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4.1 Introduction
The most precise determination of fundamental parameters of the Standard Model is very
important. One such fundamental parameter is the strong coupling of QCD. Its importance
can be gauged by taking a look at the various experiments and configurations where it was
measured; for an up-to-date summary, see Ref. [1]. The precise measurement of such a parameter
is difficult for two reasons. First, high-quality data with small and well-controlled uncertainties
are needed. Second, high-precision calculations are needed from the theory side, such that
theoretical uncertainties are small as well.

In a theoretical prediction based on calculation in perturbation theory, the uncertainty has
two main sources: the omission of higher-order terms, which are estimated by the renormaliza-
tion scale, and the numerical stability of the integrations. While the dependence on unphysical
scales can, in principle, be decreased by including more and more higher-order contributions
in the prediction, the numerical uncertainty can be intrinsic to the method used to obtain the
theoretical prediction. Moreover, the method of comparing experiment with theory is also af-
fected by another uncertainty. While an experiment measures colour singlet objects, hadrons,
the predictions are made in QCD for colourful ones, partons. The assumption of local parton–
hadron duality ensures a correspondence between these two up to non-perturbative effects.
Non-perturbative effects are power corrections in nature, going with some negative power of
the collision energy. This means that, for an accurate comparison, either (i) these effects should
be estimated and taken into account, or (ii) the experiment should have a high enough energy
that these contributions become negligible compared with other effects, or (iii) an observable
must be chosen that is not sensitive to these effects.

To take these non-perturbative effects into account, we must choose from phenomenolog-
ical [2, 3] or analytical models [4]. It is worth noting that none of these models is derived from
first principles; hence, there is still room for improvement. Non-perturbative effects derived
from first principles would also be favoured because these corrections are to be used in com-
parisons of predictions with experimental measurements. Currently, phenomenological models
use several parameters fitted to experimental data; thus, bias is introduced in the measurement
of physical parameters. The calculation of non-perturbative corrections from first principles is
also advocated because the only available analytical model seems to be ill-suited for the current
precision of theoretical calculations, as shown in Ref. [5].

In this report, we show two approaches to how the measurement of a physical parameter,
the strong coupling, can be carried out with high precision. Because the used observables allow
for such measurements, these can be considered as interesting subjects to study in a future
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Fig. B.4.1: Top: Fixed-order prediction for EEC in the first three orders of perturbation theory
with theoretical uncertainties. The dots show the measurement by the OPAL collaboration [11].
Bottom: Comparison of the predictions and the measurement with the NNLO result.

electron–positron collider.

4.2 Precision through higher orders
A possible approach to increasing the precision of a measurement from the theoretical perspec-
tive is to select an observable and refine its prediction by including higher-order contributions
in fixed-order perturbation theory or by means of resummation. With the completion of the
CoLoRFulNNLO subtraction method [6–8] for electron–positron collisions, the next-to-next-to-
leading-order (NNLO) QCD prediction for energy–energy correlation (EEC) recently became
available [9] for the first time. Matching this with predictions obtained by resumming leading
(LL), next-to-leading (NLL), and next-to-next-to-leading logarithms (NNLL) in the back-to-
back region [10], it was possible, by matching the two calculations, to arrive at the most precise
theoretical prediction for this observable at NNLO+NNLL accuracy in QCD [5]. The energy–
energy correlation is defined as a normalised energy-weighted sum of two-particle correlations:

1
σt

dΣ(χ)
d cosχ ≡

1
σt

∫ ∑
i,j

EiEj
Q2 dσe+e−→ij+Xδ(cosχ+ cos θij) , (4.1)

where Q is the centre-of mass energy of the collision, σt is the corresponding total cross-section,
Ei is the energy of the ith particle, and cos θij is the enclosed angle between particles i and j.
The theoretical prediction for EEC in the first three orders of perturbation theory is depicted
in Fig. B.4.1. The theoretical uncertainties were obtained by varying the renormalization scale
between mZ/2 and 2mZ. As can be seen from the lower panel, even when using the highest-
precision prediction, the difference between measurement and theory is sizeable. This can be
attributed to missing higher-order terms becoming important at the edge of phase space and
missing hadronization corrections.

The behaviour near χ = 0 can be improved by including all-order results through resum-
mation. As described in Ref. [12], we used modern Monte Carlo (MC) tools to extract such
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Fig. B.4.2: EEC distributions obtained with the two MC tools at the parton and hadron level
at 91.2 GeV, with corresponding OPAL data. Note that for these two plots a different definition
of χ was used: this time, the back-to-back region corresponds to χ→ 180◦.

corrections for EEC. To do this, we generated event samples at both the hadron and the parton
level and the ratio of these provided the hadron-to-parton ratio or H/P . Using this ratio and
multiplying our parton-level predictions bin by bin, we obtained our theoretical prediction at
the hadron level. As MC tools, we used SHERPA2.2.4 [13] and Herwig7.1.1 [14]. The exact
set-up of the MC tools is presented in Ref. [12].

The value for the strong coupling was determined by fitting the predictions to 20 different
datasets (for details, see Table 1 of Ref. [12]). For illustrative purposes, Fig. B.4.2 shows the
predictions obtained with SHERPA and Herwig at the parton and hadron level. For SHERPA, we
used both the Lund (SL) [3] and cluster (SC) [2] hadronization models, while in Herwig we
used the built-in cluster model. The figure also indicates the range used in the actual fitting
procedure.

For the fitting, the MINUIT2 program [15] was used to minimize the quantity:

χ2(αS) =
∑

datasets
χ2

dataset(αS) (4.2)

with the χ2(αS)† quantity calculated as:

χ2(αS) = (D − P (αS))TV −1(D − P (αS)) , (4.3)

where D is the vector of data points, P is the vector of predictions as functions of αS and V
is the covariance matrix.

†Not to be confused with the angle χ.
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With the fitting procedure performed in the range between 60◦ and 160◦. The resulting
strong coupling NNLL+NNLO prediction is

αS(mZ) = 0.117 50± 0.002 87 (4.4)

and at NNLL+NLO accuracy is

αS(mZ) = 0.122 00± 0.005 35 . (4.5)

Notice the reduction in uncertainty as we go from NNLL+NLO to NNLL+NNLO.

4.3 Precision through small power corrections
As outlined in the introduction, the current methods of taking the effect of non-perturbative
contributions into account can raise concerns, mainly because only phenomenological models
are present for them. The other big concern is that these models rely on experimental results
through tuned parameters. The best option, without any model derived from first principles,
is to decrease these effects as much as possible. The idea is simple: if the non-perturbative
contribution can be shrunk, its large uncertainties will make a smaller contribution to the final
uncertainty of the extracted value of the strong coupling.

In this section, we focus on altering the definitions of existing observables to decrease the
non-perturbative corrections. The most basic and most used observables in electron–positron
collisions are the thrust (T ) and the various jet masses. In their original definitions, these all
incorporate all registered hadronic objects of the event or a given, well-defined region. Hence, a
natural way to modify them is to filter the tracks contributing to their value in an event. One
possible way to remove tracks is by means of grooming [16–21]. In particular, the soft drop [21]
is a grooming when a part of the soft content of the event is removed according to some criteria.

In Ref. [22], soft-drop variants were defined for thrust, τ ′SD = 1−T ′SD, hemisphere jet mass,
e

(2)
2 and narrow jet mass, ρ. As showed in that paper, the non-perturbative corrections can be
drastically decreased if soft drop is applied. The effect of soft drop turns out to be the most
significant in the peak region of the distributions, where the contribution from all-order resum-
mation and non-perturbative effects is the greatest. This makes these observables promising
candidates for strong coupling measurements at a future electron–positron collider. The appli-
cation of these observables—although very interesting—is limited at LEP measurements, owing
to the limited amount of data taken and because the soft-drop procedure inherently results in
a decrease of cross-section.

In our recent paper [23], we analysed the proposed observables from the standpoint of
perturbative behaviour by calculating the NNLO QCD corrections to the observables and ana-
lysing their dependence on the non-physical renormalization scale as an indicator of the size
of neglected higher-order terms. The soft-drop versions of the observables listed have two par-
ameters related to soft drop: zc and β [22]. This allows for optimisation in order to minimize
the decrease in cross-section when the soft-drop procedure is applied.

Figure B.4.3 shows the soft-dropped thrust distribution in the first three orders of QCD
perturbation theory for a specific choice of the two soft-drop related parameters. On the right-
hand side of the figure, the K factors are depicted for various parameter choices to illustrate
the stability of the result. We found that the most stable perturbation prediction and moderate
drop in cross-section can be achieved when (zc, β) = (0.1, 0).
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Fig. B.4.3: Left: Soft-dropped thrust distribution at the Z peak in the first three orders of
perturbation theory; the bands represent the uncertainty coming from the variation of the
renormalization scale between Q/2 and 2Q. Right: The K factors for the soft-dropped thrust
distribution for various choices of the soft-drop parameters.
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Fig. B.4.4: The same as Fig. B.4.3 but for the hemisphere jet mass

Figure B.4.4 depicts the soft-dropped hemisphere jet mass in exactly the same way as
the soft-dropped thrust shown in Fig. B.4.3. In this case, it can be seen once more that the
perturbative behaviour stabilizes on going to higher orders in perturbation theory. This is
most pronounced at the left-hand side of the peak, where the NLO and NNLO predictions
coincide. For this observable, we found that the best choice for the soft-drop parameters is also
(zc, β) = (0.1, 0). For the traditional versions of these observables, the peak region is the one
where the all-order resummed results and non-perturbative corrections must have agreement
with the experiment, but for the soft-dropped versions neither the higher-order contributions nor
the non-perturbative corrections are drastic. The minimal role of higher orders in perturbation
theory can be seen from the perturbative stability of our results, while the small size of non-
perturbative corrections has been shown in Ref. [22]. These properties make the soft-dropped
event shapes attractive observables for the extraction of the strong coupling.
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4.4 Conclusions
A future electron–positron collider would be considered a dream machine for many reasons.
A machine of this type would allow for a precise tuning of collision energy; it would have
no annoying underlying event and it would have coloured partons in the initial state. Several
possible measurements could be envisioned at such a machine but from the QCD point of
view, determination of the strong coupling stands out. The strong coupling is a fundamental
parameter of the Standard Model of particle physics, so knowing its value is of key importance.

In this report, we showed two possible ways to conduct such a measurement. First, it can
be achieved by including higher-order corrections in the theoretical prediction and comparing
this with the experimental result modelling non-perturbative effects with modern MC tools.
Second, we showed modified versions of well-known observables defined in electron–positron
collisions where non-perturbative corrections can be minimized, hence diminishing the effects
of their uncertainties on theoretical predictions. These observables seem to be promising can-
didates, not just for strong coupling measurements but also for the purpose of testing the
Standard Model further. Thus, they should be seriously considered as important measurements
at a future electron–positron facility.
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