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7.1 Introduction
The operation of the Large Hadron Collider (LHC) has been a great success, with Run 1 cul-
minating in the discovery of the Higgs boson by the ATLAS and CMS experiments in 2012.
In Run 2, the LHC experiments have moved towards performing high-precision measurements
with uncertainties reaching below the percentage level for certain observables. Looking forward
to the Future Circular Collider with electron beams (FCC-ee), which will operate in the exper-
imentally much cleaner environment of electron–positron initial states, there will be an even
more dramatic increase in experimental precision. To exploit the precision measurements, the
theory community will need to provide high-precision predictions that match the experimental
uncertainties. This requires the development of efficient ways to compute these corrections,
breaking through the current computational bottlenecks.

In this section, we discuss the calculation of a key component in making such predictions—
the loop amplitude. Specifically, we discuss the computation of an independent set of analytical
two-loop five-gluon helicity amplitudes in the leading-colour approximation. These amplitudes
are an ingredient for the phenomenologically relevant description of three-jet production at next-
to-next-to-leading order (NNLO) for hadron colliders. Nonetheless, the methods we present are
completely general and can also be applied to predictions for electron–positron collisions.

The first two-loop five-gluon amplitude to be computed was the one with all helicities pos-
itive in the leading-colour approximation, initially numerically [1] and subsequently analytic-
ally [2,3]. In the last few years, a flurry of activity in this field led to the numerical calculation
of all five-gluon [4, 5], and then all five-parton [6, 7] amplitudes in the leading-colour approxi-
mation. The combination of numerical frameworks with finite-field techniques, with a view to
the reconstruction of the rational functions appearing in the final results, was first introduced
to our field in Ref. [8], and an algorithm applicable to multiscale calculations was presented in
Ref. [9]. Inspired by these ideas, the four-gluon amplitudes were analytically reconstructed from
floating-point evaluations [10]. The first application involving multiple scales was the single-
minus two-loop five-gluon amplitude [11]. In this section, we describe the calculation of the full
set of independent five-gluon amplitudes in the leading-colour approximation [12]. These re-
sults were obtained using analytical reconstruction techniques, starting from numerical results
obtained in the framework of two-loop numerical unitarity [5,7,10,13]. Recently, the remaining
five-parton amplitudes have also become available [14], and all two-loop amplitudes for three-jet
production at NNLO in QCD are now known analytically in the leading-colour approximation.†
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This section is organised as follows. In Section 7.2, we describe the amplitudes under
consideration and the numerical unitarity framework employed for their evaluation. Section 7.3
describes the objects we will be computing and the simplifications that are made to allow
for an efficient functional reconstruction. The implementation and the results are presented in
Section 7.4 and we conclude in Section 7.5.

7.2 Amplitudes
We discuss the computation of the two-loop five-gluon amplitudes in QCD. The calculation is
performed in the leading-colour approximation where there is a single partial amplitude. The
bare amplitude can be perturbatively expanded as

A({pi, hi}i=1,...,5)
∣∣∣
leading colour

=
∑

σ∈S5/Z5

Tr (T aσ(1)T aσ(2)T aσ(3)T aσ(4)T aσ(5)) g3
0

(
A(0) + λA(1) + λ2A(2) +O(λ3)

)
. (7.1)

Here, λ = Ncg
2
0/(4π)2, g0 is the bare QCD coupling and S5/Z5 is the set of all non-cyclic

permutations of five indices. The amplitudesA(k) appearing in the expansion of Eq. (7.1) depend
on the momenta pσ(i) and the helicities hσ(i) and these proceedings focus on the calculation of
A(2) in the ’t Hooft–Veltman scheme of dimensional regularisation, with D = 4− 2ε.

The first step in the analytic reconstruction procedure is the numerical evaluation of
the amplitude. We evaluate the amplitudes in the framework of two-loop numerical unitarity
[5, 7, 10, 13]. The integrands of the amplitudes A(2) are parametrized with a decomposition in
terms of master integrands and surface terms. On integration, the former yield the master
integrals, while the latter vanish. Labelling the loop momenta `l, the parametrization we use is
given by

A(2)(`l) =
∑
Γ∈∆

∑
i∈MΓ∪SΓ

cΓ,i
mΓ,i(`l)∏
j∈PΓ ρj

, (7.2)

with ∆ being the set of all propagator structures Γ, PΓ the associated set of propagators, and
MΓ and SΓ denoting the corresponding sets of master integrands and surface terms, respectively.
If the master integrals are known, the evaluation of the amplitude reduces to the determination
of master coefficients cΓ,i with i ∈ MΓ. In numerical unitarity, this is achieved by solving a
linear system, which is generated by sampling on-shell values of the loop momenta `Γ

l belonging
to the algebraic variety of PΓ. In this limit, the leading contribution to Eq. (7.1) factorises into
products of tree amplitudes

∑
states

∏
i∈TΓ

Atree
i (`Γ

l ) =
∑

Γ′≥Γ ,
i∈MΓ′∪SΓ′

cΓ′,imΓ′,i(`Γ
l )∏

j∈(PΓ′\PΓ) ρj(`Γ
l ) . (7.3)

The tree amplitudes associated with vertices in the diagram corresponding to Γ are denoted
TΓ and the sum is over the physical states of each internal line of Γ. On the right-hand side,
the sum is performed over all propagator structures Γ′ , such that PΓ ⊆ PΓ′ . At two loops,
subleading contributions appear, which cannot be described by a factorisation theorem in the
on-shell limit. In practice, this complication is eliminated by constructing a larger system of
equations, as described, for instance, in Ref. [15]. For a given (rational) phase space point, we

the methodology.
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solve the linear system in Eq. (7.3) using finite-field arithmetic. This allows us to obtain exact
results for the master integral coefficients in a very efficient manner.

Once the coefficients cΓ,i are known, the amplitude can be decomposed into a linear
combination of master integrals IΓ,i, according to

A(2) =
∑
Γ∈∆

∑
i∈MΓ

cΓ,iIΓ,i , (7.4)

with

IΓ,i =
∫

dDll
mΓ,i(ll)∏
j∈PΓ ρj

. (7.5)

For planar massless five-point scattering at two loops, the basis of master integrals is known in
analytical form [16,17].

7.3 Simplifications for functional reconstruction
Functional reconstruction techniques allow one to reconstruct rational functions from numerical
data, preferably in a finite field to avoid issues related to loss of precision [8, 9]. By choosing
an appropriate set of variables, such as momentum twistors [18], we can guarantee that the
coefficients cΓ,i in Eq. (7.4) are rational. The specific parametrization we use is [9]

s12 = x4, s23 = x2x4, s34 = x4

(
(1 + x1)x2

x0
+ x1(x3 − 1)

)
,

s45 = x3x4, s51 = x1x4(x0 − x2 + x3) , (7.6)
tr5 = 4 i ε(p1, p2, p3, p4)

= x2
4

(
x2(1 + 2x1) + x0x1(x3 − 1)− x2(1 + x1)(x2 − x3)

x0

)
,

where sij = (pi+pj)2, with the indices defined cyclically. One could, in principle, reconstruct the
rational master integral coefficients. However, the difficulty of the reconstruction is governed by
the complexity of the function under consideration. The amplitude A(2) of Eq. (7.4) contains a
lot of redundant information; to improve the efficiency of the reconstruction, it is thus beneficial
to remove this redundancy. Furthermore, while Eq. (7.4) provides a decomposition in terms of
master integrals in dimensional regularisation, after expanding the master integrals in ε there
can be new linear relations between the different terms in the Laurent expansion in ε. We thus
expect cancellations between the different coefficients cΓ,i. In this section, we discuss how we
address these issues and define the object we reconstruct.

We start by expressing the Laurent expansion of the master integrals in Eq. (7.5) in terms
of a basis B of so-called pentagon functions hi ∈ B [17]. That is, we rewrite the amplitudes as

A(2) =
∑
i∈B

0∑
k=−4

εk c̃k,i(~x)hi(~x) +O(ε), (7.7)

where ~x = {x0, x1, x2, x3, x4} and the c̃k,i(~x) are rational functions of the twistor variables. All
linear relations between master integrals that appear after expansion in ε are resolved in such
a decomposition.
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Next, we recall that the singularity structure of two-loop amplitudes is governed by lower-
loop amplitudes [19–22]. One can thus exploit this knowledge to subtract the pole structure
from the amplitudes in order to obtain a finite remainder that contains the new two-loop
information. There is freedom in how to define the remainders, as they are only constrained by
removing the poles of the amplitudes. For helicity amplitudes that vanish at tree level, A(k)

±++++,
we use

R(2)
±++++ = Ā(2)

±+++++ SεĀ(1)
±++++

5∑
i=1

(−si,i+1)−ε
ε2

+O(ε), (7.8)

where Sε = (4π)εe−εγE . The Ā(k) denote amplitudes normalised to remove any ambiguity related
to overall phases. In the case of amplitudes that vanish at tree level, we normalise to the
leading order in ε of the (finite) one-loop amplitude. For the maximally helicity violating (MHV)
amplitudes, A(k)

−∓±++, which we normalise to the corresponding tree amplitude, we define

R(2)
−∓±++ = Ā(2)

−∓±++ −
(

5 β̃0

2ε + I(1)
)
SεĀ(1)

−∓±++ +
(

15 β̃2
0

8ε2 + 3
2ε
(
β̃0I(1) − β̃1

)
− I(2)

)
S2
ε +O(ε) ,

(7.9)
where β̃i are the coefficients of the QCD β function divided by N i+1

c and I(1) and I(2) are
the standard Catani operators at leading colour. Precise expressions for the operators in our
conventions can be found in Appendix B of Ref. [7]. We note that for both Eq. (7.8) and
Eq. (7.9) we require one-loop amplitudes expanded up to order ε2. By expressing the one-loop
amplitudes and the Catani operators in the basis of pentagon functions, the remainder can be
expressed in the same way,

R(2) =
∑
i∈B

ri(~x)hi(~x) . (7.10)

We observe that the coefficients ri(~x) are rational functions of lower total degree than the c̃k,i(~x)
of Eq. (7.7).

As a further simplification, we investigate the pole structure of the coefficients ri(~x). The
alphabet determines the points in phase space where the pentagon functions have logarithmic
singularities, and as such provides a natural candidate to describe the pole structure of the co-
efficients. We use the alphabet A determined in Ref. [17] to build an ansatz for the denominator
structure of the ri(~x),

ri(~x) = ni(~x)∏
j∈Awj(~x)qij . (7.11)

We then reconstruct the remainder on a slice ~x(t) = ~a · t +~b, where all the twistor variables
depend on a single parameter t and ~a and ~b are random vectors of finite-field values. This
reconstruction in one variable is drastically simpler than the full multivariate reconstruction.
In addition, the maximal degree in t on the slice corresponds to the total degree in ~x. We
determine the exponents qij by matching the ansatz on the univariate slice and check its va-
lidity on a second slice. Having determined the denominators of the rational coefficients ri, the
reconstruction reduces to the much simpler polynomial reconstruction of the numerators ni(~x).

The last simplification we implement is a change of basis in the space of pentagon func-
tions. Amplitudes are expected to simplify in specific kinematic configurations where the pen-
tagon functions degenerate into a smaller basis, which requires relations between the different
coefficients. This motivates the search for (helicity-dependent) bases with coefficients of lower
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Table C.7.1: Each tn/td denotes the total degree of numerator (n) and denominator (d) of the
most complex coefficient for each helicity amplitude in the decomposition of Eq. (7.7) (second
column) or Eq. (7.10) (third column). The fourth column lists the highest polynomial we re-
construct. The final column lists the number of letters wj(~x) that contribute in the denominator
of Eq. (7.11).

Helicity c̃k,i(t) ri(t) n′i(t) wjs in denominator
+ + + + + t34/t28 t10/t4 t10 3
−+ + + + t50/t42 t35/t28 t35 14
−−+ + + t70/t65 t50/t45 t40 17
−+−+ + t84/t82 t68/t66 t53 20

total degree. To find them, we construct linear combinations of coefficients
∑
i∈B

ai,kri(~x) = Nk(~x, ai,k)∏
j∈Awj(~x)q′kj

, (7.12)

and solve for phase space independent ai,k such that the numerators Nk(~x, ai,k) factorise a
subset of the wj ∈ A. This can be performed on univariate slices by only accepting solutions
that are invariant over a number of slices. The matrix ai,k allows us to change to a new basis
B′ in the space of special functions, in which remainders can be decomposed as in Eq. (7.10),
with coefficients r′i(~x) whose numerators n′i(~x) are polynomials of lower total degree than those
of Eq. (7.11).

7.4 Implementation and results
The master integral coefficients of the one- and two-loop amplitudes are computed using nu-
merical unitarity in a finite field. They are combined with the corresponding master integrals,
expressed in terms of pentagon functions, and the known pole structure is subtracted to obtain
the finite remainders as a linear combination of pentagon functions. After a rotation in the
space of pentagon functions and multiplication by the predetermined denominator factors, we
obtain numerical samples for the numerators n′i(~x) in a finite field. These samples are used to
analytically reconstruct the n′i(~x) with the algorithm of Ref. [9], which we slightly modified to
allow a more efficient parallelization. These steps were implemented in a flexible C++ frame-
work, which was used to reconstruct the analytical form of the two-loop remainders of a basis
of five-gluon helicity amplitudes (the other helicities can be obtained by parity and charge con-
jugation). Two finite fields of cardinality O(231) were necessary for the rational reconstruction
by means of the Chinese remainder theorem.

Table C.7.1 shows the impact of the simplifications discussed in the previous section
for each helicity. In the most complicated case, the g−g+g−g+g+ helicity amplitude, we must
reconstruct a polynomial of degree 53. This required 250 000 numerical evaluations, with 4.5
min per evaluation.

The results that we provide contain the one-loop amplitudes in terms of master integrals
and the two-loop remainders in terms of pentagon functions. The one-loop master integrals
are provided in terms of pentagon functions up to order ε2. The combined size of the expres-
sions amounts to 45MB without attempting any simplification (we refer the reader to Ref. [14]
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for more compact expressions). These expressions can be combined to construct the full ana-
lytical expression for the two-loop five-gluon leading-colour amplitudes in the Euclidean region.
We validated our expressions by reproducing all the target benchmark values available in the
literature [1–5,7, 11].

7.5 Conclusion
In this section, we have presented the recent computation of the analytical form of the leading-
colour contributions to the two-loop five-gluon scattering amplitudes in pure Yang–Mills theory.
This computation was undertaken in a novel way, made possible by a collection of mature tools.
The amplitude is first numerically reduced to a basis of master integrals with the two-loop nu-
merical unitarity approach, where the coefficients take finite-field values [5,7,10,13]. This allows
us to numerically calculate a finite remainder, expressed in terms of pentagon functions [17].
The generation of these numerical samples is driven by a functional reconstruction algorithm [9],
which determines the analytical form of the pentagon-function coefficients from a series of eval-
uations. A key step in efficiently implementing this strategy was to utilise physical information
to simplify the analytical form of the objects we reconstruct, and hence reduce the required
number of evaluations. First, we reconstruct the finite remainder, which removes redundant
information related to lower-loop contributions. Second, we decompose the remainder in terms
of pentagon functions to account for relations between different master integrals after expan-
sion in the dimensional regulator. Next, we exploit the knowledge of the singularity structure
of the pentagon functions to efficiently establish the denominators of the coefficient functions.
Finally, we find a basis of pentagon functions with coefficients of lower degree by exploiting
their reconstruction on a univariate slice.

These techniques show a great deal of potential for future calculations. Indeed, they have
very recently been used to obtain the full set of leading-colour contributions to the five-parton
scattering amplitudes [14]. We foresee further applications to processes with a higher number
of scales and loops, such as those required for a future lepton collider in the near future.
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