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The precise measurement of the mass of the W boson plays an essential role for precision
tests of the Standard Model (SM) and indirect searches for new physics through global fits to
electroweak observables. Cross-section measurements near the W pair production threshold at
a possible future e−e+ collider promise to reduce the experimental uncertainty to the level of
3 MeV at an International Linear Collider (ILC) [1,2], while a high-luminosity circular collider
offers a potential improvement to 0.5 MeV in the case of the FCC-ee [3, 4] or 1 MeV at the
CEPC [5]. At the point of highest sensitivity, an uncertainty in the cross-section measurement
of 0.1% translates to an uncertainty of ∼1.5 MeV on MW [3]. Therefore, a theoretical pre-
diction for the cross-section with an accuracy of ∆σ ∼ 0.01% at threshold is required to fully
exploit the potential of a future circular e−e+ collider. Theory predictions using the double-pole
approximation (DPA) [6] at next-to-leading order (NLO) [7–11] successfully described LEP2
results with an accuracy of better than 1% above threshold. An extension of the DPA to NNLO
appears to be appropriate for a future e−e+ collider operating above the W pair threshold, e.g.,
for the interpretation of anomalous triple-gauge-coupling measurements at

√
s = 240 GeV.

However, the accuracy of the DPA at NLO degrades to 2–3% near the threshold. In this re-
gion, the combination of a full NLO calculation of four-fermion production [12,13] with leading
NNLO effects obtained using effective field theory (EFT) methods [14, 15] reduces the theory
uncertainty of the total cross-section to below 0.3%; sufficient for the ILC target uncertainty
but far above that of the FCC-ee. This raises the question of the methods required to reach
a theory accuracy ∼0.01%. In this contribution, this issue is addressed from the EFT point
of view. The discussion is limited to the total cross-section, where the EFT approach is best
developed so far, although cuts on the W decay products can also be incorporated [15]. To reach
the target accuracy, it will also be essential to have theoretical control of effects beyond the
pure electroweak effects considered here. In particular, it is assumed that next-to-leading log-
arithmic corrections (α/π)2 ln(m2

e/s) from collinear initial-state photon radiation (ISR), which
have been estimated to be .0.1% [12], will be resummed to all orders. The QCD effects, which
are particularly important for the fully hadronic decay modes, are only briefly considered. In
Section 7.1, aspects of the EFT approach are reviewed from an updated perspective using in-
sight into the factorisation of soft, hard, and Coulomb corrections [16]. The NLO and leading
NNLO results are summarised and compared with the NLOee4f calculation [12]. In Section 7.2,
the structure of the EFT expansion and calculations of subsets of corrections are used to esti-
mate the magnitude of the NNLO and leading N3LO corrections and to determine whether
such calculations are sufficient to meet the FCC-ee target accuracy.
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7.1 Effective theory approach to W pair production
In the EFT approach to four-fermion production near the W pair production threshold [14], the
cross-section is expanded simultaneously in the coupling, the W decay width, and the energy
relative to the production threshold, which are taken to be of similar order and are denoted
collectively by

δ ∼ v2 ≡
(s− 4M2

W)
M2

W
∼

ΓW

MW
∼ α. (7.1)

An NNLOEFT calculation includes corrections up to O(δn), whereas, as usual, NNLO refers
to the O(αn) corrections. As discussed in Sections 7.1.1 and 7.1.2, non-resonant and Coulomb
corrections lead to odd powers of v, so that the expansion proceeds in half-integer powers of
δ. The current state of the art in the EFT is the calculation of the total cross-section for the
semi-leptonic final state µ

−
νµud up to NLOEFT [14], which includes corrections of the order

NLOEFT : v2, α, α2/v2, (7.2)
supplemented with the genuineO(α2, α3) corrections at the next order, δ3/2, in the δ-expansion [15],

N3/2LOEFT : αv, α2/v, α3/v3. (7.3)
In the following, aspects of these results and the EFT method are reviewed that are useful for
the estimate of NNLOEFT corrections and the remaining uncertainty.

7.1.1 Expansion of the Born cross-section
The total cross-section e−e+ → 4f can be obtained from the imaginary part of the forward-
scattering amplitude e−e+→ e−e+, where the Cutkosky cuts are restricted to those with four-
fermion final states. Flavour-specific final states can be selected accordingly. The expansion
of the forward-scattering amplitude in δ can be formulated in terms of an EFT [14, 17, 18],
where the initial-state leptons are described by soft-collinear effective theory [19], and the W
bosons by a non-relativistic EFT. Similarly to the DPA [6], the cross-section is decomposed
into resonant and non-resonant contributions:

σee4f(s ≈ 4M2
W) = σres(s) + σnon-res(s). (7.4)

The EFT method enables computation of the Born cross-section as an expansion according to
the counting (Eq. (7.1)), σee4fBorn = σ

(0)
Born + σ

(1/2)
Born + . . . This is not necessary in practice since the

full e−e+ → 4f Born cross-section for arbitrary kinematics can be computed using automated
Monte Carlo programs. However, the expansion serves as a test-case of the EFT method and
provides useful input for estimating the accuracy of a future NNLOEFT calculation. The leading-
order resonant contribution to the cross-section is given by the imaginary part of a one-loop
EFT diagram with non-relativistic W propagators, denoted by dashed lines,

σ
(0)
Born(s) = σ(0)

res(s) = 1
s
Im


 = πα2

s4
Ws

Im
−

√√√√− EW

MW

 . (7.5)

Here, the complex energy variable EW ≡
√
s− 2MW + iΓW ∼ MWv

2 has been introduced and
sW = sin θW with the weak mixing angle θW. A specific final state is selected by multiply-
ing Eq. (7.5) by the LO branching ratios,

σ
(0)
f1f2f3f4

=
Γ(0)

W−→f1f2
Γ(0)

W+→f3f4

Γ2
W

σ(0)
res . (7.6)
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The non-resonant contribution to the cross-section arises from local four-electron operators,

σnon-res(s) = 1
s

Im


 = α3

s6
Ws
K, (7.7)

where the dimensionless constant K = K(0) + αK(1)/s2
W + . . . is computed from the forward-

scattering amplitude in the full SM without self-energy resummation in the W propagators. The
first contribution is of order α3 and arises from cut two-loop diagrams corresponding to squared
tree diagrams of the e−e+ → W±ff processes. Hence, the leading non-resonant contribution
σ(1/2)
non-res ≡ σ

(1/2)
Born is suppressed by α/v ∼ δ1/2 compared with the resonant LO cross-section

(Eq. (7.5)). For the final state, µ
−

νµud, the explicit result is [14]∗

K(0) = −4.25698. (7.8)

The O(v2) corrections in Eq. (7.2) originate from higher-order terms in the EFT expansion of
the resonant Born cross-section, σ(1)

Born, and depend strongly on the centre-of-mass energy [14],

σ
(1)
Born(
√
s = 161 GeV) = 8%× σee4fBorn, σ

(1)
Born(
√
s = 170 GeV) = −8%× σee4fBorn. (7.9)

7.1.2 Radiative corrections
Including radiative corrections, the resonant cross-section factorises into hard, soft, and Coulomb
functions [16]. (This formula holds for the leading term in the expansion in v. Subleading terms
result in a sum over Wilson coefficients and Green functions related to higher partial waves.
In higher orders, there are also soft corrections to the Coulomb function analogous to ultrasoft
QCD corrections in tt production [20].)

σres(s) = Im

 C C

 = 4π
2α2

sM2
Ws

4
W

Im
[
C2

∫
dωW (ω)GC(0, 0, EW − ω)

]
. (7.10)

Here, curly lines depict soft photons with momenta (q0, ~q) ∼ (δ, δ), while dotted lines denote
potential (Coulomb) photons with (q0, ~q) ∼ (δ,

√
δ). The Wilson coefficient C = 1+αC(1)/2π . . .

is related to contributions of hard loop momenta q ∼ MW to the on-shell amplitudes e−e+ →
W−W+ evaluated at the production threshold. For the input parameters used in Ref. [14], the
explicit value of the one-loop coefficient is

C(1) = Re c(1,fin)
p,LR = −10.076. (7.11)

The function W (ω) includes soft-photon effects, which decouple from the W bosons [21,22] for
the total cross-section, since soft radiation is only sensitive to the total (i.e., vanishing) electric
charge of the produced system. This function is the QED analogue of the soft function for Drell–
Yan production near the partonic threshold [23, 24]. The leading Coulomb Green function at
the origin,

G
(0)
C (0, 0; EW) = −

M2
W

4π


√√√√− EW

MW
+ α

2 ln
(
−
EW

MW

)
− α

2
π

2

12

√√√√−MW

EW
+α3 ζ(3)

4
MW

EW
+ · · ·

, (7.12)

∗Equation (7.8) is obtained by setting s = 4M2
W in Eq. (37) in Ref. [14], where an additional s-dependence

of K has been kept.
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sums Coulomb exchange and is known to all orders (see, e.g., Ref. [14]). At each order, the
Coulomb corrections ∼(α/v)n ∼ δn/2 are parametrically enhanced over the remaining O(αn)
corrections but do not have to be resummed to all orders, owing to the screening of the Coulomb
singularity by ΓW [25]. The convolution of the soft and Coulomb functions results in logarithms
of EW ∼ MWv

2, which can be resummed in analogy to threshold resummation at hadron
colliders [24,26,27]. However, for QED corrections, α log v is not enhanced, so this resummation
is formally not necessary.† Higher-order corrections to the non-resonant cross-section (Eq. (7.7))
only arise through hard corrections to K, while loop corrections in the EFT vanish.

These ingredients provide results for massless initial-state electrons and could be used, in
analogy to QCD predictions at hadron colliders, to define appropriate ‘partonic’ cross-sections
that are convoluted with corresponding electron structure functions resumming large mass log-
arithms. Structure functions in such a scheme are known up to NNLO [29]. In the NLOEFT

calculation of Ref. [14], however, electron mass effects have been treated by including collinear
corrections and matching to the commonly used resummed structure functions [30] by subtract-
ing double-counting contributions.‡

A useful result [15] for computing a class of higher-order effects of the form αn+1/vn is
obtained from Eq. (7.10) by combining the all-order Coulomb Green function with one-loop hard
and soft corrections and matching to ISR structure functions, as in the NLOEFT calculation:

∆σC×[S+H]1(s) = 4π2α2

sM2
Ws

4
W

α

π

{(
7
2 + π2

4 + C(1)
)
ImGC(0, 0; EW). (7.13)

Corrections of the same order, αn+1/vn, result from the NLO Green function [31] G(1)
C , which

includes the O(α) correction to the Coulomb potential. In the Gµ input parameter scheme, the
O(α2/v) correction reads [15]

∆G(1)
C (0, 0, EW) = −M

2
W

4π

α2

8π
ln
(
− EW

MW

){
−β0

2

[
ln
(
− EW

MW

)]
+ ∆Gµ

}
+O(α3) (7.14)

with the QED beta function with five quark flavours, β0 = −4(∑f 6=tNCfQ
2
f )/3 = −80/9, and

where the scheme-dependent constant ∆Gµ
= 61.634 is related to the quantity

δα(MZ)→Gµ
= α

4π

(
∆Gµ + 2β0 ln

(2MW

MZ

))

used in Ref. [15]. Equations (7.13) and (7.14) are the basis for computing examples of leading
N3LO corrections in Section 7.2.

7.1.3 NLOEFT result
The genuine radiative corrections at NLOEFT can be obtained by expanding Eq. (7.13) to O(α)
relative to the leading order and adding the second-order Coulomb correction from Eq. (7.12).

†An initial study obtained NLL effects of 0.1% [28], so the relevance for the FCC-ee may have to be revisited.
‡In the process of finalizing this report, we have noted that NLL contributions arising from the combination

of numerator factors of me and integrals with negative powers of me have been inadvertently omitted in the
computation of the collinear corrections. The expressions and numerical predictions in this report are preliminary
results including the missing contributions. A more complete discussion will be given elsewhere.
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A specific four-fermion final state is selected by multiplying the NLO correction with the LO
branching ratios (Eq. (7.6)) and adding NLO decay corrections,

∆σ(1)
decay =

Γ(1,ew)
f1f2

Γ(0)
f1f2

+
Γ(1,ew)

f3f4

Γ(0)
f3f4

σ(0)
res , (7.15)

with the one-loop electroweak corrections to the partial decay widths, Γ(1,ew)
fifj

. For hadronic
decay modes, QCD corrections to the partial decay widths must also be included up to NNLO,
using the counting α2

s ∼ α. In Table B.7.1, the O(α)-contributions of the NLOEFT result are
compared with the NLOee4f calculation in the full SM [12].§ The differences are of the order

∆σ(1)
4f (s) ≡ σee4fNLO(s)− σ(1)

EFT(s) = σee4fBorn(s)× (0.7− 0.1)% (7.16)

for
√
s = 161–170 GeV. Near the threshold, the dominant source of this discrepancy is ex-

pected to be the O(δ3/2) contribution from the O(α) correction to the non-resonant cross-
section (Eq. (7.7)), which has not been computed in the EFT approach.¶ Attributing the
difference at

√
s = 161 GeV to this correction, one obtains

K(1) ≈ 1.4, (7.17)

indicating that the O(α) corrections to the non-resonant contribution (Eq. (7.8)) are moderate,
|K(1)/K(0)| ≈ 0.3. Above the threshold, O(δ3/2) and O(δ2) corrections to the resonant cross-
section are expected to be important; these arise from the combination of O(α/v, α) corrections
in the EFT with O(v2) kinematic corrections and from O(α) corrections to the Wilson coef-
ficients of subleading production operators. Naive estimates using the O(v2) expansion of the
Born amplitude and the first Coulomb correction,

σ(3/2)
αv (s) ∼ |σ(1)

Born(s)|σ(1/2)
C (s)/σ(0)

Born(s), σ
(2)
αv2(s) ∼ α

s2
W

|σ(1)
Born(s)|, (7.18)

indicate that both corrections are ∼ 0.3% × σee4fBorn at
√
s = 170 GeV, overestimating the dis-

crepancy to the NLOee4f calculation. To assess the accuracy of the EFT expansion, it would
be interesting to calculate these corrections exactly and investigate whether the difference to
the NLOee4f calculation could be reduced, e.g., by resumming relativistic corrections to the W
propagators.

7.1.4 Leading NNLO corrections
In Ref. [15], those O(δ3/2) corrections according to Eq. (7.3) have been computed that originate
from genuine NNLO corrections in the usual counting in α. These consist of several classes:
(a) interference of one-loop Coulomb corrections with soft and hard corrections (Eq. (7.13));
(b) interference of one-loop Coulomb corrections with corrections to W decay, obtained from
Eq. (7.15) by replacing the LO cross-section with the first Coulomb correction; (c) interference
of one-loop Coulomb corrections with NLO corrections to residues of W propagators; and (d)
radiative NLO corrections to the Coulomb potential (Eq. (7.14)). The third Coulomb correction

§Note that here the updated results in the erratum to Ref. [12] are used. The EFT results here and in
Table B.7.2 differ from those of Refs. [14, 15] because of the corrected collinear contributions.

¶For e−e+→ tt, a related calculation has been performed recently [32].
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Table B.7.1: Comparison of the strict electroweak NLO results (without QCD corrections,
second Coulomb correction and ISR resummation) in the EFT approach to the full NLOee4f

calculation and the DPA implementation of Ref. [11].

σ(e−e+→ µ
−

νµud X)(fb)√
s Born NLO(EFT) [14] ee4f [12] DPA [12]

(GeV)
161 150.05(6) 107.34(6) 106.33(7) 103.15(7)
170 481.2(2) 379.03(2) 379.5(2) 376.9(2)

Table B.7.2: Leading O(α2) corrections [15] (second and third column) and contributions to
leading O(α3) corrections from triple-Coulomb exchange [15] (fourth column), interference
of double-Coulomb exchange with soft and hard corrections (Eq. (7.26)) (fifth column), and
double-Coulomb exchange with the NLO Coulomb potential (Eq. (7.27)) (sixth column). The
relative correction is given with respect to the Born cross-section without ISR improvement, as
quoted in Ref. [15].

σ(e−e+→ µ
−

νµud X)(fb)√
s O(α2/v2) O(α2/v) O(α3/v3) O(α3/v2)|C2×[S+H]1 O(α3/v2)|CNLO

2
(GeV)
158 0.151 0.061 3.82× 10−3 −1.50× 10−3 5.38× 10−3

[+0.245%] [+0.099%] [+0.006%] [−0.002%] [+0.009%]
161 0.437 0.331 9.92× 10−3 −0.433× 10−2 1.52× 10−2

[+0.284%] [+0.215%] [+0.006% ] [−0.003%] [+0.010%]
164 0.399 1.038 2.84× 10−3 −3.95× 10−3 1.97× 10−2

[+0.132%] [+0.342%] [+0.001%] [−0.001%] [+0.007%]
167 0.303 1.479 9.43× 10−4 −3.00× 10−3 1.77× 10−2

[+0.074%] [+0.362%] [+0.000%] [−0.001%] [+0.004%]
170 0.246 1.734 4.39× 10−4 −2.43× 10−3 1.56× 10−2

[+0.051%] [+0.360%] [+0.000%] [−0.001%] [+0.003%]

from Eq. (7.12) contributes at the same order, δ3/2. Care has been taken to avoid double-
counting corrections already included in the NLOee4f calculation, so the two results can be
added to obtain the current best prediction for the total cross-section near the threshold. The
numerical results are reproduced in Table B.7.2, together with the second Coulomb correction
included in the NLOEFT calculation. The results show that the leading Coulomb-enhanced
two-loop corrections are of the order of 0.3%. The uncertainty due to the remaining non-
Coulomb-enhanced NNLO corrections was estimated to be below the ILC target accuracy of
∆MW = 3 MeV [15] but not sufficient for the FCC-ee.

- 82 -



B.7 Prospects for higher-order corrections to W pair production near threshold

7.2 Estimate of NNLOEFT corrections and beyond
In this section, the structure of the EFT expansion of the cross-section and the ingredients
for higher-order corrections reviewed in Section 7.1 are used to estimate the possible effects of
a future NNLOEFT calculation. Owing to the counting (Eq. (7.1)), this also includes leading
corrections beyond NNLO in the conventional perturbative expansion:

NNLOEFT : v4, αv2, α2 α3/v2, α4/v4. (7.19)

The contributions of O(v4, αv2) in Eq. (7.19) arise from kinematic corrections to the Born
and NLO cross-section in the full SM, as discussed in Sections 7.1.1 and 7.1.3, respectively.
The genuine O(α2) corrections are estimated in Section 7.2.1. A representative subset of the
O(α3/v2) corrections is computed in Section 7.2.2 and serves as an estimate of effects beyond
a conventional NNLO calculation. The quadruple-Coulomb correction α4/v4 follows from the
expansion of the known Coulomb Green function and is smaller than 0.001% and therefore
negligible. Counting α ∼ α2

s , QCD corrections to W self-energies and decay widths up to

αα2
s , α4

s (7.20)

are also required. Currently, the required O(α4
s ) corrections for inclusive hadronic vector boson

decays are known [33], while mixed QCD-EW corrections are known up to O(ααs) [34]. The
uncertainty of a future NNLOEFT calculation can be estimated by considering the impact of
corrections at the next order in the δ-expansion, i.e.,

N5/2LOEFT : αv3, α2v, α3/v, α4/v3, α5/v5. (7.21)

The contributions ∼αv3 are already included in the NLOee4f calculation. The fifth Coulomb
correction ∼α5/v5 is known but negligibly small. The corrections ∼α4/v3 arise from the combin-
ation of O(α) corrections with triple-Coulomb exchange and are also expected to be negligi-
ble, since the latter is <0.01%. Therefore, the dominant genuine radiative corrections beyond
NNLOEFT are expected to be of order α3/v. These arise from a combination of single Coulomb
exchange and various sources of O(α2) corrections and are estimated in Section 7.2.3. Further
contributions from triple-Coulomb exchange combined with ∼v2 kinematic corrections are again
expected to be negligible. The O(α2) corrections to the non-resonant cross-section (Eq. (7.7))
also provide ∼α3/v corrections relative to the LO cross-section, while corrections ∼α2v arise
from a combination of single Coulomb exchange with kinematic corrections ∼αv2. Such non-
resonant and kinematic corrections are estimated in Section 7.2.4. It is assumed throughout that
large logarithms of me are absorbed in electron structure functions and only the uncertainty
due to non-universal O(α2, α3) corrections is considered.

7.2.1 O(α2) corrections in the EFT
The most involved corrections of order α2 in the EFT arise from hard two-loop corrections to the
Wilson coefficients of production operators and to decay rates and from soft two-loop corrections
to the forward-scattering amplitude. Additional corrections from higher-order potentials or the
combination of double-Coulomb exchange with kinematic corrections ∼v2 are anticipated to
be subdominant. The soft corrections for massless initial-state electrons can be extracted from
the two-loop Drell–Yan soft function [23, 24] and converted to the electron mass regulator
scheme using the NNLO structure functions computed in Ref. [29]. We make no attempt here
to estimate these soft corrections, which are formally of the same order as the hard corrections.
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This is supported by the NLO result, where hard corrections alone provide a reasonable order-
of-magnitude estimate and soft corrections contribute less than 50% of the NLO corrections
for
√
s = 158–170 GeV. The contribution of the NNLO Wilson coefficient of the production

operator to the cross-section reads

σ
(2)
hard(s) = πα2

s4
Ws

Im
−

√√√√− EW

MW

(
α

π

)2
C(2)

 , (7.22)

where the NNLO hard coefficient is defined in terms of the squared Wilson coefficient,

C2 = 1 + α

π
C(1) +

(
α

π

)2
C(2) + · · ·

The computation of C(2) involves the two-loop amplitude for e−e+→W−W+, evaluated directly
at the threshold. Such a computation is beyond the current state of the art, which includes two-
loop EW corrections to three-point functions [35–37], but will presumably be feasible before
the operation of the FCC-ee. A naive estimate of the NNLO coefficient in terms of the the
one-loop result (Eq. (7.11)),

C(2) ∼ (C(1))2, (7.23)

suggests an effect on the cross-section of

∆σ(2)
hard ≈ σ(0)

res × 0.06%. (7.24)

The NNLO corrections to W boson decay give rise to the correction

∆σ(2)
decay =

Γ(2,ew)
µ−νµ

Γ(0)
µ−νµ

+
Γ(2,ew)

ud

Γ(0)
ud

+
Γ(1,ew)

µ−νµ
Γ(1,ew)

ud

Γ(0)
µ−νµ

Γ(0,ew)
ud

σ(0)
res . (7.25)

The product of NLO corrections in the last term contributes a negligible 0.001% to the Gµ

input parameter scheme. A naive estimate of the currently unknown O(α2) corrections to W
decay suggests

Γ(2,ew)
fifj

≈ α

s2
W

Γ(1,ew)
fifj

∼ 0.01%× Γ(0)
fifj

,

consistent with the size of the O(α2) corrections to Z decay [36,37]. The estimates given in this
subsection indicate that the combined non-Coulomb-enhanced corrections of O(α2) are of the
order of 0.1% and are therefore mandatory to reduce the uncertainty below ∆MW . 1.5 MeV.

7.2.2 Corrections of O(α3/v2)
The corrections of O(α3/v2) involve a double-Coulomb exchange in combination with an O(α)
correction and arise from similar sources to those of the O(α2/v) corrections discussed in
Section 7.1.4. The subclass of contributions arising from the combination of double-Coulomb
exchange with soft and hard corrections is obtained by inserting theO(α2) term in the expansion
of the Coulomb Green function (Eq. (7.12)) into Eq. (7.13), resulting in the contribution to the
cross-section

∆σC2×[S+H]1 = α2

s4
Ws

α3
π

2

12 Im


√√√√−MW

EW

[(
7
2 + π2

4 + C(1)
)]

(7.26)
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Corrections from the NLO Coulomb potential to double-Coulomb exchange can be obtained
by expanding the expression for the NLO Coulomb Green function [31] quoted in Ref. [38] and
using the result for the Coulomb potential in the Gµ input parameter scheme [15], resulting in

∆σCNLO
2 (s) = α2

s4
Ws

α3

24 Im


√
−MW

EW

π
2
(
−β0 ln

(
− EW

MW

)
+ ∆Gµ

)
− 12β0ζ3

. (7.27)

The combination of double-Coulomb exchange with NLO corrections to W decay is obtained
from Eq. (7.15) by replacing σ(0)

res with the second Coulomb correction. The resulting effect is, at
most, 0.002%. Further corrections arise from corrections to the propagator residues and can be
computed with current methods, but are beyond the scope of the present simple estimates. At
O(α2/v), the corresponding corrections are of a similar size to the mixed soft+hard Coulomb
corrections [15]. Therefore, the predictions from Eqs. (7.26) and (7.27), which are shown in
Table B.7.2 together with the known two- and three-loop corrections [15], are expected to be
representative of the the O(α3/v2) corrections. They are of a similar order as the third Coulomb
correction, and individually of the order .0.01% near the threshold. The sum of all O(α3/v2)
corrections may, therefore, be of the order of 0.01%, indicating the need to go beyond a strict
O(α2) calculation to reach the FCC-ee accuracy goal.

7.2.3 Radiative corrections of O(α3/v)
Genuine three-loop corrections at O(α3/v) can arise from a combination of the first Coulomb
correction and soft or hard O(α2) corrections, corrections from higher-order potentials to the
Coulomb Green function or a combination of O(α) hard or soft and potential corrections.
One contribution in the latter class can be computed by inserting the NLO Green func-
tion (Eq. (7.14)) into the product with the O(α) hard and soft corrections (Eq. (7.13)),

σ̂CNLO×[S+H]1(s) = α2

ss4
W

α3

8π
Im


(

7
2 + π2

4 +C(1)
)(
−β0

2 ln
(
− EW
MW

)
+ ∆Gµ

)
ln
(
− EW
MW

). (7.28)

The corrections to the cross-section for
√
s = 161–170 GeV are given by

∆σCNLO×[S+H]1 = −0.001%× σLO. (7.29)

A further indication for the magnitude of corrections at this order can be obtained from the
combination of the NNLO hard coefficient with the first Coulomb correction,

∆σC1×H2 = −πα2

s4
Ws

α3C(2)

2π
Im
[

ln
(
−
EW

MW

)]
, (7.30)

and using the estimate (Eq. (7.23)) for the hard two-loop coefficient, which results in

∆σC1×H2(161 GeV) ≈ 0.005%× σLO, ∆σC1×H2(170 GeV) ≈ 0.002%× σLO. (7.31)

These results indicate that the O(α3) corrections beyond NNLOEFT are .0.01%. It is expected
that the factorisation (Eq. (7.10)) and the N3LO Coulomb Green function [39] enable the
computation of all O(α3/v) corrections once the NNLOEFT result is known, as for a related
calculation for hadronic tt production [40].
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7.2.4 Non-resonant and kinematic O(α2) corrections
KinematicO(α2v) corrections andO(α2) corrections to the non-resonant cross-section in Eq. (7.21)
would be included in a full NNLOee4f calculation, which is far beyond current calculational
methods. The comparison of the NLOEFT and NLOee4f results in Section 7.1.3 indicate a well-
behaved perturbative expansion of the non-resonant corrections (Eq. (7.7)), with coefficients
K(i) of order one. This suggests that the non-resonant and kinematic NNLO corrections are
reasonably estimated by scaling the corresponding NLO corrections,

∆σ(2)
4f (s) = σee4fNNLO(s)− σ(2)

EFT(s) ≈ α

s2
W

(
σee4fNLO(s)− σ(1)

EFT(s)
)

= σee4fBorn(s)× 0.02% (7.32)

for
√
s = 161–170 GeV. Therefore, these effects must be under control to reach the desired

accuracy for the FCC-ee. A calculation of theO(α2) non-resonant correction in the EFT involves
a combination of O(α2) corrections to the processes e−e+ → W±ff with O(α) corrections for
e−e+ → 4f. Such a computation is beyond current capabilities, but may be possible before a
full NNLOee4f calculation is available. A comparison of future NNLO calculations in the EFT
and the conventional DPA may also enable these corrections to be constrained.

7.3 Summary and outlook
The prospects of reducing the theoretical uncertainty of the total W pair production cross-
section near the threshold to the level of ∼0.01% required to fully exploit the high statistics
at a future circular e−e+ collider have been investigated within the EFT approach, building on
results for the NLO and dominant NNLO corrections. The estimates in Section 7.2.1 suggest
that O(α2) corrections beyond the leading Coulomb effects [15] are of the order

∆σNNLO ≈ 0.1%× σBorn (7.33)
at the threshold and are therefore mandatory to reach FCC-ee precision. In Sections 7.2.2
and 7.2.3, the dominant, Coulomb-enhanced three-loop effects have been estimated to be of the
order

∆σN3LO ≈ few× 0.01%× σBorn , (7.34)
based on computations or estimates of representative examples of O(α3/v2, α3/v) effects. These
corrections are either part of the NNLOEFT result or can be computed once this result is avail-
able. The effect of the remaining O(α3) corrections without Coulomb enhancement is expected
to be below the FCC-ee target accuracy. However, the accuracy of the NNLOEFT calculation
is limited by non-resonant and kinematic corrections. An extrapolation of the difference of the
NLOEFT and NLOee4f calculations suggests the magnitude

∆σ(2)
4f ≈ 0.02%× σBorn. (7.35)

Related estimates, ∆σN3LO ≈ 0.02% and ∆σ(non-res)
NNLO ≈ 0.016%, have been obtained using scaling

arguments and an extrapolation of the accuracy of the DPA [41]. Our results suggest that a
theory-induced systematic error of the mass measurement from a threshold scan of

∆MW = (0.15− 0.45) MeV (7.36)
should be achievable, where the lower value results from assuming that the non-resonant cor-
rections are under control. In addition to the corrections considered here, it is also essential to
reduce the uncertainty from ISR corrections and QCD corrections for hadronic final states to the
required accuracy. It would also be desirable to bring the precision for differential cross-sections
to a similar level to that of the total cross-section.
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