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9 Cryogenics for the HL-LHC

9.1 Overview
The upgrade of the cryogenics for the HL-LHC will consist of the following:

- The design and installation of two new cryogenic plants at P1 and P5 for high luminosity insertions.
This upgrade will be based on a new sectorization scheme aimed at separating the cooling of the magnets
in these insertion regions from the arc magnets and considering the newt feedboxes and superconducting
links located in underground infrastructures.

- The design and installation of a new cryogenic distribution lines (QXL) at P1 and P5 in the LHC tunnel
and in a new underground service galleries.

- The upgrade of the existing cryogenic plant (QSRA and QURA) cooling the LHC sector 3-4 located
at P4.

- The cryogenic design support for superconducting devices, such as magnets, crab cavities,
superconducting links, and the hollow electron lenses.

Some other options such as new cryogenic circuits at P7 for the HTS links and displaced current
feedboxes or a new cryoplant in P4 have been discarded.

9.2 LHC machine upgrades

9.2.1 Upgraded beam parameters and constraints

The main parameters impacting on the cryogenic system are given in Table 9-1. With respect to the nominal
beam parameters, the beam bunch population will double and the luminosity in the detectors of the high
luminosity insertions at P1 and P5 will be multiplied by a factor 5.

Table 9-1: LHC upgraded beam parameters for 25ns bunch spacing

Parameter Unit Nominal LHC Nominal HL-LHC

Beam energy, F TeV 7 7
Bunch population, N, protons/bunch 1.15 x 10" 2.2 x 10"
Number of bunches per beam, ny, - 2808 2748
Luminosity, L cm2s’! 1x10% 5x10%
Bunch length ns 1.04 1.04

These upgraded beam parameters will introduce new constraints to the cryogenic system.
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9.3

The collimation scheme must be upgraded. As some of the new collimators will work at room
temperature but be installed on the cold region, cryogenic bypasses are required to guarantee the
continuity of the cryogenic and electrical distribution.

Hollow electron lenses will be installed for halo control.

The increase of the level of radiation to the electronics could possibly require relocating power
convertors and related current feedboxes. New superconducting links will be required to connect the
displaced current feedboxes to the magnets.

To improve the luminosity performance by addressing the geometric luminosity reduction factor and
possibly allowing the levelling of the luminosity, cryo-modules of crab-cavities (CC) will be added at
P1 and P5.

Finally, the matching and final focusing of the beams will require completely new insertion cryo-
assemblies at P1 and P5.

Temperature level and heat loads

Heat loads to the cryogenic system have various origins and uncertainties. The heat loads deposited in the
accelerator are the result of physical mechanisms, which are classified as static, resistive, beam-induced,
collision-induced, or radiofrequency-induced. The nomenclature is based on the LHC Design Report [1].

An important effort has been done during the last years to estimate the future HL-LHC heat loads [2].

The heat loads values in Table 9-2 are categorized by temperature level and heat load type. Table 9-3 reports
the heat load values for group of users. It indicates the total contribution from static, dynamic
(nominal/ultimate), total load (nominal/ultimate) and design values.

Table 9-2: “Nominal heat load” table for the LSS.RS5 for the HL-LHC. Preliminary values.

Component Q1 | Q2A Q2B | Q3 Cp D1 |Intercon. | DFX [DFM| D2 CC
Length (m) 10.140 | 9.785[9.785 [10.140| 6.01 | 7.370 | 6.930 2.535 | 4.000| 13.025 | 2 module
(thermal shield) (10.640) (6) (6unit™) | (3.034) (14.025) | units T
Cold Mass

Temperature (K) 1.9 19 | 1.9 1.9 1.9 1.9 1.9 45 45 1.9 2
Total Heat Load (W) 1389 | 122.7|157.5 | 163.9 | 974 | 97.1 38.2 4.1 45 | 467 89.9
Avg. Heat Load (W/m) 137 | 125161 | 162 16.2 132 | 5.5Wpu 1.6 1.1 3.6 | 45.0 W pu
Static (W/m) 1.7 17 | 1.7 1.7 1.8 22 [03Wpu | 1.6 1.1 0.6 | 189Wpu
Resistive (W/m) 0.7 04 | 04 0.7 3.9 01 [00Wpu | 0.0 00 | 0.0 0.0 W pu
Beam Induced (W/m) 0.3 02 | 0.2 0.3 0.0 0.1 2.2 W pu 0.0 0.0 0.2 0.0 W pu
(Cv?ll/hnf;"n Induced ? 11.0 | 103138 | 135 | 105 | 107 |3.0Wpu | 00 | 00| 28 | 0.0Wpu
RF Cavity (W/m) - - - - - - - - - - 26.1 W pu
Beam Screen

Temperature (K) 60-80 | 60-80(60-80 | 60-80 | 60-80 | 60-80| 60-80 - - | 4520 | 4520
Total Heat Load (W) 223.1 | 973 |144.8 | 133.0 | 66.9 740 | 3758 0.0 0.0 | 49.8 46.0
Avg. Heat Load (W/m) 220 | 9.9 | 148 | 13.1 11.1 10.0 | 542Wpu| 0.0 00 | 3.8 | 23.0Wpu
Static (W/m) 0.1 0.1 | 0.1 0.1 0.2 02 | 0.0Wpu| 0.0 0.0 | 0.0 9.3 W pu
Resistive (W/m) 0.0 0.0 | 0.0 0.0 0.0 00 | 0.0Wpu| 0.0 00 | 00 | 13.6Wpu
Beam Induced (W/m) 5.1 29 | 44 5.1 0.6 2.3 |424Wpu| 0.0 0.0 3.7 0.0 W pu
Collision Induced

(W/m) 168 | 69 |102 | 7.9 10.3 7.6 | 11.9Wpu| 0.0 00 | 02 0.0 W pu
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Component Q1 | Q2A Q2B | Q3 | CP D1 |Intercon.| DFX |DFM| D2 CC
Thermal Shield

Temperature (K) 60-80 | 60-80|60-80 | 60-80 |60-80 | 60-80 | 60-80 60-80 | 60-80| 60-80 60-80
Total Heat Load (W) 66.6 | 532|532 | 543 [133.8| 103.2 222 249 28.0 | 133.1 609.0
Avg. Heat Load (W/m) 6.3 54 | 5.4 54 | 222 140 | 32Wpu| 82 70 | 95 304.5 W pu
Static (W/m) 6.3 54 | 54 54 | 222 140 | 3.2Wpu 8.2 7.0 9.5 206.9 W pu
RF Cavity (W/m) - - - - - - - - - - 97.6 W pu
“-“=not applicable; W pu = Watts per unit.

* Length of each interconnection unit is 1 m, except between Q3-CP which is 1.8 m and CP-D1 which is 1.13 m.

1 A module unit contains 2 crab cavities.

Table 9-3: Total heat loads divided by group of users, LSS.R5 and IP5. Preliminary values.

Group* IT D2 CC LSS_RS IPS
Cold mass length (m) 62.7 17 - 79.7 159.4
Thermal shield length (m) 63.7 18 - 81.7 163.4
Number of units (-) - - 2 2 (CO) 4 (CO)
Cold Mass
Temperature (K) 1.9 1.9 2 1.9-2 1.9-2
Total Design + flash (W) 1416.7 100.2 149.6 1667 3333
Total Design (W) 1173.3 83.0 127.6 1384 2768
Total Ultimate (W) | 1103.4 68.7 89.9 1262 2524
Total Nominal (W) | 779.4 50.7 89.9 920 1840
Dynamic - Ultimate (W) | 1033.4 54.4 52.2 1140 2280
Dynamic - Nominal (W) | 709.4 36.4 52.2 798 1596
Static (W) 70.0 14.3 37.7 122 244
Beam Screen
Temperature (K) 60-80 4.5-20 4.5-20 60-80 4.5-20 60-80 4.5-20
Total Design (W) 1685.0 74.7 97.0 1685 172 3367 343
Total Ultimate (W) | 1424.1 50.9 46.0 1424 97 2846 194
Total Nominal (W) | 1115.0 49.8 46.0 1115 96 2228 192
Dynamic - Ultimate (W) | 1415.8 50.9 27.3 1416 78 2830 156
Dynamic - Nominal (W) | 1106.7 49.8 27.3 1107 77 2211 154
Static (W) 8.4 0.0 18.7 8 19 17 37
Thermal Shield
Temperature (K) 60-80 60-80 60-80 60-80 60-80
Total Design (W) 744.9 229.6 913.5 1967 3935
Total Ultimate (W) | 496.6 153.1 609.0 1312 2623
Total Nominal (W) | 496.6 153.1 609.0 1312 2623
Dynamic - Ultimate (W) 0.0 0.0 195.2 195 390
Dynamic - Nominal (W) 0.0 0.0 195.2 195 390
Static (W) | 496.6 153.1 413.8 1116 2233

(*) italic values are indicating Design Heat Load values

The design heat load values consider margins and technological requirements. They can be calculated
by using the following equations:

Qinstalled = MAX[FOU ' (Fun " Qstatic + Qdynamic nominal) ; Fun " Ostatic + Qdynamic ultimate] (9'1)
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Qinstalled = MAX[Fov ' Qnominal ) Qultimate] )

The first equation is valid for the cold mass (1.9-2 K) and beam screens (4.5-20 K and 60-80 K). The
second equation is valid for the thermal shield (60—80 K) and current leads (20293 K). A detailed study is
available on [2]. Figure 9-1 gives a global view of the heat load at 1.9 K.
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Figure 9-1:Total heat load for users at 1.9 K. Preliminary values.

9.4 Impact on existing sector cryogenic plants

With new cryogenic plants dedicated to the cooling of cryogenic equipment in P1 and PS5, the cooling duty of
the existing sector cryogenic plants will be reduced and more equally distributed. Figure 9-2 and Figure 9-3
shows the required cooling capacities for the different temperature levels and compares them to the nominal
cooling requirements and to the installed capacities. The low-load sectors equipped with upgraded ex-LEP
cryogenic plants have lower installed capacity than the four cryogenic plants specially ordered for the LHC
high-load sectors. For the HL-LHC, sufficient capacity margin still exists providing that the beam scrubbing
of dipole beam-screens is efficient (dipole off).
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Figure 9-2: Cooling capacity requirement of sector cryogenic plants. (a) Cold mass; (b) current leads
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Figure 9-3: Cooling capacity requirement of sector cryogenic plants. (a) thermal shields; (b) beam screen
(dipole off); (c) beam screen (dipole on).

9.5 Point 4 cryogenics

The initial baseline considered the installation of a new cryoplant in P4. Later on, was decided to evaluate an
alternative scenario for the refrigeration part. The alternative scenario consisted of an upgrade of one of the
existing refrigerator of P4 (equivalent of 2 kW@4.5 K with respect to the existing plant capacity of
16.5 kW@4.5 K) [6] to fulfil the required cooling capacity of existing SRF modules with sufficient margin,
while keeping or adapting the distribution system depending on the alternative. As a complement, a new mobile
refrigerator with a cooling capacity allowing RF tests of a single cryo-module during long shut-downs was
then considered, as all other cryogenic sub-systems would be stopped for maintenance and major overhauling,
but was finally abandoned.

The upgrade of the ex-LEP refrigerator included mainly:
- Replacement of 7 expansion turbines.
- Modification of one existing turbine.

- Modification of the required piping inside the boxes or for instrumentation and service panels.
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The upgrade was successfully completed during the Long Shutdown 2.

The modification of the cryogenic distribution line to allow the installation of the hollow electron lenses
is under study. The schematic layout can be seen in Figure 9-4 [5].
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Figure 9-4: Layout of the possible cryogenic layout at P4 (Hollow e-lens)

9.6 New cryogenics for high luminesity insertions at Point 1 and Point 5

The new HL-LHC cryogenic system will require new cryo-plants of about 15 kW at 4.5 K including 3 kW at
1.8 K. They will encompass new refrigeration plants and distribution lines. Figure 9-5 illustrates the
architecture of the system A full analysis of both systems have been done in order to optimize the cost and the
sourcing strategy.
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Figure 9-5: HL-LHC Cryogenic architecture at P1 and P5
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The main components of the new helium refrigeration system are [7]:
- The compressor station (QSCG).
- Adryer system (QSAQG).
- The 4.5 K cold box (QSRG) including 80 K and 20 K absorbers and a liquid helium phase separator.

- A cryogenic vertical transfer line (QPLG) in a shaft connecting the 4.5 K surface cold box to the 1.8 K
cold box located in an underground cavern.

- A 1.8 K cold box (QURCG) including the cold compressors and a phase separator.
Each HL-LHC helium refrigerator shall:
- Provide cooling to different magnets with an equivalent capacity of about 3 kW at 1.8 K.

- Supply an average helium mass flow rate of approximatively 10 g/s at 4.5 K for the beam screens and
recover it at around 20 K.

- Provide cooling to the Distribution Feed Boxes (DFH) with a liquefaction flow rate of 25 g/s.

- Supply an average helium mass flow rate of approximatively 100 g/s at 60 K for various thermal shields
and recover it at around 80 K, for a corresponding cooling capacity of 10 kW.

- Allow control of supply temperature between 300 K and 10 K during cool down of magnets.
- Accommodate heat load variation from 20 to 100 % in less than one hour twice a day.
Regarding the new distribution system it shall [8]:

- Distribute helium from the refrigerator to the different machine components in the temperature range from
4 K to 350 K with a maximum allowable pressure of 25 bar absolute.

- Control the helium flow to and from users as required for multiple operating modes.

- Have a maximum heat load for lines below 20 K (@cq ~320 mm) lower than 0.5 W/m.

- Have a vacuum vessel diameter ranging from ~650 mm to ~770 mm.

- House five inner headers ranging from ISO DN40 to DN300 and an actively cooled thermal shield.
- Integrate approximately 200 cryogenic control valves and interface to users via 32 feeding points.

Figure 9-7 illustrates the cryogenic distribution architecture while the following details provide details
on the layout for the different components.
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Figure 9-6: Schematic of the cryogenic distribution architecture [8]
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Figure 9-10: Detail of the distribution for the Crab Cavities [12].

Process flow diagrams for the Distribution Feed boxes are available on Refs. [13] [14].
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