collider energies and report on possible progress based on
results from low-energy machines.

1.1 α(M2
Z) in precision physics (precision physics limitations)

Uncertainties of hadronic contributions to the effective fine structure constant α ≡ αQED are
a problem for electroweak (EW) precision physics. Presently, we have α, Gµ, and MZ as the
most precise input parameters, which, together with the top Yukawa coupling yt, the Higgs self-
coupling λ, and the strong interaction coupling αs allow us to make precision predictions for the
particle reaction cross-sections encompassed by the Standard Model (SM). The cross-section
data unfolded form detector and photon radiation resolution effects are often conveniently
representable in terms of so-called pseudo-observables, such as sin2 Θf , vf , af , MW, ΓZ, ΓW, . . . ,
as illustrated in Fig. B.1.1.

Because of the large 6% relative correction between α in the classical limit and the effective
value α(M2

Z) at the Z mass scale, where 50% of the shift is due to non-perturbative hadronic
effects, one is losing about a factor of five orders of magnitude in precision. Nevertheless, for the
vector boson Z and W, top quark, and Higgs boson precision physics possible at future e+e−
colliders, the best effective input parameters are given by α(MZ), Gµ, and MZ. The effective
α(s) at a process scale

√
s is given in terms of the photon vacuum polarisation (VP) self-energy

correction ∆α(s) by

α(s) = α

1−∆α(s) ; ∆α(s) = ∆αlep(s) + ∆α(5)
had(s) + ∆αtop(s) . (1.1)

To be included are the perturbative lepton and top quark contributions, in addition to the
non-perturbative hadronic VP shift ∆α(5)

had(s) from the five light quarks and the hadrons they
form.
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Fig. B.1.1: Many precisely measurable pseudo-observables associated with scattering-,
production-, and decay processes are interrelated and predictable in terms of a few independent
input parameters.

The current accuracies of the corresponding SM input parameter are:

δα
α

∼ 3.6 × 10−9 ,

δGµ

Gµ

∼ 8.6 × 10−6 ,

δMZ
MZ

∼ 2.4 × 10−5 ,

δα(MZ)
α(MZ) ∼ 0.9÷ 1.6 × 10−4 (present : lost 105 in precision!) ,
δα(MZ)
α(MZ) ∼ 5 × 10−5 (FCC-ee/ILC requirement) .

(1.2)

We further note that δMW/MW ∼ 1.5× 10−4 , δMH/MH ∼ 1.3× 10−3 , δMt/Mt ∼ 2.3× 10−3 ,
at present. Evidently, α(MZ) is the least precise among the basic input parameters α(MZ), Gµ,
and MZ, and requires a major effort of improvement. As an example, one of the most precisely
measured derived observables, the leptonic weak mixing parameter sin2 Θ` eff = (1− v`/a`)/4 =
0.231 48± 0.000 17 and also the related W mass MW = 80.379± 0.012GeV are affected by the
present hadronic uncdertainty δ∆α(MZ) = 0.000 20 in predictions by δ sin2 Θ` eff = 0.000 07 and
δMW/MW ∼ 4.3× 10−5, respectively.

Here, one has to keep in mind that, besides ∆α, there is a second substantial leading
one-loop correction, which enters the neutral to charged current effective Fermi-couplings ratio
ρ = GNC(0)/GCC(0) = 1 + ∆ρ , where ∆ρ = 3

√
2M2

t Gµ/16π2 is quadratic in the top quark
mass. The mentioned δMt/Mt uncertainty affects the MW and sin2 Θ` eff predictions, as given
by

δMW

MW
∼M2

W/(2M2
W −M2

Z) ·∆ρ δMt

Mt
∼ 1.3× 10−2 δMt

Mt
' 3.0× 10−5 , (1.3)
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δ sin2 Θf

sin2 Θf
∼ 2 cos2 Θf

cos2 Θf − sin2 Θf
∆ρ δMt

Mt
∼ 2.7× 10−2 δMt

Mt
' 6.2× 10−5 , (1.4)

which are comparable to the current uncertainties from δ∆α. Thus, an improvement of δMt by
a factor of five appears to be as important as an improvement of α(MZ). We are reminded that
the dependence on MH is very much weaker because of the custodial symmetry, which implies
the absence of M2

H corrections, such that only relatively weak logMH effects are remaining.
The input parameter uncertainties affect most future precision tests and may obscure

new physics searches! To reduce hadronic uncertainties for perturbative QCD (pQCD) contri-
butions, last but not least, it is also very crucial to improve the precision of QCD parameters
αs, mc, mb, mt, which is also a big challenge for lattice QCD.

1.1.1 The relevance of α(M2
Z)

Understanding precisely even the simplest four-fermion, vector boson, and Higgs boson pro-
duction and decay processes, requires very precise input parameters.

Unlike in QED and QCD in the SM, a spontaneously broken non-Abelian gauge theory,
there are intricate parameter inter-dependences, all masses are related to couplings, and only six
quantities (besides f 6= t fermion masses and mixing parameters), α, Gµ, andMZ, in addition to
the QCD coupling αs, the top quark Yukawa coupling y, and the Higgs boson self-coupling λH,
are independent. The effective α(M2

Z) exhibits large hadronic correction that affects prediction-
like versions of the weak mixing parameter via

sin2 Θi cos2 Θi = π α√
2Gµ M2

Z

1
1−∆ri

; ∆ri = ∆ri(α,Gµ,MZ,mH,mf 6=t,mt) , (1.5)

with quantum corrections from gauge-boson self-energies and vertex and box corrections, where
∆ri depends on the definition of sin2 Θi. The various definitions coincide at tree level and hence
only differ by quantum effects. From the weak gauge-boson masses, the electroweak gauge
couplings, and the neutral current couplings of the charged fermions, we obtain

sin2 ΘW = 1− M2
W

M2
Z
, (1.6)

sin2 Θg = e2/g2 = πα√
2Gµ M2

W
, (1.7)

sin2 Θf = 1
4|Qf |

(
1− vf

af

)
, f 6= ν , (1.8)

for the most important cases and the general form of ∆ri reads

∆ri = ∆α− fi(sin2 Θi) ∆ρ+ ∆ri reminder , (1.9)

with a universal term ∆α, which affects the predictions of MW, ALR, Af
FB, Γf , etc. The leading

corrections are ∆α(M2
Z) = Π′

γ
(0)− Re Π′

γ
(M2

Z) from the running fine structure constant and

∆ρ = ΠZ(0)
M2

Z
− ΠW(0)

M2
W

+ 2 sin ΘW

cos ΘW

ΠγZ(0)
M2

Z
,

which is proportional to Gµ M
2
t and therefore large, dominated by the heavy top quark mass

effect, or by the large top Yukawa coupling.
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The uncertainty δ∆α implies uncertainties δMW, δ sin2 Θi given by

δMW

MW
∼ 1

2
sin2 ΘW

cos2 ΘW − sin2 ΘW
δ∆α ∼ 0.23 δ∆α , (1.10)

δ sin2 Θf

sin2 Θf
∼ cos2 Θf

cos2 Θf − sin2 Θf
δ∆α ∼ 1.54 δ∆α . (1.11)

Also affected are the important relationships between couplings and masses, such as

λ = 3
√

2Gµ M
2
H (1 + δH(α, . . . )) ; y2

t = 2
√

2Gµ M
2
t (1 + δt(α, . . . ) , (1.12)

which currently offer the only way to determine λ and yt via the experimentally accessible
masses MH and Mt. Direct measurement of λ and yt will probably be possible only at future
lepton colliders, such as the FCC-ee.

The parameter relationships between very precisely measurable quantities provide strin-
gent precision tests and, at high enough precision, would reveal the physics missing within the
SM. Currently, the non-perturbative hadronic contribution ∆α(5)

had(M2
Z) limits the precision pre-

dictions. Concerning the relevance of quantum corrections and their precision, one should keep
in mind that a 30 SD disagreement between some SM prediction and experiment is obtained
when subleading SM corrections are neglected, and only the leading corrections ∆α(M2

Z) and
∆ρ in Eq. (1.9) are accounted for.

Calculate, for example, the W and Z mass from α(MZ), Gµ and sin2 Θ` eff : first sin2 ΘW = 1−M2
W/M

2
Z

is related to sin2 θ`,eff(MZ) via

sin2 θ`,eff(MZ) =
(

1 + cos2 ΘW

sin2 ΘW
∆ρ
)

sin2 ΘW ,

where the leading top quark mass square correction is

∆ρ = 3M2
t
√

2Gµ

16 π2 ; Mt = 173± 0.4GeV .

The iterative solution with input sin2 θ`,eff(MZ) = 0.23148 is sin2 ΘW = 0.224 26 while 1−M2
W/M

2
Z = 0.222 63

is what one gets using PDG:

M exp
W = 80.379± 0.012GeV ; M exp

Z = 91.1876± 0.0021GeV .

Predicting, then, the masses, we have

MW = A0

sin2 ΘW
; A0 =

√
πα√
2Gµ

; MZ = MW

cos ΘW

where, including photon VP correction α−1(MZ) = 128.953± 0.016. For the W and Z masses, we then get

M the
W = 81.1636± 0.0346GeV ; M the

Z = 92.1484± 0.0264GeV .

This gives the following SD values:
W : 23σ ; Z : 36σ

Uncertainties from sin2 θ, α(MZ), and Mt, as well as experimental uncertainties, are added in quadrature.
The result is, of course, scheme-dependent, but illustrates well the sensitivity to taking into account the proper
radiative corrections. Actually, including full one-loop and leading two-loop corrections reduces the disagreement
below the 2σ level.
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Fig. B.1.2: Left: Plot by Riesselmann and Hambye in 1996, the first two-loop analysis after
knowing Mt from CDF [2]. Right: the SM dimensionless couplings in the MS scheme as a
function of the renormalization scale for MH = 124–126GeV, which were obtained in Refs.
[1, 3–5].

1.2 The ultimate motivation for high-precision SM parameters
After the ATLAS and CMS Higgs discovery at the LHC, the Higgs vacuum stability issue is one
of the most interesting to be clarified at future e+e− facilities. Much more surprising than the
discovery of its true existence is the fact that the Higgs boson turned out to exhibit a mass very
close to what has been expected from vacuum stability extending up to the Planck scale ΛPl
(see Fig. B.1.2). There appears to be a very tricky conspiracy with other couplings to achieve
this ‘purpose’. Related is the question of whether the SM allows us to extrapolate up to the
Planck scale. Thus, the central issue for the future is the very delicate ‘acting together’ between
SM couplings, which makes the precision determination of SM parameters more important than
ever. Therefore, higher-precision SM parameters g′, g, gs, yt, and λ are mandatory for progress
in this direction. Actually, the vacuum stability is controversial at present at the 1.5σ level
between a metastable and a stable EW vacuum, which depends on whether λ stays positive up
to ΛPl or not. This is illustrated in Fig. B.1.3. If the SM extrapolates stable to ΛPl, obviously the
resulting effective parameters affect early cosmology, Higgs inflation, Higgs reheating, etc. [1].
The sharp dependence of the Higgs vacuum stability on the SM input parameters, as well as
on possible SM extensions and the vastly different scenarios that can result as a consequence
of minor shifts in parameter space, makes the stable vacuum case a particularly interesting one
and it could reveal the Higgs particle as ‘the master of the Universe’. After all, it is commonly
accepted that dark energy provided by some scalar field is the ‘stuff’ shaping the Universe both
at very early (inflation) as well as at late times (accelerated expansion).

It is highly conceivable that perturbation expansion works up to the Planck scale with-
out a Landau pole or other singularities and that the Higgs potential remains (meta)stable!
The discovery of the Higgs boson has supplied us, for the first time, with the complete set of
SM parameters and, for the peculiar SM configuration, revealed that all SM couplings, with
the exception of the hypercharge g1, are decreasing with energy. Very surprisingly, this implies
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Fig. B.1.3: Left: Shaposhnikov et al. and Degrassi et al. matching [6, 7]. Right: The shaded
bands show the difference in the SM parameter extrapolation using the central values of the
MS parameters obtained from differences in the matching procedures.

that perturbative SM predictions improve at higher energies. More specifically, the pattern
now looks as follows: the gauge coupling related to U(1)Y is screening (IR-free), the couplings
associated with SU(2)L and SU(3)c are antiscreening (UV-free). Thus g1, g2, and g3 behave as
expected (standard wisdom). By contrast, the top Yukawa coupling yt and Higgs self-coupling
λ, while screening if stand-alone (IR-free, like QED), as part of the SM are transmuted from
IR-free to UV-free. The SM reveals an amazing parameter conspiracy, which reminds us of
phenomena often observed in condensed matter systems: “There is a sudden rapid passage to
a totally new and more comprehensive type of order or organisation, with quite new emergent
properties” [8], i.e., there must be reasons that couplings are as they are. This manifests itself
in the QCD dominance within the renormalization group (RG) of the top Yukawa coupling,
which requires g3 > 3 yt/4, and in the top Yukawa dominance within the RG of the Higgs boson
coupling, which requires λ < 3 (

√
5− 1) y2

t /2 in the gaugeless (g1, g2 = 0) limit. Under focus
is the Higgs self-coupling. Does it stay positive λ > 0 up to ΛPl? A zero-valued λ would be
an essential singularity. The key problem concerns the precise size of the top Yukawa coupling
yt, which decides the stability of our world! The metastability vs. stability controversy will be
decided by obtaining more precise input parameters and by better-established EW matching
conditions. Most important in this context is the direct measurement of yt and λ at future e+e−
colliders, but also the important role that the running gauge couplings are playing requires sub-
stantial progress in obtaining more precise hadronic cross-sections in order to reduce hadronic
uncertainties in α(MZ) and α2(MZ). This is a big challenge for low-energy hadron facilities.
Complementary, progress in lattice QCD simulations of two-point correlators will be important
to pin down hadronic effects from first principles. Such improvement in SM precision physics
could open a new gateway to precision cosmology of the early Universe!

1.3 R data evaluation of α(M2
Z)

What we need is a precise calculation of the hadronic photon vacuum polarisation function.
The non-perturbative hadronic piece from the five light quarks ∆α(5)

had(s) = −(Π′
γ
(s)−Π′

γ
(0))(5)

had
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γ γ
had ⇔ γ

had

2

Fig. B.1.4: The master equation (1.13), relating Π′ had
γ (q2) and σhad

tot (q2), is based on analyticity
and the optical theorem.

can be evaluated in terms of σ(e+e− → hadrons) data via the dispersion integral

∆α(5)
had(s) = −α s3π

(
P
E2

cut∫
m2

π0

ds′
Rdata

γ
(s′)

s′(s′ − s) + P
∞∫

E2
cut

ds′
RpQCD

γ
(s′)

s′(s′ − s)

)
, (1.13)

where Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/(4πα2/3s) measures the hadronic cross-section in
units of the tree-level e+e− → µ

+
µ
− cross-section sufficiently above the muon pair production

threshold (s� 4m2
µ
). The master equation (Eq. (1.13)) is based on analyticity and the optical

theorem, as shown in Fig. B.1.4.
A compilation of the available R data is shown in Fig. B.1.5 for the low-energy ππ channel

and in Fig. B.1.6 for R(s) above the ρ resonance peak. Since the mid 1990s [9], enormous
progress has been achieved, also because the new initial-state radiation (ISR) radiative return
approach† provided good statistics data from φ and B meson factories (see Refs. [10–53]). Still,
an issue in hadronic vacuum polarisation (HVP) is the region 1.2–2GeV, where we have a
test ground for exclusive (more than 30 channels) versus inclusive R measurements, where
data taking or data analysis is ongoing with CMD-3 and SND detectors (scan) and BaBar
and BESIII detector data (radiative return). The region still contributes about 50% to the
uncertainty of the hadronic contribution to the muon g − 2, as we may learn from Fig. B.1.9,
in the next section. Above 2GeV, fairly accurate BES II data [49–51] are available. Recently,
a new inclusive determination of Rγ(s) in the range 1.84–3.72 GeV has been obtained with the
KEDR detector at Novosibirsk [52, 53] (see Fig. B.1.7). At present, the results from the direct
and the Adler function improved approach, to be discussed in Section 1.4, reads

∆α(5)
hadrons(M2

Z) = 0.0277 56± 0.000 157
0.027563± 0.000120 Adler

α−1(M2
Z) = 128.916± 0.022

128.953± 0.016 Adler (1.14)

In Fig. B.1.8, we show the effective fine structure constant as a function of the c.m. energy
E =

√
s, for the time-like and space-like regions. The question now is: what are the possible

improvements?

1. Evidently, a direct improvement of the dispersion integral involves reducing the uncer-
tainty of R(s) to 1% up to above the Υ resonances; probably, nobody will do that. One
may rely on pQCD above 1.8GeV and refer to quark–hadron duality, as in Ref. [57]. Then
experimental input above 1.8GeV is not required. But then we are left with questions

†This was pioneered by the KLOE Collaboration, followed by BaBar and BESIII experiments.
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Fig. B.1.5: The low-energy tail of R is provided by π
+

π
− production data. Shown is a compilation

of the modulus square of the pion form factor in the ρ meson region. The corresponding R(s) is
given by R(s) = 1

4 β
3
π
|F (0)

π
(s)|2 , βπ = (1− 4m2

π
/s)1/2 is the pion velocity (s = E2). Data from

CMD-2, SND, KLOE, BaBar, BESIII, and CLEOc [10–24] besides some older sets.

Fig. B.1.6: The compilation of R(s) data utilised in the evaluation of ∆αhad. The bottom
line shows the relative systematic uncertainties within the split regions. Different regions are
assumed to have uncorrelated systematics. Data from Refs. [25–53] and others. We apply pQCD
from 5.2GeV to 9.46GeV and above 11.5GeV using the code of Ref. [54].
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2012 2017

excl. vs incl. clash

Fig. B.1.7: Illustrating progress by BaBar and NSK exclusive channel data vs. new inclusive
data by KEDR. Why is the point at 1.84GeV so high?
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Fig. B.1.8: Left: The effective α(s) at time-like vs. space-like momentum transfer, showing
quark–hadron duality at work. In the time-like region, the effective charge varies dramatically
near resonances but agrees quite well on average with the space-like version. Locally, it is
ill-defined near OZI suppressed meson decays J/ψ,ψ1,Υ1,2,3 where Dyson series of self-energy
insertions do not converge (see Section 5 of Ref. [55]). Right: A first experimental determination
of the effective charge in the ρ resonance region by KLOE-2 [56], which demonstrates the
pronounced variation of the vacuum polarisation (charge screening) across a resonance.

about where precisely to assume thresholds and what are the mass effects near thresholds.
Commonly, pQCD is applied, taking into account uncertainties in αs only. This certainly
does not provide a result that can be fully trusted, although the R data integral in this
range is much less precise at present. The problem is that, in this theory-driven approach,
70% of ∆α(5)

had (M2
Z) comes from pQCD. Thereby, one has to assume that, in the time-

like region above 1.8GeV, pQCD, on average, is as precise as the usually adopted MS
parametrization suggests. Locally, pQCD does not work near thresholds and resonances,
obviously.
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Table B.1.1: ∆α(5)
had(MZ) in terms of e+e− data and pQCD. The last two columns list the relative

accuracy and the percentage contribution of the total. The systematic uncertainties (syst) are
assumed to be independent among the different energy ranges listed in the table.

Final state Range ∆α(5)
had × 104 (stat) (syst) [tot] Rel Abs

(GeV) (%) (%)
ρ (0.28, 1.05) 34.14 (0.03) (0.28) [0.28] 0.8 3.1
ω (0.42, 0.81) 3.10 (0.03) (0.06) [0.07] 2.1 0.2
φ (1.00, 1.04) 4.76 (0.04) (0.05) [0.06] 1.4 0.2
J/ψ 12.38 (0.60) (0.67) [0.90] 7.2 31.9
Υ 1.30 (0.05) (0.07) [0.09] 6.9 0.3
Had (1.05, 2.00) 16.91 (0.04) (0.82) [0.82] 4.9 26.7
Had (2.00, 3.20) 15.34 (0.08) (0.61) [0.62] 4.0 15.1
Had (3.20, 3.60) 4.98 (0.03) (0.09) [0.10] 1.9 0.4
Had (3.60, 5.20) 16.84 (0.12) (0.21) [0.25] 0.0 2.4
pQCD (5.20, 9.46) 33.84 (0.12) (0.25) [0.03] 0.1 0.0
Had (9.46,11.50) 11.12 (0.07) (0.69) [0.69] 6.2 19.1
pQCD (11.50, 0.00) 123.29 (0.00) (0.05) [0.05] 0.0 0.1
Data (0.3,∞) 120.85 (0.63) (1.46) [1.58] 1.0 0.0
Total 277.99 (0.63) (1.46) [1.59] 0.6 100.0

2. The more promising approach discussed in the following relies on the Euclidean split
method (Adler function controlled pQCD), which only requires improved R measure-
ments in the exclusive region from 1 to 2GeV. Here, NSK, BESIII, and Belle II can top
what BaBar has achieved. However, in this rearrangement, a substantially more precise
calculation of the pQCD Adler function is as important. Required is an essentially exact
massive four-loop result, which is equivalent to sufficiently high-order low- and high-energy
expansions, of which a few terms are available already [58].

Because of the high sensitivity to the precise charm and bottom quark values, one also
needs better parameters mc and mb besides αs. Here one can profit from activities going on
anyway and the FCC-ee and ILC projects pose further strong motivation to attempt to reach
higher precision for QCD parameters.

1.3.1 ∆αhad(M2
Z) results from ranges

Table B.1.1 shows the contributions and uncertainties to ∆α(5)
had(MZ) for MZ = 91.1876GeV in

units 10−4 from different regions. Typically, depending on cuts applied, the direct evaluation of
the dispersion integral of R yields 43% from data and 57% from perturbative QCD. Here, pQCD
is used between 5.2GeV and 9.5GeV and above 11.5GeV. Systematic uncertainties are taken
to be correlated within the different ranges, but taken as independent between the different
ranges.

In Fig. B.1.9, we illustrate the relevance of different energy ranges by comparing the
hadronic contribution to the muon g − 2 with that to the hadronic shift of the effective charge
at MZ. The point is that the new muon g − 2 experiments strongly motivate efforts the mea-
sure R(s) in the low-energy region more precisely. From Fig. B.1.9, we learn that low-energy
data alone are not able to substantially improve a direct evaluation of the dispersion integral
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Fig. B.1.9: A comparison of the weights and square uncertainties between ahad
µ

and ∆α(5)
had (M2

Z)
of contributions from different regions. It reveals the importance of the different energy regions.
In contrast to the low-energy dominated ahad

µ
, ∆α(5)

had (M2
Z) is sensitive to data from much higher

energies.

(Eq. (1.13)). Therefore, to achieve the required factor of five improvement, alternative methods
to determine ∆α(5)

had(s) at high energies must be developed.

1.4 Reducing uncertainties via the Euclidean split trick: Adler function controlled
pQCD

As we learn from Fig. B.1.6, it is difficult, if not impossible, to tell at what precision pQCD
can replace data. This especially concerns resonance and threshold effects and to what extent
quark–hadron duality can be made precise. This is much simpler to accommodate by com-
parison in the Euclidean (space-like) region, as suggested by Adler [59] a long time ago and
successfully tested [60]. As the data pool has been improving greatly, the ‘experimental’ Adler
function is now known with remarkable precision. Actually, on the experimental side, new more
precise measurements of R(s) are being made, primarily in the low-energy range. On the theory
side, pQCD calculations for Euclidean two-point current correlators are expected to be pushed
further. Advances are also expected from lattice QCD, which can also produce data for the Adler
function. As suggested in Refs. [61–63], in the Euclidean region, a split into a non-perturbative
and a pQCD part is self-evident. One may write

α
(
M2

Z

)
= αdata

(
−M2

0

)
+
[
α
(
−M2

Z

)
− α

(
−M2

0

)]pQCD
+
[
α
(
M2

Z

)
− α

(
−M2

Z

)]pQCD
, (1.15)

where the space-like offset M0 is chosen such that pQCD is well under control for −s < −M2
0 .

The non-perturbative offset αdata(−M2
0 ) may be obtained by integrating R(s) data, by choosing

s = −M2
0 in Eq. (1.13).

The crucial point is that the contribution from different energy ranges to αdata(−M2
0 )

is very different from those to αdata(M2
Z). Table B.1.1 now is replaced by Table B.1.2, where

αdata(−M2
0 ) is listed for M0 = 2GeV in units 10−4. Here 94% results using data and only
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Table B.1.2: ∆α(5)
had(−M2

0 ) at M0 = 2GeV in terms of e+e− data and pQCD. Labels as in
Table B.1.1.

Final state Range ∆α(5)
had(−M2

0 )× 104 (stat) (syst) [tot] Rel Abs
(GeV) (%) (%)

ρ (0.28, 1.05) 29.97 (0.03) (0.24) [0.24] 0.8 14.3
ω (0.42, 0.81) 2.69 (0.02) (0.05) [0.06] 2.1 0.8
φ (1.00, 1.04) 3.78 (0.03) (0.04) [0.05] 1.4 0.6
J/ψ 3.21 (0.15) (0.15) [0.21] 6.7 11.2
Υ 0.05 (0.00) (0.00) [0.00] 6.8 0.0
Had (1.05, 2.00) 10.56 (0.02) (0.48) [0.48] 4.6 56.9
Had (2.00, 3.20) 6.06 (0.03) (0.25) [0.25] 4.2 15.7
Had (3.20, 3.60) 1.31 (0.01) (0.02) [0.03] 1.9 0.2
Had (3.60, 5.20) 2.90 (0.02) (0.02) [0.03] 0.0 0.2
pQCD (5.20, 9.46) 2.66 (0.02) (0.02) [0.00] 0.1 0.0
Had (9.46, 11.50) 0.39 (0.00) (0.02) [0.02] 5.7 0.1
pQCD (1.50, 0.00) 0.90 (0.00) (0.00) [0.00] 0.0 0.0
Data (0.3, ∞) 60.92 (0.16) (0.62) [0.64] 1.0 0.0
Total 64.47 (0.16) (0.62) [0.64] 1.0 100.0

6% pQCD, applied again between 5.2GeV and 9.5GeV and above 11.5GeV. Of ∆α(5)
had(M2

Z)
22% data, 78% pQCD! The split point, M0, may be shifted to optimise the uncertainty con-
tributed from the pQCD part and the data based offset value. A reliable estimate of the latter
is mandatory and we have also crosschecked its evaluation using the phenomenological effective
Lagrangian global fit approach [64, 65], specifically, within the broken hidden local symmetry
implementation.

In Fig. B.1.10, we illustrate the relevance of different energy ranges by comparing the
hadronic shift of the effective charge as evaluated at space-like low-energy scale M0 = 2 GeV
with those at the time-like MZ scale. The crucial point is that the profile of the offset α at M0
much more closely resembles the profile found for the hadronic contribution to aµ and improving
ahad

µ
automatically leads to an improvement of ∆α(5)

had(−M2
0 ); this is the profit gained from the

Euclidean split trick.
What does this have to do with the Adler function? (i) The Adler function is the monitor

to control the applicability of pQCD and (ii) the pQCD part [α(−M2
Z)− α(−M2

0 )]pQCD is
favourably calculated by integrating the Adler function D(Q2). The small remainder
[α(M2

Z)− α(−M2
Z)]pQCD can be obtained in terms of the VP function Π′

γ
(s). In fact, the Adler

function is the ideal monitor for comparing theory and data. The Adler function is defined as
the derivative of the VP function:

D(−s) .= 3π

α
s

d
ds∆αhad(s) = −

(
12π

2
)
s

dΠ′
γ
(s)

ds (1.16)

and can be evaluated in terms of e+e− annihilation data by the dispersion integral

D(Q2) = Q2

 E2
cut∫

4m2
π

ds R(s)data

(s+Q2)2 +
∫ ∞
E2

cut

ds R
pQCD(s)

(s+Q2)2

 . (1.17)
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Fig. B.1.10: Contributions and square errors from e+e− data ranges and from pQCD to
∆α(5)

had(−M2
0 ) vs. ∆α(5)

had(M2
Z).

It is a finite object not subject to renormalization and it tends to a constant in the high-energy
limit, where it is perfectly perturbative. Comparing the direct R(s)-based and the D(Q2)-based
methods

pQCD ↔ R(s) pQCD ↔ D(Q2)
Very difficult to obtain Smooth simple function

in theory in Euclidean region

we note that in the time-like approach pQCD only works well in ‘perturbative windows’ roughly
in the ranges 3.00–3.73GeV, 5.00–10.52GeV and 11.50GeV to ∞ [54], while in the space-like
approach pQCD works well for Q > 2.0GeV, a clear advantage.

In Fig. B.1.11, the ‘experimental’ Adler function is confronted with theory (pQCD +
NP). Note that, in contrast to most xfR plots, like Fig. B.1.6, showing statistical errors only, in
Fig. B.1.11. the total error is displayed as the shaded band. We see that while one-loop and two-
loop predictions clearly fail to follow the data band, a full massive three-loop QCD prediction
in the gauge-invariant background field MOM scheme [66] reproduces the experimental Adler
function surprisingly well. This has been worked out [60] by Padé improvement of the moment
expansions provided in Refs. [67–69]. Figure B.1.11 also shows that non-perturbative (NP)
contributions from the quark and gluon condensates [70, 71]‡ start to contribute substantially
only at energies where pQCD fails to converge because one is approaching the Landau pole in
MS parametrized QCD. Strong coupling constant freezing, as in analytic perturbation theory,
advocated in Ref. [72] or similar schemes, is not actually able to improve the agreement in the
low-energy regime. Coupling constant freezing also contradicts lattice QCD results [73].

From the three terms of Eq. (1.15), we already know the low-energy offset ∆αhad(−M2
0 ) for

M0 = 2.0GeV. We obtain the second term by integrating the pQCD predicted Adler function

∆1 = ∆αhad
(
−M2

Z

)
−∆αhad

(
−M2

0

)
= α

3π

∫ M2
Z

M2
0

dQ′2
D
(
Q′2

)
Q′2

, (1.18)

‡These are evaluated by means of operator product expansions; the explicit expressions may be found in
Ref. [60].
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Q (GeV)
pQCD

➦

D
(Q

2
)

CMD-2/3, SND, KLOE, BABAR, BESII/III, KEDR, ...

Fig. B.1.11: Monitoring pQCD vs. data: the pQCD prediction of D(Q2) works well down to
M0 = 2.0GeV, provided full massive QCD at three-loop order or higher is employed.

based on a complete three-loop massive QCD analysis. The QCD parameters used are αs(MZ) =
0.1189(20),mc(mc) = 1.286(13)[Mc = 1.666(17)]GeV , mb(mc) = 4.164(25)[Mb = 4.800(29)]GeV .
The result obtained is

∆1 = ∆αhad
(
−M2

Z

)
−∆αhad

(
−M2

0

)
= 0.021 074± 0.000 100 .

This includes a shift +0.000 008 from the massless four-loop contribution included in the
high-energy tail. The error ±0.000 100 will be added in quadrature. Up to three loops, all
contributions have the same sign and are substantial. Four-loop and higher orders could still
add up to non-negligible contributions. An error for missing higher-order terms is not included.

The remaining term concerns the link between the space-like and the time-like region at
the Z boson mass scale and is given by the difference

∆2 = ∆α(5)
had

(
M2

Z

)
−∆α(5)

had

(
−M2

Z

)
= 0.000 045± 0.000 002 ,

which can be calculated in pQCD. It accounts for the iπ-terms from the logs ln(−q2/µ2) =
ln(|q2/µ2|) + iπ. Since the term is small, we can also get it from direct data integration based
on our data compilation. We obtain ∆αhad (−M2

Z) = 276.44± 0.64± 1.78 and ∆αhad (+M2
Z) =

276.84± 0.64± 1.90, and taking into account that errors are almost 100% correlated, we have
∆αhad(M2

Z)−∆αhad(−M2
Z) = 0.40± 0.12 less precise but in agreement with the pQCD result.

We then have

∆α(5)
had

(
−M2

0

)data
= 0.006 409± 0.000 063

∆α(5)
had

(
−M2

Z

)
= 0.027 483± 0.000 118
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∆α(5)
had

(
M2

Z

)
= 0.027 523± 0.000 119 .

To get α−1(M2
Z), we also have to include the leptonic piece [74]

∆αlep
(
M2

Z

)
' 0.031 419 187 418 , (1.19)

and the top quark contribution. A very heavy top quark decouples as

∆αtop ' −
α

3π

4
15

s

m2
t
→ 0

when mt � s. At s = M2
Z, the top quark contributes

∆αtop
(
M2

Z

)
= −0.76× 10−4 . (1.20)

Collecting terms, this leads to the result presented in Eq. (1.14). One should note that the Adler
function controlled Euclidean data vs. pQCD split approach is only moderately more pQCD-
driven than the time-like approach adopted by Davier et al. [57] and others, as follows from the
collection of results shown in Fig. B.1.12. The point is that the Adler function driven method
only uses pQCD where reliable predictions are possible and direct cross checks against lattice
QCD data may be carried out. Similarly, possible future direct measurements of α(−Q2) in µ-e
scattering [75] can provide Euclidean HVP data, in particular, also for the offset ∆αhad(−M2

0 ) .

1.5 Prospects for future improvements
The new muon g − 2 experiments at Fermilab and at JPARC in Japan (expected to go into
operation later) trigger the continuation of e+e− → hadrons cross-section measurements in the
low-energy region by CMD-3 and SND at BINP Novosibirsk, by BES III at IHEP Beijing and
soon by Belle II at KEK Tsukuba. This automatically helps to improve ∆α(−M2

0 ) and hence
α(M2

Z) via the Adler function controlled split-trick approach. Equally important are the results
from lattice QCD, which come closer to being competitive with the data-driven dispersive
method.

The improvement by a factor of five to ten in this case largely relies on improving the
QCD prediction of the two-point vector correlator above the 2GeV scale, which is a well-defined
and comparably simple task. The mandatory pQCD improvements required are as follows.

(a) Four-loop massive pQCD calculation of Adler function. In practice, this requires the calcu-
lation of a sufficient number of terms in the low- and high-momentum series expansions,
such that an accurate Padé improvement is possible.

(b) mc, mb improvements by sum rule or lattice QCD evaluation.
(c) Improved αs in low Q2 region above the τ mass.

Note that the direct dispersion relations (DR) approach requires precise data up to much
higher energies or a heavy reliance on the pQCD calculation of the time-like R(s)! The virtues
of the Adler function approach are obvious:

(a) no problems with physical threshold and resonances;
(b) pQCD is used only where we can check it to work accurately (Euclidean Q>∼ 2.0GeV);
(c) no manipulation of data, no assumptions about global or local duality;
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0 20 40 60 80 100
%

[∆αdata
had /∆αtot

had,∆αpQCD
had /∆αtot

had] in %

❏ data-driven
❏ theory-driven
❏ fifty-fifty
❏ low-energy weighted data

[86%,13%]
Jegerlehner 1985

[52%,47%]
Lynn et al. 1985

[57%,42%]
Burkhardt et al. 1989

[18%,81%]
Martin, Zeppenfeld 1994

[84%,15%]
Swartz 1995

[84%,15%]
Eidelman, Jegerlehner 1995

[56%,43%]
Burkhardt, Pietrzyk 1995

[16%,83%]
Adel, Yndurain 1995

[84%,15%]
Alemany, Davier, Höcker 1997

[29%,70%]
Kühn, Steinhauser 1998

[20%,79%]
Davier, Höcker 1998

[20%,79%]
Erler 1998

[56%,43%]
Burkhardt, Pietrzyk 2001

[54%,45%]
Hagiwara et al. 2004

[38%,41%]
Jegerlehner 2006 direct

[26%,73%]
Jegerlehner 2006 Adler

[50%,49%]
Hagiwara et al. 2011

[29%,70%]
Davier et al. 2011

[45%,54%]
Jegerlehner 2016 direct

[21%,77%]
Jegerlehner 2016 Adler

Fig. B.1.12: How much pQCD? Here a history of results by different authors. It shows that the
Adler function controlled approach to ∆α(5)

had (M2
Z) is barely more pQCD-driven than many of

the standard evaluations. The pQCD piece is 70% in Davier et al. [57] and 77% in our Adler-
driven case, with an important difference: in the Adler-controlled case, the major part of 71%
is based on pQCD in the space-like region and only 6% contributing to the non-perturbative
offset value is evaluated in the time-like region, while in the standard theory-driven, as well as
in the more data-driven approaches, pQCD is applied in the time-like region, where it is much
harder to be tested against data.

(d) the non-perturbative ‘remainder’ ∆α(−M2
0 ) is mainly sensitive to low-energy data;

(e) ∆α(−M2
0 ) would be directly accessible in a MUonE experiment (project) [75] or in lattice

QCD.

In the direct approach, e.g., Davier et al. [57] use pQCD above 1.8GeV, which means that no
error reduction follows from remeasuring cross-sections above 1.8GeV. Also, there is no proof
that pQCD is valid at 0.04% precision as adopted. This is a general problem when utilising
pQCD at time-like momenta exhibiting non-perturbative features.

What we can achieve is illustrated in Fig. B.1.13 and Table B.1.3. Our analysis shows that
the Adler function inspired method is competitive with Patrick Janot’s [76] direct near-Z pole
determination via a measurement of the forward–backward asymmetry Aµµ

FB in e+e− → µ
+

µ
−.

The modulus square of the sum of the two tree-level diagrams has three terms: the Z exchange
alone, Z ∝ (M2

ZGµ)2, the γ–Z interference, I ∝ α(s)M2
ZGµ, and the γ-exchange only, G ∝ α2(s).

The interference term determines the forward–backward (FB) asymmetry, which is linear in
α(s); v denotes the vector Zµµ coupling that depends on sin2 Θ` eff(s), while a denotes the axial
Zµµ coupling that is sensitive to the ρ-parameter (strongMt dependence). In extracting α(M2

Z),
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270 280

direct

space-like split

∆α
(5)
had(M

2
Z) in units 10−4

?

?

?

?

276.00 ± 0.90 e+e− Davier et al. 2017

276.11 ± 1.11 e+e− Keshavarzi et al. 2017

277.56 ± 1.57 e+e− my update 2017

277.56 ± 0.85 e+e− δσ < 1% < 11 GeV

276.07 ± 1.27 e+e− M0 = 2.5 GeV Adler 2017

275.63 ± 1.20 e+e− M0 = 2.0 GeV Adler

275.63 ± 1.06 e+e− δσ < 1% < 2 GeV

275.63 ± 0.54 e+e− + pQCD error ≤ 0.2%

275.63 ± 0.40 e+e− + pQCD error ≤ 0.1%

Fig. B.1.13: Comparison of possible improvements. My ‘direct’ analysis is data-driven, adopting
pQCD in the window 5.2–9.5GeV and above 11.5GeV . The Adler-driven results under ‘space-
like split’ show the current status for the two offset energies, M0 = 2.5GeV and 2GeV. The
improvement potential is displayed for three options: reducing the error of the data offset by a
factor of two, improving pQCD to a 0.2% precision Adler function in addition and the same by
improving pQCD to a 0.1% precision Adler function. The direct results are from Refs. [57,77,78].

one is using the v and a couplings as measured at the Z peak directly. At tree level, one then
has

Aµµ

FB = Aµµ

FB,0 + 3 a2

4 v2
I

Z + G ; Aµµ

FB,0 = 3
4

4v2a2

(v2 + a2)2 , (1.21)

where

G =
c2

γ

s
, I = 2cγcZ v

2 (s−M2
Z)

(s−M2
Z)2 +M2

ZΓ2
Z
, Z = c2

Z (v2 + a2) s
(s−M2

Z)2 +M2
ZΓ2

Z

cγ =
√

4π

3 α(s) , cZ =
√

4π

3
M2

Z
2π

Gµ√
2
, v =

(
1− 4 sin2 Θ`

)
a , a = −1

2 .

Note thatM2
ZGµ = M2

WGµ/ cos2 ΘW = π (α2(s))/
√

2(cos2 Θg(s)) and sin2 Θg(s) = α(s)/α2(s).
i.e., all parameters vary more or less with energy, depending on the renormalization scheme
utilised. The challenges for this direct measurement are precise radiative corrections (see Refs. [79,
80] and references therein) and the required dedicated off-Z peak running. Short accounts of
the methods proposed for improving α(M2

Z) may be found in Sections 8 and 9 of Ref. [81].
The Adler function based method is much cheaper, I think, and does not depend on

understanding the Z peak region with unprecedented precision. Another very crucial point may
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Table B.1.3: Precision in α(M2
Z)

Present Direct 1.7× 10−4

Adler 1.2× 10−4

Future Adler QCD 0.2% 5.4× 10−5

Adler QCD 0.1% 3.9× 10−5

Future Via Aµµ

FB off-Z 3 × 10−5 [76]

Table B.1.4: Possible achievements for the FCC-ee project
√
s

√
t̄ 1996 [83,84] Present FCC-ee expected [82]

(GeV)
MZ 3.5 0.040% 0.013% 0.6× 10−4

350 GeV 13 1.2× 10−4 2.4× 10−4

γ ↑ t

e−

e+

e−

e+

γ

→
se− e−

e+
e+

+ ;

γ ↑ t

e−

µ±

e−

µ±

Fig. B.1.14: t-channel dominated QED processes. Left: VP dressed tree-level Bhabha scattering
at small scattering angles. Right: the leading VP effect in µe scattering.

be that the dispersive method and the Adler function modified version provide the effective
α(s) for arbitrary c.m. energies, not at s = M2

Z only; although, given a very precise α(M2
Z), one

can reliably calculate α(s) − α(M2
Z) via pQCD for values of s in the perturbative regime, i.e.,

especially going to higher energies. In any case, the requirements specified here that must be
satisfied in order to reach a factor of five improvement appears to be achievable.

1.6 The need for a space-like effective α(t)

As a normalization in measurements of cross-sections in e+e− collider experiments, small-angle
Bhabha scattering is the standard choice. This reference process is dominated by the t-channel
diagram of the Bhabha scattering process shown in the left of Fig. B.1.14. In small-angle Bhabha
scattering, we have δHVPσ/σ = 2 δα(t̄)/α(t̄), and for the FCC-ee luminometer

√
t̄ ' 3.5GeV

near the Z peak and ' 13GeV at 350GeV [82]. The progress achieved after LEP times is
displayed in Fig. B.1.15. What can be achieved for the FCC-ee project is listed in Table B.1.4.
The estimates are based on expected improvements possible for ∆αhad(−Q2) in the appropriate
energy ranges, centred at

√
t̄.
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Fig. B.1.15: Hadronic uncertainty δ∆αhad(
√
t). The progress since LEP times, from 1996 (left)

to now (right) is remarkable. A great deal of much more precise low-energy data, ππ, etc., are
now available.

1.6.1 A new project: measuring the low-energy α(t) directly
The possible direct measurement of ∆αhad(−Q2) follows a very different strategy of evaluating
the HVP contribution to the muon g − 2. There is no VP subtraction issue, there is no ex-
clusive channel separation and recombination, no issue of combining data from very different
experiments and controlling correlations. Even a 1% level measurement can provide invaluable
independent information. The recent proposal [75] to measure α(−Q2) via µ

−e−-scattering (see
right part of Fig. B.1.15) in the MUonE projects at CERN is very important for future precision
physics. It is based on a cross-section measurement

dσunpol.
µ−e−→µ−e−

dt = 4πα(t)2 1
λ(s,m2

e,m
2
µ
)


(
s−m2

µ
−m2

e

)2

t2
+ s

t
+ 1

2

 . (1.22)

The primary goal of the project concerns the determination of ahad
µ

in an alternative way

ahad
µ

= α

π

1∫
0

dx (1− x) ∆αhad
(
−Q2(x)

)
, (1.23)

where Q2(x) ≡ x2m2
µ
/(1− x) is the space-like square momentum transfer and

∆αhad(−Q2) = α

α(−Q2) + ∆αlep(−Q2)− 1 (1.24)

directly compares with lattice QCD data and the offset α(−M2
0 ) discussed before. We propose to

determine, very accurately, ∆αhad (−Q2) at Q ≈ 2.5GeV by this method (one single number!)
as the non-perturbative part of ∆αhad (M2

Z), as needed in the ‘Adler function approach’. It
would also be of direct use for a precise small-angle Bhabha luminometer! Because of the high
precision required, accurate radiative corrections are mandatory and corresponding calculations
are in progress [85–88].
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1.7 Conclusions

Reducing the muon g−2 prediction uncertainty remains the key issue of high-precision physics
and strongly motivates more precise measurements of low-energy e+e− → hadrons cross-
sections. Progress is expected from Novosibirsk (VEPP 2000/CMD3,SND), Beijing (BEPCI-
I/BESIII), and Tsukuba (SuperKEKB/BelleII). This helps to improve α(t) in the region rele-
vant for small-angle Bhabha scattering and in calculating α(s) at FCC-ee/ILC energies using
the Euclidean split-trick method. The latter method requires pQCD prediction of the Adler
function to improve by a factor of two. This also means that we need improved parameters, in
particular, mc and mb.

One question remains to be asked. Are presently estimated and essentially agreed-on
evaluations of ∆α(5)

had (M2
Z) in terms of R data reliable? One has to keep in mind that the

handling of systematic errors is rather an art than a science. Therefore, alternative methods
are very important and, fortunately, are under consideration.

Patrick Janot’s approach is certainly an important alternative method, directly accessing
α(M2

Z) with very different systematics. This is a challenging project.
Another interesting option is an improved radiative return measurement of σ(e+e− →

hadrons) at the GigaZ, allowing for directly improved dispersion integral input, which would
include all resonances and thresholds in one experiment!

In any case, on paper, e−µ
+ → e−µ

+ appears to be the ideal process to perform an
unambiguous measurement of α(−Q2), which determines the leading-order (LO) HVP to aµ,
as well as the non-perturbative part of α(s)!

Lattice QCD results are very close to becoming competitive here as well. Thus, in the
end, we will have alternatives, allowing for important improvements and crosschecks.

The improvement obtained by reducing the experimental error to 1% in the range from φ
to 3GeV would allow one to choose a higher cut point, e.g., for

√
M0 = 3.0GeV. One can then

balance the importance of data against pQCD differently. This would provide further important
consolidation of results. For a 3GeV cut, one gets ∆αhad(−M2

0 ) = 82.21±0.88[0.38] in 10−4. The
QCD contribution is then smaller, as well as safer, because the mass effects that are responsible
for the larger uncertainty of the pQCD prediction are also substantially reduced. Taking the
view that a massive four-loop QCD calculation is a challenge, the possibility of optimising
the choice of split scale M0 would be very useful. Therefore, the ILC/FCC-ee community
should actively support these activities as an integral part of the e+e−-collider precision physics
programme!

1.8 Addendum: the coupling α2, MW, and sin2 Θf

Besides α, the SU(2) gauge coupling α2 = g2/(4π) is also running and thereby affected by
non-perturbative hadronic effects [78,89,90]. Related with the UY(1)⊗SUL(2) gauge couplings
is the running of the weak mixing parameter sin2 Θf , which is actually defined by the ratio
α/α2. In Refs. [78, 89, 90], the hadronic effects have been evaluated by means of DRs in terms
of e+e− data with appropriate flavour separation and reweighting. Commonly, a much simpler
approach is adopted in studies of the running of sin2 Θf , namely using pQCD with effective
quark masses [91–94], which have been determined elsewhere.

- 28 -



B.1 αQED, eff(s) for precision physics at the FCC-ee/ILC

Given g ≡ g2 and the Higgs vacuum expectation value (VEV) v, then

M2
W = g2 v2

4 = πα2√
2Gµ

.

The running sin2 Θf(s) relates electromagnetic to weak neutral channel mixing at the LEP scale
to low-energy νee scattering as

sin2 Θlep(M2
Z) =

{
1−∆α2

1−∆α + ∆νµe,vertex+box + ∆κe,vertex

}
sin2 Θνµe(0) . (1.25)

The first correction from the running coupling ratio is largely compensated for by the νµ charge
radius, which dominates the second term. The ratio sin2 Θνµe/ sin2 Θlep is close to 1.002, in-
dependent of the top and Higgs masses. Note that errors in the ratio (1−∆α2)/(1−∆α) can
be taken to be 100% correlated and thus largely cancel. A similar relation between sin2 Θlep(M2

Z)
and the weak mixing angle appearing in polarised Møller scattering asymmetries has been
worked out [91,92]. It includes specific bosonic contribution ∆κb(Q2), such that

κ(s = −Q2) = 1−∆α2(s)
1−∆α(s) + ∆κb(Q2)−∆κb(0) , (1.26)

where, in our low-energy scheme, we require κ(Q2) = 1 at Q2 = 0. Explicitly [91,92], at one-loop
order

∆κb(Q2) = − α

2π sW

{
−42 cW + 1

12 ln cW + 1
18 −

(
r

2 ln ξ − 1
) [

(7− 4z) cW + 1
6 (1 + 4z)

]

− z
[

3
4 − z +

(
z − 2

3

)
r ln ξ + z (2− z) ln2 ξ

]}
, (1.27)

∆κb(0) = − α

2π sW

{
−42 cW + 1

12 ln cW + 1
18 + 6 cW + 7

18

}
, (1.28)

with z = M2
W/Q

2, r =
√

1 + 4z, ξ = (r + 1)/(r − 1), sW = sin2 ΘW, and cW = cos2 ΘW.
Results obtained in Refs. [91, 92] based on one-loop perturbation theory using light quark
masses mu = md = ms = 100MeV are compared with results obtained in our non-perturbative
approach in Fig. B.1.16.

How can we evaluate the leading non-perturbative hadronic corrections to α2? As in the
case of α, they are related to quark-loop contributions to gauge-boson self-energies (SE) γγ, γZ,
ZZ, and WW, in particular, those involving the photon, which exhibit large leading logarithms.
To disentangle the leading corrections, decompose the self-energy functions as follows (s2

Θ =
e2/g2 ; c2

Θ = 1− s2
Θ):

Πγγ = e2 Π̂γγ ,

ΠZγ = eg
cΘ

Π̂3γ

V − e2 sΘ
cΘ

Π̂γγ

V ,

ΠZZ = g2

c2Θ
Π̂33
V−A − 2 e2

c2Θ
Π̂3γ

V + e2 s2Θ
c2Θ

Π̂γγ

V ,

ΠWW = g2 Π̂+−
V−A .

(1.29)

With Π̂(s) = Π̂(0) + sΠ′(s), we find the leading hadronic corrections

∆α(5)
had(s) = −e2

[
Re Π′γγ(s)− Π′γγ(0)

]
, (1.30)
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Fig. B.1.16: sin2 ΘW (Q) as a function of Q in the time-like and space-like region. Hadronic
uncertainties are included but barely visible in this plot. Uncertainties from the input parameter
sin2 ΘW (0) = 0.238 22(100) or sin2 ΘW (M2

Z) = 0.231 53(16) are not shown. Note the substantial
difference from applying pQCD with effective quark masses. Future FCC-ee/ILC measurements
at 1TeV would be sensitive to Z′, H−−, etc.

∆α(5)
2 had(s) = − e

2

s2
Θ

[
Re Π′3γ(s)− Π′3γ(0)

]
, (1.31)

which exhibit the leading hadronic non-perturbative parts, i.e., the ones involving the photon
field via mixing. Besides ∆α(5)

had(s), ∆α(5)
2 had(s) can also then be obtained in terms of e+e− data,

together with isospin flavour separation of (u, d) and s components

Π3γ

ud = 1
2 Πγγ

ud ; Π3γ

s = 3
4 Πγγ

s (1.32)

and for resonance contributions

Πγγ = Π(ρ) + Π(ω) + Π(φ) + · · ·

Π3γ = 1
2 Π(ρ) + 3

4 Π(φ) + · · · (1.33)

We are reminded that gauge-boson self-energies are potentially very sensitive to new physics
(oblique corrections) and the discovery of what is missing in the SM may be obscured by non-
perturbative hadronic effects. Therefore, it is important to reduce the related uncertainties.
Interestingly, flavour separation assuming OZI violating terms to be small implies a perturbative
reweighting, which, however, has been shown to disagree with lattice QCD results [95–98]!
Indeed, the ‘wrong’ perturbative flavour weighting

Π3γ

ud = 9
20 Πγγ

ud ; Π3γ

s = 3
4 Πγγ

s

clearly mismatch lattice results, while the replacement 9/20⇒ 10/20 is in good agreement. This
also means that the OZI suppressed contributions should be at the 5% level and not negligibly

- 30 -



B.1 αQED, eff(s) for precision physics at the FCC-ee/ILC

t/t1 [t1 = 0.727 fm]

t3
G

2
(t

)

data Nf = 2, isospin

mn = 190 MeV

mn = 277 MeV

mn = 324 MeV

weigted Euclidean time correlator
∆α2 from alphaQED, SU(2) flavour separation
∆α2 from alphaQED, SU(3) flavour separation
lattice data linearly extrapolated to mπ in CL

Q2
[
GeV2

]

∆
α

h
v
p

2
(Q

2
)

1086420

0.02

0.015

0.01

0.005

0

Fig. B.1.17: Testing flavour separation in lattice QCD. Left: a rough test by checking the
Euclidean time correlators clearly favours the flavour separation of Eq. (1.33) [95–97], while the
pQCD reweighting (not displayed) badly fails. Right: the renormalised photon self-energy at
Euclidean Q2 [98] is in good agreement with the flavour SU(3) limit, while again it fails with
the SU(2) case, which coincides with perturbative reweighting.

small. Actually, if we assume flavour SU(3) symmetry to be an acceptable approximation, we
obtain

Π3γ

uds = 1
2 Πγγ

uds ,

which does not require any flavour separation in the uds-sector, i.e., up to the charm threshold
at about 3.1GeV. Figure B.1.17 shows a lattice QCD test of two flavour separation schemes.
One, labelled ‘SU(2)’, denotes the perturbative reweighting advocated in Refs. [91–94] and
the other, labelled ‘SU(3)’, represents that proposed in Ref. [89]. Lattice data clearly disprove
pQCD reweighting for the uds-sector! This also shows that pQCD-type predictions based on
effective quark masses cannot be accurate. This criticism also applies in cases where the effective
quark masses have been obtained by fitting ∆α(5)

had(s), even more so, when constituent quark
masses are used.

The effective SU(2) coupling ∆α2(E) in comparison with ∆αQED(E) is displayed in
Fig. B.1.18, and the updated sin2 ΘW (s) is shown in Fig. B.1.16 for time-like as well as for
space-like momentum transfer. Note that sin2 ΘW(0)/ sin2 ΘW(M2

Z) = 1.028 76; a 3% correction
is established at 6.5σ. Except for the LEP and SLD points (which deviate by 1.8σ), all ex-
isting measurements are of rather limited accuracy, unfortunately. Upcoming experiments will
substantially improve results at low space-like Q. We are reminded that sin2 Θ` eff , exhibiting a
specific dependence on the gauge-boson self-energies, is an excellent monitor for new physics.
At pre-LHC times, it was the predestined monitor for virtual Higgs particle effects and a corres-
ponding limiter for the Higgs boson mass.
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Fig. B.1.18: ∆αQED(E) and ∆α2(E) as functions of energy E in the time-like and space-like
domain. The smooth space-like correction (dashed line) agrees rather well with the non-resonant
‘background’ above the φ resonance (a kind of duality). In resonance regions, as expected,
‘agreement’ is observed in the mean, with huge local deviations.
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