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In this section, we report on the recent progress made in the development of the Feynman
integral reduction program Kira. The development is focused on algorithmic improvements
that are essential to extend the range of feasible high-precision calculations for present and
future colliders like the FCC-ee.

8.1 Introduction
Kira [1] implements Laporta’s algorithm [2] to reduce Feynman integrals to a basis of master
integrals. In this approach, large systems of integration by parts [3] and Lorentz invariance [4]
identities, as well as symmetry relations, are generated and solved by a variant of Gaussian
elimination, systematically expressing complicated integrals in terms of simpler integrals with
respect to a given complexity criterion. Though alternative reduction techniques have been
proposed and applied to specific problems, see, e.g., Refs. [5–8], to date programs based on La-
porta’s algorithm [9–11] pose the only general-purpose tools suited for large-scale applications.
Since these reduction programs constitute one of the bottlenecks of high-precision predictions,
their continuous improvement is crucial to meet the increasing demand for such calculations.

A key element of Kira is its equation selector to extract a linearly independent system
of equations, discarding equations that are not required to fully reduce all integrals requested
by the user. The selector is based on Gaussian elimination using modular arithmetic on the
coefficients.

8.2 Improved symmetrization
The detection of symmetry relations between sectors within and across topologies received a
performance boost as a result of the implementation of the algorithm described in Ref. [12]. In
this approach, a canonical form of the integrand of each sector is constructed, so that a one-to-
one comparison of the representations can be made. Additionally, the combinatorial complexity
of the loop momentum shift finder to determine the mapping prescriptions of equivalent sectors
has been reduced. Furthermore, the detection of trivial sectors received a significant speed-up
by employing Kira’s IBP solver instead of the less optimised previous linear solver.

As an example, the ‘cube topology’ shown in Fig. C.8.1, i.e., the five-loop vacuum bubble
with 12 propagators of equal mass and the symmetry of a cube, can now be analysed in less
than 10min on a state-of-the-art desktop computer.

8.3 Parallel simplification algorithms for coefficients
8.3.1 Algebraic simplifications with Fermat
To simplify multivariate rational functions in masses and kinematic quantities, which appear
as coefficients in the Gaussian elimination steps, Kira relies on the program Fermat [13]. In
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Fig. C.8.1: The cube topology is the five-loop vacuum bubble with 12 propagators of equal
mass and octahedral symmetry. The high symmetry of 48 equivalent propagator permutations
in the top-level sector makes this topology an ideal candidate for symmetrization benchmarks.

almost all cases, the run time for the reduction is dominated by those algebraic simplifications.
It turns out that, when a new coefficient is constructed from several (often thousands of) known
coefficients, combining them naïvely and simplifying them in one step results in an avoidable
performance penalty. Instead, Kira recursively combines coefficients pairwise, choosing the
pairs based on the size of their string representations. Besides the improved performance, this
strategy also offers new possibilities for the parallelization, since the pairwise combinations can
be evaluated by different Fermat instances.

In the Gaussian back substitution, one can restrict a solver to calculate only the coefficients
of a specific master integral. This allows the user to parallelize the reduction across several
machines and merge the results in a final step.

8.3.2 Algebraic reconstruction over integers
An alternative algorithm to simplify the coefficients is given by algebraic reconstruction over
integers, introduced in Refs. [7,14,15]. This strategy is based on sampling the rational functions
by setting kinematic invariants and masses to integer values repeatedly. Each sample can be
evaluated rather quickly, but the number of samples required to reconstruct the simplified
result increases with the degree of the numerator and denominator of the rational function,
the number of invariants involved, and the number of invariants over which it is sampled. Of
course, the sample can again be evaluated in parallel, leading to the potential for massive
parallelization on dozens of CPU cores. An implementation of this algorithm is available in
Kira 1.2 and is continuously being improved and extended. Furthermore, Kira automatically
decides which simplification strategy, i.e., algebraic reconstruction or Fermat, is expected to be
more efficient in each case. The criteria for these decisions are subject to investigation and offer
room for future improvements.

8.3.3 Algebraic reconstruction over finite integer fields
Instead of sampling rational functions over integers, it is also possible to reconstruct them
from samples over finite integer fields. Mapping coefficients to a finite field limits the size of
each coefficient and, with that, the complexity of each operation. Choosing the module as
a word-size prime, numerical operations on coefficients correspond to the native arithmetic
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capabilities of the employed CPU, allowing for high performance sampling of the coefficients.
A reconstruction algorithm for multivariate rational functions was first presented in Ref. [16].
Recently, the library FireFly [17] became available, implementing a similar algorithm. FireFly
has been combined with Kira to use it for Feynman integral reduction, calculating the samples
with Kira’s finite integer Gaussian elimination. An independent implementation is available in
FIRE 6 [11].

In the sampling over (arbitrary-size) integers described here, whenever a coefficient is
required to proceed with the reduction, the solver needs to wait until that coefficient has been
reconstructed. Using finite integers, the entire solver can be parallelized, opening the possibility
of distributing solvers over different machines. The reconstructor can then collect the samples
from the solvers and finish the calculation when a sufficient number of samples is available. The
finite integer reconstruction is expected to become publicly available in a future Kira release
in combination with FireFly.

8.4 Basis choice
It is well-known that the reduction time strongly depends on the choice of the master integrals.
In a convenient basis, the reduction coefficients tend to become much simpler than, e.g., in the
basis that follows directly from the integral ordering. In this respect, uniformly transcendental
bases [18], finite bases [19], or finite uniformly transcendental bases [20] present interesting
candidates to study the impact of the basis choice on the reduction performance. These special
choices involve linear combinations of integrals as basis elements that we call ‘master equations’.

In Kira, integrals are represented by integer ‘weights’ in such a way that they obey the
imposed integral ordering. Choosing a specific basis of master integrals is already possible. To
this end, the weights are modified so that the preferred basis integrals are regarded as simpler
than all other integrals. In the presence of master equations, a new kind of object must be
introduced, representing the master equation instead of a particular integral. With appropriate
bookkeeping, the implementation becomes straightforward and will soon be available in a Kira
release.

8.5 Conclusions
The complexity of precision calculations needed to match the accuracy of the FCC-ee experi-
ment demands for integral reduction tools beyond the state-of-the-art capabilities. For example,
the computation of pseudo-observables at the Z boson resonance, involving reductions of three-
loop Feynman diagrams with up to five scales, will be necessary to reach the accuracy that may
be achieved with the FCC-ee [21]. We expect that Feynman integral reduction programs based
on Laporta’s algorithm will continue to play a key role in such calculations; e.g., by harnessing
the potential of rational reconstruction, basis choices, and large-scale parallelization, we are
convinced that Kira will keep up with the arising technical challenges.
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