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The top quark and Higgs boson masses have been predicted before their respective discoveries
by the global fit of the Standard Model to electroweak precision data. With the Higgs boson
discovery and the measurement of its mass, the last missing parameter of the Standard Model
has been fixed and thus the internal consistency of the Standard Model can be probed at a new
level by comparing direct measurements with the indirect predictions of the global electroweak
fit. In this section, we discuss the expected precisions in the most important indirect predictions
that are expected in the FCC-ee era and compare them with the state of the art.

Global electroweak analyses and fits have a long history in particle physics, starting be-
fore the discovery of the W and Z bosons. The basic idea of the global electroweak fit is the
comparison of the state-of-the-art calculations of the electroweak precision observables with the
most recent experimental data to constrain the free parameters of the fit and to test the good-
ness of fit. The free parameters of the SM relevant for the global electroweak analysis are the
coupling constant of the electromagnetic, weak, and strong interactions, as well as the masses
of the elementary fermions and bosons. This number can be reduced by fixing parameters with
insignificant uncertainties compared with the sensitivity of the fit, as well as imposing the re-
lations of the electroweak unification. The typical floating parameters chosen in the fit are the
masses of the Z and the Higgs boson, the top, the bottom, and charm quark masses, and the
coupling parameters ∆α5 and αS(mZ). An introduction and a review of the current status of
the global electroweak fit can be found in Ref. [1].

Besides a global analysis of the consistency between observables and their relations, the
global electroweak fit can be used to indirectly determine and hence predict the expected values
of observables. Technically, this indirect parameter determination is performed by scanning the
parameter in a chosen range and calculating the corresponding χ2 values. It should be noted
that the value of χ2

min is not relevant for the uncertainty estimation, only its difference relative
to the global minimum, ∆χ2 := χ2 − χ2

min.
These indirect determinations have been recently performed with the latest measured

values of electroweak precision observables in Ref. [1] and the state-of-the art fitting frameworks
GAPP and Gfitter. While GAPP (Global Analysis of Particle Properties) [2] is a Fortran
library for the evaluations of pseudo-observables, Gfitter consist of independent object-oriented
C++ code [3]. Both frameworks yield consistent results. Selected input parameters of the fit,
including their current experimental uncertainty, are summarised in Table C.12.1, while the
∆χ2 distributions for the indirect determinations of MH, MW, and mtop are summarised in
Figure C.12.1.

We repeat the indirect fit of these observables using the GAPP program, mainly by
assuming the FCC-ee projections and target uncertainties from Refs. [4, 5], as well as non-
dominant theory uncertainties from unknown higher orders. It should be noted that the uncer-
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Table C.12.1: Overview of selected observables, their values, and current uncertainties, which
are used or determined within the global electroweak fit [1]. The future expected FCC-ee un-
certainties are also shown [4,5].

Parameter Current value FCC-ee unc.- Parameter Current value FCC-ee unc.-
target target

MH 125.09± 0.15GeV ±0.01GeV MZ 91.1875± 0.0021GeV <0.1MeV
MW 80.380± 0.013GeV ±0.6MeV ΓZ 2.4952± 0.0023GeV 25 keV
ΓW 2.085± 0.042GeV ±1.0MeV σ0

had 41.540± 0.037 nb 0.004 nb
mtop 172.90± 0.47GeV ±15MeV Rb 0.21629± 0.00066 <0.00006
∆αhad[×10−5] 2758± 10 ±3 AFB

LR(b) 0.0992± 0.0016 ±0.0001
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Fig. C.12.1: Comparisons of χ2 distributions for scanning different observables using the Gfitter
and the GAPP, using the current experimental values and uncertainties. Theoretical uncertain-
ties are indicated by the filled blue and yellow areas, respectively.
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Fig. C.12.2: Comparisons of χ2 distributions for scanning different observables using GAPP
with the current experimental values but the expected uncertainties from FCC.

tainty in the weak mixing angle is assumed to be ±5× 10−6 during the fit.†

Similar studies have been previously performed [6, 7]. Of special importance are the sig-
nificantly lower uncertainties in mZ, mW, and mtop (Table C.12.1), which could be reduced
by an order of magnitude. The ∆χ2 distributions for MH, MW, and mtop are summarised
in Figure C.12.2, yielding precisions of the indirect determinations of ∆MH = ±1.4GeV,
∆MW = ±0.2MeV, and ∆mtop = ±0.1GeV. Thus, the indirect test of the internal consistency
of the electroweak sector would be brought to a new level. The uncertainty in mH increases
from ±1.4GeV to ±5.7GeV, if no advances are made on the theory side. Likewise, the expected
uncertainty in the indirectly determined value of ∆αhad increases from 0.05% to 0.1%. Last but

†This uncertainty combines the expected measurement precision of the asymmetry observables, i.e., it can
be seen as a combination of AFB(µ), AFB(b) and the τ polarisation measurements.
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not least, the number of active neutrinos Nν can be constrained at FCC-ee within ±0.0006,
compared with the current result Nν = 2.992± 0.007.
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